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Abstract

This thesis describes the design, testing, and implementation of a Lagrangian, post-
Newtonian, smoothed particle hydrodynamics code used to study the gravitational
wave signature produced by coalescing neutron star binary systems. Additionally,
we have studied the properties of remnants which may be formed during the merger
process. We have introduced a hybrid post-Newtonian formalism, which treats lowest
order 1PN relativistic terms at a reduced strength, to make the problem numerically
‘tractable, while treating the gravitational radiation reaction, which is the lowest or-
der dissipative term in general relativity, at full strength. We compare the results
of calculations with and without 1PN effects for initially synchronized binary sys-
tems, for neutron stars with polytropic equations of state, finding that relativistic
corrections play an important role in the dynamical stability of such sytems and the
resulting gravitational wave forms. Relativistic corrections also suppress mass shed-
ding in these systems. Studies of initially irrotational binary systems demonstrated
that our results are independent of the numerical resolution of the calculations. The
power spectrum of the gravitational radiation produced during a merger is found to
yield important information about the neutron star equation of state, the binary mass
ratio, and other physical parameters of the system.
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Chapter 1

Coalescing compact binaries

Coalescing compact binaries with neutron star (NS) or black hole (BH) components
provide the most promising sources of gravitational waves for detection by the large
laser interferometers currently under construction or in the testing phase, such as
LIGO (Abramovici et al. 1992, 1996), VIRGO (Bradaschia et al. 1990; Caron et al.
1997), GEO (Hough 1992; Danzmann 1998; Freise et al. 2000), and TAMA (Kuroda
et al. 1997; Tagoshi et al. 2001). In addition to providing an important new test of
Einstein’s general theory of relativity (GR), gravity waves may provide the strongest
evidence to date for the existence of black holes (Lipunov, Postnov, & Prokhorov
1997b; Flanagan & Hughes 1998), and the detection of gravitational waves from co-
alescing binaries at cosmological distances could provide accurate independent mea-
surements of the Hubble constant and the mean density of the Universe (Schutz 1986;
Chernoftf & Finn 1993; Markovié¢ 1993). As we will demonstrate in this thesis, the
~gravity wave signals from merging binaries containing NS will also contain important

information about the equation of state (EOS) of nuclear matter at high densities.

1.1 Event rates

Expected rates of compact binary coalescence in the Universe, as well as expected
event rates in laser interferometers, have now been calculated by many groups. Al-

though there is some disparity among various published results, the estimated rates
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are generally encouraging.

The galactic binary NS coalescence rate calculated from population synthesis stud-
ies varies widely depending on the assumptioné made, resulting in uncertainties of
several orders of magnitude (Kalogera 2000). The classic evolutionary scenario for
merging binaries involves forming a common envelope around the binary system after
the primary has undergone a supernova. As the resulting NS spirals in, the orbital
energy is transferred to the secondary, ejecting the envelope and tightening the orbit.
Eventually, the secondary also undergoes a supernova explosion, resulting in a close
binary NS system (Bhattacharya & van den Heuvel 1991). Unfortunately for this
scenario, the amount of mass accreted by the NS is likely to lead to its gravitational
collapse and the formation of a black hole (Houck & Chevalier 1992; Chevalier 1993,
1996; Brown 1995; Bethe & Brown 1998). Alternately, in systems where the masses
of the primary and secondary are close, both stars can evolve off the main sequence
prior to the formation of a common envelope. In this scenario, the common enve-
lope is ejected by the inspiral of two helium stars which both proceed to undergo
supernovae, thus producing a close binary NS system (Brown 1995). Other models
generally involve minor adjustments to these basic scenarios. Most studies place the
total coalescence rate, R, in the range 107¢ —2 x 107° yr~! for the Milky Way Galaxy
(Lipunov, Postnov, & Prokhorov 1997a; Fryer, Burrows, & Benz 1998; Portegies
Zwart & Yungelson 1998; Bethe & Brown 1998; Fryer, Woosley, & Hartmann 1999;
Grishchuk et al. 2001). Among the greatest sources of uncertainty is the distribution
of kick velocities imparted to NS during supernova events, since at present there is
little theoretical agreement on which model yeproduces the observed distribution of
galactic pulsars. Most statistical analyses favor a bimodal velocity distribution, but
the relative amplitudes of the two components are not well constrained, nor is the
exact magnitude of the respective velocity maxima (Cordes & Chernoff 1998; Lai, .
Chernoff & Cordes 2001).

Alternatively, the galactic coalescence rate can be estimated by extrapolating from
the observed galactic distribution of recycled pulsars in binary systems which should

coalesce within a Hubble time. Using the parameters calculated from pulsars PSR
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B1913+16 (Taylor & Weisberg 1989) and PSR B1534+12 (Wolczan 1991), the original
estimate of the coalescence rate was found to be R ~ 107®yr~! (Narayan, Piran, &
Shemi 1991; Phinney 1991). Further revisions to the galactic pulsar population scale
height, beaming fraction, and observable lifetime have generally raised this estimate
to R ~ 5— 85 x 1078yr~! (Curran & Lorimer 1995; van den Heuvel & Lorimer
1996; Stairs 1998), although significant uncertainties remain in the estimate of the
pulsar beaming angle. Taking into account the difficulties in observing the faint end
of the pulsar population, Kalogera et al. (2000) find that the galactic coalescence rate
could be as high as R ~ 5 x 10~*yr~!. Beyond these difficulties, formation channels
for relativistic binaries which do not produce a recycled pulsar can also increase the
total coalescence rate without factoring into observed pulsar distributions, requiring
significant but poorly understood corrections to the observed rates (Belczynski &
Kalogera 2001).

Finn & Chernoff (1993) calculated that an advanced LIGO could observe as many
as 20 NS merger events per year. This number corresponds to an assumed merger rate
R ~ 10~%yr~!, which is now thought to be a fairly conservative estimate. Should
the coalescence rate prove to be higher, we expect that the rate of detection will
rise proportionally up to a maximum of approximately 1000 per year for LIGO II
(Kalogera et al. 2000).

The more optimistic estimates above are inconsistent with the upper limit of
R < 10~%yr~! placed on the coalescence rate based on the non-detection of young
pulsars in relativistic binaries (Bailes 1996), since both observed relativistic binary
pulsar systems contain a recycled pulsar. They are consistent, 'however, with the more
recent upber limit of R < 10~* yr~! derived by Arzoumanian et al. (1999) on the basis
of very general statistical considerations about radio pulsars, including the decrease
in search sensitivity arising from Doppler shifting of pulsar signals in tight binaries.
This latter limit is consistent with one derived by Kalogera & Lorimer (2000), who
studied constraints from supernova explosions in binaries and the relative formation

rates of single versus binary pulsars.
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1.2 The physics of gravity waves

Gravity waves are a purely relativistic effect, which can be derived from Einstein’s
field equations when treated in the linear regime. They represent oscillations in the
metric of spacetime which satisfy a simple propagation eqﬁation when treated in the
proper gauge, known as the transverse traceless gauge. The basic derivation of that
equation, as well as the limits of its applicability, are discussed below.

To start, we define the linearized metric of spacetime g,, at every point as

Guv = M + h;w (11)

where 7, is the metric of flat space and h,, represents the small deviations from
flatness in the metric, and satisfies the condition |h,,| < 1. Following tradition,
we will use Greek indices to indicate 4-dimensional quantities, and Latin indices to
indicate spatial 3-dimensional quantities. Any repeated index is to be summed over.
It is important to note that there is a great deal of coordinate freedom in general
relativity. The condition h,, # 0 can be produced even in flat spacetimes by means
of coordinate transformations. Gravity waves, however, represent real deviations from
flatness which can be measured in any coordinate system.

The usually adopted gauge to analyze gravitational radiation is the transverse
traceless gauge, which can be thought of as the general relativistic analogue of the
Coulomb gauge in electromagnetism (Misner, Thorne, & Wheeler 1973; Thorne 1987).
It is defined by the conditions that ‘

oh" = 0 (1.2)
0, (hﬁ—%éiﬂ'hﬁ) = 0. (1.3)

In essence, these conditions state that the space-time terms in the metric are diver-
gence free, as is the traceless space-space part of the metric tensor.

With these conditions in place, we redefine the individual metric components as

16




follows:

hoo = —2¢ (1.4)
hOi = w; (15)
h,-j = —2¢5,;j - 28ij, (1 6)

with the condition that s® = 0. The scalars ¢ and 1) correspond to the Newtonian
gravitational potential and the relativistic potential associated with mass-energy den-
sity, respectively. The vector  is a gravitomagnetic potential, and is associated
with precession effects in binary systems analogous to magnetic precession effects
in electromagnetism. By our choice of the gauge, the gravitomagnetic potential is
divergence-free. Lastly, the tensor s;;, which is transverse by our choice of gauge
and traceless by its definition, is the piece of the metric associated with gravitational
radiation. With this choice of variables, the field equations reduce tvo (Bertschinger

2000)

Vi = 4rGTy (1.7)

Viw, = 167GTy 1 (1.8)

(0;;V% — 8,0;) (6 — ¥) + 26,V = 8rGTy (1.9)
(V2-0)s:;; = —8nGTyr, (1.10)

where the subscripts L, ||, and T refer respectively to the divergence-free, curl-free,
and tr.ansverse projections of vectors and tensors. It should be noted that the first
three equations are static, whereas the last one represents a typical traveling wave
solution in 4-dimensional space time. It is this last piece that we associate with
gravitational radiation.

In the derivation above, we assumed that the metric was safely in the linear

_regime. In order to derive the wave field measured by a distant observer, we need one

more assumption. The solution to Eq. 1.10 is a familiar integral involving a retarded
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potential, given by

si; (T, t _2/ i |r—::|_z|)d3$’ (1.11)

where the symbol 7;; and all others like it indicate the traceless part of a tensor. In
the slow source approximation, where the velocity of material in the system is slow
with respect to ¢, we find that: T r(z,t — |r - z|) =~ Fijr(z,t —r). For a distant

observer, Eq. 1.11 reduces to
2 3
sij == [ Tyalz,t =) d's. (1.12)

Relating this expression to the more familiar quadrupole source term is instfuctive,
as it demonstrates why conservation of mass and momentum imply that there can
be no monopole or dipole gravitational radiation. In relativity, these conservation
principles follow from the zero divergence of the stress-energy tensor, i.e., 9,7"" = 0.

We find that

7 /Too T, )’y dPr = i /BtTooxixjd% (1.13)
= c(lit (O T2z dPx (1.14)
= p /(TOixj +TY%z")d*x + surface term  (1.15)
= /(BtTOimj + 0, TYz")d*x (1.16)
— 2 / (O Tk | (1.17)
= 2/Tijd3a:+ surface term, (1.18)

integrating by parts twice in the argument. The boundary terms go to zero if there
is no momentum flux over the boundary of the calculation, which is automatically

satisfied for a distant observer. We conclude that

1d2

Sij = dtz ng( )a (1'19)
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where we define the traceless quadrupole moment as
Q‘ij = /Too(x):cixjd%, (120)

and note that the quadrupole nature of gravitational radiation is inherently linked
to local conservation of energy and momentum. Unlike the electromagnetic case,
where there is often a non-trivial time-varying electric dipole moment, we can always
define a reference frame in which the mass dipole moment of the system is zero.
Additionally, whereas there is one linear polarization for electromagnetic radiation,
there are two independent polarizations for gravity waves traveling in a specified
direction, typically denoted h, and h, for the linearly polarized case. For waves

traveling in the z-direction, these polarizations are given by

1, . _——
he(t) = Sz = sy = (Qz — @y ) k2o (1.21)

2. .
ho(t) = say = 840 = ~Que’t™, (122)

where the dispersion relation takes the same simple form as it does for electromagnetic
waves.

The effect of gravity waves on particles is given by the equation of geodesic motion

dv® o
—— =T, (1.23)

where the Christoffel symbols are given in the linear regime by

1 av .
Fg'r = 577 (hguy + Povp — Pgyy) . (1.24)

For a stationary observer, we find that the acceleration of a particle experiencing the
passage of a gravitational wave follows the scaling Z—’t’ o< 0485, and thus the energy flux

goes like (0;s;;)?. With the proper coefficients, we find that the energy and angular
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momentum loss are given respectively by

c® PNE PNE)

ELGW =z <Qij Qij > (1.25)
65 dJGW 2 [2] [3]
G dt 5ok <le Qix > : (1.26)

1.3 Binary inspiral

Even though there are no direct detections to date of gravity waves from astrophysical
sources, the strongest test of general relativity relies critically upon their existence.
The pulse history of binary pulsar system PSR 1913+16 (Taylor & Weisberg 1989)
is well-resolved enough so that all binary parameters can be derived from observed
precessions and gravitational time delays. In addition, the decay of the orbit due to
energy radiated away in gravity waves meets the predictions of the theory exactly. We
will derive the predicted inspiral of a binary system, noting it applies in the regime
where the respective NS are at great enough separation that tidal effects play no
appreciable role. We will work with circular orbits, since the binaries are expected
to have been circularized by gravity wave emission by the time they become visible
with laser interferometers. _

For a binary system containing stars with individual masses M; and Mj, the total

mass is given by M = M; + M, and the reduced mass by

M, M,
H="M

. (1.27)

For the special case of a binary with equal-mass components we have M = 2Myg and

u= M,i,li Assuming the stars to be spherical and irrotational, the total Newtonian

energy of the system is given by

1 GM M.
E(r) = §(M1vf+M2v§)—Tl2 (1.28)
_ _leMu (1.29)

2 r
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with an angular velocity given by

GM

r3

w= (1.30)

where r is the binary separation. The quadrupole moment of the system, when the

binary axis makes an angle # with the x-axis is given by

1 1
Quz = pr’(cos’6 — 5) = —2-,ur2 cos 26 + const. (1.31)
' 1
Qzy = pricosfsind = 3 pr? sin 26 (1.32)
1 1
Qzz = pri(sin®6 — 5) = —§pr2 cos 20 + const. (1.33)
Additionally, @),, = —% pr?, but the result is time-independent and does not concern

us here. The energy radiated away in gravity waves follows as

dEcw G 3403 '
dt = gQij] 1[:]'] (1-34)
2.4 6
= %‘)— (2 cos® 26 + 2 sin® 20) (1.35)
32G* 2 M3 '
= .565—1‘5- (1-36)

The inspiral rate in this limit is given by equating the energy loss due to gravitational

radiation with the energy change resulting from a decrease in separation, such that

dr  (dEgw) (dE(r)\
w == (%) (% 157
_ 32G* 2 M3 2r? : (1.38)
5¢5r5  GMu '
64G3 M2
_ W. (1-39)

This equation can be solved easily for r(¢), yielding

r(t) = ro (1 - i)% (1.40)

To
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5.4
where 7, = 2—236;;7;\0/1—2 is the time remaining until the binary could be expected to merge
if both stars were point-masses. The point-mass formalism breaks down, though,
when tidal interactions become important in describing the dynamics of the situation,

and numerical hydrodynamics calculations are required.

1.4 Detecting binary compact object mergers

The detection of gravity waves stands as one of the great outstanding challenges
presented by the general theory of relativity. Indirect detections of gravity waves
have been provided by measurements of relativistic effects in the binary pulsar sys-
tem PSR 1913+16 (Taylor & Weisberg 1989), exactly in accordance with theoretical
predictions. However, only the direct detection of oscillations in the metric of space
time would provide virtually unassailable proof that Einstein’s theory is correct in
this respect.

Experimental evidence of gravity wave signals has heretofore been elusive, due to
the remarkable challenge posed by measuring an effect which will likely be no bigger
than 1 part in 10%, if not smaller. There have been many attempts to observe gravity
Waves directly, though, starting with the pioneering work of Joseph Weber, who at-
tempted to measure the effect of passing gravity waves on resonant bars (Weber 1961).
However, at present, there have been no confirmed detections. A new generation of
detectors going online in the next few years may very well change this picture forever.
Large scale laser interferometers are currently being built and in some cases tested in
the United States (LIGO), Europe (GEO and VIRGO) and Japan (TAMA) with the
goal of measﬁring gravity waves in the frequency range between iO — 1000 Hz, and
with strain amplitudes as small as 4 ~ 10-23.

The first detector to go online in the year 2000 was the TAMA detector in Japan.
It consists of a Michelson interferometer containing two 300m Fabry-Perot cavities
oriented perpendicularly to each other. It is designed so that in the absence of a
passing gravity wave, the laser beams from both beam arms will interfere destructively

when combined. The measurement of a signal at a photodetector should indicate a
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mismatch in the lengths of the two arms, theoretically caused by the presence of a
‘passing gravity wave. No signals have been detected yet, but it serves as an important
tool for studying the noise spectra of large interferometers (Tagoshi et al. 2001).
The next to go online was LIGO, the Laser Interferometric Gravitational Ob-
servatory, which has also entered the testing phase. It consists of two sites, one in
Hanford, WA, the other in Livingston, LA, both with a pair of 4km Fabry-Perot
cavity tubes. LIGO is most sensitive to oscillations with frequencies in the range
50 — 500Hz. At lower frequencies, seismic noise swamps any possible detectable sig-
nals, while at frequencies above 200Hz, photon shot noise limits the effectiveness of
the detector, as there are simply too few photons to be measured within a given time
interval with which to construct statistics. In its current state, the detector should
be able to measure signals with a strain of h ~ 10=2, several orders of magnitude
more sensitive than all other previous detectors. The maximum sensitivity is limited
near frequencies of 100 Hz by thermal noise within the system optics (Barish 1999).
Even though the technical challenges facing the builders of LIGO have been vast,
it is expected that by the latter half of the decade of the 2000’s, technology should
advance far enough to significantly increase the sensitivity of LIGO, and thus the
volume of the universe which it can survey. Better seismic shielding is expected to
lower the minimum frequency LIGO can observe by a factor of at least 5, down to
~ 10 Hz. Improved optics are expected to lower the peak sensitivity of the detector
to strains of h ~ 10722 — 10723 at frequencies of f ~ 100 — 300Hz. Improved laser
power should increase the maximum observable frequency of the detector to ~ 1 kHz.
In addition to the Amerif:an effort, the European detector VIRGO will consis? of
a pair of 3km Fabry-Perot cavities, to be located in Italy. Additionally, a German-
French collaboration is working on 600m interferometer, which will be able to measure
signals at high frequencies (> 1 kHz) with unrivaled sensitivity. Special purpose
narrow-band detectors that can sweep up frequency in real time will be used to try
to catch the last ~ 10 cycles of the gravitational waves during the final coalescence
(Meers 1988; Strain & Meers 1991). These “dual recycling” techniques are being
tested right now on the German-British interferometer GEO 600 (Freise et al. 2000),
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and involve the creation of an additional resonant cavity by means of a mirror located
between the Michelson interferometer and the photodetector. Tuned properly, it will
operate as an extremely sensitive gravity wave detector, but only near a previously
chosen frequency.

In addition to ground-based detectors, plans have been developed for a space-based
interferometer composed of three satellites using laser ranging to monitor precisely
their relative position in space (Danzmann 2000). Unlike its terrestrial cousins, LISA,
the Laser Interferometric Space Antenna, will be sensitive in the millihertz frequency
regime. Such frequencies are impractical for studying binary NS mergers, but are
ideal for studying the merger of massive binary BH systems. In an ironic touch, the
primary noise source for LISA in its peak frequency range will be a confusion limit set
by galactic binary white dwarf systems, for although they are extremely weak emitters
of gravitational radiation, they far outnumber merging compact object binaries.

It is reasonably safe to say that the theory of gravity wave vsignals is well un-
derstood, at least in the regime where the binary separation is large compared to
the radii of the NS. Many calculations of gravitational wave emission from coalescing
binaries have focused on the waveforms emitted during the last few thousand orbits,
as the frequency sweeps upward from ~ 10Hz to ~ 300 Hz. The waveforms in this
frequency range, where the sensitivity of ground-based interferometers is highest, can
be calculated very accurately by performing post-Newtonian (hereafter PN) expan-
sions of the equations of motion for two point masses (Lincoln & Will 1990; Junker

& Schafer 1992; Kidder, Will, & Wiseman 1992; Will 1994; Blanchet et al. 1996).

“However, at the end of the inspiral, when the binary separation becomes comparable

to the stellar radii (and the frequency is greater than 1 kHz), hydrodynamics becomes
important and the character of the waveforms must change.

In general, extracting information from observed waveforms, requires detailed the-
oretical knowledge about all relevant hydrodynamic processes involved in a merger.
If the NS merger is followed by the formation of a BH, the corresponding gravita-
tional radiation waveforms will also provide direct information on the dynamics of

rotating core collapse and the BH “ringdown” (Flanagan & Hughes 1998). If the
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~merger produces an remnant which is stable against gravitational collapse, it should
eventually be possible to detect the oscillations of the newly formed remnant, using
the dual recycling techniques being studied by the GEO detector. This may allow for
intensive study of the properties of merger remnants, whose characteristic oscillation
frequencies lie above the range at which all other interferometers are effective. Such
waveforms contain information not just about the effects of GR, but also about the
interior structure of a NS and the nuclear equation of state (hereafter EOS) at high
density. Given the large noise background which will hamper all initial observations
undertaken at the laser interferometers, it will only be possible to derive meaningful
results about the physical properties of NS if features in the gravity wave signal are

associated with them prior to any detection.

1.5 Further motivation

While gravity wave emission from coalescing NS binaries has been the main focus of
most calculations of such systems performed to date, it is certainly not tile only mo-
tivating factor leading to their study. In particular, although it is generally assumed
that long—period gamma-ray bursts (GRBs) result from the collapse of massive stars,
it is quite possible that binary compact object coalescence is responsible for short
period bursts. Additionally, there are suggestions that the ejecta of binary NS merg-
ers are responsible for seeding the r-process elements of the universe. In the sections

below, we discuss both these topics in greater detail.

1.5.1 Gamma ray bursts

Many theoretical models of gamma-ray bursts (GRBs) have relied on coalescing com-
pact binaries to provide the energy of GRBs at cosmological distances (Eichler et al.
1989; Mészaros & Rees 1992; Narayan, Paczynski, & Piran 1992). The close spatial
association of some GRB afterglows with faint galaxies at high redshifts is not incon-
sistent with a compact binary origin, in spite of the large recoil velocities acquired

by compact binaries at birth (Bloom, Sigurdsson, & Pols 1999). Currently the most
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popular models all assume that the coalescence leads to the formation of a rapidly ro-
tating Kerr BH surrounded by a torus of debris. Energy can then be extracted either
from the rotation of the BH or from the material in the torus so that, with sufficient
beaming, the gamma-ray fluxes observed from even the most distant GRBs can be
explained (Bloom, Sigurdsson, & Pols 1999). Here also, it is important to understand
the hydrodynamic processes taking place during the final coalescence before making
assumptions about its outcome. For example, contrary to widespread belief, it is not
clear that the coalescence of two 1.4 My NS will form an object that must collapse to
a BH, and it is not certain either that a significant amount of matter will be ejected
during the merger and form an outer torus around the central object (Rasio 2001).
Further difficulties arise when an explanation is sought for the source of the gamma
ray emission. It is generally assumed that the gamma-rays emitted in bursts from
coalescing compact binaries result from eleétron—positron annihilation, fueled in turn
by neutrino emission from the hot merger remnant. The details of such calculations
are extremely difficult to handle properly, although attempts have been made to
study the neutrino emission from merging systems containing either two NS (Ruffert,
Janka, & Schifer 1996; Ruffert et al. 1997; Ruffert, Rampp, & Janka 1997; Ruffert &
Janka 1998) or a neutron star in orbit around a black hole (Janka et al. 1999). While
the results of these and other calculations cannot conclusively prove or disprove the
idea that merging binaries are the progenitors of short-period GRBs, many have so far
shown that it is possible to create an axis perpendicular to the orbital plane containing
virtually no baryons. This is generally taken as a requirement for maintaining the

ultra-relativistic shocks which are observed in GRBs.

1.5.2 Nuclear abundances

The shocks formed during the collision of two NS generate high internal temperatures
in the forming merger remnant, typically of order T' ~ 10 MeV. This allows for rapid
neutron capture (r-process) nuclear processes, which can form elements heavier than
iron, in the range A > 90. Traditionally, it was assumed that all such material was

formed in supernovae, but recently questions have been raised as to whether the
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entropy in the explosion is large enough to correctly give the elemental ratios seen in
older stars (Freiburghaus, Rosswog, & Thielemann 1999; Thielemann et al. 2001).

Rosswog and collaborators have suggested that compact object mergers are a
better source site for the production of heavy elements (Rosswog et al. 1999; Rosswog,
Freiburghaus, & Thielemann 2000; Rosswog et al. 2000). Their calculations have
shown that the ratios of elements produced in the ejecta of mergers matches well
with observed abundances, including a decrement in elements with nuclear masses
A < 130, which has been seen in metal-poor stars (Sneden et al. 2000a,b).

The relevance of binary coalescences hinges on whether or not such systems eject
enough mass per event to produce the observed amount of matter seen in metal-poor
stars. As we will show in Sec. 6.2, irrotational mergers with equal-mass components
eject very little matter whatsoever. Asymmetric mergers, on the other hand, may
be an attractive alternative for producing the required quantity of ejected material.
Given the fact that only two binary systéms have been observed which will merge
within a Hubble time, both with nearly equal-mass components, the resolution of this
issue may require waiting until observations can provide us with a better estimate of

the mass ratio distribution of the binary NS population.
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Chapter 2

Previous work on coalescing

binaries

The past decade has seen a dramatic increase in our theoretical knowledge of co-
alescing compact binary systems, spurred on primarily by advances in computing
power. Foremost among the problems to be faced is the difficulty associated with
numerical hydrodynamics calculations in full general relativity. Most of the history
of the field has involved using simpler gravity schemes, which seek to approximate
relativistic effects while remaining numerically tractable. A summary is provided in

this chapter.

2.1 The innermost stable circular orbit |

The final hydrodynamic merger of two compact objects is driven by a combination of
relativistic and fluid effects. Even in Newtonian gravity, an innermost stable circular
orbit (ISCO) is imposed by global hydrodynamic instabilities, which can drive a close
binary system to rapid coalescence once the tidal interaction between the two stars
becomes sufficiently strong. The classical analytic work for close involved treating the
respective stars as an incompressible fluid (Chandrasekhar 1987). This was extended
to compressible fluids analytically in the work of Lai, Rasio, & Shapiro (1993a; 1993b;
1994a; 1994b; 1994c, hereafter LRS1-5 or collectively LRS). This study confirmed the
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existence of dynamical instabilities for sufficiently close binaries. Although these sim-
plified analytic studies can give much physical insight into difficult questions of global
fluid instabilities, 3D numerical calculations remain essential for establishing the sta-
bility limits of close binaries accurately and for following the nonlinear evolution of
| unstable systems all the way to complete coalescence.

In GR, strong-field gravity between the masses in a binary system is alone suffi-
cient to drive a close circular orbit unstable. In close NS binaries, GR effects combine
nonlinearly with Newtonian tidal effects so that the ISCO should be encountered at
larger binary separation and lower orbital frequency than predicted by Newtonian
hydrodynamics alone, or GR alone for two point masses. The combined effects of
relativity and hydrodynamics on the stability of close compact binaries have been
studied, using both analytic approximations which are basically PN generalizations
of LRS (Lai & Wiseman 1997; Lombardi, Rasio, & Shapiro 1997; Shibata & Taniguchi
1997), as well as numerical calculations in 3D incorporating simplified treatments of
relativistic effects (Wang, Swesty, & Calder 1998). It should be noted that 1PN
calculations performed by Taniguchi and collaborators (Taniguchi & Shibata 1997;
Taniguchi 1999) to study the location of the ISCO for corotating and irrotational
binaries find that the ISCO moves inwards as post-Newtonian corrections are in-
creased, due primarily to the effect of 1PN potentials with momentum-based source
terms present in the system. Similarly, Buonanno and Damour (1999) find that the
ISCO for point masses in a binary under GR moves inwards with increasingly massive
objects.

These have been exj:ended to full general relativity by several groups, _for both
synchronized (Baumgarte et al. 1997, 1998; Gourgoulhon et al. 2001) and irrotational
(Bonazzola, Gourgoulhon, & Marck 1999; Marronetti, Mathews, & Wilson 1999; Uryu
& Eriguchi 2000; Uryu, Shibata, & Eriguchi 2000; Gourgoulhon et al. 2001) sequences.
While these calculations are difficult, they can be done with greater and greater ac-
curacy for a variety of NS parameters. However, for reasons explored in greater detail
below, particularly the fact that the orbital instability in binary systems in funda-

mentally dynamical, hydrodynamics calculations are required to correctly predict the
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gravity wave signal produced in binary mergers.

2.2 Newtonian hydrodynamics calculations

A number of different groups have performed hydrodynamics calculations of coalesc-
ing NS in Newtonian gravity, using a variety of numerical methods and focusing on
different aspects of the problem. Oohara and Nakamura were the first to perform
3D hydrodynamic calculations of binary NS coalescence, using a traditional Eulerian
finite-difference code (Oohara & Nakamura 1989; Nakamura & Oohara 1989; Oohara
& Nakamura 1990; Nakamura & Oohara 1991; Oohara & Nakamura 1992). Rasio
and Shapiro (1992; 1994; 1995, hereafter RS1-3 or collectively RS), instead used the -
Lagrangian method SPH (Smoothed Particle Hydrodynamics). They focused on de-
termining the ISCO for initial binary models in strict hydrostatic equilibrium and
calculating the emission of gravitational waves from the coalescence of unstable bi-
naries. Many of the results of RS were later independently confirmed by New &
Tohline (1997) and Swesty et al. (Swesty, Wang, & Calder 2000; Wang, Swesty, &
Calder 1998), who used completely different numerical methods but also focused on
stability questions, and by Zhuge, Centrella, & McMillan (1994; 1996), who also used
SPH. Several groups have incorporated a treatment of the nuclear physics in their
hydrodynamic calculations, done using SPH (Davies et al. 1994; Rosswog et al. 1999,
2000) and PPM codes (Ruffert, Janka, & Schéfer 1996; Ruflert, Rampp, & Janka
1997; Ruffert et al. 1997; Ruffert & Janka 1998), motivated by cosmological models
of GRBs.

Zhuge et al. (1994; 1996) and Ruffert et al. (Ruffert, Janka, & Sché’ufer.1996; Ruf-
fert, Rampp, & Janka 1997) also explored in detail the dependence of the gravitational
wave signals on the initial NS spins. Because the viscous timescales for material in
the NS is much longer than the dynamical timescale during inspiral, it is generally
assumed that NS binaries will be non-synchronized during mergers. It is generally
found than non-synchronized binaries yield less mass loss from the system, but very

similar gravity wave signals, especially during the merger itself when the gravity wave
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luminosity is highest (Ruffert, Janka, & Schifer 1996).

Much of the early work on coalescing NS binaries assumed Newtonian gravity for
simplicity. Later studies added a treatment of the radiation reaction, which is respon-
sible for driving the system towards coalescence, either by adding a frictional drag
term to model point-mass inspiral (Davies et al. 1994; Zhuge, Centrella, & McMillan
1994, 1996; Rosswog et al. 1999, 2000), or by an exact PN treatment (Ruffert, Janka,
& Schifer 1996; Ruffert et al. 1997; Ruffert, Rampp, & Janka 1997). In essence,
2.5PN radiation reaction terms (which scale like 1/c%) are added onto a Newtonian
framework, but all lower-order non-dissipative terms are ignored. Unlike adding a
frictional drag term which dissipates energy according to the point-mass prediction,
the lowest-order treatment of the radiation reaction allows for its effects to be included
throughout the entire calculation, including the period after the merger remnant has
formed. Unfortunately, however, Newtonian gravity is known to be a poor description
of the physical problem at hand. Even NS with stiff EOS generate strong gravita-
tional fields. During the final moments before merger, the velocities found in the
system also become relativistic. Thus, the hydrodynamics of the actual coalescence
can only be calculated properly by taking into account GR effects.

All recent hydrodynamic calculations agree on the basic qualitative piéture that
emerges for the final coalescence. As the ISCO is approached, the secular orbital decay
driven by gravitational wave emission is dramatically accelerated (see also LRS2,
LRS3). The two stars then plunge rapidly toward each other, and merge together
into a single object in just a few rotation periods. In the corotating frame of the
binary, the relative radial velocity of the two stars ‘always remains very subsonic,
so that the evolution is nearly adiabatic. This is in sharp contrast to the case of a
head-on collision between two stars on a free-fall, radial orbit, where shock heating is
very important for the dynamics (RS1, Shapiro 1998). Here the stars are constantly
being held back by a slowly receding centrifugal barrier, and the merging, although
dynamical, is much more gentle. After typically 1 — 2 orbital periods following first
contact, the innermost cores of the two stars have merged and the system resembles

a single, very elongated ellipsoid. At this point a secondary instability occurs: mass
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shedding sets in rather abruptly. Material, typically composing ~ 10% of the total
mass of the system, is ejected through the outer Lagrange points of the effective
potential and spirals out rapidly. In the final stage, the inner spiral arms widen and
merge together, forming a nearly axisymmetric torus around the inner, maximally

rotating dense core.

2.3 Post-Newtonian calculations

The Newtonian limit also fails to describe accurately the onset of dynamical in-
stability. PN effects combine nonlinearly with finite-size fluid effects and this can
dramatically increase the critical binary separation (and thus lower the frequency) at
which dynamical instability sets in. Indeed, the quasi-equilibrium description applies
so long as the dynamical timescale of the NS in the binary remains large compared to
the timescale on which the gravitational radiation drives the inspiral, with the infall
rate being given by Eq. 1.37. Relativistic corrections to the gravitational energy of
as system have a strong effect on the equilibrium energy, and can lead to the mini-
mum value being moved further out. Beyond this, they can also flatten the slope of
the relationship out beyond the ISCO, leading to a divergence in the formula for the
inspiral rate, and thus a breakdown of dynamical stability well out beyond the ISCO.

The middle ground between Newtonian and fully relativistic calculations is the
study of the hydrodynamics in PN gravity. Formalisms exist describing not only
all lowest-order corrections (1PN) to Newtonian gravity, but also the lowest-order
(2.5PN) effects of gravitational radiation reaction (Blanchet, Damour, & Schéfer 1990,
hereafter BDS; Shibata, Oohara, & Nakamufa 1992). Such calculations have been
undertaken by Shibata, Oohara & Nakamura (1992; 1993; 1997) using an Eulerian
grid-based code of their own devising, and more recently by Ayal et al. (2001) using
SPH along with the formalism of BDS.

PN calculations of NS binary coalescence are particularly relevant for stiff NS
EOS. Indeed, for most recent stiff EOS, the compactness parameter for a typical
1.4 Mg NS is in the range GM/Rc?* ~ 0.1 — 0.2, justifying a PN treatment. Af-
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ter complete merger, an object close to the maximum stable mass is formed, with
GM/Rc* ~ 0.3 — 0.5, and relativistic effects become much more important. How-
ever, even then, a PN treatment can remain qualitatively accurate if the final merged
configuration is stable to gravitational collapse on a dynamical timescale (see the dis-
cussion in Sec. 4.4). Most recent theoretical calculations, such as the latest version of
the Argonne/Urbana EOS (Akmal, Pandharipande, & Ravenhall 1998), and a num-
ber of recent observations of cooling NS (Wang et al. 1999) provide strong support
for a stiff NS EOS.

The most significant problem facing PN hydrodynamic simulations is the re-
quirement that all 1PN quantities be small compared to unity. Unfortunately, this
precludes the use of realistic NS models. Shibata, Oohara & Nakamura (1992;
1993; 1997) computed 1PN mergers of polytropes with ' = 5/3 and a compact-
ness GM/Rc® = 0.03, leaving out the effects of the gravitational radiation reaction.
Ayal et al. (2001) performed calculations for polytropes with ' = 1.6 or T’ = 2.6 and
compactness values in the range GM/Rc? ~ 0.02 — 0.04, including the effects of the
gravitational radiation reaction. For comparison, a realistic NS of mass M = 1.4 M
and radius R = 10km has GM/Rc* = 0.2, i.e., about an order of magnitude larger.
Unfortunately, performing calculations with artificially small values of GM/Rc? also
has the side effect of dramatically inhibiting the radiation reaction, which scales as
(GM/Rc?)?3. |

The PN SPH code we use in this work, described in detail in Sec. 3.2, combines
a new parallel version of the Newtonian SPH code used by RS with a treatment of
PN gravity based on the formalisrn_ of BDS. Our calculations include all 1PN effects,
as well as a PN treatment of the gravitational radiation reaction. We have also
developed a relaxation téchnique by which accurate quasi-equilibrium conﬁguratioﬁs
can be calculated for close binaries in PN gravity. These serve as initial conditions
for our hydrodynamic coalescence calculations. In addition, we present in this work
a simple solution to the problem of suppressed radiation reaction for models of NS

with unrealistically low values of GM/Rc?.
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2.4 Relativistic work

Several groups have been working on fully general relativistic (GR) calculations of
NS mergers, combining the techniques of numerical relativity and numerical hydrb-
dynamics in 3D (Baumgarte, Hughes, & Shapiro 1999; Shibata 1999; Shibata & Uryu
2000, 2001). Hdwever, this work is still in the early stages of development, and only
preliminary results have been reported so far. Obtaining accurate gravitational ra-
diation wave forms from full GR simulations is particularly difficult, since the waves
must be extracted at the outer boundaries of large 3D grids extending out into the
true wave zone of the problem. However, fully GR calculations are essential for ad-
| dressing the question of the stability to gravitational collapse and ultimate fate of
a merger. Using a GR formalism developed by Shibata (1999), Shibata and Uryu
(2000; 2001) find that collapse to a black hole on a dynamical time scale during final
coalescence does not happen for NS with stiff EOS and realistic parameters. Only
with unrealistically compact initial NS models (starting already very close to the
maximum stable mass) does collapse to a black hole occur on the merger time scale.
This serves as reassurance that for realistic NS with stiff EOS, PN calculations of
binary coalescencé can provide results that remain at least qualitatively correct all

the way to a complete merger.
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Chapter 3

Numerical methods

The code described in this work is a Smoothed Particle Hydrodynamics (SPH) scheme
which includes not only Newtonian physics, but also all lowest-order (1PN) corrections
of general relativity, as well as the lowest-order dissipative terms (2.5PN) which result
from the gravitational radiation reaction. It was constructed by the author of this
thesis, by adapting the Newtonian SPH code which was used in RS. A description of
the theory behind SPH, as well as the specific adaptations émployed by the author
follow below. |

Note: This chapter contains an edited veréion of appendices contained in two
articles published in Physical Rev;iew D. Please see Chapters 4 and 5 for more infor-

mation.

3.1 The SPH method

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian method ideally suited to
calculations involving self-gravitating fluids moving freely in 3D. The key idea of SPH
is to calculate pressure gradient forces by kernel estimation, directly from the particle
positions, rather than by finite differencing on a grid. SPH was introduced more than
20 years ago by Lucy, Monaghan, and collaborators (Lucy 1977; Gingold & Monaghan
1977), who used it to study dynamical fission instabilities in rapidly rotating stars.

Since then, a wide variety of astrophysical fluid dynamics problems have been tackled

35



using SPH (Monaghan 1992; Dave, Dubinsky, & Hernquist 1997; Rasio 2000).

Because of its Lagrangian nature, SPH presents some clear advantages over more
traditional grid-based methods for calculations of stellar interactions. Most impor-
tantly, fluid advection, even for stars with a sharply defined surface such as NS, is
accomplished without difficulty in SPH, since the particles simply follow their tra-
jectories in the flow. In contrast, to track accurately the orbital motion of two stars
across a large 3D grid can be quite tricky, and the stellar surfaces then require a
special treatment (to avoid “bleeding”). SPH is also very computationally efficient,
since it concentrates the numerical elements (particles) where the fluid is at all times,
not wasting any resources on empty regions of space. For this reason, with given
computational resources, SPH provides higher averaged spatial resolution than grid-
based calculations, although Godunov-type schemes such as PPM typically provide
better resolution of shock fronts (this is certainly not a decisive advantage for binary
coalescence calculations, where no strong shocks ever develop). SPH also makes it
easy to track the hydrodynamic ejection of matter to large distances from the central
dense regions. Sophisticated nested-grid algorithms are necessary to accomplish the
same with grid-based methods.

The idea behind the SPH method is to follow the motion of a large number of
particles NV, which will be indexed by m and n in the following description (as opposed
to ¢ and j, which will refer to spatial indices of vectors and tensors). In Newtonian
systems, the position and velocity of each particle is updated using a leap-frog time

stepping algorithm such that

dz -

Z" = O (3.1)

dUm  _ Fgrav) | Fhwaro) 39
mMm dt - m + m ( ' )

where m,, is the mass of each particle. In all calculations presented in this work,
the number of particles per NS was the same for both components of the binary. In
unequal-mass calculations the individual particle masses, which do not vary in time,

were uniform within each NS but differed from one to the other in proportion to the
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mass of the respective NS. The local density is defined by summing over the nearest
neighbors of a particle, weighting each by a term derived from a smoothing kernel.
The ideal number of neighbors Ny is constant throughout the calculation, and is
generally ~ 100 particles. In what follows, all summations are over neighbors, unless

otherwise noted. The density at each particle position is thus calculated as

where W,,,, is a symmetric function of the relative separation of the particles and

their smoothing lengths h,, and h,, given by (Hernquist & Katz 1989)
1 — — — —
Won = 5[W(|zm — Zoly hm) + [W(|Zm — Znl, hn)] (3.4)

and the interpolation kernel W(r, h) is defined as (Monaghan & Lattanzio 1985)

1 —5(0)°+3(x)’, o<z<1
Wrh)=—51 i[2- (%)]3, 1< <2 (3.5)
0, L>9

so as to be continuous and smooth to second order. The smoothing length h,, is
updated after every iteration so as to keep the number of neighbors as close as possible
to Ny, and represents the effective size of the particle in the simulation. It is the
finite extent of the smoothing kernel, combined with its differentiability, that helps
us avoid almost all problems associated with trying to differentiate over otherwise
discrete quantities.

All calculations in this work feature polytropic equations of state (EOS), with

pressures defined in terms of an adiabatic index I, such that
P, = kp!, (3.6)

with k a constant which takes a single value for all particles, in the absence of artificial

viscosity terms, which are not employed in any of the calculations we describe. The
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hydrodynamic force on each particle is found by

Pm Pn

It should be noted that the above equations satisfy Newton’s third law when neigh-
borhood is a symmetric process, i.e. particle A being a neighbor of particle B implies
the converse. This condition is extremely difficult to meet in practice, although it
does occur for the majority of particle pairs. In order to maintain conservation of
linear momentum properly, we use a “gather-scatter technique” which ensures force
balance between pairs of particles. The equations for computing the local density,
Eq. 3.3, and hydrodynamic pressure force, Eq. 3.7, are modified by splitting the sum
between the particle and its neighbors. When calculating the density, half of the
indicated sum is added to the total for the particle, and half to the neighbor’s total.
The full sum is attained should the particles both be each other’s neighbor. When
calculating forces, half the indicated total is given to the particle in question, and
an equal but opposite amount to the neighbor. While it may seem odd at first, this
method does yield the correct densities when applied to arbitrary matter configura-
tions, and does maintain force balance to within the numerical precision limits of the
code. The formalism presented above for Newtonian SPH can be shown to conserve
energy if the smoothing lengths of particles were fixed quantities. As they vary slowly
through the calculation, the total energy can show slight variations, but the effect is
tiny compared to other energy scales in the calculation. |

Our simulations were performed using a modified version of an SPH code that was
originally designed to perform 3D Newtonian calculations of stellar interactions (Rasio
& Shapiro 1991, RS1). Although the fluid description is completely Lagrangian, the
gravitational field in our code (including PN terms) is calculated on a 3D grid using an
FFT-based Poisson solver. Essentially, the method relies on the fact that the equation
for the gravitational potential, and in fact any Poisson equation, is a convolution over

the source term. Since

V2® = 47Gp (3.8)
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has a solution given by B
- = G,D T’
®(7) = / &z ﬁ (3.9)
we use Fourier techniques to transform this to
F(®) = F ( / df’x'ﬂ) (3.10)

& — o]

— F(p)xF (L) (3.11)

|z'|

This method has the advantage that the second term in the above equation, represent-
ing 1/r fall-off of a potential, can be calculated at the beginning of a run and stored
in memory from then on, so that each Poisson equation requires only one forward
and one reverse FFT per iteration of the code. Our Poisson solver is based on the
FF'TW of Frigo & Johnson (1997), which features fully parallelized real-to-complex
transforms. Boundary conditions are handled by zero-padding all grids, which has
been found to produce accurate results and to be the most computationally efficient
method (Swesty, Wang, & Calder 2000). Particle quantities are placed on the numer-
ical grid by a cloud-in-cell method, which distributes their value to the eight corners
of the cell surrounding the particle, weighted by its location within the cell. Field val-
ues, such as the gravitational potential, are read from the grid by the same method.
Since we are primarily interested in the gravitational wave emission, which originates
mainly from the inner dense regions of NS mergers, we fix our grid boundaries to
be £4 NS radii in all directions from the center of mass. Particles that fall outside
these boundaries are treated by including a simple monopole gravitational interac-
tion with the matter on the grid. Our code has been developed on the SGI/Cray
Origin2000 parallel supercomputer at NCSA. MPI (the Message Passing Interface)
reduces the memory overhead of the code by splitting all large grids among the proces-
sors. All hydrodynamic loops over SPH particles and their neighbors have also been
fully parallelized using MPI, making our entire code easily portable to other parallel
supercomputers. The parallelization provides nearly linear speedup with increasing

number of processors up to ~ 10, with a progressive degradation for larger numbers.
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3.2 The BDS formalism

To investigate the hydrodynamics of NS binary coalescence beyond the Newtonian
regime, the equations of RS were modified to account for PN effects described by
the formalism of BDS, converted into a Lagrangian, rather than Eulerian form. The
formalism is correct to first (1PN) order, with all new forces calculated from eight
additional Poisson-type equations with compact support, allowing for the computa-
tion of all 1PN terms using the same FFT-based convolution algorithm as for the
Newtonian Poisson solver. PN corrections to hydrodynamic quantities are calculated
by the SPH method, i.e., by summations over particles. Dissipation of energy and
angular momentum by gravitational radiation reaction is included to lowest (2.5PN)
order, requiring the solution of one additional Poisson-type equation.

The key changés to the BDS formalism involve a conversion to quantities based
on SPH particle positions, rather than grid points. All quantities in the BDS scheme
are essentially 1PN analogues of familiar Newtonian terms. The coordinate rest-mass
density r, and momentum per unit rest-mass w; take the place of the density and
velocity of each particle, and are given in terms of the proper rest-mass density p and

the 4-velocity u* by

re = /gu'p (3.12)
H
(1 n 25) cus, | (3.13)

w;

where H is the specific enthalpy of the fluid. The rest-mass density is calculated at
each particle position as a weighted sum over the masses of neighboring particles, just

as the density is calculated in Newtonian SPH, such that
T.£m) = z M Winn, _ (314)

where m,, is the rest mass of particle m. For a PN polytropic equation of state, where
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the pressure p, is defined as a function of the coordinate rest mass density as
pu(r.) = kr}, (3.15)

it is found that the specific enthalpy is given by

r ' p.

It should be noted that p, is not the Newtonian pressure, but rather a 1PN variant
of it. -

The BDS formalism requires the solution of nine Poisson equations,' one for the
Newtonian gravitational potential U,, seven for 1PN corrections, and a final one to
handle the gravitational radiation reaction.

The equation for the gravitational potential is
VU, = —4nr,. (3.17)

Note that with this sign convention, the gravitational potential is a positive quantity.

The 1PN correction potentials are given by

VU, = —dnr.w; (3.18)
ViC; = —4nz'O(r.awy) - (3.19)
ViU, = —dnr.d. (3.20)

Note that the summation in Eq. 3.18 runs ovér 1 = z,Y,2, thus U, is an bentire]y

separate quantity than Uy, in Eq. 3.20. Using these, we define the quantity
1 1,

It is important to note that the volume integral of the source term of Eq. 3.19

vanishes, assuming that the origin is at the center of mass and momentum of the

41



system, and thus it contains no monopole term. In Eq. 3.20, the quantity ¢ in the
source term is one of three quantities which are assumed to be of order O(%). They

are, assuming the equation of state Eq. 3.15, and with the definition w? = §9w;w;,

1

a = 2U*—I‘(§w2+3U*) (3.22)
_ 1, I' p. :

B = w+p—q, +3U (3.23)
3, 3-2p, |

0 = Jwi+ - U.. (3.24)

(3]

The third derivative of the symmetric, trace-free (STF) quadrupole tensor, Q;;,

is calculated by using the SPH equation for the second derivative
Oy = 3 mm (™™ + ™ 4 o) (3.25)
m

and numerically differentiating once. It is used in the source term for the radia-
tion reaction potential Us, of order O(). This is calculated from the final Poisson
equation,

Us = %G(R—Qﬁlxiajr*) , (3.26)

J

VR = —4nQa'o;r.. S (327)

Since we are dealing with the trace-free quadrupole tensor, it is easy to show that
the volume integral of the source term of Eq. 3.27 also vanishes, for any mass dis-
tribution. The resulting expression for the radiation reaction potential differs from
the third derivative expression given in BDS by a term of O (v?/c?), but all radiation
reaction terms into which it enters already contain factors of O (v°/c®). While only
approximate, this method proved more stable since it does not require the numerical
evaluation of several second derivatives on a grid.

The PN forces are defined by

‘ a\ O;p. 1 p.
FipTCSS — (1 + 6_2) Ir* — C_2_Z 1a (3.28)
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PPN _ (1 ; %) 8.+ ~50Us — =1,0:4, (3.29)
C C C

1 A
Fresc — 3. (3.30)

cd

Finally, the evolution system, in Eulerian form, is given by

Ore = 0O;(r0Y) (3.31)
Ow; = —v*Ow;+ FI™*° 4 FIPN 4 fresc (3.32)

where the particle velocities v* are related to the specific coordinate momentum w;
by
—(1 ﬁ) + A+ w, QY (3.33)
= —_— c—2 7. . .

The quantities 7 and @ will be referred to simply as the velocity and momentum
vectors, respectively (Ruffert, Janka, & Schifer 1996).
In the SPH method, the evolution equations must be expressed in a Lagrangian

form, given simply by

it = ot (3.34)
u-]i — F;press_*_FwilPN_'_F;reac. (335)

In BDS, there also appear evolution equations for the entropy and the pressure.
The former is automatically conserved in adiabatic calculations such as those we
present here, and the latter is not necessary since we calculate the pressure directly
from the density at each time step.

Since the parameters o and £, defined by Eqs. 3.22 & 3.23 become rather large
for NS with GM/Rc? ~ 0.05, we make some small adjustments to Eqgs. 3.28 & 3.33.
We note that for an adiabatic exponent T' > %, a is everywhere negative. To ensure

that the pressure force always acts in the proper direction, we make a substitution in

Eq. 3.28,
04 ai * -1 alp*
- (1 + 0_2) P (1 - —) (3:36)

Ty c? Ty
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This new form is entirely equivalent to the one it replaces to 1PN order. Similarly, 3

is everywhere positive, so we make the following substitution in Eq. 3.33,

(1 - %) w; — <1 + céz)— W;. (3.37)

For the PN pressure force (Eq. 3.28), we now find

Tess __ o —1 phydro 1 D«
In the calculation of d;a = (2 — 3I")9;U, — %c?iw?, we must take a derivative of the
local dynamic velocity-squared field, which we do by SPH summations, i.e., we first
write
1
8,-(w2) = —(8,-(r*w2) — ’wza,;T*), (339)

T

and we then calculate the derivative terms as

Or™ = 3" m,0iWmn, (3.40)

Bi(raw?)™ = S maw? 8 W | (3.41)

The nine Poisson-type equations in the full PN formalism of BDS are all solved
by the same FFT convolution method. All 3D grids used by the Poisson solver are
distributed among the processors in the z-direction. Real-to-complex transforms are
computed using the RFFTWND_MPI package of the FFTW library (Frigo & Johnson
1997). The source terms of the Poisson equations that do not contain density deriva-
tives, Egs. 3.17,3.18, & 3.20, are laid down on the grid by a cloud-in-cell method. All '

integrals over the density distribution are converted into sums over particles, e.g.,

U,(z) = / &z T*(JC’),' S (3.42)

|z —z .

Source terms containing density derivatives are calculated by finite differencing on

the grid, rather than by SPH-based derivatives at particle positions. This has two
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benefits. First, for integrals of the type
o= / &Pz Oyt ... (3.43)

we cannot convert directly from a volume integral to a sum over discrete particle
masses. Second, it guarantees that the volume integral of the source term vanishes
in Eqgs. 3.19 & 3.27, as it should. Derivatives of the potentials are computed by finite
differencing on the grid, and then interpolated between grid points to assign values
at SPH particle positions.

For calculations in which we include the radiation reaction, but ignore 1PN correc-
tions, all terms containing a factor of 1/c? can be ignored. In this case our equations
reduce to those of the purely Newtonian case, with two exceptions. First, we include
Freec (Eq. 3.30) in the SPH equations of motion, replacing Eq. 3.32 by
0D«

T«

w; = —

+8,U, + Freee. (3.44)

Second, the relationship between the particle velocity ¥ and momentum @ is given

by

4
v; = w; + _Cg [3]’11)] (345)

This has been shown (Ruffert, Janka, & Schéfer 1996) to give the correct energy loss
rate as predicted by the classical quadrupole formula, Eq. 1.25.

Ignoring 1PN terms reduces the number of Poisson equations to be solved per
iteration from nine to two. The obvious advantage is a proper handling of the dis-
sipétive PN effecté, while leaving the hydrodynamic equations in a sirﬁple form that
can be directly compared to the Newtonian case. In addition, because the correc-
tions are O(v°/c%), ’the radiation reaction terms always remain small, even when 1PN
corrections would be large.

We have performed a number of test calculations to establish the accuracy of our
treatment of PN effects in the SPH code. These include tests for single rotating and

nonrotating polytropes in PN gravity, which we have compared to well-known analytic
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and semi-analytic results (Shapiro & Teukolsky 1983). In particular, we have verified
that our code reproduces correctly the dynamical stability limit to radial collapse for

a single PN polytrope with I' = 5/3 (see Sec. 3.4.1).

3.3 Our hybrid method

Throughout what follows, unless otherwise specified, we will use units in which New-
ton’s gravitational constant G, and the rest mass M and radius R of a single, sphérical
NS are set equal to unity. In Newtonian physics, this leads to a scale-free calculation.
When we include PN effects, specifying the physical mass and radius of the NS then
sets the value of the speed of light ¢, and the magnitude of all PN terms. In our units,
the compactness ratio GM/Rc? of a NS is expressed simply as 1/c2.

The equations of BDS assume that all 1PN corrections are small. As mentioned

in Sec. 2.3, this places a rather severe constraint on the allowed NS mass and radius,

1 M 15km
5 =014 (1'5M®> ( - ) (3.46)

If, for example, we estimate the potential at the center of the star as U, /c? ~ 1.5/c% =

since

0.21 (Eq. 3.17), which is appropriate for I' = 3 models, we find that our “first-order”

correction term a/c? (Eq. 3.22), with I' = 3 and no internal motions, is

(67
c?

(2 3r)% _ -7%1 ~_15. (3.47)
This is clearly problematic since the derivation of the BDS formalis_m assumes that
la|/c* < 1. For a fixed radius of 15km and T' = 3, a NS mass < 0.9 My, or
1/c¢* < 0.09 is required to keep la| < 1. This problem is less severe for a lower value
of T', since the coeflicient of o is then smaller. For I' = 5/3, we have a = —3U,,
but these configurations are known to be unstable against gravitational collapse for
compactness parameters 1/c®> > 0.14 (Shapiro & Teukolsky 1983). These problems

are the reason why previous PN hydrodynamic simulations of NS binary coalescence

have used unrealistic NS models with low masses and large radii. In practice, we
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find that we cannot calculate reliably NS mergers including 1PN corrections, unless
1/c? < 0.05, or ¢ > 4. With such a small compactness parameter, radiation reaction
effects would then be suppressed by a factor ~ 2° = 32.

Recognizing that the 1PN and 2.5PN terms describe essentially independent phe-
nomena, and that the proper form for energy and angular momentum loss holds even
if 1PN corrections are ignored, we adopt a hybrid scheme. Specifically, in all calcu-
lations which we will describe below, we set ¢ = 4.47 = ¢;py for all 1PN corrections,
which is unphysically large, but we use a physically realistic value of ¢ = 2.5 = ¢ 5pn
for the 2.5PN corrections, corresponding, for example, to a NS mass M = 1.5 M,
with radius R = 13.9km. We feel that this hybrid formulation provides a reasonable
trade-off between physical reality and the limitations of the 1PN approximation.

Note that this method should better extrapolate toward physical reality, com-
pared with unrealistically undercompact NS models. If 0 4+ 2.5PN simulations are
interpreted as taking the limit ¢;py — oo for the 1PN corrections, we see that by
reducing the compé.ctness in both the 0 + 2.5PN and 0 + 1 4 2.5PN cases, the value
of co5pn is fixed at an unphysical value while ¢;py is varied, which can never truly
extrapolate to the physical case. By setting c;5pn to a realistic physical value while
varying cipy, we may be able to extrapolate our results toward a correct physical
limit. However, a disadvantage of this approach is that it does not allow for di-
rect quantitative comparison with full GR simulations of binary NS coalescence. In
these simulations, which essentially handle corrections to all orders simultaneously,

separation into various PN orders has no meaning.

3.4 Initial conditions

In addition to its normal use for dynamical calculations, our SPH code can also be
used to construct hydrostatic equilibrium configurations in 3D, which provide accu-
rate initial conditions for binary coalescence calculations. This is done by adding
artificial friction terms to the fluid equations of motion and forcing the system to

relax to a minimum-energy state under appropriate constraints (RS1). The great ad-
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vantage of using SPH itself for setting up equilibrium solutions is that the dynamical
stability of these solutions can then be tested immediately by using them as initial
conditions for dynamical SPH calculations. Very accurate 3D equilibrium solutions
can be constructed using such relaxation techniques, with the virial theorem satisfied
to better than 1 part in 10® and excellent agreement found with known quasi-analytic
solutions in both Newtonian (LRS1, LRS4, RS2) and PN gravity (Lombardi, Ra-
sio, & Shapiro 1997). The careful construction of accurate quasi-equilibrium initial
conditions is a distinguishing feature of our PN calculations of binary coalescence.
In contrast, many other studies have used very crude initial conditions, placing two
spherical stars in a close binary orbit, and, for calculations that went beyond Newto-
nian gravity, adding the inward radial velocity for the inspiral of two point masses.
Unfortunately, spurious fluid motions are created as the stars respond dynamically
to the sudden appearance of a strong tidal force can corrupt the gravitational ra-
diation waveforms. Spurious velocities have additional effects in the full 1PN case,
where spurious motions enter repeatedly into the evolution equations, by propagating
through the 1PN quantities a, 3, and ¢ in Eqgs. 3.22, 3.23, & 3.24. A specific cause of
worry is the influence of velocities adding to §, which affects not only the self-gravity
of the stars, but also their mutual gravitational attraction.

We have developed a method, described in detail in Sec. 3.4.2 that allows for more
realistic initial conditions for PN synchronized binaries. It reduces dramatically the

initial oscillations around equilibrium when the dynamical calculation is started.

3.4.1 Single star models

Constructing hydrostatic equilibrium initial conditions in PN gravity is a much more
difficult problem than in Newtonian gravity, primarily because of the complex rela-
tionship between the particle velocity and momentum. We get around this problem
by implementing a multistage approach to the construction of relaxed configurations.

First, we construct a series of hydrostatic equilibrium models for single [' = 3
polytropes with increasing values of 1/c?, to gauge the effects of the PN corrections on

the structure of the stars. Specifically, we construct relaxed models with compactness
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parameters of 1/¢* = 0.01 to 0.07, in steps of 0.01.

In the relaxation procedure, spurious velocities arising from configurations adjust-
ing toward equilibrium are ignored as sources for the force equations. Thus particles
move during the relaxation, but the force exerted on each particle is that of a static
mass configuration. We thus solve all Poisson equations assuming @ = 0, which
eliminates Eqs. 3.18 & 3.19. In addition, the velocity terms in the definition of the
1PN quantities «, 3, and 4 are removed from Egs. 3.22, 3.23, & 3.24. This greatly

simplifies the equations giving us the set

V32U, —4nr, (3.48)
V23U, —47rr,6 (3.49)
o (2 - 30)U, (3.50)
' p.
B = Fg2 43U (3.51)
3 —2p,
press B o\ dp.  1p,
FI (1 + 62) T (3.53)
1PN Y 1
v (1 - g) w; (3.55)
it vt (3.56)
W = PPt gy Wi (3.57)

where t,¢,, is the relaxation time.

relax

To construct our first model, with 1 /% = 0.01 we start from a Newtonian I" = 3

polytrope and let it relax to an equilibrium configuration. Then, using the maximum

particle radius R,,,,, we adjust the radial position, smoothing length, and specific

entropy of all particles according to
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P
Rma:c
km — kgnRYST (3.60)

B

(3.59)

Velocities are set to zero at the end of this rescaling. This new configuration is relaxed
again, and the process is repeated until convergence is achieved. For the I' = 3 models,
we rescaled every ¢ = 5.0, with a relaxation time t,¢4, = 1.0, The final profile is used
as the initial test configuration of the next model, which is then relaxed iteratively
as described above.

In addition to I' = 3 models, we also computed a sequences of single PN polytropes
with ' = 2 and T' = 5/3, and tested their stability. PN effects should make the
star unstable to gravitational collapse when 1/c¢* > 0.141 for I' = 5/3 (Shapiro &
Teukolsky 1983). Thus, for I' = 5/3, We tested 1/c? values in steps of 1/c? = 0.02,
until we reached 0.10, at which point we halved the step size until we reached 1/c* =
0.13. To make the relaxation overdamped, we reduced the rescaling time to ¢t = 2.0,
with treiqp = 1.0. It was found that 1/ ¢? = 0.13 is always unstable, collapsing inward
uncontrollably, no matter how short the rescaling time. This agrees well with the
theoretical prediction when we account for the magnitude of the 1PN corrections
we deal with, and the approximations made in the analytic treatment. In Fig. k3-1,
we show the time evolution of the specific entropy k& for all three sequences, taken
as a ratio with the NeWtonian value of the specific entropy derived from the Lane-
Emden equation. We see a gradual increase of k£ as the compactness is increased, in
all sequences, except when we get to 1/c2 = 0.12 for T' = 5/3, for which k is 50%
larger than the corresponding value for 1/c2 = 0.11. Note that the vertical scale in
the figure is different for each plot. Thus, the value of k/ky actually increases with
increasing adiabatic exponent I' for a given compactness 1/c2.

P‘arameters for the single star sequences are shown in Table 3.1. Radial profiles
of the density, as well as all important 1PN quantities are shown in Figs. 3-2, 3-3,
& 3-4 for T =5/3, T = 2 and ' = 3, respectively. We see in the I' = 5/3 case that
increasing the compactness increases the central concentration of the model, which

can be seen in the factor of two increase in central density. For compactnesses near
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Figure 3-1: Results of SPH relaxation calculations for single stars. The ratio of the
PN specific entropy k£ to the Newtonian value ky, is shown for I' = 5/3, I" = 2, and
I' = 3, computed for sequences of increasing compactness 1/c2. The dotted lines
give the final value for each case, which was used as the initial value for the next
relaxation. For I' = 5/3, we see that for 1/c? > 0.12, k/ky increases without bounds,
indicating instability. For I' = 3 and 1/c¢® > 0.07, the 1PN approximation breaks
down. Note the different vertical scales.
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1/¢* klky  (ro)e  (P/ric®). (U,
T =5/3
0.02 1.177 1.201 0.0111 0.0438
0.04 1.281 1.292 0.0257 0.0893
0.06 1.421 1.452 0.0464 0.1377
0.08 1.634 1.708 0.0792 0.1902
0.10 1.879 1.976 0.1255 0.2470
0.11 2.198 2.336 0.1806 0.2820
0.12 3.400 2.295 0.3011 0.2968
=2
0.01 1.202 0.6549 0.0050  0.0187
0.02 1.260 0.6670 0.0107 0.0376
0.03 1.308 0.6963 0.0174 0.0571
0.04 1.375 0.7173 0.0251 0.0767
0.05 1.439 0.7490 0.0343 0.0968
=3 :
0.01 1.403 0.3822 0.0052 0.0165
0.02 1.553 0.3818 0.0114 0.0326
0.03 1.649 0.3882 0.0187 0.0486
0.04 1.780 0.3948 0.0280 0.0649
0.05 1.918 0.4051 0.0397 0.0813
0.06 2.084 0.4170 0.0549 0.0989
0.07 2.262 0.4321 0.0746 0.1154

Table 3.1: Parameters for Single Star Models. For each model, we list the compactness
parameter 1/c?, the ratio of the PN specific entropy k& to the Newtonian value ky,
the central values of density r, in units of M/ R3, and the dimensionless ratios P/ T C
and U, /c2.

the stability limit, we see that «, 8, and ¢ are all of order unity. A different behavior
is seen in the I' = 2 and I' = 3 cases, for which the internal structure of the star
remains almost unchanged as the 1PN order parameters get large. We see that o and
B both get relatively large for more compact models, but ¢ is rather small, since the
potential and pressure terms cancel each other to some extent.

We typically find excellent agreement between our single star models and Runge-
Kutta integrations of the equations of structure, with the equations satisfied to well
within a fraction of a percent. The only discrepancy appears at the outer edge of

the star, where surface effects alter the SPH mass profile slightly. This results from a
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Figure 3-2: Radial profiles for the I' = 5/3 single star models. The various lines
correspond, in monotonic fashion, to the stable configurations indicated by dotted
lines in the left panel of Fig. 3-1.
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Figure 3-3: Radial profiles for the ' = 2 single star models. The lines correspond,
in monotonic fashion, to the stable configurations indicated by dotted lines in the
middle panel of Fig. 3-1. '
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M R (T4)e (P/r.c®). (U./c?).
T =2 k/ky — 1.439

10 1.0 0.7490 0.0343  0.0968

0.8 1.025 0.5311 0.0243  0.0747
T =3, k/ky = 1.918

1.0 1.0 0.4051 0.0397  0.0813

0.9 0.986 0.3781 0.0349  0.0757

0.8 0.969 0.3501 0.0299  0.0683

Table 3.2: Properties of the PN polytropic models for NS of varying masses. Here the
equation of state remains fixed for a given adiabatic index. All initial models have
1/¢* = 0.05. Quantities are defined as in Table 3.1.

layer of particles developing at the surface of the stars, with a slight density decrement
immediately within, but involves only a very small fraction of the total mass of the
system.

To construct models for the secondary NS for use in binaries with ¢ # 1, we
kept the same value of the polytropic constant k¥ determined for a primary with
GM/Rc* = 0.05, but we computed models with a lower mass using a relaxation

technique. Note that, in contrast to their Newtonian counterparts, PN polytropes

" do not obey a simple power-law mass-radius relation, and therefore models for the

[ —

secondary cannot be obtained simply by rescaling models for the primary. While
Newtonian polytropes with I' = 2 have a radius independent of the mass (for fixed
k), the radius of a PN T = 2 polytrope increases with decreasing mass. The properties

of NS models with lower masses are listed in Table 3.2.

3.4.2 [Initially synchronized binaries

To construct synchronized systems, our single star models were'pl‘aced in duplicate in
a binary configuration, which was assumed to be in a state of synchronized rotation,

i.e., the velocity of every SPH particle is given as a function of position by

vo =0 x 7. (3.61)




The main difficulty in relaxing PN configurations is in the interplay between # and
w, which not only differ in magnitude but also in direction. Thus, one or the other
can be relaxed in the corotating frame, but not both. Here ¢ was assumed to be zero
in the corotating frame for a relaxed configuration, satisfying the equation above.

We created a method to calculate wy (%), which is not invertible in closed form. As
can be seen from Eq. 3.33, the relationship between particle velocity and momentum
is a function of several potentials at the particle position, through the term containing
A;. Since A; is itself a function of @ (see Eq. 3.21), and vice versa, we need to solve
consistently for both. It was found to be best to use an iterative procedure, which
alternately solves for @ and then uses these trial values in the source terms of the
relevant Poisson equations.

In the initial step, using known values of ¥, we first approximate w, by the

equations
1 ' p,
—= = .62
Biest 2 (3U + T*) (3.62)
- o Biest 'Ug Biest ?
wy = 7y (1 + 6—2 + 22 1+ 2 . (3.63)

The computed value of & enters into the source terms of both U; and C; in Egs. 3.18
& 3.19. Using these two potentials, we calculate A; and S8 from Egs. 3.21 & 3.23, and
recalculate a new approximation to Wy, denoted Wy, from the previous one, W,

by an iterative method, using only % of the correction to avoid overshooting, thus

. 2. 1 B\ (. A
Whew = gwold + g (1 + C_z) (’Uo - C_Q) . (3,64)

It was found that, for the models we tested, about ten iterations would give conver-
gence to within 1 part in 103 to the correct value of ¥ when compared to the value
of ¥(Wnew) calculated by Eq. 3.33. For every timestep afterwards, we followed the
same iteration procedure, and about six iterations were found to produce the same

convergence to the proper values.
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Once convergence to an acceptable solution was found, forces were calculated, and

¥ was estimated by finite differencing,

We relax the binary models at fixed center-of-mass separation r, in the corotating
frame, adjusting  such that the inward force of gravity is balanced exactly by the

centrifugal force. At every time step, we calculate

T 4 2
Q= \/5;_?1’_11 (3.66)

where F,, refers to the net inward force on each component of the binary. Particle

velocities are advanced according to

i] = ’i}fo'rce - L + QZT- (3-67)

trelaw

‘After every time step, the two stars were adjusted slightly to maintain a center of
mass separation at the desired value.

Setting up initially synchronized conditions for binaries which use Newtonian grav-
ity but include radiation reaction effects is much simpler. In the regime where the
dynamical timescale of the neutron stars is much smaller than the characteristic
timescale for gravitational radiation, we expect the stars to evolve through a series of
quasi-equilibrium configurations. If synchronized rotation is assumed, these equilib-
rium configurations can be constructed by adding a centrifugal force and drag term

to the acceleration equation, giving us

i = F = Vi@ + Brot) — (3.68)
relax
where the centrifugal potential is given by
. .
(Prot = 592(272 + y2)' (369)
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The relaxation timescale, teq, s set initially to 1.0, close to the value required for
critical damping of oscillations (RS1). For the purposes of relaxation, the radiation
back-reaction, which is time-asymmetric, is ignored. In addition, during the relax-
ation, we ignore the distinction between velocity and momentum vectors in Eq. 3.45,
taking ¥ = . The rate of rotation is calculated as in the PN case by Eq. 3.66. Once
the binary has relaxed to a suitable initial configuration, it is set in motion, and we

commence the dynamical run. Initial velocities are given by
W, = -y, W, = Qx, (3.70)

and 7 is calculated from w by Eq. 3.33. In the point mass limit, this would reduce to

Eq. 35 of Ruffert, Janka, and Schéfer (1996), who use

16 M3
Ur = _?r_‘* (371)

as their initial condition.

3.4.3 Initially irrotational binaries

Since there is no simple way to relax an irrotational binary configuration, to strict
equilibrium, we used the results of Lombardi, Rasio, and Shapiro (1997) to con-
struct approximate initial conditions. They calculated PN equilibrium solutions for
irrotational binary NS with polytropic EOS, assumed to have self-similar ellipsoidal
density profiles, with the density as a function of radius given by the 1PN expansion
of the Lane-Emden equation. Approximate solutions were determined by minimizing
the total energy of the binary conﬁguration, including 1PN terms. The resulting NS
models are the compressible, PN analogues of the classical Darwin-Riemann ellipsoids
for incompressible fluids (Chandrasekhar 1987, LRS1). Here, we transform our single
star models linearly in three dimensions into triaxial ellipsoids with the proper axis
ratios.

For equal mass binaries, and an initial separation given by r, = 4.0R, we find
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from Table III that the axis ratios are given by a;/R ~ 1.02, az/a; ~ 0.96, and
as/a; ~ 0.96, where a;, as, and a3 are taken to lie along the binary axis (x-direction),
the direction of the orbital motion (y-direction), and the rotation axié (z-direction),
respectively. For binaries with an initial separation of g = 3.5R, we find a;/R ~ 1.05,
az/a; ~ 0.93, and a3/a; ~ 0.93. We adapt the initial velocity pattern of the material

to the ellipsoidal configuration, so that the initial velocity is given by

‘ 2a?
=—-Qull-— 1 3.72
Y v ( a? + a%) - (3.72)
2a2
=Qy(1- 2_1|. .
Uy Yy (1 o a%) (3.73)

It can be verified that this initial velocity field yields zero vorticity in the inertial
frame.

Calculating the proper value of  proves to be much more difficult in PN gravity
than in Newtonian gravity. In Newtonian gravity, the gravitational attraction be-
tween two NS is independent of the tidal deformations of the bodies to lowest order.
Thus, even if the initial configuration of the binary is only near equilibrium, the orbit
calculated for the two stars will be almost perfectly circular (assuming that gravita-
tional wave damping is ignored). In PN gravity, the situation is radically different.
From the PN expression of the gravitational force, Eq. 3.29, which includes terms
proportional to the density of the NS, we see that radial oscillations of each star
about equilibrium will produce an ellipticity in the orbit, although the period will
related to the dynamical timescale for each NS, not the orbital period.

To account for this problem, we alter the standard formula for calculating the
binary angular velocity to account for deviations from the equilibrium value, by ad-

mitting a correction factor x, such that

| [Fl + F?
Q= R 3.74
& 27‘0 ’ ( )

where F, and F?, are the net forces inward acting on the respective members of the

binary. For a Newtonian calculation, x ~ 1.0. For our PN calculations, we calculate
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orbits for x > 1.0, with radiation reaction drag forces turned off, until we find a value
of k for which the binary separation at the end of the orbit has changed by no more
than 0.1%. Typically, the value of x in our runs is in the range x ~ 1.1 — 1.115.
In the top half of Fig. 3-5, we show the biné.ry separation as a function of time for
several runs, all of which have equal-mass irrotational NS with a I' = 3 EOS, but
different values of k. All runs except the curve represented by the thick solid line have
radiation reaction effects turned off. For k = 1.111, we find that the binary executes
a nearly circular orbit. For other values of x the orbit shows the quadratic deviation
from circularity characteristic of an elliptical orbit. The thick solid curve shows the
effect of turning on radiation reaction effects, resulting in a slow binary inspiral. The
bottom half of the figure shows in more detail the effect of radial oscillations on
the binary separation, plotting the radial acceleration of the binary and the central
density of the NS as a fﬁnction of time. We see a clear correlation between the
maximum density of the respective NS, shown as a dashed curve, and the outwardly
directed acceleration of the binary, shown as a solid curve. The numerical scatter
is an artifact of the small number of particles located in the very center of each NS
for the density curve, and of precision limits in the calculation for the acceleration
~curve. When averaged over time, we see nearly perfect correlation between the two

quantities.

3.5 Summary of calculations

We have performed several large-scale SPH calculations of NS binary coalescence,
primarily for the equal-mass case, as well as a series of runs designed to study the
effect of varying the mass ratio g. Table 3.3 summarizes the relevant parameters of
all runs performed. We refer to all runs that included both 1PN and 2.5PN effects
as “PN runs”, while those runs performed without 1PN corrections are referred to
as “N runs.” Note that all runs include the 2.5PN gravitational radiation reaction
effects. We did not perform any new completely Newtonian calculations (except for

a brief test run mentioned in Sec. 5.1).
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Figure 3-5: The binary separation as a function of time for runs without radiation
reaction effects and k = 1.0 (dot-dash), x = 1.1 (short dash), k = 1.111 (thin solid),
k = 1.113 (dotted), and x = 1.2 (long dash), as well as for a run with x = 1.111
including radiation reaction effects (thick solid). In the bottom panel, we show the
radial acceleration of the binary system for the run with x = 1.111 (solid) plotted
against the maximum density in the system (dashed) as a function of time, finding

excellent correlation.
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All runs, unless otherwise noted, use 5 x 10* SPH particles per NS (i.e., the
total number of particles N = 10°), independent of g. The number of SPH particle
neighbors is set Ny = 100 for these runs. Shock heating, which is normally treated
via an SPH artificial viscosity, was ignored, since it plays a negligible role in binary
coalescence, especially for fluids with a very stiff EOS. All Poisson equations were
solved on grids of size 2563, including the space for zero-padding, which yields the
proper boundary conditions. All PN runs were done using 1/c?p, = 0.05 and ¢y 5py =
2.5. Since we have an ambiguity in defining the relative time coordinate for different
runs, we redefine the initial time ¢y of each run in such a way that the time of the
first gravity wave luminosity peak t) =20. As a result, all runs start before ¢t = 0
(the starting time ¢y for each run is given in the third column of Table 3.3).

Run Al is a Newtonian run with a binary containing two identical NS modeled as
I' = 3 polytropes. This run uses Newtonian gravity with radiation reaction (2.5PN)
corrections, and started from an initial separation ro = 3.1 R. Runs A2, A3, A4,
and A5 feature the same initial conditions, but have mass ratios ¢ = 0.95, 0.90, 0.85,
and 0.80, respectively. Unlike A1, in which the simulation ran until a stable triaxial
remnant was formed, runs A2-A5 were terminated after the completion of the first
peak in the gravity wave luminosity.

Run Bl is a PN run, also for two identical I' = 3 polytropes, But with 1PN and
2.5PN corrections included, and an initial separation of 7, = 4.0R. Runs B2 and
B3, like their Newtonian counterparts, correspond to mass ratios ¢ = 0.9 and 0.8,
respectively, and the same shorter integration time.

Run C1 is a Newtonian run (with radiation reaction effects) for two identical
[' = 2 polytropes. Since the ISCO for this softer EOS is located at émaller binary
separation than for I' = 3 (Lombardi, Rasio, & Shapiro 1997), we start this run with
o = 2.9 R. As a test, we compared the results of this run to one with all identical
parameters but with a slightly larger initial separation, 7y = 3.1 R, and found no
measurable differences. Run C2 has a mass ratio of ¢ = 0.8 and the same EOS and
initial separation. Runs D1 and D2 are the 1PN counterparts of C1 and C2, with
I' = 2, an initial separation 79 = 4.0 R, and ¢ = 1 and ¢ = 0.8, respectively. Run C2
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was terminated after the first gravity wave luminosity peak, whereas run D2 was
continued until a stable remnant configuration was reached, to allow for comparison
with D1.

All the previous runs started from a synchronized initial binary configuration. In
contrast, run El started from an irrotational initial condition, with the EOS, mass
ratio, and initial separation as in run B1, and including all 1PN and 2.5PN terms.
It was continued until a stable remnant configuration was reached. Run E2 had the
same I' = 3 EOS, but a mass ratio of ¢ = 0.8, and was started from a smaller initial
separation of 7o = 3.5 R, since binaries with smaller masses take longer to coalesce.
Runs F1 and F2 are similar to E1 and E2 in every way, but use a I' = 2 EOS instead.

Finally, for the sake of testing our irrotational initial condition, we performed three
runs which were primarily designed to test the dependence of the physical results of
the calculation on numerical issues. We performed one run which was identical to
E1, with the exception of the initial separation being set to 7o = 3.5 R. This run was
used to study whether or not irrotational runs would maintain the proper rotation
profile during the early stages of inspiral, and what affect any tidal synchronization
effects would have on the gravity wave signal or other measured quantities.

We also performed runs which differed from the previous testing run by the number
of particles used. We computed coalescences using 5000 and 500,000 SPH particles
per NS (for a total of N = 10* and N = 108 particles, respectively), to study the effect
of numerical resolution on calculations which should develop numerical instabilities
on small scales. The nearest number of neighbors was adjusted in the two runs to be
Ny = 50 and Ny = 200, respectively. The primary consider.ation behind this choice
was the high computational cost of million particle runs, which encourage setting the
initial separation 7y as small as possible to maximize the use of resources available.

In Table 3.3 we list the gravitational formalism (N or PN), the adiabatic exponent
T, the initial spin, the mass ratio g, the initial separation rq, and the log of the number
‘of SPH particles log;, N used for each of the runs described in detail in the remaining
chapters of this work.

In Table 3.4, we show quantitatively some basic numbers pertaining our gravity
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Run | Gravity I'  Spin q o logioV

Al N 3.0 Synch. 1.00 3.1
A2 N 3.0 Synch. 095 3.1
A3 N 3.0 Synch. 090 3.1
Ad N 3.0 Synch. 0.85 3.1
A5 N 3.0 Synch. 0.80 3.1
B1 PN 3.0 Synch. 1.00 4.0
B2 PN 3.0 Synch. 0.90 3.5
B3 PN 3.0 Synch. 080 3.5
C1 N 2.0 Synch. 1.00 2.9
C2 N 2.0 Synch. 090 2.9
C3 N 2.0 Synch. 0.80 2.9

D1 PN 2.0 Synch. 1.00 4.0
D2 PN 2.0 Synch. 0.80 3.5
El PN 3.0 TIrrot. 1.00 4.0
E2 PN 3.0 Irrot. 0.80 3.5
F1 PN 2.0 Irrot. 1.00 4.0
F2 PN 2.0 Irrot. 0.80 3.5
T1 PN 3.0 Irrot. 1.00 3.5
T2 PN 3.0 Irrot. 1.00 3.5
T3 PN 3.0 Irrot. 1.00 3.5

OOt OOl OUt OOt U1 OOt O O Ot Ot O Ot Ut

Table 3.3: Input parameters for the runs described in this work. Gravity refers to
the use of either our 0+2.5PN formalism (N), or our hybrid BDS-based scheme (PN).
The initial spins for all runs were either synchronized (Synch.) or irrotational (Irrot.).
All runs featured 10° total SPH particles, except testing runs T1 and T3, with 10*
and 10% SPH particles, respectively. Testing run T2 differs from run E1 only in the
initial separation, but otherwise contains no differences.
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wave results, as well as the initial time for all runs, and the tidal lag angle 044
which existed at the moment of first contact. As mentioned above, all our runs
start at different initial times ¢o, since we align the relative times such that the peak
gravity wave luminosity occurs at ¢t = 20. During the coalescence, the NS tend to
get misaligned with the axis connecting the two stars. As the NS continuously try to
maintain equilibrium while the coalescence timescale gets shorter and shorter, a lag
angle develops. The inner edge of each NS rotates forward relative to the binary axis,
and the outer edge of each NS rotates backward. We define 6,4 to be the angle in the
horizontal plane between the axis of the primary moment of inertia in the binary and
the axis connecting the centers of mass of the respective NS. For equal-mass systems,
the angle is the same for both NS. For binaries with ¢ < 1 we always find a larger lag
angle for the secondary than the primary. These effects are described in detail in the
remaining chapters.

Each gravity wave signal we compute typically shows an increasing gravity wave
luminosity as the stars approach contact, followed by a peak and then a decline as the
NS merge together. Most runs then show a second gravity wave luminosity peak of
smaller amplitude. For all of our runs we list the maximum gravity wave luminosity

Lmas and maximum gravity wave amplitude A, Where we compute the gravity

h=/h2 +h2 (3.75)

for both the first and second peaks, assuming the latter exists, denoting the respective

wave amplitude as

quantities by labels “1” and “2”. In addition, we show the time ) at which the
second peak occurs.

We continued several of our runs to late times to study the full gravity wave
signal produced during the coalescence, as well as to study the properties of the
merger remnants that may form in these situations. For each of these runs, we list
several of the basic parameters of the merger remnant in Table 3.5, using the values
computed for the remnant at t = 65. We identify the remnant mass M,, defining the

edge of the remnant by a density cut r, > 0.005, as well as the gravitational mass
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Run | to  Bie(deg) | LY c(dhM) | SLO  A(dR@) @
Al | -13 4.2 0.406 2.247 0.062 0.642 33
A2 | -15 3.0,3.5 | 0.328 2.050
A3 | -18 3.0,3.7 | 0.262 1.844
A4 | -22 3.0,4.8 | 0.204 1.654
A5 | -27  3.0,5.0 | 0.157 1.485
B1 | -51 11.2 0.387 2.124 0.121 0.897 37
B2 | -15 10.3,11.1 | 0.228 1.799
B3 | -20 9.1,12.1 | 0.122 1.529
C1 | -13 4.0 0.583 2.383 0.072 0.567 38
C2 | -13 5.1,11.5 | 0.089 1.363
D1 |-102 11.0 0.481 2.128 0.050 0.542 30
D2 | -35 5.2,10.1 | 0.088 1.445 0.053 1.090 31
El1 | -86 7.5 0.374 2.023 0.093 0.807 33
E2 | -39 6.5,84 | 0.156 1.524 0.045 0.602 35
F1 |-105 10.0 0.479 2.129 0.050 0.545 30
F2 | -55 3.8,12.1 | 0.098 1.364 0.056 0.564 35
T1 | -21 7.8 0.358 2.009 0.125 0.932 32
T2 -3 12.0 0.337 1.972 0.087 0.746 30
T3 | -16 5.8 0.356 1.989 0.111 0.907 32
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Table 3.4: Selected quantities from each of the simulations. Note that only some of
the runs were extended until the second gravity wave peak to study the property of
the remnant formed. All other runs were terminated shortly after the first gravity
wave luminosity peak. Here ¢, is the time at which the run was started, and Orag 1S
the lag angle at first.contact, given for both NS (see Sec. 4.2). Quantities involving
the first and second gravity wave luminosity peaks are labeled with superscripts (1)



run | M, My, a, Q. Qeq a;  ax/a; azfar I/
Al |1.78 N/A 054 0439 0.645 1.61 0.81 0.59 1.35
Bl {1.89 1.83 0.72 0.737 0.488 1.77 092 0.53 1.32
Cl1 183 N/A 064 0.821 0602 1.80 0.81 0.50 1.01
D1 190 184 0.71 0.782 0.510 1.76 0.92 0.53 1.19
E1 195 1.88 0.73 0.668 0.435 1.81 094 0.55 1.07
F1 1194 179 081 0.838 0.436 183 096 049 1.01
T1 ({197 191 0.74 0.711 0.433 1.81 094 054 1.10
T2 {197 191 0.74 0.735 0.414 1.80 098 0.b7 1.07

Table 3.5: Properties of the Merger Remnants. Units are such that G = M = R =1,
where M and R are the mass and radius of a single, spherical NS. Here, M, is the
rest mass of the remnant, M, is its gravitational mass, a, the Kerr parameter, 2.
and (2., are the angular rotation velocities at the center and at the equator, and the
a;’s and I;’s are the radii of the principal axes and moments of inertia.

of the remnant in the PN runs, where the gravitational mass, which differs from the
rest mass, is given by My, = [r.(1+d)d3z. Additionally, we list the Kerr parameter
a, = cJ, /M;"T, central and equatorial values of the angular velocity, €. and €,, the
semi-major axis a; and ratios of the equatorial and vertical radii az/a; and az/a,

and the ratio of the principal moments of inertia I5/1;.
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Chapter 4

Cavlculationsh in Newtonian and PN

gravity

Note: This chapter is an edited version of an articletthat was published in Physical
Review D (Faber & Rasio 2000), and is printed here with the editor’s approval. My
co-author was Frederic A. Rasio.

We start our study by examining two calculations of binary coalescence: Run Al,
featuring Newtonian gravity, and B1, using PN gravity. Both simulations included
radiation reaction throughout the entire run, treated in the formalism of Sec. 3.2. For
both runs, we used 50,000 particles per NS (total of ‘1045), with a ' = 3 polytropic
EOS. The two NS are identical. Synchronized rotation was assumed in the initial
condition. The optimal number of neighbors for each SPH particle was set to 100.
Shock heating, which plays a completely negligible role in the case studied here,
was ignored. All Poisson equations were solved .on grids of size 256%, including the
added space necessary for zero-padding. For the 1PN run, we used a compactness
parameter 1/cipy = 0.05 (see Sec. 3.3). In both runs, we used cospy = 2.5 in
calculating radiation reaction terms. Run Al required a total of 600 CPU hours
and Run BI required 1200 hours on the NCSA Origin2000, including the relaxation
phase. Particle plots illustrating qualitatively the evolution of the system are shown

in Fig. 4-1 (A1) and Fig. 4-2 (B1).
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Figure 4-1: Evolution of the system in run Al. Projections of a all SPH particles onto
the orbital (x-y) plane are shown at various times. The orbital motion is counter-
clockwise. Units are such that G = M = R = 1, where M and R are the mass and
radius of a single, spherical NS. Note that the development of a mass-shedding insta-
bility after ¢ ~ 25, and the rapid contraction of the remnant toward an axisymmetric
state at late times.
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Figure 4-2: Evolution of the system in the PN run B1. Conventions are as in Fig. 4-1.
We see in the initial frame that the long axes of the NS are misaligned before contact.
Note also that the mass-shedding is suppressed compared to the Newtonian case.
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4.1 Dynamical instability and the inspiral process

It was shown by RS and LRS that equilibrium configurations for close binary NS be-
come dynamically unstable when the center of mass separation 7 is less than a critical
value. For Newtonian, éynchronized, equal-mass binaries with I' = 3, the ISCO is
at r = 2.95 R. Purely Newtonian calculations for binaries starting from equilibrium
configurations with a separation larger than this value will show no evolution in the
system. Binaries starting from a smaller separation, though, are dynamically unsta-
ble, and coalesce within a few orbital periods, even without the energy and angular
momentum loss due to radiation reaction (RS; New & Tohline 1997; Swesty, Wang,
& Calder 2000). |

In simulations with radiation reaction included, coalescence will always be the
end result. The limiting factor on how large to make the initial separation is the
computing time required for the binary orbit to slowly spiral inward. Ideally, one
should make sure that the stars are in quasi-equilibrium when the orbit approaches
the ISCO and the inspiral timescale undergoes a shift from the slow radiation-reaction
timescale to the much faster dynamical timescale.

Since the effective gravitational attraction between two stars is increased by PN
effects, we expect the ISCO to move outwards when 1PN corrections are included.
This was demonstrated by Lombardi, Rasio, & Shapiro (1997), who used the same
energy variational method as LRS to find eqﬁilibrihm configurations for binary NS
models induding 1PN corrections. Taking into account these results, we used an
initial separation of 7y = 3.1 R for run Al, and r = 4.0 R for the PN simulation,
run B1l. As a consequence, there is an ambiguity in the relative time between the
two runs, which we resolve by adjusting the initial time of both runs such that the
maximum gravity wave luminosity occurs at the same time in each. This was found
to require shifting the time in the N run backwards so that it starts at t = —13, while
the PN run starts at ¢t = —51.

In Fig. 4-3, we show the evolution of the center-of-mass binary separation during

the initial inspiral phase for our runs. Fig. 4-4 shows the inspiral phase of the run
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Al, as well as the inspiral tracks predicted by the classical quadrupole formula for
two point masses, and by the methods of LRS3 for two corotating spheres and two
ellipsoids. We note that the results of LRS3 predict for extended objects a significantly
more rapid inspiral rate, which is confirmed by the numerical run. In addition, we note
that the approach of the ISCO is clearly visible in the plots, where the inspiral rate
switches from the slow radiation-reaction-driven orbital decay to the faster dynamical
infall. This appears to happen at r >~ 2.7 R in the Newtonian case, in good agreement
with previous results. ‘

Comparing the PN run to the Newtonian run, we see that the stability limit must
lie at a larger separation. This agrees with the results of Lombardi et al. (1999),
who find that PN corrections not only move the ISCO outward, but also flatten
out the equilibrium binary energy curve E(r) near the stability limit (where E(r)
reaches a minimum). Following the arguments of LRS3, we conclude that unstable
inspiral begins when the rate of energy loss to gravitational radiation increases inspiral
velocity in Eq. 1.37 to the point where the timescale on which the individual NS must
react to changing conditions grows shorter than the dynamical timescale of the stars.
The condition for unstable inspiral is then encountered further outside the ISCO (as
determined for binaries in strict equilibrium), since PN corrections decrease the left-
hand side. This effect can also be seen in the results of Ayal et al. (2001) by careful
examination of their Fig. 5a. Even though the binary separation in their PN run
has a large initial oscillation, caused by the use of non-equilibrium initial conditions,
it still converges at a much more rapid rate than in their corresponding Newtonian
model. ‘ ‘

Even though the effective stability limits of Newtonian and PN binaries differ
significantly, their actual inspiral velocities are very close before the moment of first
contact, at a separation of r ~ 2.5 R, until the merger of the NS cores. The only
significant difference is the break in the inspiral velocity for run Al at ¢ ~ 20, which
occurs as the cores start to come into direct contact with each other. The lack of this

feature in the PN run will be explained in Sec. 4.2.
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Figure 4-3: Evolution of the binary center of mass separation during the inspiral
phase for the two calculations. The solid line is for the PN run B1, the dashed line
for the Newtonian run Al. The horizontal line represents the dynamical stability
limit for a Newtonian, equilibrium binary, at r ~ 2.7 R. The inspiral rate of the
Newtonian binary shows a break at that separation, whereas the PN binary inspiral
becomes dynamically unstable at a greater separation.
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Newtonian, I'=3, q=1.0

Figure 4-4: Same as Fig. 4-3, but focusing on the early inspiral of the Newtonian bi-
nary. The solid line is the result from the SPH calculation (N run). The dashed line
shows the point-mass approximation, the dash-dotted and dotted lines the approx-
imations for two spheres and two ellipsoids, respectively. See text for details. The
point mass approximation clearly fails when tidal interactions become significant, but
note the excellent agreement with semi-analytic results for extended stars before the
ISCO is encountered.
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4.2 Coalescence

In Fig. 4-5, we show the time evolution of the maximum density in both runs. The
‘maximum density is at the center of either star initially, but it shifts eventually to
the center of the merger remnant. The initial oscillations with a period of 7'~ 2 —3
correspond to the fundamental radial pulsations of the polytropes, and represent the
errors resulting from small departures from strict equilibrium in the initial conditions.
We see that 6p/p ~ 0.02 and 0.01, respectively, for the Newtonian and PN runs, which
provides a measure of the numerical accuracy of the initial conditions. |

As the binary system contracts to separations of 7 < 2.7R, we see a rather
sudden and rapid decrease in the maximum density found at the core of each star,
corresponding closely with the moment of first contact of the two stars, after which
the cores get tidally stretched. For run B1, this follows a gradual increase in the
average density maximum, which is caused by the contraction of each NS in response
to the growing gravitational potential of its companion, rather than a pure tidal effect.
This effect, which seems to result primarily from the weakening of the pressure force
in Eq. 3.28 as a becomes more negative in response to the growing gravitational
potential (from Eq. 3.22), was also seen by Ayal et al. in one of their runs (2001, see
their Fig. 6, run P3). When the center of mass separation reaches a value of r >~ 2.0 R
the maximum density stops decreasing, turning around and increasing sharply as the
cores come into direct contact and merge.

In Fig. 4-6, we show the gravity wave signatures of both runs. The waveforms
in the two polarizations of gravitational radiation are calculated for an observer at
a distance d along the rotation axis of the system'in the quadrupole approximation,
given by Eqs. 1.21 and 1.22. In Fig. 4-7 we show the corresponding gravity wave
luminosity of the system, given by Eq. 1.25. We see that, as the inner NS cores merge,
the gravity wave luminosity peaks for both runs, with ‘the characteristic frequency of
the W:dves increasing like (twice) the rotation frequency of the system. This frequency
increase is more rapid in the PN case, since the inspiral is faster. |

After ¢ ~ 30, the evolution of the Newtonian binary is rather straightforward. A
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Figure 4-5: Evolution of the maximum density in the two coalescence calculations.
The solid curve is for run B1, the dashed curve for the run Al. The sharp decline
in density at ¢ ~ 15 occurs as the two NS are tidally disrupted, followed by a larger
increase as they coalesce.
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Figure 4-6: Gravity wave signatures for the two coalescence runs. The waveforms
are calculated for an observer at a distance d along the rotation axis. The solid
line shows the h, polarization, the dashed line the hy polarization (see Egs. 1.21
and 1.22). At late times in the Newtonian run Al the waveforms show a simple,
exponentially damped oscillation, whereas in the PN run Bl an additional large-
amplitude modulation is apparent.

78




['=3, q=1.0, Synch.

I T T T T LN T I T T T I T T T I

Figure 4-7: Gravity wave luminosity for the two coalescence runs (see Eq. 1.25). The
solid line is for the run B1, the dashed line for the run A1l. The peak luminosity in the
PN run is similar that of the Newtonian run, but secondary peaks occur at t =~ 35,
50, and 70.
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triaxial object is formed at the center of the system, with spiral outflows emanat-
ing from the outer parts of each star. The spiral arms remain coherent for several
windings before slowly dissipating, and finally leaving a low-density halo of material
in the region r/R ~ 2 — 15. During this time, the central triaxial object acts as the
predominant source for the gravity waves as it spins down, leading to a characteristic
damped oscillatory signature, at a luminosity approximately 1/30 that of the peak.
The rise in central density from the initial value at ¢ = 0 to the final value at t = 80
is consistent with what is expected from the mass-radius relation for a Newtonian
polytrope with I' = 3.

This simple picture, which is familiar from many previous Newtonian simulations,
is seen to break down when 1PN effects are taken into account. As is clear from
the upper left panel of Fig. 4-2, at ¢ = 10, just prior to the final coalescence, 1PN
effects cause the long axis of each star to rotate forward relative to the binary axis,
so that the inner part of each star leads the center of mass in the orbital rotation.
This dynamical tidal lag is expected from the rapidly changing tidal forces during
the final inspiral phase (LRS5). It is not to be confused with the tidal lag produced
by viscous dissipation in nonsynchronized binaries (Zahn 1992). The dynamical tidal
lag angle can be estimated analytically for a Newtonian binary whose orbit decays
slowly by gravitational wave emission. Using Eq. 9.21 of LRS5, we estimate a lag
angle 6,4, ~ 0.01 for 1/c2 = 0.16 and r ~ 2R. This is in agreement with the very
small lag angle observed in our Newtonian run (barely visible at t = 10 in Fig. 4—1).‘
In contrast, from our PN run, we find 6),, ~ 0.14, indicating that the more rapid
inspiral can d;amatically increase this effect. | .

As the PN merger proceeds, material from the leading edge of each star wraps
- around the other, so that the cores simply slide past each other instead of striking more
nearly head-on as in the Newtonian case. The result is a gfavity wave peak of nearly
the same amplitude, but of a shorter duration than that of the Newtonian calculation.
At t ~ 25; the maximum density drops slightly, and the gravity wave luminosity rises
again, reaching a second peak at ¢t ~ 37, with a maximum luminosity L, = 0.31 L,

compared to the first peak of luminosity L;. A cursory examination of Fig. 4-2 reveals
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a highly asymmetric, triaxial configuration near this time. The subsequent oscillations
of the two cores in their sliding motion against each other damp out rather quickly,
and the central object becomes more nearly axisymmetric while the maximum density
rises again. A third peak of maximum luminosity L3 = 0.08 L, is clearly visible near
t =~ 57, as is another very slight drop in the central density at that time, and a fourth,
much smaller luminosity peak occurs at ¢ ~ 78.

To better understand this oscillation of the merger, and the corresponding mod-
ulation of the gravitational radiation waveforms, we show in Fig. 4-8 a comparison
between the gravity wave luminosity and the ratio of the principal moments of in-
ertia of the central object in run B1l. As can be seen clearly, the two quantities are
strongly correlated, except for the initial period where the binary is still merging. If
we ignore the details of the internal motion of the fluid, it may be tempting to model
the late-time behavior of the remnant in terms of a simple quadrupole (I = 2 f-mode)
oscillation of a rapidly and uniformly rotating single star. Adopting an average value
for the angular velocity of the central object, Q% = 0.4, and using Eq. 3.30 of LRS5
for the frequency of the quadrupole oscillation of a compressible Maclaurin spheroid,
we obtain a frequency o = 0.38, which give;s us a modulation period Tih0q = 16.6,
very close to what we observe in Figs. 6 and 7.

The occurrence of a second peak in the gravity wave luminosity can also be seen

Jin the PN calculations presented in Ayal et al. (2001) for polytropes with I’ = 2.6,

but the second peak appears considerably less pronounced for I = 2.6 than for " = 3.
This may simply result from the higher central concentration of objects with lower
valuqs of I, which decreases the emission of gravitationallradiation for a quadrupole
deformation of given amplitude. Grid-based Newtonian calculations by Ruffert et al.
(1996) for nonsynchronized binaries with a different EOS also show a second peak
in the gravity-wave luminosity. For Newtonian systems with I' < 2.2, the merger
remnant evolves quickly to axisymmetry and the emission of gravitational radiation

stops abruptly after the first peak (RS1; RS2).
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Figure 4-8: The ratio of the principal moments of inertia in the equatorial plane for
the PN merger remnant of run B1, compared to the gravity wave luminosity at late
times. The times of maximum elongation correspond to maxima in the gravity wave
luminosity, and to decreases in the maximum density in Fig. 4-5 at t ~ 37 and ¢ ~ 57
(and less clearly at t ~ 78).
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4.3 The final merger product

In Fig. 4-9, we show density contours of the central merger remnants in both the
equatorial and vertical planes, defining the remnant to include all material with r, >
0.005. In the top panels, for run Al, the remnant is shown at ¢ = 70, which is
at the end of the calculation. For run B1, we show the remnant at ¢t = 55, which
corresponds to the third gravity wave luminosity peak, and at ¢ = 70, the end of the
simulation and close to a gravity wave luminosity minimum. Axes for the contour
plots are aligned with the principal axes of the remnant. A summary of values for
the principal axes and moments of inertia for the three configurations is presented in
Table 3.5.

We see that the final remnant in the PN calculation is larger and more centrally
condensed than in the Newtonian case, with a higher degree of flattening in the
vertical direction. This is in part because in the PN case less mass and angular
momentum is extracted from the central region and deposited in the halo. Figures 4-
10 and 4-11 show the evolution of the angular momentum of the various components
in both runs. In run Al, most of the angular momentum lost by the remnant has
gone into the halo. For run B1, nearly equal amounts of angular momentum are lost
to the halo and to the gravity waves.

Nevertheless, the axis ratio as/a; in the equatorial plane is approximately the
same for the run Al at ¢t = 70 and for run Bl at ¢t = 55 and at ¢ = 70, indicating a
reasonably constant shape for the outermost region. Further comparison between the
remnants, however, showé that their interior structures are remarkably different. In
the PN remnant, the isodensity surfaces do not maintain a consistent orientation or
shape as we move from the center to the equator of the remnant, indicating that the
structure of the remnant is much more complex than that of a self-similar ellipsoid.
Gravity-wave luminosity peaks are seen to occur when the inner and outer contours
are aligned, leading to a larger net quadrupole moment (this is nearly the case at
t = 55 in Fig. 4-9). Minima occur when the orientations lie at right angles, as can be

seen near ¢ = 70 for run B1 in Fig. 4-9.
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Figure 4-9: Density contours of the merger remnants. The top frames show the
Newtonian remnant of run Al at ¢ = 70, the middle ones show the PN remnant of
run Bl at ¢ = 5, and the lower ones show the latter at ¢ = 70. The left frames
show a cut through the equatorial plane, the right frames through the vertical plane
(containing the rotation axis). Contours are logarithmic, ten per decade, starting from
the maximum density of (7,)mar = 0.567 for the run Bl at ¢t = 55, (74)maz = 0.563 for
the run Bl at ¢t = 70, and (7.)mez = 0.521 for the run Al at ¢ = 70. The axes have
been rotated to fall along the principal axes of the remnant. Note the cusp-like shape
of the contours near the equator in the vertical plane, indicating maximal rotation.
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Figure 4-10: Evolution of the angular momentum in various components in the run
Al. Here Jy is the total angular momentum in the system, J, is for the inner remnant
(defined by the condition r, > 0.005, which includes the entire binary initially, but
only the inner remnant at later times), and Jj is for the outer halo (so that Jy,; =
Jr + Jp). The dotted line shows the initial angular momentum of the system.
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Figure 4-11: Evolution of the angular momentum in various components in the run
B1. Conventions are as in Fig. 4-10.
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In Fig. 4-12, we show the radial mass and rotational velocity profiles of the rem-
nant. Horizontal cuts through the matter indicate that the rotation is cylindrical, with
rotational velocity a function only of the distance from the rotation axis, independent
of height relative to the equatorial plane (the same type of rotation profile has been
obtained from strictly Newtonian calculations; see RS1). Neither case gives a rigid
rotation law. The angular velocity of the Newtonian remnant shows an increase as
a function of increasing radius, whereas the PN remnant shows a decreasing angular
velocity. Thus, both exhibit signs of differential rotation, but in opposite directions.
We find that the centrifugal acceleration and gravitational acceleration become equal
at the outer edge of the remnant for both cases, at r ~ 1.6 R and‘r ~ 1.85 R for the
Newtonian and PN runs, respectively. This is in good agreement with the morphology
of the remnants seen in Fig. 4-9, where a noticeable cusp-like deformation is visible in
the outermost density contours near the equator in the vertical plane. We conclude
that in both runs, the final remnant is maximally and differentially rotating.

The rest mass of the Newtonian remnant at ¢ = 80 is M, = 1.73 M, while that
of the PN remnant M, = 1.90 M. The remaining mass, 0.27 M for the run Al and
0.10 M for the run B1, has been shed during the coalescence, forming the spiral arms
seen in the middle panels of Fiigs. 4-1 and 4-2. These spiral arms later merge to form a
halo of matter around the central remnant. With a crude linear extrapolation from a
halo mass of M}, = 0.27 M for a Newtonian run, with 1/c2p5 = 0, and M), = 0.10 M
for the PN run with 1/¢?p, = 0.05, we might expect that, for physically reasonable
NS with 1/¢% ~ 0.15 — 0.20, the vast majority of the mass will remain in the central
remnant,. However, this result is crucially dependent on our choice of initial spins and
the EOS, and it is limited by the restrictions we have placed on the magnitude of the
1PN corrections. It should also be noted that fully GR calculations of the coalescence
of NS with a I' = 2 EOS suggest that significant mass loss occurs even for extremely

compact NS (Shibata & Uryu 2000).
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Figure 4-12: Enclosed rest mass and radially averaged rotational velocity profiles of
the final merger remnant at t=70 for the two runs. Here, r, is the distance from the
rotation axis, while r is the radius from center. In both plots, the solid line is for the
run B1, the dotted line for the run Al. The dashed line shows the radius for a Kerr
black hole with a = 0.7 (the value we find for the run Bl at t=70). For the rotational
profile, we show only the data for —0.1 < z < 0.1, all other horizontal cuts yielding
similar profiles extending to smaller radii.
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4.4 The final fate of the remnant

By their very nature our calculations cannot address directly the question of whether
the NS merger remnant will collapse to form a BH. Indeed the parameters of our PN
run were chosen so that all 1PN quantities remain small throughout the evolution,
which, for I' >> 4/3, guarantees stability. This can be verified directly by checking, for
example; that the mass distribution in the final merger remnant remains everywhere
well outside the corresponding horizon radius '(see Fig. 4-12). However, given some
of the general properties of the merger remnant as determined by our calculations,
we can ask whether an object with similar properties, but with a more realistic EOS
and higher compactness, would still remain stable to collapse in full GR. For the
coalescence of two 1.4 My NS with realistic stiff EOS, it is by no means certain that
the core of the final merged configuration will collapse on a dynamical timescale to
form a BH (Rasio 2000; Del Noce, Preti, & de Felice 1998).

The final fate of a NS binary merger in full GR depends not only on the NS EOS
and compactness, but also on the rotational state of the merger remnant. It has been
suggested, for example, that the Kerr parameter a, = J,/M g2r of the remnant may
exceed unity for extremely stiff EOS (Baumgarte et al. 1998). This does not appear
to be the case, at least for our choice of EOS. In Fig. 4-13, we show the evolution
of the Kerr parameter throughout the entire coalescence, including only particles for
which the rest-mass density satisfies 7. > 0.005. This cut includes essentially all
matter in the initial stages, and effectively cuts out particles in the spiral outflow
once the coalescence begins, as well as those remaining in the outer halo at the end.
We see that a, is very near unity just prior to the final merger, but, in contrast
to what has been assumed in some previous studies (Del Noce, Preti, & de Felice
1998), it decreases signiﬁcanﬂy during the final coalescence. The decrease occurs
mainly during periods of maximum gravity-wave luminosity, as angular momentum
is radiated away, and during.the mass-shedding phase after ¢ ~ 20, since anguiar'
momentum is transferred from the core to the outside spiral outflow. By the end of

run Bl, a, has decreased to ~ 0.7, well below unity, and certainly not large enough
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to prevent collapse. The final value of the Kerr parameter for the PN run, a, = 0.70,
is considerably greater than that of the Newtonian run, a, = 0.34. The difference
is attributable to the greater mass ejected in the Newtonian run, which carries off a
significant fraction of the angular momentum of the system (see Figs. 4-10 and 4-11).

Quite apart from considerations of the Kerr parameter, the rapidly rotating core
may be dynamically stable. Indeed, most stiff NS EOS (including the recent “AU”
and “UU” EOS of Wiringa, Fiks, & Fabrocini 1988) allow stable, maximally rotating
NS with baryonic masses exceeding 3 M, (Cook, Shapiro, & Teukolsky 1994), i.e., well
above the mass of the final merger core (which is 1.9 M ~ 2.85 Mg for M = 1.5 M in
our PN calculation; see Fig. 4-12). Differential rotation (not taken into account in the
calculations of Cook, Shapiro, & Teukolsky 1994) can further increase this maximum
stable mass very significantly (Del Noce, Preti, & de Felice 1998). For slowly rotating
stars, the same EOS give maximum stable baryonic masses in the range 2.5 — 3 M,
implying that the core would probably, but not certainly, collapse to a BH in the
absence of rotational support.

If the final merger remnant is being stabilized against collapse by rotation, one
must then consider ways in which it may subsequently loose angular momentum.
Further reduction of the angular momentum of the core by gravitational radiation or
dynamical instabilities cannot occur, éince, at the end of the dynamical coalescence,
the core is, by definition, dynamically stable and nearly axisymmetric (i.e., no longer
radiating gravity waves; see Fig. 4-7). The development of a secular bar-mode insta-
bility (a quadrupole mode growing unstably on the viscous dissipation timescale; see
LRS1 and LRS4) has bepn discussed as a way of reducing the angular momentum of
a rapidly rotating compact object (Lai & Shapiro 1995). However, this cannot occur
either for a binary merger remnant because, if the remnant were rotating fast enough
to be secularly unstable, it would still be triaxial. For example, that the point of
bifurcation of the classical Maclaurin spheroid sequence into the Jacobi ellipsoid se-
quence coincides with the onset of secular instability for Maclaurin spheroids (Shapiro
& Teukolsky 1983; LRS1). Note that other processes, such as electromagnetic radi-

ation or neutrino emission, which may also lead to angular momentum losses, take
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Figure 4-13: The evolution of the Kerr parameter a, = ¢J,. /M, 92” for the inner remnant
in run B1 (solid line) and in run Al (dashed line). At no time do we have a, > 1.
The inner remnant (or core) is defined by the same density cut as in Fig. 4-10.
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place on timescales much longer than the dynamical timescale, since it can be shown
that neutrino emission is probably negligible in these cases (Baumgarte & Shapiro
1998). These processes are therefore decoupled from the hydrodynamics of the coa-
lescence. Unfortunately their study is plagued by many fundamental uncertainties in

the microphysics.
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Chapter 5

Initially synchronized PN

calculations

Note: This chapter is an edited version of an article that was published in Physi-
cal Review D (Faber, Rasio, & Manor 2001), and is printed here with the editor’s
approval. My co-authors were Frederic A. Rasio and Justin B. Manor.

As in the previous chapter, we focus here on initially synchronized binary systems,
but expand our study to determine the effect of the choice of EOS and the system
mass ratio ¢ on the gravity wave signals. We begin with a brief qualitative discussion
of the coalescence process for binaries containing NS described by a softer EOS with
I' = 2. In Figs. 5-1 and 5-2, we show the evolution of the system in runs C1 and
D1. Both of these runs are for two identical NS with a I' = 2 EOS, but run D1
includes 1PN effects whereas run C1 does not. These plots can be directly compared
to Figs. 4-1 and 4-2, which shows the evolution of runs A1l and B1 (for two identical
NS with T' = 3). We see that most of the features described in the previous chapter
are present in these calculations as well, with the width of the spiral arms and the
ellipticity of the remnant as the two primary differences. Both of these effects are
well understood. The width of the spiral arms reflect mass shedding occuring over a
larger area in the merger with the softer I' = 2 EOS, which contains more low-density
material in the outer layers of the NS than would a stiffer EOS. It should be noted

that when we speak of “mass shedding”, we mean that matter is ejected from the
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central dense core into an outer halo, but not necessarily to infinity. By the end of
our simulations, much of the matter forming the outer halo is still gravitationally
bound to the system. The more spherical merger remnant present in the merger
with a I' = 2 EOS reflects the fact that such an EOS cannot maintain a permanent
ellipsoidal configuration stably.

As seen in Fig. 5-2, a significant tidal lag angle 6,44 develops in the PN system just
prior to final merging. Values of )., (calculated as the angle between the binary axis
and the principal axis of each component) upon first contact are given in Table 3.3
for all runs. Note that for binaries with mass ratios ¢ # 1, the secondary develops
a larger lag angle than the primary. This effect is much more pronounced with the

addition of 1PN corrections.

5.1 Dependence on the NS EOS

As discussed in Sec. 2.3, our PN calculations of NS binary coalescence are most rel-
evant for stiff NS EOS, for which most recent calculations give values of GM/Rc? ~
0.1 —0.2 (for M ~ 1.5Mg). Even if the true NS EOS were much softer, making
strong GR effects dominant throughout the final binary coalescence, performing hy-
drodynamic calculations in the PN limit would still remain important, since the PN
results provide a»cru.cial benchmark against which future full-GR calculations can be
tested. )

Gravitational radiation wave forms and luminosities for runs Al, B1, C1, D1 are
shown in Figs. 5-3 and 5-4, computed from the formulae found in Eqgs. 1.21, 1.22,
& 1.25. The two polarizati(.)ns of gravity waves are calculated for an observer :;t a
distance d along the rotation axis of the system, in the quadrupole approximation.
As was found for NS with a I' = 3 EOS in the previous chapter, for NS with a I' = 2
EOS PN corrections serve to lower the maximum gravity wave luminosity, but the
effect is more dramatic for the softer EOS. However, regardless of whether we include
1PN terms, the peak gravity wave luminosity is larger for the softer EOS.

Comparing the Newtonian and PN runs in Fig. 5-4, we see that, besides differences
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Figure 5-1: Evolution of the system for Run C1 with I' = 2 and ¢ = 1. This run
includes all radiation reaction but no 1PN effects. Conventions are as in Fig. 4-1.
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P, I'=2, q=1.0,

Figure 5-2: Evolution of the system for Run D1 with I' = 2 and ¢ = 1. This run
includes all 1PN and radiation reaction (2.5PN) corrections. Conventions are as in

Fig. 4-1.
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Figure 5-3: Gravity wave signatures for the runs Al (N, I' = 3), B1 (PN, " = 3),
Cl1 (N, T = 2), and D1 (PN, T = 2). All have ¢ = 1. The solid line shows the
h, polarization, the dashed line the hy polarization, both calculated for an observer
at a distance d along the rotation axis. Note that at ¢ > 60, there is essentially no
gravitational radiation given off by I' = 2 EOS binaries.

97



0.6

0.4

02

L B L L B B
)
—_

Illlllllllll

llllllllllll

5
CLigy

lIIlIIIlIII‘

1I]I1_|71IIT|‘II_I7III||III|IIII|I|7|[III|
T

|Illlll|||ll|

0 20 40 60

Figure 5-4: Gravity wave luminosity for the same runs as in Fig. 5-3. We see clear
evidence for a second gravity wave luminosity peak in both I' = 2 runs, but only in
the PN I' = 3 run.

98




in the maximum luminosity, there are qualitative differences in the shape of the first
luminosity peak. Both PN runs show narrower luminosity peaks than their Newtonian
counterparts. This effect can be attributed to the faster binary infall as the two stellar
cores first come into contact (as seen in Fig. 5-5, which shows the binary separation
r as a function of time).

Slightly different behavior is seen in the Newtonian runs. For the run with a
[' = 3 EOS (A1), we see a decrease in the inspiral rate from ¢ = 20 — 25, which occurs
after the period of maximum gravity wave luminosity, and a simultaneous plateau
in the luminosity immediately after the peak. This corresponds with the onset of
mass shedding, as particles begin to be ejected through the outer Lagrange points
of the system. For the I' = 2 case (C1), we see no apparent decrease in the inspiral
rate, either before or after £ = 20. Correspondingly, this was run showed an almost
completely symmetric luminosity peak with respect to time.

In Fig. 5-6, we show the energy loss to gravitational radiation, calculated as the
integral of gravity wave luminosity over time. We see that the Newtonian runs, A1l
and C1, have higher energy losses than their PN counterparts B1 and D1, respectively,
and that the runs with the softer I' = 2 EOS, C1 and D1, have higher energy losses
than their stiffer counterparts Al and B1l. The effects of EOS and gravity formalism
here are seen to be of equal magnitude, although when we extrapolate toward fully
relativistic physics, we expect the decrease in gravitational energy between Newtonian
calculations and relativistic ones to be more pronounced. Note that energy losses are
measured from the initial point of each run. Thus, since the runs had negative time

offsets, Eqw > 0 at t = 0.
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Figure 5-5: Binary separation r for the same runs as in Fig.
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More surprisingly, perhaps, we note that a second luminosity peak is visible not
only in the I' = 2 PN run (D1), but also in run C1, for aI' = 2 Newtonian coalescence.
In the previous chapter, it was shown that the gravity wave luminosity is extremely
well correlated with the ratio of the first and second principal moments of inertia, I,
and Iy, in effect giving a measure of the ellipticity of the remnant in the orbital plane.
A similar analysis is shown in Fig. 5-7, which compares runs C1 and D1. Nofe that
we have used a higher density cut for this plot than was used for the I' = 3 remnants
in the previous chapter. Here only, we define the inner remnant to consist of all SPH
particles with local densities 7. > 0.04. We see again a strong correlation between
ellipticity and gravity wave luminosity. In run D1, the small-amplitude oscillations
with period T ~ 5 are caused by an interaction with the outer material of the remnant.
If we lower our density cut to include all SPH particles with local densities r, > 0.005
(as in the previous chapter), thereby including more of the tenuous material outside of
the core of the remnant, the moment of inertia ;atio shows only this oscillation, which
damps out over time. Since this material contributes only weakly to the quadrupole
moment, we conclude that it is the dynamics inside the core that controls the gravity
wave signal.

Comparing the results of our run C1, which includes the effects of radiation re-
action, with the completely Newtonian I' = 2 run shown in RS2, we conclude that
the asymmetry induced by the larger tidal lag angle is responsible for the existence
of a second gravity wave luminosity peak, even for systems that eventually reach
oblate, non-radiating configurations. To confirm this, we checked our results against
a completely Newtonian [’ = 2 test run (without radiation reaction terms, and start-
ing from ry = 2.7), and found that a second peak is indeed absent in this case (in
agreement with RS2).

Careful inspection of Fig. 4-7 reveals very small irregularities in the otherwise
smooth gravity wave luminosity at ¢ ~ 33 and 48, which correspond to the secondary
gravity wave luminosity peaks found in run B1. Clearly, the existence of secondary
luminosity peaks seems to be reasonably universal in these simulations. For run Al,

however, modulation of the moment of inertia ratio is virtually absent, so that the
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Figure 5-6: Energy lost to gravitational radiation for the same runs shown in Figs.

5-4, & 5-5.

102




25T

L/,

1.5

0.15

0.1

5
C LGW

|Illl|_LIlI'IILI|

0.05

I'lllllllllllll_rlll‘l‘fl

I

e ——~
—_

Figure 5-7: Ratio of the principal moments of inertia in the equatorial plane for the
remnants of runs C1 (N, I' = 2; dashed lines) and D1 (PN, I' = 2; solid lines), com-
pared to the corresponding gravity wave luminosities at late times. We see a clear
correlation between the two quantities, as the remnants relax towards an axisymmet-
ric, oblate configuration. Here the remnants are defined by the density cut r, > 0.04,
which includes the entire binary initially, but only the inner part of the merger at
later times. '
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effect is extremely small in this case.

5.2 Dependence on the binary mass ratio

The dependence of the peak gravity wave amplitude amplitude, defined by Eq. 3.75,
on the mass ratio ¢ appears to be very strong. In RS2, an approximate power law
Bmaz < ¢°> was derived for nearly equal-mass systems, on the basis of two purely
Newtonian calculations for ¢ = 1 and g = 0.85. This is considerably steeper than the
naive scaling obtained for two point masseé in a Keplerian orbit, which gives Apqez o g.
Such a linear scaling is obeyed (only approximately, because of finite-size effects) by
the wave amplitudes of the various systems prior to final coalescence. For determining
the maximum amplitude during the merger, however, hydrodynamics must be taken
into account. In a system with ¢ # 1, the more massive star tends to play a far less
active role in the hydrodynamics andA, as a result, there is a rapid suppression of the
radiation efficiency as ¢ departs even slightly from unity. For the peak luminosity of
gravitational radiation RS found approximately L., o ¢®. Again, this is a much
steeper dependence than one would expect based on a simple point-mass estimate,
which gives L oc ¢?(1+¢q). The results of RS were all for initially synchronized binaries,
but very similar results have been obtained by Zhuge, Centrella, & McMillan (1996)
for binaries containing initially nonspinning stars with unequal masses.

The role of the primary and secondary is shown qualitatively in Figs. 5-8 and 5-9
for run D2, which uses a I' = 2 EOS with ¢ = 0.3, and included 1PN terms. The
panels on the left show the primary, center panels the secondary, and those on the
right the combined system. We see that the evolutio.n is markedly different from ﬁh.amt
of the ¢ = 1 binary shown in Fig. 5-2. Here, there is a single spiral arm, which is
formed from the secondary as it gets tidally disrupted. Shortly after first contact is
made, a stream of matter flows from the secondary toward the primary, landing on
the trailing side (orbital rotation is counterclockwise), as a result of the orbital motion
and the significant tidal lags present in the system upon contact. As the coalescence

proceeds, the secondary is tidally stretched, with the outer portion spun out of the
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system while the inner part is accreted by the primary. Throughout this evolution,
the primary remains relatively undisturbed, except for a small layer near its surface.
By t ~ 40, mass shedding is triggered and the system develops a single spiral arm,
composed entirely of matter from the secondary as it is completely disrupted. Note
that this single spiral arm is even wider than those seen in the ¢ = 1 coalescence
(with a width comparable to the initial NS radius). There is also an extremely small
amount of mass shedding from the outer edge of the primary, where it joins with a
high-velocity stream of matter from the secondary, on the side opposite the single
spiral arm. Finally, by ¢ ~ 50, what was once the core of the secondary has fallen
onto the primary, and the spiral arm has begun to dissipate, forming a low-mass halo
around the system.

In Figs. 5-10 and 5-11, we show the gravitational radiation wave forms and lu-
minosity for all but two of the synchronized binary simulations. For clarity, we only
show resulfs for runs Al, A3, and A5 in the ' = 3 Newtonian plot, since the other
runs can be safely interpolated from those present. We note that for the I' = 3 EOS,
the morphology of the peaks seen in Fig. 5-4 seems to be present for all mass ratios.
We find narrower gravity wave luminosity peak for PN runs, and broader peaks for
Newtonian runs.

In Fig. 5-12 we show the maximum gravity wave amplitude, defined by Eq. 3.75,
and the maximum gravity wave luminosity for I' = 3 and I = 2 EOS binaries, plotted
as a function of the mass ratio. We find in all cases that the power-law dependence
is steeper than would be predicted by the point-mass approximation. For the gravity
wave strain, we see a slightly steeper power law for Newtonian runs than for PN
runs. For ¢ = 1, Newtonian runs have a higher peak strain, but, for both EOS, the
g = 0.8 binaries show a higher peak strain in the PN case than in the Newtonian
case. We conclude that the strictly Newtonian scaling obtained by RS2, A4 o ¢2,
remains approximately valid for Newtonian binaries with radiation reaction effects,
but is almost certainly steeper than the dependence that will be present in realistic
NS binaries (based on our results including 1PN effects).

For the peak gravity wave luminosity, we see a much stronger dependence on
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Figure 5-8: Evolution of the system for run D2 with I’ = 2, ¢ = 0.8, and 1PN
corrections included. Panels on the left show the primary, center panels show the
secondary, and panels on the right the entire system.
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Figure 5-9: Evolution of run D2,
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Figure 5-10: Gravity wave amplitude h, for an observer located at a distance d
along the rotation axis, comparing systems with different mass ratios. The solid lines
correspond to ¢ = 1, the dashed lines to ¢ = 0.9, and the dot-dashed lines to ¢ = 0.8.
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Figure 5-11: Gravity wave luminosity for the same runs shown in Fig. 5-10. Conven-
tions are in Fig. 5-10.
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Figure 5-12: Dependence of the maximum gravity wave amplitude and luminosity
on the mass ratio (for all the synchronized binaries). The Keplerian point mass
approximation gives Amez < q and Lyqe, o< ¢2(1 + q). Instead, the strictly Newto-
nian hydrodynamic calculations of RS2 give approximate power laws A.; o ¢° and
Lomes < q° for nearly equal-mass binaries containing I' = 3 polytropes. Note that
both axes are plotted logarithmically.
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the EOS. For the softer, I' = 2 EOS, we see that the strictly Newtonian RS2 fit
of Lyez o ¢%, obtained for I' = 3 polytropes, is not nearly as steep as the correct
relation. For I' = 3, we see that the RS2 fit is slightly too steep, although the correct

power law remains steeper than the point-mass approximation.

5.3 Structure of the final merger remnant

It was found in Sec. 4.3 that the addition of 1PN corrections to the hydrodynamics has
the effect of reducing mass shedding for mergers of NS with a I' = 3 EOS. In Fig. 5-
13, we show the evolution of the remnant mass M, for runs C1 and D1, and find the
same behavior for a I' = 2 EOS. We show two different density cuts to highlight this
behavior. By taking all SPH particles with a local density r, > 0.005, we extend our
definition of the “remnant” far into the outer halo. Instead, a density cut of r, > 0.04
includes just the inner part of the remnant, and excludes any material that was
ejected into spiral arms. In both runs mass shedding starts occuring approximately
at the time of maximum gravity wave emission (¢ = 20), and lasts for a total time
0t ~ 10, but in the PN case the mass shedding rate is significantly smaller, leading
to approximately half the total amount of mass shedding as in the Newtonian case.
In Fig. 5-14, we show the radial mass profiles of the inner remnants for the four
synchronized ¢ = 1 runs. We see that the mass profile at small radii for the initially
synchronized runs is primarily determined by the EOS, with the I' = 2 models showing
slightly more central concentration, as would be expected, although the inclusion of
1PN effects does decrease the enclosed mass in a given cylinder. At r ~ 1.2, however,
we start to see significant differences bet.ween runs with and without 1PN corrections.
In the Newtonian runs, matter is ejected much more efficiently to large radii, and thus
the final mass of the inner remnant falls in the range M, = 1.7 — 1.8, whereas for
the PN runs it is M, ~ 1.9. The remaining mass, ejected through the spiral arms,
forms the halo around the inner remnant. Here we can see from the slopes of the
mass profiles near rc,) ~ 2 that for a softer (I' = 2) EOS, the density in the halo near

the inner remnant is still significant, indicating more mass in the inner region of the
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Figure 5-13: Evolution of the remnant mass for the I' = 2, ¢ = 1 runs (C1 and D1).
Suppression of mass shedding in the PN case leads to a higher final remnant mass.
The density cut 7, > 0.04, shown as dashed lines, includes the inner remnant only.
The cut r, > 0.005, shown as solid curves, extends further into the outer halo.
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halo. This is not a surprise since, as already noted by RS2, a softer EOS produces
wider spiral arms, which in turn dissipate more quickly and transport material less
efficiently out to very large radii.

In Table 3.5, we list the total rest mass M,, gravitating mass M,,, and Kerr
parameter a, of the inner remnant at ¢ = 70. Here the inner remnant includes all
SPH particles out to a radius 7 = 2 (The results are rather insensitive to the precise
choice of density cut, since the material in the halo is very tenuous).

A comparison of the angular velocity profiles of the remnants is shown in Fig. 5-
15. We see, quite surprisingly, that the I' = 3 run without 1PN corrections (A1)
leads to a different form than each of the other runs. All are differentially rotating,
but in all other cases the angular velocity drops as a function of distance away from
the rotation axis, whereas in run Al it increases monotonically out to re, ~ 1.4,
which is close to the surface of the inner remnant. Only run A1l agrees with previous
purely Newtonian calculations (RS1, RS2), which found that the angular Qelocity |
increases with increasing distance from the rotation axis. However, in agreement
with all previous studies, we find that the rotation profiles of all our merger remnants
are pseudo-barotopic, i.e., 2 is a constant on cylinders. Recent fully GR calculations
have indicated that differential rotation can increase very significantly the maximum
stable mass of neutron stars (Baumgarte, Shapiro, & Shibata 2000), which makes
it more likely that merger remnants can be dynamically stable against collapse to
a black hole. However, differentially rotating configurations could still be secularly
unstable on a viscous timescale.

Run A1 is the only one that did not produce a second gravity wave luminosity
peak, suggesting that perhaps the combination of Newtonian gravity and the stiffer
EOS can lead to a lower central angular momentum. In turn, this could suppress the
quadrupole oscillations shown in Fig. 5-7. We also note a general difference in rofa—
tional velocity between the PN runs and the Newtonian runs, with both Newtonian
runs showing an increase in angular velocity near the surface of the inner remnant,
from 7¢y) ~ 1.2 — 1.4, whereas the PN runs show a steady decrease through this range

and out into the halo.
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Figure 5-14: Radial mass profiles of the final merger remnants in runs Al, B1, C1,
and D1 (at ¢ = 70). We see that the internal structure is governed primarily by
the EOS, with the I' = 2 models slightly more centrally condensed than the I' = 3
models, although 1PN effects do decrease the enclosed mass at small radii. At larger
radii, we find more mass contained in the PN remnants, since much less mass has
been ejected through spiral arms. '
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Figure 5-15: Angular velocity profiles for the same merger remnants shown in Fig. 22.
We see that all are differentially rotating, and all but the Newtonian I' = 3 remnant
show a decrease in angular velocity with increasing radius for r¢; < 1.3. In general,
at larger radii, the PN models show slower rotation, regardless of the EOS.
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Chapter 6

Irrotational PN calculations

Having completed our survey of initially synchronized binary systems, we move on
to calculations which feature an initially irrotational configuration. Such an initial
state is thought to be the physically realistic description of NS binaries immediately
prior to coalescence, since the timescale for tidally locking the stars into corotation is
considerably longer than the coalescence timescale due to the extremely low viscosity
of NS material (Bildsten & Cutler 1992; Kochanek 1992). Note that in the context
of this work, the term irrotational is taken to mean that the rotation periods of the
NS are large with respect to the the dynamical time of the system, {p ~ 0.07 ms.
Thus, NS with periods of P ~ 1 s would be considered essentially irrotational. We
performed calculations designéd to study the dependence of gravity wave signals on
the EOS and system mass ratio, as well as to study the dependence on the initial
spin of the system, in order to properly determine the relevance of synchronized
calculations, which although unphysical, are easier in general to perform.

Although the coalescence process is essentially the same qualitatively for both
types of initial spin, they present different computational challenges. To demonstrate
this, in Fig. 6-1 we show the evolution of run E1, with a I' = 3 EOS, a mass ratio ¢ =
1.0, and an initial separation of 7o = 4.0 R. It is in all ways similar to run B1, except
that the NS start from an initially irrotational configuration. Rather than plot SPH
particle positions, we instead show the density contours of the matter, overlaying the

velocity of the material in the inertial frame. Unlike the case of initially synchronized
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binaries, in which the material maintains a small velocity in a frame which corotates
with the binary throughout the period prior to first contact, in irrotational binaries
material on the inner edge of each NS is counterspinning in the corotating frame,
and thus we see a large discontinuity in the tangential velocity when first contact is
made. This surface layer, initially at low density, is Kelvin-Helmholtz unstable to the
formation of turbulent vortices on all length scales. Meanwhile, material on the outer
edge of each NS has less angular momentum in an irrotational binary configuration
than in a synchronized one. Thus, there is less total angular momentum in the system,

and mass shedding is greatly suppressed, as we will discuss further in Sec. 6.2.

6.1 Tests and results

There are a number of difficulties which are introduced by an irrotational binary.
One consideration is the spurious viscosity found in any numerical scheme, which is
significantly larger than the true physical viscosity in this case. Because of this, any
calculation which features a long evolution prior to merger will show some degree of
synchronization. The corresponding advantage in decreasing the initial separation
ro must be balanced against the benefits of a large initial separation, primarily in
allowing the initial deviations from equilibrium to dissipate.

Additionally, the Kelvin-Helmholtz unstable layer which forms at the surface of
contact between the NS presents a numerical challenge. Inherently, the results should
be sensitive to some degree upon the numerical resolution of the calculation. However,
the large-scale physics of the merger should remain qualitatively unchanged. To test
the robustness of our results, we raﬁ calculations using a broad range for the number
of SPH particles, seeking to determine the number required in any calculation to

achieve numerical convergence.

6.1.1 Initial separation of irrotational configurations

There are a number of competing factors that affect the determination of which initial

binary separation 7 to choose for our calculations. Traditionally, the standard choice
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Figure 6-1: Density contours overlaid with velocity vectors for the evolution of run
E1l, with a I’ = 3 EOS, q=1, and an irrotational initial condition. Upon first contact
of the NS, a surface layer forms as counterstreaming material forms turbulent vortices.
As the cores of the respective NS continue to inspiral, we eventually find the formation
of a merger remnant with a well-organized and coherent circular differential rotation
pattern.
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is the largest possible separation for which the calculation can be performed using
a reasonable amount of computational resources. This method has the advantage
that any initial deviations from equilibrium will generally be damped away before the
NS actually make contact. It also allows for the best determination of the dynamical
stability limit, since stellar oscillations can play such a large role in calculations which
use PN gravity. There are caveats, though, in the case of initially irrotational binaries,
since numerical viscosity inherently present in SPH codes can lead to some degree
of vorticity in the respective NS during the inspiral phase. Thus, by the time the
merger takes place, the stars will no longer be completely irrotational. To study this
effect, we calculated mergers for equal-mass NS with a ' = 3 EOS starting at initial
separations of ro = 4.0 and 7o = 3.5. In the top panel of Fig. 6-2, we show the binary
separation as a function of time for both runs, with the initial times defined such
that the respective gravity wave luminosity peaks are simultaneous. We see good
agreement throughout, although the during the merger itself we do show a slight
discrepancy, which is attributable in part to greater mass shedding in the calculation
started at greater separation.

It should be noted that in both runs the most noticeable effect on the binary
separation as a function of time is a slight ellipticity in the orbit, with a period
corresponding to the orbital period of the binary itself. This should not be seen as
evidence that the initial oscillations about equilibrium are unimportant in dynamical
runs which include radiation reaction effects. From the top panel of Fig. 3-5, we know
that oscillations are visibly present even when radiation reaction effects are included.
While these oscillations in the_ infall velocity of the binary may be of small amplitude,
they are at a frequency an order of magnitude larger than that of the orbital frequency,
and thus play a strikingly more dramatic role in the inwardly directed acceleration of
the binary.

In the bottom panel of Fig. 6-2, we plot the net spin angular momentum of the
NS about their own centers of mass as a function of time. We see that the NS do
gradually acquire a rotation pattern which corresponds to the direction of corotation,

although there is nowhere near enough time to synchronize the binary. The effect
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Figure 6-2: Binary separation (top panel) and spin angular momentum (bottom
panel) as a function of time for irrotational binary systems with a I' = 3 NS EOS
and q=1.0, started from an initial separation of ro = 4.0R (solid lines) and ry = 3.5R
(dashed lines). The binary with greater initial separation does show greater spin
angular momentum throughout the calculation prior to merger.
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is greatly enhanced immediately prior to merger in both case, as the NS develop
tidal lag angles and become distorted. By the time the binary initially started from
To = 4.0R reaches a separation of r = 3.5R, the net angular momentum around each
NS center of mass is equal to approximately 0.5% the value we would expect should
the binary be synchronized. This difference persists throughout the inspiral phase
when the two calculations are compared.

In Fig. 6-3, we compare the gravity wave forms and luminosities for the two runs.
We find excellent agreement between the two wave forms, both in amplitude and
in phase. Both runs show the modulated, damped gravity wave luminosity which
is characteristic of all runs we have computed using PN gravity. There is a slight
difference in the amplitude of the signal during the second gravity wave luminosity
peak, but we expect the difference to be minor compared to effects such as uncertainty
in the equation of state and the larger issue of a proper relativistic treatment of
gravitation.

To highlight the difference in the effect of our initial separation on our final results,
we show the final mass and angular velocity profiles of the remnants for the two
calculations in Fig. 6-4. The results are in good agreement, although we see that
the greater spin angular momentum of the run started at greater initial separation
leads to approximately three times as much mass being deposited in a halo which
surrounds the remnant while remaining gravitationally bound to it. In both cases,
however, the total mass in the halo is less than 1% of the total system mass. The
inner region of the remnant in the run started from ro = 4.0 actually spins slightly
s}ower than in the run started further inward, even _though the NS have a greater
spin angular momentum at the moment of first contact, but only because angular

momentum transport outward was marginally more efficient in this case.

6.1.2 Dependence on numerical resolution

A serious problem for all irrotational calculations involves the surface layer that de-
velops between the two NS upon first contact. An irrotational initial condition leads

to a large velocity shear between the outer surfaces of the respective NS, since both
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Figure 6-3: Gravity wave forms in both polarizations (top and middle panel) and
gravity wave luminosities (bottom panel) for the two runs described in Fig. 6-2,
calculated from Eqgs. 1.21, 1.22, & 1.25. The agreement is excellent throughout,
except for a slight difference in the amplitude of the second gravity wave peak.
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Figure 6-4: Angular velocity as a function of cylindrical radius (top panel) and en-
closed mass as a function for the remnants of the runs shown in Fig. 6-2. The profiles
are taken at T' = 65 for both runs. We see that mass shedding to larger radii is more
efficient for the calculation started from ro = 4.0, but that in both cases virtually all
the matter in the system ends up in the remnant itself. The inset shows the profile
at the outer edge of the system, indicating that no more than ~ 0.5% of the material
is ejected to larger radii.
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are counterspinning in the corotating frame. This leads to the formation of a vortex
sheet at the surface of contact which is Kelvin-Helmholtz unstable on all physical
scales. Such instabilities are extremely worrisome for numerical calculations, which
cannot accurately model the small-scale behavior of the unstable region.

In order to study the effect of resolution dependent effects on the gravitational
wave signals derived from NS mérger calculations we performed three calculations
with a wide range in the number of SPH particles used. Respectively, they use
5 x 10%, 5 x 10*, and 5 x 10° particles per NS (i.e,, N = 10% 10° and 10° total
SPH particles). The optimal number of neighbors is set to Ny = 50, 100, and 200
respectively for the runs. We believe that the last of these stands as the most detailed
calculation ever done of a binary NS merger.

A comparison of the gravity wave signals in both polarizations, as well as the
gravity wave luminosities, is shown in Fig. 6-5. We see that the lowest resolution run
produces a gravity wave signal qualitatively different than higher precision runs, due
in part to large initial oscillations. As all three calculations featured relaxed single-
star components which were linearly rescaled into an ellipsoidal configuration, we
conclude that the amplitudes of the initial fluctuations in the gravity wave signal result
primarily from statistical effects associated with sampling errors. The two runs with
higher resolution show good agreement throughout the calculation, producing nearly
equal gravity wave luminosities. Reassuringly, the gravity wave signals produced by
the respective runs remain in phase throughout as well, indicating that calculations
that use N = 10° can indeed model well the large-scale effects associated with the
merger process. .

The vortices which form at the surface of contact are shown in detail in Fig. 6-6.
Density contours are overlaid with velocity vectors, which are plotted in the corotating

frame. To define this frame, we use a particle-averaged tangential velocity, such that

Q, = i mal(zvy — yvz)/rcyl]i’ (6.1)
Ei mi(rcyl)i

where the cylindrical radius is defined as r.,; = v/z? + y2. The top panels show the
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Figure 6-5: Gravity wave luminosities (top) and waveforms (middle and bottom) for
calculations using various number of particles. The dotted curve corresponds to 10*
SPH particles, the solid curve to 10°, and the dashed curve to 10%. We see that
the two highest resolution runs agree almost perfectly. The lowest resolution run is
more susceptible to initial deviations from equilibrium, and shows some qualitative
differences with the higher resolution runs, especially after the first gravity wave
luminosity peak.
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evolution of the run with 10* SPH particles, with the middle and bottom panels
representing the runs with 10° and 10° SPH particles, respectively. We see in the
leftmost panels the state of the three runs at ¢+ = 20. Immediately apparent is
that vortices have begun to form in the lowest resolution run, whereas in the higher
resolution run there is very little sign of particles mixing, except at a large distance
from the center of the forming remnant along the vortex sheet. By ¢t = 25, shown in
the center panels, we see that the lowest resolution run continues to look qualifatively
different than the other two calculations. There is a slight difference between the high
resolution calculations with regard to the direction of the material flowing along the
vortex sheet. In the highest resolution run, the streams of material flow nearly in
a straight line from one vortex to the other, whereas in the middle run, there is a
larger region of material which is accelerated toward the very center of the remnant.
Overall, though, there is excellent agreement between the two calculations. Finally
by t = 30 in the rightmost panels, we see that the vortices formed have merged into
the center of the remnant, leaving a characteristic differentially rotating patter. It is

more coherent for the higher resolution runs, especially the run with 10® particles.

6.2 Equal-mass calculations

To study the effect of the choice of EOS on the evolution of irrotational NS binaries,
- we calculated mergers for both choices of EOS (I' = 3 and I' = 2 polytropes) with
equal-mass NS, each containing N = 5 x 10* SPH particles, with an initial separation
of ro = 4.0R. A comparison of the binary separations, along with the gravity wave
luminosities and wave forms are shown in Fig. 6-7. Immedi.ately apparent is a dif-
ference in the location of the dynamical stability limit for the two calculations. The
orbit of NS with a softer EOS remains stable at separations where the stiffer EOS has
already begun to plunge inward toward merger. We see that as in the synchronized
case presented in Sec. 5.1, the peak gravity wave luminosity is larger for the softer
choice of EOS, but after a secondary luminosity peak, the remnant relaxes toward a

spheroidal, non-radiating configuration, with essentially no emission whatsoever after
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T ~ 40. We also note that the secondary peak occurs sooner after the primary peak,
by a factor of ~ 30%.

Even though they are presumed to be unphysical, calculations started from a
synchronized initial condition make up much of the body of work performed to date
on the binary NS coalescence problem. Noting this, we compare our irrotational run
with a ' = 3 EOS, ¢ = 1.0, and an initial separation of 7o = 4.0 to one similar in every
respect but started with a synchronized initial condition. Comparing the evolution of
run E1, shown in Fig. 6-1 to the evolution of run B1, shown in Flg 4-2, we see that
in both cases, the stars develop a large tidal lag immediately before merger, leading
to an “off-center” collision and a highly asymmetrical merger, which is found in both
cases to persist until £ ~ 50.

In the top panel of Fig. 6-8, we see that the inspiral tracks do not align particularly
well. Synchronized binaries contain more total energy, and are less dynamically stable
than irrotational ones, leading to a more rapid inspiral, even before the stability
limit is reached. Additionally, the binary separation “hangs up” even earlier, at a
separation of r = 2.0, indicating the onset of mass shedding. This is similar to
what was seen in Sec. 6.1.1, where the run which had acquired greater spin angular
momentum showed greater mass shedding, but the effect is greatly magnified in the
synchronized case. The middle and bottom panels of the figure show the gravity
wave forms and luminosity, respectively, for two runs. While the initial peaks are
similar for both runs, both in amplitude and morphology, the secondary peaks are
vastly different. The secondary peak for the synchronized calculation is considerably
stronger than the irrotational case, and delayed relatiye to it. We conclude that
while the EOS seems to be the dominant factor in determining the gravity wave
signal during the merger itself, the initial spins of the NS play a key role in the
evolution of the remnant, as well as affecting the orbital dynamics during inspiral.

To better understand the features found in the gravity wave forms of these calcu-
lations, particle plots for the runs described above are shown in Fig. 6-9. Comparing
the leftmost panels, we see that at 7' = 20, when the gravity wave luminosity peaks,

the mass configurations are qualitatively similar, although the run with the I' = 2
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Figure 6-7: Binary separation (top panel), gravity wave forms (middle panels) and
gravity wave luminosity (bottom panel) as a function of time for our irrotational,
equal-mass runs started from ry = 4.0. The solid curve corresponds to NS with a
I' = 3 EOS, dashed to a I' = 2 EOS. The dynamical stability limit for the softer EOS
lies within that of the stiffer one. The softer EOS also results in a higher peak gravity
wave luminosity, but no late-time gravity wave emission. ’
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Figure 6-8: Binary separation (top panel), gravity wave forms (middle panels) and
gravity wave luminosity (bottom panel) as a function of time for our equal-mass,
I = 3 EOS runs, started from an irrotational (solid) and a synchronized (dashed)
initial condition. The synchronized run contains more energy and is relatively more
dynamically unstable. While the initial peaks in the gravity wave luminosities are of
similar amplitude, the secondary peaks are much more luminous for the synchronized
binary.
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EOS shows more low-density material at the edges of the newly forming remnant,
conforming to the general density profile expected of a softer EOS. More subtle is
the greater extension present in the synchronized run. Since material on the outside
of each NS has greater angular momentum when a synchronized initial condition is
chosen, the calculation shows much greater efficiency at channeling material outward
during the final moments of inspiral. This difference is made abundantly clear by a
comparison of the calculations at 7' = 30, shown in the center panels. We see exten-
sive mass shedding from the synchronized run, much less from the irrotational runs.
There is significantly more mass shedding from the run with the softer EOS, but most
of the material remains extremely close to the remnant. Finally, by T = 45, we see
that the softer EOS produces a nearly spherical remnant, whereas the calculations
with a stiffer choice of EOS produce remnants which are clearly ellipsoidal, and will
continue to radiate gravity waves for some time, albeit at a much lower amplitude
than at the peak.

The strong influence of the choice of both EOS and spin on the final state of the
remnant is shown in Fig. 6-10. In the top panel, we see the angular velocity profiles
of the remnants at 7" = 65. We see that the choice of EOS plays an important role
near the center of the remnant, but at r > 1.0R, the velocity profiles are essentially
identical. The pattern holds as well for the mass profiles, which are shown in the
bottom panel. The softer EOS leads to a more centrally condensed remnant, as we
would expect, but both remnants formed in irrotational calculations contain virtually
all the system mass within r ~ 2.0R, with no more than 1% escaping to larger
radii. There is slightly more mass shedding past this point for the softer choice of
EOS, since more of the low-density material originally found at the edges of the
NS is shed through the outer Lagrange points of the system. By comparison, the
initially synchronized run sheds almost 5% of the total system mass past r > 2.0R,
even though the angular velocity profile at small radii is nearly the same as for the

irrotational run with the same choice of NS EQOS.

131



Figure 6-9: Particle plots for the runs described in Figs.6-7 and 6-8. The top panels
show the I' = 3 Irrotational run, the middle panels the I' = 3 Synchronized run, and
the bottom panels the I' = 2 Irrotational run. The plots represent the configuration
of all SPH particles at T = 20 (left), T = 30 (center), and T = 45 (right). We see
that mass shedding is more sensitively dependent on the initial spin, but the remnant
ellipticity, and thus the long-term gravity wave emission, is dominated by the choice
of EOS.
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Figure 6-10: Angular velocity as a function of cylindrical radius (top panel) and
enclosed mass as a function for the remnants of the equal-mass runs shown in Figs.6-
7 and 6-8. The profiles, all taken at T = 65, correspond to the irrotational runs with
I' = 3 EOS (solid) and I' = 2 EOS (dashed) and the synchronized run with ' = 3
EOS (dotted).
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6.3 Unequal-mass calculations

Even though all well-measured NS masses in relativistic binaries are roughly con-
sistent with a single NS mass Mygs =~ 1.4M (Thorsett & Chakrabarty 1999), it is
important to consider cases where the two NS have different masses. The roles played
by the primary and secondary in such a system are remarkably different from the pic-
ture developed above for equal-mass systems. In Sec. 5.2, we found that the primary
generally remains virtually undisturbed in unequal-mass mergers, falling toward the
middle of the newly forming merger remnant. The secondary is tidally disrupted
prior to merger, forming a single thick spiral arm. Most of the material originally
located in the secondary eventually forms the outer region of the merger remnant, but
a significant amount of material is shed to form a thick torus around the remnant. In
Fig. 6-11, we show particle plots for irrotational runs with a mass ratio ¢ = 0.8 and
both choices of EOS. In the leftmost panels, which show the respective calculations
at ¢ = 20, we see that the secondary, located on the left, is tidally stretched as it
falls onto the primary. For the softer (I' = 2 polytropic) NS EOS, we see a greater
extension of the the secondary immediately prior to merger, as well as early mass
shedding from the surface of the brimary, as material from the secondary essentially
blows it off the surface of the newly forming remnant. This process continues, so that
by T = 30 (center panels), the secondary has begun to shed a considerable amount
of mass in a single spiral arm which wraps around the system. Much like in the
equal-mass case, the spiral arm is much broader for the softer EOS. Mass loss from
the primary is greatly reduced in the system with the stiffer EOS, with only a scat-
tering of particles originally located in the primary lifted off the surface. Finally, by
T = 45 (right panels), we see that the spiral arm has in both cases begun to dissipate,
leaving a torus around the merger remnant containing approximately 3 — 4% of the
total system mass.

Although the merger process is significantly different for equal-mass and unequal-
mass binaries, the details of the inspiral phase are reasonably similar. In particular,

the evolution of the binary separation for runs with ¢ = 0.8, shown in the top panel of
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Figure 6-11: Particle plots for the irrotational runs with mass ratio ¢ = 0.8 and a NS
EOS given by a I" = 3 polytrope (top panels) and a I' = 2 polytrope (bottom panels).
From left to right, we see snapshots taken at T' = 20, T = 30, and T' = 45, showing
in both cases the tidal disruption of the secondary, the formation of a single spiral
arm during mass shedding, and the eventual creation of a massive torus around the
merger remnant.
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Fig. 6-12 is roughly similar to what was found in Fig. 6-7 for binaries with ¢ = 1.0. For
both choices of the NS EOS, the dynamical stability limit is located at approximately
the same separation for both ¢ = 0.8 and ¢ = 1.0 binaries, although prior to the onset
of instability the more massive equal-mass binaries show a more rapid stable inspiral.
As we found before, the dynamical stability limit occurs further inward for the softer
choice of the NS EOS.

In Sec. 5.2, we found that the scaling of the gravity wave amplitude and luminosity
as a function of the system mass ratio followed a steeper power law in synchronized
binaries than would be predicted by Newtonian point-mass estimates, with the dis-
crepancy resulting from the unequal role played by the two components during the
final moments before plunge. The primary, which remains relatively undisturbed,
contributes rather little to the gravity wave signal, especially during the final mo-
ments before coalescence. Thus, the gravity wave power is reduced as the mass ratio
is decreased. Similar results were found for PN calculations of synchronized binaries,
especially a steeper decrease in the gravity wave luminosity as a function of the mass
ratio for binaries with a soft NS EOS. |

In the middle and bottom panels of Fig. 6-12 we show the gravity wave forms
and luminosity, respectively, for the irrotational runs with ¢ = 0.8. We find the same
strong decrease in the gravity wave power, especially for the softer EOS. We expect
that there should be a strong observational bias towards mergers with equal-mass
components should NS-NS binaries be seen with LIGO or other detectors, especially
if the NS EOS is extremely soft. Even if the physical NS EOS is as stiff as our I' = 3
polytropic model, we expect'there to be a considerable difference in cosmic volume
for which mergers will eventually be above noise thresholds for binaries with mass

ratios of g = 1.0 and ¢ = 0.9.
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Figure 6-12: Binary separation (top panel), gravity wave forms (middle panels) and
gravity wave luminosity (bottom panel) as a function of time for our irrotational
calculations with mass ratio ¢ = 0.8 started from r¢y = 3.5, shown in Fig. 6-11. The
solid and dashed curves correspond to a I' = 3 and ' = 2 polytropic NS EOS,

respectively. We see that gravity wave production is significantly suppressed for the
softer, I' = 2 EOS.
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Chapter 7

Gravity wave power spectra

While it is important to compute templates for the gravity wave spectra that will be
produced in coalescing NS binaries, it is at best an inexact art, which is made ex-
tremely difficult by uncertainties in the EOS of physical NS. Given that the detection
of NS coalescence events may be easiest for narrow-band detectors, it is important to
‘understand the frequency dependence of the gravity wave signal as well as the time
behavior. In particular, the frequency dependence of the signal is not troubled by
issues of phase-matching that will make template fitting almost impossible for the
first detected signals. Instead, the power spectrum yields key information about the
strongest features found in the signal, and since the characteristic frequency of the
gravitational wave signal sweeps upward during the merger, does allow a glimpse into
the time history of the evolution.

Zhuge, Centrella, and McMillan calculated the first power spectra for numerical
calculations of binary mergers (1994; 1996), for a wide variety of system parameters.
They found that the energy lost to gravity waves per unit frequency interval is given
by

dE 7

7 = 2@ (R D + 1R (D) (7.1)

where the averages are taken over time as well as solid angle. In terms of the compo-
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nents of the quadrupole tensor, the expression is given by

dE

2G'
ar @ _ G QP + 109 - O©
7 = [ (102 — Q217 + 102 ~ Q21? + Q% Q1) +

= (1627 +108) + |@§22|2)] . (72)

In order to properly treat the complete time behavior of the wave form, we must
include that part which represents the history of the binary system before the dynam-
ical phase of the coalescence calculation starts. Thus, we attach a point-mass inspiral
wave form, hereafter referred to as the inspiral subcomponent, onto the beginning
of the signal calculated in our dynamical runs, hereafter referred to as the merger
subcomponent, with the quadrupole tensor of the inspiral subcomponent assumed to

have the form

Qua(t) = —Qyy(t) = A(t)sin(4(t)) (7.3)
Qay(t) = A(t)sin(4(t)) | (7.4)
sz(t)zsz(t)zQyz(t) = 0, (7'5)

with amplitude and phase are given by

_ . 2Mup
AW = QO+ o (7.6)
#1) = - /tow(t)dt (7.7)
, M
w(t) - (1.0+6)\j[00(1 )025]3 (7'8)

with ao the initial binary separation and M and u the total and reduced masses of

the system, respectively. The time constant %y, is given in familiar fashion by

5 4
5 g

t
0~ 256 G3 uM?

(7.9)

The correction factor € is used to account for finite size effects present in the numerical
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calculation of the quadrupole moment, and is determined by matching the amplitude
of the point-mass signal to the initial amplitude calculated during the dynamical
phase of the merger. Typically, it is no larger than 3%. The correction factor € is
used in a similar way to match the initial angular velocity of the system, and is of
similar magnitude. For the point-mass approximation, the gravity wave spectrum is
known to follow the power law form dE/df « f s, up to the characteristic frequency
at which the inspiral piece is truncated and our dynamical calculation attached. It
is important to note that the power spectra components derived from the point-mass
inspiral and our merger calculations are essentially independent of each other except
in a thbe narrow frequency band characteristic of the crossover between the two. Thus,
the power spectrum calculated for the merger calculation itself is unaffected by the
details of the inspiral.

While it is true that the stiff EOS we use can support a long-lived quadrupole
oscillation, we have found a modulated gravity wave signal at late times in all runs
calculated in PN gravity. This differs significantly from previous purely Newtonian
results (see, e.g., RS). As aresult, we generally find that the gravity wave luminosity at
late times is generally more than an order of magnitude lower than at peak. Including
a fit to the late time behavior of the gravity wave forms, therefore, does not change
the power spectrum in any significant way.

In Figs. 7-1 and 7-2, we show the power spectra computed for Newtonian run Al
and PN run E1. In both figures, the dashed and dotted curves represent the power
spectra derived from the merger and point-mass inspiral subcomponents, respectively,
- with the heavy solid line representing @he combined spectrum.

We see immediately that there is a signiﬁcant difference in the power emitted
between 700 — 2000 Hz. This is directly attributable to the faster inspiral rates found
in PN calculations. Since the binary system spends less time at a given characteristic
frequency, the power emitted is greatly suppressed by the addition of 1PN effects.

' The difference in the “cliff frequency”, where the power spectrum deviates from the
point-mass limit is the best indicator of the start of dynamical instability. In general,

the characteristic frequency of the merger sweeps upward monotonically throughout
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Al. We show the point-mass inspiral (dotted) and merger (dashed) subcomponents
of the run, along with the combined spectrum (heavy solid).
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the coalescence process. The sharp peaks at f ~ 2000 Hz and f ~ 3000 Hz, there-
fore, result from emission at the gravity wave luminosity peak and during the remnant
oscillation phase, respectively. Unlike some previous Newtonian results Zhuge, Cen-
trella, & McMillan (1996), we find the amplitude of these peaks to be well below
_the point-mass prediction, by a factor of almost three and five, respectively. No cal-
culation we have performed with our PN formalism has produced power above the
point-mass prediction in any frequency range, indicating that the PN corrections not
only enhance the dynamical instability of a binary system, but also cause a damping
of the total gravity wave emission by shrinking the timescale dufing which the gravity
wave luminosity is at its highest values.

In the top panel of Fig. 7-3, we show the power spectra computed for our I' =
3 EOS, equal-mass calculations, which were started at initial separations of ry =
3.5R and rp = 4.0R. We see there is general agreement above ~ 1 kHz, but a
slight discrepancy at the characteristic frequency of the crossover between point-mass
inspiral and our merger calculations. We find at separations of r = 3.5 — 4.0R,
the binary does inspiral faster than the point-mass formula would predict. As the
code has been extensively tested and shown to reproduce Newtonian results in this
separation range, we attribute the effect to the PN gravitational formalism being

used. Assuming quasi-equilibrium holds true in this regime, the inspiral rate should

dr dE dE\
& (%)gm (d—r) (7.10)

equil

be given by

-1
where (@) is the energy loss rate to gravitational radiation, and (@) is
di g"ra'u

dar / equil
the change in the total energy of a binary cdnﬁguration with reépect to sepa,:ation
for a quasi-equilibrium sequence of binary NS models. Since the former is nearly
equal to the Newtonian value, we conclude that the slope of the equilibrium energy
curve is made smaller by the addition of PN corrections to the gravitational potential
| energy and other terms in the total energy. While there must exist a minimum in

the equilibrium energy curve at some separation, representing the innermost stable

circular orbit (ISCO) of the sequence, it will be masked by the dynamical nature of
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these calculations. The binary system undergoes a plunge phase not when the system
reaches the ISCO, but rather when it is no longer to main quasi-equilibrium because
the inspiral timescale grows comparable to the dynamical timescale of the NS.

Notable in the figure are the same sharp peaks at f ~ 2000 Hz and f ~ 3000 Hz,

“which represent emission at the gravity wave luminosity peak and during the remnant
oscillation phase, respectively. Assuming that the remnant is stable against gravita-
tional collapse and that a BH does not form, it should be possible to use narrow-band
high-frequency detectors to study the NS EOS by tracing the sharp peaks found in
the spectrum. If either oscillation frequency was measured, it could yield important
information about the angular momentum present in the system and, in a secondary
way, about the moments of inertia of the individual NS, the details of the remnant
they form, and thus the EOS.

In the bottom panel of Fig. 7-3 we compare the power spectra of two of the runs
used to study the dependence of the gravity wave signal on numerical resolution.
We find that the spectra are similar, especially with regard to frequency regime of
remnémt oscillations, but disagree by a significant amount at lower frequencies. It
is important to remember from Fig. 6-5 that the lowest resolution run suffered from
larger initial oscillations around equilibrium. While these are at too high a frequency
to play a significant role on the power spectrum, they do affect the binary infall. The
extra energy present in the system, combined with the tendency of such systems to be
slightly elliptical, leads to a much more rapid inspiral than was found for the higher
resolution run, which showed very small oscillations initially. This is picked up well
in the gravity wave spectrum, which shows suppressed power for the lowest resolution
run at the characteristic frequencies of the last few orbits.

We expect that “cliff frequency” that must be located in the power spectrum
at ~ 700Hz, representing the onset of dynamical instability, may not actually yield
detailed information about the NS EOS, especially given the noise that is expected
to be present in any LIGO measurement. In the top panel of Fig. 7-4, we show the
power spectra computed for both equal-mass runs started from 7y = 4.0R. The power

spectrum corresponding to the softer EOS does show excess power in the frequency
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range from f =~ 1000 — 2000 Hz, but at lower frequencies the spectra are nearly
identical. The dynamical stability limit for the softer EOS is located inside that of
the stiffer EOS, by Ar ~ 0.2R, but the resulting difference in power of ~ 30% in
gravitational energy at a frequency of ~ 1500 Hz may be very difficult to detect.
These conclusions, though, should tempered by the fact that our PN corrections are
not taken at the full physical values. If indeed the difference between the dynamical
stability limits of the stiffer and softer EOS are enhanced by PN corrections, it is likely
the effect will be more pronounced in fully GR calculations. Since such an effect is
imprinted on the gravity wave signal before the actual merger of the NS, we expect
the results to be independent of the details of the remnant formation or collapse °
of the matter to a black hole. For the softer EOS, the peak in the power spectrum
Corresponding to maximum gravity wave emission is of lower amplitude and frequency
when compared against the result of the stiffer EOS. The peak corresponding to
remnant oscillations is greatly suppressed, since the soft EOS cannot support a stable
triaxial configuration.

Although a synchronized initial condition is likely to be inappropriate for de-
scribing NS immediately before merger, it is relatively easier to construct than an
irrotational one. In the bottom panel of Fig. 7-4, we compare the power spectra from
a synchrbnized run against that of an irrotational run. We find that the sharper
plunge seen in the synchronized run leads to lower power in the frequency range
which describes inspiral. At frequencies greater than 1200 Hz, however, there is some
measure of agreement, especially with regard to the amplitude of the peaks in the
power spectrum. The frequencies of the first power spectrum peak are quite similar
between the two calculations, indicating that the gravity wave power is much more
strongly affected by the choice of EOS, rather than by the details of the initial spin
configuration. Although it would be natural to assume that the initially synchronized
run, which contains a greater total angular momentum in the system, would produce
a remnant spinning at a higher frequency than an initially irrotational calculation,
that is not the case. Instead, we find that the secondary peaks in the power spectra

also line up well, since the synchronized run tends to transfer more of its angular mo-
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Figure 7-4: Gravity wave power spectra for runs which differ in the choice of EOS
(top panel) and initial spin (bottom panel) for equal mass NS. In the top panel, we
show the spectra for a I' = 3 EOS (thin solid), along with that of a ' = 2 EOS (thin
solid). Both runs are initially irrotational. In the botton? panel we show the same
[' = 3 run, along with a synchronized run (thick solid).
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mentum into particles shed through spiral arms, leaving the remnant with a similar
amount of angular momentum regardless of the spin for these two cases.

In the top panel of Fig. 7-5, we cbmpare irrotational runs with a I' = 3 NS EOS
and mass ratios of ¢ = 1.0 and g = 0.8, both started from an initial separation of
ro = 3.5R. We see a clear difference in the overall amplitude of the two power spectra,
but in general the low-frequency behavior of the spectra is not qualitatively different.
In both cases, we see a smooth decline in the graVity wave power which indicates the
onset of dynamical instability, which levels off as we reach the characteristic frequency
of the emission at peak luminosity. A key difference is the lack of a true peak in the
signal for the ¢ = 0.8 binary, which reflects the suppression of gravity wave production
in unequal-mass collisions, discussed in Sec. 5.2. There is a well defined peak in the
power spectra characteristic of emission from the remnant, nearly equal in intensity
to the first peak, as was found for the equal-mass binary with the same EOS. The
frequencies of both peaks in the ¢ = 0.8 spectrum are shifted lower relative to their
location in the equal-mass case, indicating that the frequency of such peaks might
yield clues to the total mass of the binary system.

In the bottom panel of Fig. 7-5, we show a similar comparison, comparing runs
~with T = 2 and mass ratios of ¢ = 1.0 and q = 0.8. The calculation for mass ratio
g = 0.8 was started from an initial separation of ry = 3.5, whereas the calculation
for mass ratio ¢ = 1.0 was started from rq = 4.0, but for the sake of comparison we
have excised the gravity wave forms for the times when the binary separation was
in the range » = 3.5 — 4.0, and added on a point-mass inspiral in its stead. We
see that as was the_ case for the stiffer NS EOS, the low frequency behavior of the
power spectrum is qualitatively similar regardless of the mass ratio, but at frequencies
above f ~ 1800H z, the power emitted by the binary of mass ratio ¢ = 0.8 drops off
dramatically, as could h.ave been predicted by the extreme reduction in the peak
gravity wave luminosity seen in Fig. 6-12 for the run. Like the stiffer NS EOS, there
is evidence for an oscillation peak in the spectrum at f ~ 2700H z, a lower frequency

than was seen for the equal-mass binary with the same choice of EOS.
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Figure 7-5: Gravity wave power spectra for runs with a I' = 3 (top panel) and ' = 2
(bottom panel) EOS. Thin solid curves represent the spectra for equal-mass runs,
thick solid curves for runs with ¢ = 0.8. In general, the binaries with ¢ = 0.8 not only
have lower amplitude through the lower frequency portion of the spectrum, but lack
clear peaks at the characteristic frequency of peak gravity wave emission.
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Chapter 8

Conclusions

Using the Lagrangian SPH code described in this thesis, which is complete to 1PN
order and also includes all 2.5PN radiation reaction effects, we have investigated the
properties of NS binary mergers in PN gravity. In addition to the method presented
for constructing PN equilibrium initial conditions for synchronized binaries, we have
used the results of the analytic work by Lombardi, Rasio, & Shapiro (1997) based on
compressible ellipsoids to create realistic irrotational initial conditions.

Using a hybrid formalism in which radiation reaction is treated realistically but
1PN effects are scaled down in amplitude to remain numerically tractable, we have
studied the effect of PN corrections on several aspects of binary NS mergers. We find
that NS with a softer EOS, modeled here as T = 2 polytropes, produce higher gravity
wave luminosities during the merger than NS with stiffer EOS, modeled as T — 3
polytropes. As was found in previous purely Newtonian calculations, the final merger
remnant produced when I' = 2 is an oblate spheroid, rather than a triaxial ellipsoid
(obtained for T = 3). We find a strong second peak of gravity wave luminosity for
a I' = 2 EOS, whether or not we use 1PN gravity, as well as for calculations with
a I' = 3 EOS and PN gravity. This differs from the common finding for Newtonian
binaries with stiff EQS.

By holding the EOS and the primary NS mass fixed while varying the secondary
NS mass, we have studied the dependence of the gravity wave emission on the binary

mass ratio. We find that the steep power-law scaling A, oc ¢* for the maximum
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amplitude, derived from purely Newtonian calculations in RS2 for a I' = 2 EOS,
remains approximately correct in PN gravity, for bothI' = 2 and I" = 3 EOS. In both
cases the dependence on g appears slightly steeper when 1PN effects are neglected
(but while retaining 2.5PN effects). The maximum gravity wave luminosity for PN
mergers follows a slightly steeper power law than the L, oc ¢° found by RS2 for the
I' = 2 EOS, but is significantly flatter for the I' = 3 EOS.

Our coalescence calculations using an irrotational initial condition, thought to be
the physically realistic model, show clearly the development of a vortex sheet along
the surface of contact. A turbulent region is seen until the time when the inner
cores of the two NS begin to merge, at which point a stable, differentially rotating
configuration is created. Although the peak gravity wave luminosity is generally
similar for calculations with either choice of spin, irrotational mergers show suppressed
secondary luminosity peaks, and only trace power afterwards.

We believe our results concerning irrotational binaries to be relatively unaffected
by issues of numerical resolution, even though calculations performed at different
resolutions do show subtle differences in the exact location and size of the vortices
formed at the surface of contact. It is important to note that it is the outer regions of
the star, at lower density, that supply material to the vortex sheet. The high density
cores of the two NS inspiral during the entire process, and provide the dominant
component of the quadrupole moment and thus the gravity wave signal. The path
traced out by the NS cores depends sensitively on gravitational forces and properties
of the fluid, such as the EOS, but proves to be remarkably insensitive to the details
of the flow in the “turbulent” boundary regioq. The conclusion to be drawn is that
numerical convergence for a given set of initial conditions and physical assumptions
is possible without requiring excessive computational resources, even for this difficult
problem involving small-scale instabilities.

We find that, in general, the addition of 1PN effects decreases the mass in the outer
halo of the merger remnant for binaries with ¢ = 1, especially when an irrotational
initial condition is used. For this latter case, very little mass (< 1%) is ejected through

spiral arms during the merger. Since the 1PN corrections are artificially reduced in our
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calculations, we expect that for two NS with realistic parameters and an irrotational
initial configuration, no matter at all will be ejected. When a synchronized initial
condition is used, we also find that the halo around the remnant is mﬁch denser and
less extended for a softer NS EOS.

There is much information to be gained from examining the power spectrum of
gravitational radiation emitted by a coalescing binary system. This may prove to
be easier to study than the signal in the time-domain, since there are no issues of
phase-matching to consider. The frequencies of the two peaks seen in the our spectra,
which represent peak emission and the remnant oscillations, do give a strong clue to
the nature of the NS EOS. While the frequency of peak oscillation is essentially the
same in all our simulations, the width of the peak is seen to be strongly dependent on
the EOS. The softer I' = 2 EOS shows a broad peak of emission in the frequency range
f ~ 1500—2500 Hz, whereas the stiffer I' = 3 EOS calculations have a peak much more
focused around f = 1800—2200 Hz, regardless of the initial spins. The stiffer EOS also
results in a lower frequency oscillation than the softer one, with considerably greater
power. Finally, for binary systems with unequal-mass components, the magnitude
of the graVity wave emission is strongly correlated with the mass ratio g. Because
the primary in such systems generally remains relatively undisturbed, whereas the
secondary is tidally disrupted and accreted onto the primary, a large component of
the matter essentially does not contribute to the gravity wave signal. Thus, even if
NS masses do not typically lie within a narrow range, there should be a strong bias

observationally toward detection of nearly equal-mass systems.
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