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ABSTRACT

Due to the usual limitations in site investigations and measurements of soil properties,
simplified constitutive models are routinely used in geotechnical analyses for the design of
excavation support systems. However, monitoring data provides additional information on the
performance of these support systems during construction. This thesis proposes a rational
framework for updating constitutive model input parameters in finite element predictions of
soil-structure interaction based on the monitoring data. The goal of this methodology is to
provide an objective procedure that can be used during construction to update the instrument
pre-set trigger levels that are used to control construction. In this way, the methodology aims to
preserve safety by increasing confidence in the parameters controlling performance, and to
mitigate impacts of unnecessary work stoppages. The proposed methodology is designed to
handle diverse designs, ground conditions, and sources of information during construction to
operate within existing construction project management procedures (based on trigger
levels for individual field measurements). The framework comprises three key components:
1) rational sensitivity analyses (exploring full realistic search spaces for model parameters); 2)
error structures of field measurements (maximum likelihood approach); and 3) inverse analyses
based on heuristic optimization methods (genetic algorithms).

The proposed methodology is evaluated for a well-instrumented excavation project in
South Boston (MBTA Courthouse Station, South Piers Transitway project) comprising a
floating diaphragm wall, underlain by soft, normally consolidated Boston Blue Clay and
supported by five levels of cross-lot bracing. This project has a very low margin of safety
against basal instability, but was completed successfully in 2003. Numerical analyses using a
conventional linearly-elastic perfectly-plastic (Mohr-Coulomb; MC) soil model are updated
using a combination of wall deflection, ground movement, pore pressure and strut load data
through the full depth of the excavation. While the proposed procedure produces improved
agreement between predictions and measurements, based on reasonable updating of individual
input parameters, MC model limitations clearly produce compromises among the measured
parameters. The results have been compared with predictions from a more complex elasto-
plastic soil model, MIT-E3. In this case, the model input parameters are derived from an
extensive laboratory test program (Ladd et al. 1999) and principal uncertainties relate to the in-
situ stress history profile. Results from the MIT-E3 model show more consistent agreement
with the field measurements and achieve comparable accuracy to the more approximate MC
model (with parameter updating).



The results show the effectiveness of the proposed updating procedure, but also highlight
the challenge of updating predictions using simplified models of soil behavior. The study also
confirms the value of using more advanced constitutive models calibrated using high quality
laboratory tests. Further studies are now needed to evaluate how the proposed updating
procedure can mitigate cases where the measured performance deviates from prior predictions
and causes interruption of the construction process.

Thesis Supervisor: Prof. Andrew J. Whittle
Title: Professor of Civil and Environmental Engineering
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1 INTRODUCTION

Numerical analyses are widely used to predict excavation performance and to design lateral earth

support systems. Current finite element programs enable complex 3D simulations (e.g., basement

of Stata Center on MIT campus; Orazalin, 2012) due to advances in computational algorithms

(e.g., iterative solvers, embedded elements, etc.). However, despite the enormous progress in FE

analyses, users are still faced with: 1) uncertainties in how best to use programs (e.g., appropriate

assumptions in material model properties and boundary conditions), 2) uncertainties in site

investigation, soil properties, and spatial variability (e.g., associated with improvement

techniques), and 3) ill-defined sources of ground movements and stress changes (e.g., associated

with wall installation, pile removal, etc.).

Excavation support systems are monitored continuously during construction. In principle,

these data provide valuable information that can used to update input parameters used in the FE

model, reduce uncertainties in predictions for subsequent phases of construction and hence,

reduce risks. Ideally the updating procedure should be done in an objective automated procedure

that can be integrated in engineering practice. The main challenge is to develop a general

strategy that can handle diverse designs, ground conditions, and sources of information during

construction. Well documented case studies with high quality site investigation data, detailed

construction records, and reliable monitoring data play a key role in the development and

validation of updating procedures.
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1.1 Organization

The thesis chapters have been organized as follows:

Chapter 2 describes two case studies of numerical predictions of excavation performance

in Boston and Singapore: 1) Transitway Project: Courthouse Station for South Boston Piers, a

case study that compares class A, B, and C predictions for a deep, wide excavation, supported by

a diaphragm wall and five pre-loaded strut levels in Boston; 2) Nicoll Highway collapse (Whittle

and Davies, 2006), the well-documented failure of a 30 m deep braced excavation in Singapore

(Circle Line Phase 1) in underconsolidated marine clay. These projects are analyzed using an

advanced effective stress soil model (MIT-E3; Whittle, 1987; Whittle and Kavvadas, 1994).

Although there are several sources of uncertainty in both case studies, the analyses based on

information available prior to construction, combined with detailed monitoring of construction

activities and performance of the support system are sufficient to achieve high fidelity

predictions of soil deformations, pore pressures, as well as stresses and deformations of the

structural support systems.

Chapter 3 presents an overview of literature on the updating of predictions from

measurements of field performance varying from the Observational Method to inverse analysis

of FE predictions in geotechnical problems. The description of the inverse problem is subdivided

into two parts: 1) identification criteria (i.e., selection of objective function), and 2) optimization

* Currently known as the Massachusetts Bay Transportation Authority (MBTA) Silver Line
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algorithms. We focus on inverse analyses for finite element predictions of geotechnical

problems, including a comprehensive grouping of literature published in the last 30 years.

Chapter 4 proposes a rational methodology for updating finite element predictions of

excavation performance based on the maximum likelihood approach. Initially, a simplified

version of this methodology is introduced and the main parts of the framework are described.

This is followed by a description of the covariance matrices for field measurements and the error

structures for some typical instruments used to monitor excavations. The proposed methodology

uses sensitivity analyses to filter and select input parameters for the inverse analyses. The

chapter also presents a more detailed framework for using the updating approach in the project

management through integration with alert or trigger criteria. Finally, some comments are

provided on the application of the methodology in 2-D and 3-D numerical analyses.

Chapter 5 presents an application of the proposed methodology for updating finite

element predictions of excavation performance for the Transitway case study. This project

involves a 17.3 m deep excavation for the MBTA Silver Line Courthouse Station. The

excavation and support system diaphragm walls with 5 levels of cross-lot bracing are well

represented by a 2D finite element model (Platform section) of the half-section (i.e., full model

symmetry). This chapter describes the finite element model, identification of essential

improvement parameters at each stage of construction through sensitivity analyses. The chapter

gives full details of the inverse analyses and updating of parameters using simplified Mohr-

Coulomb (MC) models of soil behavior. The results show how model updating would be applied

and how these analyses assist in reducing uncertainties through the course of the construction.
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The final section compares these results with predictions using a more complex soil model (MIT-

E3) that were presented in Chapter 2.

Finally, Chapter 6 presents the summary, conclusions, and recommendations for future

research.
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2 TWO CASE STUDIES ON EXCAVATION PERFORMANCE

2.1 Introduction

There are many factors affecting excavation performance including those directly and indirectly

related to the excavation and support system (e.g. Peck, 1969b; Lambe, 1970; O'Rourke, 1981;

Clough and O'Rourke, 1990). Direct factors include soil types and in situ stress conditions,

support system stiffness, preloading of bracing or tieback elements, construction sequencing

(berms, over excavation, etc.), workmanship, minor construction details, and auxiliary activities.

Indirect factors affecting ground movements include dewatering, removal of utilities, wall

installation, etc.

Nowadays, numerical analyses are widely used to predict excavation performance and

design lateral earth support system. Currently, available commercial FE programs are capable of

modeling coupled flow-deformation (including partially saturated soils), and are equipped with a

range of soil models of varying complexity. It is possible to analyze very complex systems such

as the support systems for the basement of the Stata Center on MIT campus (Orazalin, 2012).

However, despite the enormous progress in the development capabilities, there remain

uncertainties in how best to use these programs (e.g., assumptions regarding soil models, input

parameters, and boundary conditions), uncertainties in site investigation, soil properties, and

spatial variability (e.g., effects of ground improvement), and factors beyond our immediate

knowledge (e.g., effects of concrete shrinkage; Whittle et al., 1993).
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In order to understand the relative importance of factors affecting predictions from

numerical analyses, it is crucial to learn from well-documented case studies where predictions

are compared with quality field measurements. One key question that needs to be resolved from

the case studies is the importance of the constitutive models used to represent soil behavior and

the selection of input parameters for those models. More complex models are able to achieve

more reliable description of soil behavior (observed in lab tests), but require more and higher

quality data in order to select appropriate input parameters. This chapter presents two case

studies that evaluate numerical predictions of braced excavation performance.

1. Transitway Project: this project has provided a unique opportunity to compare class A,

B and C predictions for deep excavation in South Boston, supported by a diaphragm wall

and five levels of pre-loaded struts. The numerical analyses use coupled flow and soil

deformation to simulate construction activities and an advanced constitutive soil model

(MIT-E3; Whittle and Kavvadas, 1994) that has been previously calibrated for BBC

(Whittle et al., 1994). The use of information available prior to construction and real-time

records of site activities makes it possible to build an accurate numerical representation

of the project. Direct comparisons of measured and predicted lateral wall and soil

displacements, surface settlements, excavation heave, pore pressures, and strut forces

allow a detailed evaluation of prediction capabilities.

2. Nicoll Highway Collapse (Corral, 2010; Corral and Whittle, 2010): the well-

documented failure of a 30 m deep braced excavation in underconsolidated marine clay is

re-analyzed using an advanced effective stress soil model (MIT-E3). The collapse of the

Nicoll Highway during construction of cut-and cover tunnels for the new Circle Line in
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Singapore has been extensively investigated and documented. All prior analyses of the

collapse (e.g., Whittle and Davies, 2006; GIM, 2001) have relied on simplified soil

models with undrained strength parameters based on empirical correlations and

piezocone penetration data. The current analysis use results from high quality

consolidation and undrained triaxial shear tests that were only available after completion

of the public inquiry into the collapse (COI, May 2005).

2.2 Transitway Project

2.2.1 Project Description

The South Boston Piers Transitway Project was an extension to MBTA public transit network in

Boston comprising a one-mile long, two-lane subway tunnel with three underground stations

connecting South Station to the new Federal Courthouse (Figure 2-1), and World Trade Center in

South Boston. The cut-and-cover tunnel and station sections were designed in order to

accommodate electric buses (Silver Line service to Logan Airport) with provisions for future

conversion to light rail. The Transitway Project was located within generally level land that was

reclaimed during the period prior to 1916. Figure 2-2 shows the instrumentation location plan at

the central area of the Courthouse Station, referred to as the "Platform section". There are a

series of low rise buildings located 50-60 m to the South of the section and one small structure

(Seaman's Chapel) to the North. These existing buildings are generally brick construction with

heights up to 6 stories. The original design of the excavation support system was submitted in

1998 (PB, 1998) and later revised by the contractor. The actual construction (i.e., excavation
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work) began in November 2000 and reached final grade level in August 2001 (Figure 2-3).

Platform section involved an approximate excavation area of 2475 m2 (75 x 33 m), 33 m wide

with a final excavation depth of 17.3 m (formation at El. +16.5m; Fig. 2.4). The excavation

support system consisted of a 1.22 m thick reinforced concrete, diaphragm wall panels,

extending to a depth of 26.2 m. The wall was internally braced with 5 levels of pre-loaded steel

struts.

From a geological point of view, the project site is located within the Boston Basin,

which is an East-Northeast trending structural and topographic depression. Based on a

generalized bedrock geologic map of the area (Kaye, 1976), the site is underlain by Cambridge

Argillite. The Cambridge Argillite is described as a gray, very thinly bedded, and fine grained

sedimentary rock (Kaye, 1976), containing varying amounts of very fine-grained sericitet and

chlorite with very low-grade metamorphism. The surficial geology is dominated by repeated

retreats and re-advances of glaciers during the Wisconsin Period and by centuries of land

reclamation during the expansion and urbanization of Boston. Glacial soils such as basal tills,

ablation tills, and outwash deposits, are generally found directly above the bedrock. Above the

glacial deposits is a deep deposit of marine clay, locally known as the Boston Blue Clay (BBC).

This layer was formed as clay, silt, and fine sand settled out in the quiet brackish water during

glacial retreats. Above the BBC are the more recent tidal marsh organic deposits and man-made

fills (PB, 1998).

A white, fine-grained potassium mica, usually muscovite in composition, having a silky luster and found as small
flakes in various metamorphic rocks.
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PB (1998) carried out subsurface exploration program for the Transitway Project in two

phases, June to August 1994, and June to August 1995. The exploration program included 15

geotechnical test borings (advanced with standard penetration tests); 43 "undisturbed" tube

samples of cohesive soils; 48 field vane tests; and rock coring in the vicinity of the proposed

station. Laboratory testing of undisturbed soil samples included unconsolidated, undrained (UU)

triaxial compression tests and 1-D consolidation tests. The principal source of data on the stress

history and undrained shear strength properties of the BBC at the Transitway site is from an

extensive program of laboratory tests performed for the CA/TI project at the South Boston

Special Test Site (SBSTS - H&A, 1993; Ladd et al., 1999). The SBSTS is located 300 m

approximately from the Platform Section of the Courthouse Station, as shown in Figure 2-1.

Ground elevations§ typically range from El. +33.5 m to El. +34.1 m, with an average

value of El. +33.8 m. The PB (1998) site investigation report describes the typical soil profile

comprising five soil strata overlying bedrock (Figure 2.5b). A general description of soil profiles

based principally on SPT measurements, from top to bottom, is as follows:

1. Granular Fill: in general, clean sand with a thickness ranging from 1.2 to 2.9 m, with

N=38 ± 28 bpf (n=13).

Central Artery / Third Harbor Tunnel project

The Transitway Project elevations are referenced to the Central Artery / Third Harbor Tunnel (CA/THT) datum
which is 30.48m below the National Geodetic Vertical Datum of 1929 (NGVD 1929). Therefore, El. +30.48m
Transitway Project Datum = El. 0.0 NGVD.
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2. Cohesive Fill: typically very soft hydraulic fill and/or very soft to medium stiff organic

silt with occasional layers of gray silty sand. The combined thickness -ranges from 4 to

7.6 m, with N=4 ± 4 bpf (n=49).

3. Silty Sand: thickness ranges from 0.9 to 6.4 m, and NSPT values range from 10 to 70, with

M=29 ± 13 bpf (n=40)**. Samples from this stratum had a tendency to liquefy when the

split spoon was opened and the sample shaken.

4. Boston Blue Clay (BBC): this stratum ranges in thickness from 22.9 to 37.1 m. Data

from laboratory consolidation tests indicate that approximately the top 15-20 m of the

clay stratum is lightly overconsolidated, with maximum i'p ~ 670 kPa (OCR=4-5) at the

top of the unit (Ladd et al., 1999). The lower portion of the BBC layer (i.e., below El.

+7.6 m) is effectively normally consolidated. The plasticity index, Ip ranges from

approximately 20 to 35%, and the natural water content, wn varies from 30 to 45%

approximately (Ladd et al., 1999).

5. Glacial Till: thickness ranging from 0 to 12.5 m. The till is generally granular with

N=104 ± 53 bpf (n=44). Boulders and cobbles were encountered at several locations and

occasional layers of cohesive till.

6. Bedrock: soft weathered to hard fractured Cambridge Argillite. Core recovery ranged

from 46 to 100% with the Rock Quality Designation, average RQD = 20%.

PB (1998) installed thirteen observation wells at the project site. The groundwater table

varies seasonally in the range El. +29.9 to +31.1 m. Piezometric measurements in the lower

Corresponding to an approximate average relative density Dr5 15% (Skempton, 1986).
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glacial till are 1.8 to 3.0 m below the groundwater table, implying a small head loss through the

BBC layer.

2.2.2 Numerical Analysis

The main objective of the current analysis is to evaluate capabilities of finite element models

through direct comparisons of measured and predicted lateral wall displacements, lateral soil

movements, surface settlements, excavation heave, pore pressures, and strut forces. Lambe

(1973) proposed a classification system for predictions: 1) class A predictions correspond to

those made before the event; 2) class B predictions to those made during the event; and 3) class

C predictions to those made after the event.

Jen (1998) carried out a series of class A predictions (12 numerical simulations at four

different sections of the Transitway Project), including 6 cases for the Platform section. These

analyses examined carefully the impact of changes in the wall embedment, vertical strut spacing,

partial drainage conditions in the clay, and uncertainties in the shear strength profile. The section

geometry, soil profile, boundary conditions, strut system and excavation levels assumed in these

class A predictions are summarized in Fig. 2-5a. The contractor ultimately decided to modify the

excavation support system (both the diaphragm wall thickness and the strut sections; Table 2-3

and Figure 2-3) prior to construction. As a result, the current analyses (class A, B, and C) differ

from results presented by Jen (1998), as they use the updated support system. Figure 2-5a shows

that the class A model assumes horizontal soil layers and excavated grade conditions such that
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symmetry is preserved through the construction and hence a half section model is used. It is also

important to highlight that no strut pre-loads forces were used in the original class A analyses.

In contrast, class B and C predictions (Corral et al., 2013) include information available

prior to construction regarding the local site stratigraphy and groundwater conditions. The

simulation of the construction sequence is derived from actual record of site activities. Class B

and C use same initial conditions but different model geometries. Class B is based on the North

side of the class C model, shown in Fig. 2-5b, and uses horizontal layers without including the

glacial till and the bedrock as well as 2-D plane strain symmetric assumptions (see Figure 2-7).

From Fig. 2-5b, it can be noted that, in class C, non-horizontal soil/rock layers were selected and

2-D plane strain conditions were assumed. Actual strut pre-loads measurements were used in the

class B and C predictions.

Apart from the minor difference in excavation elevations, strut vertical spacing, and soil

layer thicknesses (see Figure 2-5), the most important differences between class A, B, and C

model assumptions are the strut pre-loads (Table 2-4). The following paragraphs describe details

of finite element models, soil models, and constructions sequences of class A, B, and C

predictions.

2.2.2.1 Finite Element Model

Class A, B, and C finite element analyses for the Platform Section have been carried out using

the commercial finite element code, PlaxisTM (Brinkgreve et al., 2008). The class A and C model

geometries are shown in Figures 2-5a and 2-5b. The FE models for class A, B, and C (mesh and
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boundary conditions) are shown in Figures 2-6, 2-7 and 2-8, respectively. Coupled analyses of

fluid flow and deformations in the soil are performed using 15-3 mixed interpolation solid

triangular finite elements to describe the soil, bedrock and diaphragm wall. Figure 2-3 shows the

plans and typical section of the strutting system. The cross lot bracing is simulated using node-

to-node anchors (elastic spring elements with constant axial stiffness) with average horizontal

strut spacing of 6.45 m (Figure 2-3). Properties of the wall and struts are listed in Table 2.3.

The initial ground-water level assumed corresponds to El. +32.3 m for class A, and to El.

+31.1 m for class B and C (see Fig. 2-5). Measured data of piezometric heads at the glacial till

and bedrock show a constant value, El. +29 m, approximately. Both models assumed a linear

head loss through the BBC layer. Class A assumes constant head value at the bottom of the BBC

of 30.5 m (Fig. 2-6), while class B and C a constant head value of 28.2 m (Figures 2-7 and 2-8).

2.2.2.2 Constitutive Soil Models

The constitutive modeling of soil behavior and selection of input parameters represents a

major source of uncertainty in finite element analyses (Whittle et al., 1993). The lack of lab tests

on high quality samples in the granular fill, cohesive fill, silty sand, glacial till and bedrock limits

current capabilities to describe these units. The only available data are standard penetration tests

(SPT). Empirical correlations between NSPT and friction angle and Young's modulus are

available (e.g., Skempton, 1986; Stroud, 1989) but carrying a high uncertainty. For this reason,

Page 1 47



the simple linearly elasto-perfectly plastic constitutive model Mohr-Coulomb" (MC) was

selected for the three upper soil layers (granular fill, cohesive fill, and silty sand layers) and for

the glacial till and bedrock (used in class C). This very-well-known model requires only five

parametersi: 1) Young's modulus: E'; 2) Poisson's ratio: v'; 3) apparent cohesion: c; 4) internal

friction angle: '; and the 5) initial effective stress ratio: KO. Table 2-1 presents the engineering

properties and model parameters for these specific layers for the three classes of predictions. It is

important to highlight that material properties for the three upper layers used in class A were the

ones assumed by Jen (1998). In class B and C, the three upper layers, the glacial till, and the

bedrock were modeled as drained material in Plaxis (i.e., no excess pore pressures develop in

these layers). Due to the lack of lab tests on the upper layers, the hydraulic conductivities for the

upper layers were assumed to be 0.31 m/day (in class B and C); however, material properties for

the glacial till and bedrock were estimated from Einstein et al. (1983), and Whittle et al. (1993).

In contrast, the BBC has been extensively studied in the past 50 years, especially at MIT.

Therefore the generalized effective stress soil model MIT-E3 s, developed by Whittle (1987) and

fully described by Whittle and Kavvadas (1994), was selected to describe the behavior of this

unit.

MIT-E3 is a generalized effective stress soil model for normally and moderately

overconsolidated clays. The model describes a number of important aspects of soil behavior

' Although the correct name of this constitutive law is Coulomb model; the Mohr-Coulomb (MC) nomenclature
follows the Plaxis user manual.

We assume zero dilation (Ny=O) for all layers in order to assume zero volume strain conditions at failure.

§§ The MIT-E3 model has recently been integrated within the kernel of Plaxis (Akl, Bonnier; pers. comm., 2008).
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which have been observed in laboratory tests on Ko-consolidated clays including: (1) small strain

non-linearity following a reversal of load direction; (2) hysteretic behavior during unload-reload

cycles of loading; (3) anisotropic stress-strain-strength properties associated with 1 -D

consolidation history and subsequent straining; (4) post-peak, strain softening in undrained shear

tests in certain modes of shearing on normally and lightly overconsolidated clays; and (5)

occurrence of irrecoverable plastic strains during cyclic loading and shearing of overconsolidated

clays. The model also has a number of key restrictions: (a) It uses a rate-independent

formulation and hence, does not describe creep, relaxation or other strain rate dependent

properties; and (b) it assumes normalized soil properties (e.g., the strength and stiffness are

proportional to the confining pressure at a given overconsolidation ratio, OCR) and hence, does

not describe complex aspects of soil behavior associated with cementation.

Another very important reason for selecting MIT-E3 to represent the BBC behavior is

because it has been already calibrated for the BBC and extensively tested in excavation problems

by several authors (e.g., Whittle & Hashash, 1993; Whittle et al., 1994; Hashash & Whittle,

1996; Jen, 1998). Table 2-2 presents the MIT-E3 input model parameters selected for BBC.

The selection of the OCR profile in the MIT-E3 model is critical for defining the profile

of undrained shear strength of the clay. Figure 2-9 shows the stress history form 1 -D

consolidation tests at SBSTS (after Ladd. et al., 1999). Jen (1998) noted that when used in

conjunction with the best estimate of a', (mean profile shown in Figure 2-9), the MIT-E3 model

overestimates the laboratory strengths by 15 to 25%. Therefore, a different U'p profile was

assumed to be used in MIT-E3, as shown in Figure 2-9 (referred to as revised profile; Jen, 1998).
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Figure 2-1 Oa compares the predicted MIT-E3 undrained shear strength profiles with the

SHANSEP strength profiles (Ladd et al., 1999). It can be seen that there is a good agreement

between the predicted MIT-E3 su profiles (DSS and TC*** modes of shearing) and the measured

data (there was no data in the extension shear mode). Figure 2-1Ob shows the assumed isotropic

(i.e., kx=ky) hydraulic conductivity profile for the BBC unit and also shows measured data from

constant rate of strain consolidation tests (after Whelan, 1995). Figure 2-11 shows the initial

conditions used in class A, B, and C: (a) initial effective stress and pore pressures; (b) initial

effective stress ratio, Ko; and (c) the SuDSS profile compared with field vane data. From Figure 2-

11 c, it can be seen a large scatter of the measured field vane undrained shear strength, especially

at the lower clay (L-BBC). It is very important to highlight that class A, B, and C analyses use

the same MIT-E3 properties (i.e., input parameters and state variables - stress history).

2.2.2.3 Simulation of Construction Sequences

Table 2-4 summarizes the sequence of events used in 2-D non-linear finite element simulation

for the Platform section which involves partial drainage (i.e., consolidation). Since non-

horizontal soil layers are considered in the class C model, it is necessary to use an additional

initial phase in order to fully reach drained equilibrium of initial stresses. The duration of each

excavation step in the class B and C predictions is based on a detailed interpretation of the as-

built construction records and differs (modestly) from the timeline considered prior to

construction. Existing buildings on the South side are mainly supported by shallow foundations

DDS: direct simple shear; TC: triaxial compression; TE: triaxial extension
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(mats and footings). Their effect was approximated in the class C analyses as a surcharge load of

25 kPa acting on the silty sand layer, as shown in Figure 2-8.

Each excavation stage was simulated with partial drainage (i.e., using consolidation

phases). The excavation work started in Ol/Nov/2000 (referred to as excavation level 1). Then

each corresponding strut was installed and, for class B and C, also pre-loaded, at its

corresponding level (Table 2-1). The last excavation stage (referred to as excavation level 6)

reaches a final formation level at El. +16.5 m which corresponds to the final phase on the

simulation (7/Aug/2001). The total time assumed to reach formation level was 279 days for class

B and C predictions.

2.2.3 Comparison of Measurements and Predictions

Figure 2-2 shows the scope of instrumentation used to monitor the excavation

performance for the Platform section. This includes: 1) lateral movements of the diaphragm wall,

measured by five inclinometers cast within the wall; three in the North wall (I-05N1, I-06N1,

and I-07N1) and two in the South wall (1-06S1, 1-07S1); 2) lateral soil displacements by two in-

soil inclinometers (I-06N2 and 1-06S2) located approximately 40 m behind each wall; 3) surface

settlements by sixteen deflection monitoring points (denoted by DMP); 4) excavation heave by

one multi-point heave gage (HV-6C) located at the center of the excavation; 5) piezometric head

measurements from one vibrating wire piezometer inside the excavation (PZ-06 C); and 6) strut

forces measured by twenty strain gauges distributed at different strut lines and elevation in the

Platform section. Figure 2-3 shows plans and typical sections for the strutting system at the
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Platform section. The first three strut levels use single struts while the last two strut levels use

double struts.

2.2.3.1 Lateral Wall Displacements

Figure 2-12 compares the computed and measured horizontal wall and soil displacements for the

last three excavation levels, 4 (El. +21.6 m), 5 (El. +18.9 m) and 6 (El. +16.5 m) reached in

March/April 2001, May 2001, and August 2001, respectively. The results show the following:

The measured data (which include both wall and underlying soil movements) show a

very good agreement with class B and C predictions for both North and South sides at each

excavation level. The maximum measured horizontal wall displacements occur at the toe of the

wall and are comparable in magnitudes for both sides (32-52 mm North and 50 mm South in

August 2001), confirming the initial assumption of symmetric loading conditions.

The class A analyses overestimate the measured lateral wall/soil movements at

excavation levels 4, 5, and 6. The analyses show larger inward movements below the excavated

grade. Although class A predictions involve larger symmetric movements, they show reasonable

agreement in the mode shape of wall deflections, but overestimate toe deflections for the last

phase of excavation. It should be noted that the class A predictions played a very important role

in the final design of the Transitway project as the design of the excavation support system does

not include any ground improvements to control the deflections of the diaphragm wall.
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2.2.3.2 Lateral Soil Displacements

Figure 2-13 compares the horizontal soil displacements measured in the retained soil (35-40 m

from the diaphragm wall; see Figure 2-2) with class A, B, and C numerical predictions. The

measured data were only available at the final excavation grade (CD 286-288). The data show

maximum inward movements at the ground surface (26-28 mm). The class B and C analyses

tend to underestimate inward movements in the upper soil units, while the class A results are in

surprisingly good agreement over the over the full soil profile.

2.2.3.3 Surface Settlements

Figure 2-14 summarized the measured and computed (class A, B, and C) surface settlements in

the retained soil for the last three excavation levels 4, 5 and 6. Throughout these periods (March-

August, 2001), the measured data show higher settlements behind the South wall reaching

maximum magnitudes of 16, 26, 33 mm, respectively (compared to maximum values of 11, 14,

24 mm at the North side). At formation level, the maximum surface settlements occur at 28 m

and 42 m behind the North and South wall, respectively. Higher measured surface settlements on

the South side are attributed to the presence of the buildings.

The predictions are generally in good agreement with the measured settlements especially

on the North side. Class A generates higher settlements close to the walls due to larger inward

wall deflections, while the building surcharge in the class C analyses partially explains larger

settlements on the South side of the excavation. Other effects such as local lowering of the
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groundwater table are also expected to contribute to the results, but were not well documented

(or sufficient to include in the class B and C analyses).

2.2.3.4 Excavation Heave

In excavation problems, it is very difficult to obtain measurements of soil heave because most of

the time construction activities inside the excavation cause severe damage to instrumentation.

Figure 2-15 shows measurements versus predictions of excavation heave from excavation level 4

to excavation level 6. Measurements of heave were obtained using a multi-point heave gage

(with 5 elevation points). The deepest point (not shown) is used as a reference datum installed in

the till/bedrock, so the others correspond to the elevations shown in Figure 2.4 (installed in the

BBC layer). The results show very good agreement between predictions and measurements

throughout these periods (March-August, 2001). The maximum measured value is 70 mm at El.

+13.1 m (the uppermost point). It is important to highlight that the integrations of the units of

glacial till and bedrock plays an important role in predicting heave (main difference between

class B and C).

2.2.3.5 Pore Pressures

Figure 2-16 shows measured time responses from two vibrating wire piezometers (PZ-06C at El.

+13.7 m and El. +7.6m) installed within the lower BBC at the center of the excavation with

predictions over the time period of the excavation. The class B and C predictions are in a very

good agreement with the measured piezometric heads at both sensor levels. This result confirms

the time sequence of excavations assumed in the class B and C models. Class A predictions are
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offset from the measurements due to assumptions on the time frame of construction activities.

The class A model also appears to overestimate the initial and long term pore pressures in the

clay (also highlighted in Figure 2-11 a).

2.2.3.6 Strut Loads

Measurements of strut forces were achieved by averaging data from the twenty strain gauges

installed at different strut lines. The data were properly compensated for temperature effects.

Average values of the measured pre-loads were included in the class B and C finite element

simulations with values ranging from 41 to 613 kN/m, as shown in Figure 2-17. This figure also

compares the maximum measured and predicted forces at each strut level (together with standard

deviations in the magnitudes of measured data). The class B and C are generally in reasonable

agreement with the measured data, but tend to overestimate loads, especially at strut level 5.

Class A predictions (no-pre-loads) underestimate significantly the measured forces at strut levels

3 and 4. The measured strut loads are typically less than 50% of the ultimate capacity of each

strut level.

2.2.4 Conclusions

In this study, the Transitway Project and site stratigraphy of South Boston have been briefly

described. The upper soil layers (granular fill, cohesive fill, and silty sand) and the lower layers

(glacial till and bedrock) have been modeled by a simple elasto-plastic model due to lack of field

and lab test data that prevents calibration of a more advanced soil model. However, the key unit

of Boston Blue Clay (BBC), was modeled using a generalized effective stress soil model (MIT-
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E3) that describes very well the stress-strain-strength properties measured in lab test. The main

conclusions of these numerical analyses are the following:

1. Class A predictions, using an advanced effective stress soil model that is well calibrated

using high quantity lab test data, can achieve realistic and consistent predictions of

performance for a braced excavation system including wall deflections, ground

movements, and pore pressures. The strut loads can also be well predicted but this

requires advance knowledge or design of pre-load forces.

2. Class A predictions performed previously by Jen (1998), which considered several

parametric numerical analyses, were extremely useful and relevant for the final

geotechnical design. In fact, they enabled construction of the project without resort to

expensive ground improvement techniques.

3. Class B and C predictions that use available information prior to construction together

with real-time records of site activities are able to show modest improvement on the class

A predictions.

4. The assumed stress history profile of the clay in the MIT-E3 model was the same used in

class A, B, and C predictions. This plays a very important role in predictions of wall

movements, soil deformations, surface settlements, excavation heave, pore pressure and

strut forces.

5. The modeling differences between class B and C are the integration of the non-horizontal

glacial till and bedrock units, the building surcharge, and the symmetric conditions.

While most predictions are extremely similar, the integration of these soil/rock units

plays an important role in predicting accurately excavation heave.
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2.3 Nicoll Highway Collapse

2.3.1 Description

The collapse of the Nicoll Highway during excavations for the cut-and-cover tunnels for the new

Circle Line in Singapore (Phase 1 contract C824) has been extensively documented in a

Committee of Inquiry report (COI, 2005). Many local and international experts contributed to

this report and have subsequently published detailed interpretations of the failure (e.g., Yong et

al., 2006; Endicott, 2006; Davies et al., 2006). One key aspect was the under-design of the

temporary lateral earth support system. Figure 2-15 shows the design for the (intended) 33.3 m

deep excavation comprising 0.8 m thick diaphragm wall panels that extend through deep layers

of Estuarine and Marine clays (Kallang formation) and are embedded a minimum of 3m within

the underlying Old Alluvium (layer SW-2). The walls were to be supported by a total of ten

levels of pre-loaded, cross-lot bracing struts and by two relatively thin rafts of continuous Jet

Grout Piles (JGP). The Upper JGP raft was a sacrificial layer that was excavated after

installation of the 9 th level of struts. Collapse occurred on April 2 0 th 2004 following excavation

of the Upper JGP (to an elevation of approximately 72.3 m RLttt, Fig. 2-15).

The design of the temporary lateral earth support system was based on a table of

geotechnical design parameters (GIM, August 2001). These parameters were the unit weights,

Ko coefficients, hydraulic conductivities, k, elastic moduli, E, and both the Mohr-Coulomb

(drained) effective stress strength parameters (c', <') and undrained shear strength profiles, su(z)

t RL - reduced level. Mean sea level is at 1 Om RL
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for all of the main soil units and JGP layers. Many of these parameters were based on prior local

experience (e.g., Bo et al., 2003; Tan et al., 2003; Chiam et al., 2003; Li & Wong, 2001).

Piezocone penetration data were the only reliable site-specific information on undrained

shear strengths available at the time of design. Figure 2-16 compares the undrained shear

strength profile specified in the GIM table with results from 4 piezocone tests interpreted using a

cone factor NkT = 14. The results show good agreement between the GIM and piezocone

strengths in the Upper unit of the Marine Clay (UMC). However, the piezocone results also

suggest that the Lower Marine Clay (below 75 m RL) is weaker than the design strength profile.

Whittle and Davies (2006) have attributed this to that the Lower Marine Clay is

underconsolidated locally (i.e., has not fully consolidated under the 5m fill placed in the 1970's).

This explanation assumes that the underlying units of Old Alluvium have low bulk permeability

and/or low recharge potential.

The design of the lateral earth support system was based on finite element analyses of

soil-structure interaction using an elastic-perfectly plastic Mohr-Coulomb (MC) model for the

soil behavior. The analyses simulated undrained shear behavior of the clay layers using drained

effective stress, strength parameters (c', p'). This approach, referred to as Method A (COI,

2005), led to gross overestimation of the undrained shear strength in the analyses (Fig. 2-16). As

a result, the designers underestimated the wall deflections and bending moments and under-

designed the bending capacity of the diaphragm wall and thickness of the two JGP layers.
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Ironically, most of the experts involved in the investigations of the collapse used the

same finite element program and MC constitutive model to diagnose the failure mechanism.

These experts used total stress strength parameters (su = c', $' = 0) to represent directly the

expected undrained strength profiles, referred to as Method B in Figure 2-16 (e.g., GIM, 2001;

Whittle & Davies, 2006). These Method B analyses were able to describe, to a reasonable first

order approximation, the measured lateral wall deflections and strut loads. They also provided

the basis for explaining the collapse mechanism in which the brittle failure of the 9 th level strut-

waler connections led to a redistribution of lateral earth pressures that could not be supported by

the bracing system and led to catastrophic failure (COI, 2005).

Extensive post-failure site investigation programs were carried out to resolve

uncertainties associated with the complex stratigraphy (which includes a deep relic channel

through the Old Alluvium). A detailed program of high quality laboratory consolidation and

shear strength testing on high quality samples of marine clay was also performed (Kiso-Jiban,

2004). None of these data were analyzed in detail at the time of the inquiry but were included in

a revised design manual (Amberg, 2005). This section presents a re-analysis of the excavation

performance based on the post-failure laboratory test program. The behavior of the Upper

(UMC) and Lower (LMC) Marine Clay units is represented by the MIT-E3 model (Whittle and

Kavvadas, 1994) which is able to simulate the anisotropic effective stress-strain-strength

properties measured in the tests.
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2.3.2 Calibration of MIT-E3 Model for Singapore Marine Clays

Calibration of the model for UMC and LMC clays follows the general procedure proposed by

Whittle et al. (1994). Table 2-5 summarizes these input parameters, their physical meanings

within the model formulation and laboratory tests from which they can be obtained, together

with parameters selected for UMC and LMC units. The parameters have been derived

principally from a set of 1-D consolidation tests (Fig. 2-20) and Ko-consolidated undrained

triaxial shear tests (Fig. 2-21) on specimens reconsolidated to the in situ stress conditions.

The compressibilities of the normally consolidated UMC and LMC units are well-

characterized virgin consolidation lines with X = 0.37 - 0.38, Figure 2-17a. The upper marine

clay generally has higher in situ void ratio (e = 1.7 - 1.9) than the lower unit (e = 1.5 - 1.6). The

marine clays show significant elastic rebound when unloaded. Figure 2-17b shows that

recoverable axial strains, AEa = 10-12% when the effective stress is reduced by one order of

magnitude (4, = OCR = 10). This behavior is consistent with laboratory measurements of the

maximum shear modulus, Gmax, (from bender elements), reported by Tan et al. (2003). The

Authors have used these data to estimate the model input parameter, Xo, and then selected input

values of C, n (Table 2-5) from the swelling data as shown in Figure 2-20.

A series of CAU normally consolidated triaxial compression and extension tests were

performed on specimens from 4 depths within the UMC and LMC units, Figure 2-21. All of the

specimens were consolidated to a common lateral stress ratio, Ko = 0.52 prior to shearing. The

measured data show a significant difference in the average undrained triaxial compression
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strength ratios measured in these tests, suTc/avc = 0.30 vs 0.27 for the UMC and LMC units,

respectively. The data also show that UMC specimens mobilize higher friction angles when

sheared to large strains (in both compression and extension), ' = 32.4' -33.8* vs 27.0* - 27.10

for UMC and LMC, respectively. The UMC exhibits higher undrained strength anisotropy

(SuTE/SuTC = 0.60 - 0.66) compared to LMC (0.80 - 0.88) and both exhibit relatively modest post-

peak softening in compression shear modes for Ea > 2%.

Details of the measured effective stress paths and shear stress-strain properties are well

characterized by MIT-E3 through model input parameters c, St, $'TC, OPTE, o and y (Table 2-5).

The remaining parameters in Table 1 have been estimated from prior studies on similar clays.

2.3.3 Finite Element Model

The numerical simulations of excavation performance have been carried out focusing on one

specific cross-section (within the collapse zone) corresponding to the location of the

instrumented strut line S335, Figure 2-22. Loads in each of the nine levels of struts installed at

S335 were measured through sets of three strain gauges. These data have been extensively

validated by each of the expert witnesses for the public inquiry (e.g., Davies et al., 2006).

Measurements of the lateral wall movements at this section are obtained from inclinometer 1-65

(installed through the North diaphragm wall panel) and 1-104 located in the soil mass 1.5 - 2.Om

outside the South wall.
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Figure 2-23 shows the cross-sectional geometry for section S335 based on data from both

pre-tender and post-failure site investigations: The section is notably more complex than the

design section indicated in Figures 2-18 and 2-19. The base of the LMC dips notably to the

South. This is part of a relic channel in the underlying Old Alluvium that was highlighted by

Whittle and Davies (2006). On the South side, the LMC directly overlies the Old Alluvium,

while units of fluvial sand, Fl, and estuarine clay (E) separate the Marine Clay and OA on the

North side. The post-failure investigations have established that the OA has relatively low bulk

hydraulic conductivity, while the Fl layer has relatively limited extent with no ready source of

recharge (although there is a hydraulic connection across the wall due to the absence of a

diaphragm wall panel between S336 - S337 in Fig. 2-22). These details were critical in

establishing that failure of the excavation was not caused by hydraulic uplift (Whittle and

Davies, 2006). The lateral earth support design includes two layers of continuous jet grout pile

(JGP) rafts that were intended to provide additional passive resistance below the formation. At

section S335 it is unlikely that the lower JGP raft is continuous within the Old Alluvium, as

installation jetting parameters for the jet grout columns were based on parameters calibrated to

marine clay conditions. Hence, the section shows a truncation of the lower JGP raft at the North

wall.

Section S335 has been modeled using the PlaxisTM programt. Following Whittle and

Davies (2006), the current numerical simulations assume that the groundwater table in the Fill is

at 100.5m RL and that there is a small excess pressure in the underlying LMC and OA units

*** The MIT-E3 model has recently been integrated within the kernel of Plaxis (AkM, Bonnier; pers. comm., 2008).
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(piezometric head, H = 103m). The UMC and LMC units§E9 are modeled using the MIT-E3

model with parameters listed in Table 2-5, while engineering properties of all other soils and JGP

rafts are simulated using the Mohr-Coulomb (MC) model with parameters reported in the prior

studies (COI, 2005), as shown in Table 2.6.

In order to apply the MIT-E3 effective stress soil model it is essential to specify carefully

the boundary and initial conditions. Figure 2-21a shows the in-situ stresses and stress history

profile, where the stress history shown corresponds to a post-failure investigation performed by

Kiso-Jiban (2004). The current analyses assume o'p/&'vo = 1.0 (i.e. OCR=1.0) in both UMC and

LMC units (Figure 2-21a). When combined with the assumed pore pressure conditions, this

implies that the marine clays are slightly under-consolidated. The in-situ stresses also deviate

from Ko-conditions due to the inclined stratigraphy. This is modeled using a standard drained

relaxation stress procedure within Plaxis.

Figure 2-24b summarizes the anisotropic undrained shear strength profiles

(corresponding to a South section behind the South wall) within the marine clays obtained using

the MIT-E3 model for three standard modes of plane strain shearing. The undrained plane strain

active and passive strengths bound the best estimate profile recommended by Whittle and Davies

(2006), based on their interpretation of piezocone tests (this assumes SuDSS/ av0 = 0.21 for

normally consolidated Singapore marine clay, after Tan et al., 2003). It is interesting to note that

the undrained shear strength predicted by MIT-E3 in the DSS mode is 5-7kPa lower than the best

estimate used in the prior MC analyses within the LMC. The figure compares the profiles

m The lower Estuarine clay (E, Fig. 2.18) is assumed to have the same properties and behavior as the LMC
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obtained using the MC model (with parameters listed in Table 5-6) with results obtained while

MIT-E3 model is used to represent the UMC and LMC units (and Estuarine layers). The

following points should be noted:

1. The MC model generally describes higher strengths in the Upper Marine Clay than MIT-

E3, but is closer to the average of the anisotropic strength in the Lower Marine Clay.

2. The MIT-E3 model predicts very similar shear strengths in the simple shear and passive

(extension) modes in both UMC and LMC units.

All other parameters for the lateral earth support system including the as-built diaphragm

wall embedment, capacity of the critical strut-waler connections and pre-load of the struts are

based on prior interpretation of the construction records (Bell & Chiew, 2006).

2.3.4 Results

Figures 2.25-2.27 compare predictions of lateral wall deflections from the current analyses with

measured data from the two inclinometers (1-104, 1-65) and with results of prior analyses

(marked as MC) performed by Whittle & Davies (2006). The results are shown at 6 excavation

stages (during the period February - April 2004). The current analyses predict very well the

maximum lateral wall deflection on the South side of the excavation including the large

deflections associated with removal of the upper JGP layer (April 17-20, Figure 2-24). At this

stage, a plastic hinge formed in the South wall (at a depth of 32 m) and there is very large

rotation of the toe. The current analyses also describe very well the maximum lateral wall

deflection on the North side through March. The analyses tend to overestimate inward
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movements of both walls within the upper 10-15 m of the bracing system. This may be

attributed to the assumption that the UMC is normally consolidated, while the pre-consolidation

data show a small OCR in this layer (Fig. 2-21a). The analysis predicts significant lateral

displacements at the toe of the North wall in April 2004 (70mm at time of failure on April 17-

20). In contrast, inclinometer 1-65 suggests that the North diaphragm wall panel remains well

anchored. The net effect is that the analysis underestimates the deflections and flexure in the

lower part of the North wall during April. This result is largely related to the complex

stratigraphy and assumed truncation of the lower JGP at the North wall.

The current analyses using MIT-E3 predict larger inward wall deflections than the prior

MC analyses and are in rather better agreement with the measured data. This result is

encouraging as the current analyses are based on calibration of a complex constitutive model

using laboratory test data (rather than a best estimate of a design strength line). However, it is

clear that certain features of the measured data such as the toe fixity on the North wall are

difficult to interpret and are not controlled by the properties of the marine clay. Similarly, the

current analyses do require additional judgment in the selection of the OCR profile.

It is generally agreed that collapse of the Nicoll Highway initiated when the 9 th level

strutting failed due to sway buckling of the strut-waler connections. Overloading of the strut-

waler connections occurred due to the absence of splays that had been designed for all struts (see

Fig. 2-22). The strut-waler connections exhibited a brittle post-peak load response due to a

mechanism of 'sway buckling' that was associated with the use of C-channel stiffeners at the

strut-waler connections in levels 7-9 of the bracing system (this was a revised design used during
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construction; Bell & Chiew, 2006). Collapse occurred as the bracing system was unable to

transfer loads upward through the bracing system.

Figure 2-28 summarizes predictions of the strut loads at levels 7-9 on prior to collapse

(April 20, 2004). The results show very reasonable agreement between the computed and

measured loads in strut levels 7 and 8. The current analyses are also in close agreement with

loads obtained by Whittle and Davies (2006) using the MC model. Both sets of analyses predict

that the capacity of the 9 th level strut-waler connection is fully mobilized at this stage of

excavation (30.6m deep) immediately following the removal of the upper JGP raft (since the

elevation of that excavation stage was deeper than the upper JGP raft). However, the

measurement of the 9th level strut load is much smaller. This is an inconsistency noted by all the

experts to the public inquiry (COI, 2005). Hence, it can be concluded that the current analyses

with MIT-E3 are able to predict the onset of collapse consistent with prior MC analyses, but they

do not shed any insight to explain the measured loads at level 9.

2.3.5 Conclusions

Corral (2010) and Corral and Whittle (2010) have re-analyzed the performance of the lateral

earth support system for a critical instrumented section, S335, of the cut-and-cover excavations

at the site where the Nicoll Highway collapsed in 2004. Engineering properties of the key Upper

and Lower marine clay units have been modeled using the generalized effective stress soil

model, MIT-E3, with input parameters calibrated using laboratory test data obtained as part of

the post-failure site investigation. The model predictions are evaluated through comparisons
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with monitoring data and through comparisons with results of prior analyses using the Mohr-

Coulomb (MC) model (Whittle & Davies, 2006). The MIT-E3 analyses provide a modest

improvement in predictions of the measured wall deflections compared to prior MC calculations

and give a consistent explanation of the bending failure in the South diaphragm wall and the

overloading of the strut-waler connection at the 9 th level of strutting. The current analyses do not

resolve uncertainties associated with performance of the JGP rafts, movements at the toe of the

North-side diaphragm wall or discrepancies with the measured strut loads at level 9. However,

they represent a significant advance in predicting excavation performance based directly on

results of laboratory tests compared to prior analyses that used generic (i.e., non site-specific)

design isotropic strength profiles.
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Table 2-1: Soil material properties used in class A, B, and C finite element models

Material: Soil/Rock Layer
Granular Cohesive Silty Glacial a

Fill Fill Sand Till Bedrock
Class A B/C A B/C A B/C C C

'Mat. Type U D U D U D D D
Const. Model Mohr-Coulomb

y (kN/m3) 18.9 18.1 18.9 - 18.9 21.8
k (m/day) 4.34 0.31 8.8x10-3 0.31 8.8x10-" 0.31 9.1x102 8.6x10-3

2Eret (MPa) Ix10~3 1.68 0.77 1.77 9.3 10.6 93 5100
AE'/Az (MPa/m) 1.71 - 0.43 - 0.82 - 37 190

V' 0.3
7.2

2 cref or su(kPa) 0 12.4 0 0 6.8x105
17.2

Ac'/Az (kPa/m) - 2.6x104

$'_(0) 0 30 0 15 35 43 32
Ko 0.5 0.75 0.5 1.0 1.0

2 Ref. Elev., zo (m) 34.1 - 32.0 - 25.6 - -0.8 -6.2

Notes:
a Properties estimated from Einstein et al. (1983) and Whittle el al. (1993).

D: Drained (no excess pore pressures develop in these layers); U: Undrained
2 E' = E'ref + A(z - zO) ; C' = c'ref + (z - z)

A~z

. .. .............................. .....................



Table 2-2: MIT-E3 model input parameters for resedimented Boston Blue Clay used in
Class A, B, and C finite element models

Test Type Parameter Physical contribution/meaning Boston Blue
/ Symbol Clay (BBC)

Void ratio at reference stress on
virgin consolidation line 0.988

1I-D Compressibility of virgin normallyConsolidation consolidated clay 0.184

(Odmee, C 22.0(Oedometer, CNon-linear volumetric swelling
CRS, etc.) n behavior 1.6

h Irrecoverable plastic strain 0.2

KONC Ko for virgin normally 0.53Ko-Oedometer consolidated clay 0.53
or Ratio of elastic shear to bulk

Ko-Triaxial 2G/K modulus (Poisson's ratio for initial 1.05
unload)

Undrained $'TC Critical state friction angles in 33.40
Triaxial triaxial compression and extension

Shear Tests: #'TE (large strain failure criterion) 45.9*

OCR=1; Undrained shear strength
CKoUC c (geometry of bounding surface) 0.866

Amount of post-peak strain
OCR=1; St softening in undrained triaxial 4.5
CKoUE compression

Non-linearity at small strains in 0.07
OCR=2, undrained shear 0.07
CKoUC Shear induced pore pressure for

OC clay 0.5
Shear wave Small strain compressibility at 0.001

velocity _ _load reversal
Drained Rate of evolution of anisotropy 100
Triaxial 6 - (rotation of bounding surface) 100

Note:
Boston Blue Clay (BBC): y=18.1
and 2-11)

kN/m3 and k=4.32x 10-i m/day (see Figures 2-9, 2-10,
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Table 2-3: Material properties of excavation support system used in Class A, B, and C
finite element models

Unit
Diaph. Thickness E Weight y
Wall (m) (MPa) (kN/m )

Concrete 1.22 2.26x10' 0.15 22.8

D. Wall modeled as an elastic non-porous material.

2 Struts modeled as elasto-plastic anchors with null tensile strength.
3 Average horizontal spacing, s=6.45m.
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u SUltimate
2 Strut Section E A BA EA/. 3  Axial Capacity

Level (MPa) (cm 2) (kN) (kN/m) (kN/m)

1 24"$ x 5/8" 296.1 5.9x 106 9.2x10' 609

2 36"$ x 5/8" 448.1 9.0x106 1.4x106 810

3 36"$ x 1" 2.Ox10' 709.4 1.4x10' 2.2x106 1223

4 2-W36 x 135 512.3 i.Oxio 1.6x106 1328

5 2-W36 x 230 872.3 1.7x107 2.7x106 1977



Table 2-4: Construction Sequences used in Class A, B, and C predictions

Activity Class

_____ _FE Anlys. A B/C
Description CD (days)

Initial Phase P

Drained Equilibrium and Building q=25 kPa PD NA NA

D. Wall Installation (1.22m thick) P
*Pre-

Elevation (m) loads
(kN/m)

Class
(zero displacements) A IB/CC B/C

Exc. Level 1 32.0 - C 45 51
Strut Level 1 32.6 33.2 41 P - -
Exc. Level 2 29.0 27.4 - C 90 84
Strut Level 2 29.6 28.7 110 P - -

Exc. Level 3 25.9 25.0 - C 135 111
Strut Level 3 26.5 429 P - -
Exc. Level 4 22.9 21.6 - C 180 153
Strut Level 4 23.5 23.2 501 P - -
Exc. Level 5 19.8 18.9 - C 225 185
Strut Level 5 20.4 19.5 613 P - -

Exc. Level 6 16.5 - C 360 279

t P: Plastic; PD: Plastic Drained; C: Consolidation (EPP)
*No pre-loads in Class A
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Table 2-5: Input parameters for MIT-E3 constitutive soil model: Upper Marine Clay
(UMC) and Lower Marine Clay (LMC)

Test Type Parameter/ Physical Upper Lower
Symbol contribution/meaning Marine Marine

Clay Clay
(UMC) (LMC)

Void ratio at reference stress 1.80 1.60
e*________on virgin consolidation line

1-D Compressibility of virgin 0.380 0.370Consolidation normally consolidated clay

C 10.0 9.0
(Oedometer, Non-linear volumetric
CRS, etc.) n swelling behavior 1.5 1.5

h Irrecoverable plastic strain 0.2 0.2

KONC Ko for virgin normally 0.52 0.52
Ko-Oedometer consolidated clay

or Ratio of elastic shear to bulk
Ko-Triaxial 2G/K modulus (Poisson's ratio for 0.94 0.94

initial unload)

$TC Critical state friction angles 32.40 27.00
Undrained in triaxial compression and

Triaxial extension (large strain failure
Shear Tests: $'TE criterion) 33.80 27.10

OCR=1;
CKoUC Undrained shear strength

c (geometry of bounding 0.96 0.96
OCR=1; surface)
CKoUE Amount of post-peak strain

St softening in undrained 3.0 5.0
OCR=2, triaxial compression
CKoUC Non-linearity at small strains 0.40 0.40in undrained shear

Shear induced pore pressure 0.5 0.5
for OC clay

Shear wave Small strain compressibility 0.0094 0.0094
velocity at load reversal

Drained Rate of evolution of

Triaxial Wo anisotropy (rotation of 100 100
bounding surface) ____j
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Table 2-6: MC model parameters for soil layers at S335 model.

Strength Parameters Elastic Properties
* Reference su t t

ID Layer Material Elevation k_=k_ y [c'] As/Az ' i E' E'/Az v' K
_ Type RL, m (m/day) (kN/m3) (kPa) (kPa/m) (0) (kPa) (kPa/m)

1 Fill D - 8.64x10 19.0 [0] - 30 10000 - 0.50

2 Upper MC 98.2 16.0 20 0.397 6913 137 0.52
3 F2 Clay - 19.0 88 - 0 29250 - 0.70
4 Lower MC 83.4 8.64x10~ 16.8 31 0.79 10310 346 0.52

0.25
5 F2-2 Clay - 20.0 88 0 29250 - 0.70

6 Fl-Sand - 19.0 [0] 30 10000 - 0.50

7 OA-weathered 61.6 8.64x10- 100 52 33250 1360020.0 10 2320 1601.00
8 OA-competent - 8.64x10_ 500 0 167500 -

9 JGP I I - 16.0 300 1 1_1_250000 - 0.15 -

* D: Drained (no excess of pore pressures develop in this layer); UD: Undrained
t Linear variations with depth in stiffness and shear strength within soil layers starting

at reference elevation (constant values above )

cJQ



Figure 2-1: Site location of Courthouse Station of Transitway Project in South Boston
(MBTA Contract E02CN14, Courthouse Station and Tunnel; after PB, 1998) and

approximate location of SBSTS (after Ladd et al., 1999)
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Figure 2-2: Instrumentation location plan of Platform section of Courthouse Station (after
PB, 1998)
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Figure 2-4: Courthouse Station photo taken in September 2001
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Figure 2-5: Platform section geometries, boundary conditions, and strut and excavation
levels used in (a) Class A; (b) Class C Predictions
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Figure 2-7: Finite element model and mesh used in Class B predictions
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Figure 2-9: Stress history from 1-D consolidation tests at South Boston Special Test Site -
SBSTS (after Ladd et al., 1999), and assumed stress history profile in MIT-E3 (after Jen,

1998)
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Figure 2-10: (a) Comparison of revised MIT-E3 and SHANSEP undrained strength profiles; (b) assumed hydraulic
conductivity profile
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CDQ

00
00

E

140

30

20

10

0

-10

-20

I I



Lateral Wall/Soil Movement (mm)
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Figure 2-12: Measurements versus class A, B, and C predictions of lateral wall/soil
displacements for excavation levels 4, 5 and 6
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Figure 2-13: Measurements versus class A, B, and C predictions of horizontal soil
movements at similar distances behind diaphragm walls for excavation level 6
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Figure 2-15: Measurements versus class A, B, and C predictions of excavation heave at
center line for excavation levels 4, 5, and 6
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Figure 2-16: Measurements versus class A, B, and C predictions of piezometric heads and
pore pressures at center line of excavation
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Figure 2-17: Measurements versus class A, B, and C predictions of maximum strut
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Undrained Shear Strength, s, (kPa)

Figure 2-19: Undrained shear strength profiles (Corral & Whittle, 2010)
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Figure 2-20: Compression and swelling properties of the Upper and Lower Marine Clays
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Figure 2-22: Plan showing the structural support system and 9th level strutting and monitoring instrumentation (Corral &
Whittle, 2010)
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Figure 2-25: Measured and predicted wall deflections for excavation levels 5 and 6
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Figure 2-26: Measured and predicted wall deflections for excavation levels 7 and 8
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Figure 2-27: Measured and predicted wall deflections for excavation levels 9 and 10
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Figure 2-28: Comparison of computed and measured strut loads for excavation to 30.6m (April 17-20, 2004)
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3 LITERATURE REVIEW

3.1 Introduction

The purpose of this chapter is to review existing methods for updating predictions of excavation

performance using monitoring data. This works has its origins in the observational method first

formally proposed by Peck (1969). The chapter gives a brief history of the observational method

and then proceeds to methods involving numerical predictions of performance. Section 3.3

introduces the inverse problem formally, and Section 3.4 describes applications of inverse

analysis in geotechnical engineering.

3.2 Observational Method

The term observational method/procedure was first introduced by Terzaghi (1961):

"Satisfactory solutions of earthwork engineering problems can be obtained on the basis

of our knowledge of the fundamental principles of soil mechanics supplemented by a moderate

amount of boring and testing. However, there are others in which the geological conditions

preclude the possibility of securing in advance of construction all the essential information

required for adequate design. If this condition prevails, sound engineering calls for design on the

basis of the most unfavorable assumptions compatible with the results of the subsoil exploration.

This rather uneconomical procedure can be avoided only on the condition that the project

permits modification in the design during or after construction in accordance with the results of

significant observational data which are secured after construction is started. This can be called

an "Observational Procedure".
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Einstein (1991) describes the path which led Terzaghi from Observation to Quantification

to Judgement and culminated in the integration of those three components in his concept of

engineering geology and, specifically, in the Observational Method (OM).

Subsequently, Peck (1969) defined a formal framework for the application of the

observation method (OM) that involves the following steps:

a. Exploration sufficient to establish at least the general nature, pattern and properties of

the deposits, but not necessarily in detail.

b. Assessment of the most probable conditions and the most unfavorable conceivable

deviations from these conditions. In this assessment geology often plays a major role.

c. Establishment of the design based on a working hypothesis of behavior anticipated under

the most probable conditions.

d. Selection of quantities to be observed as construction proceeds and calculation of their

anticipated values on the basis of the working hypothesis.

e. Calculation of values of the same quantities under the most unfavorable conditions

compatible with the available data concerning the subsurface conditions.

f Selection in advance of a course of action or modification of design for every foreseeable

significant deviation of the observational findings from those predicted on the basis of the

working hypothesis.

g. Measurement of quantities to be observed and evaluation of actual conditions.

h. Modification of design to suit actual conditions.

More recently, Nicholson et al. (1999) defined the Observational Method in ground

engineering: "is a continuous, managed, integrated, process of design, construction control,

monitoring and review that enables previously defined modifications to be incorporated during

or after construction as appropriate. All these aspects have to be demonstrably robust. The

objective is to achieve greater overall economy without compromising safety. The Method can be

adopted from the inception of a project or later if benefits are identified. However, the Method
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should not be used where there is insufficient time to implement fully and safely complete the

planned modification or emergency plans."

Table 3.1 presents a summary of the development of the Observational Method (OM).

Traditionally engineers relied exclusively on observations to do their work, because they did not

have design theories to guide them. As such, structures were designed mostly on a trial-and-error

method, even though they were monitored during construction so that engineers could develop

an empirical understanding of soil-structure interaction. Between 1912 and 1922, the

observational procedure was used for the first time by the administration of the Swedish State

Railroads, for a large-scale earthwork engineering, in connection with an investigation of the

stability of slopes on glacial deposits (Terzaghi, 1961).

Terzaghi and Peck (1948) pointed out that design based on the "most unfavorable

assumptions" is uneconomical, if gaps in the available information can be filled by observations

during construction and the design can be modified (safely) during construction. Casagrande

(1965) reviewed the role of the "calculated risk" in earthwork and foundation engineering, with

particular reference to the application of the observational method for the Great Salt Lake

railroad fill.

In his Rankine Lecture, Peck (1969) described two OM approaches: 1) Ab Initio where

the observation method is adopted from the inception of the project; and 2) Best Way Out

approach when construction has already started and some unexpected development has occurred,

or whenever a failure or accident threatens or has already taken place.

Page 1109



Requirements for the use of the observational method were formally adopted within

design codes in final draft of Eurocode 7, EC7, in Table 3.2, and subsequently been adopted by

retaining wall design by Hong Kong Geotechnical Control Office (GCO, 1993).

Cases presented on the GeoTechNet site (www.geotechnet.org) give examples of both the

"Ab Initio" and "Best Way Out" OM approaches. Nicholson et al. (2006) describe a structural

framework on how the "best way out" approach to OM could be used for recovery of deep,

multistage excavation projects when problems occur during construction using as example the

Nicoll Highway collapse in Singapore (2004).

Concerning the differences between Peck (1969) and CIRIA (1999) approaches to the

OM, it is important to highlight that Peck adopted the "most probable" design and then reduced

the design to "moderately conservative" soil parameters, when triggers were exceeded. In

contrast, CIRIA considers a "safer" approach to design by adopting a "progressive modification"

of the design starting with the design based on moderately conservative parameters, and then

reverting to most probable conditions through field observations (e.g., Powderham and

Nicholson, 1996). Figure 3.1 shows the elements of the CIRIA OM approach (Patel et al., 2007).

The OM offers the potential savings of time or money, and the monitoring provides the needed

assurance of safety. Several possible benefits of using OM are shown in Figure 3.2 (Patel et al.,

2007). It is important to note that cost savings can be allocated to all the parties, such as the

client, designer and the constructors. This method, however, should not be applied for when

there is insufficient time to fully monitor performance and finish the contingency and emergency

plans.
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3.3 Inverse Problem

3.3.1 Definition

To understand certain complex geotechnical problems such as soil-structure interaction for

excavation support systems, we generally use numerical modeling tools (e.g., FEM, FDM). The

goal of these analyses is to obtain realistic predictions based on a set of assumptions regarding

the stratigraphy, groundwater conditions, and constitutive properties of the soil/rock layers. For

saturated soils constitutive laws are needed to describe the effective stress-strain-strength and

hydraulic conductivity properties. The construction sequences and boundary conditions are also

extremely important in these analyses.

Einstein and Baecher (1982) emphasized that probably the most distinctive characteristic

of engineering geology compared to any other engineering fields is the uncertainty about

geologic conditions and geotechnical parameters. They pointed out the sources and consequences

of uncertainty in engineering geology. The three main sources of uncertainty described

correspond to: 1) spatial variability (i.e., geological subsurface conditions are spatially variable);

2) measurement errors (i.e., there are uncertainties in measuring and estimating engineering

properties); and 3) model uncertainty (i.e., models are simplifications of reality and thus

introduce modelling errors). Einstein and Baecher (1982) also pointed out that, in addition to

those three uncertainty sources, there is uncertainty due to omissions (i.e., it is not possible to

know what has been left out of an analysis).
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Assuming that the fundamental physics of a certain problem are well understood (i.e.,

including all possible variables required for the analysis) and considering that a certain numerical

model depends only on the model parameters, it is possible to write the following expression:

G(O) = p (3.1)

where

G(): function or operator that represents a numerical model (e.g., FE model)

0: vector of model parameters

p: vector of predictions

Equation 3.1 states that for a given numerical model and model parameters, it is possible

to find certain predictions of interest (e.g., ground movements, pore pressures, etc.). Assuming

that there are no uncertainties associated with spatial variability, omissions, modeling, or

measurements. It is similarly possible to define a vector of field measurements, m (associated

with a vector of predictions, p), that defines the "forward problem":

G(O) = m (3.2)

The inverse problem (also referred to as the "parameter estimation" problem) is to find 0

given G and m.

Jurina et al. (1977) illustrated a scheme of parametric estimation. Figure 3.3 shows that

once both the measured and calculated responses (i.e., predictions) are available from the actual

system and the mathematical model, an error criterion function (also referred to as identification
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criterion) should be defined to model the error (i.e., the model uncertainty). Through parameter

adjustment algorithms, a new vector of parameters is established and therefore used in the

mathematical model to update the predictions or calculated response and so on. Similarly,

Rechea (2006), in her doctoral thesis, illustrated a flowchart of the inverse problem, Figure 3-4,

highlighting explicitly the error coming from different systems and/or steps.

Errors in field measurements and model uncertainty are always present. Therefore,

Equation (3.2) must be corrected and re-written as follows:

m = G(O) + r (3.3)

where r is the vector of residuals.

Combining Equations 3.1 and 3.3, the residual can be expressed as the difference

between the vectors of measurements and predictions:

r = m - p (3.4)

According to Aster et al. (2005), solving an inverse problem is usually a difficult task due

to three main issues: 1) solution existence, 2) solution uniqueness, and 3) instability of the

solution process.

Figure 3-5 illustrates two very common inverse problems in geophysics and earthquake

engineering. The determination of an earthquake hypocenter (in space and time) for given certain
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information captured by a seismic network of sensors, is illustrated in Figure 3-5a, while, the

determination of material properties (generally based on behavior of an elastic medium) for

given a certain input source, is exemplified in Fig. 3-5b.

The process of solving the inverse problem comprises two main parts: 1) selection of an

identification criterion (i.e., specify an error function or objective function for optimization); and

2) selection of an algorithm to solve the optimization problem.

3.3.2 Identification Criteria

3.3.2.1 Residual Norm Criteria

Using the residual vector, expressed in Equation (3.4), certain residual norms can be defined. A

generalized set of n-order norms (e.g., Santamarina and Fratta, 2005) can be expressed as

follows:

L ( = rIn (3.5)

where ri is the residual of the i-th measurement.

The three most important criteria are those that minimize the residual norms corresponding to

n=1, n=2, and n=oo:

a. Minimum Total Absolute Value criterion (n=1):
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min{L1j = min Ir j (3.6)

b. Least Squares criterion (n=2):

min{L2 } = min |ril2} (3.7)

c. Minimax criterion (n=oo):

min{Lj} = min maxri|} (3.8)

In order to visualize these criteria, an illustrative example, showing the minimization of

the three residual norm criteria is presented in Figure 3.6 (Ledesma, 1987). From this figure, it

can be seen that the Minimax criterion gives much more importance to the point which is below

the line L. (i.e., value with higher dispersion comparing with all others). In addition, there are

more reasons why the Least Squares criterion has become the traditional one, especially, for non-

linear problems.

Santamarina and Fratta (2005) give

regression y = a + b-t. Figure 3.7 shows the

can be seen that the minimum in the L_ norm

the example of fitting data points with a linear

residual surfaces computed for the three norms. It

surface is not a point (as is the case for Li and L2),
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but a contour implying that the solution is non-unique. Figure 3.7c shows different calibrations

of (a,b) that have the same minimum L.. It is clear, from these Figures 3.6 and 3.7 that the

Minimax criterion is not appropriate for some problems.

In geotechnical engineering and, also in excavation problems, the most commonly used

criterion is Least Squares (L2 norm). Therefore, this can be re-written in vector notation as

follows:

min {J } = mint rTr } (3.9)

where J is the objective function (scalar) .

When using different measurement types (i.e., different physical quantities with different

units), normalization is definitely required. The most common criterion corresponds to the

Weighted Least Squares criterion (e.g., Calvello, 2002; Rechea, 2006; Levasseur, 2007), also

sometimes referred to as Markov criterion (e.g., Ledesma, 1987). It is very important to note that

these weights represent the relative importance of certain measurements. A generalized

expression for the square objective function, expressed in Equation 3.9, under the Weighted

Least Squares Criterion, is:

min{J} = min{r 'Wrl (3.10)

where r is the residual vector, and W the diagonal weight matrix
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Combining with Equation 3.4, Equation 3.10 can be expressed, in terms of measurements

and predictions, as follows:

min{J} = min{ (m-p)T W(m-p)} (3.11)

In principle, the diagonal weight matrix, W should include the inverse of the

measurement variances as diagonal elements of the matrix. Calvello (2002), Rechea (2006), and

Finno (2007) associate this diagonal weight matrix with the accuracy of individual instruments

(i.e., not with actual measurements) based on the manufacturer's specification, shown in Table 3-

3. This represents a good option when the actual measurement variances are not available (i.e.,

there is a lack of measurements); however, it does not consider measurement errors.

The main drawback of the Weighted Least Squares criterion is that it does not take into

consideration the covariance of measurements (i.e., coupling effect of residuals), that is

extremely useful for linewise types of instrumentations such as inclinometers. This is described

in detail in Chapter 4.

3.3.2.2 Maximum Likelihood Approach

The maximum likelihood estimation is a general method that can be applied to any estimation

problem where a joint probability density function can be assigned to the measurements (Aster
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et. al, 2005). Based on the formulation by Edwards (1972) and summarized by Ledesma et al.

(1996), the maximum likelihood approach can be described as follows:

L(O I m) = k -P(m|O) (3.12)

where L( ( m) is the likelihood of the model parameters 0 given measurements m; k is an

arbitrary constant of proportionality; and P(m I0) the conditional probability of measurements

m given 0 (and a probabilistic model).

Assuming that the numerical modeling is correct (i.e. no errors in the numerical results),

and the difference between the measurements and predictions are attributed only to

measurements, the probability of measuring m given 0, corresponds to the probability of

reproducing the residuals r of measurements (Ledesma et al. 1996). In fact, using Equations 3.3

and 3.4, it can be shown that P(m I0) = P(m - G(0)) = P(r) = P(m - p). Therefore,

assuming a multivariate normal probability distribution, it possible to express that probability as

follows:

1
P(m - p) =- 2T~jm exp{ -1/2 - (M - p)TCM~1 (M - p)} (3.13)

where n is the number of measurements; Cm is the covariance matrix of the measurements m;

and (m - p) = r is the vector of residuals (Equation 3.4)

The identification criterion establishes the maximum likelihood of the model parameters

0 given measurements m:
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max{ L(O Im)} = max{ k -P(m - p)} (3.14)

Edwards (1972) defined a "support function" S, as the natural logarithm of the

likelihood function:

S = -2 In{ L(8/m)} (3.15)

S = -21n exp{-112 - (m -
(27nI|Cm|

Using the basic properties of logarithm, it follows:

p)TCm-1 (m - p)}

S = (m - p)TCj(m - p) + ln|Cml + n ln(2nr) - 2 In(k) (3.16)

It is logical to think that the covariance of the measurement is constant at a given time

(e.g., at a certain excavation stage in FE analysis); thus, the maximum likelihood approach (using

Eq. 3.16) is reduced to the following minimization problem*:

min{ S } = min{J) = min{(m - p)T CM (m - p)} (3.17a)

The natural logarithm is a monotonically increasing function. Hence the conversion of L to S(Eq. 3.15) enables the
mapping of max{L } to min{S}
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Using Equation 3.4, this can be expressed as:

min{ j} = min{rT c- 1 r} (3.17b)

The maximum likelihood approach, under all the assumptions mentioned, corresponds to

a more general form of the Weighted Least Squares criterion. This is because, the covariance

matrix is not a diagonal matrix, since it has terms that are correlated - covariance terms (see

Chapter 4). If this matrix is diagonal only (i.e., independent measurements), the maximum

likelihood approach will particularly correspond to the Weighted Least Squares criterion shown

in Equation 3.11. Moreover, in the particular case that this covariance matrix is the identity

matrix, the problem reproduces the simplest expression of the Least Squares criterion presented

in Equation 3.9.

Assuming that there are t independent instruments that can read m measurements, the

function J of Equation 3.17b can be written in terms of individual covariance matrices:

t

J rf Cmj- rj (3.18)

Following the work by Ledesma et al. (1996), the most remarkable advantage of using

the maximum likelihood is that the covariance matrix can be expressed as:
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C = - Ecm j Ui m (3.19)

where Cm; is the covariance matrix of the j-instrument; o is the scale factor which represents

the global variance of the measurements by the j-instrument; and Em; is the error structure of

the j-instrument which depends on the device itself.

The use and definition of error structure matrices will be treated and discussed later in

Chapter 4.

3.3.3 Genetic Algorithms as Optimization Method

Even though that there are several optimization methods available in the literature, the heuristic

method called Genetic Algorithms (GA's) was considered because it can adequately find the

global minima of highly non-linear problems, being also able to tackle to three main issues that

inverse problems have been suffered (Aster et al., 2005): 1) solution existence, 2) solution

uniqueness, and 3) instability of the solution process. Therefore, for the purpose of this thesis,

genetic algorithms were selected as the optimization method to solve the inverse problem.

The concept of genetic algorithms was developed by Holland and his colleagues in the

1960s and 1970s (Holland, 1975). Genetic algorithms (GA's) are methods for solving both

constrained and unconstrained optimization problems that are based on natural selection, the

process that drives biological evolution. GA's repeatedly modify a population of individual

solutions. At each step, GA's select individuals at random from the current population to be

parents and use them to produce the children for the next generation. Over successive
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generations, the population "evolves" toward an optimal solution or a set of optimal solutions.

GA's can be applied to solve a variety of optimization problems that are not well suited for

standard optimization algorithms, including problems in which the objective function is

discontinuous, non-differentiable, stochastic, or highly nonlinear. Procedures of generic GA's

can be found in the classical book by Goldberg (1989).

It is very important to highlight that GA's use three main types of rules at each step to

create the next generation from the current population: 1) Selection rules: select the individuals,

called parents that contribute to the population in the next generation; 2) Crossover rules:

combine two parents to form children for the next generation; and 3) Mutation rules: apply

random changes to individual parents to form children.

Also, it is important to note that GA's are different from more normal optimization and

search procedures in three ways: 1) they search from a population of points, rather than a single

point; 2) they use payoff (objective function) information, rather than derivatives or other

auxiliary knowledge; 3) they use probabilistic transition rules, rather than deterministic rules.

Figure 3.8 shows a flowchart that describes the main steps in GA's.

Figure 3.9 shows an example of the Rastrigin's function (in 3D and contour levels) which

presents many local minima. Genetic algorithms have the capabilities to easily find the global

minima of that function; even though, when the initial population starts at a different region (see

Figure 3.10). GA's take only few seconds to reach the Iteration 100 shown (Figure 3-10).
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3.4 Inverse FE Analyses in Geotechnical Engineering

Table 3-4 summarizes the published literature on geotechnical engineering applicationst of

inverse analyses. Much of the pioneering development can be attributed to researchers in Italy

(e.g., Gioda and Maier, 1980; Cividini et al., 1981; 1983), and Japan (e.g., Sakurai and Takeuchi,

1983; Arai et al. 1984; 1986; 1987; Asaoka and Matsuo, 1984). The following paragraphs

provide a chronological assessment of these and other papers.

Gioda and Maier (1980) described the formulation of a direct search solution for an

inverse problem in elastoplasticity. The numerical model simulates a very simple in-situ pressure

tunnel test carried out in a deep rock formation, assuming an elastic-perfectly plastic Mohr-

Coulomb constitutive law and a homogeneous isotropic initial stress state. The updated model

parameters correspond to the cohesion and friction angle as well as the in-situ initial stresst. The

identification criterion (i.e., objective function) corresponded to the Least Squares criterion in

terms of displacements, measuring the difference between theoretical and experimental

relationships (pressure vs. average diameter increase) only, for a standard pressure tunnel test

carried out well into the nonlinear range of behavior. They applied two different optimization

methods: 1) the Nelder-Mead algorithm or modified simplex method (Nelder and Mead, 1965);

and 2) the Rosenbrock algorithm or the alternating variable strategy (Rosenbrock, 1960). The

concluded that the identification process can be carried out by "search techniques", such as

Several other published papers relate to calibration of laboratory tests (e.g. Anandarajah et al., 1991; Ghaboussi
and Sidarta, 1998; Calvello, 2002; Cekerevac et al., 2006; Fu and Hashash, 2007; Navarro et al. 2007), or field tests
(e.g. Gioda and Maier, 1980; Cividini et al., 1981; 1983; Levasseur et al. 2009a; 2009b).
* Surprisingly, they assumed a constant elastic modulus.
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Nelder-Mead flexible polyhedron method, with a reasonable computational effort and beyond the

accuracy level of practical interest, although, they also suggested that the use of other search

techniques might provide computational gains.

Cividini et al. (1981) discussed different aspects of parameter identification problems in

the field of geomechanics. Inverse and direct procedures are discussed for the solution of

characterization problems with reference to linear elastic material behaviour only. The direct

procedure is then applied to the determination of geometry, material and load parameters, on the

basis of the displacements obtained from a hypothetical in-situ load test. The authors also

discussed the influence of the number of input data (and of the experimental errors affecting

them) on the results of characterization problems. As far as the identification criterion is

concerned, they used the Least Square approach. They specified the objective functions in terms

of displacements. They offered two main conclusions: 1) the determination of distributed load

values appears to be more affected by the experimental errors than the elastic modulus; and 2)

the determination of distributed load values is strongly influenced by the locations where the in-

situ measurements are performed.

Two years later, Cividini et al. (1893) studied the estimation of parameters defining local

elastic properties and/or geometrical aspects on the basis of experimental data concerning

displacements under given static loads. The same hypothetical in-situ load test problem was used

as a numerical model, which assumed linear-elastic behaviour. But in this case, apart from the

generalized least squares, the Bayesian approach was also included; thus two identification

criteria were used. The objective function was minimized by the simplex method or Nelder-
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Mead algorithm (Nelder and Mead, 1965). They concluded that computation effort of Bayesian

approach required was significantly higher than the Least Square method.

Sakurai and Takeuchi (1983) proposed a method of inverse analysis to be used for the

interpretation of field measurements in monitoring the deformations in the rock mass around a

tunnel cavity. They used the indirect method, proposed by Cividini et al (1981) using a finite

element model for a tunnel in a linear, isotropic, and elastic rock mass. They analyzed two cases:

1) an unlined tunnel and 2) a lined tunnel. Assuming Poisson's ratio and initial vertical stress as

deterministic values, they estimated the complete initial state of stress (axx, Gyy, and txy) and

Young's modulus from a set of relative displacements measured between adjacent measuring

points. A case study for a lined tunnel converged in a small number of iterations while a single

calculation was sufficient for the unlined tunnel. Figure 3-11 shows the comparison between the

measurement and the updated displacements from extensometers (satisfied using internal

convergence measurements). The figure shows that there are significant discrepancies between

measurements and predictions, and hence, the method is not that effective.

Arai et al. (1984) presented a numerical procedure in which the soil parameters affecting

the two dimensional consolidation are back-calculated from the data monitored in the field.

Finite element models were carried out for five different hypothetical case studies of

embankments and two actual test/trial embankments in order to validate their formulation.

Linear-elastic constitutive soil models were assumed, such that (E', v', and k) were obtained for

multiple soil layers by a Least Squares method using an objective function defined in terms of

displacements and pore pressures. No details were provided on the normalization of the different
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physical quantities. Optimization was carried out using the gradient method. The authors

concluded that the method proposed reasonable estimates the soil parameters. Arai et al. (1986)

investigated the practical use of the back-analysis technique applied to four different trial

embankment projects in Japan and England (6 cases in total were analyzed). In this case only

displacements were included in the objective function. Later, Arai et al. (1987) proposed a

numerical procedure to estimate the nonlinear constitutive parameters and permeability from the

monitored movements of subsoil under two-dimensional consolidation. In this later publication,

a simplified hyperbolic model (Duncan and Chang, 1970) was used to represent soil behavior.

Both hypothetical and actual test embankments were used to validate the procedure. The authors

concluded that the proposed procedure provides a good agreement between calculated and

measured deformations; but also noted the difficulty in estimating non-linear soil model

parameters.

Asaoka and Matsuo (1984) presented an inverse approach to the prediction of multi-

dimensional consolidation behavior using examples and a case study of in-situ test embankment.

This approach is based on Biot's equations. A linear elastic soil model was used in the numerical

models. Deformations (settlements) and/or pore pressures were used as observations. The

updated parameters correspond to Young's moduli, Poison's ratios, and hydraulic conductivities.

They concluded the examples and case studies shows high accuracy of the proposed prediction

procedure; however further research should be performed using more realistic soil constitutive

models.
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Gioda and Sakurai (1987) presented a survey of recent developments of the numerical

techniques for back-analysis in the field of geomechanics, with particular reference to tunneling

problems. The authors summarized both deterministic and probabilistic viewpoints used in the

literature, and illustrated some applications to practical problems. They report the two rail

highway tunnels excavated in relatively homogeneous weathered granite, Figure 3-12.

Displacement measurements were conducted during the tunnel construction of a trial ("work")

tunnel, excavated in advance of the main tunnels and almost parallel to them. Ground

movements were measured using sliding micrometers and inclinometers, installed from the

ground surface. The positions of these instruments and the directions chosen for some

convergence measurements are shown in Figure 3.13. These displacements were adopted as

input data in a back analysis of the elastic modulus of the rock mass, in which suitable values for

the vertical in situ stress and Poisson's ratio of the rock were assumed, and the shotcrete lining

was neglected because of its small thickness. From Figure 3.13a, it can be noted that it is difficult

to update predictions under this inverse approach and under all assumptions made in this study

(as seen in the comparisons for instruments 3 and 4; Fig. 3-13b).

Shoji et al. (1990) described a backanalysis framework for a set of two-dimensional

elastic consolidation problems including three embankments and a retaining wall structure. The

retaining wall structure was constructed for the basement of a building in Tokyo that was 22m

deep with 6 levels of struts. The soil profile includes 3 layers (Figure 3-14). They used sensitivity

analyses for locating the monitoring instruments, and the Least Squares approach as an

identification criterion (objective function). They included both lateral displacements and strut

loads as measurements in order to estimate values of Young's Moduli, Poisson's ratios, and
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permeabilities for each layer. The optimization method selected was the quasi-Newton method

using the BFGS (Broyden-Fletcher-Goldfarb-Shanno) formula. The authors concluded that: 1)

sensitivity analysis is an efficient tool for choosing the location of measuring points; 2) the use of

the quasi-Newton method and its finite element program can quickly and precisely predict

deformation. However, they pointed out that is very difficult to predict the soil behavior when

the anisotropy of soil is important and measurement errors are prominent. Figure 3-14 shows the

predicted and measured lateral movements in the retaining wall structure for 3 stages (out of 7).

They included initial predictions, updated predictions, and the measurements. At least for those

stages, it seems that this approach accomplished reasonable results.

Honjo et al. (1994) proposed a new type of indirect inverse analysis based on the

extended Bayesian method. This method combines the objective information (i.e.,

measurements) with the subjective information (i.e., prior information). They presented a case

study of an embankment on soft clay (at Muar Flat, Malaysia) and compared measured and

predicted settlements. The authors estimated Young's moduli (E') and horizontal hydraulic

conductivities (kh). The optimization methods selected were the Fletcher-Davidson (F-D) and

Davidson-Fletcher-Powell (D-F-P). They concluded that more detailed studies on inverse

analysis based on the proposal method should be carried out.

Ou and Tang (1994) described a procedure of back analysis to determine soil parameters

in excavation performance using non-linear optimization techniques. They assumed that soil

behavior can be described by the hyperbolic model (Duncan and Chang, 1970). Both

hypothetical and actual cases are presented. The actual case study, for the Chi-Ching project in
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Taipei, comprised an externally braced excavation 13 m deep supported by 70 cm thick and 28 m

deep diaphragm wall. The soil profile comprised four different layers (sand and clay). Among

the nine (or seven for the simplified version) input parameters of the hyperbolic model, only the

stiffness, K, was assumed to be unknown; thus, four parameters were estimated (i.e., one for

each of four soil layers). The identification criterion used was the Least Squares expressed in

terms of the horizontal wall movements. The conjugate gradient method (Fletcher and Reeves,

1964) and Powell's quadratic interpolation method were adopted as optimization methods.

Although the results matched the maximum values of wall displacements at four excavation

stages, the method did not achieve good fit to the deformed mode shape of the wall (i.e.,

curvature and bending of wall). It is important to note that the authors did not present initial

predictions of wall movements, making difficult the validation and/or evaluation of the proposed

procedure.

Ledesma et al. (1996) described a probabilistic formulation for the backanalysis problem

based on the Maximum Likelihood approach applied to a tunnel excavation problem. In order to

validate this probabilistic approach, both hypothetical and actual problems of a tunnel excavation

problem were introduced. The maximum likelihood approach involves the evaluation of the

measurement covariance matrices, which the authors derived for some geotechnical instruments

used in field instrumentation. The effect of the number of measurements and their error

structures was also discussed (see Chapter 4). The case study application was presented by Gens

et al. (1996) and corresponds to a 200 m long tunnel in tertiary clay in Terrassa (Barcelona,

Spain). The soil profile consisted of three layers, and was analyzed using a 2D plane strain finite

element model with linear elastic soil behavior. The authors compared Least Squares and
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Maximum Likelihood approaches. The objective functions integrated only displacements

captured by both extensometer and inclinometer measurements. The elastic moduli of the layers

(Ei, E2, and E3) and the Ko values of the overconsolidated clay layer only were estimated (i.e., 4

parameters considered). They also compared the well-known Gauss-Newton and Marquardt

algorithms and included reliability analyses of the estimated parameters. Figures 3-15 and 3-16

show the soil profiles and instrumentation as well as comparisons of measured and computed

(backanalyzed) displacements for two different tunnel sections (referred to as section B and C).

Each section included two inclinometers and two extensometers. They compared results for

DCM (diagonal covariance matrix in the least squares approach) and FCM (full covariance

matrix for the maximum likelihood). Figure 3-15b shows small differences between DCM and

FCM results and measurements from inclinometers only (labeled 13 and 14 at section B). The

measurements of extensometer E3 show fair agreement between the measured and computed

DCM (i.e., Least Squares). On the other hand, Figure 3-16b depicts comparisons of both

approaches and measurements of two inclinometers and two extensometers at section C. In

general, there is a little difference in the two inverse methods with the exception of inclinometer

15 that is described better by the Maximum Likelihood approach (FCM), since it involves the

error structure of inclinometer measurements. The authors did not present initial predictions

(including initial parameter values from site investigation and/or laboratory tests) making it

difficult to evaluate the improvement achieved by the backanalysis approach.

Gioda and Locatelli (1999) presented a backanalysis of a railroad tunnel (Monteolimpino

2) connecting Milan to Chiasso. They assumed linear elastic behavior for six different sandy

soils described (i.e., with 6 elastic moduli estimated). They used the Least Squares approach as
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an identification criterion of the objective function and a direct search algorithm as an

optimization method. Figure 3-17a shows the results of their initial backanalysis which was

based only on displacement measurements (of three instruments) corresponding to phase A (top

heading only). Due to poor results for an initial FE mesh (Figure 3-17a), they modified the mesh

adding a potentially softer region above the shoulder of the tunnel and included an additional

stiffness parameter in this region (from the shoulder of the tunnel up to the surface). This led to

much better results (as shown in Figure 3-17b); but does not reflect direct knowledge of

degraded soil properties near to the lining.

Lecampion et al. (2002) considered the estimation of viscoplastic parameters for

synthetic unlined and lined tunnel problems. The numerical modeling was performed using

finite element methods with an elasto-viscoplastic constitutive law of Perzyna class (with a

Norton-Hoff law to correlate friction angle with the stress levels). Four parameters were

estimated corresponding to the Young's modulus (E), the yield limit (ay), the viscoplastic

exponent (N), and the viscosity coefficient (K). The identification criterion adopted was the least

squares approach where the objective function was in terms of displacements and pressures of

lining and rock mass interface. The optimization technique employed used the Levenberg-

Marquardt algorithm. Although, the authors claimed that the proposed inverse method can be

applied successfully in tunneling problems, they admitted that further research should focus on

including covariance matrices of measurements of actual tunnel excavations.

Calvello (2002), Calvello and Finno (2004), and Finno and Calvello (2005) present an

inverse analysis procedure for a 12 m supported excavation (Chicago-State subway renovation)
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through Chicago glacial clays. Figure 3-18 shows the section view of the excavation support

system as well as the construction sequences assumed in the finite element analyses. The model

includes eight different soil layers, one level of cross-lot bracing and two levels of tieback

anchors. The numerical modeling was performed by the finite element software PlaxisTM using

the hardening soil (HS) model (Schanz et al. 1999) to represent the behavior of the clayey layers,

and the Mohr-Coulomb model for the uppermost layer of sand and fill (Fig. 3-18). Calvello and

Finno (2004) assumed material properties for the two upper layers (sand/fill and clay crust) as

deterministic (i.e., constant values) and performed sensitivity analyses by coupling PlaxisTM with

UCODE (e.g., Hill and Tiedeman, 2007; Poeter and Hill, 2008), for the rest of the soil layers,

focusing on three HS model parameters (E , 0, and m). Under some assumptions, they

concluded that only the stiffness parameter E needed to be updated. The other stiffnesses of

the model (E- and E,,) are correlated with E following default recommendations of

Plaxis. Finno and Calvello (2005) estimated the E for three clayey soil layers only (3

parameter optimization), but updated fifteen input parameters in total. The identification criterion

adopted was the Least Squares approach with the objective function in terms of displacements.

The optimization technique corresponded to the Modified Gauss-Newton method. Figure 3-19

shows the initial predictions versus measurements captured by two inclinometers (five stages for

the East and three stages for the West inclinometer). The analyses overestimate the measured

lateral wall movements using model parameters based on triaxial shear tests. Figure 3-20 shows

the updated predictions from stage 1 only and the measured data. In general, it can be observed

that predictions for subsequent stages were improved significantly. When measurements of all

stages were used to update parameters at each stage, the predictions improved remarkably with
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some details of the shape of wall deflections (shown in Figure 3-21). Although this procedure is

effective for the case study presented (lateral wall movements only), it may be limited for other

case studies as: 1) the sensitivity analysis included only a small perturbation of each parameter

(rather than a full exploration of the search space); 2) the optimization method used (gradient

method or Gauss-Newton method) depends highly on the initial value assumed; 3) when

combining different type of measurements, the results depend on the number of measured points

used; and 4) the identification criterion employed (i.e. Least Squares) is incapable of capturing

the error structure of inclinometers (as there is no account of the coupling effect on inclinometer

residuals). In fact, when both lateral wall deflections and settlements were used as measurements

under the same technique, the wall deflections are over-predicted while settlements are

significantly under-predicted (specifically those close to the wall), as shown in Figure 3-22.

Rechea (2006) and Finno & Rechea (2006) studied the effect of different observation

types in an inverse analysis for a synthetic braced excavation. Figure 3-23 shows the location of

"field" observations in the synthetic example as well as the finite element model (Rechea, 2006).

Their simulations were carried out with the Mohr-Coulomb model and the Hardening Soil (HS)

model. For the HS model, the stiffness parameter ref was estimated for the two soil layers,

under the same inverse procedure and assumptions (i.e. identification criterion, sensitivity

analysis, and optimization method) described by Calvello (2002) and Finno and Calvello (2005).

Four types of observations (horizontal displacements, settlements, pore pressures, and strut

forces) were used and different combinations were analyzed. Finno and Rechea (2006)

concluded that the effect of including strut forces in either horizontal movements or settlements

resulted in an important increment of composite scaled sensitivities (Calvello, 2002), suggesting
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the benefits of using these observation together. However, they also claimed that: "to use strut

forces in a 2D analysis, they have to be converted to an average value per unit length, so the

field measurements cannot be employed directly in the inverse analysis." In addition, Rechea

(2006) backanalyzed two braced excavation case studies through Chicago glacial clays: and 1)

Ford Center, and 2) Lurie Research Center. The finite element models and construction

sequences are shows in Figures 3-24 and 3-26, respectively. The HS model was used to represent

soil behavior and was based on Finno and Calvello (2002). Figure 3-25 shows inclinometer

measurements versus updated predictions for the Ford Center case study. The results correspond

to two excavation stages (phases 9 and 11) and for three cases of updated predictions. The

computed results do not describe particularly well the measured data, suggesting other sources of

error in the model. Figure 3-27a shows the plan view of Lurie Research Center excavation site

and instrumentation. Measurements of horizontal soil movements and updated predictions for the

Lurie Center show reasonable fitting to maximum wall deflections at stage 6, but miss some

aspects of behavior at stage 4 (Figure 3-27b). These limitations might be attributed to tieback

prestress magnitudes and/or to assumed properties of the fill and sand layers.

Levasseur (2007) and Levasseur et al. (2007) described a soil parameter estimation

procedure based on genetic algorithms, specifically, for the identification of parameters of the

Mohr-Coulomb constitutive model from two in situ geotechnical tests: 1) a pressuremeter curve,

and 2) the horizontal displacements of a sheet pile wall retaining an excavation. They compared

two types of optimization algorithms: 1) gradient method, and 2) genetic algorithms, concluding

that genetic algorithms are more suitable to solve inverse geotechnical problems, and that the

gradient method is efficient only when the objective functions are relatively smooth and/or when
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the initial parameter value is very close to the solution. Levasseur (2007) also applied the genetic

algorithm procedure to the Lurie Research Center excavation project in Chicago. Parameter

updating again focused on Eref for the two clay layers. The main difference was theso

optimization method selected (genetic algorithms). Rechea et al. (2008) presented the horizontal

movement prediction comparison and measurements for both gradient method and genetic

algorithms for the last excavation stage only, as shown in Figure-3.28. From the figure, it can be

observed that some observations were removed (upper part of measurements) in the inverse

analyses and that there is no difference between the optimization method used. If the upper part

of the measurements is not included, the inverse analysis problem will basically rely on material

properties of clay layers. Levasseur et al. (2009) also presented a statistical inverse analysis using

GA together with a principal component analysis (PCA) for the Lurie Research Center case

study. Figure 3-29 compares measured and computed wall deflections and surface settlements

for the last excavation stage of the Lurie Center, while surface settlements are very well

predicted behind the inclinometer LR8, they underestimated the measured settlements behind

LR6.

Hashash et al. (2003), Hashash et al. (2006), and Hashash et al. (2010) proposed an

inverse approach that extracts material behavior referred to as self-learning simulation concept

(SelfSim). This approach was implemented and extended from an algorithm to extract material

constitutive behavior introduced by Ghaboussi and Sidarta (1998), and Ghaboussi et al. (1998).

Figure 3-30 shows the application of the SelfSim learning simulations to deep excavation

problems which basically consists of three different steps: 1) obtain field measurements (usually

wall deflections and settlements), 2) iteration of SelfSim learning FEM which extract stresses

Page 135



from simulating the construction sequences and extract strains from applying measurements

allowing stress-strain pairs training of a neural network (NN) constitutive soil model, and 3)

forward FEM analysis with trained NN material model. Figure 3-31 shows the construction

sequence reported for the Lurie Research Center by Hashash et al. (2010) . Figure 3-32 presents

a comparison of measurements versus SelfSim computed lateral wall deflections and surface

settlements for all excavation levels at Lurie Center. The SelfSim analyses underestimate

measured wall deflections at the final formation level (but overestimate at earlier stages), while

they match well the surface settlements at final formation.

Hashash et al. (2010) also compared measurements, versus lateral wall deflections and

settlements computed by optimal parameters obtained from genetic algorithms and by SelfSim

procedure, shown in Figure 3.33. This figure suggests that based-genetic algorithms (GA) results

predict better the elevation of the maximum movement. However, both methods tend to under-

predict the maximum lateral wall movement. The difference of the maximum elevation might be

attributed to some differences between the Abaqus (SelfSim) and Plaxis (GA) modeling. On the

other hand, surface settlements are under-predicted by the least squares and GA inverse

approach. The constitutive model chosen for Plaxis simulations was the Hardening Soil (HS)

Model. The authors claimed that the HS model selection is probably the cause of under-

prediction of surface settlements. Osouli & Hashash (2010) and Osouli et al. (2010) have

recently applied the same inverse technique with SelfSim excavation projects in Texas,

Shanghai, and Taipei.

§ The construction sequence differs from previously presented and described by Rechea (2006) and Levasseur
(2007).
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3.5 Comments

Most researchers have been using the Least Squares criterion to describe the objective function

together with non-heuristic optimization methods. The most common identification criterion

(i.e., Least Squares) is incapable of capturing the error structure of inclinometers, as there is no

account of the coupling effect on linewise instruments (e.g., inclinometers). It is very important

to highlight that the use of the Least Squares method depends highly on the number of data

points used, and therefore presents an important limitation when different types of measurements

are to be combined.

Also, the most common optimization methods used (e.g., gradient method, Gauss-

Newton method, etc.) depend on the initial values of the paremeters assumed which presents a

clear drawback for non-linear inverse problems, as soil-structure interaction problems are often

highly non-linear. Levasseur and co-workers used genetic algorithms as optimization methods

which present a clear advantage to deal with complex and non-linear functions; however, the

identification criterion adopted by them corresponds to the Least Squares.

In general, the authors do not include sensitivity analyses to understand and select which

parameters are important. Although Finno and co-workers presents sensitivity analysis, this

procedure includes only a small perturbation of each parameter. Unfortunately, this method fails

in exploring full realistic search spaces which must be based on soil behavior knowledge, and

therefore it does not select properly the parameters to update.
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In engineering practice, engineers use "back-analyses" of FE analyses where model

parameters are varied based on engineering judgement and sometimes even randomly (i.e.,

without any rational methodology) to achieve better agreements between predictions and field

measurements. A great example of this is the Nicoll Highway collapse occurred in April 2 0 th

2004 (see Section 2.3).

Figure 3-34 compares predicted and measured maximum wall deflections. The measured

values are shown by vertical bars and correspond to two different inclinometers (referred to as I-

104 and 1-65). The predictions of maximum wall deflections from initial design, first back-

analysis, and second back-analysis are shown with continuous lines. The first back-analysis

occurred on March 5th 2004 and included the following parameter modifications at different

excavation stages: 1) 50% reduction of wall stiffness; 2) 20% reduction of strength and elastic

modulus on the JGP (Jet Grouting Pile) unit; 3) 20% reduction of strength and elastic modulus

on the upper marine clay unit; and 4) 50% reduction of strength and elastic modulus on the lower

marine clay unit. The second back-analysis occurred on April 1 9 th 2004 and included the

following parameter modifications at different excavation stages: 1) 55-70% reduction of wall

stiffness; 2) 20-40% reduction of strength and elastic modulus on the JGP (Jet Grouting Pile)

unit; 3) 30% reduction of strength and elastic modulus on the upper marine clay unit; 4) 65-75%

reduction of strength and elastic modulus on the lower marine clay unit; 5) 30-40% reduction of

the strength and modulus on the fluvial clay unit (referred to as F2); 6) 45% reduction of strength

and elastic modulus. Although several other technical and administrative problems led to the

collapse (April 20th 2004), the most relevant aspects correspond to the two back-analyses
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performed by NLJV (COI, 2005) where the updated parameters do not explain the prior history

but simply match the current state, lacking objectivity as modifications of material properties.

Therefore, a rational methodology for updating FE predictions that can handle diverse

designs, ground conditions, and sources of information during construction is urgently needed. In

principle, this should integrate: 1) rational sensitivity analyses; 2) error structures of field

measurements; and 3) heuristic optimization methods.
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Table 3-1: Summary of the development of the Observational Method

Name

Statens Jirvigars

Terzaghi1929

1958

1965

EventYear

1912-1922

Terzaghi and Leps

Casagrande

Peck

De Mello

Whitman

Muir Wood

Eurocode 7 - EC7

Hong Kong GCO

EC7

CIRIA

The final draft of EC7 was published including
requirements for the OM.

in

the

"The Observational Method in ground engineering: principles
and applications." (CIRIA, Report 185)
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Between 1912 and 1922, the observational procedure was
used for the first time by the administration of the Swedish
State Railroads for an investigation on the stability of slopes
on glacial deposits (Terzaghi, 1961).

First use of the observational procedure in 1926 in Granville
Dam near Westfield, Massachusetts (Terzaghi, 1961).

Design of the Vermilion Dam in Southern California in
1950's (Terzaghi, 1961).

The Second Terzaghi Lecture held in New York in 1964,
where Casagrande talked about the role of the "calculated
risk" in earthwork and foundation engineering. A great
example of an application of the observational method was
described referred to as "The Great Salt Lake railroad fill".

In the ninth Rankine Lecture, Peck listed requirements and
limitations for application of the OM.

Recommended the OM as a design principle for embankment
dams.

Recognized the use of the OM for managing risks
geotechnical engineering.

A six-step OM was proposed for use in tunneling.

Draft set out requirements for the use of the OM.

Guide to retaining wall design.

1969

1977

1984

1987

1987

1993

1995

1999



Table 3-2: Comparison of the predefined design process and the Observational Method
(Patel et al., 2007)

Traditional Design or
Predefined Design Process

- Permanent works

- One set of parameters

- One design / predictions

- Outline of construction method

- Contractors temporary works design /method

statement

- Monitoring checks predictions not exceeded

- If checks are exceeded, consider (a) Best Way

out approach to design; or (b) redefine the

predefined design approach reassessing the

geotechnical uncertainties in the ground

- Emergency plan

The OM Process

I

- Temporary works

- Two sets of parameters

- Two designs and predictions

- Integrated design and construction methods

- Methods relate to triggers

- Comprehensive and robust monitoring system

- Review and modify process

- Contingency plan

- Improvement plan

- Emergency Plan
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Table 3-3: Typical Weights of Observations used in Braced Excavations (Finno, 2007)

Range Accrayd sitondard
Instrumentation ae) Accuracy 95% standard Weight

(full scale) deviation, a
Lateral movements ± 53*from ±0.25 mm/m 0.25 d
with inclinometers vertical _25d =0.0001- (i)

7555 __ (0.0001- d)
where d is distance (m) from bottom

of casing
Ground surface 0.01 ft 0.003 1
settlement with ± 0.003 m 1.96 (0.00155 0.00155)2
optical survey
vibrating wire 3.5 bar/50 ±0.1% FS 0.34

piezometer psi ± 0.34 Pa 1.96 ~ (0.173)2

344.8 Pa
Strut force with 2500 ±0.1%FS EA.Accurac ____

spot-weldable =I ()
microstram 1.96 (6.19)

strain gauge microstram_

() value shown is for a steel brace with A = 0.024 m2
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Table 3-4: Summary of Literature Review of Inverse FE Analyses in Tunnel and Excavation Problems

Reference Problem Type Constitutive Law Soil/Rock Identification Optimization Method
Tunnel/Excavation Parameters Criterion

(#of parameters)

Gioda and Maier Hypothetical c, $, initial stress Least Squares Nelder-Mead flexible
(1980) In-situ Pressure Tunnel Mohr-Coulomb (3) polyhedron; Rosenbrock

Test Algorithm

Sakurai and Unlined/Lined Tunnels Isotropic Linear- [xx, ayy, txy]T; E (4) Least Squares Proposed Inverse Problem
Takeuchi (1983) Elastic Approach

Gioda and Sakurai Work Tunnel Linear-Elastic E; Y' (2) Least Squares
(1987)

Shoji et al. (1990) Retaining Wall structure Isotropic Linear- E', v', k Least Squares Quasi-Newton Method
(Tokyo) Elastic (3)

Ou and Tang (1994) Synthetic/Actual Hyperbolic Stiffness: K (4) Least Squares Conjugate Gradient;
Excavation (Duncan-Chang) Powell's Quadratic

Interpolation Method
Ledesma et al. Synthetic Tunnel/ Least Squares

(1996), Actual tunnel Linear-Elastic E and Ko (2) and Maximum Gauss-Newton and
Gens et al. (1996) (Barcelona, Spain) E1, E2, E3 and Ko (4) Likelihood Marquardt Algorithms

Gioda and Locatelli Actual Railroad Tunnel: Linear-Elastic E (4) Least Squares Direct Search Method
(1999) (Switzerland) & Elasto-Plastic

Lecampion et al. Synthetic Lined Tunnels Elasto-viscoplastic K, ay, E, N (4) Least Squares Levenberg-Marquardt
(2002) constitutive law Algorithm

C -



Table 3-4: Summary of Literature Review of Inverse FE Analyses in Tunnel and Excavation Problems (con't)

Reference Problem Type Constitutive Law Soil/Rock Identification Optimization Method
Tunnel/Excavation Parameters Criterion

(# of parameters)
Calvello and Finno
(2004), Finno and Chicago- State Hardening Soil E5 0 ref (3) Least Squares Modified Gauss-Newton
Calvello (2005) Excavation Project Model Method

Synthetic Excavation Synthetic Exc.:
Rechea (2006) and Mohr-Coulomb E"', Einc (2)

Finno & Rechea Actual excavations & E5oref, Eu"'(2) Least Squares Gradient Method
(2006) (Ford Center & Lurie Hardening Soil Actual Exc.:

Research Center Model E5o"f (2)

Rechea et al. (2008) Synthetic Excavation Hardening Soil Synthetic Exc.: Least Squares Gradient Method &
Actual Excavation Model E50" Eu"'(2) Genetic Algorithms

(Lurie Research Center) Actual Exc.:
E50ref (2)

Levasseur (2007);
Levasseur et al. Actual Excavation and $,G (2); Genetic Algorithms (GA)

(2007) Pressuremeter Test Mohr-Coulomb $, G, y or Ko (3) Least Squares & Principal Component
Levasseur et al. Analysis (PCA)

(2009)
Hashash et al. Actual Excavation E5 ore'(3) - for GA

(2003), Hashash et (Lurie Research Center) Hardening Soil Least Squares Genetic Algorithms (GA)
al. (2006), and Actual Excavations Model (for GA) & Principal Component
Hashash et al. (Texas, Shanghai and Extract Soil Analysis (PCA)

(2010); Osouli and Taipei) Behavior (SelfSim)
Hashash (2010) 1 1 SelfSim (ANN)
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Figure 3-1: The CIRIA Observational Method (Patel et al., 2007)
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Figure 3-2: Some Potential Benefits of the Observational Method (Patel et al. 1996)
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Figure 3-3: Illustrative Scheme of Parametric Estimation (after Jurina et al. 1977)
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Figure 3-5: Inverse Problem Examples: (a) Determination of an Earthquake Hypocenter,
(b) Determination of Wave Velocities or Material Properties (Aster et al., 2005)
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Figure 3-6: Illustrative Example of Residual Norms LI, L2, and L. (Ledesma, 1987)
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Figure 3-7: Illustrative Example of (a) four data points to be fitted with a straight line; (b)
contours of residual surfaces; and (c) different lines with same minimum value in L.

(Santamarina and Fratta, 2005)
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Figure 3-8: Typical Genetic Algorithm Flowchart (after Goldberg, 1989; after Michalewicz,
2011)
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Figure 3-9: Example of Rastrigin's function
MATLAB, 2004-2009)
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Figure 3-12: Plan view of tunnel construction site and tunnel cross-section (Gioda and Sakurai, 1987)
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Figure 3-13: (a) Positions of the boreholes for inclinometers and micrometers (B1..B4) and
the directions of the convergence measurements; (b) Comparison of back analyzed

displacements with measured values (Gioda and Sakuria, 1987)
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Figure 3-14: Calculated and measured lateral movements in the retaining wall structure
(Shoji et al. 1990)
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Figure 3-15: (a) Soil profile and instrumentation of tunnel section B (Ledesma, 1987); (b)
Comparison of measured and computed displacements in section B using Least Squares:

DCM and Maximum Likelihood approach: FCM (Gens at al., 1986)
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Figure 3-16: (a) Soil profile and instrumentation of tunnel section C (Ledesma, 1987); (b)
Comparison of measured and computed displacements in section C using Least Squares:

DCM and Maximum Likelihood approach: FCM (Gens at al., 1986)
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Figure 3-17: Comparison of measurements and backanalyzed predictions of upper part of
excavation of a tunnel simulation corresponding to: (a) initial FE mesh, and (b) modified

FE mesh (Gioda and Locatelli, 1999)

Page 1169

(a)

(b)

-S(

-6(



Francis Xavier Warde School
Sand fill-- -- -- -- --

+0.6 m - -
-0.3 m

Upper Blodgett
-4.6 m
-7.1 m

a enDeerfield-----------(a) -10.8 m

-15.4 m _ Park Ridge

-85mTinley +--Inclinometers----18.5m M h~ ____

Hard Pan WEST EAST
-24.6 m_

lOMn
Horizontal Scale

Calculation
phase Construction stage

0 Initial conditions
I to 4 Tunnel construction (1940)

5 Consolidation stage
6 to 10 School construction (1960)

(b)I I Consolidation stage
Wall 12 Reset displacements
installation 13 Drill secant pile wall (1999)

14 Pour concrete in piles-Stage 1
15 Consolidation stage (20 days)

Excavation 16 Excavate (+2.75 m) and install strut-Stage 2
17 Excavate (-0.9 m)

18 Prestress first tiebacks-Stage 3
19 Excavate (-4.6 m)
20 Prestress second tiebacks-Stage 4

21 Excavate (-7.9 m)-Stage 5

Figure 3-18: Chicago-State case study: (a) Schematic section view of excavation support system (Calvello and Finno, 2004)
(b) Construction sequences considered in finite element analysis (Finno and Calvello, 2005)
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Figure 3-21: Measurements versus updated predictions (updated using data from all stages) of horizontal wall displacements
(Finno and Calvello, 2005)
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Figure 3-22a: Measurements versus updated predictions for all stages using horizontal wall displacements (Calvello, 2002)
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Figure 3-26: Lurie Research Center: (a) finite element model for the South side, and (b) construction sequences of excavation
stages (after Rechea, 2006)
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6 Excavate to -8.53 m CCD and pour grade beams
7 Construct basement walls, pour slab and backfill
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4 METHODOLOGY FOR UPDATING FE PREDICTIONS OF
EXCAVATION PERFORMANCE

4.1. Introduction

This chapter describes a methodology for updating FE predictions of excavation performance

based principally on the maximum likelihood approach. Initially, a simplified version of this

methodology is introduced and the main parts of the framework are described. This is followed

by a description of the covariance matrices for field measurements and the error structures for

some typical instruments used to monitor excavations. The proposed methodology uses

sensitivity analyses to screen parameters to be used in inverse analyses. The chapter also presents

a more detailed framework for using the updating approach in the project management through

integration with alert or trigger criteria. Finally, some comments on 2-D and 3-D numerical

modeling with the use of the proposed methodology are given.

4.2. Simplified Methodology for Updating FE Predictions of Excavations
Performance

Figure 4-1 presents a simplified flowchart of the proposed methodology for updating FE

predictions of excavation performance. This methodology contains the following sequential and

iterative stages or processes:

1. Site Investigation: This includes all site information needed to define the stratigraphy,

groundwater and bedrock conditions, as well as programs of field and laboratory tests

needed to select input parameters for appropriate constitutive models.
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2. FE model: In principle, the finite element model is derived from the site investigation

data together with the data of the design of the structural support system and proposed

construction sequence. In practice FE models are often limited to central cross-sections or

other 2D approximations, while site investigations rarely include details of stratigraphy

extending for beyond the locus of the project site.

3. Predictions: Initial predictions of performance are based on the finite element model.

4. Feedback from construction records: once excavation begins, new information will

become available on soil stratigraphy while construction records will determine as -built

conditions (with deviations from initial design conditions). The information is critical, as

it provides basis for reducing modeling uncertainties. This feedback can be used

continuously throughout the construction process.

5. Measurements: field monitoring measurements should become available during early

phases of construction. Various statistical techniques can be used to identify outliers in

data (malfunctioning or poorly calibrated devices) that should be removed from

subsequent comparisons with performance predictions.

6. Computation of Squared Residuals and Variances: the consistency between computed

and measured performance is assessed by computing two scalar quantities, the structured

squared residuals (SSR) and structured global variances (SGV) for a defined set of field

measurements. Section 4.4 describes the calculations of these quantities.

7. The magnitudes of SSR and SGV are used as a first filter on the methodology. If preset

threshold values are exceeded then sensitivity analyses (SA) are performed in order to

establish how individual input parameters affect predictions. The sensitivity analyses are
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used to define a sub-set of Essential Improvement Parameters (EIP) that should be

updated through inverse analyses (IA).

8. If there are no essential improvement parameters from SA, then there is no need to update

the model and the model can be used to predict conditions at the next time step

(construction state).

9. Inverse Analyses (IA) are performed using available measurement types and the essential

improvement parameters (from SA). The inverse analysis is carried out using a maximum

likelihood formulation that is solved using genetic algorithms.

10. The inverse analyses generate a set of updated input parameters that should be used to

compute updated predictions of performance using the finite element model. The updated

predictions should be validated against the prior history of the project (through

computations of SSR) as well as predictions of performance for subsequent time steps

(construction stages).

4.3. Covariance and Error Structure of Measurements

In the proposed methodology, the interpretation of field measurements and instrumentation

requires the estimation of covariance and error structure matrices. Section 3.3.2.2 derived the

objective function for estimating parameters in a geotechnical problem using the maximum

likelihood approach. This approach involves covariance matrices of the measurements. In

particular, it is necessary to derive the covariance matrix expressions for every instrument that is

involved in a certain project. The maximum likelihood identification criterion was expressed as

follows:
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t (4.1)

J = rT Cmij

= r(3.19 bis)

where J is the maximum likelihood objective function; Cmj is the covariance matrix of the j-

instrument; and r, is the vector of residual of the j-instrument.

The covariance matrix of each instrument can be factorized as follows:

Cmj =qof Em. (4.2)

where o, is the scale factor that represents the global variance of the measurements by the j-

instrument; and Em; is the error structure matrix of the j-instrument which depends on the

apparatus itself.

Typical geotechnical field instrumentation used in excavation support system and bored

tunnels usually includes: 1) inclinometers, 2) probe extensometers (e.g. sliding micrometers and

heave gages), 3) piezometers, 4) load cells, 5) strain gages, 6) rod settlements, and 7) deflection

monitoring points. In general, these can be subdivided into two groups: 1) pointwise instruments,

and 2) linewise instruments (Koviri and Amstad, 1983; Naterop, 1998). The following section

describes the covariance matrices for these measurements.

4.3.1. Pointwise Instruments

Typical pointwise instruments in excavation problems correspond to load cells, strain gages,

single deflection monitoring points and rod extensometers, as well as a piezometric sensors.
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Figure 4-2 shows examples of deflection monitoring and strain gage devices. Pointwise

instruments measure physical parameters at a single point and are independent of other

measurements. For example, load cells and strain gages are often used to measure axial forces of

struts. The two measurements can be inter-related by assumptions of elasticity but are

independent measures. Errors of measurements are attributed to random errors only.

Surface settlements are usually measured by deflection monitoring points, rod

extensometers or surveying points where measurements at different locations are independent.

Piezometers installed within a borehole are generally isolated from each other and hence also

make discrete, pointwise measurements of pore pressures (i.e., no cross-coupling of pressures

assumes good installation procedures).

When the measurements are independent, the covariance matrix follows the simplest

form:

C; = of (4.3a)

Nj

a- _ 2 (4.3b)

where of is the population* variance of pointwise instrument "j" at a given construction state; N
is the total number of measurements of the j-instrument; xi are the individual measurements; and

;e is the arithmetic average of N measurements.

* The population corresponds to the number of measurements for a single instrument (i.e., unique physical location)
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Equation 4.3 presents the diagonal terms of the general covariance matrix, being the

variance of each pointwise instrument considered in a certain excavation problem over a given

time interval or construction stages. The time interval or construction stage plays a key role for

the calculation of the variance because: 1) numerical predictions involve temporal discretization

of a continuous process; thus a realistic time interval must be considered to integrate properly the

measurements; and 2) the total number of measured data points in this time interval must be

sufficient to have a valid and realistic estimation of variances. If there is insufficient data to

estimate a variance, the measurements should not be included in this updating process.

It can be inferred that the pointwise case represents a particular case of the maximum

likelihood approach being exactly the same to the so-called, weighted least squares method

described, previously, in Chapter 3. In fact, for independent measurements only, Equation 4.2

can be simplified to pointwise measurements only and re-written to the following simple matrix

form:

0 0 0 1
Im 0 Of 0 .. (4.4a)

1 0 0 -
with error structure 0 1 0Em[ 0 . (4.4b)

0 0 1

where Cm is the covariance matrix of pointwise measurements; of is the variance of the j-

instrument; and Em is the structure error matrix of pointwise measurements (I: identity matrix).
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4.3.2. Linewise Instruments

Linewise instruments, based on measurements along a chain of geometrically continuous

segments, provide enough data to estimate the distribution of deformations and/or strains along a

line (Naterop, 1998). Typical linewise instruments used in excavations correspond to sliding

micrometers, heave gages, inclinometers, fiber-optic strain sensors, etc. Figure 4-3 shows a

schematic of a straight line deformed used in these three most common linewise instrument types

in excavations.

4.3.2.1. Sliding Micrometers and Heave Gages

Sliding micrometers and mechanical heave gages are devices that monitor changing distance

between two or more points along a common axis, by passing a probe through the access pipe.

The measurements can be either electrical or mechanical (see Figure 4-4). While there are

several types of probe extensometers (Dunnicliff, 1983), only mechanical heave gages and

sliding micrometers are considered.

Following the work done by Ledesma et al. (1996), and considering that the initial point

of a probe extensometer has an absolute movement, A, the parallel displacement to the

instrument axis at a given sensor or point can be computed as follows (see Figure 4.2a):

n

Vn= E + A (4.4)
t=1
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where v, is the total displacement (parallel to the axis) assuming that instrument has n sensors;

EL is the individual displacement of the sensor; and A is an integration constant or absolute

reference movement.

The physical mechanism of this instrument can be simply thought as springs in series,

where the total axial displacement is the sum of each spring displacement. Assuming that the

integration constant or reference movement A is zero, the covariance matrix can be expressed by:

Cmq = CoV(V7,t V) = cov eEr, Es

r=1 S=1 )

COV(Er, Es)

r=1 S=1

= 2 2 min(i,j)
T=1 S=1

where a2 is the global variance of measurements; and 6 rs is the Dirac delta function.

If the integration constant A is not fixed, the covariance matrix should be evaluated as

follows:

Cmq = 2 {min(ij) + vr(A (4.6)

where var(A) is the variance of absolute reference movement or integration constant.

The covariance matrix can then be expressed and factorized as follows:

CM = Y2

1
1
1

1 1
2 2
2 3

(4.7a)+ var(A)
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2 1 2 2 var(A)
1 2 3 CY2

with error structure 1
Em 2 var(A) (4.7b)

1 2 3 5

It is important to note that the variance has dimension of squared length. This last

factorization of the covariance matrix allows one to express the error structure matrix in a

dimensionless form, having a particular advantage for sensitivity analyses that will be discussed

later in Sections 4.4 and 4.5.

4.3.2.2. Inclinometers

Figure 4.5 shows the typical configuration of a conventional inclinometer and an in-place

inclinometer (Hung et al., 2009). The conventional inclinometer system comprises a casing, an

inclinometer probe and control cable, and readout unit, while the in-place inclinometer comprises

a series of sensors attached at fixed points to the casing. Inclinometer probes measure tilt in fixed

points along its axis and falls within the category of transverse deformation gages (Dunnicliff,

1993).

Again, following the work done by Ledesma et al. (1996), and considering that the

bottom of the casing or the deepest point considered has a horizontal displacement B, the

perpendicular displacement to the instrument axis at a given point can be computed as follows:
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n

un= lisinai + B
i=1

(4.8)

where un is the total displacement (perpendicular to the axis) assuming that the line is divided by

n segments; sinai is the sine function of slope segment; and B is an integration constant or

absolute reference movement.

If it is assumed that the base of the casing is fixed (i.e., B =0), the covariance matrix of

two continuous points can be expressed as follows:

Cmjj = COV(U1 , u1 ) = cov irsinar

j

,>issinas
S=1

1r is cov(sinar, sinas)

2 >j >ls .
=12 r S Ors 2s

r=1 S=1

min(ij)

I 1r 2 6 rs

r=1

where U2 is the global variance of measurements (dimensionless); 1r is the segment length; and

Srs is the Dirac delta function.

It is important to highlight that the global variance, u 2 , is dimensionless since it

corresponds to global variance of the sine of the angles.

If the integration constant B is not fixed, the covariance matrix element should be

evaluated as follows:
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Cmij = a 2

(min(i,)

12 r var(B)
1r 2rs+ a 2

r=1

where var(B) is the variance of absolute reference movement or integration constant.

The covariance matrix of inclinometer measurements can then be expressed as:

Cm = a2

2

2

1

+ 2 1 + 2

112 +2 l2 12 + 12j2 ... + var(B)
112 +122 112 + 122 + 132

If the lengths between two consecutive points are chosen to be equal to l , along the

inclinometer, the covariance matrix can be expressed as:

Cm = i212

= 02 ji2

with error structure Em

1
1
1

1
2
2

1
2
2

1 1
2 22 ... +var(B)
2 3

1
2 + var(B)

3 02 42

2 +var(B)
3 T2 2,

This last factorization of the covariance matrix for inclinometers (Equation 4.12a) allows

one to express the error structure matrix in a dimensionless form having a particular advantage

for the two filters of this methodology that will be discussed later in Sections 4.4 and 4.5.
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Figure 4-6 shows the derivation of covariance matrix and objective function for a

hypothetical example of an inclinometer of three points. It is very important to observe how the

final form of the objective function differs from the simple least squared method, discussed

previously in Chapter 3. In fact, coupled terms of residuals (i.e., terms containing rir2 and r2r3)

as well as different scalar magnitudes multiplying each term, can be found in the objective

function expression.

4.4. Structured Squared Residuals and Global Variances

This step involves the computation of two scalar magnitudes for each instrument: 1) residuals

(difference between measurements and predictions) and 2) variances of field measurements.

Since there is no error structure associated with pointwise measurements, the structured squared

residual (SSR) corresponds to the squared residual of each instrument. Under the same logic, the

structured global variance (SGV) corresponds simply to the measurement variance of each

pointwise instrument. Therefore, the structured squared residual and global variance for each

pointwise instrument type 'i' (e.g., all measurements of surface settlements) is as follows:

SSRi = rT ri (4.13)

where SSRi is the cumulative structured squared residual (scalar) for pointwise instrument type

'i'; and ri is the vector of residuals for a given instrument type 'i'.

Similarly, the structured global variance (SGV) for each pointwise instrument type 'i' can

be expressed by:
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SGV =o aa 1  (4.14)

where SGV is the cumulative variances (scalar) for pointwise instrument type 'i' ; and og is the

vector of standard deviation of measurements for pointwise instrument type 'i'.

For the particular case of 2-D numerical analyses and for pointwise instruments, it is

often possible to run sensitivity analyses based on groups of instrument types (rather than

individual measurements). This means working with average values of both the residuals and

variances of measurements, and therefore given a better physical sense of magnitudes of average

values. The advantage of grouping pointwise measurements at different locations (e.g.,

settlements at different distances from wall) is that it permits the visualization and impact of

specific observations on different model parameters, and thus provides a better understanding of

the numerical problem. Under this logic, Equations 4.14 and 4.15 can be re-written as:

ri ri
SSRiave _, 1 (4.15)

ni

SGV ave _ i (4.16)
ni

where ni is the total number of measurements of pointwise instrument type 'i'.

In order to generalize the error structure matrix (for both pointwise and linewise

measurements) the expressions can be modified as follows:

SSRj = r T Em ri (4.17)
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SGVi = of Em 1 o (4.18)

Em = Em ; for linewise instruments
i I, ; for pointwise instruments

where, Emj is the error structure of the instrument type 'i' (from Equations 4.7b and 4.12b); and

Ii is the identity matrix where the dimension depends on the number of independent

measurements.

Summarizing, Equations 4.17, 4.18, and 4.19 allow one to compute the scalar values of

SSR and SGV for each instrument type. It is very important to highlight that for linewise

instruments, it is not necessary to work with average values, because of the error structure in the

measurements, (Equations 4.7b and 4.7b).

4.5. Sensitivity Analysis

Having computed SSRi and SGV for each instrument type 'i', the next step is to perform a

sensitivity analysis. The sensitivity analysis proposed herein has three main objectives: 1)

identify the most important model parameters needed for optimizing; 2) identify the instruments

or measurement types that provide the most information for the inverse problem; and 3) quantify

how much the SSR can be reduced by varying one parameter only.

The proposed sensitivity analysis involves the variation of a single model input parameter

over a pre-defined search space, computing the squared structured residual (SSR) for each

different parameter value. This makes it possible to study the relation between SSR and each

model parameter.
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Sensitivity analyses are carried out for input parameters where the structured squared

residual is greater than the structured global variance:,

SSRi initial > SGVi ? (4.20)

where SSR inital is the structured squared residual using the original/initial input parameters.

When using pointwise instruments only, Equation 4.20 can be simplified to compare

squared residuals against measurement variances. Figure 4-7 shows an illustrative example that

defines "essential" and "non-essential residuals", simplified for a single point measurement. The

case when the absolute value of the residual (Ir| = jm - p|) is higher than the standard

deviation of the measurement is defined as an "essential residual" (Fig. 4-7a). In contrast, when

the absolute value of the residual is less than or equal to the measured standard deviation, the

residual is "non-essential" (Fig. 4-7b).

A second filter considers how the structured squared residual varies over the parameter

search space:

ASSR, = SSRiinitial - SSRim in" (4.21)

where ASSRi is the maximum reduction of SSRi related to the initial value (SSRiinitial) due to
variation of a single model parameter.

Figures 4-8 and 4-9 show examples of two hypothetical sensitivity analyses that show

variations in SSRi with a selected input parameter, pk. Figure 4-8 show the case when DSSRi is
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higher than the value of SGVi; thus defines the parameter, pk, as an "essential improvement

parameter". On the other hand, when ASSRi is less than SGVi (Fig. 4-9), the parameter is a

"non-essential improvement parameter". The goal of sensitivity analyses (SA) is to define the set

of "essential improvement parameters".

Basically, Equation 4.21 measures how sensitive each parameter is in term of SSR of

each instrument type. If ASSR is higher than SGV, the model parameter is immediately flagged

as an "Essential Improvement Parameter" (EIP) for a specific measurement type, and therefore

considered to be a parameter to be optimized in the inverse analysis or parameter estimation step

(see Figure 4.8).

4.6. Inverse Analysis

The current methodology proposes the use of the maximum likelihood approach, as the

identification criterion, and the use of genetic algorithms, as the optimization method.

Having defined the covariance matrices of the measurements and identified the set of the

essential improvement parameters (including the search spaces for each parameter), the objective

function based on the maximum likelihood approach, can be expressed as follows:

minJ I = min{(m - p)T Cm (m - p)} (4.22)

where Cm is the covariance matrix of all measurements and instrument types; m is the vector of

all measurements considered; and p is the vector of all predictions considered
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It is very important to highlight that the inverse maximum likelihood analysis, proposed

herein, contains all of the measurements (and instrument types), regardless of the results of the

sensitivity analysis. This means that although the sensitivity analysis give us the essential

improvement parameters to optimize at a given excavation time, all instrument types must be

considered in the minimization problem. In order to constrain the problem specified in Equation

4.22, it is also necessary to define the search space (lower and upper bounds) to each of the

essential improvement parameters:

min{J } = min{rT Cm-1 r

s.t. (4.23)

6 LB ! 0 < 0 UB

where r = m - p is the vector of residuals of all measurements considered; 0 is the vector of

essential improvement parameters to optimize; and 6LB and 0 UB are the lower and upper bounds

of 0, respectively.

Equation 4.23 generalizes and constrains the proposed inverse maximum likelihood

analysis. In principle, this minimization problem can be solved by heuristic optimization

methods. This thesis uses genetic algorithms (GA), described in Section 3.3.3. The selection of

GA options such as: population size, fitness scaling, selection, reproduction, mutation, crossover,

stopping criteria plays an important role in finding good approximations to the global minima or

minimum, and highly depends on every specific problem.
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4.7. Proposed Methodology for Updating FE Predictions

Figure 4-10 presents a more detailed flowchart on the proposed methodology for updating FE

predictions (based on the outline shown in Figure 4.1). Additional details in this chart include: 1)

use of the initial FE model predictions ("class A") as the basis for the initial support system

design; and 2) the integration of the instrumentation plan to derive and specify the error structure

matrix of each instrument type prior to construction. It is also recommended to remove outliers

(e.g., T-tests) from field measurements to obtain more credible set of measured data. With the

error structure matrix of the instrument i (Emi) and credible measurements (m), we can compute

the covariance matrices for instrument i, and the global variance of the measurements (Cmj; o9).

This flowchart specifies also that the inverse analyses should be performed using the maximum

likelihood approach (identification criterion), and genetic algorithms (optimization method).

4.8. Generalized Methodology for Management of Construction Process

A more generalized and detailed methodology for the management of construction process is

shown in Figure 4-11. Although this figure uses the same previously proposed updating

procedure, it includes some additional steps. These steps are basically related with the planning

and initial design phases. In general terms, the planning should consist of a comprehensive site

investigation, which would allow one to select the most appropriate excavation type and support

system, and also to integrate an instrumentation plan and monitoring program before starting the

excavation construction (see Figure 4-11 a).
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In addition, the site investigation should involve previous studies in the area, laboratory

and field tests, and geological studies. This will clearly help to define properly the site geology

and soil profiles which will play a critical role in the initial predictions (also referred to as class

A predictions) and initial design. If available, this procedure suggests the use of any regional

databases and local borings to help defining properly soil profiles and material properties. After

defining more in detail the site geology, two sets of material properties should be defined: 1)

most probable (MP); and 2) characteristic values (CV).

The MP set of parameters represent the probabilistic mean of all the data which usually

requires a degree of engineering judgment to interpret the data, while the CV set of parameters

represent a "cautious estimate of the value affecting the occurrence of the limit state" which, in

principle, should result in predictions of the upper 5% fractile of the measured wall deflections,

being not a precisely defined parameter (Patel et al., 2007). Figure 4-12a shows an example of

these parameters for the case of Gaussian distribution of shear strength (after Nicholson et al.,

1999). Figure 4-12b shows the Eurocode 7 (EC7) interpretation of predicted and measured

performance for the most probable (MP), characteristic values (CV) and most unfavorable soil

properties (after Patel et al., 2007). It is important to note that Figure 4.12b also shows colors or

trigger zones based on the likelihood of exceeding movement predictions (referred to as green,

amber, and red zones). Patel el al. (2007) describe the significance of these zones as follows: 1)

''green zone" means to continue construction; 2) "amber zone" means to continue with caution

and prepare to implement contingency, increase rate of monitoring (amber zone); and 3) "red

zone" means to stop progress, do everything possible to slow movements, and implement

contingency.
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By using the two sets of material properties (MP and CV), one should capable of

calibrating simple and/or advanced soil models, as well as defining and listing model parameters

with high uncertainty (including each model parameter search spaces based on any correlation or

information available). Once the initial FE model is ready, all possible modelling uncertainties

should clearly be specified. Based on the sets of material properties, initial predictions (i.e. class

A predictions) can be obtained (also referred to as vectors: pH and pcv) by using these two sets

of materials and the initial numerical model (see Figure 4-11 a). These will also allow one to

establish initial trigger criteria, as exemplified in Figure 4-12.

These two initial steps of planning and predictions (as well as design) permit one to

generalize the proposed methodology for updating predictions. Figure 4-1 lb shows a more

generalized version of the proposed methodology, previously shown in Figure 4-10.

Finally, under the same logic of this proposed inverse approach, a proposed updating of

the traffic light system for excavation is presented in Figure 4-12. This updating traffic light

system plays a very important role in this framework in enabling communication among

contractors, managers, design team, and the client. Figure 4-12 integrates, as an example from

CIRIA report 185 (after Nicholson et al., 1999), the steps to follows under each color or trigger

zones (green, amber, and red) already discussed.

4.9. Comments on Spatial Representation in Numerical Model

In order to be capable of applying this inverse procedure, enough measured data must be

available to certainly compute covariance matrices of measurements. When construction site
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approximates to 2-D conditions it is reasonable to focus on a 2-D numerical representation.

Geotechnical engineers often adopt 2-D plane strain conditions to model excavation problems,

and sometimes, the modeling is further simplified by adopting symmetric conditions.

In a simplified 2-D numerical model, the spatial representation allows one to group

measurements at a single section for the proposed inverse analysis. In principle, this increases the

number of measurements, and offers two main advantages: 1) more representative measurement

errors (i.e., covariance matrices), and 2) grouping instruments by type (e.g., surface settlements

behind a diaphragm wall; wall deflections from different in-wall inclinometers). Particularly, for

pointwise instruments, it is possible to run sensitivity analyses based on group instrument types

(instead of individual measurements). Hence, it is possible to work with average values of the

residuals and measurement variances, and also to enable better visualization of the impacts of

specific observations on different model parameters.

In contrast, 3-D numerical models present the advantage of more realistic spatial

representation of construction processes. However, this involves more computational effort and

time and restricts averaging measurements at one section or grouping instrument types. In this

case, the main challenges are 1) to define properly the time intervals used in interpretation on

performance construction records, and 2) to ensure there is sufficient data at each construction

stage to enable updating of parameters. Application of updating methods for 3-D FE models is

beyond the scope of this thesis. Chapter 5 provides a detailed case study based on 2-D modeling

of an excavation support system.
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Figure 4-1: Proposed methodology for updating FE predictions of excavation performance (simplified version)

i = instrument, i
SSR = Structured Squared Residual
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p = Uncertain Parameters
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(after Hung et al., 2009)
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Figure 4-10: Proposed Methodology for updating FE predictions of excavation performance
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Updating of Traffic Light System for Excavations

Figure 4-13: Updating of traffic light system for excavations using the proposed methodology
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5 APPLICATION OF PROPOSED UPDATING PROCEDURE

5.1. Introduction

This chapter applies the proposed methodology for updating finite element predictions of

excavation performance to the Transitway case study (Section 2.2). This project involves a

17.3m deep excavation for the MBTA Silver Line Courthouse Station. The excavation and

support system diaphragm walls with 5 levels of cross-lot bracing are well represented by a 2D

finite element model (Platform section) of the half-section (i.e., full model symmetry). This

chapter describes the finite element model, identification of essential improvement parameters at

each stage of construction through sensitivity analyses. The chapter gives full details of the

inverse analyses and updating of parameters. The results show how model updating would be

applied and how these analyses assist in reducing uncertainties through the course of the

construction. The current analyses use simplified (MC) constitutive models. The final section

compares these results with predictions using a more complex soil model (MIT-E3) that were

presented in Chapter 2.

5.2. Transitway Project: Case Study

5.2.1. Finite Element Model

The Transitway project description and the platform section details were discussed in detail,

previously in Section 2.2, and are not repeated here.
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Figure 5-1 shows the assumed finite element model of the Platform section for the

MBTA Courthouse Station excavation (class B; section 2.2). The phreatic level is set at 2.7m

below ground level (El. + 31.1 m); there is a head loss of 2.9 m through the underlying Boston

Blue Clay (BBC). At the base of the model (bottom of BBC) a constant head, H=28.2 m was

adopted. Figure 5-1 also shows the initial vertical effective stresses and pore pressures. The

model assumes symmetric conditions (horizontal soil layers and uniform excavated grade), such

that only a half-model of the section is used. Coupled analyses of fluid flow and deformations in

the soil are performed using 15-3 mixed interpolation, high order solid triangular finite elements

to describe the soil and diaphragm wall. The cross lot bracing is simulated using node-to-node

anchors (elastic spring elements with constant axial stiffness) with average horizontal strut

spacing of 6.45 m (see Figure 2-3).

Figure 5-2 shows the construction sequence in 12 discrete construction stages. The

excavation is supported by a reinforced concrete diaphragm wall (1.22 m thick and 26.2 m deep),

with five level of cross-lot bracing. The excavation grades and duration of each excavation step

are based on a detailed interpretation of the as-built construction records. Measurements of strut

pre-loads were achieved by averaging data from the 4 strain gauges* installed at each strut level

and at different strut lines (for strutting plan, see Figure 2-3). Average values of measured pre-

loads ranges from O to 613 kN/m, as shown in Figure 5-2.

Strain gauges that measure strut forces were installed in every other strut line at the same strut level
The actual average strut level 1 pre-load was 41 kN/m; however, since the standard deviation was larger than the

value, a zero value was assumed in this case.
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Table 5-1 summarizes the construction steps used in the finite element simulations. The

diaphragm wall installation and the cross-lot bracing installations were represented as undrained

events (i.e., "plastic analysis" in Plaxis), while excavation stages include partially drainage (i.e.,

"consolidation analysis" in Plaxis)t with specified time periods. The final excavation grade El.

+16.5 m is reached after 279 days of construction. The sequence of construction activities,

elevations, and support system are identical to those used in the class B presented in Chapter 2.

The constitutive modeling of soil behavior and selection of input parameters represents a

major source of uncertainty in finite element analysis (Whittle et al., 1993). The lack of lab tests

on high quality samples in the granular fill, cohesive fill, and silty sand limits current capabilities

to describe these units. The only available data for the upper layers are standard penetration tests

(SPT). Empirical correlations between NsPT and friction angle as well as Young's modulus are

available (e.g., Skempton, 1986; Stroud, 1989) although with high uncertainty. Although the

Boston Blue Clay (BBC) has been extensively studied in the past 50 years, especially at MIT,

and also calibrated with an advanced soil model (e.g., MIT-E3; Whittle et al., 1994), for the

application of the proposed methodology and in order to assume a more typical case (i.e., where

no advanced soil model calibrations are available), the simple linearly elasto-perfectly plastic

constitutive model Mohr-Coulomb** (MC) was selected for the five soil layers. This very-well-

+ It is important to be aware that using MC model in Plaxis (referred to as Method B), it does not update strengths as
it does not considered effective stress strengths.

§ The only difference corresponds to the strut level 1 pre-load assumed.

** Although the correct name of this constitutive law is Coulomb model; in this thesis, it will be referred to as Mohr-
Coulomb or MC model.
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known MC model requires only five parameters tt : 1) Young's modulus: E'; 2) Poisson's ratio:

v'; 3) apparent cohesion: c; 4) internal friction angle: p'; and 5) initial effective stress ratio: Ko.

Table 5-2 summarizes the material properties for the five soil units, where each layer is

represented by the MC model. The upper fill layers (granular fill, cohesive fill and silty sand)

have relatively high hydraulic conductivities and are treated as drained materialstt; while the

upper BBC (slightly overconsolidated) and the lower BBC (normally consolidated) are

"undrained" materials. The material properties for the three upper layers used were estimated

from SPT correlations (Stroud, 1989) and assumptions made by Jen (1998). The initial undrained

shear strengths and shear stiffnesses selections for the BBC units were based on the stress history

profile (Fig. 5-4) as well as some available correlations that will be discussed later in this

chapter. The initial hydraulic conductivity profile (Fig. 5-5b) in the BBC unit, assumed to be

5x 1010 m/sec and isotropic (i.e., kx=ky), was estimated from constant rate of strain consolidation

tests (CRSC) (after Whelan, 1995).

Table 5-3 shows the material properties of the diaphragm wall and strutting system used

in the FE model.

Figure 5-3 shows the location of instrumentation used for updating predictions. Those

are: 1) inclinometer; 2) surface settlement (DMP); 3) piezometric sensors; 4) heave sensor; and

5) strut elevations (i.e., elevations of strain gauges to measure strut forces).

We assume zero dilation (W=O0 ) for all layers in order to assume zero volume strain conditions at failure.
i.e., no excess pore pressures develop in these layers.
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The measurements used includes: 1) lateral soil/wall movements, measured by five

inclinometers cast within the wall; 2) surface settlements by sixteen deflection monitoring points

(denoted by DMP); 3) excavation heave by one multi-point heave gage located at the center of

the excavation; 4) piezometric head measurements from one vibrating wire piezometer inside the

excavation; and 6) strut forces measured by twenty strain gauges distributed at different strut

lines and elevation in the Platform section (see Figure 2-3). The averages and variances of

measurements were estimated with all measured data available between the following time

frames (i.e., construction days): 1) excavation level 1 (CD 48-51); 2) excavation level 2 (CD 83-

90); 3) excavation level 3 (CD 111-118); 4) excavation level 4 (CD 139-153); 5) excavation

level 5 (CD 183-201); and 6) excavation level 6 (CD 274-284). Table 5-4 presents the

magnitudes of the variances§§ of the field measurements used in both the sensitivity analysis and

inverse analysis.

5.2.2. Uncertain Parameters and Search Spaces

The initial predictions must correspond to class A predictions. The information that was obtained

during construction (e.g. construction records, soil stratigraphy, strut pre-loads, etc.) was

included in the initial FE model, which means that there is no need to update layer thickness, unit

weights, and elevations (shown in Table 5-2) as well as excavation grades, and strut pre-loads (as

the proposed methodology specifies to update as needed). This basically implies that the

§ In principle, two measured data are enough to approximately estimate a variance; however, the more number of
data, the more representative and reliable the variance will be. It is recommended to include all available data and
remove all possible outliers. In particular, for the Transitway project, four measured surface settlements behind the
South wall (two at 24m and two at 37m) were considered outliers due to the presence of the building (see Figure 2-
14). This was because of the symmetric conditions assumed in the FE model (see Section 5.2.1).
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boundary conditions and stratigraphy are certain, which may not be case in other practical

applications. Thus, the current application assumes that modelling uncertainty is due exclusively

to uncertainties in the input parameters of constitutive behavior of the soil units.

Table 5-2 shows the material properties to study that will be included in the sensitivity

analysis, discussed in the next section. In Table 5-2, it can be seen that for the three upper soil

layers (granular fill, cohesive fill, and silty sand), three parameters of each upper layer are to be

studied: 1) reference shear stiffness, G'* ; 2) internal friction angle, p';and 3) initial effective

stress ratio, K0. Hence, 9 parameters are varied within these units.

In addition, for the upper BBC layer (see Table 5-2), the parameters considered with high

level of uncertainty are: 1) hydraulic conductivity (assumed to be isotropic: kx=ky); 2) reference

shear stiffness, Grer; 3) change of stiffness with depth, AG/Az; 4) reference undrained shear

strength, suref; 5) change of undrained shear strength with depth: Asu/Az; and 6) initial effective

stress ratio, K0 . Hence, 6 parameters are varied within this unit.

The lower BBC layer (see Table 5-2) has constant OCR and hence, the depth variation of

undrained shear strength (sur*f and Asp/Az ) and Ko are fixed. Hence, 3 parameters are varied

within this unit.

Based on this assessment, there are 18 constitutive model input parameters that are

considered highly uncertain. This list can be reduced by considering well-known correlations

among engineering properties. For example, Equation 5-1 shows the very-well known expression
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between K0 and $' (Jaky, 1944). The use of this relation allows one to reduce the nine uncertain

parameters of the upper soil layers to 6 parameters (G'f and $' for each layer).

Ko = 1 - sinq#' (5.1)

where K0 is the lateral earth pressure ration (at rest); and #5' is the effective internal friction

angle.

In clays, there is also a well-known linkage between K0 and OCR (Schmidt, 1966; Mayne

and Kulhawy, 1982):

KO = KO NC(OCR)" (5.2)

where ***K0 is the initial lateral effective stress ratio for overconsolidated BBC; KO NC is the value

for normally consolidated clay; and OCR is the overconsolidation ratio. Prior laboratory studies

for BBC at South Boston (Ladd et al., 1999) did K0 NC = 0.53 and n = 0.4.

The SHANSEP equation (Ladd and Foot, 1974) relates the undrained shear strength,

shown in Equation 5.3. In this equation, the constants are obtained empirically from lab tests in

different modes of shearing. Here we assumed the direct simple shear to be the most

representative for the undrained shear strength of BBC. Based on the stress history data (Figure

5-4), it is possible to assumed that the lower BBC is normally consolidated. Assuming OCR =1.0

For the MC model only, the Ko value was assumed constant for the U-BBC unit; therefore, an average value of
OCR was used: OCRave=(OCRop-OCRbot)/2
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in the lower BBC layer, Equations 5-2 and 5-3 allow one to correlate su"', Asu/Az, and Ko to the

OCR at the top of the upper BBC layer (denoted by OCRrop; Figure 5-4).

su

61, = S(OCR)m  (5.3)
V 0

More recently, Santagata et al. (2005) have proposed a correlation between Gm and

OCR for Boston Blue Clay, where Gmax is the shear modulus that controls elastic shear wave

propagation (at very small strain levels). Given that 'vo is well defined (Figure 5-1) and Ko

depends on the OC, it is possible to relate Gmax to the OCR at a given elevation:

Gmax 0.5 Co )0.8(54
a= 381(OCR)o.1 _

Pa (PaJ

where Pa is the atmospheric pressure and aor is the mean effective stress, ac = !f (1 +2KO).

The value of Gmax corresponds to the shear stiffness at very small strain levels; thus, it is

necessary to make further assumptions in estimating the average elastic shear stiffness used in

the MC model. This is consistently achieved using a simple stiffness reduction parameter, aX:

G
a = Gmax (5.5)

0.8

G e "o (1 + 2K( NC (OC5R.))6
- a - 381(OCR)0 1' 3 Pa(5.6)

Pa P
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Thus, the four stiffness parameters of BBC (Gre and AG/Az in the upper and lower units)

can be replaced by two parameters only; a U-BBC, and a L-BBC-

Table 5-5 summarizes these parameter relations and correlations used for updating MC

model parameters. Table 5-6 proposes search spaces for each of these parameters. The lower and

upper bounds for the three drained layers (GF, CF, and SM) were estimated from standard

deviations of NsPTt' (PB, 1998) and the use of some empirical correlations between NsPT and

both <' and Young modulus, E (Stroud, 1989).

Figure 5-4 summarizes the stress history obtained from 1-D consolidation tests at the

South Boston Special Test Site (SBSTS program; Ladd, et al. 1999). The upper and lower bound

stress history profiles selected (OCRtop from 2 to 6) are also shown as well as the initial profile

assumed (OCRtop=5). The measured data show important scatter, the reason why some data were

deleted (Ladd et al., 1999). The reason for not going to higher OCR values is uniquely due to the

inconsistency between the OCR profile and SHANSEP strengths, discussed previously in

Section 2.2.2.2.

Figure 5-5a shows the initial undrained shear strength (estimated from SHANSEP DSS

mode of shearing (Eqn. 5.3) assumed in the FE model. Additionally, this figure shows measured

data of undrained shear strength performed at the SBSTS (Ladd et al., 1999) as well as the upper

and lower bound su profiles. Figure 5-5b presents the measured hydraulic conductivity profiles

"' NGF=38 ± 28 bpf (n=13); NCF=4 ± 4 bpf (n=49). Nsm=2 9 ± 13 bpf (n=40)
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(data from Whelan, 1995) together with upper and lower bounds assumed in the analyses. It is

important to highlight that for both the upper and lower BBC, the search space range is one order

of magnitude (i.e., knax/kmin=1 01).

Figure 5-6 shows the initial profiles, lower and upper search bounds for 1) undrained

shear strength, 2) K0 , and 3) shear stiffness in the BBC in South Boston. The su profile is

compared with field vane data reported from the project site investigation. In principle, the data

should be in agreement with the SHANSEP DSS lab data. However, the field vane measured

data show a large scatter with very low values in the lower BBC unitIll. This is one of reason

why the lower and upper search bounds were selected. For the upper BBC layer, the Ko profile

was estimated for an average value of OCR and Equation 5.2. The shear stiffness profile for the

BBC was selected for the average OCR of the upper BBC unit and OCR=l in the lower unit.

However, the values of ac parameter (a=G/Gmax) were arbitrarily chosen to be initially equal to

0.35 and 0.65 for the upper and lower, respectively (see Equation 5-6). The reason why the upper

BBC presents a wider search space range is because of the OCR was assumed constant at the

lower BBC layer, reason also for having a constant Ko profile at that layer.

Summarizing, the use of all of these relationships and correlations allows one to reduce

from the eighteen uncertain parameters to only eleven: 1) GGF re, 2) GCFref , 3) GsM , 4) $GF', 5)

$CF', 6) OsM', 7) OCRTOP, 8) X U-BBC , 9) X L-BBC, 10) k U-BBC and 11) k L-BBC- It is very important

to emphasize that the use of empirical relations and correlations involves uncertainties and

constrains the updating process.

*** These values are considered uncertain and most likely affected by disturbance caused by vane installation.
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5.2.3. Sensitivity Analysis Results

Although most published comparisons between predictions and measured performance are

qualitative (e.g., shape of deflections, good and bad agreements, etc.), these comparisons can be

quantified. Table 5-7 summarizes the magnitudes of initial structured squared residuals (SSR)

and structured global variances (SGV) at each excavation level. This table will be discussed later

in the chapter, since it includes all excavation levels. It can be seen that set of predictions at

excavation levels 1, 2, and 3 meet the criterion SSRi> SGVi (see Eq. 4-21) and hence, sensitivity

analyses are required. Sensitivity analyses for excavation levels 1, 2, 3 are shown in Figures A-I

- A-42 (Appendix A). Table 5-7 also shows that these cases generate sensitivity results where

ASSRi < SGVi and therefore, there are no Essential Improvement Parameters (EIP) for these

initial excavation phases (i.e., no updating is required).

The project has limited pore pressure data and these are the only parameters for which

SSR < SGV throughout construction (Table 5-7). This result occurs at pore pressures measured

below the center of the excavation and are controlled principally by equilibrium conditions

(excavated grade levels) and are not affected by model input parameters.

The sensitivity analysis results of all excavation levels and of all 11 highly uncertain

parameters are presented in Appendix A. Table 5-7 also shows that only excavation levels 4, 5,

and 6 (stages 8, 10, and 12) generate conditions where ASSRi > SGVi. These are the only stages

where the existence of EIP's justifies inverse analyses and updating of predictions.
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Table 5-8 presents a summary of the sensitivity analysis results showing both the

essential and non-essential improvement parameters as defined in the previous chapter (see Figs.

4-8 and 4-9) at excavation levels 4, 5, and 6. This table reveals number of input parameters used

in subsequent optimization. As all the sensitivity analyses are presented in Appendix A, only

these parameters providing essential improvement are discussed in this chapter.

5.2.4. Measurements and Initial Predictions at Levels 1, 2, and 3

As previously mentioned, the structured squared residuals (SSR) and the structured squared

variances (SGV) provide a rational quantification of the agreement of predictions and field

measurements. It is important to highlight that the reported SSR and SGV values of surface

settlement, strut forces, and pore pressures correspond to average values (i.e., cumulative SSR

divided by the number of devices or sensors).

Figures 5-7, 5-8, and 5-9 compare the predicted and measured lateral wall/soil

movements at excavation levels 1, 2, and 3, respectively (stages 2, 4, and 6; Table 5-1; Figure 5-

2). In general, the predictions are in very close magnitudes and shapes with the measured

inclinometer data. The SSR values are lower than the SGV for levels 1 and 3, implying very

good predictions; however, the SSR at level 2 (Fig. 5-8) is slightly larger than the SGV, which is

reflected in the difference in wall curvature.

Figures 5-10, 5-11, and 5-12 compare the predicted and measured surface settlements at

excavation levels 1, 2, and 3, respectively. There is a clear under-prediction of settlement at

excavation level 1, with the SSR value much higher than the SGV. For excavation level 2, there
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is a reasonable agreement between measured and predicted settlements, with SSR < SGV. For

excavation level 3, there is a very good prediction of surface settlement since the SSR is much

lower than the SGV.

Figures 5-13 and 5-14 compare the predicted and measured strut at excavation levels 2,

and 3, respectively. At excavation level 2, the strut force prediction agrees almost perfectly with

the measured force, with a very low SSR value. However, at excavation level 3, both strut levels

1 and 2 under-predict the measured values, with SSR > SGV.

Figures 5-15, 5-16, and 5-17 compare the predicted and measured excavation heave at

excavation levels 1, 2, and 3, respectively. Apart from the uppermost sensor discrepancy

between measured and predicted values; predictions agree very well with the three other sensors

at each level. The difference between the SSR and SGV values reflects this discrepancy.

Figures 5-18, 5-19, and 5-20 compare the predicted and measured pore water pressure at

excavation levels 1, 2, and 3, respectively. Comparing the SSR and SGV values suggests that

there is a good agreement between predictions and measurements at each level (see Table 5-4).

5.2.5. Updating Predictions: Excavation Level 4

The sensitivity analysis results (Table 5-7) at excavation level 4 indicate that there are 4

Essential Improvement Parameters, EIP (GGF. GSM, OCRTop, aU-BBC) to consider (Table 5-8).
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In order to perform the optimization of maximum likelihood using genetic algorithms, a

number of control parameters (see Section 3.3.3) must be selected (see Chapter 3). These include

the population size, reproduction criterion, crossover function, and stopping criterion§§§. In this

thesis, the population number adopted was equal to (1OxEIP) , while the reproduction adopted

was 80%, 10%, and 10%, for the crossover fraction, elitism, and mutation, respectively****. The

crossover function used corresponds to the heuristic function which creates children that

randomly lie on the line containing the two parents. The stopping criteria adopted is discussed

later in this chapter.

The following paragraphs describe the results obtained from the sensitivity analysis and

inverse analysis steps, as well as the comparisons between initial and updated parameter values,

and comparisons between predictions and measurements.

5.2.9.1. Sensitivity Analysis

Figures 5-21 show the results of sensitivity analyses of the EIP only (for all parameters see

Appendix A), as defined in Chapter 4, at excavation level 4 for three different types of

measurements.

§ Population size specifies how many individuals there are in each generation. Reproduction options determine
how the genetic algorithm creates children at each new generation. Elitism specifies the number of individuals that
are guaranteed to survive to the next generation. Crossover fraction specifies the fraction of the next generation that
crossover produces. Mutation produces the remaining individuals in the next generation. Stopping criterion
determines what causes the algorithm to terminate (after MATLAB 2004-2009).

**** Selected percentages result from several parametric analyses performed on synthetic excavation problems.
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Figure 5-21a shows variation of SSR for wall deflection with OCRop (upper BBC).

Clearly, it can be seen that the minimum SSR occurs at 3.0, while the ASSR is slightly larger

than the structured global variance (SGV).

Figure 5-21b shows SSR for excavation heave versus a in both the upper and lower BBC

units (only a U-BBC is an EIP). The results show that SSR reduces significantly with X U-BBC while

a L-BBC does not produce sufficient change in SSR to qualify as an EIP.

Figures 5-21 c,d show SSR for strut forces versus the shear stiffness of the cohesive fill

(CF) and silty sand (SM) layers. From this figure, it can be seen that both stiffnesses are

classified as essential improvement parameters, being much more important the stiffness of the

silty sand (because it decreases significantly more the SSR of strut forces).

5.2.9.2. Inverse Analysis

Figure 5-22 presents the convergence of the objective functions for the maximum likelihood

from the GA analysis at excavation level 4 using all types of field measurements. Figure 5-23, 5-

24, 5-25, 5-26, and 5-27 show similar convergence characteristics separately for wall deflections,

surface settlements, excavation heave, pore pressures, and strut forces, respectively.
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At this excavation level, a constant population of 40 individuals was used. The overall

objective function J converges"t at generation 20, where the lowest value was selected. It is

always useful to track the convergence of individual measurement types. From Figures 5-25 and

5-27, it can be seen that the objective function for excavation heave and strut forces converge to

lower values than initial case (green horizontal line in the figures). However, this is not the case

for the surface settlements and pore water pressures (Figures 5-24 and 5-26, respectively).

Curiously, the converged value of the wall movements is almost equal to the initial one (see

Figure 5-23). These results show that improvements on the maximum likelihood objective

functions (JALL) are primarily due to better fitting of 1) excavation heave and 2) strut forces.

Figures 5-28, 5-29, 5-30, and 5-31 summarize the convergences of the 4 EIP parameters

over 20 generations of GA analyses. The parameters converge to a set of optimal values (i.e., not

to a unique value) due to the adopted stopping criteria. The values chosen were the ones that

correspond to the minimum value of the overall objective function (min JALL) at the last

generation. It can be seen that GCF, GsM, and acU-BBC increase, while the OCRtop decreases. Table

5-9 summarizes these optimal parameter values.

Figure 5-32 compares the updated versus the initial undrained shear strength profiles as

well as the SHANSEP strength profiles, showing clearly that there is a decrease in the su profile

of the upper BBC layer (since the OCRTOp decreases from 5.0 to 4.4, approximately).

The stopping criteria adopted, in this thesis, was a minimum of 10 generations and when at least 90% of the
individuals converge to the same minimum objective function value.
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Figure 5-33 compares the updated versus initial su profiles (including field vane data), Ko

profiles, and shear stiffness profiles. As su in the upper BBC decreases, the average KO also

decreases. The shear stiffness variations show that the GCF and GSM increases substantially, while

the GU-BBC decreases.

5.2.9.3. Predictions versus Measurements

Comparisons of predicted, updated (at level 4), and measured lateral wall/soil movements,

surface settlements, strut forces, excavation heave, and pore pressures at each excavation level

are shown from Figure 5-34 to 5-38. These figures show the archival, updated, and predicted

results.

Figure 5-34 compares computed and measured lateral wall/soil movement measurements.

The figure includes the average of the five inclinometers available plus and minus the standard

deviation (i.e. square root of measurement variances at each point - assumed to be independent

for visualization in this figure). The computed values at level 4 show a smaller wall displacement

than the original predictions, but better wall flexure. This figure also shows that archival

displacements (updated at level 4) for excavation levels 1, 2, and 3 are inconsistent with the

measured data and the initial predictions. After updating at level 4, predictions for levels 5 and 6

show a very small change.

Figure 5-35 compares the surface settlement predictions and measurements. Results show

little change in the computed surface settlements at all excavation levels.
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Figure 5-36 compares the forces in the three strut levels. It can be seen that, at level 4,

there is a clear improvement at strut level 2 due to updating, while no change at strut level 3. In

general, there is a minor difference between the initial predictions and archival forces for

excavation levels 2 and 3. After updating at level 4, predictions for levels 5 and 6 show a force

increment at strut level 3. Minor changes can be seen for strut levels 4 and 5.

Figure 5-37 compares the excavation heave predictions with measurements of 4 sensors.

At level 4, it can be observed that the difference between updated and initial predictions is only

apparent at the upper sensor where the updated value presents a minor worsening in magnitude,

but a minor improvement in heave shape with respect to the rest of the sensors. The archival

heave values decrease significantly at excavation grades (level 1, 2 and 3), and this is attributed

to the increase in stiffnesses of the upper layers. Minor variations can be seen for the predictions,

after updating, for levels 5 and 6.

Figure 5-38 compares the pore water pressures at two different elevations (i.e. two

sensors). In principle, at level 4, what is slightly improved in sensor 1, it is slightly worsened at

sensor 2. Minor changes can be seen for both archival and predictions.

It is clear that no significant improvements were achieved through parameter updating at

level 4 due to the unique combination of different measurement types. This is a very important

fact when analyzing all facets of model predictions. In fact, Figures 5-24 and 5-26 already

suggested this, since the minimum objective function value was not necessary the minimum for

all the measurement types. The following paragraphs consider how predictions can be improved

when only a single measurement type is used.
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Figure 5-39 compares the wall/soil lateral movement predictions when different

measurement types are used. It can be seen that the best prediction is obtained when only

inclinometer data are used. However, when the rest of measurements are used separately, it can

be observed that predictions worsen either under-predicting or over-predicting the measured

values. Similarly, Figure 5-40 compares the surface settlement predictions using different

measurements in the likelihood function. It is clear that the best predictions are achieved when

settlement measurements are used, and worse predictions occur when heave only is used. Figure

5-41 compares the strut force predictions, and it is clear that the best predictions are achieved

when only the measured strut forces are used. Figure 5-42 compares the excavation heave

predictions, and, once again, there is no doubt that the best predictions are reached when only the

heave measurements are used. Also, Figure 5-43 compares the pore water pressure predictions

with measured data of the two sensors, and it is clear, once again, that the best predictions are

achieved when only the measured pore pressures are used as measurements. These results reveal

fundamental contradictions or limitations in the FE model, most likely related to the selected MC

constitutive model.

5.2.6. Updating Predictions: Excavation Level 5

The sensitivity analysis results for excavation level 5 indicate that there are 5 EIP to be used in

the inverse analyses.

Page 243



5.2.6.1. Sensitivity Analysis

Figure 5-44 shows the results of sensitivity analyses of the 5 EIP only (others are in Appendix A)

at excavation level 5 for different lateral wall/soil movements, and excavation heave,

respectively.

Figure 5-44a shows that SSR for lateral wall/soil movement varies significantly with

variations of OCRTop (upper BBC). For OCRTop (lower bound), SSR is minimum and ASSR is

higher than the structured global variance (SGV). In Figures 5-44b,c,d, the SSR for excavation

heave is reported as a function of OCRTop, (x, and kBBC. The results show that the SSR is strongly

affected by all five model parameters: OCRTop, aU-BBC, OCL-BBC, kU-BBC, and kL-BBC.

5.2.6.2. Inverse Analysis

Figure 5-45 presents the convergences of the objective functions from inverse analyses at

excavation level 5, for all measurements, while Figures 5-46, 5-47, 5-48, 5-49, and 5-50 show

the convergence using lateral wall/soil movement, surface settlements, excavation heave, pore

water pressures, and strut forces, respectively.

In this excavation level, a constant population of 50 individuals was used. The objective

function, JALL, convergesTIT at generation 11, where the lowest value was selected. From Figures

5-46 to 5-50, it can also be seen that all objective functions show lower values than the initial

+ + The stopping criteria adopted, in this thesis, was a minimum of 10 generations and when at least 90% of the
individuals converge to the same minimum objective function value.
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ones (since the final values are below the horizontal lines), implying improvements in the fitting

for all types of measurements.

Figures 5-51, 5-52, 5-53, 5-54, and 5-55 present the five parameter convergences after 11

generations. As mentioned previously, most parameters converge to a set of optimal values (i.e.,

not to a unique value). The values chosen were the ones that correspond to the minimum value of

the objective function of all measurements at the last generation. From these figures, it can be

observed that 1) OCRtop decreases substantially, 2) there is a little change in X U-BBC, 3) u L-BBC

decreases significantly from 0.65 to 0.42, 4) there is a little change in kU-BBC, while 5) kL-BBC

increases by a factor of 2 approximately. Table 5-9 summarizes these optimal parameter values

reached in eleven generations.

Figure 5-56 compares the updated versus the initial (updated from previous excavation

level) undrained shear strength and hydraulic conductivity profiles. The results show that

updating at level 5 reduces the su profile in the upper BBC and increases hydraulic conductivity

on the lower BBC. This can be explained as we are now mainly producing movements at the toe

of the wall and passive (PSP) resistance controls this process, while prior strengths were focused

on DSS mode.

Figure 5-57 compares the updated versus initial (updated from previous excavation level)

su (including field vane data), Ko, and shear stiffness profiles. The average Ko of the upper BBC

layer decreases significantly because of the su change. The shear stiffness of both the upper and

lower BBC layers decreases, being more important in the lower BBC stratum (see Figure 5-54).
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Predictions versus Measurements

Comparisons of predicted, updated (at level 5), and measured lateral wall/soil movements,

surface settlements, strut forces, excavation heave, and pore pressures at each excavation level

are shown from Figure 5-58 to 5-62. These figures show the archival, updated, and predicted

results.

Figure 5-58 compares the initial predictions (updated at level 4), computed (updated at

level 5) and measured lateral wall/soil movements for all excavation levels. Also, in this figure, it

has been included the average of the five inclinometers available plus and minus the standard

deviation (i.e. squared root of measurement variances at each point - assumed to be independent

for visualization in this figure). The level 5 update matches closely the measured wall/soil

horizontal displacements, while the initial predictions (at level 5) underestimate significantly the

maximum wall deflection. The results again show some inconsistency in wall flexure for the

archival values at levels 1, 2, 3, and 4. After updating, the predictions of displacements at level 6

increases significantly, showing an important variation on the maximum predicted value at the

toe of the wall (from 37 mm to almost 70 mm).

Figure 5-59 compares initial predictions (updated at level 4), computed (updated at level

5) and measured surface settlements. At level 5, the computed settlements are very well

estimated. Also, the archival settlements at levels 1, 2 and 3 do not vary significantly. Archival

settlements at levels 4 are consistently improved. After updating, the predictions of settlements at

level 6 increase significantly (from 12 mm to 22 mm approximately).
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Figure 5-60 compares the strut forces of the four strut levels. At level 5, it can be seen

that: 1) no forces (or almost none) were predicted at the first two strut levels; 2) there is a clear

improvement on force prediction after updating at the third strut level, and a minor worsening is

revealed at the strut level 4, but acceptable, since it is in the range of the measured loads (± 1

S.D.). The increment on the strut forces at levels 3 and 4 are attributed to the decrease of su and

stiffness in the BBC unit which is consistent with the important increment in wall displacements.

Concerning the archival strut forces, it is possible to claim that: 1) the strut a level 1 does not

experience any variation; 2) there is a clear improvement in the strut level 2; and 3) there is a

little worsening in the strut level 3 (excavation level 4). After updating, predictions of strut

forces are increased significantly for strut levels 3, 4, and 5.

Figure 5-61 compares the excavation heave with the four available sensors. It can be

observed a great agreement between measured and current predictions at level 5. This excellent

improvement is attributed to changes in OCRtop (suTop and GU-BBC), OL-BBC (GL-BBC), and kL-BBC-

Unfortunately, there is a clear inconsistency on the archival values, specifically, at the uppermost

sensor elevation. The predictions of heave at excavation level 6 are also increased significantly at

all levels below final grade.

Figure 5-62 compares the pore water pressures at two different elevations (i.e. two

sensors). In principle, the pore pressure in sensor 2 slightly improved (at level 5), being closer to

the measured value. No significant variations can be observed for the archival values (levels 1, 2,

3, and 4) and for the predicted ones (level 6). Results on pore pressures suggest that are

controlled by boundary conditions rather than MC parameters.
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Figures 5-58 to 5-62 prove that very good improvements were accomplished at

excavation level 5 (also see section 5.2.7), particularly of computed/updated wall/soil

displacements, settlements, strut forces, and heave. However, there is some inconsistency with

archival predictions of some measurement types.

5.2.7. Updating Predictions: Excavation Level 6

The sensitivity analysis results on this excavation level (see Table 5-7) indicate that there are 6

EIP (GGF, GCF, GsM, OCRToP, au-BBC, and aL-BBC) that must be considered in inverse analyses.

5.2.7.1. Sensitivity Analysis

Figure 5-63 shows the results of sensitivity analyses of the EIP only (other are in Appendix A) at

excavation level 6 on three different measurement types: 1) lateral wall/soil movements, 2)

excavation heave, and 3) strut forces.

Figures 5-63a,b show that SSR for lateral wall/soil movement can be reduced by changes

in GsM and OCRtop (upper BBC).

Figures 5-63c-g show that the SSR for excavation heave is affected significantly by five

EIP parameters, while only GsM, OCRTop, a U-BBC affect SSR for strut forces, in Figures 5-63h-j.
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5.2.7.2. Inverse Analysis

Figure 5-64 presents the convergences of the objective functions from the inverse analyses at

excavation level 6, for all measurements, while Figures 5-65, 5-66, 5-67, 5-68, and 5-69 show

the convergence using lateral wall/soil movement, surface settlements, excavation heave, pore

water pressures, and strut forces, respectively.

In this excavation level, a constant population of sixty individuals was used. The

objective function, JALL converges§§ § at generation 17, where the lowest value was selected.

From Figures 5-65 to 5-69, it can also be seen that most objective functions show some

improvements (since the final values are below the initial reference results).

Figures 5-70, 5-71, 5-72, 5-73, and 5-74 present the six EIP convergences after 17

generations. As mentioned previously, most parameters converge in a set of optimal values (i.e.

not to a unique value). The values chosen were the ones that correspond to the minimum value of

the objective function of all measurements at the last generation. From these figures, it can be

seen that GGF and GsM increase significantly, but the GCF reaches a similar magnitude than the

initial one. In fact, the GGF increases to its upper bound. Also, the a U-BBC increases to its upper

bound, while the a L-BBC decreases to it lower bound. The change in OCRTOp is minor. Table 5-9

summarizes all the optimal parameter values reached in 17 generations (at excavation level 6).

§ The stopping criteria adopted, in this thesis, was a minimum of 10 generations and when at least 90% of the
individuals converge to the same minimum objective function value.
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Figure 5-76 compares the updated versus the initial (updated from previous excavation

level) undrained shear strength profiles as well as the SHANSEP strength profiles, showing that

there is an insignificant increase in the s, profile of the upper BBC layer.

Figure 5-77 compares the updated versus initial (updated from previous excavation level)

s. (including field vane data), Ko, and shear stiffness profiles. The average Ko of the Upper BBC

layer increases insignificantly because of the su change. However, the shear stiffness of the upper

BBC layer increases substantially, while for the lower BBC layer decreases to the lower

boundary.

5.2.7.3. Predictions versus Measurements

Comparisons of predicted, updated (at level 6), and measured lateral wall/soil movements,

surface settlements, strut forces, excavation heave, and pore pressures at each excavation level

are shown from Figure 5-78 to 5-82. These figures show the archival, updated, and predicted

results.

Figure 5-78 compares initial predictions (updated at level 5), computed (updated at level

6), and measured lateral wall/soil movements. As in previous summaries, the average of the five

inclinometers available plus and minus the standard deviation is reported. The computed lateral

wall/soil displacements match closely the measured results, while the initial predictions would

overestimate maximum wall movement. Once again, the archival lateral wall/soil movements

show inconsistency with the measured data at levels 1, 2, 3, 4, and 5.
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Figure 5-79 compares initial predictions (updated at level 5), computed (updated at level

6), and measured surface settlements. The computed (updated at level 6) values are worse than

the very good predictions previously obtained at excavation level 5. Figure 5-78, it is important

to note that the predictions (at level 6) overestimates wall deflections (Figure 5-59), suggesting

model inconsistency through the updating with different measurement types. Also, this figure

shows inconsistency with archival settlements at levels 2, 3, 4, and 5.

Figure 5-80 compares the strut forces of the five strut levels (measured, predicted, and

computed). At excavation level 6, it can be seen that: 1) once again, for the strut levels 1 and 2,

no forces (or almost none) were computed, and only small value were measured), 2) for strut

levels 3, 4, and 5, there is a notable improvement in the computing results. After updating at

level 6, the archival strut forces seem to be more consistent for the rest of the levels.

Figure 5-81 compares the excavation heave with the four available sensors. Once again,

it can be observed a very good agreement between measured and computed values (updated at

level 6). This agreement is again primarily attributed to updating of the stiffness for the upper

and lower BBC (XU-BBC and OL-BBC). Also, the archival heave at level 5 agrees very well with the

measured data. The rest of the archival predictions do not experience important variation;

however, they are not consistent with the measured data.

Figure 5-82 compares the pore water pressures at two different elevations (i.e. two

sensors). It can be seen that, at excavation level 6, the computed pore pressures do not improve;

in fact, there is a minor worsening in sensor 2. Once again, no relevant variations on archival

pore pressures can be observed.
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Although there are no improvements on computed surface settlement and pore pressures,

very good improvements of computed lateral wall/soil deflections, excavation heave, and strut

forces are accomplished at excavation level 6 (also see Section 5.2.7). Also, it is important to

highlight that the updated predictions from previous and current excavation levels show that

predictions of each measurement type are not really needed at this excavation level (as it was at

exc. level 4) to draw additional conclusions.

The results of computed wall/soil defections, excavation heave, and surface settlements,

at this excavation level, show that they cannot agree well with the measured data. Although, an

explanation for this issue cannot be drawn from these results, it is possible to claim that the use

of simple constitutive law (MC model), and any possible omission and/or assumption in the FE

model could be the reason for this discrepancy. However, the use of each individual

measurement can be used to improve substantially each prediction (see Section 5.2.4).

5.2.8. Parameter Variations, Improvements, and Comments

Figure 5-83 shows the variation of reference shear stiffness of the three upper strata (see also

Table 5-2) from the initial values adopted. The updating is associated with significant increases

in shear stiffness for all three layers; while changes in these parameters are not surprisingly

(there is a large uncertainty in these parameters and not enough measurements). It is surprising

that they are only updated at later stages of excavation and no updating was found necessary at

excavation levels 1-3.
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Figure 5-84 shows the variation of the OCRtop, a parameter, su'f and G'f of both the

upper and lower BBC strata, from the initial values adopted. It can be seen that the undrained

shear strength of the upper BBC decreases significantly after excavation level 4, suggesting that

for this simple model, the initial OCRtop adopted was too high. Concerning the shear stiffnesses,

there is an important increment for the upper BBC at the last stage, but a more significant

decrease for the lower BBC layer.

Figure 5-85 shows the variation of hydraulic conductivities on the BBC units. It can be

seen that there were a small change only in kL-BBC (increase by a factor of 2).

Table 5-9 presents a summary of the optimal parameter values obtained by the inverse

analysis procedure based on genetic algorithms for excavation levels 4, 5, and 6. Also, the values

of the minimum objective function that contains all measurement are shown as well as the initial

objective function values (i.e. without updating). It can be seen important improvements are

reached at each excavation level.

In order to quantify the improvement, an incremental improvement ratio is proposed:

I.R. = JO ALL- JminALL (5.7)
JO A LL

where I. R.totai is the improvement ratio at a certain excavation level of all measurements; JO ALL

is the initial value of objective function at a certain excavation level; and Jmin ALL is the

minimum value of objective function after inverse analysis.

Page | 253



However, it is also very important to understand how each instrument type contributes to

the final improvement, at a certain excavation level. Thus the following expression is also

proposed:

1. R. Jo i-nali (5.8)
J0 ALL

where I. R. is the improvement ratio contribution of the i-th instrument type; Jo i is the initial

value of objective function for the i-th instrument type; and Jmin i is the final value of objective

function after inverse analysis for the i-th instrument type.

Figure 5-86 presents the incremental improvement ratios of updating predictions for the

last three excavation stages. This figure shows a consistent improvement which increases as the

excavation progresses. For example, for excavation level 4, 5, and 6, the incremental

improvements were 29.3%, 58.9%, and 84.9%. This clearly confirms the effectiveness of the

proposed rational methodology for updating predictions of excavation performance. Moreover, it

is very important to highlight that the improvement presented herein is only due to some model

parameters, as the FE model was kept constant (using from the beginning all information

obtained from construction activities). In fact, in a real project, these improvements ratios should

be performed between class A predictions and the updated ones.

Summarizing, the proposed updating procedure show consistent improvements of

particular predictions types. Although there is a consistent improvement of all computed results

at level 5, there is no consistency with improvements of all measurement types for levels 4 and 6.
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Also, it is important to highlight that, after updating at levels 4, 5, and 6, archival results are not

consistent with field measurements. This clearly reflects the limitations of the MC model.

5.2.9. Comparison of MIT-E3 and MC models

The following section compares previous MC results (initial, updated, and predicted) with MIT-

E3 predictions. The BBC unit (upper and lower) has been modeled using the generalized

effective stress soil model MIT-E3 (Whittle, 1987; Whittle and Kavvadas, 1994). The input

parameters and state variables (e.g., stress history profile) have been previously discussed in

Chapter 2. In fact, this MIT-E3 set of predictions corresponds to the class B predictions,

previously described in Section 2.2. In order to quantify predictions and improvements,

comparisons of SSR and SGV values are performed.

5.2.9.1. Excavation levels 1 (no updating required)

Figure 5-87 compares MIT-E3 and MC predictions with measurements of lateral wall/soil

displacements at excavation level 1. Both models show very similar predictions and SSR values.

The SGV and SSR values are almost the same in both cases, implying that the predictions agree

very well with the measured data.

Figure 5-88 compares the both predictions with measured surface settlements. It is clear

that both predictions (MIT-E3 and MC) do not agree with the measurements and have similar

SSR values.
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Figure 5-89 compares the predictions with the measured heave, where both predictions

have similar SSR values and do not agree very well with the measured data (based on SSR and

SGV values).

Also similar predictions between MC and MIT-E3 of pore pressures can be seen in

Figure 5-90, with similar SSR values, suggesting that both predictions agree very well with the

measurements (since SSR values are smaller than SGV).

5.2.9.2. Excavation levels 2 (no updating required)

Figure 5-91 compares MIT-E3 and MC predictions with measurements of lateral wall/soil

displacements at excavation level 2. Although both SSR values are slightly larger than the SGV

value, the SSRMIT-E3 value is closer to the SGV value. This suggests that the MIT-E3 predictions

are in better agreement than the MC ones.

Figure 5-92 compares both predictions with measured surface settlements. In this case,

the SSR value of MC predictions is smaller to the SGV, suggesting a good agreement with the

measured data. The SSRMIT-E3 value is slightly larger than the SGV one.

Figure 5-93 compares the predictions with the measured strut forces. Both sets of

predictions are in very good agreement with the measured data. While the SSR value of the MC

predictions is extremely small, it is particularly interesting to note that the SSR value of the MIT-

E3 predictions is zero, implying perfect match with the measured data.
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Figures 5-94 compares the heave predictions of MIT-E3 and MC models. Although both

predictions have SSR values larger than SGV, the SSR of MIT-E3 is smaller, suggesting a better

agreement with the measured heave data.

Figures 5-95 compares MC and MIT-E3 predictions with pore pressure measurements. It

can be seen that both SSR values are very small (MIT-E3 is in slightly better agreement with the

measured data).

5.2.9.3. Excavation levels 3 (no updating required)

Figure 5-96 compares MIT-E3 and MC predictions with measurements of lateral wall/soil

displacements at excavation level 3. Although both SSR values are smaller than the SGV value

(i.e., very good agreement with measurements), the SSRMC value is closer to the SGV,

suggesting that the MC predictions are in better agreement than the MIT-E3 ones.

Figure 5-97 compares both predictions with measured surface settlements at excavation

level 3. Both SSR values are very similar and both are smaller than the SGV value (i.e., very

good agreement with measurements).

Figure 5-98 compares the predictions with the measured strut forces. MIT-E3 predictions

are in better agreement with the measured strut forces, while being larger than the SGV value.

Figures 5-99 compares the heave predictions of both models that have similar SSR values

and are larger than the SGV value.
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Figures 5-100 compares MC and MIT-E3 predictions with pore pressure measurements.

It can be seen that SSRMc value is very small, suggesting a very good agreement with the

measured data. Although the SSRMIT-E3 is around 5 times the SSRMc value, it is still smaller than

the SGV value.

5.2.9.4. Excavation level 4 (updating MC model)

Figure 5-101 compares MIT-E3 and MC predictions with measurements of lateral wall/soil

displacements at excavation level 4. At this excavation level, updating was required (Section

5.2.4), therefore both the initial and updated MC predictions are shown. It is important to clarify

that predictive model capabilities should be carried out by comparing the MC initial with MIT-

E3. Thus, the SSRMIT-E3 value is smaller than the SSRMc value and also close to the SGV value,

implying that MIT-E3 predictions agree well with the data (at least better than MC predictions).

After the updating, the SSRMC-UP value slightly increases indicating a small worsening in the

predictions; however a better flexure can be observed (similar to the measured flexure).

Figure 5-102 compares MIT-E3 and MC predictions with measurements of surface

settlements at excavation level 4. MIT-E3 predictions agree very well with the measured data,

having a very small SSR value (close to zero). The MC predictions have a larger SSR value than

the SSRMT-E3. After updating, once again, the SSRMC-UP increases, making slightly worse the MC

computed value.

Figure 5-103 compares MIT-E3 and MC predictions with measurements of strut forces.

While MC initial and MIT-E3 predictions show similar SSR values, the SSRMC-UP decreases,
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indicating that the computed values improved after updating but larger than the SGV value. This

is primarily due to difference between measured and computed strut level 2 forces.

Figure 5-104 compares the predictions of both models together with the measured heave

at the centerline. Although larger than the SGV value, the MC initial predictions are in better

agreement with the measured data. After updating, there is a minor improvement on the

computed values (smaller SSR value).

Figure 5-105 compares both model predictions of pore pressures with the measured data.

Initial MC predictions agree very well with the measured data, while MIT-E3 predictions do not.

After updating there is a slightly worsening of computed values.

From section 5.2.4, it is clear that the MC model shows limitations when using different

measurement types, reason for not consistently achieving improvements.

5.2.9.5. Excavation level 5 (updating MC model)

Since updating occurred in the previous excavation level, now it is possible to evaluate the

predictive capabilities of the updating procedure together the MC model.

Figure 5-106 compares MIT-E3 and MC predictions with measurements of lateral

wall/soil displacements at excavation level 5. At this excavation level, updating was required

(Section 5.2.5), therefore both the initial (updated level 4) and updated level 5 MC predictions

are shown. Comparing SSRMc with SSRMIT-E3, it is clear that MIT-E3 predictions achieve much

better agreement with the measured data, especially with the maximum wall displacement value
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(occurring at the toe of the wall). After updating the SSRMc-UP value is reduced significantly,

being closer to the SGV value (also SSRMC-UP is smaller than SSRMIT-E3)-

Figure 5-107 compares MIT-E3 and MC predictions with measurements of surface

settlements at excavation level 5. MIT-E3 predictions agree very well with the measured data,

having a very small SSR value. The MC predictions have a much larger SSR value than the

SSRMIT-E3. However, after updating the SSRMC-UP value is reduced significantly. Also the SSRMc-

up value is slightly smaller than SSRMIT-E3.

Figure 5-108 compares MIT-E3 and MC predictions with measured strut forces. MIT-E3

and MC predictions have similar SSR values. After updating the SSR value slightly increases.

Since the SGV value is larger than all SSR values, it is possible to claim that very good

agreements are achieved between predictions and measurements, as well as between computed

values and measurements.

Figure 5-109 compares the predictions of both models together with the measured heave.

MIT-E3 predictions agree well with the measured data, resulting in a smaller SSR value than the

SSRMc (updated level 4), but larger than the SGV. After updating at this level, the computed

values improve, reducing significantly the SSR value.

Figure 5-110 compares both model predictions of pore pressures with the measured data.

Initial MC predictions (updated level 4) agree very well with the measured data, while MIT-E3

predictions do not. After updating the SSRMC-UP value is reduced significantly from the SSRMc

value.
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At this excavation level, the results show consistently improvements of computed values.

This fact demonstrates the powerful capabilities of the proposed updating procedure; however,

this does not reflect the predictive capabilities. In fact, the MC predictions (updated level 4) are

not in good agreement with the data which is attributed to the model limitations.

5.2.9.6. Excavation level 6 (updating MC model)

Once again, since updating occurred in the previous excavation level, now it is possible to

evaluate the predictive capabilities of the updating procedure together the MC model.

Figure 5-111 compares MIT-E3 and MC predictions with measurements of lateral

wall/soil displacements at excavation level 6. At this excavation level, updating was required

(Section 5.2.6), therefore both the initial MC (updated level 5) predictions and computed

(updated level 6) values are shown. Comparing SSRMc with SSRMIT-E3, once again, it is clear that

MIT-E3 predictions achieve much better agreement with the measured data, especially with the

maximum wall displacement value (occurring at the toe of the wall). The initial MC predictions

overestimate the maximum wall displacement. However, after updating, the SSR value is

reduced significantly, being smaller than the SSRMIT-E3 value.

Figure 5-112 compares MIT-E3 and MC predictions with measurements of surface

settlements at excavation level 6. Surprisingly, the MC predictions almost match the measured

data (having a SSR value very close to zero). The SSRMIT-E3 value is larger than the SSRMc, but

is smaller than the SGV. Although both settlement predictions agree very well with the measured

data, the MC predictions of surface settlements are superior. This result is extremely important
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because it shows that to reproduce such good MC predictions of settlements, the MC predictions

of wall deflections must be overpredicted, confirming once again the limitations of the MC

model. After updating, the SSR value of MC predictions increases significantly but does not go

beyond the SGV value.

Figure 5-113 compares MIT-E3 and MC predictions with measured strut forces at

excavation level 6. MIT-E3 predictions are in very good agreement with the measured data,

resulting in a SSR value smaller than the SGV one. After updating the SSR value significantly

decreases, but does not go below the SGV. It is important to highlight the MIT-E3 prediction of

the strut level 5 force is close to the range of measured value (± 1 SD).

Figure 5-114 compares the predictions of both models together with the measured heave.

MIT-E3 predictions agree well with the measured data, resulting in a smaller SSR value than the

SSRMc (updated level 5), but larger than the SGV. After updating at this level, the computed

values (updated level 6) improve significantly. It is important to note how small the SGV value

is at this excavation level.

Figure 5-115 compares both model predictions of pore pressures with the measured data.

Both the initial MC predictions (updated level 5) and the MIT-E3 agree very well with the

measured data. After updating, the SSR value of the MC predictions increases, but does not go

beyond the SGV value.

These results confirm, once again the limitation of the MC model, since it cannot predict

and improve the computed values at the same time when different measurement types are used.
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Table 5-1: Construction sequences assumed in FE simulation

Activity

Stage Description t FE Analysis CD Project Depth
Stage_ DescriptionType (days) Elev. (in) (in)

0 Initial Phase (geostatic condition) P - -

1 D. Wall Installation (1.22m thick) P - 7.6 (toe) 26.2 (toe)

2 Exc. Level 1 (reset displacements) C 51 32.0 1.8

3 Strut Level 1 (no pre-load) P - 33.2 0.6

4 Exc. Level 2 C 84 27.4 6.4

5 Strut Level 2 (pre-load=1 10 kN/m) P - 28.7 5.1

6 Exc. Level 3 C 111 25.0 8.8

7 Strut Level 3 (pre-load=429 kN/m) P - 26.5 7.3

8 Exc. Level 4 C 153 21.6 12.2

9 Strut Level 4 (pre-load=501 kN/m) P - 23.2 10.6

10 Exc. Level 5 C 185 18.9 14.9

11 Strut Level 5 (pre-load=613 kN/m) P - 19.5 14.3

12 Exc. Level 6 C 279 16.5 17.3

t PaPlastic; C=Consolidation (EPP)

CDQ



Table 5-2: Soil units and initial material properties

Initial Material Properties of Soil Layers
Granular Cohesive Silty Upper Lower
Fill (GF) Fill (CF) Sand (SM) BBC BBC

Thickness (m) 1.8 5.2 3.7 18.3 14.0

Material Type Drained - MC Undrained -MC

Ref. Elevation, zo (m) 33.8 32.0 25.6 23.2 4.9

y (kN/m3) 18.9 18.1 18.9 18.1

k (m/day) 0.31 4.32E-05

G"e(MPa) 1.0 0.7 3.0 17.6 42.2

AG/Az (MPa/m) 0.66 0.20 0.30 0.97 1.04

v0 O.3 0.28

s "f(kPa) 82.0 56.3

As, /Az (kPa/m) -1.4 1.8

' (0) 37.5 25.0 35.0 0.0

Ko 0.39 0.58 0.43 0.83 0.53

assumed constant/fixed values

18 uncertain parameters

S Sref +As 1 z O
Note: u = se + (z -zo)

AG
G = Gref +--(z -zO)

Az

ON
ON



Table 5-3: (Table 2-3 bis) Material properties of excavation support system

'Diaph. Thickness E v Unit
Weight, 7Wall (M) (MPa) (kN/m 3)

Concrete 1.22 2.26E+04 0.15 22.8

D. Wall modeled as an elastic non-porous material.

2 Srt Tpcl3 Ultimate2Str~t Typical E A EA EA/s 3  Capacity
Level Section EAE A9 Cpct

(MPa) (C2) (kN) (kN/m) (kN/m)

1 24"$ x 5/8" 296.1 5.9E+06 9.2E+05 609
2 36"$ x 5/8" 448.1 9.OE+06 1.4E+06 810
3 36"$ x 1" 2.OE+05 709.4 1.4E+07 2.2E+06 1223
4 2-W36 x 135 512.3 1.OE+07 1.6E+06 1328
5 2-W36 x 230 872.3 1.7E+07 2.7E+06 1977

2 Struts modeled as elasto-plastic anchors with null tensile strength.

3 Average horizontal spacing, 9=6.45m.

tJQ
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Table 5-4: Variances of Field Measurements

Instrument Measurement Data Points Excavation Level

Type Type or Sensors Variance (units) 1 2 3 4 5 6

5 inclinometers
alSo (71intrs a 2 lj2 (mm2 ) 0.014 0.049 0.052 0.086 0.798 1.932

Wall/Soil (7 1 points)*c

Linewise Measurements
1 (base) varB (mm2) 0.155 0.152 0.245 0.543 1.665 1.587

Excavation 4 sensors a2 (mm2) 8.129 1.394 1.548 4.583 2.690 0.373

Heave 1 (base) varA (mm 2) 0.0

Surface

Settlement a

15 DMPs

(5 groups)d
G2

ave (Mm 2) 1.753 6.350 8.041 15.224 21.628 24.200

Pore Pressures' 2 sensors a 2 (kPa2 ) 1303 1109 376 462 543 635

Strut Forces b 32 strain gauges

(5 levels)

a ave

(kN/m)
2

L1 -

L2 - -

L3 - -

L4 - -

L5 - -

1436

Only average value of variances are shown (different magnitudes were considered)

Constant values of variances were assumed for each strut level during the excavation (due to the lack of measurements)

Each inclinometer contains sensors every 0.6m; therefore the total data points considered (on the FE model) were 71 (every 0.6m).
A total of 12 DMP devices from South and North locations were used. They were grouped into 5 independent sets with similar
distance behind the diaphragm wall. OBS: 4 DMP devices installed behind the South side at 24 and 37m (see Fig. 2-14) were not
considered due to the presence of the Building (i.e., they were assumed to be outliers).

C0Q
**0

Pointwise

a

b

d

I



Table 5-5: Relations and correlations used for updating model parameters

Soil Relations and Correlations used Notes References
Layers

Upper Fill Ko=1-sin' - Jaky (1944)
Layers:

G/'=30 (GF and SM) G G'Vo (1+2KO) /3 Whelan(1995)

CF G/a'=20 (CF) Jen (1998)
SM

* KO= KO (OCR)n NC 0-533 Schmidt (1966)
Mayne and Kulhawy (1982)

n=0.4 Ladd et al. (1999)

Boston
Blue Clay DSS mode of Shearing

(BBC): (BBC): Ladd et al. (1999)

U-BBC sU/&a'y= S (OCR)m  S=0.20
& m=0.775

L-BBC

pa=1 0 1 .3 kPa
Gmax/Pa = 381 OCR0'" (a'/ Pa) 0.8 Santagata et al. (2005)

a'= a'Yo (1+2Ko) /3

G = a Gmax a represents stiffness proposed
reduction (G for the
MC model)

For the MC model only, the Ko value was assumed constant for the U-BBC unit; therefore, an average value of OCR was used: OCRave=(OCR 0p-OCRbet)/2

cJQ

t'Q



Table 5-6: Selected search spaces of model parameters

Soil Parameter Lower Upper Notes ReferenceLayers Bound Bound ________________ ____________________

Upper Fill Go Go/10 1OGo
Layers: Estimated from high values of PB(1998)

NspT standard deviations
GF and with the use of empirical Stroud (1989)
CF correlations
SM 0' o'-7.5* $'+7.5

OCR1 2.0 6.0 Estimated from OCR profile PB (1998)
OP 2 6 based on lab and field tests Ladd et al. (1999)

Jen (1998)

U- BBC aU-BBC Estimated from coefficient of Santagata et al. (2005)
variation of Gmax, shear strain Kempfert and Gebreselassie (2006)

& 0.35 0.65 level, and uncertainty of being
L-BBC 0.5 for MC model.

L- BBC

k U-BBC (m/s) 0.5-10~ 5-10~9
range of 1 order of magnitude Whelan (1995)

for each sub-layer

kL -BBC (mis) 0.2-10-9 2'10-9

(0



Table 5-7: Comparison of Initial Structured Squared Residuals and Structured Global Variances

Excavation Level
Measurement 1 2 3 4 5 6Type_________

SSR, SGVj SSR, SGVj SSR SGV SSR SGVj SSR, SGV SSR SGVj

Wall/Soil
Deflection 0.481 0.388 1.667 1.056 0.823 1.593 3.841 2.407 60.056 14.852 90.784 10.268

(mm2)
Surface

Settlementt 7.429 1.753 5.490 6.350 3.247 8.041 4.237 15.224 13.530 21.628 0.1897 24.200
(mm2
Heave
at CL 27.300 9.290 46.725 1.860 36.610 3.100 59.408 3.887 94.178 1.988 141.470 0.351
(mm2)
Pore

Pressures t 587 1303 94 1109 50 376 435 462 509 549 178 635
(kPa2)
Strut

Forces t - 11 1436 2098 615 7811 1225 7364 19210 45964 8446
(kN/m)

2

Is any
SSR1 > SGV 1 ? YES YES YES YES YES YES(see Eq. 4-20)

Is any
ASSR, > SGV 1 ? NO NO NO YES YES YES
(see Eq. 4-21 and

appendix A)
t Average values of residuals and variances (pointwise instrument types)

rJQ



Table 5-8: Summary of essential and nonessential improvement parameters obtained from
sensibility analysis for excavation levels 4, 5 and 6

Improvement Parameters from Sensitivity Analyses

Meas. /
Instrument Level 4 Level 5 Level 6

Type
Essential Nonessential Essential Nonessential Essential Nonessential

ASSR, > SGV, 0 < ASSR,< sV ASS R > SGV, 0< ASSR,< scV ASSR > SGV 0 < ASSR, < SGV,

Wall/Soil Gsm GGF
Deflection / GCF U-BBCTOP GCF

Inclinometer OCRTOP Gs OCRToP kL-BBC UL-BBC
(linewise) aL-BBC

Surface OCRop

Settlement / O oU-BBC
DMP - - aL-BBC

(pointwise)

Heave at CL OCRop GGF 'CF

/ Multi- aBU-BBC GCF GSM SM
Heave Gage U-BBC OCRTop aL-BBC GsM OCRTOp kUBBC

- 4 sensors kU-BBC aU-BBC kL-BBC

(linewise) kLBBC aL-BBC

Pore OCRior
Pressures / aU-BBC

Piezometer - - OCRor - a-BBC CL-BBC
2 sensors aL-BBC

(pointwise) kLBBC

Strut Forces GGF GGF

/ GCF GGF OCRTop OCo GCF
Strain Gsm kU-BBC -CU-BBC OCRTBB PsM

Gauges kL-BBC aUBBC kL-BBC

(pointwise)

Relevant
parameters 4 - 5 - 6 -

to optimize

Page 1 272



Table 5-9: Optimal and initial parameters values, and initial and minimum objective
function values

Optimal Parameters

& Initial Excavation Excavation Excavation

tInitial and Minimum Objective Parameters L4 L5 L6

Function Values

Number of Generation - 20 11 17

OCRTop 5.0 4.36 2.35 2.45

(XU-BBC 0.35 0.41 0.41 0.65

aL-BBC 0.65 - 0.42 0.36

kU-BBC [m/sec] 5.0x10O - 5.1x10~' -

kL-BBC [m/sec] 5.0x10~1 - 9.7x10~W -

tGGF [MPa] 1.0 - - 10.0

TGCF [MPa] 0.7 4.9 - 5.2

tGsm [MPa] 3.0 15.8 - 29.54

Min J ALL [-] - 82.19 59.79 113.15

Initial J ALL[-] 116.19 145.62 751.79

tGF: granular fill, CF: cohesive fill, SM: silty sand

Page | 273



GranularFill

Cohesive Fill
Silty Sand

Stress (kPa)

400 300 200 100 0

31 30 29 28

Piezometric Head, H (m)

Wall
(1.20m thick)

Phreatic Level

43m T
(BBC)

32.3mp- --
17m

26.2m

No
Flow

H=constant=28.2m

I-.- 152m

Note:
BBC: Boston Blue Clay
U-BBC: Upper BBC
L-BBC: Lower BBC

Figure 5-1 (Figure 2-7 bis): Finite Element Model at the Platform section for the Transitway Project
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Transitway: Exc. Level 1
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Figure 5-7: Measurements vs. Initial Predictions of Lateral Wall/Soil Movement at Excavation Level 1
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Figure 5-8: Measurements vs. Initial Predictions of Lateral Wall/Soil Movement at Excavation Level 2

0

5

10

15

20

25

30

35

00

10"

00

40

80 40 20 0
Distance behind Wall (m)

80

-



Transitway: Exc. Level 3
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Figure 5-9: Measurements vs. Initial Predictions of Lateral Wall/Soil Movement at Excavation Level 3
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Figure 5-10: Measurements vs. Initial Predictions of Surface Vertical Settlement at Excavation Level 1
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Figure 5-11: Measurements vs. Initial Predictions of Surface Vertical Settlement at Excavation Level 2
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Figure 5-12: Measurements vs. Initial Predictions of Surface Vertical Settlement at Excavation Level 3
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Transitway: Exc. Level 3
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I Transitway: Exc. Level 1
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Figure 5-15: Measurements vs. Initial Predictions of Centerline Heave at Excavation Level 1
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Transitway: Exc. Level 2
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Figure 5-17: Measurements vs. Initial Predictions of Centerline Heave at Excavation Level 3
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Transitway: Exc. Level 1
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Figure 5-18: Measurements vs. Initial Predictions of Pore Water Pressures (2 sensors at CL) at Excavation Level 1
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Figure 5-19: Measurements vs. Initial Predictions of Pore Water Pressures (2 sensors at CL) at Excavation Level 2
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Transitway: Exc. Level 3
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Figure 5-20: Measurements vs. Initial Predictions of Pore Water Pressures (2 sensors at CL) at Excavation Level 3
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Figure 5-21: Sensitivity analyses of essential improvement parameters (EIP) at excavation level 4
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Figure 5-27: Convergence of objective function for strut forces obtained by genetic algorithms at excavation level 4
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Figure 5-29: Convergence of G" of the silty sand layer obtained by genetic algorithms at excavation level 4
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Figure 5-38: Comparison of measurements, initial predictions, and updated level 4 of pore water pressures
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Figure 5-39: Comparison of lateral wall/soil movement predictions when using different types of measurements at exc. level 4
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Transitway: Exc. Level 4
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Transitway: Exc. Level 4
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Transitway: Exc. Level 4
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Figure 5-42: Comparison of excavation heave predictions when using different types of measurements at exc. level 4
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Figure 5-45: Convergence of objective function for all measurements obtained by genetic algorithms at excavation level 5
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Figure 5-59: Comparison of measurements, initial predictions, and updated level 5 of surface settlements
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Figure 5-60: Comparison of measurements, initial predictions, and updated level 5 of strut forces
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Figure 5-61: Comparison of measurements, initial predictions, and updated level 5 of excavation heave
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Figure 5-62: Comparison of measurements, initial predictions, and updated level 5 of pore water pressures
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Figure 5-64: Convergence of objective function for all measurements obtained by genetic algorithms at excavation level 6 (also
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0

0.5

0

n



300

250

200

150

100

r I

cJQ

50

0

Excavation Pu i
Level 6 Population

H =17.3 m 60

- Initial

0

0 2 4 6 8 10 12 14 16

Generation

Figure 5-69: Convergence of objective function for strut forces obtained by genetic algorithms at excavation level 6



10

8

CU

U-
0

4

10.0 MPa

0 2 4 6 8 10 12 14 16

Generation

Figure 5-70: Convergence of G"f of the GF layer obtained by genetic algorithms at excavation level 6

CDi



6

I.-%

U-

CD0

4

3

2

5.2 MPa

0 2 4 6 8 10 12 14 16

Generation
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Figure 5-72: Convergence of G"f of the SM layer obtained by genetic algorithms at excavation level 6
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Figure 5-78: Comparison of measurements, initial predictions, and updated level 6 of lateral wall/soil movements
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Figure 5-79: Comparison of measurements, initial predictions, and updated level 6 of surface settlements
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Figure 5-80: Comparison of measurements, initial predictions, and updated level 6 of strut forces
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Figure 5-81: Comparison of measurements, initial predictions, and updated level 6 of excavation heave
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Figure 5-82: Comparison of measurements, initial predictions, and updated level 6 of pore water pressures



30

- Granular Fill

25 -+- Cohesive Fill
--- Silty Sand

20

CU
2 15

10-

5-10

2 3 4 5 6
Excavation Level

Figure 5-83: Shear Stiffness variations for granular fill, cohesive fill, and silty sand layers versus excavation level



6

U 3

CDQ

00

0

Excavation Level

01*N

1 2 3 4 5 6

Excavation Level

1 2 3 4 5 6

Excavation Level

1 2 3 4 5 6

Excavation Level

Figure 5-84: Undrained shear strength and shear stiffness variations of BBC layer (as well as OCR top and a) versus
excavation level

................. ............ 11 1 ................ .z I a



x 10

4.5 F

4 F

3.5 F
0 U-BBC

-- L-BBC

3F

2.5-

2-

1.5-

1 2 3 5 64
Excavation Level

Figure 5-85: Hydraulic conductivity variations of BBC layer versus excavation level

UJQ

E

C
0
-5

c-

LV

c1dib, Ida' An,



I All measurements
100 - Wall/Soil Inclinometer

U Surface Settlements
U Heave
* Pore Pressures

80 - Strut Forces

< 60

0 40 CCJ

0 c6

20

4 5 6

Excavation Level
Figure 5-86: Incremental improvement ratios of updating predictions for excavation levels 4, 5, and 6



Transitway: Exc. Level 1

Location of Instrumentation I

-; 1

- -- f

- T-

]MMeasurements: m

-.. m

m±aT

I 
I--- -- ---- ---

SSRmC = 0.5 mm 2

I SSRMIT-E3 = 0.4 mm 2

- SGV = 0.4 mm 2

-

I-
-20 0 20 40 60 80

Horizontal Displacement (mm)

Figure 5-87: MIT-E3 and MC comparisons with measured lateral wall/soil movements at excavation level 1

0

5

Predictions

f2IQ
CD~

MC

-- MIT-E3

CLCD
0

5

10

15

20

25

30

35

40

- I.

- - ii
II

I

10-

15-

20.
0.

E 25-

30-

35-

-i

80 60 40 20
Distance behind Wall (m)

40

0
a

-

i I



Transitway: Exc. Level 1

Location of Instrumentation I

0

5

10

15

20

25

30

35

40 20 0
Distance behind Wall (m)

-20

-10kV

0

E

E
0)
(D,
CO

10

20-

30-

40-

50-

60

SSRuc =7.4 mm2

SSSR E 8.3 mm2

SGV = 1.8 mm2

120 100 80 60 40 20 0
Distance behind Wall (m)

Figure 5-88: MIT-E3 and MC comparisons with measured surface settlements at excavation level 1

Predictions

- MC

- MIT-E3

Measurements

measured value

-2 2a

CDQ

0

.. .................................................................... I ................................................................ I I.., .......... I..,



Transitway: Exc. Level 1

Location of Instrumentation I

-

10

E

AG

40 20
Distance behind Wall (m)

0 20 40 60
Heave at Centerline (mm)

Figure 5-89: MIT-E3 and MC comparisons with measured heave at excavation level 1
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Figure 5-90: MIT-E3 and MC comparisons with measured pore pressures at excavation level 1
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Figure 5-93: MIT-E3 and MC comparisons with measured strut forces at excavation level 2
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Figure 5-95: MIT-E3 and MC comparisons with measured pore pressures at excavation level 2
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Figure 5-109: MIT-E3 and MC comparisons with measured heave at excavation level 5
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Figure 5-110: MIT-E3 and MC comparisons with measured pore pressures at excavation level 5
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Figure 5-113: MIT-E3 and MC comparisons with measured strut forces at excavation level 6
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Figure 5-114: MIT-E3 and MC comparisons with measured heave at excavation level 6
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Figure 5-115: MIT-E3 and MC comparisons with measured pore pressures at excavation level 6
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6 CONCLUSIONS AND FURTHER RESEARCH

6.1. Summary

The main goal of this thesis was to develop a methodology for updating FE predictions of

excavation performance that can handle diverse designs, ground conditions, and sources of

information during construction. This will improve the use of FE analyses by using monitoring

data in an objective updating procedure. Well documented case studies play a crucial role to

evaluate predictive capabilities of numerical analyses using all available site investigation data,

construction records, and monitoring data.

Initially, two case studies of numerical predictions of excavation performance in Boston

and Singapore have been described, in detail, in Chapter 2. These case studies are: 1) Transitway

Project: Courthouse Station for South Boston Piers*, a case study that compares class A, class B,

and class C predictions for a deep, wide excavation, supported by a floating diaphragm wall and

five levels of pre-loaded struts. The site is underlain by a 30 m deep layer of soft-medium Boston

Blue Clay; 2) Nicoll Highway collapse (Corral, 2010; Corral and Whittle, 2010), the well-

documented failure of a 30m deep braced excavation in Singapore (Circle Line Phase 1) in

underconsolidated marine clay is re-analyzed using data available from extensive post-failure

site investigation program (including laboratory tests on high quality undisturbed samples of

marine clay). Both cases studies are analyzed using an advanced effective stress soil model

(MIT-E3) with parameters calibrated from laboratory tests. These cases provide a clear

* Now known as the Massachusetts Bay Transportation Authority (MBTA) Silver Line
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validation of the important role of constitutive modeling for predicting the performance of

braced excavations in soft clays.

Chapter 3 provides a detailed literature review on updating predictions using field

measurements, varying from the Observational Method to inverse analysis of FE predictions in

geotechnical problems. The description of the inverse problem was subdivided into two parts: 1)

identification criteria (i.e., selection of objective function), and 2) optimization algorithms. The

main focus was on inverse analyses for finite element predictions of geotechnical problems, and

included a comprehensive grouping of literature published in the last 30 years. The literature

review concludes that a rational methodology for updating FE predictions of excavation

performance that can handle diverse designs, ground conditions, and sources of information

during construction is indeed needed. This methodology should integrate at least: 1) rational

sensitivity analyses; 2) error structures of field measurements; and 3) heuristic optimization

methods.

A rational methodology for updating finite element predictions of excavation

performance based on the maximum likelihood approach was presented in Chapter 4. This was

followed by a description of the covariance matrices for field measurements and the error

structures for some typical instruments used to monitor excavations. The proposed methodology

uses sensitivity analyses to screen parameters that are later used in inverse analyses. In addition,

a more detailed framework for using the updating approach in the project management through

integration with alert or trigger criteria is presented.
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To validate and evaluate the proposed methodology for updating FE predictions of

excavation performance, 2-D analyses of the platform section of the Courthouse Station

(Transitway project; Section 2.2) were used. The finite element model and the identification of

Essential Improvement Parameters, EIP's, at each stage of construction through sensitivity

analyses were described. Also full details were given of the inverse analyses and updating of

parameters. The numerical analyses used simplified (MC) constitutive models. Comparisons of

these results with predictions using a more complex soil model (MIT-E3) were carried out. The

results show consistent improvements in the updating of computed performance, but also

highlight inconsistencies obtained among difficult types of measured parameters. These are

attributed, in part, to limitations in the MC soil model.

6.2. Conclusions

A rational methodology for updating FE predictions of excavation performance that can handle

diverse designs, ground conditions, and sources of information during construction has been

developed and validated through a unique case study. This methodology integrates three main

components: (1) sensitivity analyses; (2) error structures of field measurements (maximum

likelihood approach); and (3) heuristic optimization methods (genetic algorithms). Since there is

no such methodology available up-to-date, the proposed methodology plays a very important

contribution in improving the used of FE analyses in geotechnical engineering, specifically, in

soil-structure interaction problems. Additionally, a detailed framework for using the updating

approach in the project management through integration with alert or trigger criteria has been

proposed.
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From the application of the case study (Transitway project), the following conclusions can be

drawn:

1. A powerful tool to quantify agreements between predictions and field measurements has

been proposed. This is based on comparisons of SSR and SGV scalar values.

2. The rational methodology for updating FE predictions has been proved to be robust and

efficient. In fact, with a very simple constitutive law (MC model), very good predictions

can be obtained with individual measurement types. The calculated improvement ratios

demonstrate important individual improvements.

3. The results show the effectiveness of the proposed updating procedure, but also

highlight the challenge of updating predictions using simplified models of soil behavior.

The application of this case study shows that the pore pressures at the centerline of the

excavation are in general controlled by boundary conditions rather than model

parameters.

4. The MIT-E3 analyses demonstrate more consistency in predictions of the measured

performance (for all excavation levels of wall/soil deflections, surface settlements,

excavation heave, and strut forces), and confirm the value of using more advanced

constitutive models calibrated using high quality laboratory tests, achieving comparable

results with MC (after updating).

5. The proposed methodology provides: (1) increase in safety (safer predictions); (2)

possibility of the application of the observational method (vary design as needed); (3)

control of construction schedules (avoid additional fines); and (4) decrease construction

costs in cases when the original design can be modified to a less expensive option.
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6.3. Further Research

Based on the summary and conclusions, the following research paths are proposed:

1. An application of the detailed framework for using the updating approach in the project

management through integration with trigger criteria (see Chapter 4) in an actual, real-

time project.

2. An application of the same case study with other constitutive soil models to investigate

consistency of archival and predicted results.

3. An application of other case studies to re-validate the proposed methodology.

4. An application of the proposed methodology for a 3-D modeling of excavation support

system.
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excavation level 1

N 587.25

587.2

587.15

~-587.1

oo
el

500(

400

300

200

100

-100

-200

-300

-400

-- -
0 - -

0

0 4SGV

0
0 -

30

-- --

SGV T

4SGV -

. . ......... ...........



Pore Pressures at Center (2 sensors)
Excavation Level 1, H=1.8m

1000-

950-

900-

850-

800-

750-

700-

650-

600-

550-

2 2.5 3 3.5 4 4.5 5 5.5 6

1-1

100

951

90(

85(

80

75(

70

65

55

0

OCR top BBC

3.5 4 4.5

OCRtop BBC

CO

(1.)

5000

4000

3000

2000

107

Pore Pressures at Center (2 sensors)
Excavation Level 1, H=1.8m

-e Upper BBC
-- Lower BBCI

.35 0.4 0.45 0.5 0.55 0.6 0.65

a BBC=G/Gmax

0 Upper BBC
Lower BBC

0 - -

0 - SG V -I

-1000-

-2000- 
4SGV

-3000-

-4000 -

0.35 0.4 0.45 0.5 0.55

aBBC=G/Gmax

-

Pore Pressures at Center (2 sensors)
Excavation Level 1, H= 1.8m

cl

51

(12

V)j

0.6 0.65

kBBC (m/sec) x 10"9

5000

4000

3000

2000

1000

0

-1000

-2000

-35000

-4000

0.5 1 1.5 2 2.5 3

k BBC (n/sec)

3.5 4 4.5 5

X 10"

Figure A- 12: Sensitivity analysis of OCR (top), a parameter, and hydraulic conductivities of BBC layers on pore pressures at
excavation level 1

- Q

0O

(1

H4Upper BBC
-- Lower BBC

SGV

4SGV

I



Wall/Soil Lateral Movements (71 points)
Excavation Level 2, H=6.4m

5

4.5

4

3.5

3

2S5F

4

3.5

3

Ci2 2.5

1.5 4
1 2 3 4 5 6 7 8 9

Gref (MPa)
granular fila

5j

4-

3

0

-1

-2

--- -- - -- - - -- - - - -- - - -- - - --- -

1 2 3 4 5 6 7 8 9

Gref (MPa)
granular fill a

c-I
S

a

Cr'
ci)

Wall/Soil Lateral Movements (71 points)
Excavation Level 2, H=6.4m

5

4.5

4

3.5

3

2.5

1.5

Gref P
cohesive fill

1 2 3 4 5 6

Gref (MPa)
cohesive fill

3

S0

-1

-2

Wall/Soil Lateral Movements (71 points)
Excavation Level 2, H=6.4m

5 10 15 20 25

Gref (MPa)
silty sand

~S~v
SGV

5 10 15 20 25

Gref
silty sand (MPa)
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Figure A- 37: Sensitivity analysis of shear stiffness of granular fill, cohesive fill, and silty sand layers on pore pressures at
excavation level 3
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excavation level 3
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Figure A- 42: Sensitivity analysis of OCR (top), a parameter, and hydraulic conductivities of BBC layers on strut forces at
excavation level 3
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Wall/Soil Lateral Movements (71 points)
Excavation Level 4, H=12.2m
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Figure A- 43: Sensitivity analysis of shear stiffness of granular fill, cohesive fill, and silty sand layers on lateral wall/soil
movements at excavation level 4
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Figure A- 44: Sensitivity analysis of friction angles of granular fill, cohesive fill, and silty sand layers on lateral wall/soil
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Figure A- 45: Sensitivity analysis of OCR (top), a parameter, and hydraulic conductivities of BBC layers on lateral wall/soil
movements at excavation level 4
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Figure A- 46: Sensitivity analysis of shear stiffness of granular till, cohesive fill, and silty sand layers on surface settlement at
excavation level 4
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Figure A- 49: Sensitivity analysis of shear stiffness of granular fill, cohesive fill, and silty sand layers on excavation heave at
excavation level 4
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Figure A- 50: Sensitivity analysis of friction angles of granular fill, cohesive fill, and silty sand layers on excavation heave at
excavation level 4
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Figure A- 52: Sensitivity analysis of shear stiffness of granular fill, cohesive fill, and silty sand layers on pore pressures at
excavation level 4
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excavation level 4
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Figure A- 54: Sensitivity analysis of OCR (top), a parameter, and hydraulic conductivities of BBC layers on pore pressures at
excavation level 4
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excavation level 4
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Wall/Soil Lateral Movements (71 points)
Excavation Level 5, H=14.9m
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Figure A- 58: Sensitivity analysis of shear stiffness of granular fill, cohesive fill, and silty sand layers on lateral wall/soil
movements at excavation level 5
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Figure A- 59: Sensitivity analysis of friction angles of granular fill, cohesive fill, and silty sand layers on lateral wall/soil
movements at excavation level 5
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Excavation Level 5, H=14.9m
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Figure A- 61: Sensitivity analysis of shear stiffness of granular fill, cohesive fill, and silty sand layers on surface settlement at
excavation level 5
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Figure A- 62: Sensitivity analysis of friction angles of granular fill, cohesive fill, and silty sand layers on surface settlement at
excavation level 5
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Figure A- 64: Sensitivity analysis of shear stiffness of granular fill, cohesive fill, and silty sand layers on excavation heave at
excavation level 5
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Figure A- 65: Sensitivity analysis of friction angles of granular fill, cohesive fill, and silty sand layers on excavation heave at
excavation level 5
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Pore Pressures at Center(2 sensors)
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Figure A- 67: Sensitivity analysis of shear stiffness of granular fill, cohesive fill, and silty sand layers on pore pressures at
excavation level 5
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Figure A- 68: Sensitivity analysis of friction angles of granular fill, cohesive fill, and silty sand layers on pore pressures at
excavation level 5
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Figure A- 69: Sensitivity analysis of OCR (top), a parameter, and hydraulic conductivities of BBC layers on pore pressures at
excavation level 5
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Figure A- 70: Sensitivity analysis of shear stiffness of granular fill, cohesive fill, and silty sand layers on strut forces at
excavation level 5
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Figure A- 72: Sensitivity analysis of OCR (top), a parameter, and hydraulic conductivities of BBC layers on strut forces at
excavation level 5
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Wall/Soil Lateral Movements (71 points)
Excavation Level 6, H=17.4m
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Figure A- 73: Sensitivity analysis of shear stiffness of granular fill, cohesive fill, and silty sand layers on lateral wall/soil
movements at excavation level 6
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Wall/Soil Lateral Movements (71 points)
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Figure A- 74: Sensitivity analysis of friction angles of granular fill, cohesive fill, and silty sand layers on lateral wall/soil
movements at excavation level 6
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Surface Settlements(5 DM1)
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Figure A- 76: Sensitivity analysis of shear stiffness of granular fill, cohesive fill, and silty sand layers on surface settlement at
excavation level 6
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B. INITIAL PREDICTIONS (ORIGINAL - NO UPDATING)
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Figure B- 2: Measurements vs. Initial and Final Predictions of Lateral Wall/Soil Movement at Excavation Level 2
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Figure B- 19: Measurements vs. Initial and Final Predictions of Centerline Heave at Excavation Level 2
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Figure B- 20: Measurements vs. Initial and Final Predictions of Centerline Heave at Excavation Level 3
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Figure B- 21: Measurements vs. Initial and Final Predictions of Centerline Heave at Excavation Level 4
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Figure B- 22: Measurements vs. Initial and Final Predictions of Centerline Heave at Excavation Level 5
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Figure B- 23: Measurements vs. Initial and Final Predictions of Centerline Heave at Excavation Level 6
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Figure B- 24: Measurements vs. Initial and Final Predictions of Pore Water Pressures (2 sensors at CL) at Excavation Level 1
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Figure B- 25: Measurements vs. Initial and Final Predictions of Pore Water Pressures (2 sensors at CL) at Excavation Level 2
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Figure B- 26: Measurements vs. Initial and Final Predictions of Pore Water Pressures (2 sensors at CL) at Excavation Level 3
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Figure B- 27: Measurements vs. Initial and Final Predictions of Pore Water Pressures (2 sensors at CL) at Excavation Level 4
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Figure B- 28: Measurements vs. Initial and Final Predictions of Pore Water Pressures (2 sensors at CL) at Excavation Level 5
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Figure B- 29: Measurements vs. Initial and Final Predictions of Pore Water Pressures (2 sensors at CL) at Excavation Level 6
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