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Abstract

Tunneling into the edge of a quantum Hall droplet is a sensitive probe of the topologi-
cal orders believed to exist in fractional quantum Hall states. The tunneling behavior
of a general hierarchy state is studied within the chiral-Luttinger-liquid model of
low-energy edge dynamics. Adding random hopping of quasiparticles between edge
modes results in “symmetry restoration by disorder” and universal weak tunneling
behavior in edges with modes traveling in both directions. We develop a boost co-
ordinate technique and apply it to find the edge phases and tunneling exponents of
all topologically stable principal hierarchy states. States with neutral modes in both
directions along the edge have multiple stable fixed points which can be classified by
their symmetries. When the tunneling current into an edge is large, the system can
cross over from the weak-tunneling fixed point to a different strongly coupled fixed
point with different conductance and effective charge. Edges with multiple modes can
have multiple strongly coupled fixed points. We develop a general formalism to ana-
lyze weakly and strongly coupled fixed points of point tunneling. Adding interactions
to tunneling between two Laughlin edges is shown to lead to a continuous variation
of effective quasiparticle charge and conductance with interaction strength.
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Chapter 1

Introduction

The first two sections of this introduction review the relevant aspects of the integer and
fractional quantum Hall effects. The third section covers the experimental technique
of cleaved-edge overgrowth, which allows the observation of non-Fermi-liquid behavior
at the edge. The fourth and fifth sections explain how the properties of bulk quantum
Hall liquids and of one-dimensional interacting electron systems combine to yield novel
behavior at the one-dimensional edge of a quantum Hall droplet. The final section
outlines the organization and main results of this thesis.

1.1 Integer quantum Hall effect

The integer quantum Hall effect, discovered by Klaus von Klitzing in 1980 [1], is a
quantum-mechanical property of effectively two-dimensional electron gases (2DEGs).
When electrons are trapped at the planar interface of a layered GaAs-AlGaAs struc-
ture, at sufficiently low temperatures their transverse motion is “frozen out,” as es-
sentially all of the electrons occupy the lowest eigenstate in the transverse direction,
of width ~ 1004. The relevant experimental aspects are described in more detail
in section 3 below. Henceforth we neglect the transverse direction and assume that
the electrons move in two dimensions. Under these assumptions it turns out that the
transverse conductance is quantized to better than one part in 10°, in real samples
with some amount of disorder; this is the famous quantized Hall effect, which we now
review.

When a magnetic field B is applied to the 2DEG, the single-electron orbital eigen-
states (i.e., ignoring the Zeeman energy) can be grouped into Landau levels of ener-
gies B, = (n + 3)hw,, with n = 0,1,2,... and w, = eB/mc the classical cyclotron
frequency. Each of these levels is highly degenerate, with N = A/27¢? states per
spin-polarized level in a 2DEG of area A, £ = \/g the magnetic length. The single-
electron density of states in a clean magnetized 2DEG consists of d-funcion peaks at
the Landau level energies E,. In the presence of a weak spatially random potential,
some of the weight in these J-functions moves into localized states at nearby ener-
gies. The only extended states are at exactly the Landau level energies, but there do
remain extended states in the presence of (sufficiently weak) disorder. This is quite




different from the situation with B = 0, when it is believed that an arbitrarily weak

random potential is sufficient to localize all states in two dimensions.
The Hall coefficient is defined as

Yy

R = 5’ (1.1)

where I, is the current through the sample and V,, the associated transverse voltage.
For free electrons the Hall coefficient is ﬁ, where n is the areal electron density.
This holds both classically and quantum-mechanically in a perfectly clean system:
in the frame moving with velocity cV, /B, the electric field is zero, so the electrons
are stationary on average in this frame. Hence the current in the original frame is
necV,/B.

At sufficiently low temperatures in a slightly disordered system, the transverse
conductance shows plateaus as the magnetic field is varied with electron density
constant. The plateaus are at the values ke?/h for integers k, so the Hall coefficient
1s

_h_ onf?

. " €2kB  kec’ ]

This corresponds to the free electron density k/2m¢?, or k filled Landau levels. When

the chemical potential is in a region with localized states between the Landau level

energies Aw.(k + 1/2) and hw.(k + 3/2), the system behaves as if it had exactly &
filled Landau levels of free electrons.

The amazing precision of the Hall coefficient’s quantization and its insensitivity
to details of sample geometry and weak impurity scattering suggest that the reason
for its quantization must be topological in nature. Note that in two dimensions con-
ductance and conductivity have the same engineering dimensions, so independence of
sample size and geometry is at least possible. The quantization of the Hall coefficient
when the chemical potential is in a region of localized states was first explained by
Laughlin [2] and Halperin [3]. The important feature for what follows is that when
all states at the chemical potential are strongly localized on the experimental length
scale, there is a “mobility gap” and the diagonal conductivity is zero. Hence there is
1no dissipation in the bulk sample.

Under these conditions a gauge-invariance argument shows that an adiabatic
change in flux through a hole in the 2DEG by one flux quantum does not change
the bulk state of the system, except that an integer number k of electrons may be
transferred across the sample. Then averaging to obtain a transverse conductance
gives ke?/h if k Landau levels are filled, as the extended states in each Landau band
are sensitive to the flux through the center through the Aharonov-Bohm effect. In the
fractional case discussed in the next section, several flux quanta must be added in or-
der to transport a single electron across the sample, and a gapped bulk state emerges
at certain fractional fillings as a result of strong electron-electron interactions.

(1.2)




1.2 Fractional quantum Hall effect

The key property for quantization is a gapped (“incompressible”) state in the bulk,
at least for extended states, but with occupied extended states surviving below the
Fermi level. At certain fractional filling factors v = n/ng, ng = 1/2m¢?, there are
strongly correlated states which have a true gap in the bulk as a result of Coulomb
interactions between the electrons. In order to understand how such states arise at
v = 1/3 and other fractions, it is useful to work in a particular basis for the Landau
eigenfunctions, which we now describe.

Instead of using the original coordinate system (z,y) on the plane, we can use
the complex coordinates (z, z), with z = z + 4y, Z = = — iy. The choice of vector
potential A = Z(y& — z¥) gives a constant magnetic field B along the z-direction.
The single-particle Hamiltonian is

1 A& e

H=-—(=V+-A)? 1.
2m(iV + c ) (1:3)
and in the above gauge the lowest-Landau-level (LLL) normalized eigenfunctions are

mo—|z)?/4
zme.

2,Z) = —m—— 1.4
V(2 2) V272mml (14)

Here the integer m is the angular momentum of the eigenstate around the origin:
L, = mh. The eigenfunctions for higher Landau levels n > 1 are of similar form
with prefactors Z® 1. The v = 1 ground state for a noninteracting rotationally
symmetric system of N electrons is the Slater determinant of g, %1, ...¥n_1. This
Slater determinant can be rewritten as

U ( I - zj)) e~ Lrgisw l_lﬁ (1.5)

1<i,jSN

The many-body wavefunction ¥, is clearly antisymmetric under exchange of two
electron coordinates, as required for a spin-polarized wavefunction for electrons. As
required by this antisymmetry, the wavefunction vanishes whenever two electrons are
at the same spot.

It is reasonable to assume that the ground state with interactions can be con-
structed from LLL wavefunctions if the Coulomb interaction is weak compared to the
inter-Landau-level spacing Aw. and the Zeeman energy. The effect of the Coulomb
interaction will be to penalize wavefunctions which allow two electrons to approach
each other. In zero magnetic field in two dimensions, it is known that at low density
and temperature the electron ground state with Coulomb interactions is a “Wigner
crystal” and has long-range crystalline order at zero temperature. In a strong mag-
netic field, the ground state for some densities is an incompressible quantum liquid
with a gap for bulk excitations but no conventional long-range order. A natural
generalization of (1.5) with filling factor v = 1/m is the Laughlin wavefunction [4]

=412

v, « ( H (Zi - Zj)m) e ZiSiSN+. : (16)

1<4,5<N
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Originally the Laughlin wavefunction for m = 3 was justified through numerical
calculations which showed it to have a lower energy than other proposals, and a
high overlap with the exact ground state for small systems studied through exact
diagonalization. The wavefunction ¥3 has a third-order zero whenever two electron
coordinates are brought together, suggesting that it will be favored for repulsive
electron-electron interactions. Haldane made this connection precise by showing that
the Laughlin state U3 is the exact ground state of a certain Hamiltonian with non-
Coulombic interactions. [5] (Specifically, the Laughlin ground state is exact if all
interaction pseudopotentials for relative angular momentum greater than 2% vanish.)
It is believed that no phase transition occurs between this parent Hamiltonian and
the true Coulomb or screened-Coulomb Hamiltonian, so that the true ground state
is “essentially similar” to the Laughlin state for » = 1/3 and v = 1/5. The precise
definition of this similarity is that the true ground state and the Laughlin state have
the same topological order. [6] For m > 7 it is thought that the Laughlin state is
unstable to Wigner crystallization. [7]

The wavefunction U3 supports excitations of fractional charge +e/3. This seems
nonsensical at first, since U3 was constructed as a wavefunction for indivisible charge
e electrons. But consider multiplying W3 by I], z;. The total electron charge within
a circle of large radius R around the origin is then reduced by e/3, so that at large
distances it appears that a “quasihole” of charge e/3 has been added to the system
at the origin. Another way to see that fractional charges really exist in the system
is to consider the degeneracy of low-energy excitations when an electron is added or
removed from the system. Instead of scaling with the area A as for a normal metal,
the degeneracy scales with A® for the v = 1/3 state: the electron is “fractionalized”
into three quasiparticles. '

A major subject of this thesis will be how the remarkable features of bulk FQHE
states are revealed at the edge. In particular, there are now many observed quan-
tum Hall fractions beyond the Laughlin states, which are predicted to have a rich
structure of quasiparticles and topological orders. There are two alternate construc-
tions of fractional quantum Hall states beyond the Laughlin states (here we restrict
ourselves to Abelian single-layer quantum Hall states). The first, due to Haldane [5]
and Halperin [8], forms a “hierarchy” of odd-denominator filling fractions. Starting
from a parent Laughlin state such as v = 1/3, one can imagine adding Laughlin
states of quasiparticles or quasiholes to form' daughter states (in this case v = 2/5
and v = 2/7) which now have different types of quasiparticle excitations. The hier-
archical construction can be iterated to give daughter states of these daughter states
(third-level hierarchy states), and so on. Rather than discuss the various approxi-
mate wavefunctions proposed for daughter states, their important universal features
affecting edge excitations will be described in detail in Chapter 2.

1.3 Experiments at the edge

The only gapless excitations of an incompressible quantum Hall state are localized at
‘the edge. For this reason, measurements on the edge provide the most sensitive probe
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Figure 1-1: Cleaved-edge overgrowth technique to create a sharply defined edge for
the 2DEG. Tunneling conductance into the edge is measured through the AlGaAs
barrier.

of the rich structures believed to exist in bulk quantum Hall states. In the following
two sections, we explain how the edge properties are connected to the topological
orders of the bulk quantum Hall state, and why the edge is of interest in its own
right as a model one-dimensional system. Now we discuss a beautiful experimental
technique, cleaved-edge overgrowth, developed to create a sharp potential barrier at
the edge of a quantum Hall droplet. [9] The resulting density profile for the electrons in
the lowest Landau level is much sharper than that obtained by electrostatic potentials
on gates relatively far from the 2DEG layer, the usual way of defining the droplet
edges. The reason why cleaved-edge overgrowth is such a valuable technique is that
the non-Fermi-liquid properties of quantum Hall edges are more visible in a sharp
edge than a smooth one. Here a sharp edge is one in which the density variation scale
Vn/n is of order the magnetic length £. In a smooth edge, the density profile can
become quite complicated as a result of the Coulomb interaction; this phenomenon
is known as edge reconstruction.

Figure 1-1 shows a cleaved-edge overgrowth [10] sample schematically. The 2DEG
is cleaved along the (011) crystal axis, and overgrown with a thin layer (90-250 A)
of Aly1GageAs, followed by a 5000 A layer of GaAs. The band mismatch between
the 2DEG and thin layer creates a sharp potential barrier of height about 100 meV.
This barrier creates a much sharper edge than possible using the metallic gates which
define the other edges of the 2DEG.

It was predicted by Wen [11] that tunneling into the » = 1/3 Laughlin state would
show a strongly nonlinear behavior: I oc V3, where I is the tunneling current and V
the voltage difference between the tunneling lead and sample edge. The reasons for
this prediction are discussed in the following sections. For a v = 1 edge, the Fermi-
liquid-like result I o< V is observed. A nonlinear curve I o< V@ for small V for the
v = 1/3 edge was observed [12, 13], but with exponent o ~ 2.7 rather than 3. The
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striking difference in the experimental results for v = 1/3 and v = 1 is confirmation
that the strong correlations of FQHE states are manifested at the edge.

As the tunneling current increases, the power-law behavior eventually ceases and
the differential conductance becomes approximately constant. This asymptotic con-
ductance probes different aspects of edge physics than the weak tunneling power-law
behavior, and is discussed in the second part of this thesis. It is believed that in
all current experiments on tunneling into cleaved-edge overgrowth samples, there are
multiple tunneling points, with different tunneling amplitudes. This does not modify
the weak tunneling power-law behavior, but does affect the asymptotic conductance.
Here we will consider only the case of a single tunneling junction; it is not too diffi-
cult to extend single-junction results to many tunneling junctions. Another type of
experiment which we will occasionally refer to measures the temperature dependence
of the linear-response conductance.

1.4 Edge states, bosonization, and Luttinger lig-
uids |

Our goal in this section is to motivate the description of a clean, sharp quantum Hall
edge by a free bosonic one-dimensional field theory. The integer quantum Hall state
v = 1 and the Laughlin states v = 1/m have, in the Chern-Simons effective theory
for FQHE states described in the next section, a single “condensate” in the bulk, and
as a result have a single bosonic branch of excitations at the edge. Edges of more
complicated states with multiple condensates have several bosonic modes at the edge.
We start in this section with the edge of the v = 1 integer quantum Hall state, which
can be understood from a noninteracting picture, and then consider how this picture
can be generalized to more complex states.

Consider the effect of a rotationally symmetric confining potential on the LLL
eigenstates near the edge (Fig. 1-2). The degeneracy of the eigenstates is split by
the potential, with eigenstates of larger radius gaining more energy. In this simple
noninteracting picture, the number of electrons fixes the Fermi level beyond which
the states are unoccupied in the many-electron ground state. We will show that the
spectrum of the fermionic system shown in Fig. 1-2 can be written in terms of bosonic
operators. The amazing equivalence between fermionic and bosonic systems in one
spatial dimension, which goes by the name of “bosonization,” holds well beyond this
specific noninteracting example. In fact, the utility of bosonization for quantum
Hall states and other one-dimensional problems is that some interacting fermionic
systems become free systems in the bosonic language. This important property will be
discussed in more detail below. Here we will try to give some intuitive understanding
of why bosonization works by counting excitations in a simple case. Chapter 2 includes
a summary of results from bosonization which are required for the rest of this thesis.

The lowest-energy excited state, with excitation energy equal to the interlevel
separation (E in Fig. 1-2), is obtained by moving the outermost electron one state
outward. Note that the potential is assumed approximately linear near the edge of

11




Energy

Radius

Figure 1-2: Energy levels near the edge for noninteracting v = 1 state in a rotationally
symmetric potential. Solid circles indicate occupied levels and open circles vacant
levels in the ground state.

the sample. There are two degenerate states of energy 2E: one formed by moving
the outermost electron two levels outward, and one formed by moving the outermost
two electrons one level outward each.

Now let us define a set of bosonic operators b, bl., m=1,2,.... The effect of bl
on a many-electron state in the occupancy number basis is to move the outermost m
electrons one level outward. (These operators conserve the total number of fermions
and can be taken to have bosonic mutual statistics.) The operators b,, move the
outermost m electrons one level inward if possible and annihilate states where this
operation would put two electrons on top of each other. Writing the ground state as
|0), the excited state of energy E is bIIO), and the two excited states of energy 2F are
(61)2]0) and b}|0). A moment’s thought shows that the entire spectrum is reproduced
by the Hamiltonian

oo
H=FEY (mblby). (1.7)
m=1 '

This Hamiltonian describes a single branch of edge modes all propagating in the same
direction: each mode of angular momentum m# carries energy E'm. The chiral boson
action which reproduces this Hamiltonian when discretized is

S =1 [ dvdt3,0(0,6 - v0.6). (L8)

Here v = E'L/h is simply the physical velocity of the edge excitations, with L the
length of the edge. Note that the kinetic part of the action is universal (i.e., has no
sample-dependent constants), while the potential part contains v, which depends on

the details of the confining potential producing the edge.
- The original electronic operators do not appear in the action (1.8), but in order

12




to calculate the electron correlation functions we need the relation

¥l = xexp(ig). (1.9)

Here x is a “Klein factor” or cocycle required to give the right-hand side the cor-
rect statistics; it is equivalent to the Jordan-Wigner string which appears in one-
‘dimensional lattice spin models. The Klein factors do not affect the calculations to
be done in this thesis, so we will omit them henceforth. The local electronic density
is given by p(z) = 3-0;¢(z), and the electron creation operator satisfies (shown in

Chapter 2) "
[p(:c), ei¢(y)] =0(z —y). (1.10)

The action (1.8) describes not only the v = 1 edge, but also the v = 1/m edge,
even though the v = 1/m state only exists in the presence of strong electron-electron
interactions. There are several ways to derive a chiral boson action at the edge for
FQHE states. For states with a single bulk condensate such as the Laughlin states, one
can consider the low-energy edge excitations in the classical limit as hydrodynamic
ripples on the edge of the Hall droplet. The ripples move in the direction of the
classical E x B drift at the edge, and quantizing the ripples leads again to a chiral
boson description. A more sophisticated derivation [14] motivates the edge action
for a general quantum Hall state by the requirement that the bulk and edge effective
theories together satisfy gauge invariance. The edge action derived in this way inherits
its universal features from the bulk quantum Hall theory, such as the number of modes
in each direction and their relative statistics.

Before considering how tunneling experiments probe edge structure, we now ex-
plain why bosonic actions similar to (1.8) are of interest in other condensed-matter
problems. Our understanding of clean metals in two and three dimensions is based
upon Landau’s notion of a Fermi liquid. In one sentence, the Fermi-liquid idea is that
the low-energy excitations of a real metal can be put in one-to-one correspondence
with those of a free Fermi gas, despite the strong repulsive Coulomb interactions
between electrons. The stability of low-energy fermionic excitations results from the
Pauli principle and simple geometry: the lifetime of a quasiparticle excitation of small
energy F scales with E~2 in three dimensions because there is only a small amount
of phase space (determined by energy and momentum conservation and the Pauli
principle) available for decay by particle-hole pair creation. /

In one dimension even weak repulsive interactions are enough to destabilize the
Fermi liquid. We mentioned above that even interacting quantum Hall edges can be
described by free bosonic Lagrangians; the same is true for the nonchiral (i.e., left-
right symmetric) problem of electrons in one-dimensional wires. The nonexistence
of a Fermi liquid (other than free fermions) in one dimension results because, after
linearizing at the Fermi surface, energy conservation and momentum conservation are
redundant, and hence the quasiparticle decay rate does not diverge as the quasipar-
ticle approaches the Fermi surface. The generic state of interacting one-dimensional
electrons is referred to as the Luttinger liquid [15, 16, 17], which has a free bosonic
.description but not a free fermionic description. Luttinger-liquid properties have been
difficult to observe experimentally, however, because of the tendency of electrons in

13




one dimension to localize in the presence of even weak disorder. Quantum Hall edges
have thus been studied in their own right as model one-dimensional interacting sys-
tems, which show Luttinger-liquid behavior (the prevailing model of edge structure
is referred to as the chiral Luttinger liquid) but are relatively insensitive to disorder.

1.5 ’I‘un'neling into quantum Hall edges

The simplest understanding of tunneling current into an edge at a given energy is as a
measurement of the electronic density of states in the edge at that energy. As we show
in this section, the low-voltage scaling 7 oc V' at zero temperature is determined by
the scaling dimension of the most relevant electron operator along the edge.

The scaling dimension of an operator is half the power of ¢ in its correlation
function:

(6md(@t)g=ime(00)) =  gm*(@(z.)$(0,0))—m? (¢;(0.0)¢;(0,0))
x (z+ivt)™. (1.11)

Here we have switched to imaginary time and the scaling dimension of the operator
O = exp(im¢) is A = m?/2. The correlation function is calculated from the free
action (1.8).

The relation between scaling dimensions and tunneling conductance can be un-
derstood simply from the RG equation for the flow of a tunneling amplitude. Suppose
that at some starting energy scale the tunneling amplitude coupled to O,, is t. The
scaling dimension A of O,, determines the RG flow ¢

dt

— =(1-2A)t. 1.12
=(1-28) (112
Then we expect that at low temperature T" the effective amplitude ¢ and the linear-
response conductance G scale as 7?21, At zero temperature, the energy scale is set

[’ [’ L . 1.1

It is also possible to derive the current scaling by deriving the electron DOS as a
Fourier transform of the correlation function, but the RG picture will be useful later
on in our treatment of random hopping at the edge.

In a general quantum Hall edge, there are many vertex operators (i.e., exponentials
of bosonic operators) which carry electron charge, and the physical electron operator
is expected to be a linear combination of all of these with unknown coefficients. The
tunneling exponent / o« V@ is clearly determined by the most relevant operator (that
which has the lowest value of A) for the smallest voltage, but at finite voltage one
could envisage a crossover to a less relevant operator with a larger coefficient. Another
-caveat is that the experimentally measurable tunneling is sensitive only to electronic
states which are extended or propagating, for the following reason. Tunneling into a
single localized state in the absence of interactions will not give a macroscopic current,
.as once the state becomes occupied by an electron there is no way for that electron
to leave the state and allow another electron to tunnel in. o
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1.6 Outline of results

Now we are in a position to state the main results of this thesis. The first part
(Chapters 2 through 5) reviews the chiral-Luttinger-liquid model of edge states and
examines how edge structure determines the nonlinear tunneling conductivity I oc V.
In states such as v = 2/3 with edge modes propagating in both directions, some form
of impurity scattering, modelled theoretically by random hopping of quasiparticles
between edge modes, is necessary for a to take universal values. [18, 19] When random
hopping is relevant in the v = 2/3 case studied by Kane, Fisher, and Polchinski
(KFP), it drives the system to a unique fixed point where the system can be solved
exactly by “gauging away” the disorder. One special feature of this fixed point is that
only one edge mode carries charge; the other mode is electrically neutral, so the fixed
point shows charge-neutral separation.

We develop a technique to study random hopping in a general Abelian edge,
not just the v = n/(2n £ 1) states studied previously. An important result is that
edges with neutral modes traveling in both directions, such as v = 5/7, have several
physically different edge phases with different values of the tunneling exponent «. All
these phases show spin-charge separation but differ in how they break the symmetries
of the kinetic part of the Lagrangian (Chapter 4). Our technique enables a complete
classification of the effects of disorder on Abelian principal hierarchy states. The
results of this classification are summarized in Table 5.1 and Fig. 5-1 of Chapter 5.

There is an interesting form of agreement between this theory for incompressible
quantum Hall states and a composite-fermion (CF) theory [20] for compressible quan-
tum Hall states. The CF theory predicts a continuous curve for tunneling exponent «
as a function of filling fraction v, for compressible states; at incompressible fractions,
we find that exactly one phase has tunneling exponent o which lies on the CF curve
(Fig. 5-1). Chapter 6 uses a perturbative RG technique to calculate the flows of
random hopping operators and justify the flow diagrams found in previous chapters.

The second part of this thesis (Chapters 7 through 9) describes strong tunnel-
ing between edges, when the low-voltage power-law relationship between I and V
no longer applies. Tunneling between two Laughlin states such as v = 1/3 shows a
crossover between two fixed points as a function of applied voltage. The low-voltage
or weak-coupling fixed point can be thought of as weak electron tunneling and is
understandable by the methods of the first part. The strong-coupling fixed point de-
scribes quasiparticle tunneling between two edges of the same quantum Hall bar. For
tunneling between more complicated edge states, the strong-coupling behavior pro-
vides a probe of edge structure which is relatively independent of the weak-tunneling
probe. We develop a formalism to describe strong-coupling fixed points in the chiral

Luttinger liquid model and apply it to a number of examples.
’ The experimentally relevant correlation functions for electronlike operators across
the junction can be calculated from this framework, and have a simple “image-charge”
description when the tunneling problem is folded onto the half-line. We present a
solvable model in which interactions between edges give a continuous variation with
interaction strength of effective tunneling charge and the I — V' curve. This suggests
that once interactions between edges are considered, nonuniversal features can appear

15




in tunneling properties and the identification of effective tunneling charge becomes
more difficult. We end with a brief summary of our conclusions and of open problems
for future work.
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Chapter 2

The chiral-Luttinger-liquid model
of quantum Hall edge states

2.1 Chern-Simons effective theory of FQHE states

The topological orders associated with bulk quantum Hall states can be understood
by constructing a low-energy theory. The theory is “low-energy” in the same sense as
the Ginzburg-Landau theory of a fully gapped superconductor: even though the bulk
is gapped, there is a nontrivial response to an applied electromagnetic field. In this
section we review the Chern-Simons effective theory for the bulk degrees of freedom,
and . The effective theory we use is in the pure Chern-Simons form of Wen [6], which
is related to the earlier formalism of Read [21] and Zhang et al. [22] by a duality
transformation.

For a Laughlin state, the response of the particle number current J,, to an applied

V€2 -

field is fixed by 04, =0, 04y = s

ver |
8y = L= 0,54, (2.1)

Here p,, A are spacetime indices (0, 1,2) and the electron charge is e. We seek to find
a Lagrangian whose equation of motion is (2.1): Current conservation is automatically
satisfied if we write J; as the curl of a U(1) gauge field a; (now A = 1):

1
J, = %6‘”’\5—7%- (2.2)
Then for v = 1/m the effective Lagrangian is

m e
L= —Ee““”\a“&,czx + %5“7)‘44“8.,@» (2.3)

We briefly review the properties of this effective Lagrangian to gain some under-
standing of how it captures the physics of the Laughlin states. The above Lagrangian
supports excitations of fractional charge +:2. Interchanging identical quasiparticles
of charge % gives a statistics angle § = 7 /m, so these quasiparticles have fractional
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statistics in addition to fractional charge. In more complicated hierarchical states,
there are several types of quasiparticles with different relative statistics. That is, for
each pair of quasiparticles the wavefunction gains some phase when the two quasi-
particles are moved around one another, and this phase may vary with the type of
quasiparticle. We now give the Chern-Simons Lagrangian for a general Abelian quan-
tum Hall state: (The terminology “Abelian” means that the total statistics from a
given exchange process can be described simply by an angle, or an element of the
Abelian group U(1).)

The Chern-Simons action for a state with n condensates contains n bosonic fields
a;:

L= —iK’;je‘”’\a" 8,d) + — P4, dl (2.4)
ar [7htit Bad N ot {2t ud :

Here K is a symmetric integer » X n matrix which contains information about the
relative statistics of the quasiparticles. The integer charge vector t contains the
electromagnetic charges of the different quasiparticle types: a quasiparticle of type %
carries charge ¢ = eKj;'t;. The filling fraction is nu = t"K~'t. We will now give
some examples of K matrices for the simplest fractional quantum Hall states.

The integer quantum Hall state v = n has K = I, (the n x n identity matrix) and
t = (1,...,1). Thus at the effective theory level this state is simply n decoupled copies
of the v = 1 state, which has K = (1) and t = (1). Below we will see that the same
picture applies at the edge. The Laughlin states v = 1/m have K = (m), t = (1).
The simplest hierarchical FQHE states are v = 2 and v = 2. The v = 2/5 state is
obtained from the v = 1/3 state by condensing a gas of quasiparticle excitations:

K:G’ ;) t = (1,0). (2.5)

The meaning of the above matrix is that there are two Chern-Simons fields which
have nontrivial relative statistics since the off-diagonal elements are nonzero. The 2
on the diagonal means that the gas of quasiparticle excitations have bosonic statistics.
The off-diagonal elements are nonzero because in this basis (the Haldane basis [5]) the
quasiparticles are sensitive to an effective magnetic field from the original fermions,
but not directly coupled to the electromagnetic field.

Another simple hierarchy state, whose edge will be of great interest below, is the
v = 2 state. In the basis we will generally be using

K:G _12) t=(1,1). (2.6)

Here the —2 on the diagonal means that we have condensed quasiholes rather than
quasiparticles, giving a state with filling fraction lower than the original v = 1 state.
A more transparent basis is

K:(é _03> t=(1,1). e

This is equivalent to the previous form under a simple SL(2, Z) redefinition of the
boson fields. This diagonal form shows that the v = 2/3 state can be interpreted as
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a v = 1/3 Laughlin state of holes in a v = 1 IQHE state of electrons. The K matrix
for the v = 2/3 state turns out to have profound consequences for the structure of
the edge of this state.

The v = 2/3 and v = 2/5 states are both principal hierarchy states, which means
that the daughter state v = 2/5 is constructed from the lowest-energy excitations
of the parent v = 1/3 state, and similarly for » = 2/3. The most robust fractional
quantum Hall states are principal hierarchy states, although non-principal states such
as v = 4/5 do exist. The K matrix of a principal hierarchy state in the Haldane basis
has all diagonal elements equal to £2, and all elements immediately above and below
the diagonal equal to 1. We will see in Chapter 3 of this thesis how important
differences emerge at the edge between principal hierarchy states and non-principal
states. The most robust states lie in the “main sequence” v = n/(2n + 1) where all
the diagonal elements aside from the first are the same. That is, in a main-sequence
state all elements are either +2 (for v = 2/5, 3/7, 4/9, ...) or —2 (for v = 2/3, 3/5,
4/7,...). An example of a principal hierarchy state which is not on the main sequence
but is observed experimentally is v = 5/7, which has diagonal elements (1, —2, 2, —2).

Every odd-denominator fraction can be obtained as the filling fraction of some
(many-level) hierarchy state, but this may seem problematical as only certain frac-
tions are observed. However, the prediction of the hierarchy picture that whenever
a daughter state is observed, all of its parent states must also be observed, seems
to be correct. An alternate “composite fermion” picture of some FQHE states was
developed by Jain [23], which explains the main-sequence FQHE states as IQHE
states of composite fermions. It is currently believed that for main-sequence states
the composite-fermion and hierarchy constructions have finite overlap in the thermo-
dynamic limit and have the same topological orders (and hence same K matrices).
In the next section we discuss the low-energy edge theory and its relationship to the
bulk Chern-Simons theory.

2.2 The effective theory of the edge

Edges of quantum Hall systems are described by a chiral Luttinger liquid (xLL) the-
oryrelated to the topological orders of the bulk quantum Hall state. We introduce the
theory for a clean edge and diagonalize it to obtain scaling dimensions of impurity
scattering operators. For a derivation of the theory from the bulk Lagrangian the
reader is referred to [14]. Before discussing the physical content of the xLL descrip-
tion, we introduce some needed formalism. The xLL action in imaginary time for a
clean edge of a QH state characterized by the matrix K contains 7 = dim K bosonic
fields ¢; and has the form [11]

1
So = E/dl‘ d’T [iKijaxqbiBTqu + V;J@zd)zangj] (28)
where, as in the rest of this chapter, the sum over repeated indices is assumed. K is a

'symmetric integer matrix and V a symmetric positive matrix. K gives the topological
properties of the edge: the types of quasiparticles and their relative statistics. V, the
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velocity matrix, is positive definite so that the Hamiltonian is bounded below. The
charges of quasiparticles are specified by an integer vector t and the filling factor is
Vv = ti(K_l)ijtj.

The quasiparticle density of type ¢ is given by p;(z) = 309:¢(x). Now we find
the commutation relations of the ¢ fields. In the v = 1 case, we want the operator
! = e to change the local density by 1:

[o(2), €] = 6(z — ). (2.9)
This is satisfied if the commutator of ¢ fields has the nonlocal form
(¢(z), d(y)] = —irsgn(y — z). (2.10)

Our sign convention is that positive z along the edge (right-moving) is the direction
of the classical E x B drift and of propagation for the single-mode v =1 and v = 1/m
edges. The generalization of (2.10) to a multicomponent edge is

[6i(2), &5 (W)] = —im K3 sgn(y — 7). (2.11)

This implies for the densities

1

=1gl(,,
271'Kij §'(y — z). (2.12)

[oi (), p;(y)] = —

One simple and powerful prediction of the chiral Luttinger liquid model is that
the number and directionality of edge modes is determined by the K matrix of the
bulk Chern-Simons effective theory. The number of right-moving modes is equal to
the number of positive eigenvalues of K, and the number of left-moving modes equal
to the number of negative eigenvalues. For example, the v = 2/3 state is predicted
to have one mode traveling in each direction, which has been verified by numerical
diagonalization of small systems for the spin-polarized [24] and spin-unpolarized [25]
cases. Experiments to count the number of modes are difficult because often one
or more modes is neutral and difficult to observe directly. The bulk of this thesis
is devoted to finding the predictions of the chiral-Luttinger-liquid model for more
feasible experiments, such as tunneling 7 — V' measurements.

There are major differences between chiral edges (all modes propagate in the same
direction) and nonchiral edges (at least one mode in each direction). In chiral edges
all scaling dimensions are universal, in that they depend only on K and not on V,
and so are the same for all samples of a given edge. In nonchiral edges scaling di-
mensions and associated tunneling properties are sensitive to V. As mentioned in the
Introduction, impurity scattering (modeled by random hopping of quasiparticles) is
necessary to understand tunneling measurements in nonchiral edges. In the remainder
of this chapter we introduce random hopping of quasiparticles and show how scaling
dimensions of quasiparticle creation and annihilation operators are calculated.

Scattering by spatially random quenched impurities is described by the action

Sy = /d:z: dr [£(z)e™% + & (z)e ™% (2.13)
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"Here £ is a complex random variable and [£(z)€*(z')] = Dd(z — '), with D the
(real) disorder strength. The integer vector m describes how many of each type of
quasiparticle are annihilated or created by the operator On = exp(im;¢;). For a
real system all charge-neutral scattering operators m; are expected to appear, but
most of these will be irrelevant in the RG sense as discussed in the following. The
condition for charge-neutrality is ¢;(K~!);;m; = 0. The random variables &, for
different scattering operators O, may be uncorrelated or correlated depending on
the nature of the physical impurities causing the scattering.

Now consider the correlation functions of these scattering operators with respect to
- the clean action Sp. For integer vectors m, define the function K (m) = m;(K~1);;m;.
K (m) governs the topological part of the correlation function of the scattering oper-
ator Oy, as follows: the correlation function is, ignoring cutoffs,

Gz, T) = (emi®i(2.m)g=im;d; (00))
o (ITfe (@ + v 7)) (T, (@ — vy 7) ~5%). (2.14)

Here n* and n~ are the numbers of positive and negative eigenvalues of K, and
vE, o, By are nonnegative real numbers which depend on V and K. However,
ch":l‘ak"— >r_15Bx = K(m) independent of V. Setting all velocities v,:f = 1 and
introducing z = x + 7,

1 1

imj¢;(z,7) ,—~im; $;(0,0)
(gmi®stemlemmi %l o K (m) | [2A(m) K (m)

(2.15)

with K (m) assumed positive. A(m) = (Y07, ax+37-, fx)/2 is the scaling dimension
of the operator exp(im;¢;).

2.3 The electron and quasiparticle lattices

In addition to the edge action, we need to fix which vertex operators O, are allowed
by the requirements of charge quantization and mutual locality. There are two classes
of vertex operators which will be needed in what follows. The first type are those
operators which can be generated by applying one or more electron creation or anni-
hilation operators at the edge. Any product of two operators in this class is itself in
this class, so the vectors n associated to operators in this class form a lattice:

On=¢"? nerT.. (2.16)

The lattice I', is the set of integral linear combinations of some basis of n =
dim K vectors. Some O, add charge to the edge and others transfer electrons or
quasiparticles between different edge branches but are neutral overall. The charge
and the statistics of O, are given by

Q = nTK_lq’ 9 = T TK_ln. (217)
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The vectors in I, satisfy

n’K~'n' = integer,
n,n €T.. (2.18)

Thus the charge excitations in I'. are bosons or fermions with trivial mutual statistics.
These vertex operators can appear in the Hamiltonian if they have bosonic statistics.
In many cases, the lattice [, is generated by electron operators, so we will refer to I,
as the E-lattice (although I', sometimes contains operators that transfer quasiparticles
between different branches).

The quasiparticle operators are also labeled by points in a lattice, I',:

', = {njm”K~'n = integer, for all m € '} (2.19)

We will call this lattice the quasiparticle lattice or Q-lattice. Note that the Q-lattice
T, is the dual lattice in K~! of the E-lattice I'.. The condition (2.19) arises from
the requirement that quasiparticle operators be local with respect to electron oper-
ators [14]. Physically, the quasiparticle operators are relevant for tunneling between
two quantum Hall edges separated not by vacuum but by a quantum Hall state which
is capable of supporting fractionally charged quasiparticles.

From the definition of the E-lattice, we see that I'; C I';. Since we are going to
discuss many lattices in this thesis, it will be convenient to use matrices to describe
lattices. We will say a lattice I' is described by a matrix M if the column vectors of
the matrix are a basis for the lattice. We will denote such a lattice as T' = Latt(M).
Also we will use WT to denote the transformed lattice of I' by W: WT = Latt(W M).
Under this notation, we can write the E-lattice I, = Latt(C), where the k by k£ matrix
C satisfies CTK~!C = integral matrix. The Q-lattice is then

I, = Latt(K(CT)™1h). (2.20)

2.4 Boost coordinates

The scaling dimensions of the various operators in the edge theory are functions of
V, an n x n matrix. Much of the physics of a disordered edge depends on V only
through the scaling dimensions of various operators. In this section we introduce
a coordinate system which greatly simplifies the calculation of scaling dimensions.
The scaling dimension of an operator determines whether that operator is relevant
in the RG sense when added to the clean action Sp. The operator is relevant with a
uniform coefficient when A(m) < 2, relevant with a spatially random coefficient when
A(m) < 3/2, and relevant at a point (with a é-function coefficient) when A(m) < 1.
For the random case this follows from the leading-order RG flow equation for disorder
strength D, [26]

2 = (3-20)D. (2.21)

It is thus useful to write V' in a way which isolates the parts of V' which affect A(m)
so that scaling dimensions depend on as few parameters as possible.
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As mentioned in the introduction, the tunneling conductance exponent o in I o
V* is determined by the scaling dimension of the most relevant electronlike operator.
The two-terminal conductance in units of e?/h is given by twice the scaling dimen-
sion A(t) of the charge operator as a consequence of the Kubo formula. [18] This is
the conductance measured with ideal contacts; a kinetic theory model for nonideal
tunnel-junction contacts gives a different nonuniversal value. [27] So a simple way to
calculate scaling dimensions in complicated edges will be quite useful to understand
experimentally relevant properties.

Equation 2.14 is obtained by simultaneously diagonalizing K and V by a basis
change ¢; = M;;¢;. Suppose M, brings K to the pseudo-identity I{n*,n7), ie.,

MTEM, = Lyt - = (1'6+ ) ) (2.22)
Basis changes preserve the number of positive and negative eigenvalues of a matrix
(“Sylvester’s law of inertia”). Now consider another basis change M, which will diag-
onalize V' and preserve the pseudo-identity: M, € SO(n*,n™) = MII(n*,n")M, =
I(n™,n~), introducing the proper pseudo-orthogonal group SO(m,n). The real pos-
itive symmetric matrix V' = M{VM; can be written as (M;)TVpM;? for some
diagonal matrix Vp and some M, € SO(n*,n~). The entries in Vp are all posi-
tive and are the v from (2.14), with (v*,v™) corresponding to (positive, negative)
eigenvalues of K.

Since Vp and I(n*,n~) are diagonal, the correlation functions in the basis ¢ =
(M M3)~1¢ are trivial:

<e"q31 (1"77-) e_i(gj (0,0)> — e(é] (Z:T)Q.SJ' (0’0))_ (&J (0)0)‘51' (Ole))
1

—_ 2.2
x T ;T ( 3)

where the sign depends on whether ¢~Sj appears with —1 or +1 in I(n*,n™). Going
back to the original fields ¢, we obtain

K™ = MMMy M = My L+ - MY, (2.24)
Vp = MIMTVM M, (2.25)

Let us define a matrix A through

I = MyMI@A) MM,
= 2A = MM,M]M]. (2.26)

The positive definite matrix A gives the scaling dimension of the operator O,:
A(m) = m;Ayym;. Note that under the basis change ¢; = Miquj, the vector m
transforms to preserve m;¢; = m;¢; = miMijq;j, so m = MTm. Thus the functions
K(m) and A(m) are basis-invariant.

- The scaling dimensions are independent of the n = n* +n~ velocities in Vp, as ex-
pected on physical grounds. M; depends only on K, not on V, so all possible matrices
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A for a given edge are obtained as M, ranges over SO(m, n) with M; fixed. We now
introduce a parameterization of M, in which only n*n~ coordinates affect A. The
physical picture is that the scaling dimensions are independent of the velocities of the
eigenmodes and also of the interactions between modes going in the same direction;
the scaling dimensions are only affected by interactions between counterpropagating
modes. Thus of the n(n + 1)/2 free parameters in V, n correspond to velocities of
eigenmodes, (n*(n* — 1) + n~(n~ — 1))/2 to same-direction interactions, and n*tn~
to opposite-direction interactions.

The study of a nonchiral edge with several branches of excitations is thus feasible
if one is willing to concentrate on edge properties and renormalization-group flows
determined by the scaling dimensions of various operators. There are interesting
physical phenomena which are not determined solely by scaling dimensions, such as
the equilibration of velocities of modes moving in the same direction by interchannel
hopping (which does not affect the conductance). But the effects of disorder on the
commonly measured physical properties can be obtained from studying only the n*tn~
parameters of V' which affect scaling dimensions, rather than the n(n + 1)/2 needed
for a complete description of the theory. This is apparent in the study of an n = 2
case (v = 2/3)[18]: the velocity matrix has the form

V= ( vt “12) (2.27)

V12 31)2

with one branch in each direction, and the conductance and the structure of the RG
flow are found to depend only on the combination ¢ = 2vy5(vy + v2) 71/ V3.

The separation of V comes about because every element M in SO(m,n) can be
written as a product of a symmetric positive matrix B and an orthogonal matrix R,
both of which are in SO(m, n). This is a generalization of the familiar decomposition
of a Lorentz transformation (an element of SO(3,1)) into a boost (a symmetric pos-
itive matrix) and a rotation (an orthogonal matrix). For all examples in this thesis
m =1 or n = 1 and this decomposition follows easily from the parameterization of
boost matrices given below. More details are in Appendix A. Writing M, = BR,

2A = MyMoyMIMT = MiBRR*BTMT = My B> M. (2.28)

So A is independent of R and depends only on the n*n~ parameters in B. B can be
written

B = exp (bqr 3) (2.29)

for some n* X n~ matrix b.

For a maximally chiral edge, the boost part B is just the identity matrix, so the
scaling dimension of every operator exp(im;@;) is independent of V, and in particular
the conductance o = 2A(t) = K (t) = v. For nonchiral edges, nonuniversal values of
the conductance are possible with 2A(t) > v and equality if and only if the velocity
matrix is charge-unmixed. This is a special case of the general property 2A(m) >
|K (m)| for all integer vectors m (with equality if and only if the Vj; vanish in the
basis with e; || m and K~' diagonal). Consequently the scattering term exp(im;¢;)
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can only be relevant if |[K(m)| < 3. The scattering operator must have bosonic
commutation relations so the three possibilities are K(m) = 2,0, —2. If a null vector
exists with K (m) = 0, the edge is not T-stable. Operators with |[K(m)| = +2 are
necessary if the impurities are to drive the edge state to a fixed point. The next step
is to calculate which velocity matrices make the scattering terms &(x) exp(im;¢;) +
£*(z) exp(—im;¢;) relevant.

The possible matrices A for a given edge can be studied simply by calculating
2A = M B?MY for all boosts B. For a two-component edge with one branch prop-
agating in each direction, there is just one boost parameter. For a three-component
edge, there are two parameters, and the scaling dimensions of various operators can
be plotted on the plane as functions of these two parameters. For SO(1,m) a useful

parameterization of boosts as a function of momentum coordinates (pi, . . ., pm) is [28]
B = y=4/1+p% Bu=Ba=pi,
Bij = 6 +pipj-1(y —1)/p° (2.30)

where 2 < 4,5 < m+ 1. It is convenient to work with dimensionless momentum
p = v because of the singularity at v = ¢ = 1 in the velocity coordinates. However,
in Chapter 3 we mention an advantage of the velocity coordinates for certain edges.
Permuting indices gives a version appropriate for SO(m, 1).

For a given edge it is now possible to search for all possibly relevant neutral
operators (|K(m)| = 2) and then calculate where in the space of boost parameters
each operator is relevant. The rest of this section describes a few technical details
needed to carry out this program. The search for |[K(m)| = 2 operators is done
on a computer: there is a finite p-adic test for whether an integer quadratic form
takes the value zero, [29] but we know of none to determine all vectors for which an
integer quadratic form takes a particular nonzero value. It will be useful to consider
basis changes not in SL(n, Z) which bring K~ to diagonal form, so that the locality
condition is no longer that m be an integer vector. The local operators in the new
theory are the transforms of integer vectors in the original theory. The advantage
of such a basis change K~! — OK~'0T, m — OT 'm which makes K~' diagonal
and brings the charge vector t to the first basis vector ey is that some of the boost
parameters can be interpreted as the strength of mixing of the charge mode with
neutral modes. Then the charge-unmixed velocity matrices will be exactly those with
these boost parameters equal to zero. Table 3.1 of Chapter 3 summarizes the possible
parameter spaces for all nonchiral edges with four or fewer components.

For each operator with |K (m)| = 2, there is some velocity matrix which gives that
operator scaling dimension 2A(m) = 2: this follows from choosing M; in (2.24-2.26)
to make m one of the basis vectors and choosing M, so that all parameters rotating
m into other basis vectors are zero. The operation of changing bases distorts the
phase diagram nonlinearly but preserves its topology and produces the same set of
possible scaling matrices A. The sign of K (m) will affect the dimension of the subset
of matrices V which make exp im;¢; maximally relevant. In the next chapter we use
the boost coordinate system to classify all disordered Abelian quantum Hall edges.
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Chapter 3

Classification of disordered Abelian
edge states

The method described in the previous section greatly simplifies the analysis of a
nonchiral edge of several condensates. In particular it allows us to determine in which
regions of the space of velocity matrices V' a particular impurity scattering operator
exp(tm;¢;) is relevant, and hence determine the'phase diagram of the edge state.
We find that the edge of a single quantum Hall state can have different phases, with
transitions between phases caused by changes in V. We also find that only a special
class of edge states (principal hierarchy states) have enough |K(m)| = 2 impurity
scattering operators to ensure that the conductivity is driven to the quantized value.
The phase diagrams for this class of edge states show remarkable symmetries absent
in the phase diagram of a general edge. In Chapter 4 these symmetries are shown to
reflect broken symmetries of the K matrix.

All the examples are in the hierarchy of quantum Hall states. [5, §] Hlerarchlcal
states have tridiagonal K matrices with all off-diagonal matrix elements equal to

1 and K;; = [ an odd integer, K;; = n; even for i = 2,...,dim K. The matrix
will often be given simply by its diagonal elements ([, ns,...). The charge vector is
= (1,0,...,0). The number of modes moving opposite the direction of the charge

mode is equal to the number of negative elements on the main diagonal. States with
all |n;| = 2 are called principal states and are the most stable states at each level of
the hierarchy.

First we study the edges of all hierarchy states at second level (dim K = 2) and
show that the principal hierarchy states are all similar to the v = 2/3 state studied
by KFP. The states which are not principal have no relevant random operators and
are thus unaffected by weak impurity scattering. In particular, for these states elastic
impurity scattering alone is insufficient to give edge equilibration at low temperature.

A rich variety of behavior is possible for dim K = 3 states, where the two neutral
modes can move in the same direction (opposite the charge mode) or in opposite
directions (cf. Table 3.1). The principal hierarchy state of dim K = n with all
neutral modes in the same direction flows to an SU(n) x U(1) fixed point which is
the only point where conductance is quantized. The charge mode satisfies a U(1) Kac-
‘Moody algebra, and the n — 1 neutral modes satisfy an SU(n) Kac-Moody algebra.
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Table 3.1: Possible nonchiral edge types for dim K < 4. For dim K = 5 there are no
* principal hierarchy states and for dim K > 5 no states at all which are T-stable and
have neutral modes in both directions.

dim K Mode directions Example Boost parameters Boost parameters with
(charge always —) charge mode unmixed
1 _
2 e v=2/3 1 0
2
3 e v=5/3 2 1
: 1
o v=23/5 2 0
3
4 i v=12/31 3 2
2 —
e v=12/17 4 2
1 _
as v=4/7 3 0

The highly symmetric phase diagram for the SU(3) case is shown not to describe the
simplest few non-principal states.

For the dim K = 3 case with neutral modes in both directions, conductance is
quantized along a line in the phase diagram, and for the principal hierarchy states
we find an infinite number of fixed points along this line corresponding to the infinite
number of possibly relevant random operators. There are two different types of fixed
points which correspond to two measurably different phases. A few results on the dim
K = 4 cases are also presented. No principal hierarchy edges with dim K > 4 are
topologically stable except those with all neutral modes in the same direction. [30]

3.1 Edges with dim K =2

The K matrix in the hierarchy basis has the form

K=G i) t=(1,0) (3.1)

with [ odd and n even. For the state to be nonchiral, n < 0. A quick calculation
shows that if m = (m;,ms) is a charge-neutral K(m) = —2 operator (there are no
charge-neutral K (m) = 2 operators), m;? = —2/n which has the solutions m; = +1
if n = —2 and no integer solution otherwise. Hence for principal hierarchy states
(n = —2) there is one complex-conjugate pair of possibly relevant operators labeled
by m = #(1,—2), while for other hierarchy states there are no relevant random
operators. ' .

For a dim K = 2 state there is a single boost parameter p and a single value of
this parameter that makes V' charge-unmixed. It remains to show that this value is
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exactly the value which gives the scattering operator exp(im;¢;) its minimum scaling
dimension A = 1. In the basis of t = (1,0) and m = (1,—2), K~! is diagonal with
elements (v, —2) and the scaling dimension matrix is

= (F B)e(5 %)
(5 3 (57 ) (5 5
0 V2 p VI+pP/\0 V2

The conductance 2A(t) is v+/1 + p? and the scaling dimension A(m) is /1 + p2. So
A(m) = 1 exactly at the charge-unmixed point (p = 0), as required. The region
- of attraction of this fixed point is determined by the equation A(m) < 3/2 giving
—/5/2 < p <+/5/2 for v =2/3.

Now we briefly outline the exact solution at the fixed point found by KFP which
also shows the stability of the fixed point under RG transformations. Let the elemen-
tary fields in the basis defined above be the charge mode ¢, and neutral mode ¢,.

At the fixed point,
(v 0 (v, O )
K_<O _2), V_(O o ) (3.3)

The three operators 9, @, exp(id, ), exp(—i¢,) all have scaling dimension 1 and satisfy
an SU(2) algebra. The action at the fixed point is

. vOy b, ..
g = / ,T[—47r (i0; + v,05) 0,

20:¢o

r (=10, + vs0;) by + (E(x)e™® + h.c.)], (3.4)

obtained by substituting the fixed point K and V into (2.8,2.13). Now the fixed
point action can be written in terms of a two-component Fermi field by introducing
an auxiliary bosonic field x which does not affect physical quantities: 1, = exp[i(x +
$5)/V2), ¥y = exp[i(x — ¢5)/v/2). The clean part of the action is diagonal in the
components while the impurity term becomes a hermitian combination of raising and
lowering operators, 1/){% and 1/)%1&1, with random coefficients. The impurity term is
then eliminated by a local SU(2) gauge transformation which preserves the clean part
of the action. The clean part of the action is just the action for free chiral fermions.

When the system is near but not at the fixed point, there is a weak coupling
Voo 0r9,0: ¢ between the charged and neutral modes. The scaling dimension of this
term in the original action is 2 so the operator is marginal with a uniform coefficient.
However, the SU(2) rotation of 8,4, gives this term a random coefficient and makes
it irrelevant. According to this picture, once V falls into the basin of attraction of
the fixed point, i.e., |[p| <= v/5/2 in (3.2), it flows to the fixed point p = 0 with K
and V given by (3.3). Since the boost part of V' is uniquely determined at the fixed
point, many physical properties are uniquely determined, such as the conductance
o = ve?/h. The same technique of fermionization followed by a gauge transformation
solves the SU(n) x U(1) fixed point described below.
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3.2 Three-branch edges, parallel neutral modes

Such edges have both neutral modes antiparallel to the charge mode (line 3 of Table
3.1). There is a single charge-unmixed point in the boost coordinates of Chapter 2. In
the hierarchy representation such edges have K matrix (I, —m;, —n2). The principal
hierarchy edges of this type are v = 3/5 with K = (1,-2,-2), v = 3/11 with
K = (3,-2,-2), and so forth. The principal hierarchy edges with n condensates
and all neutral modes antiparallel to the charge mode have an SU(n) symmetry
(n = dim K) in their K matrix ([, -2,...,—2), as first pointed out by Read. [21]
The filling fraction is v = n/(n(l + 1) — 1). Kane and Fisher showed [19] that each
of these edges has a fixed point with a charge field ¢, of dimension /2 and a set of
n—1 dimension 1 neutral fields ¢, obeying an SU(n) algebra. There are n — 1 roots
of SU(n) which correspond to the n — 1 operators 9;0,'. Now we obtain the phase
diagram for the n = 3 case, which is easily generalized to n > 3.

Any neutral operator Oy, for these edges has negative K (m) because all neutral
modes travel opposite the direction of charge. There must be (n?—1)—(n—1) = n(n—
1) operators with K (m) = —2 in order to obtain the complete SU(n) algebra (here m
and —m are counted independently). For v = 3/5 this requires 6 such operators which
in the hierarchy basis are labeled by m = (0,1, —2), (1, =2,1), +(1, -1, —1). Now
the technique of Chapter 2 can be used to find when these operators become relevant
and thus the region of attraction of the fixed point. For this case the procedure is
described in detail for the sake of clarity; for subsequent cases some intermediate
steps will be skipped.

The basis {(1,0,0),(0,1,—-2),(2,—3,0)} brings K~! to diagonal form with ele-
ments (3/5,—2,—6). The above six operators with K (m) = —2 become =+(0, 1, 0),
+(0,1/2,1/2), +£(0,1/2,—-1/2). At the fixed point point, V is also diagonal in the
new basis {¢,, 1,2}, and exp(i¢,) has scaling dimension v/2 = 3/10, exp(i¢;)
scaling dimension 1, and exp(i¢,) scaling dimension 3, so that a neutral operator
exp(imy¢1 + imydy) has scaling dimension m,% + 3m,2. Let D be the diagonal ma-
trix with diagonal elements (\/?%, \/i, \/6), which are the square roots of twice the
scaling dimensions of the basis fields at the fixed point. Using the boost parameters

(p1,p2), v = V1+ P12 + po?, to parameterize non-diagonal V, we find the scaling
dimension matrix in the basis {¢,, ¢1, ¢2} is

2

Y D1 D2 .
oA=D|p 1+ mpo=Dd | g (3.5)
D P1P2£7 1) 1+P22§'¥—1!
2 p12+p2? p12+p2?

From this equation it is apparent that for p; = p, = 0 (a diagonal V in the new
basis) all six operators have scaling dimension equal to 1, and this is the only charge-
unmixed point since if p; is nonzero the charge mode is partly mixed with the ith
neutral mode. Fig. 3-1 shows the scaling dimension of the possibly relevant operators
as functions of (p1,p2). The scaling dimension of (0,1,0) is independent of p, so
its contours are exactly vertical. Note that such a plot can be drawn without any
information about the fixed point.
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Figure 3-1: Plot of scaling dimension of the three |[K(m)| = 2 operators for v = 3/5
edge as functions of boost parameters (p;, p2). The charge-unmixed point is the origin.
Dashed lines indicate when operators become marginal (A(m) = 3/2) and solid lines
indicate when operators become maximally relevant (A(m) = 1).

The qualitative interpretation of RG flows from Fig. 3-1 is quite simple and will be
justified in Chapter 6. Each relevant scattering operator causes the velocity matrix to
move to make the operator maximally relevant (A = 1). If the starting velocity matrix
is near the origin, all three operators are relevant and drive the velocity matrix to the
origin, the only point at which all three are maximally relevant. The high symmetry
of the graph reflects the SU(3) symmetry of the fixed point. General three-species
hierarchy states do not have this symmetry in the phase diagram and do not have
enough |K(m)| = —2 operators to determine a unique fixed point. For example, the
v = T7/11 state (1,—2,—4) and the v = 7/9 state (1,—4,—2) both have just one
K(m) = —2 operator which is maximally relevant along a line through the origin.
The phase diagram is like Fig. 3-1 with only one line instead of three. Now the charge-
unmixed point has an SU(2) symmetry rather than an SU(3) symmetry because only
one impurity operator is relevant. It is not clear that the system flows to this point
in the absence of long-range interactions, even if it starts near the charge-unmixed
point, because other points along the maximally relevant line are also possible fixed
points.

The v = 15/19 state (1, —4, —4) has no |K(m)| = 2 operators at all so no stable
fixed points result from the addition of weak disorder. States with no |K (m)| = 2 op-
erators are predicted to have diverging equilibration lengths from impurity scattering
as temperature is lowered since impurity scattering is never relevant. For the other
type of third level hierarchical states, which have one neutral mode parallel to the
charge mode, the same basic property is seen: only for principal hierarchy states are
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there enough |K(m)| = 2 operators for impurity scattering to determine a discrete
set of charge-unmixed fixed points.

3.3 Three-branch edges, antiparallel neutral modes

These edges have a line in the phase diagram along which the conductance is quan-
tized, rather than a point as in the previous cases. For the principal hierarchy states,
there are infinitely many |K (m)| = 2 operators, and these can be enumerated by a
simple linear recursion relation. Examples are v = 5/3 with K = (1,2,-2), v =5/7
with K = (1,-2,2), v = 5/13 with K = (3,2, —2), and v = 5/17 with K = (3, -2,2).
These four edges all have the property that their |K(m)| = 2 operators Oy, form a
(vector) Fibonacci sequence: m,;; = m, + m,_;. The reason why these four edges
have the same Fibonacci pattern is that their yLL theories have, up to a minus sign,
the same neutral sector. Thus properties which depend only on neutral operators are
shared by all states K = (I,2,—2) and K = ([, —2,2) independent of {. The famil-
iar scalar Fibonacci sequence (1,1,2,3,5,...) has previously appeared in physics in
growth models of phyllotaxis. Note that the property m,,; = m, + m,_; is linear
and hence independent of basis.

The v = 5/3 edge is convenient to study because of its SL(3,Z) equivalence
to the diagonal K matrix with elements (1,1, —3). The charge vector in this basis
ist = (1,1,1). This gives the state a natural interpretation as a v = 1/3 gas of
holes in two filled Landau levels. Also in this basis K (my, mg, ms) = K(m2, my, ms).
The |K(m)| = 2 operators in this theory are labeled by m = %(1,-1,0), £(1,0, 3),
+(2,-1,3), £(3,-1,6), £(5,—-2,9),... plus the same list with first and second el-
ements exchanged. The sign of K(m) alternates between terms in this sequence:
(1,—1,0) has K(m) = 2 (as befits hopping between two rightward-moving modes),
(1,0,—3) has K(m) = —2, and so forth. There is an important difference between
K(m) = 2 and K(m) = —2 operators: K(m) = 2 operators are maximally relevant
along a line in the phase diagram, while K(m) = —2 operators are maximally rele-
vant at a single point. This happens for the same reason that the charge-unmixed
region was a single point for edges with all neutral modes opposite the charge mode.
In a basis with m an eigenvector, if there are no other eigenvectors with the same
direction then every boost involves m and affects its scaling dimension. If there are
other eigenvectors in the same direction, there is a nontrivial linear space of boosts
which do not affect the scaling dimension of Op,.

The scaling dimension of the first few |K(m)| = 2 operators for v = 5/3 are
plotted in Fig. 3-2 as functions of boost parameters (py, p.) according to ‘

p 24+pn? Pe2+pn? ,
Dc Y pn D' (3.6)
Pepn(y—1) pn 1+ Pn (’7 1)

Pe?+pn?

142 (7 1) De PPr(y= 12
2A D’(

pc?+pn?

This expression for A is in the basis t = (1,1,1) , my = (1,-1,0) and my = (1,1, 6)
in terms of the original basis. ¢,, ¢1, ¢ with ¢; = (1,—1,0), 2 = (1,1,6) in terms of
the original basis (where K = (1,1, —3)). Let ¢,, ¢1, ¢, be the three boson fields in the
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Figure 3-2: Plot of scaling dimension of the first 11 |K(m)| = 2 operators for v = 5/3
edge as functions of boost parameters (p,,p.). Dashed and solid lines are as in Fig.
1. The charge-unmixed line is the z-axis. At each point on the z-axis where one
operator is maximally relevant, two other operators are marginal. Points A and B
are examples of the two different types of fixed point.

new basis. The diagonal matrix D' has elements (\/5/_3, v/2,4/10). This expression
for A is similar to (3.5) for v = 3/5 with two important differences: the scaling
dimension of €%? is 5 rather than 3 at the fixed point (p, = p. = 0), and the timelike
row and column of the boost matrix correspond to ¢; rather than ¢,, because now it
is one of the neutral modes rather than the charge mode which has no other modes
parallel to it.

In the coordinate space (pn,p.) (Fig. 3-2), K(m) = —2 operators are relevant
on compact regions and K(m) = 2 operators on noncompact regions of the plane.
The fixed points form lines and isolated points in Fig. 3-2, where one operator with
|K (m)| = 2 is maximally relevant. For fixed points on the charge-unmixed line p. = 0
(the z-axis in Fig. 3-2), there are two marginal operators with the opposite sign of
K(m). The z-coordinates of these special points are found by taking alternately
the rational part and the coefficient of /5 in ((1 + v/5)/2)". The theory at each
of these fixed points is similar: in a basis bringing the maximally relevant operator
exp(im;¢;) to exp(i¢1), ¢2 can be chosen so that the marginal operators at the
fixed point are exp(i(d; & ¢2)/2), and exp(i¢y) has scaling dimension 5 rather than
3 in the v = 3/5 case. The scaling dimension of the marginal operators is then
(A(¢1) + A(g))/4 = (1 +5)/4 = 3/2 as required. The marginal operators cannot
form an SU(3) multiplet with the maximally relevant operator because their scaling
dimensions are different. We have not been able to obtain an exact solution of this
fixed point. Appendix B describes the leading-order RG flows along the charge-
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Figure 3-3: Plot of scaling dimension of the two |K(m)| = 2 operators for v = 17/13.
Axes are as in Fig. 2. At most points on the charge-unmixed line, there are no relevant
disorder operators. Points A and B are the two charge-unmixed fixed points.

unmixed line between points A and B and addresses the stability of the two types of
fixed points. The reasons for the periodicity of Fig. 3-2 are discussed in Chapter 4.

Several dim K = 3 non-principal edges of this type (antiparallel neutral modes)
were studied, and all were found to have too few |K(m)| = 2 operators for the
system to flow to a quantized o. The four hierarchical states with K matrices
(1,2,-4),(1,-2,4),(1,-4,2),(1,4,-2), v = (9/5,9/13,9/11,9/7) are not T-stable
and have only one |K(m)| = 2 operator. The two states with K matrices (1,4, —4)
and (1,—4,4), v = (17/13,17/21) each have a Fibonacci sequence of |K(m)| = 4
operators as well as one K(m) = 2 and one K(m) = —2 operator. The resulting
phase diagram for v = 17/13 is shown in Fig. 3-3. Most velocity matrices near the
charge-unmixed line are not affected by either |K(m)| = 2 operator. If the starting
V matrix makes the K(m) = —2 operator relevant, the system is driven by impurity
scattering to the (0,0) point on the charge-unmixed line. For starting points with
this operator irrelevant, impurity scattering is insufficient to give edge equilibration
at low temperatures.

Tuning the V matrix in the v = 17/13 state in principle allows a transition like the
KFP transition for v = 2/3 to be observed, even if the system is always on the charge-
unmixed line. Recall that for v = 2/3 the system has continuous, nonuniversal scaling
dimensions as long as V is not too close to the charge-unmixed point. A Kosterlitz-
Thouless type transition occurs when |p| = +/5/2 in (3.2), and for |p| <= /5/2
the system has a universal scaling dimension matrix. In the v = 17/13 state, as
V is tuned on the charge-unmixed line the scaling dimension matrix is continuously
variable until one of the disorder operators becomes relevant; then V is driven to one
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of the two fixed points, depending on which operator is relevant. Unfortunately the
v = 17/13 state is expected to be quite difficult to observe, as it is a nonprincipal
state with three condensates.

3.4 Edges with dim K =4

The edges with all neutral modes opposite the charge mode have a single charge-
unmixed point in the three-dimensional space of boost parameters, while the other
two types of edges (Table 3.1) have a plane of charge-unmixed points. This sec-
tion studies the charge-unmixed plane of four-condensate T-stable principal hierar-
chy states and finds a pattern with high symmetry and three different types of fixed
points, two of which are exactly solvable. The states studied have K = ([,2, -2, 2) or
K = (I,-2,2, —2), which were shown by Haldane to be the only dim K = 4 T-stable
principal hierarchy states with neutral modes traveling in both directions. [30] Ex-
amples are v = 12/31 with K = (3,-2,2,—2) and v = 12/17 with K = (1,2, -2,2).

These states behave differently away from the charge-unmixed plane but have
identical structures on the plane, where each state has two neutral modes traveling
in one direction and one neutral mode traveling in the opposite direction as well as
a decoupled charge mode. For definiteness we study the v = 12/17 state, although
all four states v = 12/7, 12/17, 12/31, 12/41 have the same neutral sector. Each of
these states has an infinite number of |K (m)| = 2 operators. For the v = 12/17 state,
K(m) = 2 operators are relevant on compact regions and K (m) = —2 operators on
noncompact regions of the plane. The maximally relevant points and contours are
plotted in Fig. 3-4 as functions of boost parameters. The points and the intersections
of the contours mark the position of fixed points. The points marked A, B, C are
examples of the three different types of fixed points.

Plotting the marginal contours of the |K (m)| = 2 operators gives Fig. 3-5. Fig. 3-
5a was obtained by choosing a basis to bring a point (A) of sixfold symmetry to the
origin. There are also points of fourfold symmetry (B) as at the origin of Fig. 3-4 and
Fig. 3-6, and points of twofold symmetry (C). There is no a priori reason to favor
one type over the others. In the same way, Fig. 3-2 could have been drawn using a
different basis to bring point B at the origin. The third type of fixed point has one
operator maximally relevant and four marginal operators: these points are visible in
Fig. 3-5 as the crossings of four marginal lines at the center of a marginal circle. These
“double marginal” fixed points resemble the fixed points of the Fibonacci v = 5/3
state except that there are four rather than two marginal operators.

Fig. 3-6 shows a curious property of these four-condensate edges: the most relevant
contours plotted as functions of “velocity” coordinates rather than “momenta” p;
in (2.30) turn out to be straight lines. Marginal contours are not straight lines.
Mathematically the most relevant contours are straight because the square-root terms
cancel in the equation A(m) = 1 which determines the contour, leaving only linear
terms. ' ' ‘

The complicated patterns in Fig. 3-5 have physical consequences. The sixfold sym-
metric points like A have three maximally relevant operators and an SU(3) symmetry
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Figure 3-4: The most relevant contours of |K(m)| = 2 operators on the charge-

unmixed plane of the v = 12/17 edge as functions of boost parameters (p;, p,). Points
A, B, C are examples of the three different types of fixed points: A is an SU(3) point,
B an SU(2) x SU(2) point, and C a “double marginal” point. Dots are most relevant
- points of K (m) = 2 operators, lines are most relevant lines of K (m) = —2 operators.
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Figure 3-5: The marginal contours rather than the most relevant contours of | K (m)| =
2 operators for the v = 12/17 edge. The three types of fixed points are the SU (3)
point A at the origin, the SU(2) x SU(2) point B, and the “double marginal” point
C. Here the basis was chosen to bring a point of type A to the origin, rather than B
as in Fig. 4. The 75 operators shown are those most relevant at the origin.
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(0.0,1.0)

(-1.0,0.0) (1.0,0.0)

(0.0,-1.0)

Figure 3-6: The most relevant contours of |K(m)| = 2 operators on the charge-
unmixed plane of the v = 12/17 edge as functions of “velocity” coordinates (v;, vy).
Plot is the same as Fig. 4 except that contours are shown as functions of “velocities”
rather than “momenta”. Only the 42 most relevant operators at the origin are shown
because the full diagram becomes infinitely dense at the edge of the circle.
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identical to that of the v = 3/5 fixed point previously studied. The fourfold symmet-
ric points like B have two independent |K (m)| = 2 operators and an SU(2) x SU(2)
symmetry which is similar to the SU(2) symmetry of the v = 2/3 fixed point. The
double marginal points like C' are shown in Chapter 5 to give a different tunneling
exponent than the roughly similar v = 5/3 fixed point. These different phases within
the charge-unmixed plane are important even if quantum Hall systems necessarily
have quantized conductance, as has been suggested. [30] Points A and B are stable
and solvable but are shown in Chapter 5 to have different measurable properties, so
a single FQH edge with impurities can have several physically different stable phases.

A complete understanding of these dim K = 4 states would require studying the
three- or four-dimensional plots of which Fig. 3-5 is a section. One difference between
the dim K = 4 states and the states studied up to this point is that there are small
regions of the charge-unmixed plane on which only one operator is relevant, making
it less certain that points not on the plane but near one of these regions would flow
toward the plane as required for robust quantization. The dashed line between A and
B in Fig. 3-5 passes through one such region. Some experimental properties of the
dim K = 4 states are discussed in Section V.
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Chapter 4

Symmetry restoration by disorder

This chapter discusses the effects of impurity scattering on the symmetries in the yLL
theories of various edges. The restoration of symmetry by impurity scattering will be
shown to explain the patterns in the phase diagrams found in Chapter 3. The xLL
theory of a quantum Hall edge contains two matrices K and V and a charge vector
t as described in Chapter 2. The integer matrix K may admit discrete symmetries,
which are described by integer matrices M invertible over the integers with

MTKM =K, MTt=t. (4.1)

Most velocity matrices V' do not have such symmetries. Thus a symmetry possessed
by K is in general broken by the V' terms in the xLL action.

One result of KFP is that impurity scattering can drive the velocity matrix to
a fixed point where all the symmetries of K are symmetries of the full theory. In
this chapter we show that, for the edges with infinitely many fixed points found in
Chapter 3, impurity scattering sometimes restores some but not all of the symmetry
of the K matrix. Because of this broken symmetry, the different fixed points are
like spin-up and spin-down fixed points for an Ising ferromagnet below the transition
temperature: the Ising fixed points are carried into each other by spin rotation, which
is a symmetry of the starting Hamiltonian but not of the fixed points. The infinitely
many impurity fixed points are carried into each other by symmetries of K which are
not symmetries of V' at the fixed points. The broken-symmetry structure can be very
rich, as in the case of the v = 12/17 state, which has three different types of fixed
points, each breaking different symmetries of K. }

The matrix M in (4.1) gives a transformation ¢; = M;;¢; of the bosonic fields
¢; under which the action is form-invariant. The discrete symmetry transforma-
tion M can reflect an underlying continuous symmetry, as in the theory of the
v = 2/3,3/5,4/7,... states, where the discrete symmetries of the K matrix reflect
an SU(n) symmetry of the field theory, n = dim K. [21] It is easily seen that the
symmetries M of a given K matrix form a group with matrix multiplication as the
group product. The key difference between edges with a single impurity fixed point
and edges with infinitely many fixed points is that the the former have finite sym-
metry groups, while the latter have infinite symmetry groups. As examples of the
two types, we find the symmetries of the v = 3/5 (finite) and v = 5/3 (infinite)
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edges. The results presented for v = 5/3 also apply to the other Fibonacci-type
edges: v =5/7, v =5/13, v = 5/17. Chapter 5 shows that the two different types of
fixed points in the v = 5/3 edge have different experimentally observable properties.
The v = 12/17 edge (likewise v = 12/7, v = 12/31, v = 12/41) is shown to have
three different types of fixed points related by a complicated symmetry group.

The v = 3/5 state in the hierarchy basis has

1 1 0
K=[1 -2 1], t=(1,0,0). (4.2)
0 1 -2

One way to find the symmetries of K is to start with transformations W bringing K to
diagonal form and preserving t, as were used in Chapter 3 to obtain phase diagrams.
Let D be the matrix with diagonal elements (1,—1,1). If WKW is diagonal, then
M = WDW " is a symmetry of K with the property that M* = I, the identity. The
effect of M is to use W to go to independent fields ¢;, change the sign of one field,
and then return to the original fields. The problem is that M is only integral for some
choices of W. One hopes that by choosing different matrices W;, one can find enough
integral M, to generate the entire group of symmetries. The M; are improper since

det M; = —1; the proper symmetry group contains only products of even numbers of
M;.
For v = 3/5 two generators found using this trick are
1 0 O 1 0 0
z=|0 1 0}, y=1|1 -1 1}. (4.3)

01 -1 0 0 1

The element zy is a proper symmetry which generates a 120° rotation of Fig. 3-1, and
as expected (zy)® = I. The symmetry group has six elements: three proper elements
{I,zy, (ry)? = y~'z7'} and three improper elements {z,y,zyz}. It is easy to check
that these six elements are the full symmetry group G. The velocity matrix at the
fixed point also has all of these symmetries. (For the sake of exactness, recall that the
origin of Fig. 3-1 represents the set of all velocity matrices with certain values of the
boost parameters, as described in Chapter 2. There is an additional RG flow of the
other parameters in V which makes the two neutral modes have the same velocity.
Without this additional flow, only the boost part of the velocity matrix would have
the symmetry.)

One simple consequence of the symmetry at the v = 3/5 fixed point is that the
V-dependent scaling dimension matrix A; which determines the scaling dimension
of the operator Oy, = exp(iquﬁj) according to A(m) = m;A;m;, has the same
symmetries as K~1: zAzT = yAyT = A. Note that A transforms like K~ rather
than K so its symmetries are transposed symmetries of K. At the fixed point A is
invariant under all symmetries of K~! for any edge with all neutral modes moving
opposite the charge mode, as now shown. These edges have fixed points where K -1
and A are both diagonal in some integral basis with first basis vector e; = t. K~}
has all diagonal entries negative except for the first, and 2A = |K~!| has all diagonal
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entries positive. Any vector m with charge ¢ = tK ~m can be written as m = at+n,
where n has charge zero (tKX~'n = 0) and a = tK'm/tK~'t = qv~'. Now with
K(x) = xKx,
2

2A(m) = 2A(at +n) = a’K(t) — K(n) = % — K(n). (4.4)
Let m' = Mm be the image of m under a symmetry of K~'. Then 2A(m') =
@/v— K@) =¢*/v— K(n) = 2A(m), since n’ = Mn. Thus A has every symmetry
of K~! for any charge-unmixed fixed point in a state with all neutral modes opposite
the charge mode. Broken-symmetry fixed points therefore appear only in states with
neutral modes in both directions. The same argument gives that at any charge-
unmixed fixed point where K and A are diagonal,

2A(m) > ¢* /v (4.5)

where ¢ is the charge of m. This inequality appears in the discussion of quasiparticles
in Chapter 5.

The same technique can be used to find the symmetries of K for the v = 5/3
Fibonacci-type edge shown in Fig. 3-2. Two elements of the symmetry group are ~
found from changing the sign of (1, —1,0), which corresponds to reflecting z <> —z in
Fig. 3-2, and from changing the sign of (0, 1,3), which corresponds to reflecting the
z-axis through the point B. The resulting matrices are

0 1 0 1 0 0
v=|10 0], v={0 2 3 [. (4.6)
0 01 0 -1 =2

The difference between this case and the previous one appears when u and v are
multiplied to obtain other group elements. The element w = uv is a proper symmetry
of infinite order: I, w,w?, ... are all different matrices and all symmetries of K. Each
application of w corresponds to translating Fig. 3-2 horizontally. The Fibonacci
property m,; = m, + m,_; mentioned earlier is a consequence of symmetry under
w. The powers of w and its inverse give the entire proper symmetry group, which is
isomorphic to ZT, the group of integers under addition. The full symmetry group is
isomorphic to the semidirect product of Z* and the binary group {1, —1}.

At each fixed point A has a much smaller symmetry group than K. The only
symmetry of A at a fixed point other than I is the unique reflection which changes
the sign of the operator maximally relevant at the fixed point. For example, u is a
symmetry of point A (uA4uT = Ay) but v is not. It is apparent from Fig. 3-2 that
some symmetry of K~ is broken at each fixed point because neutral operators m;
with the same minimum scaling dimensions K (m;) = 2 have different actual scaling
dimensions A(m;). The matrix w = uv is a symmetry of no fixed point, but its effect
is to move the system from one fixed point to the next: wA;wT = Ajyq, where 1
labels fixed points of the same type, i.e., w never takes maximally relevant points of
K(m) = —2 operators to maximally relevant points of K (m) = 2 operators, since
w preserves K. Thus in Fig. 3-2 there is no symmetry taking point A to point B.
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In Chapter 5 it is shown that the two different types of fixed points have different
experimentally measurable properties.

By applying symmetries of K, the boost part of any velocity matrix can be made
to lie in the region bounded by the maximally relevant lines of (1, —1,0) and (-1, 2, 3)
in Fig. 3-2. This region is a “fundamental period” of the symmetries of K. However,
different fixed points of the same type may correspond to experimentally different
phases, even though they are related by a discrete symmetry and will have the same
scaling dimensions, etc. The reason is that an experimental probe will couple nonuni-
versally to some combination of the original fields ¢;, which after applying a symmetry
of K will be some different combination of the redefined fields ¢;. Experiments will
measure different prefactors for various quantities at different fixed points of the same
type. Hence even if only points of type A are found to be stable for v = 5/3, for
example, there would still be multiple edge phases with true transitions at phase
boundaries. This is not true if there are continuous rather than discrete symmetries
of the xLL system relating fixed points of the same type, since then all the fixed points
are continuously connected. Such a situation occurs if the discrete symmetries of the
bosonized (K, V) theory arise from continuous symmetries of the underlying fermionic
Lagrangian. Stable fixed points of different types always give different phases.

Multiple-condensate edges have quite complicated symmetry groups, and it is
an interesting mathematical exercise to classify these groups in terms of familiar
finitely generated groups. The symmetry group of v = 3/5 found above is Ds, the
triangular dihedral group, for example. Principal hierarchy states with all neutral
modes opposite the charge mode have finite symmetry groups, and principal hierarchy
states with neutral modes in both directions have infinite symmetry groups. Non-
principal hierarchy states often have no nontrivial symmetries. Here we will be content
to mention some results on the four-condensate principal hierarchy states discussed
previously. The four-condensate states v = 12/7, 12/17, 12/31, 12/41 have three
distinct types of fixed points (A, B, C in Fig. 3-5a-c). The phase diagram has sixfold
symmetry about point A, fourfold symmetry about point B, and twofold symmetry
about point C. It seems likely that these point symmetries are sufficient to generate
the full symmetry group, which at point A is broken to a six-element subgroup and
similarly for B and C. A fundamental period of the symmetry group is drawn in
Fig. 3-5a. A set of generating matrices for v = 12/17 in the hierarchy basis is then

100 0 1 0 00
- Joro o 1 -110
'~ 1oo0o1 of[>™ "o 0 10}
001 -1 0 0 0 1
1 0
0 0
(0 o _1 | (4.7)
0 1

These m; were obtained with the sign-flip procedure used above: for each i det
‘m; = —1 and m;?2 = I. The symmetries of point B are generated by m; and ma,
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which commute, and m3 gives a rotation by 7 around point C. A sample element of
order 3 is mymgmams, and an element of infinite order is m3m,.
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Chapter 5

Experimental consequences—weak
tunneling

The conductance and other experimental properties of a quantum Hall state are af-
fected by disorder according to the RG flows described in the preceding chapters. One
important feature of the three- and four-condensate principal hierarchy states is that
they can have multiple phases withiii the charge-unmixed subset of velocity matrices.
This is different from the situation in two-condensate states and for any state with
all neutral modes moving in the same direction, where the quantization of conduc-
tance occurs at a single point in boost-parameter space and no phase transitions are
predicted within the charge-unmixed subset of velocity matrices.

In this chapter we first consider the v = 5/3 state and argue that experimental
setups are likely to be close to point B in the phase diagram, Fig. 3-2. The v = 5/7
state probably offers the best chance for an experimentally accessible phase transition.
We calculate electron and quasiparticle tunneling exponents for the different types
of fixed points found in the preceding chapters and show that different phases at
the same filling fraction have different temperature dependences of electron tunneling
through a barrier.

The v = 5/3 state seen experimentally is likely to contain both up spins and down
spins: it consists of a v = 1 state of spin-up electrons and a v = 2/3 state of spin-
down electrons, or vice versa. The fully polarized state has higher energy than the
mixed-spin state because some electrons lie in the second Landau level rather than the
first, costing energy proportional to Aw,, w. the cyclotron frequency. This dominates
the savings in the Zeeman and Coulomb energies from polarizing the spins, at least in
GaAs, where the effective g-factor and Zeeman energy are small. The fully polarized
state might appear in other materials with larger g, or in tilted-field configurations
which allow the Zeeman energy to be increased with w, constant.

In the mixed-spin v = 5/3 state, scattering between up and down spins is expected
to be very weak unless magnetic impurities are added. Thus the spin-up and spin-
down components are largely independent. Independent v = 1 and v = 2/3 liquids are
described by point B in Fig. 3-2 because the velocity matrix which has no interactions

44




between the two liquids gives the scaling dimension matrix

(ml 0 0) 1 0 0
2A=1| 0 =10 2/3 0|, t=(1,1,0) (5.1)
0 28913 0 0 2

which is brought by a change of basis to point B. It is shown below that point B has
the same low-temperature tunneling conductance exponent G ~ T° as a combination
of a v = 1 state (G ~ T°) and v = 2/3 state (G ~ T?) would have. The fixed
point A is not easily interpreted as a sum of two independent edges. At A the oper-
ator (1,—1,0) which hops charge between the two right-moving modes is maximally
relevant, suggesting that in this phase the v = 1/3 left-moving mode pairs with a
bound, SU(2) symmetric combination of right-moving modes rather than with just
one right-moving mode as at point B.

The v = 5/7 ground state is spin-polarized and its two edge fixed points may
be more easily found experimentally than those of the v = 5/3 state. The v = 5/7
state is equivalent in K-matrix terms to a v = 2/7 gas of holes in a v = 1 state:
K,=MTK'M,M™t' = t, with t' = (1,1,0), t = (1,0, 0),

1 1 0
K, = [1 -2 1],
0 1 2
(K1 0 0) 1 0 0
K’ et O = O —3 —]. ;
0 _‘K?” 0 -1 2
1 1 0
M = |0 -1 0. (5.2)
0 0 1

However, the V matrix Vi_y/7 with no interactions between the v = 2/7 holes and
v = 1 electrons gives a conductance (in units of €2/h) ¢ = 9/7 = 1+ 2/7 rather than
o =5/7=1-2/7. This happens for exactly the same reason that a v = 2/3 state
‘with velocity matrix describing » = 1/3 holes not interacting with v = 1 electrons
gives a conductance ¢ = 4/3: the quantized value of conductance is only obtained if
the edge equilibrates and all charged eigenmodes move in the same direction.

It is not difficult to find the point represented by Vi_7 in the v = 5/7 version
of Fig. 3-2 (which looks similar but with some stretching along the y-axis): it lies on

the y-axis with boost coordinates (0, \/2%) This is not a fixed point in the presence
of disorder, and we expect the system to flow to a fixed point of type A or type
B. Unlike in the v = 5/3 case, where type B was easily interpreted as a v = 1
state plus a v = 2/3 state with no interactions between the two, for v = 5/7 we
have no simple interpretation of either phase as two independent subedges. The K
matrix K, is inequivalent to a combination of v = 2/3 and v = 1/21 because det
Ky # (det Ky3)(det Ky91), so no invertible integral basis change can relate the two.
Below we show that the A and B phases can be distinguished experimentally, so that
measurements of a » = 5/7 sample edge would allow its phase to be determined.
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Then changes in the V matrix (from changes in the gate voltages, e.g.) might drive
a new type of impurity phase transition.

Before calculating tunneling properties for the various fixed points, we would like
to suggest briefly an experimental approach to edge impurity scattering based on the
existence of spin-polarized and spin-singlet states at v = 2/3. At v = 2/3 there is
an unpolarized spin-singlet state with the same K matrix and charge vector as the
well-known spin-polarized state. The polarized state is naturally interpreted as the
particle-hole conjugate of the Laughlin v = 1/3 state [2], while the unpolarized state
is not the double-layer state consisting of a spin-up v = 1/3 state and a spin-down v =
1/3 state, which has an inequivalent K matrix. The unpolarized state can be studied
in tilted-spin experiments such as those of Eisenstein et al. [31] and appears because
of the relatively low Zeeman energy in GaAs as suggested by Halperin. [32] The KFP
treatment should be just as valid for the unpolarized edge as for the polarized edge
because they have the same K matrix. The unpolarized edge has an exact SU(2)
symmetry if the Zeeman energy is ignored, however, and this symmetry has physical
consequences.

Numerical results on the unpolarized edge show that at low energy there are two
branches of excitations, one spin-singlet charge branch and one spin branch described
by the SU(2) Kac-Moody algebra. [25] This is the structure found at the KFP fixed
point and different from the numerical results on the clean polarized edge, which
indicate two spatially separated subedges with no special symmetry. [24, 14] It seems
logical that the physical requirement of SU(2) spin symmetry of the unpolarized edge
forces the system to the KFP fixed point even in the absence of disorder, assuming
the “hidden” SU(2) symmetry is only found at the fixed point. The SU(2) struc-
ture of the unpolarized edge is found in a small system (hence without RG flows) for
both Coulomb and short-range interactions. The separation of the v = 2/3 edge into
charge modes and neutral modes can thus be caused by (i) an exactly charge-unmixed
velocity matrix, (ii) an unbroken SU(2) symmetry, or (iii) random impurities. The
possibility that impurities affect the polarized edge but not the unpolarized edge sug-
gests that measurements of the edge equilibration length and tunneling conductance
across the topological phase transition [33] between the two may be illuminating.

In FQH states the tunneling conductance through a point constriction in a Hall
bar decreases with decreasing temperature. In the integer effect this conductance
is temperature-independent. The physical electron operator is a superposition of all
charge-e fermionic operators, and the low-temperature conductance is determined by
the scaling dimension A, of the most relevant such operator according to [34, 35]

G(T) ~ t2T4248~1) (5.3)

where t is the amplitude for the dominant tunneling process. Different fixed points
in the same FQH state can have different A, and different tunneling exponents.
These exponents can be calculated for the marginal-type fixed points even though the
electron dynamics at these points is unclear. All fixed points of the same type have
the same scaling exponents but are expected to have measurably different prefactors
‘as described in Chapter 4. :
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Charge-e operators m have tiKiglm]- = 1 and scaling dimension A, = m;A;;m;
where A is the same symmetric matrix calculated in Chapter 3. Since A is known at
each fixed point, it is simple to search for the most relevant charge-e operator. The
SU(n) fixed points found by Kane and Fisher for the v = n/(2n — 1) states have
2A, = 3 — 2n~! and tunneling exponent

G(T)=t’T*, a=4—4n"". (5.4)

In Table 5.1 we list the low-temperature conductance behavior for each of the fixed
points found in Chapter 3. Note that corresponding fixed points in states with the
same neutral sector, such as v = 5/3 and v = 5/7, can have different tunneling
exponents because the charge sectors of the two edge theories are different. The
Fibonacci-type states have two possible values of the low-temperature tunneling con-
ductance exponent, so that there is a real physical difference between the A and B
phases.

The most interesting property of the results in Table 5.1 is illustrated in Fig. 5-1.
For each principal hierarchy state with neutral modes in both directions, there are
multiple phases with different values of the tunneling exponent. However, one phase
always lies on the line obtained by the composite-fermion approach for compressible
states. [20] Thus there is an interesting agreement between the chiral-Luttinger-liquid
model for incompressible states and the composite-fermion result for compressible
states, suggesting that similar physics is captured by the two approaches.

The level four states studied (v = 12/7, 12/17, 12/31, 12/41) have three different
tunneling exponents corresponding to the three different types of fixed points. For
example, in the v = 12/17 state the SU(3) fixed points have A, = 7/6 and o = 8/3 as
appear in the SU(3) fixed point of the v = 3/5 state. The SU(2) x SU(2) fixed point
is the same as the SU(2) fixed point for v = 2/3 except that there are two charge-e
operators of minimal scaling dimension rather than one. The double marginal fixed
point has an operator with A, = 11/12 so @ = 5/3. So the three different fixed
points have three different values of a: 5/3 for the double marginal points, 2 for the
SU(2) x SU(2) points, and 8/3 for the SU(3) fixed points.

Other tunneling experiments are sensitive to the most relevant quasiparticle oper-
ator at a fixed point, rather than the most relevant electron operator. One experiment
sensitive to the quasiparticle scaling dimension is tunneling through a slight constric-
tion rather than through a deep constriction as described above. [19] We have calcu-
lated the scaling dimension of the most relevant quasiparticle operators for the various
fixed points. No simple patterns are observed: often two or more quasiparticle oper-
ators have nearly the same minimum scaling dimension, and the charge of the most
relevant quasiparticle operator varies among different fixed points of the same edge.
As an example, in the 12/17 edge the most relevant quasiparticles at the different
fixed points are: 2A = 5/17, ¢ = 3¢/17 at the SU(3) points, 2A = 6/17, ¢ = 2¢/17
at the SU(2) points, and 2A = 43/102, ¢ = €/17 at the double-marginal points.
Typically the most relevant quasiparticles have small charges, as expected from the
inequality (4.5). ‘

- Time-domain experiments have so far not resolved the neutral modes in nonchiral
edge states, [36] but in principle a perturbation at one contact on a sample edge
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Figure 5-1: The tunneling exponent I o< V' for quantum Hall states in the range
1/2 < v < 1. The solid line is the prediction of the compressible-state theory of
Shytov, Levitov, and Halperin?® for infinitely many channels. The dotted line is
a = 1/v. Solid circles are the main-sequence edges with one phase per edge, and
other shapes describe fixed points of various symmetry classes in edges with multiple
phases.37 The states shown are all principal hierarchy states up to 4th level: the

main-sequence states plus v = 8/11,5/7,12/17,8/13.
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Table 5.1: Low-temperature tunneling conductance behavior G ~ T* for hierarchical
daughter states of » = 1 (top) and v = 1/3. Only “charge-unmixed” phases (those
with quantized conductance, or alternately those which can occur with long-range
interactions) are shown. The different fixed points A and B for the Fibonacci-type
states correspond to the labeling in Fig. 2. The phases v = 12/7,12/17,12/31,12/41
have fixed lines L and three types of fixed point with SU(2) x SU(2) symmetry
(abbreviated SU(2) in the table), SU(3) symmetry, or two independent marginal
operators (DM). The tunneling exponent on the fixed lines L is nonuniversal. Note
that each exponent in the lower table is given by ay/3 = 4 + a; where oy is the
exponent of the state in the upper table at the same position in the hierarchy. The
pattern continues to lower filling fractions: daughter states of v = 1/5 have filling
fractions between 1/8 < v < 1/4 and tunneling exponents 8 < o < 12, e.g.

Sy =mn G~T°

v=23G~T° G~T° DM
v=2G~T° v=12/7 G~TY® SU(_2)
v="5/3,G~ 5y B G~T'  SU®3)
G~T* L
v=1,G~T°
v=5/7,G~ T B G~T DM
v=2/3,G~T? v=12/17 G~T? SU(2)
v=23/5G ~T8?3 G ~T83 SU(3)
‘ G~T* L
. — 2nn—1 G NT4—4/n
cv=gte G~ T
v=3/7,G ~T* G~T¢ DM
v=2/5G~T* v=12/31 G~T¥3 SU(2)
v="5/13,G ~ o5 © G~T  SU®3)
| G~T* L
v=1/3,G~T*
v=5/17,G ~ Tra’ B G~TY3 DM
v=2/7,G ~ TS v=12/41 G~T®  SU(2)
v=3/11,G ~ T%/3 G ~ T%/3 SU(3)

‘ G~T® L

v = G~ TE

4n—1
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should excite propagating charged and neutral modes observable at another contact.
Such an experiment might reveal whether the neutral modes in the Fibonacci-type
states v = 5/3,5/7,5/13,5/17 propagate or are localized. The measurement of edge
equilibration lengths might also give interesting results: measurements on the edge
of the v = 4/5 edge, which has no |K(m)| = 2 operators and hence no KFP-type
instability, could show another type of equilibration mechanism (such as inelastic
scattering from phonons) with a different temperature dependence.
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Chapter 6

Renormalization group flows in
edges with random hopping

In the xLL theory, the edge of a bulk QH state with n condensates is described by
two symmetric n X n matrices, K and V. The integer matrix K is determined by the
bulk QH state and is the same for all samples of a given edge. The positive matrix
V ‘tontains non-universal velocities and interaction strengths which are expected to
vary from sample to sample. In this chapter, we study the RG flow of the V matrix
in the presence of impurity scattering toward fixed points [18, 19, 37] which describe
an equilibrated edge..

The RG calculation is given in some detail in an appendix because there are several
new features not present in similar treatments of the 2D classical XY model [49, 50]
and 2D melting, [51] as well as 1D disordered quantum electrons. [26] Calculations
on 1D quantum disordered systems differ from those on classical 2D systems in that
quenched disorder is random in space but constant in time, so the two spacetime
dimensions enter asymmetrically. The chirality of the yLL is responsible for the
differences between our results and previous results on disordered electrons in 1D:
correlation functions in a yLL depend on z + ivt rather than just the magnitude
22 +v%t?, and the operators of interest can have nonzero “conformal spin” (difference
of right- and left-moving dimensions). One of the resulting RG equations disagrees
with a result previously obtained by Kane, Fisher, and Polchinski. [18] We outline
our results before proceeding to the calculation

In a maximally chiral edge, such as IQHE edges or v = 2/5, whether a given
impurity operator (i.e., type of impurity scattering) is relevant depends only on K,
not on V. For IQHE edges and also for the main-sequence chiral FQHE edges v =
2/5,v = 3/7,..., there are relevant impurity operators which decouple the charge
mode from the neutral mode(s). The charge mode must decouple and the neutral
mode velocities must equilibrate for the system to flow to the U(1) x SU(n) fixed
point (n = dim K'), where the impurity scattering can be “gauged away.” [18, 19] The
U(1) x SU(n) symmetry possessed by K for these edges [21] is generically broken by
V, but restored if V flows to a decoupled charge mode (the U(1)) and n — 1 neutral
modes with identical velocities (the SU (n)) To our knowledge it has not previously
been shown that general initial conditions flow toward this fixed point for chiral edges.
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The charge mode velocity is not required to equal the neutral mode velocity, since
the disorder drives V to be diagonal in a basis where no disorder operator couples
charged and neutral modes. There remain operators which couple the neutral modes
to each other; thus although to leading order in the disorder strength the neutral
mode velocities do not flow together, it seems clear that the eventual strong-disorder
fixed point will have equal neutral mode velocities but a possibly different charge
mode velocity. We find that the fixed point is only stable if the charge mode has
greater velocity than the neutral modes.

The main-sequence nonchiral FQHE edges v = 2/3,3/5,... have similar U(1) x
SU(n) fixed points. Impurity scattering now can be either relevant or irrelevant,
depending on V, and if it is irrelevant the system will not flow to the fixed point.
For v = 2/3 KFP used a perturbative calculation for weak disorder to find the basin
of attraction of the fixed point [18]; this calculation is similar to ours, although we
find a slight disagreement (Appendix B). The flow to the fixed point has a much
more pronounced effect on some observable quantities than in the chiral case: away
from the fixed point, conductance and tunneling properties are nonuniversal. The
differences between chiral and nonchiral edges result because scaling dimensions of
vertex operators are independent of V' (fixed by K) in chiral edges but depend on V
in nonchiral edges.

The edge theory of each daughter state of v = 1 in the hierarchy is essentially the
same as that of the corresponding daughter state of v = 1/3,1/5,.... Every principal
hierarchy state, chiral or not, with neutral modes parallel to each other has a single
solvable charge-decoupled fixed point in the presence of disorder. Edges with neutral
modes traveling in both directions, such as v = 5/3 and v =5 /7, can have infinitely
many fixed points of several different types. [37] The RG shows how for all of these
fixed points the charge mode decouples, while the neutral modes can reach different
equilibria, with consequences for tunneling experiments. The fixed points not solvable
by the KFP method have disorder operators which frustrate each other at the fixed
point.

The xLL action in imaginary time for a clean edge of a QH state characterized
by the matrix K contains n = dim K bosonic fields ¢;: [11]

1 .
So= o= [ de dt [iK1j0u8:00; + VisDuiBati, (6:1)

where the sum over repeated indices is assumed. K is a symmetric integer matrix
and V a symmetric positive matrix. K gives the topological properties of the edge:
the types of quasiparticles and their relative statistics. V/, the velocity matrix, is
positive definite so that the Hamiltonian is bounded below. The electromagnetic
charges of quasiparticles are specified by an integer vector t and the filling factor is
v = t;(K)ist;. ‘
- Now a term representing quenched random impurity scattering is added to the
action: '

S) = / dz dt [£(z)e™% + £ (z)e~ %] (6.2)

‘Here £ is a complex random variable and ((¢(z)¢*(z"))) = Dé(z — '), with D the
(real) disorder strength. The integer vector m describes how many of each type of
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quasiparticle are annihilated or created by the operator Om = exp(im;¢;). For a
real system all charge-neutral scattering operators m; are expected to appear, but
most of these will be irrelevant in the RG sense. The condition for charge-neutrality
is t;(K~1);m; = 0. The random variables £, for different scattering operators Om
may be uncorrelated or correlated depending on the nature of the physical impurities
causing the scattering.

The clean action (6.1) is quadratic and hence does not flow under RG transfor-
mations. Adding impurities (6.2) causes the V' matrix in (6.1) to flow, and in some
cases the flow is to a new type of strong-disorder fixed point. [18, 19, 37] Here we
will quickly review the diagonalization of the clean action to find the eigenmodes a;
and their velocities v;, and then find the RG flows for two-mode edges with a single
impurity operator. Then a general edge with several modes and impurity operators
is considered.

Let M; be some matrix which brings K to the pseudo-identity I,+,-: K~' =
MiIn, o M,T. Then V can be brought to a diagonal matrix Vp = MoT MTV My M,
where M, is an element of the group SO(n*,n~) so that M,M, still takes K to the
pseudo-identity. The point of these transformations is that the action is now diagonal
in the basis ¢ = (M;M;)~1¢, so the correlation functions are simple:

<ezéj (z:t) e—"‘&J (0r0)> — e(&] (I,t)(;; (010))_<d.).7 (O)O)J’J (010))
o< (z £ ivit)™ (6.3)

where the sign depends on whether (Zj appears with —1 or +1 in I(n*,n”). The
vertex operator Op, described by the integer vector m has correlation function

n
(emi%i(@t)g=imi®i 000y — TT (z & fv;t) " (6.4)
i=1

with m;¢; = c;¢;. The total scaling dimension of O, is A(m) = ¥ ¢3/2, which is
bounded below by K(m)/2 = mK 'm/2. The impurity term S) containing Op, with
a random coefficient is relevant if A(m) < 3/2; the corresponding marginal value for
a uniform-coefficient is 2, and for a §-function coefficient 1.

Appendix B calculates the change in the correlation function of Oy under an
infinitesimal RG transformation induced by the impurity term S;. Here we find the
change in the underlying V' matrix required to produce the new correlation function.
The K matrix is unchanged as it is “topological” (it does not enter the Hamiltonian).
The V matrix flow has a simple interpretation, valid for any number of edge modes
traveling in either direction. Each impurity operator m drives V' to become diagonal
in the basis with m an eigenvector. This automatically minimizes the scaling dimen-
sion of Oy, in a nonchiral edge. In cases where there are more impurity operators
than independent eigenvectors, so that not all impurity operators can simulatenously
be eigenvectors, the impurity operators frustrate each other.

- Both v =2 and v = 2/5 have a single K (m) = 2 operator which is always relevant.
In the basis e; =t, e; = m, '

=3 D) = ()
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V= K'°R (”1 0 ) ROK. (6.5)
0 (%

with R a two-by-two rotation matrix by some angle §. Note that all V' are obtained by

considering 6 in the interval [0, 7). Now a = 2sin? § and 8 = 2 cos? § are the exponents

appearing in the correlation function of the impurity operator: (Om(z,t)O},(0,0)) =

(z + iv1t)~%(x + vpt) ™, @ + B = 2. Then to first order in disorder strength, the

diagonal velocities v; and v, are unchanged, and (Appendix B)

da 8rDaf
- : 6
de (v1 — va)v12 Tupf 1 (6.6)
Since do = 2sin(260)df = 2+/aBd9,
ao _ 47D sin(20)v,v;
d’l - (’Ul — UZ)UIQSinz 9:022 cos?28’ (67)

There are two fixed points of this equation, with # = 0 stable and 6 = 7/2 unstable
for v; > vy, and vice versa for v; < v,. The stable fixed point always corresponds to
neutral mode velocity less than charge velocity (Fig. 6-1a).

We can summarize the effect of the disorder operator in the comoving case sim-
ply: it rotates V so that m becomes an eigenvector. Since m is neutral (mK !t
= 0) the other eigenvector is driven to the charge vector. The idea that impurity
operators drive V' to make themselves eigenvectors is quite general. The case of two
countermoving modes (e.g., v = 2/3) with a K(m) = —2 disorder operator is similar
in form. The rotation matrix R in (6.5) is replaced by a boost matrix B,

cosht sinht
o (sinhT COShT) ’ (6.8)
and the exponents in the correlator are o = 2sinh®7, 8 = 2cosh’®7, o — § = =2,
a+ f = 2A(m). The flow equation for 7 is then
dr 4r D sinh(27)v v_
- = - —— —. (6.9)
dl (’U+ + ,U_),U_Zl_smh T,UECOSh T

Here v, and v_ are the (positive) velocities of the right- and left-moving modes. Now
there is only one fixed point, at 7 = 0 (Fig. 6-1b), which is the solvable fixed point
found by KFP. [18]

Now we consider a general edge with several modes and impurity operators. To
first order in disorder strength, the effects of each impurity operator add indepen-
dently. Scaling dimensions A(m) of vertex operators Oy, are independent of V' in
chiral edges, depending only on K: 2A(m) = mK'm = K(m). In a nonchiral
edge this holds as an inequality: 2A(m) > K(m), with equality only if V' is diago-
nal in a basis with m an eigenvector. Since most experimentally relevant quantities
are determined by scaling dimensions, it is useful to isolate which parts of V' affect
scaling dimensions. The matrix M, used above to diagonalize V ‘while preserving the
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Figure 6-1: Schematic RG flows for two-mode (a) chiral and (b) nonchiral edges. The
same idea applies to main-sequence edges with more than two modes: the chiral case
has one stable (v, > v,) and one unstable (v, < v,) fixed point, while the nonchiral
case has one stable fixed point independent of v, v,.

pseudo-identity I+ ,- is an element of SO(n*,n™). It can be decomposed M; = BR
into a product of a ‘boost’, a symmetric matrix, and a rotation, an orthogonal matrix,
each elements of SO(n*,n™). [37] The n(n + 1)/2 free parameters in the symmet-
ric positive matrix V are now taken as n eigenvelocities (the elements of Vp), ntn~
“boost parameters” (which correspond to interactions between oppositely directed
modes), n*(n* — 1)/2 rotation parameters between right-movers, and n~(n~ —1)/2
rotation parameters between left-movers. Only the ntn~ boost parameters affect
scaling dimensions because, introducing the matrix A;; via 2A(m) = m;A;;m;;,

A = MBRRTBT™M,™ = M, B>M,T. (6.10)

For each pair of comoving modes appearing in the correlation function, there is an
infinitesimal change in the rotational part R, and for each pair of countermoving
modes, there is an infinitesimal change in the boost part B.

Given an impurity operator Op, and initial V' (£), we need to find V(£ + d¢) which
gives the changes to the correlation function calculated in Appendix B. However,
there is an important issue not present in the two-mode case: there are more free
parameters in V than exponents in the correlation function, so V is not uniquely
determined without additional assumptions. We assume that each term in Appendix
B coupling two modes affects only the components of V' between those two modes.
We will also write the flow equations for the components of V' directly, rather than
introducing a parametrization as we did above in terms of 8 or 7, because for multi-
mode edges such parametrizations become quite complicated.
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Suppose that rescaling by d¢ changes the V matrix from (M M)~ Vp(M; M)
to
V(€ +dt) = (M, MyN)" TV (M, MaN) ™ (6.11)

Note that V does not flow if the eigenmodes have the same velocity, so that Vp is a
multiple of the identity. Here IV is an element of SO(n,,n_) differing only by order
df from the identity. The fields which diagonalize V (£+ df) are ¢' = (MyMN)™'¢ =
N~1¢. Now let ¢; be the components of the disorder operator in the ¢ basis which
diagonalizes V' (£): m;¢; = cj¢;. The exponents appearing in the correlation function,
whose flow is calculated in Appendix B, are a = ¢;2, 8 = ¢,?, etc.

Now we are ready to construct N. For each pair of countermoving modes 7 and
7, N has an infinitesimal rotation angle df;; = —df;;, and for each pair of comoving
modes 4 and j, a boost dr;; = drj;. For an edge with two right-movers and one

left-mover, e.g.,

1 —d012 dT13
N = d012 1 d’T'23 . (612)
dTlg dT23 1

Then for a disorder operator O, with projections c; and strength D,

g = — 47r“c,-cjviij dl
N (vi — ) T v
dTij _ 47TC,'CJ"U,;’UJ‘D dl (613)

(v + o) T

Note that the ¢; can have either sign and must change sign in the vicinity of a fixed
point, as above in the two-mode case. Substituting N in (6.11) gives the desired RG
flow equation for the components of V. The condition for a fixed point is simple:
NTVpN = Vp. Hence for any chiral edge (IV a pure rotation), if all velocities are the
same the system is at a fixed point.

The simplest multicomponent edges are the IQHE edges v = n and chiral main-
sequence edges v = n/(2n + 1). The behavior of these is similar to the v = 2 case
discussed in detail above: the stable fixed point has charge and neutral mode velocities
ve > vn. The neutral mode velocities are expected to equalize while the charge mode
remains different, because there are always hopping operators connecting the different
neutral modes, while there is no hopping connecting the charge mode to the neutral
modes. As a result there is no stable fixed point unless the neutral velocities are the
same.

For the v = 3 case we can demonstrate the similarity to the v = 2 case by an ex-
plicit calculation. Parametrize the rotation part R of V as R = Ra3(61)R12(62) R23(3),
where R;;(0) is the rotation by 6 in the ¢ — j plane; then in a basis with e; = t, the
charge mode is decoupled if 5 = 0. The flow equation for 6, with vy = v3 = vy, is

df,  —4mv.v, sin(26;)
8% _ ><
de (ve — vp)
cos? 6,(4D, + Dy + D;)

4'Uc2 cos? 0, sin? 4, vnz(sin2 01 +cos? 0 cos f3)
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3sin? 6, (Dy + D3)

4p,2 sin? 91 sin? 6 ,Un2(cos2 61+sin? 8 cos? 82)

(6.14)

where D; 3 are the strengths of the 3 hopping operators. This is of the same form as
(6.7) since the quantity in brackets is clearly positive. Henceforth we will not write
out the flow equations but just discuss the qualitative behavior.

The nonchiral main-sequence edges v = 2/3, 3/5,... have solvable stable U(1) x
SU(n) fixed points if all the neutral mode velocities are equal and the charge mode is
decoupled. The charge mode does indeed decouple in the perturbative RG equations
since each impurity operator reduces the scaling dimension of t toward its minimum
v, which is only attained when the charge mode is decoupled. Once the charge mode
is decoupled, the neutral modes behave exactly as in the chiral case, except that the
fixed point is stable even if the neutral mode velocity is greater than the charge mode
velocity. '

In the edges v = 5/3 or v = 5/7, which have neutral modes in both directions,
there are an infinite number of possibly relevant impurity operators. [37] However,
near each of the possible fixed points there are only three relevant operators. Unlike
the case with all neutral modes in the same direction, to first order in disorder strength
there is no stable fixed point for V, even if the neutral mode velocities are equal. The
mathematical difference is that, now that the modes move in opposite directions,
the impurity operators cause infinitesimal boosts which do not disappear when the
velocities are equal, unlike infinitesimal rotations. The fixed points in these edges have
marginal operators not present for the KFP-type fixed points and seem to be of a
different type, and their strong-disorder behavior and stability is not well understood.

There are several four-component edges, such as v = 12/17 and v = 12/31, which
have solvable, SU(n) symmetric fixed points of the KFP type as well as fixed points
with marginal operators similar to the v = 5/3 and v = 5/7 edges. The picture of
equilibration differs depending on the fixed point. The solvable SU(2) x SU(2) fixed
points found in these edges can have all three neutral mode velocities different (since
there is a basis where no relevant hopping operator couples neutral modes), while
the SU(3) fixed points have to have two neutral mode velocities equal in order to
be solvable. However, as discussed in the introduction the fixed point accessible by

the composite-fermion approach [20] is the one with marginal operators present, even -

though this is the only one of the three fixed points whose stability is doubtful. [37]
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Chapter 7

Boundary conditions and tunneling

7.1 Strong and weak tunneling fixed points

Until this point, we have considered tunneling into edge states in the limit where
the tunneling current is small and can be calculated perturbatively. That is, we can
calculate the current by perturbing around a decoupled fixed point where no tunneling
occurs. In the remainder of this thesis we will discuss other strongly coupled fixed
points which appear in the quantum Hall edge system when tunneling is no longer
weak. Our goal in this chapter is to outline a general formalism for treating tunneling
fixed points of quantum Hall edges, which is justified in the next chapter.

As an illustrative example we start with tunneling between two edges of the same
Laughlin state v = 1/3. This problem was solved exactly by Fendley, Ludwig, and
Saleur [38]: the crossover between weak and strong fixed points can be calculated
using a mapping onto the boundary sine-Gordon model previously shown to be inte-
grable. [39] For a general edge this integrability technique fails, but we will show that
the fixed points of the tunneling problem can still be understood and give the most
essential information.

Quasiparticle tunneling at finite temperature across a slight constriction in a sin-
gle v = 1/3 quantum Hall bar becomes stronger and stronger as the temperature
is lowered (quasiparticle tunneling is “relevant” in renormalization-group language)
until the constriction becomes large and the system can be described as weak electron
tunneling between two separated v = 1/3 edges. The crossover between these two
fixed points can also be driven by applying a voltage across the junction at zero tem-
perature. The relevance of quasiparticle tunneling follows from the scaling dimension
A, = 1/3 of quasiparticle tunneling: for point tunneling an operator of dimension
A = 1 is marginal, A < 1 relevant, and A > 1 irrelevant. At the decoupled fixed
point, the scaling dimension of electron tunneling is A, = 3, so the tunnehng is irrel-
evant and the fixed point is stable. The junction conductance is ‘;h for the strongly
coupled fixed point, when the system is a Hall bar at filling v = 1/3, and zero at the
weak-coupling fixed point, when the two edges are decoupled.

In a moment we will present a method for determining tunneling fixed points in the
chiral Luttinger liquid model. First, however, we give a relatively model-independent
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Figure 7-1: Schematic geometry for point tunneling between quantum Hall states.

picture of the strong and weak coupling fixed points for tunneling between two quan-
tum Hall edges, which comes from considering the power dissipated at the tunneling
junction. A simple argument shows that an upper bound on the conductance through
a junction between FQH edges follows from the assumption that only one mode on
each edge couples to the electric potential. In the xLL theory, this assumption holds
in the presence of either unscreened Coulomb interactions or random hopping at the
edge, for both chiral and nonchiral edges. Since in experiments the Coulomb inter-
action is screened only at moderate distances, and impurities are present, we assume
separation of charge and neutral modes on each edge. The currents labeled in Fig. 7-
lare I} = W, I = Vo, I} = WV, I, = v,V] (here ‘—Zhi = 1). Current and energy
conservation at the junction give

nVi=V)+unla-V) = 0 (7.1)
n(V2 -V + (7 -V") = 2P. (7.2)

Here P is the power dissipated at the junction. In terms of the two-terminal conduc-

tance g = I,/ (Vi — Vo) = I/V,

1 ‘ 1/1—1 + 1/2_1‘| (7 3)

P = g2v2 [_ _
g 2

The dissipated power is zero for g = 0 or g = opm = 21112/ (v1 + 112), and positive
for intermediate values; energy conservation forbids values g > oy,,. The dissipated
power can go into excitations of the oscillator modes of the outgoing edges [40]. The
currently known fixed points for tunneling between quantum Hall edges all have zero
dissipation at zero temperature except in the presence of exactly marginal operators
(as in tunneling between v = 1 states). We thus conjecture that, unless marginal
tunneling operators are present, the conductance saturates for large V; — V, at the
value opyp,-

Now we show how this asymptotic conductance and many other experimentally
relevant results can be calculated by considering “boundary conditions” in a chiral
Luttinger liquid. If tunneling occurs at a single point (say z = 0), the one-dimensional
edge can be “folded” from the whole line to the half-line 0 < z < co with the tunneling
junction at the boundary z = 0. The tunneling at £ = 0 is a boundary interaction
in the theory, and away from z = 0 the system is free. One renormalization-group

fixed point of this system is the free fixed point where no tunneling occurs. This

59




corresponds to a certain boundary condition at z = 0 on the fields of the theory.
A different boundary condition corresponds to strong tunneling, and has different
scaling dimensions for the fields of the theory than the first fixed point.

We start by considering a tunneling junction at z = 0 between two edges described
by K-matrices K; and K,. Then the combination of the two edges can be described

by a single K-matrix
(K, O
K= ( . K2) . (7.4)

To describe the possible fixed points of the tunneling junction as boundary conditions,
we can fold the edge in (—o0,0) on top of the edge in (0, oc) by introducing 2k fields
¢o on (0, 00):

B@) = aulo)
¢k+a($) = - a(—m)
z>0 a=1,.,k | (7.5)

The resulting edge is described by (K,q, T, A):

£ = (o k)

3 =5 a)
I, = I'.@l.
q = (3). (7.6)

The edge is terminated at z = 0. Now the problem of the different fixed points of
a tunneling junction becomes a problem of different ways that the edge (K, g, I, A)
can terminate at z = 0. More precisely, each fixed point of the tunneling junction
corresponds to a way in which the edge (K q,T., A) terminates. The boundary
conditions found below will also apply to the problem of an edge termination even if
K is not constructed from a tunneling problem. There are a number of interesting
physical predictions which rjasult~[4ll, which we will not discuss here.

We find that the edge (K, q,I'¢, A) can be terminated consistently (Chapter 8) if
there is a 2k by k matrix B that satisfies

BTK-'B =0,
det(BTB) # 0
I = Latt(B) C Ty (7.7)
where k = dim(K)/2 and
Ty = {njn € I.,nTK~'n = even} (7.8)

(i.e., the points in T, describe the bosonic vertex operators). The physical meaning
of the first two conditions is that there are k vectors of length 2k (the columns of the
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matrix B) which are null in the indefinite quadratic form & ~1 orthogonalin K~!, and
linearly independent. Previously Haldane {30] described charge-neutral null vectors
of K~ as “topological instabilities,” which allow oppositely directed edge modes to
localize each other and drop out of the low-energy theory; thus condition (7.7) is that
there be k independent topological instabilities orthogonal in K~!. (We have relaxed
the condition of charge-neutrality in order to include situations involving coupling
to a superconductor.) In order for B to exist, K must have the same number of
positive and negative eigenvalues (the edge has the same number of right-moving and
left-moving branches).

If more than one B exists, then the edge (K q,T., A) can be terminated in more
than one way. In other words, the boundary at = 0 can have more than one fixed
point. These different fixed points will be referred as different terminations of the
edge.

For a termination labeled by the matrix B, the fields ¢ satisfy the following
boundary conditions at the termination point

BT¢ =2mm, n = integral vectors. (7.9)

Note that ¢ can satisfy different boundary conditions even for a single type of termi-
nation labeled by B. '

The allowed charge excitations (vertex operators) at the boundary are labeled by
points in a k-dimensional lattice I'y, (called the boundary Q-lattice):

s = (7.10)
- 1 -
Latt (KB(BTB)‘l - 5B(BTB)—lBTKB(BTB)-l)
The boundary quasiparticle operators have the form V}* = el 1¢ ['ys- The scaling
dimension of V} is given by
re(1) =1TK*B(BTAB)'BTK™! (7.11)
This is one of the main results of this chapter.
In the above discussion of termination points, we have ignored any symmetry
properties and the related selection rules. In particular, the boundary condition
characterized by B may not conserve electric charge. As a result, a boundary vertex

operator may not carry a definite electric charge. In order for the termination labeled
by B to conserve the electric charge, we must require the B matrix to satisfy

BTK'q=0 (7.12)

For the charge conserving termination points, the electric charge of a boundary vertex
operator V; is found to be

Q=q"K1 (7.13)

For a general termination described by B, there are k combined charges that are
conserved near the boundary. Their densities are given by

Pa = BpoaOrda /2 B (7.14)
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The boundary operator V¥ carries definite values of these k combined charges:

Q=BTK™1 (7.15)

7.2 An example: junction between two Laughlin
states

The case of tunneling between two Laughlin states has been treated previously in the
absence of intermode interactions by several authors [35, 38, 42, 40]. Here we will
show how the known results for the two fixed points are recovered in our framework,
and in Chapter 9 consider interaction effects. A new result even in the absence of
interactions is the information found below about the lattice of charged boundary
operators. For definiteness we consider the case of tunneling between v = 1 and
v = 1/3 states which has attracted the most attention. The v = 1 edge can serve
as a model for a metallic contact, since at ¥ = 1 the edge is a Fermi liquid. At
weak coupling between the two edges, the most relevant neutral operator tunnels
an electron between the two edges, with scaling dimension 2; at strong coupling the
most relevant neutral operator has scaling dimension % This neutral operator can be
interpreted as tunneling between different minima of the boundary cosine interaction
in the sine-Gordon model, or as quasiparticle tunneling in an effective model of two
v = 3 edges.
With no intermode interactions, we have

- o -m o o | . |1
E=10o 0 m o |"97]1
\0 0 0 —my 1
1m, 0 0 0
- o0 1m0 0
A=l 0 1m0 (7.16)
0 0 0 1/my
Fixed point A (weak coupling) is described by
1 0
1 0
B = 0o 3| (7.17)
0 3

The meaning of this B matrix is that the incoming and outgoing v = 1 edges are
joined continuously to each other, and similarly for the incoming and outgoing v = 1/3
edges. The boundary Q-lattice is

) (7.18)

P . E——— g ¢




A general boundary operator O; with 1 = ll(%,——%,0,0) +15(0, 0, l,—%), Iy and I,
integers, has electric charge Q) = l; + l3/2 and scaling dimension ;*/2 + 1,2/6. The
most relevant neutral boundary operator has (1, l;) = (1, —3) and scaling dimension
2, as expected for electron tunneling at weak coupling.

Fixed point B (strong coupling) is described by

B= (7.19)

W O = N
— e

The meaning of the first column of B is that two incoming electrons become one
outgoing electron and three outgoing ¢ = % quasiparticles. In the boundary sine-
Gordon language, this corresponds to pinned (Dirichlet) boundary condition on the
neutral mode. The second column is simply the charge vector, indicating that overall

charge is conserved across the junction. The boundary Q-lattice is

(25
|-

o
ty
Il
=
=4
ct
—
=
(e
oy
~—

(7.20)

oo |w

A general boundary operator Ol_withQI =hL(g, 3, —%, L) +lb(-35,-%,3,32) has
charge @ = I, and scaling dimension [;°/2—3[315/2+315°/2. The most relevant neutral

boundary operator has (I1,1;) = (1,0) and scaling dimension £, as expected.
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Chapter 8

Correlation functions in bounded
Luttinger liquids

8.1 Correlations with boundary

We start by introducing a certain basis for K and t which simplifies the calculation
of correlation functions. The collective modes that propagate along the edge can be
described by several density operators p,(z), which satisfy the algebra (Chapter 2)

i

[pa (), Po()] = 5— (K™ (z — 1) (8.1)

where K is a symmetric integral matrix that characterizes an Abelian edge. The total
electric density is a sum of p, weighted by a charge vector ¢

Pe = q*Pa- (8.2)

For all the cases of interest here, we can choose the symmetric basis in which ¢* = 1.
In the following we will work in this symmetric basis, where there are dim(K) different

electron operators L
‘ ve(z) = e e (8.3)

where n? is the b column of K: n2 = K. An multi-electron operator has a form
e"¢%2(%) with n, belonging to a lattice I';, which will be called the electron lattice.
The lattice I, = Latt(K), since I, is generated by the column vectors of K.

The charge fluctuations created by the electron operators can also be described by
the ¢ fields in the Lagrangian. Now the ¢ fields no longer satisfy periodic boundary
conditions, but instead

¢o(L) = ¢4(0) + 27N, : (8.4)

where N, are integers. In fact, the above ¢ describe excitations created by [T,(¢2)"
from the neutral ground state.

In general, the (multi-)electron operators do not represent all possible “charge”
excitations. The most general charge excitations are created by

Ye(z) = emE0el) B | (8.5)
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where n. are integral vectors belonging to a lattice I'; (which will be called the E-
lattice). The general charge excitations contain all excitations created by the electron
operators, and thus I’y C I'.. The general charge excitations can also include exci-
tations that transfer fractional charges between different edge branches, but have
integer overall charge.

The E-lattice I, must satisfy certain conditions. Since 9.(z) all carry integral
charges (which can be zero), the vectors in I satisfy

qf K~ 'n, = integer (8.6)
The operators 1).(z) are also mutually local; that is
(n))T K~ln, = integer (8.7)

for any n, and n, in T,. This condition implies that I, C Latt(K~*). Just like the
electron operators, the excitations created by ), = e'™¢ are described by ¢ that
satisfy the boundary condition

$(L) = ¢(0) + 21K 'n, (8.8)

We can also use the above to define the periodicity conditions of the ¢ field. We take
¢ and ¢’ to be equivalent if

¢=¢'+2rK 'n, (8.9)

for some n, € I',.

Now we add a tunnel junction or termination to the system. In what follows it is
assumed that in the junction case the edge has been folded onto the half-line as in
Chapter 7, so that one set (K, d, T, A) describes both incoming and outgoing edges,
with a total of 2k bosonic fields. In the presence of tunneling between different edge
branches at x = 0, the Lagrangian contains a term

L= z:tlc‘i(a:)e"l"zs + h.c. (8.10)
T

where #; is the (real) tunneling strength, and the integral vectors n’ are points in the
I'. lattice which also satisfy

(n")TKn! = even. (8.11)

(Thus ™% are bosonic operators.) If electric charge is conserved at the boundary,
n’ should also satisfy

a’Knf =0 (8.12)

so that ein’¢ represents a neutral operator. For the time being, we will not impose
the above charge-conservation condition.
The Lagrangian density on the half-line is given by

L= —— ((R)*6.00:0 — (V) Fu02) (8.13)
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We also need to specify what are the allowed charge excitations, in addition to the
Lagrangian (8.13). This can be achieved by specifying the periodicity conditions of
the ¢ fields: i

¢~¢ =¢+2rK 'n, (8.14)

where n, are vectors in the lattice T..

To completely define our system on the half-line, we need to include boundary
conditions at z = 0. First let us consider the boundary condition in Hamiltonian
language. We will start with the following type of boundary conditions, specified by
a collection of vectors B with I =1, ..., k:

B2¢,(0) =0, foralll (8.15)

Since we are looking for critical points, we would like to study boundary conditions
that are invariant under scaling, suggesting the form (8.15). However, the above
form is inconsistent with the periodicity conditions on ¢. It turns out that (8.15),
although sufficient to determine the correlation functions of vertex operators, must be
improved (later in this chapter) in order to determine the lattice of allowed boundary
quasiparticle operators.

Since ¢,(z)’s do not commute with each other, the above boundary conditions are
self-consistent only if

[B¢¢.(z), Bdy(y)] = 0, foralll,J. (8.16)
This implies that the vectors that characterize the boundary condition must satisfy
BTK'B=0, det(BTB)#0 (8.17)

where B is the 2k by k matrix formed by B. Note that two different B matrices, B,
and By, specify the same boundary condition in the sense of (8.15) if they are related

by

By = BU, U € L(k) (8.18)
where U is an k X k invertible real matrix U. In this case we say B; and B, are
“weakly” equivalent ’

B, ~ B,. (8.19)

In the Lagrangian language, the above boundary condition on the fields é cor-
responds to BT¢(0) = 0. Only for certain choices of B can the operator K =
(K)®8,8, — (V)*5?2 be hermitian. We will show that the condition on B that makes
K hermitian is nothing but (8.17). To see this, we first note that

/ dzdtdT Ky = / dzdtdT Ky + / (8,37 K d1)amo (8.20)
Thus K is hermitian if B is such that

$aK*, =0 B (8.21)
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for all @, ¢’ that satlsfy BT¢ = BT ¢’ = 0. Let us choose a basis that the vectors in
the null space of B have the form ¢Z , = (0,...,0,q,...,b), i.e., the first k& elements
'~ are zero. In this basis, by (8.21) K has the form

- (K, K
K_(KlT 0), | (8.22)

and B has the form

B= (%) (8.23)

where K; and B; are invertible. Since K1 has the form

= (s e ) (824

thus the condition (8.21) implies the condition (8.17). We see that the hermiticity of
the operator (K)%8,0, — (V)82 also requires B to satisfy (8.17).

Let us summarize our results so far. The critical boundary conditions of an Abelian
edge described by K are characterized by a matrix B that satisfies (8.17). If such
a B does not exist, then the edge state described by K cannot be terminated at a
point. If such a B does exist, then we can consistently impose a boundary condition
BT ¢ = 0 and terminate the edge state at x = 0 (provided that B satisfies some other
conditions that will be discussed later). If more then one inequivalent B exists, then
the edge can be terminated in more than one way (the tunneling junction has more
than one fixed point).

Now the question is when B exists. First, from (8.22) we see that the signature
of K must be zero in order for B to exist. S1nce K is invertible, we can write K as

- I 0 .
K= K1/2( kgk _Ikxk)Km- (8.25)

We see that B always exists for the above K. A generic B that satisfies (8.17) can
be written as

B = (T}OT) Kipp, ToIy =1 (8.26)
Thus B exists if and only if K has a vanishing signature (there are as many incoming
modes as outgoing modes). In this case the different boundary conditions are labeled
by an element in the O(k) group.

Next we would like to calculate the correlation functions of the fields ¢ in the
presence of the boundary. First we choose a basis in which both K and V are
diagonal (this can always be done [14]):

- (I 0 ~ (vn 0 \_go
=y 2)=m 7= ) )= Vew (8.27)

‘The block vg has positive diagonal elements which are the velocities of right movers,
while vy, has negative diagonal elements which are the velocities of left movers. Thus
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the velocity for each branch is given by v, = (E;:,Vdiag)aa. In this basis a generic B is
equivalent to a simple form:

B~ (1{’—") , TIT =1 (8.28)
0

Let Gy qb(z, t) be the correlation of éao(x,t) and $;(0) in the absence of the boundary:
Goa(z,t) = <q$a(x,t)g5b(0)>0. The correlation satisfies a linear equation

1

o (—K0,,8; + V°°0%) Goeo(,t) = 6a6(2)(1) (8.29)

Since K and V are diagonal in the present basis, the above can be rewritten as

1 aa aa 02
277( K°20,0, + V**02) Go,aa(3t) = 6(2)5(2) (8.30)
a=1,..dimK.

We notice that the pair (a, z) is simply a label of the é field. We can choose another
label (a,Z) to eliminate the velocities and further simplify the above equation. The
two sets of labels are related by

(a,z) = (a, V%) (8.31)
Now the equations for G 4, become

1 = - -
5 (~58°050, + 62) Goa(3,1) = 6(2)3(1) (8.32)

a=1,..,dimK

The correlation function with boundary, Gg(z1, 22,t) = <g§a(:r1, t)ggb(mz, 0)>, satisfies
according to (8.15)

BTG(0,z,t) = G(x1,0,£)B =0, (8.33)
and
1 ac ‘rac 02
o (K020, + V00, ) Gop(m1, 72, )
= (z — z2)0(2) (8.34)

for z1, 2z, > 0. In the diagonal basis and in terms of the new label (a, Z), the above
equation becomes

1 -
o (~5302,0: + 82,) G(&1, %2, 1) = 6(F1 — £2)5(2) (8.35)

for Ty,To > 0.
The boundary condition BT¢ = 0 can be rewritten for B in the form (8.28) as

b (0+ £) Z(T0 wPore(0F,1), a=1,... k. (8.36)
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It simply connects the right moving fields . to the left moving fields bork,a=1,..k,
through an orthogonal matrix T,. With this understanding, we find that G is given
by

Gas(E1, 52,t) = (Ba(1, ) Bs(72,0))
= (Goldr — T2, t) — Go(F1 + 52,)T)_

where T' = (797" 7(;0).

Note that i))y restricting to boundary conditions described in terms of the real
bosonic fields, we are ignoring possible symmetries not present at the Abelian K-
matrix level. For instance, if there are two incoming v = 1 edges described by Fermi
fields 1);, there could be a unitary U(2) rotation at z = 0 rather than the orthogonal
rotation described above. As an example of the meaning of the orthogonal matrix
Ty, consider the case of tunneling between v = 1/3 and v = 1 states discussed in
Chapter 8. The rescaled basis is K = diag(1,1, -1, —1), and the tunneling operator
is exp(i(¢1 — v/3¢2)) + h.c.. The matrix Ty for strong tunneling is

, (8.37)

1 3

T, = ( 2 2 ) (8.38)
v3 _1 )
2 2

which is the same as the matrix mapping incoming quasiparticles to outgoing quasi-
- particles in Sandler et al. [43]. For instance, two incoming electrons on the v = 1 edge
become one outgoing electron on the v = 1 edge and three charge e/3 quasiparticles
on the v = 1/3 edge.

From the symmetry of the equation for Gy, we see that, as a function of Z, the
matrix function Go(Z,t) satisfies

TGo(%,4)T _ Go(~7,1) ©(8.39)

Using (8.39) and BTT = BT, we can check that the above G satisfies (8.33). Certainly,
G also satisfies the equation (8.35).

To obtain the correlation function in the original basis and in terms of the original
labeling (a, z), we need to start with the explicit form of Go: Go(Z,t) = — In(X3Z —1).
After replacing the label (a, %) by (a,z/|v,]), we find (no summation over repeated
indices)

Gab(xla T2, t) = <¢~5a(3317 t)q‘gb(x% 0)>
= —In((Z5)ea(®1/[val — z2/|ve]) — )0t
+10((Z3)ae (@1/|va] + z2/|vs]) — ) (TT) ap- (8.40)
If K, V and the boundary condition B in the original basis are given by
K =WTS3W, V =W V4 W, |
I .
B~WT (Tg’) . (8.41)
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then the correlation function in the original basis can be obtained from the trans-
formation ¢ — W™lg, K = $3 - (WDSW, V = Vagg = (WT)VieeW, B =

( IT) LW ( IT>, and G — W-IG(WT)1.
TO TO

Gop(T1,T2,t) =

- Z(W_l ac ln((ZB)CC(I N %) - t)‘scd(WT);bl
+Z 1)ac1n Z33)cc(| Zl Ivdl) ) cd(WT)Ebl. (8,42)

The above result for the correlations of ¢ allows us to calculate the correlation
functions of vertex operators O; by exponentiation. Consider an operator V;, = ¢™*%e,
Far away from the boundary (z > |v|t), the operator has a correlation which is
determined by Gq only:

(Va(z,t)Va(z,0)) ~ 1/t9" (8.43)
where _
gn =0T An (8.44)
and A = W-Y(WT)~1. We can write W in a form
R 0\ 5 £
W= ( 5 RL> Bukypo, (8.45)

where RR,L € O(k), and B,; is the boost matrix of form
- 0 b
B, = exp (ET 0) . (8.46)

In this parameterization of W, A depends only on By, (or the k-dimensional matrix
b):

A= K1/2B§2(K1/2) . (8.47)
Near the boundary (z < |v|t), the correlation has a different algebraic decay
(Va(0,£)Va(0,0)) ~ 1/t% (8:48)
with B
gt =nTAn (8.49)
where from equation (8.42)
AP =W I -T)(WT)L. (8.50)
The above can be rewritten as , _
A = 2K 'B(BTAB)"'BTK™! (8.51)
Since it is invariant under B — BU, (8.51) is valid for all B, not just the form
: ol
—wT
B=wT( I ):
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8.2 Boundary conditions compatible with period-
icity conditions

In the above discussion of the boundary condition (8.15), we have not considered the
problem that this condition violates the periodicity of the fields ¢. We need to take
into account the periodic nature of ¢ field:

$~¢ =¢+2rK 'n,. (8.52)

It is clear that the boundary condition BT¢ = 0 is not consistent with all the periodic
conditions of the ¢ field. Since ng and ¢ + 2rK~'n, are equivalent, if BT¢ =0 is
allowed, then BT (¢ + 2nK'n,) = 0 should also be allowed. That is, we need to
generalize the boundary condition to at least

BT¢ =2xBTK'n,, n.eTl.. (8.53)

One technical way to understand what has been done in the previous section is
that we have only considered boundary conditions for the neutral excitations created
by 8,6. (Here “neutral” does not mean electrically neutral, but rather conserving the
zero mode of the bosonic theory.) In addition to these neutral excitations, there are
also charged excitations created by vertex operators V;, = e"™? where n, is a vector
in the E-lattice T,. Since the vertex operators are the primary fields of the theory, it
is the vertex operators which we expect to have scale-invariant boundary conditions,
rather than the bosonic fields ¢. The generalized boundary condition (8.58) can also
be written as

emn® -1 nelg, (8.54)
where the rows of B are basis vectors of I'g, or
I'p = Latt(B). (8.55)

Strictly speaking, it is the boundary condition of the normal-ordered exponential
which is conformally invariant, and the normal-ordered version of (8.54) has co rather
than 1 on the right-hand side.

To gain a better understanding of the generalized boundary condition (8.53), let
us consider a physical realization of the termination of the edge. We start with an
edge described by K on (—00,00). We then add the following potential term on
(—00, 0): 3

— Y Cacos(n- @) (8.56)

nel'g

where the k-dimensional lattice I'g is a sublattice of I',. The vectors in I'g satisfy
nTKn'=0, n,n €Tp (8.57)

and C, > 0 are very large, so that the potential consistently pins é to the potential
minima, and opens an energy gap in the region (—o0,0). Such a potential leads to
the boundary condition ‘

BT¢ =2mn, n € Latt(Txr) . (8.58)
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From the above discussions, we-can draw two conclusions. First not all B matrices
are consistent with the periodicity properties of é. To specify a valid termination of
an edge, B not only must satisfy (8.17), the rows of B must also be in the T, lattice,
or )

Latt(B) Cc I'. (8.59)

Second, two B matrices, B; and B,, give rise to the same generalized boundary
condition if

By = ByM, M € GL(k,Z) ~ (8.60)
Such a pair of B matrices are regarded as equivalent:
B, =B, (8.61)

Note that the above equivalence relation for generalized boundary condition is stronger
(i.e., has smaller equivalence classes) than the equivalence relation B; ~ B, defined in
(8.18) for the simple boundary condition BT¢ = 0. The equivalence classes (defined
by (8.60)) of the B matrices that satisfy (8.17) and (8.59) label dzﬁerent terminations
(or fized points) of the edge.

Now the question is what are the allowed vertex operators on the boundary. A
boundary vertex operator has the form V}* = ¢ ¢ "¢ where 1 is vector in a k dimensional
lattice I'y, (called the boundary quas1part1cle lattlce) To determine T, we note that
1% changes one boundary condition BT¢ = 27n to another BT = 2r(n + BTK'1).
Thus in order for BT¢ = 2n(n + BTK~ 1) to be an allowed boundary condition,
BT K~'1 must an integral vector. Also, we require that %Al only shift the comblnatlon
BT¢. In particular, V;b does not shift the combination 17¢, I € qu This leads to
the condition ITK '1"=0for any 1,1 in I'y,. The above two conditions allows us to
determine Iy,

Fgp = (8.62)
Latt(KB(B¥B)™ - }Q-B(BTB)—IBTKB(BTB)*).
The scaling dimension of V{? is given from (8.51) by
rA(1) =1"K'B(BTAB)"'BTKl. (8.63)

In the above discussion of termination points, we have ignored any symmetry
properties and the related selection rules. In particular, the boundary condition
characterized by B may not conserve the electric charge. As a result, a boundary
vertex operator may not carry a definite electric charge. In order for the termination
labeled by B to conserve the electric charge, we must require the B matrix to satisfy

BTK 'qg=0. (8.64)

In this case, we find that BT, the fields that are about to be set to a constant, com-
mute with the electric charge density operator p.. For charge-conserving termination
points, the electric charge of a boundary vertex operator V;® is found to be

Q=§"K"L B (8.65)
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The condition (8.64) ensures the vertex operators of form e"5?|,_cp, are all neutral,
so that they can be set to one without violating the charge conservation. For a general
B, the above vertex operators carry nonzero charges and setting them to one violates
the charge conservation.

For a general boundary condition B, the charge is not conserved, but some other
quantities may be conserved. On the edge there are 2k conserved currents (at low
energies) j, = Oi¢q, one for each branch. Near the boundary £ combinations of the
2k conserved currents remain conserved. These & combinations are given by BT8,¢.
Thus a boundary operator V°1 carries & definite combined charges:

Q=BTK™ 1. (8.66)

To determine the stability of a fixed point, we also need to know which boundary
operator V;® can appear in the boundary Hamiltonian. First let us discuss the corre-
sponding issue along the edge. Along the edge, the lattice I, label all the mutually
local operators. Some carry fermionic statistics, and thus are not allowed in the edge
Hamiltonian. Only the subset described by T can appear in the edge Hamiltonian.
(T is formed by all the bosonic operators in T..) If the charge is conserved, we
further require the operators in T, to be neutral.

On the boundary, only a subset of the boundary operators can appear in the
boundary Hamiltonian. Since there is no statistics within the 0 + 1 dimensional
boundary, we only need to check the conservation of the £ combined charges. The
values of the combined charge @,, a = 1, .., k allows us to determine which boundary
operators can appear in the boundary Hamiltonian..

8.3 Image-charge picture and nonchiral fields

This section shows how the correlation functions can be calculated from a simple
image-charge picture when the chiral bosonic fields are unified into nonchiral bosons,
as is important for a number of applications. In particular, we find the falloff of the
expectation value away from the boundary of a vertex operator e*® pinned to 1 at
the boundary, and how the two-body correlations are affected by the boundary. The
correlation functions of vertex operators found earlier in this chapter are essentially
quite simple: any correlation function of a vertex operator can be written as a prod-
uct of exponentials of correlation functions of free chiral bosons. One subtlety is that
after rescaling there may be more terms in these correlation functions than experi-
mental points in the original problem, since fields at the same physical point become
different points in the rescaled coordinates. Some additional structure appears in the
correlations when the chiral fields are combined into nonchiral fields on the half-line,
as in the boundary sine-Gordon model. :

In practice it is useful to combine the chiral fields ¢; on the whole line into nonchi-
ral bosons ®; defined on the half-line z < 0, in cases where the fields for z > 0 are the
same as those for z < 0. As an example, the applicability of the integrable bound-
ary sine-Gordon model used in [38] to determine tunneling behavior depends on the
mapping to the half-line. The system on the half-line can be understood as a classical
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system on the z > 0 half of the (z,t) plane, so that the physics known about such
statistical-mechanical systems with boundaries is applicable. The technical motiva-
tion is that the theory on the half-line will be invariant at the fixed points under all
the conformal generators which preserve the line z = 0. In what follows we show that
the correlation functions of the nonchiral fields can be understood from an “image
charge” picture (similar to electrostatics), and that the tunneling fixed points can be
understood as “ordinary” and “extraordinary” transitions on the half-plane.

For each chiral boson field on the whole line ¢;, define the nonchiral field ®; on the
half-plane z < 0 by ®;(z) = ¢;(2) + ¢;(Z), where z = t +ix. (We use imaginary time
t so that conformal invariance is manifest.) Note that if z has z > 0, Z has * < 0 and
that ®; has both left-moving and right-moving parts. The vertex operators exp(ia®;)
will have different behavior depending on whether ¢ changes sign at z = 0. First,
with 7; = £1 the sign gained by ¢; across z = 0, for nonzero «

iad; 0 n= 1
(eia®i0)y — {oo Ly (8.67)
Here and in the sequel we use the normal-ordered exponential, which has maximum
value oo rather than 1. Also, below we will consider the case where ®;(0,¢) is not
pinned simply to 0 but to some set of values. The profile of the order parameter near
the boundary can be calculated simply:

(eicx@j(z,t)> — (eia¢j (x,t)eiad)j (—:z:,t))
[0 n=1
- { (2)-e m— 1" (8.68)

The above is the simplest case of the image-charge idea of Cardy [44, 45]: a
correlation function of n nonchiral fields on the half-plane is expressed as a correlation
of 2n chiral fields on the full plane. For the boundary conditions we are considering,
the full-plane correlation functions are known from (8.42), so the half-plane correlation
functions of ®; can be determined. The two-body function shows different scaling
along the boundary from that in the bulk: (here index j suppressed)

£i08(21) o —i6%(22)
= (ez‘a(qﬁ(zl)+¢(z1))e—iﬁ(¢(12)+¢(22)3)
(o= B) (p=ttimm)” =1
(2ml)°l(z21z;)25{ziz2|2aﬁ n=-1.

(8.69)

For example, in the = 1 case, the equal-z correlation falls off as (¢; — t5) =" for
t; —to > x, while far from the boundary (¢; —t; < z) the falloff is only as (¢, —t2)‘2°‘2,
i.e., with the bulk scaling dimension. For n = —1 the correlation along the boundary
is constant at long distances, with leading correction (t; — t2)~". The critical theory
~ with n = —1 corresponds to the “extraordinary” transition in statistical mechanics,
- where the boundary is ordered (the order parameter exp(:®) has nonzero expectation
value) but the bulk is not, while the n = 1 theory corresponds to the “ordinary”
transition. o
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Some aspects of the above picture change when the field (0, ¢) is pinned to more
than one value, e.g., to the minima & = 27rn, n € Z of cos(®/r). Now there is
an additional average over ®q = 0, £27r, £4nr,... in the correlation functions. The

two-body correlation is unchanged, but the one-body correlation for = —1 is now
<6ia‘1>j(1‘,t)> — { (21')—&2 o = n/’r‘, n e Z , (870)
0 otherwise

which is natural as only those operators invariant under the symmetry transformation
® — ® + 27r can have nonzero expectation values.
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Chapter 9

Effects of short-range interactions

In this chapter we consider the effect of short-range interactions on tunneling through
a point contact between two Laughlin states. In the absence of interactions, the
nonlinear I — V curve was found exactly by Fendley, Ludwig, and Saleur [38] via a
mapping onto the integrable boundary sine-Gordon (BSG) model. First we show in
the BSG formalism that a simple solvable model incorporating interactions gives a
continuous renormalization of the effective fractional charge appearing in the I — V
characteristic. We use the BSG formalism since we will eventually be interested
not only in the fixed points, which can equally well be described in the B-matrix
formalism of Chapter 7, but also in the crossover. The I — V curve measured in
tunneling experiments in real systems, where the screened Coulomb interaction is
present, will thus be sensitive in some geometries (discussed below) to nonuniversal
electron-electron interactions. Our model is different from that of Pryadko et al. [48],
which uses a long-range Coulomb interaction regularized by an opening angle at the
junction.

The effective action describing tunneling between edges of two Laughlin states
with filling fractions v; = 1/my, v = 1/my is

S = S’lfree+Stﬁny
Svee = 7 | dvdt S(Ki;0u8i0:0; — Vigeidedy),
_ i )
Stun — Fd(x)(elml¢l‘1m2¢2). (9_1)

Here the matrix K, which describes the statistics of the vertex operators ™% created
from the bosonic fields, is
K= (”81 0 ) 9.2)

.
where we have taken the two edges to propagate in opposite directions. If V is
diagonal the physics is independent of whether the modes are copropagating or coun-
terpropagating, but we are interested in the case of general V' in which case there
are differences, as seen below. If the positive definite matrix V' is diagonal, its two
entries V41 and Vi, are the velocities of the two modes. The off-diagonal elements of
V correspond to a density-density interaction across the two edges, since the electron
density is proportional to 9;¢; for each mode. o
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The above action maps onto a boundary sine-Gordon model, with boson radius
determined by the filling fractions of the original states and by the matrix V. The
boundary sine-Gordon model contains one nonchiral boson (i.e., with both left and
right components) on the half-line. The mapping consists of rotating the fields ¢;, ¢,
so that one new combination ¢, is proportional to the exponent my¢; — M@z in Shyn,
while qu does not appear in Sy, and hence is free. Then folding the field ¢, onto the
half-line and rescaling gives the action

Spsa = / dt /_ 000 dz[(azf 2y (af Y 4 cos(82/2)]. (9.3)

The constant 3, given for diagonal V by g8 = \/4n/ (% + %), gives the tunneling term

in (9.3) the same scaling dimension A = (m;% + my?)/2 as in (9.1). The velocities of
the edge modes, defined as the velocities in a basis where V' is diagonal, should strictly
speaking be equal for this rotation of fields to be valid, but since the tunneling takes
place at a point and there is no coherence along the edge, a difference in velocities
should not have much effect.

In order to calculate the conductance across the tunneling junction, the effective g
which appears in Sgsg needs to be determined, as well as the contribution g¢.g to the
current from each tunneling event. Previously only certain discrete values of 3, corre-
sponding to tunneling between Laughlin states, were thought to be physically relevant
for edge tunneling. This is because a general 8 describes tunneling between two chi-
ral Luttinger liquids with continuous Luttinger parameter, but only specific values
of the Luttinger parameter correspond to quantum Hall states v = 1/m. The main
result of this chapter is that tunneling between Laughlin states with non-diagonal V'
is described by the boundary sine-Gordon model with continuously varying § and
Geff -

The model which we solve exactly has a region of constant interaction strength
(between contacts V; and V5 in Fig. 9-1) and zero interaction elsewhere. It is essential
that the two modes in the interaction region be oppositely directed, so that the scaling
dimension of the tunneling operator is affected by V. The first step is to write the
positive definite matrices V and A in terms of a “boost” parameter 7. The advantage
of doing so is that A is only a function of 7 and not of the eigenmode velocities v;
which affect V; the boost decomposition [37] isolates the dependence of A on as few
parameters as possible.

v = ks (Y D )BE,

(]
A = K1/2B<(1) (I])BKVZ,
K2 — (\/7711 0 )
0 A/ Mo ’

B =

(COShT smhr) . (9.4)

sinhT coshTt

Now the scaling dimension and transferred charge of the tunneling operator can be
simply expressed in terms of A(7). In the following we will specialize to the case

77




Figure 9-1: Possible experimental geometry for point tunneling between quantum
Hall states v; and 1. The density-density interaction between edges is nonzero in
the shaded region, and zero elsewhere. The two contacts at voltages V; and V; are

assumed to populate edge modes propagating away from the contact up to energy
eV.

m; = 1, my = 3, i.e,, a1y = 1 edge and v, = % edge propagating in opposite
directions. The results generalize simply to other values of m; and my, although the
boundary sine-Gordon crossover result used below requires that at most one relevant
operator be present, restricting m; and m, somewhat [38].

The intuitive meaning of the effective charge transfer can be understood by con-
sidering the “charge-unmixed” point 7 = 0 where one of the two eigenmodes (i.e.,
modes which diagonalize K and V') is neutral, and one charged. Then in this basis
the tunneling operator, which is neutral, is of the form exp(iC¢,)+h.c. for some con-
stant C. The tunneling operator for this value of 7 does not transfer any charge from
one eigenmode to the other, since only one eigenmode carries charge. Hence the con-
ductance measured across the junction is independent of the rate of tunneling events
determined by the coefficient of the tunneling operator. The value 7 = log(14++/3/v/2)
corresponds to decoupled v = 1 and v = 1/3 edges in the interaction region, which
has been previously studied in a number of works. [35, 42, 40]

The scaling dimension of the tunneling operator exp(im;¢;) is smA(r)m. The
effective tunneling charge is determined by how far the neutral tunneling operator m
is from being an eigenmode of the system: g = £qAm, which is zero if m is an
eigenmode and grows as A moves away from the charge-unmixed point. The current
measured across the two contacts of Fig. 9-1 if there is no electron tunneling across
the junction (if V; — V5 is small) is I = (V} — V3)(2 + }(01 + 02)), where 01 and o5
are the conductances along the edges in the interaction region of Fig. 9-1. We use
the identity o1 + 03 = tAt in what follows.

The total change in conductance from small V to large V' is fixed by the scal-
ing dimension of the electron tunneling operator and the effective tunneling charge.
From previous work [46L, it is known that if the effective tunneling charge is 1, the
conductance change is 7x, where A is the scaling dimension of the electron tunneling
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operator. For instance, in tunneling between two v = 1/3 states, the conductance
change between no tunneling (two Hall droplets) and no backscattering (one Hall bar)
is % = &. In the case of interactions, e must be replaced by the effective charge

transfer per tunneling event g.g. Hence for the system of Fig. 9-1,

homax g+tAt_2+cosh(27')
2 3 2 3
homin _ 2 tAt  (tAm)’
ez %+ 2h(2 )ZmAm
sec. T
= — (9.5)

In fact the whole conductance curve between these two values can be calculated
from the mapping to Spsg. Before doing so, there is a simple check on our results
which gives some insight into why the above values are natural. Assuming conserva-
tion of energy (i.e., no dissipation at the junction [47]) gives two possible values of
the current: I = (Vi — V2)(3 + 3(01 + 02)), corresponding to no tunneling current,
and I = (Vi —Va)(3+ 9(—a+7_)) The two corresponding values of the conductance are
exactly those in (9.5). Thus our calculation reproduces the asymptotic values of the
conductance consistent with zero-dissipation fixed points.

The current-voltage characteristic can be calculated (Fig. 9-2) up to one overall
constant in the energy scale, which corresponds to the initial strength of tunnel-
ing. [38] The result is, with V' = V] — V; and omax as in (9.5),

I = omaxV — Itun,

I - IOV < TgA~YE-2/8) /A 1
T 1@ iV > TyATVE28) /AT

I(I) — QeffVan(A),

@ _ qeﬁV( an l/A))

CUMmng) eV e
RO = rmrEa - 1) ()

(9.6)

Here T'g is some cutoff-dependent constant which may vary with the boost parameter
7. This calculated current should be relevant as long as the interaction strength
is nearly constant in the region around the tunneling junction. The details of the
interaction far away from the tunneling junction should not matter as long as current
is conserved in the incoming and outgoing edge branches.
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Figure 9-2: Differential conductance dI/dV in units of e?/h versus scaled voltage
C(7)V for three different values of interaction strength (boost parameter) 7. The
horizontal axis is expected to scale by a different cutoff-dependent constant C(7) for
each value of 7.
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Chapter 10

Conclusions

In this chapter we summarize the main conclusions of this thesis and also mention
some possible avenues for further investigation. The first part of the thesis developed
a technique for studying impurity scattering in a general FQH edge and used it to
find phase diagrams and experimentally measurable weak-tunneling properties for
a broad class of nonchiral edges. We find that some FQH edges can have several
different phases (fixed points) in the presence of randomness. These phases in general
have higher symmetry at low energies and long wavelengths than the original system.
Thus random edges demonstrate an interesting phenomenon of dynamical restoration
of symmetries at low energies and long length scales. Different phases have different
experimentally observable properties. It would be very interesting to find these phases
and study transitions between them experimentally.

The transitions between phases are interesting from the point of view of Landau’s
symmetry breaking principle for continuous transitions: A continuous phase transition
(second-order in the Ehrenfest classification) can only occur between two phases which
differ in symmetry, and the symmetries of one phase are a subset of the symmetries of
the other phase. This principle appears to be satisfied by all the transitions between
definitely stable fixed points in the edges we study. The principle is satisfied even
though the RG flows for some transitions (such as the v = 2/3 transition [18]) are
similar to those in the Kosterlitz-Thouless transition, which is not clearly interpreted
in terms of a broken symmetry. The symmetry breaking principle also has some
implications for a possible phase transition in the v = 5/3 state, which has two types
of possibly stable fixed points.

~ To summarize the properties of disordered edge states, two situations, with or
without long-range interactions, need to be discussed separately. We have emphasized
the fixed points which occur when disorder is relevant and the resulting effective
interaction matrix V has decoupled charged and neutral modes. These fixed points are
appropriate if the starting interactions are close enough to charge-unmixed, as for an
unscreened Coulomb interaction, that disorder is relevant. For initial conditions which
are not nearly charge-unmixed, all the edge modes, in general, carry some amount of
charge (the edge is charge-mixed). Several different situations are illustrated by the
following examples.

o The v = 2/3 edge has two phases. In one phase the edge is charge-mixed

81




and the two-terminal conductance ¢ and the exponent « of electron tunneling
between two edges oy,, o< T'“ are not universal. In the other phase the edge has
an SU(2) symmetry and is charge-unmixed (i.e. only one propagating mode,
the charge mode, carries charge and other propagating modes are neutral). In

this case (o, ) take universal values (%%, 2).

The v = 3/5 edge has three phases, described by a fixed point (the point (0, 0) in
Fig. 3-1), fixed lines (the solid lines outside the hexagon bounded by the dashed
lines in Fig. 3-1) and fixed planes (the region outside the region bounded by
the dashed lines). This is because a point on the fixed planes does not flow
as the energy is lowered, while a point between two paralell dashed lines flows
to the fixed line between them and a point inside the hexagon flows to the
fixed point. The fixed point has an SU(3) symmetry and is charge-unmixed.
(0,0) = (%%, %) are universal. The fixed-line and fixed-plane phases are charge-
mixed and (o, @) are not universal. But in the fixed-line phase there is an SU(2)
symmetry and (o, ) and other exponents all depend on a single parameter
which parametrizes the fixed line. The fixed-plane phase has no particular
symmetries. We would like to point out that although the fixed-line phase
in Fig. 3-1 contains six disconnected segments, this does not guarantee that
there are six disconnected fixed-line phases. This is because the disconnected
fixed lines may be connected in a higher-dimensional space of Lagrangians of
which Fig. 3-1 is just a two-dimensional cross section. If different line segments
are connected in the enlarged space, it is possible to move continuously from
one segment to another without any transition. For the v = 3/5 state the
higher-dimensional space results from applying the SU(3) transformation on
the the full Lagrangian. Note that the SU(3) transformation does not change
the commutators between fermions (which can be seen in the fermionic form of
the Lagrangian but is not evident in the (Abelian) bosonized form), and hence
leaves the Hilbert space unchanged. Acting with the SU(3) generators creates
off-diagonal interaction terms of the form f(z)(114s)(Wat,), after we make
the local SU(3) transformation to remove the random hopping term between
different fermions. Thus the precise form of the function f(z) depends on
the impurities which generate the random hopping terms. If the off-diagonal
terms have precisely the variable coefficients f(z), then the different fixed-line
phases can be continuously connected via inclusion of such off-diagonal terms.
However, in real experiments it is impossible to control the precise form of the
variable coeflicients f(z), and the Lagrangians for experimental samples do not
contain the above off-diagonal terms. Therefore for real samples all different
fixed-line phases are disconnected. Similarly all fixed planes are disconnected
for real samples. However, since fixed-line phases (or fixed-plane phases) all
have the same symmetry, the symmetry breaking principle prohibits continuous
phase transitions between two connected fixed-line phases or two connected
fixed-plane phases. But there are still continuous phase transitions between a
fixed-line phase and a fixed-plane phase, and a fixed-line phase and a fixed-point
phase. :
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We would like to stress that the sequence of the phase transition: fixed-point
phase — fixed-line phase — fixed-plane phase represents a sequence of symme-
try breaking: SU(3) — SU(2) — SU(1). This is consistent with the symmetry
breaking principle discussed above. It appears that the symmetry breaking
principle that governs the continuous transitions between clean phases in other
condensed matter systems also governs the continuous transitions between dis-
ordered phases of FQH edges. All the continuous phase transitions between
different disordered edge phases that we find in this thesis are related to sym-
metry breaking.

The v = 5/3 edge also has three (types of) phases described by fixed points (such
as B in Fig. 3-2, but not A), fixed lines (the solid lines in Fig. 3-2) and fixed
planes (the region outside the region bounded by the dashed lines). Again the
fixed-point phase is charge-unmixed and has universal (o, @). The fixed-line and
fixed-plane phases are charge-mixed and have non-universal (o, a). However,
here the fixed point contains two marginal operators. It is not clear whether the
fixed point is stable or not (depending on whether the two marginal operators
are marginally relevant or not). It is not clear if different fixed lines and fixed
‘planes are connected or not in a higher-dimensional space. There is a continuous
phase transition between the fixed-line phase (with SU(2) symmetry) and fixed-
plane phase (with no symmetry). We note that both the fixed-point phase and
the fixed-line phase have SU(2) symmetry. According to the symmetry break-
ing principle for continuous transition, either there is another phase separating
the the fixed-point phase and the fixed-line phase, or the fixed-point phase is
unstable, or the transition is first-order (discontinuous) and the first-order line
does not terminate in a second-order point for any finite disorder strength. The
perturbative RG in Appendix B is consistent with the last possibility.

The v = 17/13 edge (K = (1,4, —4)) again has three phases described by a fixed
point, a fixed line and a fixed plane. (Fig. 3-3) However, the phase diagram
is quite different from the above two. There can only be continuous phase
transitions between the following phases: the fixed-point phase (with SU(2)
symmetry) <=> the fixed-plane phase (with no symmetry) <= the fixed-line
phase (with SU(2) symmetry).

The K = (1,2,-2,2) and K = (I, —2,2,—2) edges are too complicated, and we
will only discuss them for the case of long-range interactions.

In the presence of long-range interactions the edge is always (nearly) charge-
2

unmixed and the two-terminal conductance always takes the quantized value o = v<-.
We can restrict our discussion to the charge-unmixed subspace (the (0,0) point in
Fig. 3-1 and the z-axis in Fig. 3-2 and 3). Table II gives the low-temperature tunneling
exponent for all the charge-unmixed phases of principal hierarchy states. The above
examples with short-range interactions can be easily modified to cover the case of
long-range interactions:
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The v = 2/3 edge has only one phase which is described by a fixed point. (o, a)
take universal values (2£,2).

The v = 3/5 edge has only one phase, described by a fixed point (the point (0, 0)
in Fig. 3-1). The fixed-point phase is the same as the fixed-point phase for short-

range interactions: it has an SU(3) symmetry and universal (o, a) = (%‘;—2, 4.

The v = 5/3 edge has two (types of) phases described by A-type and B-type
fixed points in Fig. 3-2. The fixed-point phases have universal a given by
a = 2/5 for A-type and a = 0 for B-type. However both A-type and B-type
fixed points contain two marginal operators, and it is not clear whether the
fixed points are stable.

The v = 17/13 edge (K = (1,4, —4)) has three phases described by two fixed
points (A and B in Fig. 3-3) and a fixed line (the z-axis outside the region
bounded by the dashed lines). All three phases are stable. The two fixed-point
phases have different universal values for the temperature exponent: o = 2 for
the A-type and o = 18/17 for the B-type fixed-point phase. « is not universal
for the fixed-line phase. The only continuous phase transitions are between one
of the two fixed-point phases (SU(2) symmetry) and the fixed-line phase (no
symmetry).

The K = (,2,-2,2) and K = (I,-2,2, —2) edges with v = 12/7,12/17, ... are
very interesting. There are four different phases described by three types of
fixed points (A, B, C in Fig. 3-4 and 5) and a fixed line (the middle segment of
the dashed line connecting A and B in Fig. 3-5). Certainly there are infinitely
many different disconnected A-, B-, C-type fixed points and fixed lines in Fig. 3-
5, and it is not clear if all fixed points (lines) of each type are connected in a
higher-dimensional space. The A-type fixed point has an SU(3) symmetry, the
B-type fixed point has an SU(2) x SU(2) symmetry, the fixed line and the
C-type fixed point have an SU(2) symmetry. The exponent « has the universal
values (8/3, 2, 5/3) for the A-, B-, C-type fixed points respectively. The C-
type fixed point has four marginal operators and it is not clear whether it is a
stable fixed point. Among the three definitely stable phases the only possible
continuous transitions are: A-type phases (SU(3) symmetry) <= fixed-line
phase (SU(2) symmetry) <= B-type phases (SU(2)x SU(2) symmetry). These

" transitions are consistent with the symmetry breaking principle for continuous

transitions. An A-type <= B-type transition would violate the symmetry
breaking principle and is not found in the phase diagram.

The Introduction mentioned the agreement between the yLL theory for incom-

pressible edges and the composite-fermion theory for compressible edges, summarized
in Fig. 5-1. This agreement raises the question of whether the phase which agrees
with the CF theory is favored over the others at finite temperature. The phase agree-
ing with the CF approach has the lowest value of the tunneling exponent and has
the lowest free energy at finite temperature if all phases are equivalent to (have the
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same partition function as) clean systems, as for the solvable phases. Hence it would
be worthwhile to find out whether this property holds for the currently unsolvable
phases.

This question is especially important for edges such as v = 12/17, where the
phase agreeing with the CF approach is the only one which cannot be solved, and
hence whose stability is uncertain for strong disorder. The solvable fixed points are
distinguished from unsolvable ones by having only operators which couple coprop-
agating modes; all operators coupling counterpropagating modes are irrelevant and
scale to zero. The edges with nonzero coupling between counterpropagating modes
form an interesting “universality class” of one-dimensional disordered systems: they
differ from ordinary one-dimensional localization by having an asymmetric left-right
coupling.

In Chapter 6 and Appendix B we found the renormalization-group flows for ran-
dom hopping operators on a quantum Hall edge. This extends previous results on
the left-right symmetric case [26] to disorder operators of nonzero “conformal spin”
|K(m)|. The flows take a simple form in the boost coordinate system, and verify
that charge-neutral separation is a generic feature of principal hierarchy states once
random hopping is relevant.

The main result of the second part of this'thesis (Chapters 7-9) is the analysis of a
large class of strong tunneling fixed points. Tunneling fixed points can be understood
as conformally invariant boundary conditions once the edge-junction system is folded
onto the half-line. We find the restrictions on allowable boundary conditions and
the resulting correlation functions for vertex operators at the fixed points. Another
result is the lattice of allowed boundary operators, both charged and neutral, for a
given boundary condition. The correlation functions in the presence of a boundary
can be understood through an “image-charge” picture, and take a simple form which
becomes more complex when the original chiral bosons are combined into nonchiral
fields as for the boundary sine-Gordon model. The two-point correlation function of
a vertex operator can show different behavior (a change in scaling dimension) as the
two locations are moved toward the boundary.

We solve a simplified model of how interactions between electrons on different
edges affect tunneling through a point junction. Most current tunneling experiments
involve multiple contacts between the two edges and variable interaction strengths
along the edge, but the basic result that interactions can complicate the identification
of the effective tunneling charge should still apply. The model we consider maps onto
the solvable model of Fendley et al.with a continuous effective filling fraction, giving
a physical realization of this result beyond the discrete cases vefr = 1,1/2,1/3 known
previously.

The boundary condition formalism should be able to shed some light on a few
open questions. In edges with multiple modes there can be several strong-tunneling
fixed points [47], which can be analyzed using our formalism. An experimentally
measurable quantity which we have not touched on to this point is the shot noise,
which gives information about the tunneling charges in a quantum Hall system. The
finite-frequency shot noise in particular is a very useful probe of quasiparticle prop-
erties and is not yet understood for a general edge. By this point the reader will no
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doubt agree that the edges of fractional quantum Hall states show an amazing variety
of beautiful phenomena. It is the author’s feeling that equally beautiful phenomena
remain to be discovered in this seemingly simple one-dimensional system.
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Appendix A

‘Boosts and Rotations

The decomposition of an element of SO(m, n) into a product of a boost and a rotation
follows in a neighborhood of the origin simply by writing the product M = BR in
terms of infinitesimal generators of the Lie group. If b; are the boost generators and r;
the rotation generators, then a boost (similarly, rotation) close to the identity element
contains only boost (rotation) generators:

BR = (1+ &) (1+8;77) = 1+ b + §;77, (A1)

where ¢; and ¢; are arbitrary infinitesimal parameters. There are exactly enough
free parameters to cover a neighborhood of the identity in SO(m,n). Thus if the
decomposition does not hold on the entire group, there must be some boundary in
SO(m,n) where it ceases to hold. In the next paragraph we outline a global proof of
the decomposition. The details are given for SO(m, 1), which is the only case used
in the body of this thesis.

The boost part of a given matrix M can be constructed if every symmetric pos-
itive definite element of SO(m,n) has a square root within the group which is also
symmetric. The square root is simple for m = 1 or n = 1, where every symmetric
positive definite matrix is of the form introduced in Chapter 2 and associated with
a unique velocity vector v = p/v. Then the square root is the boost with velocity
v! = v(1 — v/1 — v?)/v?, which is chosen so that the special-relativistic velocity ad-
dition formula holds: v = 2v//(1 + v'?). For the general SO(m,n) case, a square
root can be defined by the Inverse Function Theorem within a neighborhood of the
identity and analytically continued. Such a square root exists globally if every boost
matrix can be written as an exponential of only boost generators, since then

/ A= o ¢
B' = exp 5T O) ) B' =exp| 4 o) (A.2)
2

With a square root, the proof is simple. Given an arbitrary element M €
SO(m,n), MM?" is symmetric and positive definite, so let B = v MMT. It remains
to show that R = B~'M is in SO(m,n) and is orthogonal:

RInnRT = B 'MI, ,MTB'"
= B Up B =1n, (A.3)
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(VMMT  M)*(VMMT M)
MY (VMMT )M =1.
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Appendix B

Perturbative Renormalization
Group

This appendix uses the perturbative RG technique to study the effect of impurity
scattering operators on the velocity matrix V in the chiral-Luttinger-liquid action.
The K matrix does not flow and thus remains an integer matrix, which follows directly
from the fact that K does not enter the Hamiltonian (i.e., it is “purely topological”).
The constancy of K to leading order in D will be explicit in the results obtained
below. In order to calculate the changes in V under a change in the cutoff, we
expand a correlation function to first order in the disorder strength, then show that
the terms proportional to the disorder strength can be interpreted as infinitesimal
changes in the matrix V.

The real-space calculation is similar to previous RG calculations on 2D classical
models [49, 50, 51] and 1D electrons [26]. The differences arise from the chiral nature
of quantum Hall edge states. As an example, consider the correlation function of a
vertex operator O, = exp(im;¢;) in a nonchiral edge with one mode in each direction:

(Om(r1)0,(2)) o (z + wit) " (z — v t) P (B.1)

with @ — 8 = K(m) an even integer, r; = (i, ti), z =2y —z, and t = to — t1, and
~ (v4,v-) the velocities of the right.and left moving modes. Unless K(m) = 0 and
V4 = U, the correlation function has a phase as well as a magnitude.

First we treat the case of an edge with two modes, either parallel or antiparallel,
and then show how the flows for an edge with more than two modes follow with no
further computation.

The correlation function of an operator Oy, expanded to first order in the disorder
strength, is

(1- /dr3 dry [§($3)§*($4)(6imf¢f(r3)e_imz"¢:’(f4)>0])

+ [ drsdra [€(23)€ (2e) %
<6inj o; (rl)e—injcpj (T2)ei’rnj ¢j(T3)e—’L'mj¢j (7‘4))0]- . (BQ)

(ei"j¢j(rl)e—iﬂj¢j(rz)>l = <einj¢j(7‘1)e-inj¢j(fz)>0 x
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Now carry out the disorder average {{(z)£*(z')} = Ddé(z — z') and consider the
term with four correlation functions. Introduce R = (r3 + r4)/2,r = r4 — r3. Only
configurations where the internal points r3 and r4 are near each other (i.e., separated
by the cutoff a) contribute to the RG flows. [51] At this point assume for convenience
that we are calculating the correlation function of the disorder operator itself (m = n).
The symbol Pi5 denotes (z + ivyt)"%(z — iv_t) P x = 19 — x1,t = ty — t;. Because
a — 8 = K(m) is even, Pio = Py;. The last term in (B.2) is now '

P12P34P14P23

D / dX dT dt B.3

[ P3Py (B-3)

The integrand is PioPssexp(g13 + 924 — 914 — go3) = PiaPasexp(r - Vr(g(r1 — R) —
g(ra — R))). Here gop = —log(Pw) = alog(z + ivit) + Blog(z — fv_t). Disorder

fixes x = 0 in r = (z,t) so the exponential is exp(tdr(g(r1 — R) — g(r2 — R))) =~
1+t2(0rg(r; — R) — 8rg(r: —R))?. Hence we need to evaluate the following integral:

T 9 1o %008
D/dXd dt PoPull + (==
1fu_ 10V
X—zy—w_(T—-t) X-—zx+iv(T—1ty) .
1Bu_
+ . )3 (B.4)

X —zg—iv_(T —tp)

The constant term in the integrand cancels the leading term in the partition function
in (B.2). When the square is expanded, products of denominators at the same point
will cancel infinities arising in the calculation of products of denominators at different
points, leaving a finite answer. The change of cutoff in the ¢ integral will yield the
RG equations at the end.

First consider the integrals of the a?, 52 terms. After rescaling the time variables
by vy, the o? integral is

1 1
X+’l;T—.’L'1—’L.t1 X+’éT—$2—it2]

= / dX dT [ﬁ}, (B.5)

with z = X +iT, 2w = 2o — z1 + ity —it;. But this integral is not uniformly convergent
at oo and thus not well-defined: for example, if w = i the integral is 27 if the X
integration is done first, 0 if the 7" integration is done first, and 7 if the integration is
done in radial coordinates. We believe that the appropriate value of the integral (B.5)
is 0, because in Minkowski space (real rather than imaginary time) the corresponding
integral has integrand (z 4+t — z; — ¢1) "} (z + ¢t — T — t3) ! and is unambiguously
zero. Also, zero is the only value consistent with the fact that the randomness can be
rotated away at the KFP fixed point, since at that point the RG flow of the velocity
should be independent of the disorder strength.

The af terms, give the renormalization of the scaling dimension A, are propor-
tional to '

/dXdT[

1 4 1
c_dy cid_

1 = [axar| ]
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Cy — X — I + ’L"U:t(T — tl),
di =Ty — X+ ’I;’Ui(tg - T) (B6)

First do the dX integral as a contour integral. The poles of the first term are at
wy = 11 + w_(T — t1) and wy = 25 + w4 (t2 — T), and the integral vanishes unless
the poles are on different sides of the real axis (likewise for the second term). Thus
T ¢ [t1,t2] and we are left with

t t 9

I = ( 1 dT+/2dT)[@——”3]

—00 Jooo /Y Y2

Y1 = To— 1+ ivpts +iv_ty — i(vy +v)T,

Yo = T2 —T1 — ’l;’U_}.tl - i’l)..tz + 'i(’U+ + ’U_)T. (B7)
Hence

I - 2 log afaiaga;
vy + v (bt6—)2 )7’

ali =y — 71 £ 1(vy +v_)00 + twits + Uty
af =3y — 71 £i(vy +v_)oo — ivit; — Gu_ty,
bi =T2 — I + Z"U:l:(t2 - tl). (BS)

The finite part of the result is independent of the order of integration, even though
(B.6) is superficially even less well-defined than (B.5). The infinite part of the result
is canceled by the af terms in (B.4) with denominators at the same point. The dt
integral is

o0 2 — 2 a B
/_oodttPM 2/ dt[t (w d

) f dt 12~ (+h), (B.9)
UL U

The dependence on K (m) here is an artifact of our using the unfortunate convention
(B.1), when in fact the proportionality constant in front alternates sign as |K (m)| =
0,2,4,... to keep the correlation function positive when its argument is on the time
axis. The effective scaling dimension A.g after re-exponentiating the perturbation to
the correlation function is

4(4m)afD © dt
200 =28 - e S / e (B.10)

By the usual process of changing the cutoff a — a exp(¢) we obtain the RG equations

%1; = (3-2A)D
da __8nD(A - K(m)*/4)
W - —(’U++’U ) +a—1v B—1" (Bll)

These equations match those found by Kane, Fisher, and Polchinski for the |K(m)| =
2 operator in the v = 2/3 state. However, as mentioned above we ﬁnd no term which
renormahzes the velocities to first order in D.
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Now consider the case of two comoving modes. The simplest example is the IQHE
state v = 2, which has a relevant impurity operator hopping electrons from one mode
to the other. The correlation function Pj; of an impurity operator O, = exp(in;¢;)
has the form (z+ivit)~*(z+1vet) =P, with (v, ;) the velocities of the two eigenmodes
and a+f = K(n) an even integer. Expanding the correlation function in the disorder
strength and then evaluating the disorder average as before gives the correction to
the correlation function: -

QU
D/dXdetP Pyl + 2
12 34[ + (X —$1+?;U1(T—t1)
N iy B QU
X—.’El +7,’U2(T—t1) X—$2+iU1(T—t2)
s )2). (B.12)

X — To + tve (T — t3)

Expanding the square gives terms with both denominators at the same point, which
cancel infinities appearing elsewhere in the calculation, and terms with both denomi-
nators having the same velocity, which were previously argued to be zero (and in any
event cannot cause the two velocities to flow toward each other, since each term only
involves one velocity). The result is

1

afvivs Pra / dX dT [X -z + (T —t
) ,

“ dtt*P.

X — To + ’iUg(T - tz) + (’U1 ’Uz)] / 3

_ 47!'0[)6’01’!.)2})12 fdt t2P34 lo [.’172 — I+ iUl(tQ — tl)
- U1 — VU2 8 Ty — Ty + 'l;'Ug(tz - tl)

)X

]. (B.13)

Thus o and f are changed but not o + § = K(m). The velocities of the eigenmodes
are unaltered, and the RG flows are

do _ df 8rDaf
i e ey (B.14)

The singular denominator when v; = v, is acceptable because at v; = vy, only o + 8
is well-defined, not o and f separately.

The generalization to a case with two modes and more than one impurity operator
is simple: the contributions to the RG flow equations for the velocity matrix from each
impurity operator add, since to leading order the impurity operators are independent.

Extending the calculation to an edge with more than two modes is quite simple.
In the expansion of the square term in (B.4), each pair of modes gives one term. If the
two modes move in opposite directions, the term lowers the total scaling dimension
as in (B.11); if the two modes move in the same direction, the term maintains the
total scaling dimension as in (B.14). Each term preserves K(m) separately. For
explicitness, consider the case of an edge with two right-movers and one left-mover,

92




which is relevant to the v = 3/5 edge. Then the correlation function has the form
(z +iv1t) " (z + 1vqt) (2 — 4v_t) ™7, and the RG flows for the exponents are

da _ 81 Dafviv, 8T Dayvv_
¢ (v — v2)V1%02Pu 7 (vy + v ) upBu_7
. @ B 81 Dafuivy 87D pByvqu_
A (v1— v)viovBu T (wy + v_)v1%vpPy_7
dy _ 81 Dayvv_ 81D Byvqu_ (B.15)
a  (n+ v )u1%vPu_Y (v + vl v @By '

Chapter 6 shows how the V matrix flow in the yLL action determined by the

correlation function flows found in this appendix has a natural interpretation in terms
of the boost and rotation parts of the V matrix.
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