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Abstract

As demand for air transportation grows, the existing air traffic control system is being
pushed to capacity. This is especially true during weather events. However, the degree to
which weather impacts airspace capacity, particularly within the terminal region, is not well
understood. Understanding how weather impacts terminal area capacity will be important
for quantifying the uncertainty inherent in weather forecasting and developing an optimal
mitigation strategy.

In this thesis, we identify and analyze operational features that may impact whether a
pilot chooses to fly through severe weather. In doing so we build upon the work done at
MIT Lincoln Laboratory on terminal area Weather Avoidance Fields (WAF) for arriving
aircraft. This model predicts the probability of pilot deviation around weather, based
solely on weather features. The terminal area WAF was calibrated based on historical pilot
behavior during weather encounters near the destination airport. Our model extends the
WAF by incorporating operational factors such as prior delays and existing congestion in
the terminal airspace. Instead of predicting the probability of deviation, our model will
predict the maximum WAF level penetrated by the pilot, using the operational features
as input. The thesis combines predictive modeling with case studies to identify relevant
features and determine their predictive skill.

An understanding of how operational factors impact weather avoidance will allow re-
searchers to better quantify weather forecasting uncertainty and to understand when pre-
cision in forecasting is important. In turn, this will improve our ability to find optimal
strategies for delay mitigation.

Thesis Supervisor: Hamsa Balakrishnan
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

In the last decade, high demand for air travel in the United States has pushed the capacity

of the National Airspace System (NAS) to its limits. As a result, any reduction in capacity

due to weather or other unforeseen circumstances can result in significant delays. This is

especially true of summer convective weather, which can grow and decay rapidly and is

difficult to forecast.

Although it is clear that convective weather reduces airspace capacity, the degree to

which capacity is reduced as a result of weather is not well understood. While there has

been significant research into the types of weather that cause reroutes and the effect of

convective weather on controller workload, these studies typically treat all flights as equal.

It is known that while pilots typically avoid severe weather, some pilots do penetrate severe

weather cells, both enroute and within the terminal area. This thesis explores operational

factors that may differentiate pilot behavior, focusing primarily on weather penetration

behavior within the terminal area.

1.1 Background

In this thesis, we rely heavily on work previously done at MIT Lincoln Laboratory on

convective weather avoidance. Specifically, this thesis indirectly builds on the Convective

Weather Avoidance Models (CWAM) developed at Lincoln in the last seven years [2, 3, 4].

These models produce Weather Avoidance Fields, which identify the areas impenetrable to

aircraft as a result of weather.
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1.1.1 Convective Weather Avoidance Model (CWAM)

The first CWAM, developed in 2006, analyzed the planned and actual trajectories for ap-

proximately 500 enroute weather encounters in Indianapolis center (ZID). Weather indica-

tors for this study were derived from VIL (measure of precipitation intensity), echo tops

(storm height), and lightning strike counts. (The first two data sources are discussed in

more detail in Chapter 2.) CWAM2, developed in 2008, expanded the dataset to about

2000 flights in ZID, ZOB, and ZDC. Another study in 2010 refined the earlier models to im-

prove detection of non-weather related deviations, such as shortcuts, and further increasing

the dataset to about 5000 flights.

All of these models identified the difference in altitude between the flight and the echo

top height as the primary determinant of pilot deviation in enroute airspace. In other words,

pilots frequently overfly weather. A secondary determinant was the fractional VIL coverage

over Level 3 in the vicinity of the trajectory. The exact kernel size varied between different

versions of the model; 16- and 60-km kernels are typical sizes.

Once the important indicators have been identified, the model returns the probability of

deviation for a pilot encountering a particular type of weather. This probability is based on

historical pilot behavior. In this sense, the result of model can be thought of as a probability

lookup table: for any given altitude, echo top height, and local VIL coverage, the model

stores a probability of deviation. This deviation probability is referred to as the Weather

Avoidance Field, and can be computed on a pixel by pixel basis given the echo tops and

VIL images for a given time.

In recent years, a version of the CWAM specific to the terminal area has been developed.

This version found that due to descent, pilots were not typically able to overfly storms, and

that the absolute echo top height was a better indicator than the difference between altitude

and echo top height. Furthermore, because there is less room to deviate within the terminal

area, a 4-km kernel was found to be optimal.

1.1.2 Weather Avoidance Field (WAF)

To understand how the Weather Avoidance Field identifies areas of weather impenetrable

to air traffic, it is instructive to look at an example. Figure 1-1 shows the VIL and echo

tops in the ORD terminal area on June 12, 2008, around 20:17:30Z. Figure 1-2 shows

18



the analogous plot of the WAF. The arrival trajectories are color-coded according to the

maximum WAF penetrated in the terminal area; all departures are grey. The most obvious

effect is that the WAF eliminates much of the light rain that has no little to no effect on

aviation. Furthermore, not all VIL pixels of Level 3 or above translate to high WAF: some

of the smaller cells have relatively low echo tops, which the CWAM has found to be more

commonly penetrated by pilots; these are accordingly assigned a lower WAF.

1.1.3 Comparison with actual weather

A question which naturally arises is whether pilots are actually flying through severe weather

when they penetrate high WAFs. Since some low level VIL pixels will correspond to high

WAFs simply because of proximity to higher VIL levels, it is possible that pilots flying

through high WAFs are not actually penetrating weather at all. Another possibility is that

pilots are overflying weather, since the terminal WAF does not account for echo top height

relative to altitude.

To check whether this is true, we can plot the distribution of actual VILs penetrated by

each pilot, sorted by the WAF value. In other words, for all pilots who flew through a WAF

of, say, 70, what VIL levels did this WAF correspond to? Figure 1-3 contains the result of

this analysis. The left bar in each pair simply indicates the VIL distribution; the right bar

removes those cases where a flight was at or above the echo top height.

Figure 1-3 justifies the use of WAF in this thesis. First of all, we do not have to worry

about overflying skewing the results. In over 95% of cases, pilots do not overfly weather

in the terminal area. This is likely because they are descending and are not typically high

enough to do so. Second, there is a strong correlation between high WAFs and high VIL

levels. Pilots who penetrate WAFs of 80 or above have a greater than 80% chance of actually

penetrating Level 3 VIL or above. Even pilots who flew through WAFs of 80 or above and

only penetrated Level 1 or 2 WAF were necessarily within 4 km of intense weather.

1.1.4 Terminal-area operations

The Weather Avoidance Field encapsulates pilot willingness to penetrate severe weather

on the basis of the weather features themselves. However, it is possible that there are

operational factors that may influence pilot decision-making. Instead of creating a new

version of CWAM examining operational features, this thesis takes a different approach. We
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Figure 1-1: VIL and echo tops in the ORD terminal area with overlaid trajectories on June

12, 2008, at 20:17:30Z.
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Figure 1-2: WAF in the ORD terminal area with overlaid trajectories on June 12, 2008, at
20:17:30Z.
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Figure 1-3: VIL distribution for each WAF value. The right bar in each pair removes the
flights that were at or above the echo top height.
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instead attempt to predict on the basis of operational features when flights will be willing

to penetrate regions of high WAF. This allows us to focus on the operational features rather

than on determining which combination of VIL and echo tops poses a danger to pilots as

this information is already given by the WAF.

Terminal area definition

This thesis specifically focuses on pilot behavior near the arrival airport. This region is not

precisely defined. Most major airports have Terminal Radar Approach Control (TRACON)

facilities which serve the area immediately surrounding the airport. Using the TRACON

boundary is one possible definition. However, TRACONs can vary in size and shape, and

a simpler, more general definition is desirable.

In this thesis, we define the terminal area to be the circle of radius 200 km around the

airport. Although TRACONs are typically irregularly shaped, a circular region simplifies

analysis. To choose the radius, we must consider what characteristics define the terminal

area and why pilot behavior in this region might be different from pilot behavior during

the enroute portion of the flight. The primary difference is that aircraft trajectories are far

more constrained both vertically and horizontally. Enroute pilots are frequently observed

to overfly convective weather; a pilot that has already begun its descent sequence may not

be able to do this. Furthermore, approach paths are fairly specific, especially at major

congested airports such as Chicago O'Hare, and controllers may be less willing to allow

pilots to deviate. Both of these factors could affect pilot willingness to penetrate severe

weather.

While it is difficult to quantify the degree to which pilots have horizontal latitude to

deviate from established flight paths, it is fairly straightforward to determine when arriving

aircraft begin their descents. A 200-km radius was chosen as the distance at which aircraft

landing at the airport typically begin their descent sequence. Figure 1-4 plots aircraft

altitudes as a function of distance from the airport for 100 randomly chosen flights on

July 2, 2008. This data is taken from the ETMS database, which will be described in the

following chapter. Excluding flights with origins within 300 km, most flights seem to begin

their descent sequences between 200 and 250 km away from the airport. (The downward

spikes are presumably due to data loss, resulting in an altitude of zero being erroneously

recorded in the ETMS database.)

22



(U> 250

.2' 200
Mi

J0 150 200
Distance from ORD (km)

Figure 1-4: Flight altitudes as a function of distance from airport on July 2, 2008.

1.2 Thesis development

The approach taken in this thesis is twofold. Due to the limited number of days with severe

weather, a combination of case studies and predictive modeling is used. Chapter 2 discusses

the data sources for this study. These include weather data from MIT Lincoln Laboratory

for all days in 2008 when Chicago O'Hare was affected by convective weather; 2008 ETMS

data from the Volpe National Transportation Center; and ASPM data maintained by the

FAA.

Chapter 3 discusses the case studies undertaken, focusing on cases when pilots pen-

etrated severe weather. Commonly observed themes and occurrences are noted and dis-

cussed. Along with observations from air traffic controllers and other researchers studying

pilot behavior regarding weather, these case studies inform which features were examined

and extracted for the predictive model.

Chapters 4 and 5 describe each of the features included in the predictive model. Chapter

4 contains most of the features that can be directly extracted from one of the databases

included in this thesis. Chapter 5 discusses trajectory-based features, such as flow analysis

and influence of previous pilots.

Chapter 6 describes the two predictive models used in this study. Decision trees were
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chosen due to their transparency and applicability to small datasets. Random forests were

explored as a simple extension to decision trees. Finally, Chapter 7 discusses the implications

of the thesis and plans for future work.
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Chapter 2

Overview of Databases

Three main data sources were used in this thesis: weather data from Lincoln Laboratory,

trajectory data from the Enhanced Traffic Management System (ETMS) database provided

by the Volpe National Transportation Center, and flight data from the FAA's Aviation

System Performance Metrics (ASPM) database.

2.1 Weather data

Since 1998, the FAA's Aviation Weather Research Program has been seeking ways to inte-

grate and streamline the various competing aviation weather forecast systems into a single

cohesive weather forecast covering the entire continental United States (CONUS). MIT Lin-

coln Laboratory has been at the forefront of this research, along with NCAR, NASA, NWS,

and several other research institutions.

A preliminary requirement for this research is to have high-resolution real-time weather

data. To this end, much research has been done at Lincoln Lab to integrate sensor data

from a network of individual radars, including NEXRAD, TDWR, and Canadian radars.

The resulting mosaic is filtered to remove extraneous noise while preserving the weather

information. Some motion compensation is also required to avoid radar echoes during fast-

moving storms. We will refer to the output of this process as CoSPA, although this name

specifically refers to the forecast products that are based on the real-time weather products

described here.

The resulting CoSPA images provide a reliable record of the weather as it moves across

the continental United States, with very little volatility. They have been shown to be
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Figure 2-1: An example VIL image from June 13, 2008, at OOOOZ.

better at distinguishing between types of severe weather that might be relevant to pilots

than previously existing weather products [5]. The images have 1-km spatial resolution,

updating every 2.5 minutes. The main CoSPA real time weather products are the Vertically

Integrated Liquid and the echo tops. These are the weather inputs considered in this thesis.

2.1.1 Vertically Integrated Liquid

The Vertically Integrated Liquid (VIL) represents the total amount of liquid in a vertical

column of the atmosphere. During the image conversion process, the raw reflectivity values

returned by the radar are converted to a 0-255 scale, where 255 represents a null value. The

VIL indicator has been found to differentiate heavy weather events better than previously

used weather variables. For display purposes, this scale is divided into 6 VIL levels; the

exact cutoffs are not equally distributed and were chosen to correspond to pilots' perceived

threat levels in previously used weather displays. Level 3 VIL corresponds to a 'yellow'

threat level; Level 6 corresponds to a 'red' threat level.

Figure 2-1 shows an example VIL image from June 13, 2008, at OOOOZ. The weather

at this particular time provides a useful demonstration of the common types of weather

encountered in the US. First, there are intense, scattered thunderstorms in the Southeast.
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Second, there is a large-scale line developing over the Midwest. Note the contrast between

the large-scale line developing over the Midwest and the scattered cells in the Southeast.

Both of these contain cells of severe weather, but the overall texture is quite different. The

thunderstorms in the Southeast are associated with summer convection. These tend to be

isolated, smaller cells that grow and decay quickly and are very difficult to forecast. In

contrast, the line of storms across the Midwest is associated with a cold front. Both of

these weather types contain cells of Level 5 and 6 VIL and can be severely disruptive to

aviation. Finally, there is scattered light rain across the Northwest; this consists mostly

of Level 1 VIL and is very unlikely to affect aviation. The VIL thresholds were chosen to

make these distinctions readily apparent.

2.1.2 Echo tops

While the VIL gives a good representation of where severe weather cells are located in the

horizontal plane, it does not provide any information on where weather is located within

the vertical column. This is crucial since it is well known that pilots flying at sufficiently

high altitudes can simply overfly even very severe weather cells.

The echo tops indicator was developed in direct response to this observation. The echo

tops indicates roughly the maximum height of the clouds containing the weather. Note that

the echo top images tell us nothing about the minimum height of weather. If an aircraft's

altitude is greater than the echo top height, we can be certain that they are flying above the

weather. If the aircraft's altitude is below the echo top height, it is reasonable to assume

that the pilot is flying through the weather, though in rare cases it is possible that the pilot

is flying below the weather cells.

Figure 2-2 shows an example echo tops image from the same time as the VIL image

above, June 13, 2008, at OOOOZ. Comparing this image to the VIL image above, it is apparent

that the highest echo tops generally correspond to the areas with high VIL. This is because

stronger convective cells typically extend higher into the atmosphere. However, there are

occasionally intense storms that occur lower in the atmospheric column that enroute pilots

at altitudes of 40-50 kft can easily overfly; as such, these storms may pose little or no

disruption to enroute traffic, but may cause problems for descending or ascending aircraft.
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Figure 2-2: An example echo tops image from June 13, 2008, at OOOOZ.

2.1.3 Lambert azimuthal projection

The projection used for all of the weather data used in this thesis is the Lambert azimuthal

equal area projection. The scripts for converting between latitude/longitude points and

the grid points in each weather image were also provided by MIT Lincoln Laboratory. This

projection preserves area within contours, but does not preserve angles. Angular distortions

are minimal at the center point and increase with distance away from the center point. The

center point for the particular projection used in the aviation weather system is (38N,

98W), a point in central Kansas. This point was chosen to minimize distortion over the

entire CONUS. Since our study primarily concerns Chicago O'Hare International Airport

(ORD) at (41.98N, 87.90W), it is important to keep in mind that the angular and distance

distortions there are not insignificant.

The distortion due to the Lambert projection can be seen in Figure 2-3. The small blue

circle in the center indicates the location of Chicago O'Hare International Airport. The

state outlines are shown in the background for reference. The two rings indicate radii of

50 and 100 km, respectively, in the grid projection. The two crossing lines indicate lines

of constant latitude and longitude across two degrees. Due to the angular distortion in the
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Figure 2-3: Local distortions due to the Lambert azimuthal equal area projection near
Chicago O'Hare Airport.

2.1: List of Chicago O'Hare case
Date | Start
2008-06-12
2008-06-25
2008-07-02
2008-07-07
2008-07-10
2008-08-04
2008-08-22

2008-06-12
2008-06-25
2008-07-02
2008-07-07
2008-07-10
2008-08-04
2008-08-22

10:35
10:40
00:10
10:00
10:00
10:15
10:00

days from summer 2008.
End
2008-06-14
2008-06-26
2008-07-03
2008-07-09
2008-07-11
2008-08-04
2008-08-23

04:00
00:25
07:30
06:00
04:00
20:35
00:10

projection, these lines are not precisely horizontal and vertical relative to the grid imposed

by the projection. This should be kept in mind throughout the thesis, particularly in the

discussion of approach angles in Chapter 4.

2.1.4 Case days

The weather archives for June, July, and August 2008 were reviewed. All of the days

with severe weather lasting more than one hour in the Chicago O'Hare terminal area were

included in the dataset provided by MIT Lincoln Laboratory. Overall, in summer 2008

there were seven weather impacts over eight days. These are outlined in Table 2.1. All

times are given in UTC (Chicago's local time zone in summer is UTC-0500).

29

Table



2.2 ETMS database

The Enhanced Traffic Management System (ETMS) provides trajectory data on a flight-

by-flight basis. This data is derived from the Aircraft Situation Display to Industry (ASDI)

feed provided by the FAA to various other sites. The data is automatically generated

by transponders on each aircraft and sent as real-time messages to the ASDI feed. The

ETMS database consists of two main tables. The first contains basic information about

each flight, and the second contains the message history sent by the transponder, if any

exist. The ETMS flight database includes the flight ID (airline code and flight number

for commercial flights, tail number for general aviation flights), scheduled, planned, and

actual origin and destination airports, scheduled, planned, and actual departure and arrival

times, and aircraft type. ETMS assigns a flight key to each flight, and uses this key to

link the flight data to the messages associated with each flight. Positional messages include

the message time, latitude, longitude, altitude, and current center. ETMS then derives an

average speed from the position and time data. Messages are sent approximately once a

minute during the enroute portion of the flight, and approximately once every 15-20 seconds

in the ascent and descent portions of the flight. All times in the ETMS database are given

in UTC.

All ETMS data from calendar year 2008 was provided by Volpe National Transportation

Center for this thesis.

2.2.1 Processing of ETMS data

Filling in missing flight data

Much of the flight data in the ETMS database is incomplete. In the data received from

Volpe, many of the fields in the flight database contain null values for many or even most

flights. Since this data is derived from the ASDI feed, it is unclear whether there is a data

transfer problem or if the data was simply never reported by the airlines. In many of these

cases, the missing data is irrelevant to this thesis, and thus does not pose a problem.

The most significant examples that do become relevant are the six fields for origin and

destination airports. The ETMS flight database has fields for scheduled, planned, and

actual origin and destination airports, but it is frequently the case that only one or two

of the three departure and arrival fields are filled in. In these cases, we assume that if no
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two existing arrival or departure fields directly contradict one another, then no unusual

circumstances such as a diversion or a departure from an unscheduled airport took place,

and populate the remaining fields accordingly. A diversion to a busy airport like ORD

during a weather event would be quite unusual in any case, since it is far more likely that

a flight unable to land at a large airport with reduced capacity would divert to a smaller

airport. We do not find any cases of diversions to ORD from a different airport during the

time periods studied, though several flights depart ORD and divert back to the airport.

Defining dataset

Each flight in the ETMS database is uniquely identified by the combination of flight key and

flight date. In practice, it appears that flights are nearly uniquely identified solely by flight

key, but they are occasionally reused on different days. The flight date generally appears to

be when the flight plan was first filed for that flight, causing it to appear in the ASDI feed.

In most cases this is the same day as the departure date of the flight, but in rare cases the

flight date can be one or even two days before the flight actually departs.

Since the full ETMS database is very large (over 300GB), a subset was selected and

stored in a separate table for faster queries. This subset consisted of all flights actually

landing at Chicago O'Hare after filling in missing destination airports as described in the

previous section with one of the flight dates listed in Table 2.2. These are simply all of the

dates included in the weather dataset, though the flights are not restricted to the precise

times for which we have weather data. This set of 21,500 flights will be referred to as the

ETMS flightset, and is a superset of the flights analyzed later in thesis.

2.2.2 Verifying ETMS trajectory data

Missing trajectories

Unfortunately, the message database recording each aircraft's trajectory is incomplete or

nonexistent for approximately 17% of the flights in the ETMS flightset. The database file

provided by Volpe contain all of the ETMS data for the entire year; we therefore assume

that this data was simply not reported. ETMS position data is not required by the FAA;

most general aviation aircraft are not outfitted with the appropriate equipment. It does not

seem to be specific time intervals that are missing; rather, approximately the same fraction
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of flights seems to be missing at all times, with some variation.

While only a small fraction of flights in the ETMS flightset are general aviation aircraft,

the most plausible explanation is that many commercially flown aircraft are also not outfit-

ted with ETMS equipment, and that the precise percentage varies by airline and by aircraft

type. This is consistent with the distribution of missing flights across airlines, aircraft type,

and origin airports.

Figure 2-4 contains normalized histograms for these three factors. These are separately

normalized within each category. Thus, a red bar of same height as a blue bar indicates

that the ratio between the categories is precisely the mean. A higher red bar indicates that

more flights are missing than average; a higher blue bar indicates the opposite. These charts

show no clear correlations between missing data and any of these factors, though there are

variations. For example, the data would imply that MD80s are not outfitted with ETMS

equipment; this seems perfectly plausible given that the MD80 is an older aircraft model.

International flights do not seem overall more or less likely to be missing trajectory data.

While the ultimate cause of these missing flights is unclear, there appear not to be any

overriding factors that would significantly bias the dataset in one way or another. As such,

flights with missing trajectories are simply discarded from the ETMS flightset.

Trajectories not completed at ORD

Trajectories are also verified to end near the destination airport. The distance from Chicago

O'Hare to the last latitude/longitude position reported by the aircraft transponder is com-

puted; the trajectory is discarded if this distance is greater than 10. In most cases the exact

threshold is irrelevant; the verification detects spurious flights rather than minor positioning

problems. The vast majority of flights arriving at ORD have final positions within 1 km of

the airport. Trajectory continuity is verified in the same step to ensure that there are no

significant gaps in the messages once the flight has entered the terminal area.

Spurious trajectories are far less common than missing trajectories. Only 267 flights

were discarded from the database in this step of the process.

Diversions back to ORD

Of the 21,500 flights in the ETMS flightset, 22 were flights that departed from ORD and

then were diverted back to ORD for some reason. These flights were also excluded from
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Airline
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Included in ETMS .

Missing from ETMS .

Airport

Figure 2-4: Flights with missing ETMS trajectory data by airline, aircraft type, and origin
airport.
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Table 2.2: List of flight dates included in the ETMS-ASPM flightset.
Date All Verified in ETMS With ASPM match

2008-06-12 1522 1263 1224 1125
2008-06-13 1634 1191 1155 1134
2008-06-14 1320 1179 1137 42
2008-06-25 1623 1338 1297 983
2008-06-26 1463 1225 1190 0
2008-07-02 1542 1268 1243 1224
2008-07-03 1459 1317 1290 86
2008-07-07 1636 1326 1289 1191
2008-07-08 1484 1324 1309 1294
2008-07-09 1468 1314 1288 76
2008-07-10 1605 1332 1292 1070
2008-07-11 1542 1259 1221 35
2008-08-04 1698 918 873 411
2008-08-22 1504 1307 1283 994

Total 21500 17561 17091 9665

our study. The primary reason is that some of the features examined do not necessarily

make sense for a flight departing and arriving at the same airport. Although categorically

excluding certain flights could bias the results, the small number of flights in question is

unlikely to have a significant effect. Furthermore, while in principle diverting flights might

behave differently than regular flights, a perusal of these in particular indicates that most

of them diverted within an hour of take-off, and only one flew through any kind of weather.

Therefore, these ORD "arrivals" indicate irregular operations and it is reasonable to exclude

them from the database.

We are left with 17,561 flights in the ETMS flightset. These are summarized in Table 2.2.

2.3 ASPM database

The Aviation System Performance Metrics (ASPM) database is maintained by the FAA and

provides detailed flight data for 77 airports and 22 carriers in the US. This includes Chicago

O'Hare. The flight data includes the flight number, scheduled and actual departure and

arrival times (in local times), various delay metrics including pushback, wheels-off, wheels-

on, and gate arrival delays, and aircraft data. It includes a single departure airport and a

single arrival airport; these are assumed to be the actual departure and arrival airports.

The primary reason the ASPM database is used in this study is that it provides more
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information than the ETMS database about each flight. To do this it is first necessary to

match each flight in the ETMS flightset to a flight in the ASPM database.

2.3.1 Matching flights with the ETMS database

Flights from the ETMS flightset were matched with flights in the ASPM database based on

arrival day, FAA carrier (airline), flight number, and arrival airport (ORD). The departure

airport and approximate arrival time was also verified; flights were more than a two-hour

deviation from the ETMS arrival time (the last message time) were verified by hand. Be-

cause the ASPM database records most times as local times, it is easier to check arrival

times rather than departure times.

Of the 17,561 flights in the ETMS flightset that were not eliminated due to problems with

the ETMS data, 17,091 of these were successfully matched to flights in the ASPM database.

This set of 17,091 flights will be referred to as the ETMS-ASPM flightset. Finally, flights

outside the case periods defined in Table 2.1 are eliminated from the flightset. The variable

numbers of flights are mostly explained by how much of each day is included in the study.

The flight counts for each flight date are summarized in Table 2.2.
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Chapter 3

Case Studies

Case studies have been extremely helpful in guiding the development of this thesis, both

for understanding the evolution of weather throughout the day and how this affects the

terminal, and for identifying features that affect pilot behavior. This chapter is divided into

two sections. The first section charts the evolution of weather and its effects on traffic flows

in the Chicago O'Hare terminal area throughout the day on an arbitrarily chosen day from

the case set. The second section describes recurring "themes" that are frequently observed

in the case studies.

3.1 Case: July 2-3, 2008

This section describes one of the eight case days in our dataset, July 2-3, 2008. It is

interleaved with snapshots of the WAF in the terminal area throughout the day. (Recall

that this model converts weather features into a single probability of pilot deviation, and

thus removes the need to examine multiple weather images at each time period.) This will

hopefully provide the reader with a better understanding of how weather affects arrival

traffic and some of the measures the FAA can take to mitigate the impact.

Most of our weather cases concern summer convective weather. Convective storms are

common in many parts of the United States, particularly the southeast, and typically form

in the afternoon. The ground re-radiates heat absorbed from the sun, warming the air

layer immediately above and causing it to rise. As these air masses rise, excess water vapor

condenses, forming clouds. More energetic masses tend to rise higher, which is why high

VILs and high echo tops are generally correlated. Convective storms are associated with
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heavy rain and severe turbulence. Because they grow and decay relatively quickly, they can

be difficult to forecast.

Air traffic managers have a variety of tools they can use to mitigate weather and other

delays. In addition to rerouting, there are two programs that are frequently used to reduce

incoming traffic to manageable levels; namely, ground delay programs and ground stops. A

ground delay program is frequently used when arrivals to a particular airport need to be

throttled for any reason; a GDP delays all flights that are still on the ground at the origin

airport at the time that the GDP is in effect. Depending on the severity of the bottleneck,

GDPs can be set to assign higher or lower average delays. If the delays are severe, a ground

stop is sometimes used. These hold all flights bound for the specified airport still on the

ground at the origin airport indefinitely, until the ground stop has been lifted. Unlike GDPs,

which are supposed to be planned in advance, ground stops are often used as in a more

reactionary way once congestion in the terminal area has becomes very severe.

3.1.1 Overview of case day

As is fairly common during the summer, convective weather affected the terminal area from

about 15Z (late morning local time) until about 3Z the next day (late evening local time).

Figure 3-1 gives a brief overview of the case day. The bars indicate the number of flights

landing at the airport at any given time. They are colored according to the maximum WAF

penetrated by the aircraft within the terminal area. (Grey indicates that the aircraft did

not fly through any weather at all.) The red line indicates the percentage of the terminal

area containing WAFs of 80 or greater; this is roughly the severe weather coverage in the

terminal area.

Generally speaking, as the amount of weather in the terminal area increases, the total

number of flights drops. During the peak of the weather impact, from about 22Z-OZ, traffic

drops quite severely. Furthermore, most of these flights penetrate severe weather. While

this drop can be attributed to the ground delay and ground stop programs put into place at

ORD on the day in question, the relatively large fraction of flights that penetrate weather

during the convective weather event indicate that the airspace was likely at full capacity.

It is not universally true that flights are more likely to penetrate severe weather when

there is greater severe weather coverage in the terminal area, though these quantities are

obviously correlated. Fewer flights penetrate the lower WAF levels in the early part of
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Figure 3-1: Overview of the July 2, 2008, case day. Bars indicate flight counts; the line
indicates the fraction of the terminal containing WAFs of 80 or greater.

the day, while the weather is still growing in coverage and intensity. In the latter part of

the day, while weather is decaying and moving out of the terminal area, more flights are

penetrating high WAFs, even WAFs of 80 and above, despite there being fewer total flights.

It is unclear whether this is because of the weather itself (perhaps decaying weather poses

less of a threat) or if there are operational reasons that could explain this.

The detailed case analysis will help shed light on how weather and terminal properties

interact to determine pilot willingness to penetrate severe weather.

3.1.2 Detailed chronology

On July 2, 2008, Chicago O'Hare was affected by several small lines of convective weather

cells which caused severe disruption to air traffic. Weather first enters the terminal area

around 14Z (Figure 3-2); however, this first line stays mostly to the north of the airport.

While the northbound departure routes out of ORD are affected, the arrival routes to

the northwest and northeast are only minimally affected. Although the weather covers a

substantial portion of the terminal area and had WAFs of 100, only three arriving pilots

penetrate WAFs over 80. In most cases, the weather was simply did not pose an obstacle

to standard arrival routes due to its position (Figure 3-3).
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Figure 3-2: ORD terminal area at 15Z.

Figure 3-3: ORD terminal area at 17Z.
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Figure 3-4: ORD terminal area at 19Z.

Air traffic flow managers noted the impending arrival of a second series of convective

cells which would pass almost directly over the airport. These cells were less severe than

the first line, but would prove to be a far greater disruption due to their location. At

1534Z, well before the arrival of the second series of cells, air traffic managers accordingly

planned a ground delay program (GDP). This GDP was scheduled to take effect at 18Z,

approximately when the second series of cells would enter the terminal area.

The second series of storms entered the terminal area around 1915Z due west of the

terminal area, traveling due east (Figure 3-4). These storms had cells of Level 5 and

Level 6 VIL, and correspondingly had WAFs of 100. They also grow in size as they move

eastwards towards the airport. Note that the departures streams shift south in response to

this weather. Furthermore, because of the ground delay program which took effect at 18Z,

the number of flights attempting to land at ORD has begun to decrease. This is evident

from the overview shown in Figure 3-1.

At the same time, the first line of weather to the north begins to impact the northeast

arrival streams. This streams respond by first shifting south in an attempt to fly around

the weather, and then eventually rerouting behind the storm through the lower level WAFs.

Although this change in routing is clear, it is unclear to what extent individual pilots are

picking their way through breaks in the storm as opposed to being actively vectored through

the storm in a continuous flow. As the weather intensified, fewer and fewer pilots approach

41



Figure 3-5: ORD terminal area at 21Z.

from the northeast, until this cornerpost is shut down entirely.

Meanwhile, the second line of cells from the west have been gradually approaching the

airport, reaching ORD shortly after 21Z (Figure 3-5. This line is smaller in extent than the

first, though of similar intensity. Nevertheless, as this storm approached the airport, over

twenty pilots penetrated severe weather within the terminal area. This situation quickly

becomes untenable, and a ground stop is put into place at 2103Z and extended at 2121Z.

It is downgraded to a ground delay program at 2151Z.

These ground stops were no doubt triggered at least in part by the unusually high

number of pilots penetrating severe weather. In most cases, it is evident from the images

that they simply had no other choice if they wanted to land at ORD, particularly once the

storm was directly over the airport as it was around 22Z (Figure 3-6). In some cases, pilots

attempted to deviate around a large cell, but perhaps brushed the edge at some point. This

behavior is in part because of the need to approach the airport from a specific direction:

Aircraft arriving from the west have to go around the storm in order to land on the active

runway.

After 22Z, the weather cells begin to decay and move out of the terminal area (Figure 3-

7). Nevertheless, various individual pilots continue to penetrate severe weather cells. While

some streams are still visible, the overall patterns are loose enough that pilots are likely

choosing their own paths through weather. For example, at 01Z (Figure 3-8) we observe
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Figure 3-6: ORD terminal area at 22Z.

one pilot who briefly flies through a WAF of 100, even while most of the pilots in the same

stream do not. There is clearly a range of risk tolerances in how close pilots are willing

to fly to severe weather cells, though it is not clear from this particular case whether it is

random.

Even as the weather is decaying, we see that the location of the weather in relation to

the airport is important. At 01Z, when the weather is farther from the terminal, relatively

few pilots penetrate severe weather. Most of those that do skirt the weather rather than

flying straight through it. Yet when the same weather reaches the airport around 03Z

(Figure 3-9), pilots who wish to land at the airport again have no choice but to penetrate

severe weather in order to do so. This partially explains why there are more severe weather

penetrations while the weather is decaying relative to earlier in the decay.

Despite these weather penetrations, by 0240Z the weather in the terminal area has de-

cayed enough that the ground delay program is cancelled early. Furthermore, the decreased

levels of traffic mean that each individual flight has greater flexibility to deviate around

weather. Given these factors, it is even more surprising that so many flights penetrate

WAFs between 40 and 100. It is particularly in periods like this that we would like to

determine if there are operational factors that may influence why certain flights penetrate

severe weather while others avoid it.
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Figure 3-7: ORD terminal area at 23Z on 2008-07-02.

Figure 3-8: ORD terminal area at 01Z on 2008-07-03.
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Figure 3-9: ORD terminal area at 03Z.

3.1.3 Case study conclusions

Many factors influence whether a pilot in the terminal area chooses to deviate around

weather; indeed, many factors influence whether a pilot will even be in the terminal area at

the time of a weather event. First, weather mitigation programs put in place by the FAA

may reduce the number of flights into ORD during the worst weather. This would naturally

influence the behavior of the remaining pilots, since they may have greater flexibility to

deviate. How and when these programs are implemented can give us insight into the capacity

of the airspace. For example, the ground stop that was implemented at 2103Z indicates

that the situation at that point in time was not sustainable and that air traffic controllers

felt the need to reduce the number of flights in the terminal area.

Second, it is clear that proximity of severe weather to the airport is an important factor

in determining whether pilots choose to deviate. When the weather is unavoidable, it

seems that many pilots are willing to penetrate severe weather, but generally prefer not to

otherwise.

Third, we have identified at least one time period in which pilots make a variety of

different choices about whether to penetrate severe weather. It is in these cases that we

hope operational factors may provide some insight into why some pilots are willing to

penetrate severe weather while others are not.
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3.2 Recurring themes

Instead of providing a detailed description of all eight case days, we describe representa-

tive examples of recurring themes that are commonly observed. This list is certainly not

exhaustive but includes observations that have guided the feature analysis. Each of the

following plots is a single snapshot in time. The black circle indicates what we define as the

terminal area, a circle of radius 200 km around Chicago O'Hare Airport. The solid lines

are the trajectories up to that time, and the dotted lines are the future trajectory points.

A triangle indicates the current position of each aircraft. Gray trajectories are departures.

Arrivals are color coded according to the highest WAF that pilot penetrates within the

terminal area. (The color distribution for the trajectories contains slightly different shades

of each color relative to the WAF colormap so that they could be distinguished; the color

bar to the right is the color bar for the background WAF.)

Pilots fly very close to weather

We see many cases where pilots fly very close to weather, in some cases coming within a few

kilometers of very heavy storms. For example, in Figure 3-10 we can see several trajectories

passing within a few kilometers of the cell in the northwest quadrant of the terminal area.

Note that although these pilots are following very similar trajectories around the weather,

one gets close enough to pass through a WAF of 80 (orange), while the others pass through

only WAFs below 50 due to only a small deviation in flight path. It is unclear whether

this pilot did in fact fly through heavier weather of if the discrepancy in WAFs is due to

a timing issue. Nevertheless, it is clear that all of the trajectories are flying very close

to severe weather, and that this is an extremely frequent occurrence when severe weather

occurs in the terminal area (and enroute, though this is outside the scope of our study).

Pilots take advantage of gaps in weather (and will sometimes pick their way

through staggered storms)

It is not uncommon to see pilots flying through lines of severe storms, deviating as necessary

to avoid the worst weather. In this example (Figure 3-11), there is actually a gap in the

line, but in some cases there is a continuous line of weather with discontinuous heavy cells.

In this example, we observed almost no arrivals from the northwest quadrant in a three-
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Figure 3-10: Pilots fly very close to weather. Image from 2008-06-12 17:42:30Z.

hour period, except for two episodes where gaps in the weather allowed for a few flights to

get through. Pilots or air traffic controllers are able to observe and take advantage of these

gaps. Such incidents usually result in pilots flying through middle-range WAFs, but not

extremely high WAFs, depending on the particular weather situation.

Weather will perturb arrival paths; pilots eventually begin to fly behind the

weather

As weather moves across the terminal area, it's common to see flows bend slightly to avoid

flying through the weather. Eventually, pilots begin flying behind the weather rather than

in front. For example, the two images in Figure 3-12 are two snapshots of the terminal area

25 minutes apart. The cell in the northwest quadrant has begun to impact the northwest

arrival routes, and pilots gradually deviate further and further northeast in order to avoid

the weather, which is moving eastwards. Eventually, pilots begin to fly behind the weather.

A similar pattern can be observed in the southeast quadrant. It is not apparent from the

data whether it is a pilot who prompts the route change or an air traffic controller who

directs pilots around the weather.
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Figure 3-11: Pilots pick their way through gaps in the weather. Image from 2008-06-13

03:07:30Z.

Weather near the airport cannot be avoided

When severe weather is very close to the airport, it is very difficult for the pilot to avoid

flying through weather, especially when the weather is along the arrival route. In this July

2 case, we see relatively few severe weather penetrations until the weather moves directly

over the arrival paths. When this happens, almost all of the pilots landing are forced to

fly through WAFs of 100. As the weather moves off to the east, the number of weather

penetrations sharply drops off again.

Significant numbers of severe weather penetrations are not sustainable

Among the seven case days, there are only two periods in which more than a few pilots fly

through WAFs over 90, including the July 2 case described in the previous section. Both of

these periods result in ground stops and lengthy ground delays, indicating that such activity

is unsustainable and undesirable. Although pilots continue to fly through and land in such

weather, it is an indication that the airspace capacity is being significantly exceeded.
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Figure 3-12: Flows become perturbed as weather moves across them; eventually pilots begin
to fly behind the weather. Image from 2008-07-03 01:20:00Z and 01:35:00Z.
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Figure 3-13: Weather very close to the airport cannot be avoided. Image from 2008-07-02
22:20:OOZ.

Pilots avoiding weather deviate irregularly; fixed holding patterns are mostly

observed during periods of fair weather

Contrary to expectations, we more commonly observed pilots entering into holding patterns

inside the terminal area during periods of little to no weather. For example, in the top

image of Figure 3-14 we see multiple flights holding due to volume prior to landing at the

airport despite there being only mild weather in the terminal area. While congestion is

to be expected despite fair weather, it is somewhat surprising that there are relatively few

cases of similar holding patterns during heavy weather events. This is likely due to several

factors. First, during weather events many flights probably have been delayed or diverted

prior to arrival at the terminal area during severe weather events. Second, flights that need

to deviate or hold in the terminal area during weather events typically cannot do so in an

established holding pattern. Instead, their paths are far more irregular, as shown in the

bottom image of Figure 3-14.
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Figure 3-14: During weather events, pilots may deviate irregularly to avoid severe weather,
but standard holding patterns are mostly observed during fair weather. Image from 2008-
06-25 18:57:30Z and 2008-06-13 06:35:OOZ.
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Chapter 4

Feature Identification

In this chapter, we describe in detail the features examined for how well they predict

pilot penetration of severe weather. (Recall that severe weather penetration is defined as

flying through a WAF of 80% or above within 200 km of arriving at Chicago O'Hare.)

These features can be divided into five broad categories: on-time performance, properties

of the flight, features of the terminal, weather features, and features relating to whether

the flight was part of a flow. For each feature, the procedure to extract the feature is

described. A normalized histogram showing the distribution of flights that did and did not

penetrate severe weather is plotted for each feature. When analyzing these histograms, it

is important to keep in mind that the two distributions are normalized indepedently and

that there are far fewer flights that penetrate severe weather relative to the total number

of flights. Specifically, only 144 flights in the dataset fly through severe weather, compared

to over 9500 that do not. Finally, the feature's individual skill and possible explanations

for such skill is discussed.

4.1 Flight-based features

The most basic features to include are static features of each flight. These are, generally

speaking, easily determined from either the ASPM or ETMS database.

4.1.1 Origin-destination distance

The origin-destination distance for each flight is determined based on the first and last

trajectory points. While it might theoretically be more accurate to use the latitudes and
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longitudes of the origin and destination airports, the ETMS position data is generally more

reliable than the airport data. (See Chapter 2 for a more detailed discussion.) Under the

assumption that the first recorded position is very close to the origin airport, we consider

the origin-destination distance to be the great circle distance between the first and last

position points. Note that we previously verified that the last position is within 10 km of

ORD, discarding all trajectories where this was not the case. The fact that less than 1 % of

flights were discarded in this manner suggests that the position data is reasonably reliable.

Figure 4-1 contains the normalized histograms for pilots that did and did not penetrate

severe weather as a function of origin-destination distance. The two plots show the same

data with slightly different bins; the second places all flights with OD distance greater than

3000 km into the rightmost bin. The first plot indicates that OD pairs more than 2000 km

apart are correlated with severe weather penetration. For reference, San Francisco Interna-

tional Airport (SFO) and Chicago O'Hare (ORD) are approximately 3000 km apart. The

flights in the 7000 km range are mostly trans-Pacific flights coming from Asia. One possible

explanation is that these longer routes are flown by larger aircraft more able to withstand

weather. Another possibility is that midrange flights are disproportionately delayed or can-

celed during weather events at the destination airport due to ground delay programs or

ground stops that do not affect longer range flights that have either already taken off or are

not within the scope of the ground delay.

A positive correlation can also be seen in the flights arriving from within 500 km of

ORD. This can be more clearly seen in the second plot, which breaks down the data into

smaller bins. Recall that we are specifically tracking weather penetration within 200 km

of the airport; for many of these flights, it may simply be the case that they do not have

sufficient flexibility to avoid the region of the terminal containing severe weather. This is

supported by the case studies described in Chapter 3.

4.1.2 Air carrier

While every airline's pilots adheres to safety restrictions and would not subject their flight to

dangerous weather, there may be institutional variation in how much turbulence pilots are

willing to tolerate. Since turbulence is anecdotally one of the primary factors in determining

whether a pilot chooses to fly through severe weather, it is plausible that certain airlines'

pilots would be more likely to fly through severe weather.
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Table 4.1: List of airlines servicing ORD. Airlines with fewer than 100 flights are not
considered in the model; airlines with fewer than 25 flights are not listed.

Airline Code Flights
United UAL 2208

American Eagle EGF 2124
American AAL 1650
SkyWest SKW 1116

Mesa ASH 514
Trans States LOF 275

Shuttle America TCF 258
GoJet GJS 179

Northwest NWA 149
Continental COA 130

US Air USA 95
Delta DAL 87

Atlantic Coast ACA 67
American West AWE 59

Mexicana MXA 57
JetBlue JBU 49

Chautauqua CHQ 46
Comair COM 37

Atlantic Southeast ASA 33
Lufthansa DLH 32

FedEx FDX 32
ExpressJet BTA 26

Due to the distribution of airlines servicing Chicago O'Hare, not all airlines appear in

the flightset sufficiently often to be statistically significant. As such, only airlines with at

least 100 flights in the flightset are included. These are listed along with their identifying

codes in Table 4.1.

While there are distinct differences in weather penetration behavior across different air-

lines, as shown in Figure 4-2, it is unclear how significant these differences are or even

whether they are due to airline management. It appears that of the legacy airlines, Conti-

nental pilots are the most likely to penetrate severe weather and United pilots are the least

likely. (Recall that the flightset is from 2008, well before the United-Continental merger.)

Other than American Eagle (EGF), it appears that the other regional airlines are less will-

ing to penetrate severe weather. This makes sense given that they are likely to be flying

turboprops and regional jets instead of larger aircraft. American Eagle's different behavior

may simply be because their pilots have significantly more experience dealing with ORD

specifically, and are more willing to fly through weather as a result.
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Figure 4-2: Normalized histogram of severe weather penetration by airline for airlines with
at least 100 flights in the flightset.

Table 4.2: Aircraft weight classes as outlined by FAA Order 7110.65.

Weight Class Maximum takeoff weight
Heavy More than 255,000 pounds
Large Between 41,000 and 255,000 pounds
Small 41,000 pounds or less

4.1.3 Aircraft size

In previous sections we have mentioned aircraft size as a potential influencing factor that is

strongly correlated with other features. It is logical to consider aircraft size directly as well.

While there are too many different types of aircraft to consider different models directly,

there are many measures of aircraft size to consider. We use the aircraft weight class. These

are summarized in Table 4.2.

While Heavy aircraft are more likely to fly through weather (Figure 4-3), the fact that

the overwhelming majority of aircraft landing at Chicago O'Hare are Large aircraft means

that this feature has only marginal skill.
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4.2 Delay-based features

An early hypothesis was that a flight's on-time performance would be a determining factor

in the pilot's willingness to penetrate severe weather. If a flight were delayed, for example,

a pilot might be more willing to endure turbulence in order to land on time. Similarly,

a pilot arriving at the destination airport earlier than expected might be more willing to

deviate in the terminal area in order to avoid weather since the flight would still land on

time.

There are many possible indicators of delay, and it is unclear a priori which would be the

most relevant. Therefore, we consider three different features: pushback delay, wheels-off

delay, and airborne delay.

4.2.1 Pushback delay

Pushback or gate delay is defined as the number of minutes after the scheduled gate pushback

time that the aircraft actually pushes back from the gate. Pushback delay based on the

flight plan is given directly by the ASPM database in field DLAFPOUT. The delay is set to

zero in the event the flight pushes back early.

Note that we are using the delay based on flight plan and not the delay based on the
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Figure 4-4: Normalized histogram of severe weather penetration by ASPM pushback delay.

schedule. Typically, a schedule is set by the airline several months in advance, which may be

modified by a flight plan filed up to one day before the flight's departure. Because the flight

plan is more recently updated, it is likely that the pilot is more aware of this time rather

than the originally scheduled time. Over all flights departing in June, July, or August 2008,

the delay based on flight plan differs from the delay based on schedule 13.17% of the time

(13,401 out of 101,766 flights), with the scheduled delay greater 97% of the time (13,012 of

13,401 flights).

Figure 4-4 plots the normalized histograms for flights that did and did not penetrate

severe weather as a function of the ASPM pushback delay. It is immediately apparent that

even during weather events, the majority of flights do in fact push back from the gate on

time. For flights that are delayed by more than 15 minutes, there is a slight bias towards

weather penetration.

4.2.2 Wheels-off delay

We also consider the wheels-off delay as a feature in our model. This refers to the delay in

taking off from the origin airport. Wheels-off delay is directly given by the ASPM database

as DLAFPOFF. A long wheels-off delay could simply indicate a late pushback; however, a
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Figure 4-5: Normalized histogram of severe weather penetration by ASPM wheels-off delay.

long wheels-off delay with a short pushback delay would indicate a long tarmac delay at the

origin airport. If pilots are more aware of flight time than block time, the wheels-off delay

could be significant.

A normalized histogram of severe weather penetration by wheel-off delay is shown in

Figure 4-5. Relative to Figure 4-4, there is an even more noticeable bias towards weather

penetration in flights that take off late.

4.2.3 Airborne delay

Finally, we would like to consider the airborne delay at the time that a flight enters Chicago's

terminal area. A flight is said to be delayed upon entering the terminal area if it took longer

than usual to fly from its origin airport to within 200 km of its destination airport.

In order to estimate the airborne delay, it is necessary to compare each trajectory in the

flightset with fair weather trajectories between the origin airport and ORD. Eight days from

summer 2008 were chosen with minimal weather and no unusual events to serve as a baseline.

While it is virtually impossible to find a day with absolutely no weather anywhere in the

continental United States, there were no large-scale systems or widespread thunderstorms

on the days chosen. These days are listed in Table 4.3.

For each of the 211 origin airports in the ETMS-ASPM flightset, we consider all flights
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Table 4.3: Days with minimal weather used as a baseline for computing average flight times.

Fair weather days
2008-06-01
2008-06-03
2008-06-05
2008-06-07
2008-06-09
2008-06-11
2008-07-31
2008-08-05

0 20 40
Airborne delay (minutes)

60 80 100

Figure 4-6: Normalized histogram of severe weather penetration
time the flight reaches the Chicago terminal area.

by airborne delay at the

from the origin airport to ORD during the eight fair weather days. For each flight, the

ETMS flight time from wheels-off to entering the terminal area (200 km) around ORD is

determined. Although there is naturally some variation even on fair weather days, the mean

of these flight-to-terminal-area times is computed, stored in a separate database, and used

as a point of comparison for computing airborne delay.

Once the baseline flight times have been estimated, the airborne time of each flight in the

ETMS-ASPM flightset at the time it enters the terminal area is computed and compared to

the stored fair weather estimate. The delay is the difference between these times. A flight

that arrives earlier than the baseline is assigned a negative delay.
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Figure 4-7: Normalized histogram of severe weather penetration by time spent in the ter-
minal area.

Figure 4-6 contains the normalized histograms for airborne delay. As with both of the

previous delay indicators, there is a bias towards severe weather penetrations with positive

delay. There is an analogous negative bias when the flight has arrived at the terminal area

earlier than usual.

With all of these delay indicators, it is should be noted that a positive correlation does

not necessarily imply a choice on the part of the pilot. It may simply be the case that the

presence of more severe weather makes any delay more likely. Nevertheless, it is clear that

all the delay indicators have at least weakly positive skill in predicting pilot willingness to

penetrate weather.

4.2.4 Time spent in the terminal area

Another feature considered is the total time each flight spends in the terminal area. This

is a potentially problematic feature because it cannot be predicted in advance; the time

can only be known after the flight lands, at which point a prediction would be unnecessary.

Nevertheless, it turns out to correlate reasonably well with weather penetration behavior,

so we include it here (Figure 4-7).

One might naively expect that longer terminal times would be correlated with lack of
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weather penetration since it might signal pilots deviating to avoid weather. However, our

case studies indicate that in many cases where pilots deviate significantly to avoid weather,

the blockage is usually pretty severe and avoiding it completely is impossible. In some

cases this may be because there is weather very close to the airport; in these cases runway

requirements prevent pilots from deviating.

4.2.5 Number of pilots in terminal area

For each flight, we consider the number of pilots in the terminal area at the time the flight in

question first enters the terminal area. It is not apriori obvious whether this indicator would

correlate positively or negatively with weather penetration. On the one hand, this number

approximates the congestion level in the terminal. High levels of congestion would prevent

pilots from deviating too much, which may result in increased likelihood of penetrating

severe weather. On the other hand, the presence of severe weather in the terminal could

lead to decreased numbers of flights entering the terminal in the first place.

As a proxy for congestion, the measure is problematic for several reasons. First, flights

may not be equally distributed in all directions. For example, a flight entering from the

northeast when most flights are clustered around the southwest would experience almost

no congestion, but this would not necessarily be reflected in the raw flight count. Second,

whether a high number of flights causes congestion depends on how the flights are sequenced.

If the controllers are able to densely sequence many flights on a single route, the flow can

continue uninterrupted even with a large number of flights. In contrast, if the flight paths

are chaotic, a much smaller number of flights could be enough to cause delays.

As shown in Figure 4-8, the indicator is negatively correlated with penetration of severe

weather, likely for the reasons outlined above: the presence of severe weather in the terminal

area would cut down on the total number of flights. It may also indicate that when severe

weather exists in the terminal area, higher flight counts occur only when the controller has

found a way to efficiently route flights around weather. More features dealing with this

type of stream behavior will be discussed in Chapter 5.
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Figure 4-8: Normalized histogram of severe weather penetration by number of pilots in the
terminal area when the flight first entered the terminal area.

4.3 Weather-based features

While this thesis is focused on operational factors that affect pilot penetration of severe

weather, we found it useful to incorporate several weather-based features.

4.3.1 Conditions near the airport

Case studies indicated that weather near the terminal area was particularly difficult to

avoid. A feature that captures whether weather is near the airport is therefore a reasonable

one to use. To quantify this, we count the number of WAF pixels within 50 km of the airport

that are 80% or above. This matches our threshold for weather penetration. 50 km was

chosen because that is slightly greater than the longest commonly observed "trombone"

paths taken when flights line up for landing on particular runways. While this feature

produces numbers that are somewhat difficult to understand, it directly corresponds to the

weather coverage near the airport.

Figure 4-9 indicates that this feature is strongly correlated with severe weather penetra-

tions. When there are at least 500 WAF pixels of 80 or above within 50 km of the terminal

area, most flights will penetrate severe weather. (For reference, there are about 8000 pixels
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Figure 4-9: Normalized histogram of severe weather penetration by WAF coverage within

50 km of the airport.

within 50 km of the airport.) Although 6% coverage may seem low, it is enough to make it

extremely difficult for flights to maneuver around when they need to land at the airport.

4.3.2 Conditions farther from the airport

To balance the previous feature, we introduce another feature that counts the number of

pixels between 50 and 200 km away from the airport. In other words, this feature quantifies

the weather within the terminal area but away from the airport.

Unlike the near-airport weather, in the annulus around the airport we see far more

flights avoiding weather despite the presence of severe weather. (For reference, there about

118000 pixels in the annulus.) This is to be expected, since flights have far greater flexibility

to avoid weather in the outer terminal.

4.3.3 Total amount of weather in the terminal area

Finally, we include a feature indicating the total amount of weather in the terminal area.

Following the previous features, this is simply the total number of WAF pixels over 80

within 200 km of the airport.
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Chapter 5

Traffic Flows

In our discussions with experts in the field and in our own case studies, it was frequently

observed that pilot behavior was greatly influenced and indeed controlled by the behavior of

those around them. Air traffic controllers refer to flows or streams of flights; it is important

to understand how these streams are set up and how they change in order to understand the

airspace dynamics. We therefore consider several features which help to identify whether

a pilot is part of such a stream and how this affects their behavior. In order to do this,

it is necessary to dynamically identify where the streams are and whether a trajectory is

assigned to a particular stream.

The terminal area is where pilots coming from all directions are merged into one of

several arrival streams in order to be properly spaced and sequenced for landing. Chicago

O'Hare has four arrival fixes or cornerposts, each approximately 50 km from the airport.

Arriving aircraft typically pass over one of these arrival fixes before being routed into the

appropriate landing trajectory. These are listed in Table 5.1 and mapped in Figure 5-1. The

four departure directions are interspersed with these four cornerposts. We implicitly divide

the terminal area into two regions: the outer region, where flights are merged intoa single

stream passing through one of four cornerposts; and the inner region, where flights follow

a fairly well-specified route from the cornerpost to their assigned runways. Identifying the

streams through each cornerpost is the heart of this analysis. From there, we define several

more features which can be used to predict severe weather penetration.
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Figure 5-1: Map of Chicago O'Hare arrival fixes. O'Hare's TRACON is outlined in blue.

5.1 Defining streams and cornerposts

Although arriving aircraft are typically required to pass over one of these four cornerposts

and have fairly specific flight paths within the near-terminal area, the route within the

terminal area to the assigned arrival fix can vary significantly. Arrival and departure tra-

jectories on July 8, 2008, at 1630Z, a typical fair weather afternoon, are plotted in Figure 5-2.

Trajectories are plotted for departures within the last 40 minutes and for all arrivals air-

borne within 200 km of the airport. The triangles indicate each aircraft's current position;

the aircraft's trajectory up to its current position is shown as a solid line while the future

trajectory points are dotted.

This plot demonstrates some of the difficulty in identifying arrival streams. While all

aircraft must be lined up for landing, they may be entering the terminal area from many

different directions. Arrival trajectories into the different cornerposts vary in how closely

they follow the same path. At the time in question, flights arriving to the northwest

cornerpost tend to take more varied paths, while the flights at the southeast cornerpost all

follow roughly the same path. At the southwest cornerpost, most flights follow nearly the

same path, but two deviate significantly. It is therefore difficult to clearly define whether a

given flight is truly part of a stream or if it is simply taking a similar route from its origin

to the arrival cornerpost. This is significant, since a pilot in a tightly controlled stream

could be influenced by the behavior of the preceding pilot in the same stream, whereas a
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Figure 5-2: Terminal-area flights on July 9, 2008, at 1630Z. Departures are grey and arrivals

are purple.

pilot who simply happened to be following a similar route would be more likely to make

independent decisions.

Because of this difficulty, we do not attempt to quantify absolutely whether a flight is

part of a stream at any given time. Instead we primarily use the flight's observed cornerpost

as the basis for our analysis, identifying the number of flights at each cornerpost and how

spread out they are. Guided by case studies, we then identify various features that could

potentially influence pilot behavior.

5.2 Detecting active cornerposts

The first step in the process is to identify active cornerposts and how closely clustered the

flows are around each cornerpost. Although exact distances vary, each cornerpost is ap-

proximately 50 km from the airport; this distance is used for all cornerposts for consistency.

We examine the location at which each flight first comes within 50 km of the airport, and

consider the angle of the line between this location and the airport. Approaching the air-

port from due east heading due west is considered 0 degrees. Note that this analysis is done

using the 1-km grid contained in the weather data; as such, there will be some distortion

due to the projection.
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5.2.1 K-medians clustering

The problem of detecting clusters of incoming flight angles is analogous to the 1-dimensional

k-medians clustering problem over the integers modulo 360. Given a set of points, we wish

to find k centroids and assign each point to its nearest centroid such that the median error

between each centroid and its set of assigned points is minimized. Although this problem is

theoretically computationally difficult, we use a common heuristic which gives reasonable

results given our application.

The heuristic begins with k randomly chosen centroids, assigns each point to the nearest

centroid, and then readjusts the centroids to minimize the median error amongst all points

assigned to it. Then the points are reassigned to the nearest centroid, which in some

cases may not be the same one. The process is repeated until every point assignment

remains unchanged or until a set number of iterations is reached. In most cases the heuristic

converges after only a few iterations. However, depending on the input, the result can

sometimes depend on the initial centroid assignments. Because of this, the algorithm is run

10 times with random starting configuration; the result with minimum average error across

all centroids is used. Different numbers of repetitions were tried; no significant improvement

was observed for more than 8 repetitions.

Finally, since the heuristic requires k to be specified, and it is not known in advance

how many flight clusters there will be, the heuristic is run for k = 1, ..., 8. Although there

are typically only 4 clusters, this range allows for spontaneous clusters which may form

as a result of weather blocking regular routes. When k is too small, typically the average

errors will be relatively large since streams will be far apart. When k is too large, there are

two common outcomes. First, single flights can be assigned to their own cluster, especially

when they are far from any other cluster. Second, two clusters may be very close to each

other (within 1 or 2 degrees). Fortunately, these two are simple to check for; once these are

eliminated, the result with lowest average error is chosen.

5.2.2 Results

For each 2.5-minute interval in our case set, we consider the set of flights with destination

ORD within 200 km of the terminal area. The 2.5-minute temporal resolution matches the

temporal resolution of the weather data. For each flight in this set, we determine the angle

70



2008-07-02 02:00:00

2008-07-02 04:00:00

2008-07-02 06:00:00

2008-07-02 08:00:00

2008-07-02 10:00:00

2008-07-02 12:00:00

2008-07-02 14:00:00 * * 5-9
10-14

2008-07-02 16:00:00

2008-07-02 18:00:00 * * * - 20-24
25-29

2008-07-02 20:00:00

2008-07-02 22:00:00

2008-07-03 00:00:00 ____________________

0 0-2008-07-03 02:00:00 ~ ~
2008-07-03 04:00:00 ~
2008-07-03 06:00:00

0 50 100 150 200 250 300 350

Figure 5-3: Arrival streams on July 2, 2008, at a radius of 50 km from the airport.

at which it crosses the circle of radius 50 km centered at the airport. These angles are fed

into the k-medians clustering algorithm to detect where the currently-used arrival fixes are.

Once this is done, we can plot the locations of these clusters to observe how they change

over the course of the day. This is shown in Figure 5-3 for one of the case days in this

thesis, color-coded by the number of flights in each stream. Each stream has at least two

flights assigned to it. As before, an angle of 0 represents a flight approaching from due east

heading due west towards the airport. For comparison, arriving flight trajectories at 1400Z

on the day in question are plotted in Figure 5-4. In this plot, the inner circle has radius 50

km and the outer circle has radius 100 km.

As can be seen from Figure 5-4, at 14Z on this day the flights arriving from the northeast

tended to be more spread out, with at least three distinctive streams. This matches what

we see in Figure 5-3, where at 14Z we observe one main stream with 15-19 flights at just

over 50 degrees, with two smaller streams to either side. By contrast, the northwest and

southeast cornerposts have two tightly clustered streams, evident in both plots. Finally,

the arrival trajectories are somewhat more spread out in the southwest quadrant as seen in

the map (Figure 5-3), but the clustering algorithm identified this as a single cluster with a
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Figure 5-4: Arrival trajectories on July 2, 2008, 1400Z.

greater spread.

Similar charts can be made for each case day and share many similarities. Generally

speaking, the four established cornerposts are stable, varying by only a few degrees. The

arrival fixes and their approximate angles are listed in Table 5.1. Note that while these

correspond closely to the actual fixes, the positions were not input into the clustering

algorithm; rather, these were the locations most commonly detected by the algorithm.

When an arrival fix is affected by weather, the fix is typically closed and flights are rerouted

to other fixes. Although streams can sometimes shift position, analysis of our case days

indicates that this is more likely to be the result of low traffic counts allowing greater

controller flexibility. An example of the former can be seen in the two southern cornerposts

at the end of the July 2 case in Figure 5-3. Multiple streams are most commonly seen in

the northeast quadrant, and are observed during both fair weather events and convective

weather events.
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Table 5.1: Chicago O'Hare arrival fixes.

Fix Cornerpost Angle
KUBBS Northeast 57
KRENA Northwest 143
PLANO Southwest 226
BEARZ Southeast 327

5.3 Stream features

Once we have identified the flight streams entering the near-terminal area at any given

time, we can extract several more features for each flight regarding its trajectory relative to

the existing streams. In general, flights adhere closely to the prescribed flight path within

the near-terminal area (within 50 km of the airport). This flight path depends on the

assigned cornerpost and runway; we use these two pieces of data to identify each flight's

near-terminal stream. However, as mentioned previously, outside 50 km, flights tend to be

much more spread out, and it does not generally make sense to assign flights to specific

streams. The features described below reflect these two observations.

5.3.1 Cornerposts

The first and simplest feature to examine is the assigned cornerpost itself. We consider

both the cornerpost used and the current location of the actual stream.

Arrival fix

There are four standard ORD arrival fixes (Table 5.1). As we have seen, most flights pass

over one of these. If the flight enters the near-terminal area within 5 degrees of a particular

arrival fix, that flight is assigned to that fix. Otherwise, the flight's arrival fix is assigned a

null value.

Arrival angle

Another feature considered is whether the flight enters the near-terminal area as part of a

stream. These are indicated by the angle relative to the airport as described in the previous

section. For each flight, the existing streams at the time the flight first enters the near-

terminal area are retrieved. If the flight's distance from the nearest stream's centroid at the
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entry point is at most twice the average error for that stream, the flight is considered to be

in the stream. This allows outliers while still taking into account the width of each stream.

5.3.2 Number of streams

The total number of streams at the time each flight enters the terminal area, excluding

outliers, is included as another feature. Typically there would be four arriving streams,

though during low-demand periods there are often fewer. Furthermore, under weather

conditions it is possible that one or more would be closed as the result of weather. It is also

possible that under weather conditions different aircraft would be rerouted into different

streams in order to avoid flying through severe weather.

5.3.3 Previous pilot's behavior

A commonly heard conjecture is that a pilot is likely to follow the preceding pilot in a

stream, and that this has an undue influence on whether a pilot choose to fly through severe

weather. This may be especially problematic during times when the weather is worsening,

but each individual pilot chooses to follow the previous pilot's path through weather. This

feature examines this behavior in the near-terminal area, where flight streams are strictest

and most clearly defined.

Each flight is assigned to a final flight path according to its arrival stream and runway.

It is important to consider the runway because flights landing on different runways will

have significantly different landing paths even if they are assigned to the same arrival fix.

We then retrieve the weather penetration behavior (the maximum WAF penetrated by the

pilot in the terminal area) of the preceding pilot on the same stream and runway.

5.3.4 Number of pilots in the same stream

If pilots do tend to follow each other, examining how flows are created and why they

cease could help explain weather penetration behavior. Following the hypothetical situation

described in the previous section, eventually the weather would worsen to such a degree that

some pilot would advise the following pilot not to fly through. If this is the case, it would

imply that pilots who are last in their stream are more likely to fly through severe weather.

We capture these features by counting the number of flights in the same stream within

the preceding and following 30 minutes. This also gives a sense of how densely spaced the

74



stream is, which may in itself be a significant factor. Thus, a low flight count in the 30

minutes before indicates that the flow is being established, while a low flight count in the

following 30 minutes indicates that the flow is being shut down or rerouted. A low flight

count before and after would indicate a low-density route; a flight is considered an outlier

if there are no flights within a 30 minute window.

5.3.5 Stream width

If our primary hypothesis is that pilots are influenced the flows around, it is logical to

consider how tightly controlled each flow is. The width of a flow (the spatial variance of

trajectories in each stream) is a possible proxy indicator for how strictly pilots must follow

the prescribed path.

It is not a priori clear whether this indicator would be positively or negatively correlated

with weather penetration, assuming it has any skill. It is possible that a narrow stream

would be positively correlated with weather penetration since pilots are less likely to request

a deviation. On the other hand, streams typically become more spread out in weather events

as each pilot tries to avoid particularly strong convective weather cells.

5.3.6 Runway

We previously used each flight's assigned runway to identify its near-terminal stream. The

runway used can also be considered an independent feature. The landing runway is deter-

mined from the ETMS trajectory data; the runway used is clear from the final heading of

each aircraft as determined from the last five trajectory points. In most cases, these indicate

the aircraft's final heading unambiguously; the handful of ambiguous cases (usually due to

a tightly curving arrival path) were manually assigned to runways.

Chicago O'Hare has three pairs of parallel runways (9/27, 4/22, 14/32) and a single

runway (10/28) that is less often used. Since the single runway is quite close to one of the

larger parallel runways, it is sometimes difficult to determine whether an aircraft is landing

on 9/27 or 10/28. In cases of ambiguity, we assume that the aircraft is landing on one of

the 9/27 runways. While it is possible to determine more accurately precisely which runway

each aircraft is using, this precision is unnecessary since we are mostly concerned with the

flight path used on the approach and not the runway itself.

75



76



Chapter 6

Predictive Modeling of Pilot

Behavior

Using the features defined in the previous two chapters, we apply two predictive models to

estimate the relative skill of the various features in predicting severe weather penetration.

6.1 Decision Trees

We first used a decision tree classification algorithm to model the data. A decision tree

recursively partitions the data into two sets, finding a partition at each step that maximally

differentiates the two sets. In our case, each step divides the flights into a set that did not

penetrate severe weather and a set that did, while minimizing the misclassifications. A node

is considered terminal when the number of flights at the node has reached some minimum

threshold or when all partitions have high error rates.

Decision trees were chosen for several reasons. First, the model can be used with a

relatively small sample size. Since the number of case days was so limited, this was an

important consideration. Second, the decision tree model is a white-box model: the pre-

dicted outcome for each flight clearly follows from the flight's characteristics. Since the

primary reason for using a predictive model is to understand the relative importance of

various features, it was illustrative to use a white box model. Finally, it is able to handle

both numerical and categorical data; our features include both types.
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6.1.1 Balancing the dataset

Oversampling is a method frequently used in predicting rare events. This is used to balance

the dataset when many more samples of one outcome exists in the dataset. In our case,

we have many more examples of flights that did not penetrate severe weather (over 9000)

relative to the number of flights that did (144). In these situations, a predictive model could

be reasonably accurate by simply choosing the more likely event in all cases. This is in fact

what we find: a decision tree model trained on the unmodified data produces a model with

a high missed detection rate.

To re-balance the dataset, the flights that penetrated severe weather are duplicated in

the training dataset to approximately match the number of flights that did not penetrate

severe weather. The model is then trained and verified on this balanced dataset, which

artifically boosts the weight of the smaller set.

It is also possible to balance the dataset by randomly discarding flights from the larger

set. Due to the exceedingly small number of weather-penetrating flights, the majority of

the dataset would need to be discarded; this was deemed undesirable.

6.1.2 Training the model

Each flight in the flight dataset was randomly assigned to one of two sets, a training set

and a test set. Flights where some of the features could not be computed due to missing

data or other reasons are rejected; this applies to approximately 9% of the flights. Weather-

penetrating flights were duplicated to the degree necessary to balance each dataset. The

training set was used to train a decision tree to predict severe weather penetrations; the tree

was then validated using the test set. This procedure was repeated 8 times with different

random partitions of the original data set. Two sample trees are shown in Figure 6-1. Each

branch indicates the criterion for the left-hand daughter node; each node is labeled with

the probability of severe weather penetration and the number of flights in the training set

assigned to that node. For categorical values, indices are given rather than the full list of

acceptable values for space reasons. The short names for the features are listed in Table 6.1.
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Table 6.1: List of features used in the predictive model.

Variable name
allwx
nearwx
farwx
flightrange
termtime
pilots
outdelay
offdelay
airdelay
wtc
body
wtc
airline
runway
runwayp30
runwayn30
cornerpost
stream

Feature description
Number of WAF pixels > 80 within 200 km of the airport
Number of WAF pixels > 80 within 50 km of the airport
Number of WAF pixels > 80 between 50 and 200 km of the airport

Origin-destination distance
Minutes spent in the terminal area
Number of pilots in the terminal area
Pushback delay
Wheels-off delay
Airborne delay
Aircraft weight class
Aircraft size (Narrow or Wide)
Aircraft weight class
Airline (XX if fewer than 100 flights)
Landing runway
Number of pilots on the same stream in previous 30 min
Number of pilots on the same stream in next 30 min
Cornerpost (NW, NE, SE, SW)
Nearest major incoming stream or X if outlier

6.1.3 Results

Although the eight trees are not identical, they share certain characteristics. First, the

feature at the root of the tree is consistently a weather feature indicating the presence of

severe weather very close to the airport. Thus, the most significant determinant is the

weather itself, and not any operational factors. Second, in all eight trees, the right-hand

side of the tree is significantly less complex than the left-hand side, and will generally yield

a prediction of severe weather penetration. Since there is little to no deviation flexibility

in this range, pilots who wish to land have little choice but to fly through severe weather,

regardless of the operational characteristics of the flight. By contrast, on the left-hand side

of the tree, the choice of whether to fly through severe weather is more complicated. Other

than these two characteristics, the trees differed in which variables were used and at which

level. This indicates that we are dealing with many weak predictors, which decision trees

are not well-equipped to handle. Two features that are somewhat correlated may not both

be used, despite their similarity.

Each tree was validated on the test set. The results are shown in Table 6.2. The decision

trees trained in this method are accurate approximately 75% of the time. However, since this

is validated on an oversampled dataset, the results should be taken more as an indication
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Figure 6-1: Two sample decision trees.
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Table 6.2: Validation of the decision tree prediction model. The mean and standard devia-

tion for the 8 trials are shown.
Actual Actual

Yes No
Predicted Yes 2549 (443) 458 (18)
Predicted No 1578 (431) 3892 (106)

of the predictive power of different variables rather than as a predictive model.

6.2 Random forests

Random forests are a natural extension of decision trees, and are useful for predictions based

on many weak predictors. Random forests were first described by Leo Breiman in 2001 [1];

this thesis utilizes the software package written by Breiman and others for our analysis. A

random forest works by creating many decision trees using a random subset of the features

and data in each one. Our model uses 500 trees in each forest, with each tree drawing 4

predictors at random. Each tree then votes on the outcome of the prediction variable.

Random forests are extremely robust. They are able to deal with many correlated

variables without having one eclipse the other, as is possible with decision trees. The

diversity of trees also solves the overfitting problem sometimes encountered with decision

trees.

6.2.1 Dealing with unbalanced datasets

Instead of oversampling, random forests deal with unbalanced datasets in a more natural

way. The vote threshold for severe weather penetration can be set explicitly and does not

need to be 50%; this biases the classification algorithm in favor of the rarer event. This is

especially useful when the penalty for missed detections is greater than the penalty for false

alarms.

It is also possible to explicitly take equal numbers of samples from the two sets; however,

it was found that specifying the sample sizes in this manner did not improve results.

6.2.2 Results

The random forest model was trained and tested using eight random partitions of the

dataset. A summary of results is shown in Table 6.3 for several vote thresholds. Because the
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Table 6.3: Summary of results from random forests with several different vote thresholds.
Threshold for Predicted Actual Actual

yes vote Yes No

.7 Yes 34 (3) 145 (28)
No 33 (6) 4235 (59)

.5 Yes 51 (4) 556 (56)
No 15 (4) 3823 (70)

.3 Yes 63 (5) 1728 (186)
No 4 (4) 2651 (206)

.1 Yes 66 (7) 3662 (300)
No 0 (0) 717 (293)

random forest model is tested using data that has not been oversampled, the results cannot

be directly compared to the decision tree. Nevertheless, the random forest model does

reasonably well on the test dataset, achieving accuracy rates up to 90%. Unfortunately, the

overall accuracy is highly skewed towards the negative prediction. The lack of oversampling

explains the high false alarm rate.

6.2.3 Sensitivity analysis

The results are highly dependent on the vote threshold, which controls the balance between

false alarms and missed detections. The false alarm rate increases enormously as the vote

threshold is lowered. At the same time, decreasing the vote threshold lowers the number of

missed detections. A reasonable balance point seems to be somewhere between .3 and .5,

depending on the relative costs of missed detections and false alarms. The sensitivity curve

summarizing this tradeoff is plotted in Figure 6-2.

6.2.4 Variable importance

The random forest model allows us to rank the features by skill. To do this, we randomly

permute the values of each variable and measure the decrease in accuracy of the resulting

tree using a Gini index. This process is repeated for all trees in the forest containing

the variable in question; the resulting average is the variable importance. A higher value

indicates greater skill. These were computed for an arbitrary run of the random forest

model with vote threshold .5 and are summarized in Table 6.4.

The model indicates that the most importance features remain weather features; these

have greater significance than any operational feature except one. The time spent in the
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Figure 6-2: Sensitivity curve summarizing tradeoff between false alarms and missed detec-

tions, parametrized by the vote threshold.

Table 6.4: Variable importance
Variable name
nearwx
termtime
farwx
allwx
flightrange
runwayp30
pilots
stream
airline
runwayn30
offdelay
airdelay
outdelay
runway
cornerpost
body

as given by the random forest model.

I Feature importance
22.7
16.3
12.3
11.6
10.6
10.6
7.6
7.4
6.9
6.7
5.4
5.5
3.9
3.2
2.8
0.3
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terminal area is significant, with longer terminal times correlated to higher likelihood of

weather penetration; however, this feature is somewhat problematic since it can only be

known after the flight has landed. A longer distance flight is also associated with higher

likelihood of penetrating severe weather. There are several reasons this might be true. First,

longer distances are correlated with larger aircraft, which may be better able to penetrate

severe weather. Second, flights arriving from farther away are less likely to be impacted by

ground delay programs or ground stops; there may simply be a larger proportion of long-

distance flights during severe weather periods. Comparable in skill to the flight range is the

number of preceding pilots on the same approach path, with higher numbers corresponding

to increased likelihood of severe weather penetration. This supports our hypothesis that

pilots tend to follow established paths, perhaps through worsening weather.

Thus, while most of the variables are only weakly correlated with severe weather pene-

tration, we are able to develop a random forest prediction algorithm that correctly classifies
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Chapter 7

Conclusions and Future Work

7.1 Summary and conclusions

Using a combination of case studies and predictive modeling, we have identified and tested

features that correlate with pilot penetration of severe weather in the Chicago O'Hare

terminal area. Case studies were used to identify and extract the relevant features, and

their relative importance was measured using a random forest predictive algorithm. While

our initial hypothesis was that operational factors were significant in determining which

flights penetrated severe weather, our study shows that the primary indicators continue to

be weather features, particularly the presence of weather very close to the terminal area.

Nevertheless, we found a number of operational features that weakly correlate with

severe weather penetration. Despite having less importance, these features help shed light

on the dynamics of the terminal area. In particular, the importance of several of the

stream-based features may help us understand how pilots and air traffic controllers deal

with weather in the terminal area. The most important conclusion was that pilots are more

likely to penetrate severe weather when they are part of a stream that crosses through

weather and less likely when they are "pathfinders" leading a stream; this implies that

rerouting around weather is still often done on an ad hoc basis once a pilot has flown

through severe weather and reported the event to an air traffic controller. Understanding

these dynamics may lead to the development of more optimal weather mitigation strategies

in the terminal area.
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7.2 Future work

There is still a great deal of work to be done in understanding the impact of severe weather

in the terminal area and when and why pilots choose to penetrate such weather. Our work

plan for the next few months addresses some of the shortcomings of this thesis and considers

implications for planning.

7.2.1 Expand databases

The predictive power of our model is severely limited by the relatively small number of

weather-penetrating flights in our dataset. Ideally, we would acquire data from more recent

years to expand our case set and verify that the same patterns hold year over year.

7.2.2 Adding more features

An expanded case set would likely suggest additional features that could be added to the

model. We may also explore adding advisory features, though the strong correlation with

weather events could make such features confusing.

7.2.3 Implications for weather forecasting

Finally, we would like to explore the implications of forecasting on observed pilot behavior.

We would like to compare the severe weather penetration events to the forecasts several

hours earlier to understand whether the weather penetration event was a surprise. If most

weather penetration events were a result of unforecasted weather, for example, pilots who

flew through severe weather may have had no other choice. On the other hand, if the

forecasts largely match the actual weather, this would imply that such weather could have

been avoided, and such weather penetration events may be a calculated decision on the part

of the pilot or air traffic management.

Furthermore, our study may have implications for forecasting. It is often difficult in

forecasting to ascertain the precise location of weather cells, particularly several hours in

the future. This is generally considered particularly problematic when the weather may

or may not be right over the airport. However, we have seen several cases where pilots

are willing to fly through weather when it is very close to the airport, but avoid the same

weather when it is farther away and they have more room to maneuver. If this is in fact
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the case, the precise proximity of weather to the airport may not be so crucial, at least for

arriving airborne aircraft.
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