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Abstract

We consider a retailer offering an assortment of differentiated substitutable products
to price-sensitive customers. Prices are chosen to maximize profit, subject to inven-
tory/capacity constraints, as well as more general constraints. The profit is not even a
quasi-concave function of the prices under the basic multinomial logit (MNL) demand
model. Linear constraints can induce a non-convex feasible region. Nevertheless, we
show how to efficiently solve the pricing problem under three important, more general
families of demand models.

Generalized attraction (GA) models broaden the range of nonlinear responses to
changes in price. We propose a reformulation of the pricing problem over demands
(instead of prices) which is convex. We show that the constrained problem under MNL
models can be solved in a polynomial number of Newton iterations. In experiments,
our reformulation is solved in seconds rather than days by commercial software.

For nested-logit (NL) demand models, we show that the profit is concave in the de-
mands (market shares) when all the price-sensitivity parameters are sufficiently close.
The closed-form expressions for the Hessian of the profit that we derive can be used
with general-purpose nonlinear solvers. For the special (unconstrained) case already
considered in the literature, we devise an algorithm that requires no assumptions on
the problem parameters.

The class of generalized extreme value (GEV) models includes the NL as well as
the cross-nested logit (CNL) model. There is generally no closed form expression for
the profit in terms of the demands. We nevertheless how the gradient and Hessian
can be computed for use with general-purpose solvers. We show that the objective
of a transformed problem is nearly concave when all the price sensitivities are close.
For the unconstrained case, we develop a simple and surprisingly efficient first-order
method. Our experiments suggest that it always finds a global optimum, for any
model parameters.

We apply the method to mixed logit (MMNL) models, by showing that they can
be approximated with CNL models. With an appropriate sequence of parameter
scalings, we conjecture that the solution found is also globally optimal.
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Chapter 1

Introduction

The pricing problem is fundamental in revenue management, but, until recently, the

effect of customer substitution on pricing has received little attention. In fact, most

of the revenue management literature assumes that demands for different products

are entirely independent [12, 26, 75]. There has been significant recent work on

discrete-choice models in quantity-based revenue management, where prices are fixed

and instead the product line offered to customers must be chosen. However, except

for the basic multinomial logit (MNL) model and a limited class of nested logit (NL)

models, the available algorithms are approximations or heuristics even in this setting

[20, 33, 35, 52, 59, 60, 65, 76, 81].

When we began this work, little was known about the structure of the pricing prob-

lem in the face of customer choice. Even under the relatively simple MNL model, the

profit is not a quasi-concave function of the prices. Nevertheless, heuristics had been

devised to find good locally optimal solutions under the more complex mixed logit

(MMNL) models [40], and under MNL models with certain types of constraints on

allowable demands induced by the prices [31]. It was known that the globally optimal

solution is unique for unconstrained MNL models. Nevertheless, concave reformula-

tions of even the unconstrained MNL pricing problem appeared in the literature only

concurrently with our own work [23, 36, 51, 53, 69, 73].
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1.1 Discrete Choice Models

In this thesis, we propose efficient algorithms for optimally pricing a set of substi-

tutable products when customer demand is represented by discrete choice models.

Specifically, we first consider pricing under the ubiquitous MNL model with linear

constraints on the resulting demands and certain types of constraints on allowable

prices. We then study the pricing problem under three important generalizations of

the MNL model:

(i) Generalized attraction (GA) demand models maintain the general form of MNL

models, but allow for different nonlinear responses to changes in price. They

include the MNL, multiplicative competitive interaction (MCI) or Cobb-Douglas

models [78] and linear attraction demand models [34], as well as special-purpose

models based on prior knowlege of the response to price changes and the semi-

parametric models introduced by Hruschka [41].

(ii) Generalized extreme value (GEV) models allow for a richer dependence of the

demand for a given product on the prices of the other altervatives, but restrict

the class of functions than can model the responses to changes in price. This

family includes the MNL, the common nested logit (NL) and cross-nested logit

(CNL) models, as well as more complex models [77, 7].

(iii) Mixed multinomial logit (MMNL, or simply mixed logit), models define the

demand as a weighted sum of MNL models. Each MNL model in the mixture

may represent a customer segment choosing among the same set of products,

or the models may result from sampling continuous mixtures of MNL models

(sometimes called logit kernel models [58]).

All of the models in (i) - (iii) above define a probability distribution over n choices

available to the consumer, including the choice of buying nothing. The GA and GEV

'This "outside alternative" will be represented in the main body of this thesis by setting one of
the prices to xi = 0 and setting the corresponding function defined below to fi(x) = 1 for any values
of the other prices.
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models share the same basic form: the fraction of consumers, in expectation, opting

to buy product i is given by

fi (x)
,=1 f 3 (x)'

where x c R" is the vector containing the prices for each of the n products. The

normalizing factor in the denominator ensures that the demands sum to one. The

models differ in how the functions fi, ... , fn are defined. For example, under the

MNL model, they take the form

fi(x) = yi = e di-bixi

for some parameters di and bi. The attraction y, of product i depends only on the

price xi of that product. Other scalar functions define different GA models with

different attractions yi. The GEV family of models is much richer because it allows

each function fA to depend on all of the prices, rather than only xi. MMNL models,

on the other hand, are defined as a mixture of MNL models with choice probabilities

Kk

where each set {ff,..., fn} defines an MNL model and -yk > 0 is its weight in the

mixture. In this thesis, we assume that the functions fi are of the form

fi (x) = ed -bkx,

where the parameters d' may differ across products for each segment i, but where the

price sensitivity parameter bk is constant for each segment k. We refer the reader to

the relevant chapters for more detailed definitions of the various models.

12



1.2 The Pricing Problem

The aim of the pricing problem, is to maximize the total expected profit subject to

constraints limiting the set of demands that can be served:

rn
max fl(x) = Spixi
pep

Here P represents the feasible set of demand vectors p = [p1,...,pn]T, and x =

[X1 , . . , xn]i is the corresponding vector of prices defined above. Under discrete choice

models, we may assume without loss of generality that the vector of demands p is a

probability distribution over products. Scaling the demands by the total population

size then yields the true demand.2

We begin by assuming that P is defined by linear constraints arising from, for ex-

ample, inventory availability, capacity constraints or minimum market share targets.

In fact, for the MNL model, we show that even orderings between prices x can be

enforced as linear constraints on p. It will become obvious that in some cases, general

convex constraints in p can be incorporated as well. Such constraints arise naturally

in the context of pricing problems, but have not been considered until recently in com-

bination with customer substitution (see the literature review and model definition

in Chapter 2). Unfortunately, when we consider the entire family of GEV models,

we must drop the constraints and assume that P is equal to the entire probability

simplex. This is because the techniques that we apply to solve these more complex

models no longer preserve the linearity of the constraints.

Thus far, our model does not explicitly capture the fact that different marginal

production costs ci may apply to each product, or that profit margins 0 < ai < 1 may

only represent a fraction of the price charged to the consumer, and may also change
2We include the "outside alternative" with a price of x = 0 in the set of products here, such

that the entries of p capture every possible alternative and therefore sum to one.

13



across products. In practice, the actual profit usually has the form

n

II'(x) = apz(xzi - ci)
i=1

As we will show in Chapters 2 and 3, variable production costs ci and profit margins

ai can naturally be incorporated into the parameters of the demand models that

we consider, and we can usually consider the simpler function 1(x) without loss of

generality.

The difficulty of computing the global maximum of the pricing problem obviously

depends on the specific model relating the vector of demands p and the vector of

prices x. After outlining the organization of the thesis, we give a brief overview of

how we approach the problem for each of the demand models, and of they type of

results obtained.

1.3 Contributions

Table 1.1 summarizes our results and the algorithms we propose. For GA models,

we show that the pricing problem can be reformulated in terms of the demands p

by inverting each scalar attraction function fi(xi) individually, taking into account

arbitrary linear constraints on the demands and certain constraints on the prices. We

provide a sufficient condition on the attraction functions to ensure that the reformu-

lation is a convex optimization problem. The condition is satisfied by all GA models

commonly found in the literature. Moreover, we show that, for the MNL model, the

reformulation can be solved in polynomial time using interior-point methods, and we

demonstrate empirically that our reformulations are orders of magnitude faster to

solve than naive formulations in terms of the prices. If the inverses fi71 (yi) can be

computed efficiently, then the gradient and Hessian can also be obtained efficiently

and a general-purpose (GP) convex optimization solver can be used. If this is not the

case, we provide an alternative algorithm for solving the dual of the refomulation. For

example, the approximated MMNL models discussed below, and the semi-parametric

14



Model Constraints Result Algorithm Sec.

MNL Linear in p, off- - Concave reformulation in p Polynomial-time solution via 2.3
sets and bounds for MNL, MCI, Cobb-Douglas the self-concordant barrier
in x. and linear attraction models. method.

- Sufficient concavity condi-
tion for other GA models.

GA, Linear in p, Closed-form Hessian for GP
w/ f-1(yi) bounds in x. nonlinear solver.

GA, Column-generation algorithm 2.5,
no fJ-(yi) for dual of reformulation. A.3

NL Linear in p. Concave reformulation in p if Closed-form Hessian for GP 3.7
price sensitivity parameter ra- nonlinear solver.
tio < 2.

None Bi-concave reformulation if Iteration with closed-form so- 3.8
no-purchase alternative alone lutions at each step, converges
in a nest. to a stationary point.

CNL & "Almost" concave reformula- Numerical Hessian for GP 4.6
other GEV tion if price sensitivity param- solver, via (potentially sparse)
models. eter ratio < 2. matrix inversion.

FOCs often (generalized) di- Nonlinear Jacobi or Gauss- 5.5
agonally dominant function. Seidel method for FOCs.

Alternate FOCs defined by a Sub-stochastic iteration ma- 5.6
diagonally dominant matrix. trix to solve nonlinear FOCs.

MMNL Linear in p. Approximate p via GA with- (see GA above) 2.4
out fAI(YO _

None Approximate p and its Jaco- Adapt GEV algorithm to 5.7
bian matrix via CNL. solve MMNL directly.

Table 1.1: A summary of our novel results for various discrete choice models.
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models of Hruschka [41] do not allow for easily computed inverses of the attraction

functions.

Like for the MNL model, for the NL model with linear constraints on the demands,

there exists a closed-form expression of the prices x in terms of the demands p. By

an appropriate series of chain rule applications, we are able to derive closed-form

expressions for the gradient and Hessian of the profit 1(p) in terms of the demands

p. We then show that the NL profit function is concave with a unique

local maximum as long as the price sensitivity parameters for the different

products are all within a factor of 2 of each other. The condition on the price

sensitivity parameters appears mild, but it is often violated when fitting models to

data.3 To the best of our knownledge, this represents a significant improvement over

the known results in the literature, even for the special case where they apply. For

the case where the outside no-purchase alternative is in its own nest and there are

no constraints, as is assumed in existing work [51, 36, 20], we develop a different bi-

concave reformulation in terms of the conditional choice probabilities within each nest.

Furthermore, we show that it can be solved iteratively by computing the solution of a

MNL pricing problem in closed-form at each step. Under the assumptions made

in the existing literature, This algorithm converges to a stationary point

for any price sensitivity parameters. We conjecture that it in fact converges to

the global maximum.

For GEV models, we first show that the demand model is in fact always invertible,

even though no closed-form inverse demand function exists in general. Unfortunately,

we cannot obtain a closed-form expression for the Hessian of the profit 1(p), and our

later results will lead us to believe that the profit is often not a concave function of p.

Instead, we consider a reformulation of the GEV pricing problem in terms

of the unnormalized demands. We are able to show that this reformula-

tion is almost concave under the same condition on the price sensitivity

parameters outlined above (that the price-sensitivity parameters for the products

3Because the NL model cannot explicitly capture different price sensitivities for different customer
segments (like the MMNL model), large variations in the per-product price sensitivity parameters
may yield a better fit even if each individual has identical price-sensitivity across all products.
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are all within a factor of 2 of each other). Specifically, the Hessian consists of a

negative-definite matrix and a (usually small) error term. We provide expressions for

the Hessian matrices of the reformulation and the original profit function fl(p). They

can be used to evaluate either quantity numerically when using a general-purpose

nonlinear solver.

We also obtain a compact expression for the first-order optimality conditions

(FOCs) of the GEV pricing problem in terms of the prices x. We show that they

are often defined by a generalized diagonally dominant function of x. This implies

that the FOCs admit a unique solution, which can be computed using the

nonlinear Jacobi or Gauss-Seidel method. Unfortunately, as when using the

gradient and Hessian mentioned above with a general-purpose solver, evaluating the

quantities involved at each iteration is costly. Even computing the prices x corre-

sponding to a given vector of demands p requires the solution of a nonlinear system.

Evaluating the actual gradient and Hessian requires the inversion of a matrix that

depends on x and that grows in the number of products. This computation is usually

expensive (although it may be accelerated when the matrix in question is sparse, as

for CNL models with limited cross-nesting).

An alternative expression that we obtain for the FOCs leads to the main algorithm

of Chapter 5. Specifically, we show that applying linear Jacobi iterations to

the (re-stated) nonlinear FOCs always results in a sub-stochastic iteration

matrix. That is, the current solution is multiplied by a sub-stochastic matrix at

each step. The sequence of solutions obtained by our algorithm converges

quickly and consistently in computational experiments, regardless of the

starting point. Computationally, this seems to be our most effective method for

unconstrained pricing problems. We show that it converges to a local maximum, and

conjecture that it in fact converges to a global maximum for all the problems that we

have considered. The practically-minded reader may wish to skim the early chapters,

and proceed directly to Chapter 5 (skipping Section 5.5).

Finally, we consider two approaches for solving the pricing problem under MMNL

models. First, we show in Chapter 2 that the demands p under such models can
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be approximated locally by a certain model of the GA type. This allows constrained

problems to be solved approximately. Second, we show in Chapter 5 that the MMNL

demands p as well as their partial derivatives with respect to the prices

can be approximated locally by a CNL model. Combining this observation

with a known path-following algorithm for MMNL models [40] allows us to directly

apply the linear Jacobi iterations for GEV models to MMNL models. In computa-

tional experiments, convergence for MMNL models is as fast as for GEV

models, and the solutions are as good as those found by the path-following

algorithm in the literature.

1.4 Thesis Organization

Chapters 2, 3 and 4 of this thesis consider the pricing problem under GA, NL and

GEV models, respectively. For each class, we aim to provide sufficient conditions

for the existence and uniqueness of the solution, as well as practical algorithms for

computing it. In Chapter 5, we finish with a simple and efficient algorithm for solving

the unconstrained pricing problem under any GEV model (including the MNL, NL

and CNL models) as well as under MMNL models. Since we draw on different methods

to handle each class of demand models, and because the existing work on pricing

usually only applies to one of the demand models, we defer the literature review to

Sections 2.1.1, 3.3, 4.3, 5.2 and 5.6.1 in the relevant chapters.

18



Chapter 2

Pricing under Attraction Demand

Models

2.1 Introduction

In this chapter, we study a general modeling and optimization framework that cap-

tures fundamental multi-product pricing problems. We consider the basic setting of

a retailer offering an assortment of differentiated substitutable products to a popu-

lation of customers who are price sensitive. The retailer selects prices to maximize

the total profit subject to constraints on sales arising from inventory levels, capac-

ity availability, market share goals, sales targets, price bounds, joint constraints on

allowable prices, and other considerations.

The profit functions and constraints we consider are captured in the following

general nonlinear optimization problem. The decision variables xi are the prices

charged for each of the products indexed by i 1,...,n.

n

max aixidi(x)
i=1
n(P

s.t. Akidi(x) 5 Un k = 1, 2,... m

Xi i= 1, 2,.. .n
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The input data to this model are the profit margins ai > 0 for each product i =

1,2, ... , n, the matrix A E Rmxn and the vector u E Rm defining m constraints on

the demand, and upper and lower bounds x, 5 E R" on allowable prices.

The price-demand functions di (x), for i = 1,... , n, are central to the range of mod-

els that can be captured, as well as to the computational tractability of the resulting

optimization problem. We represent customers' purchasing decisions through attrac-

tion demand models, which generalize the well-known multinomial logit (MNL) and

multiplicative competitive interaction (MCI) demand models [57, 78]. This approach

is common in the recent revenue management literature, as well as in marketing and

economics. The function di : R" -+ (0, 1) maps the prices of all the products to the

observed customer demand for product i. We assume that attraction demand models

have the following form:

1 fi(x2)
do(x) = ± and di(x)= ,f(x) i = 1, ... ,n. (2.1)

1 + Ej fj (xj) 1 + Ej fy (xi)I

The quantity do(x) denotes the fraction of consumers opting not to purchase any

product, and di(x) is the demand for the ith product when i > 0. The functions fi(xi)

are called attraction functions and are assumed to satisfy the following assumption:

Assumption 2.1. The attraction function fi : R - R+ for each product i =

1,2,... , n, satisfies:

(i) fi(-) is strictly decreasing and twice differentiable on R, and

(ii) limx . fi (x) = oc, and limxe xf (x) = 0 (i.e., fi(x) E o(-j)).

Unlike much of the existing work in revenue management, these models allow the

demands for each of the products to be interdependent functions of all the prices.

However, under attraction demand models, the profit as a function of the prices set

by the retailer is in general not quasi-concave (see [40] and Appendix A.2). Moreover,

many realistic constraints involving the demand model, such as production/inventory

capacity bounds, give rise to a non-convex region of feasible prices. Maximizing the

profit thus presents a challenging optimization problem. Our experiments show that
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commercial software may take over a (lay to solve a pricing-based formulation, even

for relatively small instances. Furthermore, we have no a priori guarantee that such

an approach will converge to a globally optimal solution.

The contributions of this paper are multifold. First, we provide equivalent refor-

mulations of the pricing problem that are provably tractable and can be solved effi-

ciently by commercial software. Defining the inverse attraction functions as gi(y) =

f; 1 (y), y > 0, our reformulations take the following general form:

max H(6)= ajOig (
n

s.t. Akii < uk k m'
i= (COP)

6 O = 1
i=0

6i > 0 i =0 ... n

The decision variables 01, ... , O, represent the fraction of customers opting to purchase

each product and the set of constraints defined by (A, u) has been extended with 2n

additional linear constraints.

We establish a general and easily verifiable condition on the attraction demand

model under which the reformulation gives rise to convex optimization problems.

Specifically, our approach yields maximization problems of the form (COP) with con-

cave objective functions 11(6) and linear constraints. This is despite the nonlinear and

non-separable nature of the demand model. Moreover, we prove that the logarithmic

barrier method solves the pricing problem under MNL demand in a polynomial num-

ber of iterations of Newton's method. We confirm through extensive computational

experiments that our formulations can be solved in seconds instead of days, com-

pared to the naive formulations, and that they scale well to instances with thousands

of products and constraints.

We then show how to apply our approach to obtain tractable approximations to

the challenging pricing problem arising under weak market segmentation, where the

pricing decisions affect the demand in multiple overlapping customer segments. Such
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models are exemplified by mixed multinomial logit models [13, 17]. Representing

even a small number of distinct segments, such as, for example, business and leisure

travelers on a flight, may significantly improve accuracy over a single-segment model.

Moreover, any random utility maximization model can be approximated arbitrarily

closely by a mixed MNL model (see Mcfadden and Train [58]).

We approximate such mixed demand functions with valid attraction demand mod-

els that yield convex optimization problems of the form (COP), and we bound the

error with respect to the true multi-segment model. The attraction demand model

in question is relatively complex, and the resulting objective function in our refor-

mulation does not have a closed form. Nevertheless, we show how the objective

function, its gradient and its Hessian can be computed efficiently, allowing standard

optimization algorithms to be applied.

The remainder of this section reviews related work. Section 2.2 describes the

price optimization problem, Section 2.3 presents our reformulation and Section 2.4

presents our approach for problems with multiple overlapping customer segments.

Section 2.5 states the dual of our reformulation. Section 2.6 compares the different

approaches we consider computationally. Further details about specific attraction

demand models may be found in Appendices A.1 and A.2. The derivation of the dual

of our reformulation and an algorithm for solving it are provided in Appendix A.3.

2.1.1 Literature Review

Pricing as a tool in revenue management usually arises in the context of perishable

and nonrenewable inventory such as seats on a flight, hotel rooms, rental cars, internet

service and electrical power supplies (see, e.g., the survey by Bitran and Caldentey

[12]). Dynamic pricing policies are also adopted in retail and other industries where

short-term supply is more flexible, and the interplay between inventory management

and pricing may thus take on even greater importance. (See Elmaghraby and Ke-

skinocak [26] for a survey of the literature on pricing with inventory considerations.)

The modeling framework studied in this paper generalizes a variety of more spe-

cialized pricing problems considered in the operations management literature. Much
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of the work focuses on dynamic pricing, under stochastic customer demand. The

stochastic dynamic program arising under such models is generally intractable. Solu-

tion methods common in practice often rely on periodically re-solving single-period

deterministic pricing problems, and this approach is known to be asymptotically opti-

mal in some cases [32, 74]. Thus, the single-stage deterministic problems we consider

play a central role. Our modeling framework relaxes two common but restrictive

assumptions imposed in most existing multi-product pricing work. First, customers'

substitution behavior can be modeled since demands are functions of all the prices.

Secondly, a broad class of practical constraints can be enforced, well beyond just

capacity bounds or inventory constraints allowed in existing models.

Specialized algorithms have been developed for solving certain single-period pric-

ing problems. Hanson and Martin [40] devise a path following heuristic for the uncon-

strained pricing problem under mixtures of MNL models, and Gallego and Stefanescu

[31] propose a column generation algorithm for a class of constrained problems with

MNL demand (discussed in Section 2.2.2). Neither of these heuristics is guaranteed to

find a globally optimal solution in finite time, nor can they be implemented directly

with commercial software. They may also be computationally expensive in practice.

A number of recent papers have proposed multi-product pricing formulations using

the inverse demand model to yield a concave objective function in terms of sales.

Examples include Aydin and Porteus [5], Dong et al. [23] and Song and Xue [73].

In contrast to our framework, these papers focus on capturing inventory holding

and replenishment costs in the objective function rather than considering explicit

constraints on prices and sales. They also limit their attention to the MNL or other

specific demand models. [69] proposes a formulation of the product line design (PLD)

problem with continuous prices. The PLD problem is closely related to the pricing

problems we consider, but it involves discrete decision variables and specific types

of capacity constraints. The variable transformation which arises when inverting

the demand in our pricing problem is similar to the generalized Charnes-Cooper

transformation described by [66] for concave-convex fractional programs. However,

the pricing problems studied in this paper are in general not concave-convex fractional
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programs.

Recent work on quantity-based revenue management also relaxes the assumption

that the demands for different products are independent. In contrast to multi-product

price-based revenue management, network revenue management (NRM) consists of

choosing which subset of products to offer customers at each period from a menu

with fixed prices, under inventory or capacity constraints. [33] and [52] consider

customer substitution in this setting. [60] additionally consider overlapping customer

segments, like in the weak market segmentation setting for which we provide an

approximation. [75] provide an in-depth treatment of both price- and quantity-based

revenue management and their relationship.

2.2 Modeling Framework

We first discuss the general pricing formulation (P), which has a non-concave (nor

quasi-concave) objective and non-convex constraints in general. Then in Section 2.3

we describe the alternative formulation (COP), which is tractable.

A key question in pricing optimization is how to model the relationship between

prices and the demands for each product. Assumption 2.1 is natural and captures,

for example, the well known multinomial logit (MNL) model, with the attraction

functions

fi(xi) = vieXi, (2.2)

and constant parameters vi > 0, i = 1, . . ., n. The technical requirement (ii) is mild,

and in fact any attraction function can be modified to satisfy it without changing

the objective values over the feasible region of (P). The demand di(x) is equal to

the attraction of product i normalized by the total attraction of all the customers'

alternatives, including the option of not purchasing anything from the retailer in

question. Without loss of generality, the attraction of the latter outside alternative is

represented by the term 1 in the denominator. (Notice that the model is invariant to

scaling of the attraction functions.) Further discussion of attraction demand models

and explanations of how they can be adapted to satisfy Assumption 2.1 above may

24



be found in Appendices A.1 and A.2, respectively. Due to the demand model, the

objective of problem (P) is nonlinear and in general not quasi-concave. The problem

appears challenging even without any constraints. Nevertheless, we will show that

the broad class of constrained problems we consider is in fact tractable (specifically,

unimodal).

Indeed, a wide variety of constraints can be represented by the formulation (P).

Capacity and inventory bounds are very common and arise in revenue management

problems. For example, in a flight reservation system each product may represent

an itinerary with given travel restrictions, while seat availability on shared flight legs

is represented by coupling resource constraints. To capture these constraints in our

model, Aki would be set to 1 if itinerary i uses leg k and zero otherwise. The upper

bound Uk would be set to the number of seats available for leg k, divided by the total

size of the population. In a retail setting, the identity matrix A = I may be used

and Uk may be set to the inventory available for item k. Minimum sales targets for

a group of products may be represented with additional inequality constraints, with

negative coefficients since they place a lower bound on the demands. In product-line

design such operational constraints may be less important, but production capacities

and minimum market-share targets take a similar form. Unfortunately, even though

the constraints of (P) are linear in the demands for each of the products, they yield

a non-linear and non-convex feasible region of prices in general. See Appendix A.2

for examples.

2.2.1 Marginal Costs, Joint Price Constraints and Other Ex-

tensions

We have defined the objective function of (P) in terms of relative profit margins, such

as when a capacity reseller earns commissions. A per-unit production cost may be

incorporated by using the objective

n

E(xi - ci)di(x),
i=1

25



redefining the "prices" in our general formulation as the profit margins si A (xi -

ci), i = 1, ... , n, and shifting the attraction functions accordingly. This motivates

why we allow negative prices in general, since the profit margin si may be negative

even if the. price xi paid by the consumer is positive.

Moreover, any joint constraint on prices of the form

Xi ;> zX + k, 6s E R (2.3)

can be re-expressed as

fi(xi) < fi(xj + 6ij) t fi(xi)do(x) fi(xj + 6ij)do(x)

< di(x) < fi(x i d (x), (2.4)

where we have used the monotonicity of f(-), the positivity of do(x), and the fact

that

fi(Xi) = d.(x) (2.5)
do(x)'

Under mild assumptions on an MNL demand model, the ratio in the last inequality

of (2.4) is a constant. The resulting linear constraint is captured by the formulation

(P). A similar transformation is possible for linear attraction demand models. The

details can be found in Appendix A.2.

We briefly mention two other straightforward extensions to our model. First,

multiple customer segments may be represented by distinct, independent demand

models. If it is possible to present different prices to each segment, or if disjoint

subsets of products are offered to each segment, the pricing problem corresponds to

multiple instances of (P) coupled only through linear constraints. Our approach in

the next section carries through directly in such cases. (This is in contrast to the

model discussed in Section 2.4 where all customers are offered all products at the

same prices.) Secondly, since the equations describing inventory dynamics are linear,

deterministic multi-stage pricing problems can be expressed in a similar form. Each

period can be represented by a copy of (P). The copies are coupled only through the
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linear inventory dynamics constraints.

2.2.2 Special Cases with Convex Constraints

Proposition 2.2 below characterizes a class of constraints for which the feasible region

of (P) is convex. Although the remainder of this paper considers the general formula-

tion (P), the sub-class of problems considered in this sub-section has been implicitly

studied in previous work. It arises naturally in specific revenue management prob-

lems, and encompasses the problems involving customer choice considered by Gallego

and Stefanescu [31].

To our knowledge, the condition given here has never been made explicit. We

provide an explanation of why versions of the pricing problem satisfying it have been

found relatively easy to solve in Section 2.3.1.

Proposition 2.2. If the attraction functions f1, f2,., fn are convex, and the con-

straints satisfy

Ak 2 Uk 0, for each k =, 2,...,m, and i = 1, 2,..., n, (2.6)

then the feasible region of (P) is a convex set.

Proof. Clearly the bounds on the prices define a convex set. The kth inequality

constraint, 1 < k < m, is convex since it may be expressed as a positive linear

combination of convex functions:

1+jk f (x ) nu k nA ft(x i) ( 1+ zf j x U k

i=1

The assumption of convex attraction functions implies that the marginal number

of sales lost due to price increases is decreasing. This is in many cases a natural
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assumption. Moreover, it can be verified that the MNL, MCI and linear attraction

demand models do satisfy it. Condition (2.6) is satisfied in certain revenue manage-

ment problems where the columns of the matrix A represent the vectors of resources

consumed in producing one unit of the respective products, and u is the vector of the

inventories available from each resource. Suppose, for example, that each product

represents a seat on the same flight but with different fare restrictions. Then, as

long as there are more potential customers than seats on the flight, the condition is

satisfied, because the parameters Aki corresponding to the kth capacity constraint are

all equal to one, and 0 < Uk < 1 (since the demands are normalized by the population

size).

However, most problems of interest do not fall into this special class, thereby

motivating our more general approach. For instance, if the customers choose between

seats on different flights, some of the parameters Aki will be set to 0, violating the

condition. Thus, we consider the case of general input data in the remainder of this

paper.

2.3 Market Share Reformulation

In this section, we transform problem (P) into the equivalent optimization problem

(COP) over the space of market shares. This transformation eliminates the need to

explicitly represent the nonlinear demand model in the constraints, while preserving

the bounds on prices as linear constraints. We denote the fraction of lost sales and

the market share of each product i in (2.1) by 0o = do(x) and O6 = di(x), respectively.

The attraction functions fi, ... , f,, are invertible since they are strictly decreasing

by Assumption 2.1(i). Define the inverse attraction function 1 gi : R++ -+ R as the

inverse of fi, for each product i. From (2.5), the prices corresponding to a given

1Although the inverse attraction functions always exist, they may not have a closed form for
some complex demand models. In Section 2.4.2, we show that the objective function's derivatives
can nevertheless be computed efficiently, allowing general purpose algorithms to be used.
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vector of market shares 6 = (00, 01, . . , 06,) can thus be expressed as,

xi = fA 1  = 9 , for i = 1, 2,..., n. (2.7)

Optimization problem (P) can be rewritten as (COP). The market shares 64 play the

role of decision variables, and the the prices xi are represented as functions of 0. In

addition to the original constraints in (P) there is a simplex constraint on the market

shares, and strict positivity of the market shares is enforced. These constraints are

implied in (P) since the fraction of lost sales and the market share of each product i

in (2.1) naturally satisfy

n

S di(x) = 1, with di(x) > 0, for i = 0, 1, ... , n. (2.8)
i=O

To solve (COP) in practice, we may relax the strict inequalities. As any of the market

shares 0, go to zero, some of the prices go to positive or negative infinity. The price

bounds in (P) thus exclude such solutions. 2 These price bounds are captured in

(COP) by extending the matrix A and vector u. The new number of inequality

constraints on the demands is m' = m + 2n, and the additional coefficients and

right-hand sides are given by, Vi, j E {1, 2,. .. ,

Am+2 iil,j =i { 4f() if , Um±2i-1 = M J
1 + f (x ) if i = j

(2.9)

Am+2i,j { (7Um+2 = -fY).
-1 -fi(yi) if i = j

The following lemma shows that (P) and (COP) are equivalent, in that there is a one-

to-one correspondence between feasible points of the two problems which preserves

the objective function value.

2 Even in the absence of these price bounds, Assumption 2.1 ensures that an optimal solution to
(COP) which is strictly positive in each component exists, when it satisfies the convexity condition
of the next section. This follows from Proposition A.2 characterizing its dual in Appendix A.3.
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Lemma 2.3. Formulations (P) and (COP) are equivalent.

Proof. Consider the problem

max aixidi(x)

(P1)
s.t. Akr di(x) <- nk k = 1. ... m'

where we have replaced the price bounds in (P) with the new constraints (2.9). Using

the monotonicity of fi and (2.5), the bounds on the price of the ith product may by

expressed in terms of the attractions as

1i -< Xi <- Ti <- fIJz > fi(xi) 2! fi(:Ti)

<- fi(xI~do(x) 2! di(x) 2 fi(-- T)do(:x). (2.10)

Using (2.8), the above can be written in terms of the market shares for all the products

as
n n

fi (I) 1 - dj(x)) di (x) > fi(Yi) 1 - di(x) . (2.11)
j=1 j=1

These are precisely the constraints described by the (m + 2i - I)th and (m + 2 i)th rows

of A and u in problem (P1). Consequently, the problems (P1) and (P) are equivalent.

We define the mapping T : X -+ E from the feasible region X C R" of (P) to the

feasible region E C (0, 1)n+1 of (COP) by T(x) = [do(x),... , d (x)]T . The inverse

mapping is given by T- 1(6) = gi ),...,gn (0_)], as in (2.7). For any x c X,

T(x) is feasible for (COP) because (i) the inequality constraints are equivalent to

those of (P1) above, and (ii) the simplex and positivity constraints are satisfied by

(2.8). Similarly, for any 6 E E, T- 1(6) is feasible for (P1) and (P). Finally, the

objective value H(T(x)) of (COP) is equal to the objective value of (P). El

2.3.1 Convexity condition

Theorem 2.4 below provides a condition on the attraction functions fi, f2,. . . f

under which (COP) is a convex problem, and can thus be solved with general purpose
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convex optimization algorithms. The condition is fairly general and requires only a

property of the individual attraction functions. Corollary A. 1 of Appendix A.2 verifies

that it holds for MNL, MCI and linear attraction demand models.

In light of Lemma 2.3, Theorem 2.4 also provides insights into the structure of

the original pricing problem (P). Specifically, it implies that there are no (strict)

local maxima. In particular, note that together with Proposition 2.2, it implies that

the pricing problems considered by [31] are in fact maximizations of a unimodal

profit function over a convex feasible region. More generally, the theorem specifies a

condition such that under Assumption 2.1 problem (P) does not have any strict local

maxima, even when its feasible region is not convex.

Theorem 2.4. If the attraction functions are such that, in the space of market shares,

2g(y) + yg '(y) <; 0, Vy > 0, i = 1,2, ... ,n, (2.12)

or equivalently in the space of prices,

21f(x), f"(x) Vx ER, i=1,2,...,n, (2.13)
fi(x) Ifj(x)|'

then the objective 11(0) of (COP) is concave. Furthermore,

(i) every local maximum of (COP) is a global maximum, and

(ii) every local maximum of (P) is a global maximum.

Proof. Since the objective function is fl(6) = n 1 ai9igi(-'), with positive coef-

ficients ai, we need only show concavity of each term Hfi(9O, O) - ig(g). The

gradient and Hessian of fi(0o, O) are

Vni = 0" I and (2.14)
.g 0 +0 g0Lg (Go) + 0g ( )

v 2 z = 29 ( ) + g') [o 41 . (2.15)
00 00 00 0 1
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The first factor is non-positive by condition (2.12). Taking any vector z = [U, v]T E

R2, we have that

z T z =0(u(')U2 - 2uv ) + v2 ) - > 0

so the Hessian of Il is negative semi-definite, and Hli is concave.

Differentiating x = g(y) A gi(y), for some fixed i, with respect to y, we have

g'(y) = (f (y))' 1 (2.16)
f' (f-1(y)) f'(g(y)) f' (x)'

and using the chain rule,

-1 -1 1 _-f"(x)

g"(y) = f" (g(y))g'(y) = f" (x) = f (2.17)
(f' (g(y)))2 ( f (x))2 f'(X) (f'(X))3

Substituting into (2.12) and multiplying by the strictly positive quantity (f'(x))2

2 -f"(x) < 0 f f2f'(x) - 0(x 2f'(x) f"(x)

f'(x) (f (x))3 - f,(x) - f(x) - (X)

We used the fact that f'(x) < 0 while f(x) > 0. The equivalence with (2.13) follows

since f'(x) is negative.

Then (i) follows directly from the concavity of the objective function and convexity

of the feasible region in (COP). As shown in the proof of Lemma 2.3, there is a one-

to-one, invertible, continuous mapping between feasible points of (COP) and (P), and

the mapping preserves the value of the continuous objective function. Thus any local

maximum of (P) would correspond to a local maximum of (COP). L

2.3.2 Self-Concordant Barrier Method for the MNL Demand

Model

In this section, we restrict our attention to the MNL demand model, and show that

problem (COP) may be solved in polynomial time using interior point methods. In
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particular, we show that applying the barrier method to (COP) gives rise to a self-

concordant objective. (The latter concept is defined below.)

Note that a similar treatment could be applied to other attraction demand models,

but for ease of exposition, we focus on the more common MNL demand model. Other

optimization algorithms could also be applied. The barrier subproblem (2.18) below

minimizes a twice-differentiable convex function over a simplex for any attraction

functions satisfying the conditions of Theorem 2.4. [2] show that a first-order modified

Frank-Wolfe algorithm exhibits linear convergence for such problems. In Section

2.6, we use a commercially available implementation of a primal-dual interior-point

method to solve (CMNL).

Under the MNL model, the attraction functions and their inverses are defined for

i = 1,... , n as fi(xi) A viexi, and gi(yi) = - log(y /vi). Then problem (COP) is

max fl(O) = - 3ai, CMNi
vi~o (CMNL)

s.t. AO < u, eT6= 1, 0 > 0

where e denotes the vector of ones. We note that the objective has a form similar to

the relative entropy, or Kullback-Leibler (KL) divergence,

n

IC (7r, q) 7 ri log.

This is a measure of the distance between two probability distributions 7r, , E

R", eT 7r = eT q = 1. For problems involving the KL-divergence where the denomina-

tors qi are constant, the existence of a self-concordant barrier is known (see [16] and

[21]). Unfortunately these results cannot be used in our setting, since the objective

fl(9) is not separable: each term also depends on the decision variable 0 0.

The barrier method solves (CMNL) by solving a series of problems parameterized

by t> 0,

min 'P(6) = -tU(6) + () (2.18)

s.t. eT6 = 1
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where the logarithmic barrier is defined by

n m/ n

<}() = - log Oi - nlog 0 - [log Uk- Aki6i . (2.19)
i=1 k=1 i=1

We have changed the maximization problem to a minimization problem for consis-

tency with the literature. Each inequality constraint in (CMNL) has been replaced

by a term in the barrier which goes to infinity as the constraint becomes tight. The

term for the positivity constraint on 0o is replicated n times for reasons that will

become apparent. We let mi = m' + 2n = m + 4n be the number of inequality con-

straints in a slightly modified version of problem (CMNL), including the m' = m + 2n

constraints represented by the pair (A, u), the n positivity constraints on the market

share of each product, and n replications of the positivity constraint 60 > 0, for which

n logarithmic barrier terms were added to the barrier (2.19).

Denote the optimal solution of (2.18) for a given value of t > 0 by O*(t). Given an

appropriate, strictly feasible starting point 6, a positive initial value for t, a constant

factor yi > 1 and a tolerance c > 0, the barrier method consists of the following steps:

1. Solve (2.18) using equality-constrained Newton's method with starting point 6

to obtain 6*(t).

2. Update the starting point 6 := 6*(t).

3. Stop if nin/t < e, otherwise update t := pt and go to Step 1.

As the value of t becomes large, the solution 6*(t) tends towards the optimal so-

lution of (CMNL). The termination condition in Step 3 guarantees that the objective

value is sufficiently close to its optimal value. In practice, a phase I problem must be

solved to find an appropriate initial point 6, and a redundant constraint is added to

(CMNL) for technical reasons.

The computational complexity of Newton's method can be analyzed when the

objective function is self-concordant.
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Definition 2.5 (Self-concordance.). A convex scalar function f : D -+ R is said to be

self-concordant when If"'(x)| < 2 (f"(x))31 2 for every point x E D C R in the domain

of f. A multivariate function f : F -> R is self-concordant if it is self-concordant

along every line in its domain F C R".

The class of self-concordant functions is closed under addition and composition

with affine functions (see, for example, [14]). Our proof that the objective function

of the problem (2.18) falls withing this class relies on Theorem 2.6 presented here.

Theorem 2.6. The function

f (x,y) = tx log - - log xy (2.20)
#y

is strictly convex and self-concordant on R+ for # > 0 and t > 0.

Proof. We explicitly compute the derivatives of (2.20) and obtain

t + t log - t log] # f
Vf (x, y) = , V2f (X, Y) =

and V 3 f(XV) x 1 [ Y

0 -2tx-2'

Then for an arbitrary direction h = [a, b]T E R2 and any [x, y]T R+

V 2 hh]- a2 (tx + 1) 2abt b2 (tx + 1)
- X2  + 2

For ease of notation, define s > 0 and u, v E R such that s = tx > 0, u = a/x and

v = b/y. Then rewrite

V 2 f[h, h] = U2 (s + 1) - 2uvs + v 2 (s + 1) = s(u 2 - 2uv + v 2 ) + (U2 + v 2 )

= s (u - v) 2 + (U2 + v2).

A B

Both terms A and B are non-negative, and the second term B is positive unless
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u = v = 0, i.e. a = b = 0. Thus the Hessian V2f is positive definite and f is strictly

convex on R++. We also expand

_V 3 f[h,h,h] - a3(tx+2)
x 3

3ab2 t 2b 3 (tX + 1)
- 2 Y3

K

We now show that f is self-concordant, that is

IV3f[h, h, h]I 2(V2f[h, h])? < (V 3f[h, h, h]) 2 4 (V 2 f[h, h]) 3 ,

by appropriately factoring the difference of the two sides of the inequality, and showing

that it is non-negative. That is, we verify the non-negativity of

4(V 2f[h, h]) 3 _ (V 3f[h, h, h]) 2 = 4(sA + B)3 - (sK + L) 2

= (4s 3A 3 + 12s 2 A 2B + 12sAB 2 + 4B 3 ) - (s 2K 2 + 2sKL + L 2 )

= 4s3 A3 + s 2 (12A 2 B - K 2 ) + s(12AB 2 - 2KL) + (4B 3 - L 2 ).

For the leading term that A 3 = (u - v) 6 > 0. Then for the second term

12A 2B - K 2 = 12(u - v) 4 (u 2 + v 2 ) - (u - v)4(u + 2v) 2

= (U - v) 4 (12U2 + 12v 2 
- (u + 2v) 2 )

= (u -v) 4(11u2 - 4uv + 8 2) > 0,

(2.22)
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= u3 (s + 2) - 3uv2 s + 2v 3 (s + 1)

= s(U3 - 3uv 2 + 2v 3) + 2(u 3 + v 3 )

= s (u - v) 2 (u + 2v) + 2(U 3 + v 3).

L

(2.21)



since the quadratic form can be written as [v] [ 2 2] [) 20. For the term in s,

12AB 2 - 2KL = 12(u -v) 2 (u 2 + v 2 )2 - 4(u -v) 2 (u + 2v)(u 3 + v 3 )

= 4(u - v) 2 (3(u 4 + 2u 2v 2 + v4 ) - (u4 + uv3 + 2u3v + 2v4)))

= 4(u - v)2 (2U2(U2 - uv + v2) + v2(4U2 - uv + v2)) > 0.

Finally, the last term is 4B 3- L 2 = 4(2+v2)= (U3+Ys)2 4U2v2(3U2 -2uv+3v 2)

0. Together, the preceding four inequalities with the fact that s > 0 show that (2.22)

is non-negative, and that (2.21) holds. 0

In order to prove Theorem 2.7, we shall use the result of Section 11.5.5 in [14]. The

result applies to minimization problems, but the objective function of the maximiza-

tion problem (CMNL) can be negated to obtain an equivalent minimization problem.

3 We first define some additional notation. The constant M is an a priori lower bound

on the optimal value of (CMNL) (and thus an upper bound for the corresponding

minimization problem). It is used in the phase I feasibility problem. The constant G

is an upper bound on the norm of the gradient of the constraints. Since the positivity

constraints have a gradient of norm 1, and the gradients of the inequality constraints

are the rows of the matrix A, which we denote here by Ak,., we set

G = max 1, max ||Ak,. }.
1<k<m'

We define R to be the radius of a ball centered at the origin containing the feasible

set. Since any feasible vector 6 lies in the unit simplex, we may set R = 1. We define

two constants depending on the parameters of the backtracking line search algorithm

used in Newton's method. We let -y = "/3(1-2a)2 and c = log 2 log 2 -. Typical values

are a E [0.01, 0.3] and # E [0.1, 0.8]. The constant c can reasonably be approximated

by c = 6. Finally, we let p* > M be the optimal value of (CMNL), and we define

p* to be the optimal value of the phase I feasibility problem used to find a suitable

3Because of this negation, the values of M and p* defined below are also the negation of the
corresponding values in [14]. Therefore the phase I minimization problem is unchanged, but the
objective function of the phase II minimization problem is the negation of the objective of (CMNL).
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starting point (see Section 11.5.4 of [14]). The latter value is close to zero when a

problem is nearly infeasible or nearly feasible, and is far from zero if the problem is

clearly feasible or infeasible.

The bound of Theorem 2.7 depends on the number of constraints and the number

of products through fn- = m + 4n, and on two terms that depend on the problem

data, C1 = log 2  and C2 = log2 '-M. The constant C1 should be interpreted as

measuring the difficulty of the phase I feasibility problem, while C 2 can be interpreted

as measuring the difficulty of solving the phase II problem.

Theorem 2.7. Problem (CMNL) may be solved to within a tolerance e > 0 in a

polynomial number N = N1 + N11 iterations of Newton's method, where

N, ~ ~ ('n + 1)(fn + 2)GR)( 1 +C
N=M + 2 log2 +-c

is the number of iterations required to solve the phase I problem, and

NI,(m + 1)(p* M) 1+CN11= + 11log2 - +2 c

is the number of iterations required to solve the phase II problem.

Proof. The objective of (2.18) is

Wi(6) = -tI(9) + 4(0)

n n m' n

= t ai i log(6i/(ovi)) - log Oi - n log Oo - log(uk - Akii)
k=1 i=1

n m' n

= (aitOi log(O6/(ovi)) - log Oi0o) - Elog(u - ZAki ). (2.23)
k=1 i=1

We show that 4 is a self-concordant barrier for (CMNL), that is, the function

Wi(O) is self-concordant, convex and closed on the domain {6 E Rn+1 : 0 > 0,

eTo = 1, AG < u}. The terms of the first summation in (2.23) are self-concordant

and convex by Theorem 2.6, since ai > 0, Vi. The function - log x is self-concordant

and convex, and so are the terms of the second summation since both properties are
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preserved by composition with an affine function. Finally, 'Pt is self-concordant and

convex since both properties are preserved through addition. The function is closed

on its domain since the barrier terms become infinite at the boundary, and all terms

are bounded from below.

We observe that the level sets of (CMNL) are bounded, since the feasible set

is bounded. We can now apply the result of Section 11.5.5 in [14] to show that

no more than N Newton steps are required to solve a phase I problem yielding an

initial strictly feasible point on the central path of an appropriate auxiliary phase II

problem. The phase II problem may in turn be solved to within tolerance C in at

most N2 Newton steps. The total number of Newton steps required to solve (CMNL)

is thus at most N + N11.

2.4 Multiple Overlapping Customer Segments

In many cases, it is desirable to represent a number of customer segments, such as

when business and leisure travelers are buying the same airline tickets. Suppose that

different attraction demand models are available for each segment of the population.

Regardless of her segment, a customer may purchase any of the products offered, but

her choice probabilities depend on her particular segment. That is, we would like to

be able to optimize over a demand model of the form

L L

dMIx(x) = Lfd((x) = t , (2.24)
f=1 =1 1+ = fjZx)

where the mixture coefficient Fe represents the relative size of the Pth market seg-

ment, whose demand is itself modeled by an attraction demand model. To continue

representing demand as a fraction of the population, we assume that EZi= Ie = 1,

and Ff > 0, V. We define the notation do(x), d'(x),..., dn (x) for the lost sales and

demand functions of the Ph segment, as in (2.1).

We point out that this model implicitly assumes that consumers from each segment

may purchase any product. It is more general than the models from network revenue
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management that assume consumers only purchase products specific to their segment.

Similarly, the work of [69] assumes that the retailer can set different prices for each of

the segments. Both of these situations are better represented by standard attraction

demand models, as discussed in Section 2.2.1.

On the other hand, the mixture of attraction demand models defined in (2.24)

is not itself an attraction model. How to efficiently solve the pricing problem with

multiple segments to optimality remains an open problem, and is beyond the scope of

this paper. [40] have shown that the pricing objective may have multiple local max-

ima, and solution methods from network revenue management give rise to NP-hard

sub-problems (see, e.g., [60], who solve them heuristically). Instead, we propose an

approximation to the multi-segment demand functions d'Ix(x) by a valid attraction

demand model.

2.4.1 Approximation by an Attraction Demand Model

Aydin and Porteus [5] suggest (for the specific case of MNL models) the following

approximation, based on valid attraction functions

L

fi(Xi) = Zyff (xi), i = 1,.. . ,rI, (2.25)

where the coefficients 'Y1,..,YL E R+ are set equal to the segment sizes Fe of (2.24).

We also introduce the notation d1 (x),.. . , n(x) for the approximate demands when

using the attraction functions (2.25). We define

n n

HMIx( x) = aixidIx(x) and II(x) = x3 adi(x)
i=1 i=1

as the exact and approximated profit functions, respectively.

In Theorem 2.8 we show that setting coefficients 7y as in (2.27) instead yields a

local approximation to the desired multi-segment model (2.24) for prices near some

reference point x0 E R'. In particular, our approximation is exact at the reference

price x = x0 .
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Theorem 2.8. If the sets of attraction functions { ff, i = 1,... ,n} satisfy Assump-

tion 2.1 for f = 1,..., L, then so do the attraction functions f1,..., f, defined in

(2.25).

Furthermore, suppose that for some constant B > 0 and reference prices x0 E In

the attraction functions satisfy the local Lipschitz conditions

(2.26)

where X C {x : ||x - x0 11 < 1/B} C R n is a set around the reference

the coefficients of the approximation be

Feds(x 0 )7, t, E =1,. .. L.
L=1 Frds(xO)

Then the approximate demand functions d 1,..., dn satisfy,

prices xO. Let

(2.27)

Vx E X,

where ex = 2_B.x-x11 Moreover, if the feasible prices are positive, i.e., X C R",

the approximate profit function fl(x) satisfies

(1 - IE)MIX(x) fl(x) (1 + EX)Ix(x), Vx EX.

Proof. Assumption 2.1 holds since (i) the sum of decreasing functions is decreasing

and the sum of differentiable functions is differentiable, and (ii) the limit of a finite

sum is the sum of the limits.

Since from the choice of coefficients Ef 7Y = 1, we rewrite

((x=) _ E yff(xi) _ E yeff(xi)
1 + 1E fj(xj) 1 + E 1 Efyf(x) 7Ye (1 + En 1 ff(xj))

Ef 1 FedI(x) (dx(x)x) L' (dl(xo)/d'(x))f=1 i ~x)) rd (x) (2.28)
E f dI(xO) (1/d'o(x)) seEaF d~ Od(X))
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where we use fact (2.5) in the fourth equality. The ratios appearing in the last

expression can be expressed as

d'(x0 ) = = 1 + d'(xO) (f (xi) - fi (7))

where d'(x0 ) < 1. Then, using assumption (2.26), we obtain

1 - Blix - x0Ib < dK (x ) 1 + Blix - x'111.d'o(x)-

Note that the lower bound is non-negative by the definition of X. Since E_- I> = 1,

we obtain from (2.28)

1 + Blix - x|111  1 + Blix - x111

1 - Blix - x111  1 - Blix - x0111
-i() 1 + Bl|x - x"||1 1 ti(X + B||x - x"|b1 *mxx

Defining shorthand a = Blix - x111 < 1, notice that

1+a 2a 1-a 2a 2a= 1+ =i1+ e, and = 1- ;> 1-=1-e.
1-a 1-a 1+a 1+a 1-a

The statement regarding the profit function follows immediately if the prices are also

positive, by bounding each term of R(x) individually. l

An appropriate set X can be obtained by taking any set for which the Lipschitz

condition (2.26) holds and restricting it to {x : lix - x111 < 1/B}. Clearly, the

accuracy of the approximation is highly dependent on the smoothness of the attraction

functions. Such limitations are to be expected since the profit function HMIx(x) may

have multiple local maxima, while our approximation fl(x) cannot by Theorem 2.4

(for common demand models).
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2.4.2 Solving the Approximated Pricing Problem

Although the approximation presented in the preceding section uses an attraction

demand model, the corresponding (COP) formulations cannot be solved directly in

practice even if Assumption 2.1 is satisfied. This is because, unlike for simpler attrac-

tion demand models, the attraction functions (2.25) do not have closed-form inverses.

The same issue arises under other complex attraction demand models, such as the

semi-parametric attraction models proposed by [41].

To solve (COP) using standard nonlinear optimization algorithms, we need to

evaluate the gradient and the Hessian matrix of the objective function H(6) for any

market shares 6. First, we note that the prices x corresponding to market shares 6

can be obtained efficiently. The equations (2.7) are equivalent to fi(xi) = Oi/Oo, i =

1,.. . , n. Since the attraction functions fi are decreasing by Assumption 2.1, they

have a unique solution and may be solved by n one-dimensional line searches. The

following proposition then shows how the partial derivatives of the objective may

be recovered from the prices x 1,..., x, corresponding to the market shares 6, and

from the derivatives of the original attraction functions fi,..., fn. In particular, the

derivatives of each fi in (2.25) are readily obtained from those of fi, ... , ff.

Proposition 2.9. Let x1 ... xn, be the unique prices solving the equations (2.7) for a

given market share vector 6 E R l+. Then the elements of the gradient V H(6) with

respect to 6 of the objective function 11(6) are

an n (fi(zi))2 ad 011 a i+n
a00 f%(xi) a0n f (xi)

The elements of the Hessian V 2 1(6) are D2r1/&0180 = 0, for 1 < i < j < n,

0211 a 2(fi(X))2 y (X))3 n, fXi

8O0 Oo f2 () (f)'(fx x))
892 a01 fi(i)f ' Xi)

and a211 a( f(xi) (f (X,)) 2f"(Xi) , fori = 1,... ,n,
800 1 00 0o fi(xi) (fj(xi))3
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Proof. The quantities in the statement are obtained by summing

n n

VH(6) = aiVli() and V 2H(9) = Zai V 2 i(8),

with the non-zero elements of the terms Vfli(6) and V2 H (6) given in (2.14) and

(2.15). (By a slight abuse of notation, we now consider the terms Hi(6) to be functions

of the entire market share vector 6 instead of only the variables 0 and 9, on which

they each depend.) Then, we substitute in fi(xi) and its first and second derivatives

using (2.16) and (2.17). E]

2.5 The Dual Problem

The structure of the pricing problem (P) goes beyond concavity of the transformed

objective. Notice that the reformulation (COP) is not separable over the market

shares 01,... , 0, only because of the occurrence of 0 in each term of the objective.

Nevertheless, as is often the case with separable problems, its Lagrangian dual yields

a tractable decomposition. The dual of (COP) is

min p+Z AkUk
k=1

SA. A n(DCOP)s.t. p = max #i(yi, A, p)
i:=1 yj>0A>OO

where we define for i = 1, 2, ... , n

#i (y, A, t) -L y aiggi (y) -- AkAki - , y > 0. (2.29)
k=1

The dual (DCOP) is expressed in terms of one-dimensional maximization problems

for each product. These subproblems are coupled through a single linear constraint.

From a practical point of view, the dual problem does not require working with the
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inverse attractions, or with their derivatives, directly. A column generation algorithm

for solving the dual is provided in Appendix A.3, along with the derivation of the dual

itself. The algorithm requires the solution of a linear program and n one-dimensional

maximization problems involving the original attraction functions fi at each iteration

(as opposed to their inverses gi). It can be used even when the convexity condition

(2.12) is not satisfied, or when the derivatives of the attraction functions described in

Proposition 2.9 are not readily available. Moreover, Proposition A.4 of Appendix A.3

provides an alternate condition on the attraction functions which guarantees that

a unique primal solution corresponds to each dual solution, without requiring the

convexity condition (2.12).

For the special case of the MNL demand model, the inner maximization problems

can in fact be solved in closed form, yielding the following dual problem.

M'

min I +Z Akuk
k=1

n Zi AkAki +p (DMNL)s.t. p2 aivi exp -1 ~ -i

A 2 0

The minimization (DMNL) is a convex optimization problem. As a result, it can also

be solved with general-purpose algorithms. However, our experiments in the next

section suggest this is less efficient than solving the primal (COP) directly.

2.6 Computational Experiments

We have proposed three formulations of the pricing problem in (P), (COP) and

(DCOP). First, we have shown that under certain conditions, any local maximum of

the non-convex problem (P) in terms of the prices is also a global maximum. Second,

under the same conditions, the equivalent problem (COP) is a convex optimization

problem with linear constraints. Third, we can recover a solution from the dual

problem (DCOP).
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To compare the efficiency of the three formulations, we evaluate the solution times

of instances with an MNL demand model using the commercial LOQO solver (see

Vanderbei and Shanno [79], Shanno and Vanderbei [71]). This solver uses a primal-

dual interior point algorithm for sequential quadratic programming. It was chosen

because it is commercially available and is intended for both convex and non-convex

problems. However, LOQO does not employ the barrier method analyzed in Section

2.3.2. The AMPL (see Fourer et al. [27]) modeling language provides automatic

differentiation for all problems. All the experiments were run on computer with dual

2.83GHz Intel Xeon CPUs and 32GB of RAM.

The MNL demand model was chosen since it allows (DCOP) to be solved directly.

The demand model parameters are sampled as described in Appendix A.1.1 to ensure

that the aggregate demand is near 0 and 1 as the prices approach the bounds Tj and

x. = 0, respectively, for each product i. Constraints are sampled uniformly from

the tangents to the sphere of radius 1 - 1 centered at the uniform distribution2 n+1

0 = 01 O=...= =;. Specifically, the kth constraint is defined by

n+ 1 2n 1~+

k ( n +Ie) 2in+ ke -i (+ - T Z~e)~ (2.30)

where zk is sampled uniformly from the unit sphere centered at the origin, and e is

the vector of all ones. This choice ensures that we do not generate any redundant

constraints, and that a number of constraints are likely to be active at optimality.

Table 2.1 shows the average number of iterations and the average solution times

over 10 randomly generated instances of various size when solving each of the three

formulations. We note that for the market share formulation (COP) and the dual

formulation (DCOP), the price bounds on x are converted to linear constraints by

replacing di(x) with 9, in equation (2.10) of Lemma 2.3, yielding a total of m' = m+2n

constraints. However, the additional 2n constraints are sparse and we do not expect

them to be active at optimality. In contrast, using (2.11) would result in dense

constraints for (COP). Default parameters are used for the LOQO solver except that

the tolerance is reduced from 8 to 6 significant digits of agreement between the primal
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Price Formulation Market Share Form.
Products Constraints (P) (COP) (DCOP)

(n) (m) Iterations Time Iterations Time Iterations Time
2 256 7 0.02 15 0.00 19 0.28
4 256 7 0.03 15 0.01 20 0.34
8 256 10 0.12 17 0.01 22 0.50

16 256 16 0.83 24 0.03 28 0.99
32 256 21 4.22 26 0.07 25 1.68
64 256 24 17.48 25 0.16 26 4.28
128 256 27 75.69 29 0.64 25 13.30
256 256 24 265.10 29 1.90 24 55.77
512 256 25 1,307.78 34 4.38 33 451.61
1,024 256 27 5,181.45 34 9.03 27 2,346.63
2,048 256 29 22,818.30 36 20.66 33 19,560.10
4,096 256 38 123,123.50 38 49.09 - -
256 2 19 1.63 26 0.04 28 28.72
256 4 16 2.13 26 0.04 30 30.42
256 8 19 4.38 28 0.05 28 28.80
256 16 23 14.95 27 0.07 29 30.84
256 32 21 31.09 30 0.11 27 31.10
256 64 21 59.52 29 0.21 38 49.54
256 128 20 114.26 29 0.56 26 41.40
256 256 24 265.10 29 1.90 24 55.77
256 512 36 964.53 36 5.26 28 122.72
256 1,024 50 2,411.04 36 8.83 31 338.77
256 2,048 60 5,549.19 45 22.95 35 1,226.33
256 4,096 69 13,003.43 53 59.36 43 5,918.61

Table 2.1: Number of iterations and solution time in seconds as a function of the
number of products and constraints for the three problem formulations. (Averages
over 10 randomly generated instances.)
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and dual solution, and a parameter governing the criteria used to declare problems

infeasible is relaxed to prevent premature termination (we set inftol2=100). These

adjustments are necessary since convergence is sometimes very slow in the first few

iterations, and again after five or six digits or accuracy have been achieved.

As is generally the case with interior point methods, LOQO terminates in a mod-

erate number of iterations for all the instances, but there is significant variability

in the time per iteration. Examining first the results for the price formulation (P),

we observe that the total solution time increases rapidly with both the number of

products and the number of constraints. With 4,096 products and 256 constraints,

approximately 34 hours of computation time are needed. The solution time scales

somewhat better with the number of constraints, but 3.6 hours are still needed with

4,096 constraints and only 256 products. We cannot theoretically guarantee conver-

gence when solving (P) in general. Nevertheless, the optimal solution is eventually

found in all the instances we considered, with the chosen parameters.

In contrast, the market share formulation we introduced, even for the largest

instances we considered, is solved in about one minute, and is about 2,500 times

faster than the price formulation in the most extreme case. We believe this difference

may be due to the sparsity of the Hessian matrix of the objective function and the

linearity of the constraint in (COP). In the price formulation (P), the Hessian of the

Lagrangian is dense since each term of both the constraints and the objective depends

nonlinearly on all the variables. The non-convexity of the constraints and objective

in (P) may also be the reason for the slow performance, though we would expect this

effect to increase the number of iterations rather than the time per iteration, which

does not appear to be the case.

Finally, the dual formulation (DCOP) is observed to be much slower for a large

number of products than for a large number of constraints. In fact, the specific

dual formulation (DMNL) has a single constraint involving a summation over all n

products with nonlinear terms. The number of terms in the sum increases with the

number of products, but adding constraints in the primal problem (i.e., increasing m)

only increases the number of dual variables Ai, which are zero unless the constraint
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in question is active. We note that we were not able to obtain a solution for the

(DCOP) instances with n = 4,096 and m = 256 because AMPL required an excessive

amount of memory. This may be due to the fact that the actual number of primal

constraints (corresponding to the number of dual variables) is not m = 256, but

mI A m + 2n = 8, 448 when including the converted price bounds. Then the Hessian

of the dual constraint is a dense matrix with (m') 2 entries. It seems likely that a more

efficient solution approach is possible for the dual problem, since most of the dual

variables are zero at optimality (i.e., most of the constraints are inactive). Indeed, an

efficient algorithm tailored to the special case of Proposition 2.2 is possible, but we

see limited interest in pursuing this approach for the MNL demand model since the

primal problem (COP) can be solved efficiently.

2.6.1 Approximation to Multiple Segment Demand Models

To illustrate the performance of the algorithm for solving the multiple-segment ap-

proximation, Table 2.2 shows the number of iterations and the running time needed

to solve instances of varying size. For each evaluation of the gradient and Hessian, the

equations in (2.7) are solved with Brent's method (see Brent [15]) and the derivatives

in Proposition 2.9 are computed.

We observe that the solution times for (COP) are comparable to those for the

single-segment instances, since the computational cost is dominated by the optimiza-

tion algorithm rather than by the function evaluations. Indeed, the number of distinct

segments only impact the time needed to evaluate the objective, and we observe that

increasing the number of segments does not increase the solution time significantly.

In contrast, solving the price formulation (P) with the exact demands d "X(X) of

(2.24) takes significantly longer with multiple segments. For a given problem size,

doubling the number of segments more than doubles the solution time. The largest

successfully solved instance took over three days (298,770 seconds) to solve, compared

to only 15.77 seconds for the (COP) formulation with the approximate demand model.

For our experiments, the reference price x0 and the coefficients 'Ye in (2.27) were

chosen such that the demand model approximation was exact at the uniform demand
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(k) (n) (m) Iterations Time (sec.) Iterations Time (sec.) Error Infeasibility
256 256 23 601.94 58 4.73 0.57% 1.2E-03

1024 256 26 10,812.00 46 11.94 2.22% 2.3E-03

2 4096 256 19 165,090.00 35 46.11 0.56% 3.4E-04
256 256 23 601.94 58 4.73 0.57% 1.2E-03
256 1024 39 4,066.70 67 16.46 0.05% 2.4E-04
256 4096 45 18,741.00 50 65.31 0.03% 1.3E-04
256 256 27 1,400.30 48 3.96 0.51% 1.OE-03
1024 256 27 25,549.00 73 18.51 2.27% 1.9E-03

4 4096 256 - - 33 44.67 - 3.5E-04
256 256 27 1,400.30 48 3.96 0.51% 1.OE-03
256 1024 47 9,705.20 52 13.05 0.02% 1.OE-04
256 4096 53 43,809.00 59 74.96 0.03% 1.5E-04
256 256 36 3,787.10 37 3.12 0.55% 1.4E-03
1024 256 37 77,454.00 68 17.53 2.02% 2.4E-03

8 4096 256 - - 38 49.79 - 2.6E-04
256 256 36 3,787.10 37 3.12 0.55% 1.4E-03
256 1024 58 24,259.00 56 13.98 0.01% 6.5E-05
256 4096 - - 57 72.80 - 5.5E-05
256 256 48 11,818.00 37 3.21 0.55% 1.4E-03
1024 256 68 298,770.00 59 15.77 1.86% 1.9E-03

16 4096 256 - - 42 53.79 - 2.9E-04
256 256 48 11,818.00 37 3.21 0.55% 1.4E-03
256 1024 82 80,675.00 55 13.90 0.02% 5.9E-05
256 4096 - - 86 103.45 - 2.4E-05

Table 2.2: Number of iterations and solution time in seconds to solve the exact,
non-convex multi-segment pricing problem in terms of prices, as well as the convex
multi-segment approximation in terms of market shares.
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distribution, Oi = di(x 0 ) = dmx(xo) = 1/(n + 1), for i = 0, . . . , n. Thus the demand

model approximation is inexact at the computed optimum. The second-last column

in Table 2.2 shows the error in the objective value relative to the solution obtained

by solving (P) with the exact demand model. The solution to (COP) overestimates

the true maximum by at most 2.27% in our experiments, and generally by much less.

It is somewhat unsurprising that the maximum of the approximation (COP) exceeds

the true maximum, because this occurs whenever the approximation exceeds the true

maximum of (P) at any feasible point. The rightmost column of Table 2.2 shows the

maximum absolute constraint violation for each instance. The constraint violations

are small despite the approximation, since the right hand side of the constraints

(2.30) is on the order of 1/(n + 1). For reference, the tolerance used for the solver is

10~6. We remark that a different choice of the reference point x 0 may improve the

accuracy at the optimum. Although it is unclear how best to select this parameter

of the approximation a priori, the accuracy of the approximation and the constraint

violations at the computed optimal value can easily be checked empirically once the

solution has been obtained.

2.7 Conclusions

We have developed an optimization framework for solving a large class of constrained

pricing problems under the important class of attraction demand models. Our for-

mulations incorporate a variety of constraints which naturally occur in numerous

problems studied in the literature. They provide increased representation power for

typical revenue management settings such as airline, hotel and other booking systems.

Moreover, they capture problems such as product line pricing, or joint inventory and

pricing problems where capacity constraints alone may not be sufficient.

We provided a condition on the demand model guaranteeing that our formulations

are convex optimization problems with linear constraints. It is satisfied by MNL,

MCI and linear attraction demand models, in particular. We further proved that

the pricing problem can be solved in polynomial time under MNL demand models
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using interior point methods. Our computational experiments show that our new

formulations can be solved orders of magnitude faster than naive formulations, using

commercially available software. The efficiency of the solutions suggests our models

may be effectively adapted for use in multi-period stochastic pricing problems, where

they promise to increase modeling power at reasonable computational cost.

Furthermore, we proposed an approximation to the demand encountered when

there are multiple overlapping market segments. Such scenarios are an active research

topic in the closely related area of network revenue management. We provided a

bound on the approximation error, and showed that the resulting pricing problems

can be solved using standard nonlinear optimization algorithms despite the lack of a

closed-form objective function. Our approximation represents a new way to approach

pricing in the presence of multiple overlapping market segments, and provides an

efficient way to solve certain instances.
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Chapter 3

Pricing under the Nested Logit

Demand Model

3.1 Introduction

In this chapter, we consider the problem of selecting prices x1, x 2 ,... , Xon E R of

n differentiated substitutable products offered to price sensitive customers whose

purchasing behavior is modeled by a nested logit (NL) dicrete choice model. We aim

to maximize the profit,

( n
max II(x)=E aj(x - cj)pj(x) (3.1)

where the constants ai > 0 and ci E R represent a profit margin and marginal

production cost specific to each product i. The function pi(x) denotes the demand

for product i as a function of all the prices. We denote the fraction of customers opting

not to make a purchase by pn+1(X) = 1-- 1 pi(x). Because the choice probabilities

arising from the NL model are non-zero, the vector obtained by appending to no-

purchase probability lies on the interior of the (n + 1)-dimensional simplex:

1-) = E An1 =u E Rn+1: ui= 1,and ui > 0 Vi}, (3.2)
Lpn+1 =1)
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Because the last coordinate of p is redundant, we also write p E An+1 for simplicity.1

We assume that the non-empty feasible set of price vectors, X C R", is defined

by constraints of the form

gj(p(x)) ; 0, j = 1,..., J, and hk(p(x)) = 0, k = 1,..., K,

where each gj(.) is convex and each hk(-) is linear terms of the vector of demands

p(x) the seller will serve. For example, inventory constraints, production capacity

limits and minimum sales targets are often linear contraints in terms of the demand.

Unfortunately, the profit H(x) is generally not a concave (nor quasi-concave) function

of x, and X is generally not a convex set, even if we limit our attention to the

special case of the multinomial logit (MNL) model. (See Chapter 2 and, in particular,

Appendix A.2.)

We prefer to solve the equivalent, more natural, optimization problem over the

vector of choice probabilities p,

f n
max fl(p) = Za(xi -ci)p (3.3)

pE =1)

where, by a slight abuse of notation, 1(p) denotes the profit as a function of the

market shares. Because we have assumed that X is defined by convex constraints in

terms of p, the feasible region P C An+1 is a nonempty convex set. We will show

that the mapping between x and p is invertible. Specifically, under NL models, the

function p : R" -+ An+i mapping x to p is one-to-one and onto.

In Section 3.7 we derive a sufficient condition on the parameters of the NL model

that guarantees strict concavity of H(p) over its entire domain. In particular, if

this condition is satisfied, the optimal choice probabilities p*, and the corresponding

prices x*, are unique. Concave maximization problems over convex feasible regions

can be efficiently solved in practice with general-purpose algorithms, provided that

the gradient and Hessian of the objective function can be computed efficiently. 2

'Strictly speaking, p E {v E R"~ :Z_1 vi < 1, and vi > 0,Vi}. The bijection with An+1 is clear.
2One can safely optimize over the closure of An+, to avoid having to represent the strict positivity
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More generally, H(p) may not be concave. In Section 3.8 we consider an important

subclass of unconstrained (X = R" and P = A,+,) profit maximization problems

considered in the recent revenue management literature [51, 36, 20]. We propose an

intuitive decomposition for this special case. Our algorithm converges to a stationary

point of H(p), which is globally optimal if the sufficient condition is satisfied. Even

if the condition is violated, our experience and the results in Chapter 5 of this thesis

lead us to believe that the stationary point is in fact unique, and therefore a global

maximum. Our method solves a set of convex optimization problems via simple line

searches on each iteration, so no general-purpose solver is needed.

We present the NL model in Section 3.2, review related results in Section 3.3, and

verify the invertibility of the NL demand model in Section 3.5. In Section 3.6 we

derive the Jacobian matrix of the prices and state a useful property.

3.2 The Nested Logit (NL) Model

In the NL model, products are partitioned into M nests, each represented by a sep-

arate MNL model. An arriving customer first chooses a nest (with probabilities

depending on the prices), and then chooses according the the MNL model in that

nest. For example, a traveler booking a flight may first choose a destination airport,

and then a flight time.

The attraction of each product is

yj = expidi - bizi}, i = 1, ...,In,

where the quality parameter di E R represents the inherent desirability of product

i, and bi > 0 governs how sensitive customers are to changes in its price. For the

example of an airline booking, a mid-day flight might be less popular, but may tend

to draw more price-sensitive travelers. It would have smaller di and larger bi than the

flight with the earlier arrival time. The attraction of the (n + 1)h choice representing

constraints. See the proof of Corollary 3.6.
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the no-purchase alternative is set to yn+1 = eo= 1 without loss of generality, because

all the yi can be scaled without affecting the choice probabilities.3.

The choice probabilities for nest m E {1, 2,... , M}, and the conditional choice

probabilities for each product i E {1, 2, ... , n + 1} once a nest has been chosen are,

respectively,

Q (and pi A = imG(y) 'Pm ni_1 AImZ3-1 caimYj

The indicator variable aim E {0, 1} is equal to one if and only if product i is in

nest m. Within each nest m, the scale parameter pm > 1 determines how sharply the

demand shifts from one product to the other as prices vary. If all the scale parameters

are pm = 1, it is as if there were only a single nest. (The NL reduces to the MNL

model.) If the scale parameters are large, a small change in the attraction yi can lead

to a drastic change in the demand piIm. To see this, notice that the parameter Pm

scales the price sensitivity parameters bi (as well as the quality parameters di) in the

numerator of pilm,
yAm - exp {Ipm(di - bix)}.

The denominator in the expression for Qm is the normalizing factor

1
M /n+1 M

G(y)= ( anjmym) (3.4)
m=1 j=1

We denote the unique nest containing product i by mi, such that mi = m aim =

1 - pilm > 0. The demand for product i is

M

= ZpimQm =pi imi Qmi-
m=1

3This fact is easily verified for the NL model. It follows from homogeneity of the choice probabili-
ties in terms of the vector containing all the yj values. We further discuss this property in Chapter 4
of this thesis, when we consider the class of GEV models.
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The nest probabilities in terms of p are

n+1 n+1 1+1 n+1

Qm m  m E imPilm ZY imPilmQm=Zaimpi. (3.5)
(~i= n)=1Qi= i=1

For clarity, denote the nest containing the outside alternative by m* = mn+1. Unlike

some authors, we allow the nest m* to contain any number of products in addition to

the no-purchase option (n + 1). Therefore our model is more general than those from

the existing work on pricing under NL models.4 It, captures any NL model satisfying

the classical definition from statistics, without imposing additional assumptions on

the nesting structure. Clearly, the values of y1, . . . , yni+, the nest probabilities Qm,

and the choice probabilities pi are all strictly positive.

The NL model belongs to class of generalized extreme value (GEV) discrete choice

models. The choice probabilities above can also be defined in terms of the partial

derivatives of the function G(y) defined in (3.4), which is termed the GEV generating

function for the NL model. We employ this definition in the proof of Lemma 3.1.

Other GEV models include the cross-nested logit (CNL) discussed in Chapter 5, where

the parameters aim are allowed to take on fractional values, and the network GEV

model proposed by Daly and Bierlaire [19] for more complex nesting structures.

We defer some of the formal proofs that apply to all GEV models to Chapter 4.

Restricting our attention to NL models in this chapter allows for a simpler develop-

ment and stronger results in this special case. In fact, the recent work on revenue

management under customer choice only considers an even more restricted class of

NL models.

3.3 Literature Review: Pricing under the NL Model

Li and Huh [51] showed that if the outside alternative is contained in a nest of its own,

and if the price sensitivity parameters bi are all equal for products within each nest,

then the profit is concave in p. While the price sensitivity of a given consumer may

'See the literature review in Section 3.3. We present novel results under the common but restric-
tive assumption that next m* contains only the no-purchase option in Section 3.8.
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be constant across products, the price sensitivity usually varies across a population.

Meanwhile, all consumers are free to purchase products in any nest. Therefore, when

fitting NL models to data, it is natural to allow the parameters bi, . . . , b" to vary

across products without regard for the nesting structure.' Their values can vary

significantly in practice.

Gallego and Wang [36] show that concavity of the profit persists if the price

sensitivity parameters satisfy

max < ym (3.6)
{i,jjmi=m,=m} b- pm - 1

for the products within each nest m. Therefore, when p-tm > 1 is close to 1, the

sensitivity parameter of products in nest m may differ significantly. Of course, as all

the im approach 1, the NL reduces to the MNL model, for which we have already

established concavity under any bi values in Chapter 2. Even for moderate values

of the p'm, say pm = 5, the condition (3.6) restricts the ratio between the bi to be

less than i. Therefore this result represents only a slight generalization for practical4.

problem instances.

In constrast to both results, we impose no restriction on the nesting structure and

show that the profit remains concave when the ratios bi/bj are less than 2 regardless of

the scale parameters i,... , pM. Therefore, we allow for drastic changes in demand as

the prices vary, and we represent substitution behavior that is substantially different

than under MNL models, by allowing for large values of the pm parameters.

Li and Huh [51] also suggest a bisection root-finding algorithm to find the (unique

and optimal, under their assumptions) stationary point of the profit. Gallego and

Wang [36] decompose the pricing problem into individual non-concave pricing prob-

lems for each nest. They observe that the subproblems may have multiple local

5This observation is even more applicable to MNL models because they do not represent any
nesting structure at all. It is somewhat less applicable to CNL models, which have more parameters
and explicitly allow for the products to belong to multiple nests. For MMNL models, it is indeed
customary to chose a fixed price-sensitivity for all products, for each component of the mixture

(see Chapter 5). However, because NL models have many fewer parameters than MMNL models,
assuming a fixed price-sensitivity within each nest is restrictive.
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maxima when their concavity condition is violated. For the model they consider, we

use a different decomposition in terms of the conditional choice probabilities pi.

Our method computes the unique solutions of concave maximization problems via

line searches at each step. When appropriately expressed, the profit is biconcave for

any price sensitivity parameters bi and any scale parameters pm > 1. We apply

results from the survey of Gorski et al. [39] on the optimization of such functions.

Because the sub-problems are always concave, our algorithm is simpler, more reliable

and more efficient in practice than that of Gallego and Wang [36]. It always con-

verges to a stationary point of the profit. This is the unique global maximum when

the ratios bi/bj are less than 2. In practice, our algorithm for this special case appears

to converge to a global maximum for any price sensitivity parameters bi (under the

restrictive assumption on the nesting structure).

There is also some work on assortment optimization under NL models, where the

seller selects the most profitable subset to offer customers from a (usually large) set

of potential products with fixed prices. Davis et al. [20] show that this problem is

polynomially solvable when the outside alternative is in its own nest, but becomes NP-

hard under a variant of the NL with a separate no-purchase option within each nest.6

In principle, one could create multiple copies of each product in the pricing problem

to represent discretized prices, and then solve the assortment optimization problem

with constraints to ensure that a single price is chosen for each product. Gallego

and Topaloglu [35] show that the assortment optimization problem remains tractable

under per-nest cardinality and space constraints (via an approximation algorithm in

the latter case). However, they suggest a hybrid pricing-assortment problem rather

than pursue a discretization of prices.
6 The general NL model with the no-purchase option in any single nest seems somewhat less rele-

vant in this setting, but it is not clear to us whether assortment optimization remains polynomially
solvable.
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3.4 Outline of the Proofs

In Section 3.5, Lemma 3.1 shows that the NL demand function is invertible. We

also show how the demand model can be adjusted to take into account varying profit

margins and production costs for different products. The profit can be expressed as

U(p) = pTz, where z is the vector of adjusted prices.

In Section 3.6, we characterize the Jacobian matrix of the prices z with respect

to the demands p as a negative inverse M-matrix (Proposition 3.3). We then obtain

a closed-form expression for the Jacobian (Lemma 3.4).

Section 3.7 is devoted to showing concavity of the profit H(p). Having computed

the Jacobian of the prices, we obtain a closed-form expression for the Hessian matrix of

P(p) (Proposition B.1, Lemma B.2 and Lemma B.3 in the appendix). In Theorem 3.5

and Corollary 3.6, we show that the Hessian is negative definite and the profit is

strictly concave when the ratio between the price sensitivity parameters is bounded by

2. Under this condition, the constrained pricing problem can be solved to optimality

by using a general purpose nonlinear solver, along with our closed-form expressions

for the gradient and Hessian of the profit.

In Section 3.8, we consider the special case where the no-purchase alternative is in

a nest by itself (Assumption 3.7). We show that stating the pricing problem in terms

of the conditional choice probabilities within each nest results in a biconcave profit

function fl(pim, Qm ) (Lemma 3.9). Lemmas 3.11 and 3.12 define the steps of the

alternating convex search (ACS) algorithm to maximize such functions. Theorem 3.13

proves that the algorithm converges to a stationary point, and Corollary 3.14 states

that this stationary point is the global maximum, when the ratio between the price

sensitivity parameters is bounded by 2. We expect this algorithm to be simpler

to implement and more effective in practice than using a general purpose nonlinear

solver, when it is applicable, because it quickly solves concave maximization sub-

problems in nearly closed-form at each iteration.
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3.5 Inverting the NL Demand Function

We begin by showing that the demand function under NL models is in fact invertible.

The proof is substantially more complicated than for the GA models of Chapter 2,

and has not appeared in the literature, to our knowledge. 7 We will extend the result

to the entire family of GEV models in Chapter 4, but even Lemma 3.1 below relies

on the GEV generating function G(y) for NL models defined in (3.4).

What distinguishes NL models from CNL and more general GEV models is that

we can recover a closed-form expression for each yi in terms of the choice probabilities

p. Because y, is a strictly decreasing function of the price xi for each product i, we

can also uniquely recover the prices for any given choice probabilities in closed form.

Lemma 3.1. Under a NL model, for i = 1,...,n + 1,

1 1 _ 1 -

pilmi "em AmQ~
Yi = 11 1 - 1 _

Pn+1m*Q m* pn+1* Qm*Mm*

Therefore the demand function p :R"n -4 An+1 is invertible (one-to-one and onto).

Moreover, both p(-) and p- 1 (-) are differentiable.

Proof. See Appendix B.1.

Recall that m* = mn+1 is simply shorthand for the nest containing the no-purchase

option. The two expressions are equivalent because pi = piimQmi, Vi, under the NL

model. The first one allows us to decompose the profit maximization problem in

terms of the conditional choice probabilities. The second one is useful when directly

optimizing over p. Both can be used to obtain closed-form expressions for the price

xi. But first, we adjust the parameters of the demand model in order to lighten the

notation.
7Gallego and Wang [36] do re-express the prices in terms of the demands, but they rely on their

more restrictive assumption on the nesting structure and their condition (3.6). They make no claims
about invertibility in general.
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3.5.1 Accounting for Profit Margins and Production Costs

We define the adjusted price vector z C Rn by

zi A ai(zi - ci),

The profit simplifies to
n

II(p) = p'z = Epizi.
i=1

If, for every product i, ai = 1 and ci = 0, then z = x. In general, the NL model

can be equivalently expressed in terms of the modified price vector z. The choice

probabilities depend on x only through the variables, for i = 1, ... n,

yi = edi-bixs = exp di - bi + ci = exp (di - bici) - z = ed'bzi, (3.7)
ae a

where we have substitted xi = yLzi + ci, and defined

d - bici, and b'A a.

Our results do not depend on the cost parameters ci,

when the profit margins differ from 1. It is convenient

with the values of b' on the diagonal. That is, we let

B diag ([b 1 b2  bnD
\[a 1 a2 an]

b
al

0

0

but some care will be required

to define the matrix B E R"n"

0 ... 0

b> ... O

0 ---

denote the matrix with the b' on the diagonal.

In the case where the profit margins a and the price sensitivity parameters bi are

the same for all the products i = 1,... , n, the matrix B is simply a multiple of the

identity matrix. In fact, since the units of the prices x are arbitrary, we may assume

without loss of generality that B = I. Our later results will depend on how much
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the actual problem parameters differ from this "ideal" situation. We remark that it

may be realistic to require equal profit margins and price sensitivity across products

in some settings.

3.5.2 Recovering the Prices

From Equation (3.7) and Lemma 3.1, the adjusted price of product i < n is

1
zi = 1 (d, - log yi)

1

b

b'l

d'

d't

1 1Q m- I log pilm, + log Pn+11m.n - log Qm: )
pmi p-m. QM.

1 log pi -
pm

1
+- log Pn+1

1) log Qm ,
pmi

(3.8)

(3.9)
(1

+11- log Qm.
pm*

The original price xi is obtained straightforwardly from the definition of zi.

3.6 The Jacobian of the Prices

We define the Jacobian 8 matrix of (adjusted) prices with respect to p,

Jz=

(9Z1 QZ2 ... aZ.
Op1 9i P

d'P2 19P249P2

.Ozi 4z2
OPn

8Throughout this thesis, we use the denominator layout notation convention, also known as the
Hessian formulation or simply gradient notation. Gradients are expressed as column vectors, and
each column of a Jacobian matrix is a gradient. For example, the first column of J. is the gradient
a, of the scalar z 1 with respect to the vector p. It is layed out according to the denominator, whichap
is the column vector p in this case.
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Applying the product rule of vector calculus, the gradient of the profit H(p) = pTz

is the column vector

ap 8pi

We will use an explicit expression for Jz.

that the profit function is often concave.

an
6P1

an
4P2 z + Jzp-

ani

an

and a property of its inverse J;1 to show

3.6.1 Substitutable products and M-matrices

The Jacobian of the demands with respect to the prices is J.' by the inverse function

theorem of multivariate calculus. Without computing

easy to see that the matrix must have sign pattern

J-1- [
z Pi

Opi
Dzi

ap19
4z 2

4z 3

191
O1zn

(P 2
azi
19P2
4z 2

1P2
4z 3

OP2
,9Zn.

19P3

i9Z2

-P3
0z3

1P3

(9z2

19pn
azi

(z 2

Opn

Ozn

the derivatives explicitly9 , it is

+

+ +

+

That is, for each row (product) i, increasing the price zi leads to a decrease in pi and

an increase in pj, j 7 i. The no-purchase probabilitiy, Pn+1,

other hand, the sum of the choice probabilities remains one,

of their changes is zero. Then each row of Jz 1 must sum to

also increases. On the

and therefore the sum

<P 0,
j=1 z

because we have omitted the positive term 8pn+1/azj. But then, J; 1 must be strictly

diagonally dominant. This in turn implies that every principal submatrix is also

9 We do so in Section 4.7 of Chapter 4 of this thesis, for general GEV models.
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diagonally dominant, and that every principal minor is negative. A matrix with this

last property and the sign pattern of J.-1 is the negation of an M-matrix.

Definition 3.2. An M-matrix is a square nonsingular matrix with non-positive off-

diagonal entries and all principal minors positive. In particular, a strictly diagonally-

dominant matrix with positive diagonal entries and non-positive off-diagonal entries

is an M-matrix. We also define inverse M-, negative M- and negative inverse M-

matrices as the classes of inverses, negations and negated inverses of M-matrices.

We will use some well-known facts about M-matrices and their inverses:

" The transpose of an M-matrix is also an M matrix.

" Scaling an M-matrix by a positive diagonal matrix yields an M-matrix.

" An inverse M-matrix is positive-definite.

" All the entries of an inverse M-matrix are non-negative.

We refer the interested reader to the recent survey by Johnson and Smith [43] for

proofs. The following proposition characterizing J, will suffice to prove our main

result in Theorem 3.5.

Proposition 3.3. The Jacobian J, is a negative inverse M-matrix. Consequently,

J, is negative-definite and has non-positive entries. The same holds for the negative

inverse M-matrices J.E and EJT where E is any strictly positive diagonal matrix.

Proof. A formal proof that J, 1 is the negation of a diagonally-dominant M-matrix

under the entire class of GEV models is given in Proposition 4.17. The class of inverse

M-matrices is closed under transposition and positive diagonal scaling [43, Theorems

1.2.2 and 1.2.3]. It is well-known that inverse M-matrices are positive definite and

have non-negative entries [43, Theorem 1.1].

3.6.2 Deriving the Jacobian

The second expression in Lemma 3.1 is a simple function of pi, pn+, Qmi and Qm*.

These are in turn all affine functions of the vector p by their definitions. Then the
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partial derivatives Byj /Opi can be obtained using the chain rule from vector calculus.

Because zj is differentiable with respect to yj, the matrix J. can be obtained by again

applying the chain rule. We obtain a simple expression for J., but we must first define

the intermediate Jacobian matrices.

Recall that the vector p defined in (3.2) is simply the vector p with the no-

purchase probability Pn+1 in the last coordinate. That is, writing en+1 for the vector

of all zeros except for a 1 in the last coordinate, and writing e for the vector of all

ones,

[0] + 1 p = en++ MTp
1 -eT

where M the Jacobian matrix of p with respect to p, and can be written as

M I [i -e] E {-1, 0, 1}nx(n+)

We define the vector Qm = Q,... , QM] of nest probabilities. Summing up the

probabilities within each nest, and from (3.5), this vector may be written as

Q1 i1 Cei1pi
QM i

02 n+11 aipi r

.QMj Zi=i il

where the incidence matrix of products to nests,

N A [aim] . {0, 1}nxM

is also the Jacobian of the vector of nest probabilities Qm with respect to p.

As an example, if there are n = 4 products in M = 2 nests, with the (n + 1)th
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no-purchase option belonging to the second nest, we may have

1 0
1 0 0 0 -1

1 0

M 0 1 0 0 -1 1R4x5  and N= 0 1 E R 5x2

0 0 1 0 -1
0 1

0 0 0 1 -1
0 1

Lemma 3.4. Let P E R(n+l)x(n+1) and Q E Rm *m be the positive diagonal matrices

with the probabilities p and Q1,... , Qm on their respective diagonals. Define the

diagonal matrices of parameters U e R(n+1)x(n+1) and V E RMxM with entries

- 11
Ui= > 0 and Vmm =1 > 0.

Then the partial derivatives of z with respect to p are

J z - -M (UP- 1 + NVQ-NT) MTB-.

Proof. See Appendix B.2.

The inner factors UP~ and VQ- 1 are non-negative diagonal matrices. If all

the (adjusted) price sensitivities are equal to one, B = I, and it is easy to see that

the Jacobian matrix is symmetric negative definite. By Proposition 3.3, it remains

negative-definite regardless of the profit margins and price sensitivity parameters.

That is, the Jacobian matrix remains negative-definite despite the arbitrary positive

diagonal scaling by B- 1 because it is a negative inverse M-matrix.

3.7 Concavity of the Profit Function

Differentiating the gradient of H(p) again, we obtain an expression for the Hessian

matrix of the profit. The derivation involves several steps, and is relegated to Ap-

pendix B.3.4

67



It is convenient to extend the matrix of price-sensitivity parameters with an (n +

i)th entry corresponding to the no-purchase alternative. We will primarily be dealing

with the matrix B- 1 that appears in the expression for J,. We let

B-1 0

0T b-1
n+1_

with the negative last entry set to

_na 1 -e TB-1pb- _ ___eT p
n+1 - 1: =P

Pn+1 = bi Pn+1

This can be seen as a type of average of the inverse price-sensitivity parameters,

though it is scaled by -p- 1 . Note that bn+1 changes with p unlike the true price

sensitivity parameters b, ... , bn. We can now write the Hessian of H(p), and provide

a sufficent condition ensuring that it is negative definite.

Theorem 3.5. Under NL models, the Hessian of fl(p) is

H = J, + J, - Jz

where

i, = -M (UP-15- 1 + NQ-lWNT) MT.

and the matrix W is related to V by

W = VNT53-PNQ-1.

If - b'1, b', ... , b' < 1, then f1(p) is strictly concave.

Proof. See Appendix B.3.4.

The symmetric matrix , is similar to the negative-definite matrix J., except for

the presence of B-- with its negative last entry. If B- 1 were absent, the two terms

in the brackets would reduce to those of J, because NTPN = Q. Under the stated
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condition, we have that I B < I and i, is appropriately bounded by J, to ensure

that the sum H remains negative-definite.

More generally, if the ratio between the adjusted price sensitivity parameters is

at most two, then the maximum of the pricing problem is unique.

Corollary 3.6. If the price sensitivity parameters and the profit margins satisfy

arb
max < 2

1<i,j<_n biaj

then the solution p* = p(x*) of problem (3.3), and the corresponding solution x* of

problem (3.1) exist and are unique.

Moreover, if the problem is unconstrained, that is, if P = An+1 , then p* is the

unique stationary point of the profit.

Proof. We may consider the equivalent problem with the scaled price vector 'yz, and

the adjusted price sensitivity parameters 7-l b', for the scalar -y > 0 such that the

assumption of Theorem 3.5 is satisfied. This has no impact on the choice model

because the prices affect it only through the y, variables. The profit pTz is simply

scaled by -y along with the prices. A strictly concave function has at most one local

maximum, which is also global.

Showing that the maximum exists is slightly complicated because the domain of

H(p) is open, and the price zi may become infinite if the choice probability pi goes

to zero. Suppose first that there are no constraints and that P = An+1 . Consider

the continuous extension of fl(p) over the closure of An+1 . Then a maximizer of the

continuous function exists over the closed and bounded domain. We need only show

that the maximum does not lie on the boundary.

For any product i = 1, ... n, as pi -* 0, we also have that yi -+ 0 by the second

equality of Lemma 3.1. But then zi -+ oo from equation (3.9), while the other prices

remain finite. Thus once the price becomes sufficiently large, it will be profitable to

shift some demand from other products to product i. But this precisely implies that

pi > 0. Since this holds for all products, none of the choice probabilities can be zero

at optimality.
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In the constrained case, P is non-empty and convex by assumption. Because the

constraints in terms of p define a closed set, taking the closure of P only adds points

from the boundary of the simplex. The argument therefore carries through, except

that the optimal solution may no longer be a stationary point of the unconstrained

profit if any of the constraints in terms of p are active at optimality. El

In practice, we note that the solution of the optimal solution of the pricing problem

appears to remain unique even when the condition of Corollary 3.6 is substantially vi-

olated. This is to be expected, because we have used the negative M-matrix property

to show that the Hessian is negative-definite. This a sufficient but certainly not nec-

essary condition. Moreover, concavity is also a sufficient but not necessary condition

for the uniqueness of local maxima. It remains an open question to determine exactly

under what circumstances the profit II(p) is concave, and under what circumstatnces

it has a unique local maximizer.

3.8 A Separate Nest for the Outside Alternative

In this section we develop an intuitive decomposition of the NL pricing problem for

the special case captured by the following assumption (without constraining the value

of the ai, bi and pi parameters). We refer to the existing literature for its practical

justification [51, 36, 20, 35].

Assumption 3.7. The no-purchase option with index i = (n+ 1) is the unique choice

in nest m* = m,±1 = M. That is, for any product i = 1, .. , n, the indicator variable

aim. = 0 is zero and mi # m*.

This assumption could be relaxed somewhat: if the scale parameter for the nest

m* is minimal, such that pm ;> pm.,Vm, then the two subproblems (3.13) and (3.14)

described below remain concave. However, the objective of (3.14) is no longer sepa-

rable over nests, and the development would be more complicated.
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3.8.1 The Profit as a Biconcave Function

Under Assumption 3.7, we have that pn+11m. = 1. Then the price of product i in

Equation (3.8) of Section 3.5.2 simplifies to

zi = ( - 1 log pilmi - log -

The profit in terms of the vector of conditional choice probabilities pim E R" and the

vector of nest choice probabilities Qm = [Q1, Q2,..., QMI is then

n n M

Hl(Pim, QM) = E pizi = EPimjQm Zi = Qm  E pilm zi
i=1 i=1 m=1 i:mi=m

=E QM Em AIM d% log piim - log
M=1 i:mi=m /-m QM.

The profit is a biconcave function:

Definition 3.8 (Adapted from [39]). A function f : S x T -+ R on the cartesian

product of convex sets S and T is called biconcave if f,(-) A f(s,-) : T -* R and

ft(-) A f(-, t) : S -+ R are both concave functions on their domain.

The concept can be generalized to functions defined on biconvex sets, which need

not be cartesian products.'The original vector pair (p, q) belongs to such a set.10 We

prefer the expression of H(pim, Qm) because the theoretical results for optimization

over general biconvex sets are weaker than for optimization over cartesian products.

We verify our claim:

Lemma 3.9. Under Assumption 3.7, the profit

f(Pim, Qm) : (S x T) + R

1oFixing the value of q = q* is equivalent to the convex constraint NT1p = q*. Fixing the value
of p constrains q to a single point. Therefore the feasible region remains convex when one of the
two quantities is fixed. This corresponds to the definition of a biconvex set.
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is a biconcave function on the cartesian product of the convex sets

S = Al, X An 2 X -.. X An, and T = AM,

where nm = |{i : mi = m}I is the number of products in nest m.

Proof. Fixing either set of variables yields an optimization problem with terms of the

form
x

f(x,y) = x log -.
y

The gradient and Hessian matrix are

1 + log "
Vf (x, y) = " and V 2 f(x, y) = [ .

For x, y > 0, the Hessian is a symmetric matrix with positive trace and a determinant

of zero. Therefore, one eigenvalue is zero and the other is real and positive. Then the

Hessian is positive-semidefinite, and f(x, y) is convex on the strictly positive orthant.

Its negation, -f(x, y) is concave.

We may rearrange the terms of the profit as

flI(Pjm) QMn)E
m

In
Qm /PiImn logPilmj1 A M 1 9 IM

(3.11)(i: Em~~ - i:m E~~ir lOPim )

with appropriately defined variables 6zm and #im. If the value of Qm is held fixed,

l(-, Qm) is a sum of linear terms and terms of the form -f (piimi, 1). Therefore it is
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concave. On the other hand, we can also rearrange the terms of the profit as

H(PIm,Qm)= Qm p bAIm d'-
m t:mi=m

I log piim

QMQm log m

(3.12)

m \i:mi=m /

= Om6m - 1:1 M log QM,

with appropriately defined variables 6m and #m. If the value of pim is held constant,

H(pim, -) is a sum of linear terms and terms of the form -f(Qm, Qm.). Therefore it

El

3.8.2 The Alternating Convex Search Algorithm (ACS)

Because H(pim, Qm) is also differentiable, its stationary points correspond exactly

with its partial optima [39, Corollary 4.3], where both sub-functions are maximized.

Definition 3.10. Let f : S x T -+ R be a given function. Then for s* E S, t* E T,

(s*, t*) is called a partial optimum of f on S x T if

f(s*, t*) f(s, t*), Vs E S and f(s* t*) > f(s*,t), Vt E T.

The following alternating convex search (ACS) algorithm suggests itself:

1. Set k = 0 and choose a starting point (p7m, Qm
0 ) E S X AM.

2. Let

Qmk+1 - arg max H(p+ 1, QM)
QmEAm 

I

4. Let

P +1 = arg max f(pim, Qmk).
PimES

4. Stop if a convergence criterion is met, or increment k and go to step 2.
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The order of steps 2 and 3 is arbitrary. In light of Theorem 3.13 below, the algorithm

could be terminated when the change in the solutions from one iteration to the next

becomes small. We now show that both problems admit easily computed unique

solutions, and that the algorithm converges to the set of stationary points.

3.8.3 Solving the Convex Subproblems

On each iteration, we need only find the roots of (M + 1) strictly decreasing functions

of one variable. They correspond to each of the M nest, and to the choice over nests.

As might be expected, the subproblems are essentially profit maximization problems

for a (single-nest) MNL model.

It is natural to express the solutions in terms of "prices" for each nest Z1,... ZM,

and "prices" for each product z,mi, Z2,m 2 , ... , znMn. (The latter variables are sub-

scripted with the nest of each product because zi,m, arises from the m h subproblem.)

At optimality, within the subproblems, all the Zm (or zilm) are determined by one

variable A (or Am) representing the price markup. Such an interpretation is known for

the unconstrained MNL model [31] and a similar interpretation of the actual prices

x is has been pursued for the NL model [51, 36].

The next two lemmas give the unique optimal solutions for the subproblems.

Their proofs are closely related, but differ because the optimization over pim does

not involve a denominator inside the logarithms.

Lemma 3.11. The solution of (3.13) is given by

Qk+1 = e OMz. V Qk+1
m 1+EM eez' Vm> 0, andm7 n 1+ EzA e--kZk'

where we define the nest prices Z1,. . . , ZM by

1
Zm = A + 1- m,fom
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and where A is the uniqe root of the strictly decreasing function

FQ(A) = 1 e-mZm.

m>O m

Proof. Consider the objective function of (3.13), given explicitly in (3.12). A max-

imum exists because we may consider the continuous extension of II(pim, -) on the

compact closure of AM [see 14, Appendix A.3.3]. Moreover, Qm > 0 at the maximum

because a term of the gradient Vf(x, y) in (3.10) goes to negative infinity as either

of the variables approaches zero. Therefore we can effectively ignore the positivity

constraints at the optimum.

Suppose without loss of generality that m* = M is the last nest. Assigning dual

variable A to the simplex constraint

Qm=1
m=1

and referring to (3.10), the necessary KKT optimality conditions obtained by differ-

entiating with respect to each of Q1,. .. , QM = Qm* are

1 QQm
6m - 1 + log Q - A = 0, m=1,..., M - 1

1 Q
m -A=0

Solving the first set of equations gives Qm/Qm* = emZm, m = 1,... ,M - 1. Com-

bining these equations with the simplex constraint, and substituting them into the

last KKT condition yields the result. FQ(A) is strictly decreasing in A because each

term is.

Lemma 3.12. The solution of (3.14) is given by, for each i = 1,... ,n and m = mi,

k+1 = e-timzim
Pilmi e
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where we define the conditional prices for each product by

1
Zim = Am + - 6 im, i=1,...,n, m = mi

and where Am,m = 1,..., M are the unique solutions of the strictly decreasing func-

tions

Fp,m(Am) = Zeimzim - 1.
m>0

Proof. The objective function (3.11) is separable over nests m = 1,..., M. The

problem for each nest is similar to the one we have already solved in Lemma 3.11.

We consider a slightly modified version of that problem.

Fix the value of Qm- = QM = 1 and replace the simplex constraint with

M-1

EZQm=1
m=1

We recover the same form as the terms of the objective function (3.11). The KKT

conditions from Lemma 3.11 simplify to

Jm - 1 1 + log QM - A = 0, M= 1,) M - 1,#m ( QM) /

where QM = 1 is constant. Solving, for Qm, we obtain

Qm = exp #m m - 1- A) emzm.

From the new simplex constraint, we obtain

F(A) = Ee-mzm - 1,
m>O

with each term strictly decreasing in A.

Now, consider the mth term of (3.11). The conclusion follows by respectively

equating the quantities nm, PiIm, /im, 6 im, Amzim and Fp,(-) indexed by i in the

statement, with the quantities M, Qm, 3m, om, A, Zm and F(-) indexed by m in the
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proof.

3.8.4 Convergence of the ACS Algorithm

The ACS algorithm is known to converge to stationary points of biconcave functions

under mild conditions. If the stationary point is unique and corresponds to the global

maximum, then the ACS algorithm necessarily converges to the global maximum.

When the condition of Theorem 3.5 is satisfied, the profit function H(p) is strictly

concave in p and its unique stationary point is the global maximum. We show that

the biconcave profit function H(pim, Qm ) then also has a unique stationary point

corresponding to the global maximum. This is despite the fact that it is not generally

jointly concave in pim and Qm.

Theorem 3.13. The sequence of points generated by the ACS algorithm is a Cauchy

sequence, and its accumulation points form a connected, compact set of stationary

points of the profit Ul(plm, Qm ).

Proof. Because the unique optimal (3.13) and (3.14) are interior, we can equivalently

optimize over the respective closures of S and AM. Moreover, any partial optimum

is interior, and therefore a stationary point of the profit [39, Corollary 4.3]. Then

by [39, Theorem 4.9], the set of accumulation points (1) is nonempty, (2) consists of

partial optima with the same value of H(pim, Qm), and (3) is a connected, compact

set. Moreover, by the same theorem, the sequence is Cauchy. l

Corollary 3.14. If the price sensitivity parameters and the profit margins satisfy the

condition of Corollary 3.6, namely

arb
max a j< 27

1<ij n biaj

then the sequence of points generated by the ACS algorithm converges to the unique

solution of the pricing problem (3.1) with P = .

Proof. Any improvement direction from a point p E An maps to an improvement
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direction from the corresponding point (pim, Qm) E S x Am and vice-versa. Therefore

every stationary point of 1I(pim , Qm ) corresponds to a stationary point of H(p).

By Corollary 3.6, the sationary point of the profit H(p) in (3.3) is unique, and it

is the global maximum. Then by Theorem 3.13, the sequence of points converges to

the unique solution because the sequence is Cauchy and all of its accumulation points

corresponds to the global maximum. n

It remains an open question to characterize the speed of convergence of our algo-

rithm. In practice, the line searches at each step can be accomplished quickly, and

the overall convergence is much faster than when using a general-purpose solver to

maximize H over values of p. The ACS algorithm should be preffered when there are

no constraints to be enforced and when Assumption 3.7 is satisfied.

3.9 Conclusions

We showed that, under the NL model, the profit is a concave function of the market

shares if the ratios between the price sensitivity parameters are all less than two,

regardless of the scale parameters for each nest. We have derived simple expressions

for the gradient and the Hessian matrix of the profit as a function of the market

shares. They can be used with general purpose nonlinear optimization algorithms to

solve the constrained pricing problem. Our practical observations lead us to believe

that the profit remains concave even when our sufficient condition is significantly

violated. In Chapters 4 and 5 we explore different but related sufficient conditions for

the uniqueness of the optimal solution for the pricing problem under generalizations

of the NL model.

For the special case of the NL pricing problem where the outside alternative is in its

own nest and there are no constraints, we showed that iteratively solving the concave

MNL profit maximization sub-problems for each nest converges to a set of stationary

points of the profit. The subproblems can be solved by simple line searches for any

values of the price sensitivity parameters. If our concavity condition is satisfied, our

algorithm converges to the global optimum.
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Chapter 4

Pricing under GEV Demand

Models

4.1 Introduction

In this chapter, we consider the problem of selecting prices z 1 , Z 2 .. . , z" E R of n

substitutable products offered to customers whose purchasing behavior is modeled by

a discrete choice model from the family of generalized extreme value (GEV) models.

We have already discussed the pricing problem under the most common members of

this family, the multinomial logit (MNL) and nested logit (NL) model, in Chapters 2

and 3. However, our results thus far do not extend to the cross-nested logit (CNL) or

to more complex members of the family such as the network GEV model proposed

by Daly and Bierlaire [19]. We again consider the more convenient formulation in

terms of the probabilities Pi, P2, - - , pn that a customer purchases each product,

( n
max j(P) = pzi(p) (4.1)

PEAn+1

The prices zi(p) are expressed as a function of the vector of choice probabilities p

induced by the GEV model.

We contrast formulation (4.1) with formulation (3.3) for the special case of the

NL model. First, profit margins ai and marginal costs ci for each product i = 1, ... , n
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can be incorporated by letting zi(p) = ai(xi(p) - ci), where x1,... , x,, are the true

prices, and the parameters of the GEV model have been suitably adjusted. This is

described in Section 3.5.1 and generalizes in a straightforward manner. We work only

with the adjusted prices z in this chapter for clarity.

Second, we now consider only the unconstrained optimization problem over the

entire probability simplex An+1. This is because the profit is generally not a concave

function of p. Instead, we will propose a transformation that may not, in general,

preserve the convexity of the feasible region P considered in Chapter 3.

Because there is generally no closed-form expression for the prices zi in terms of

the vector p, we cannot generalize the approach taken for the NL model. Fortunately,

the choice probabilities under a GEV model are expressed in closed form. We will

apply a transformation to problem (4.1) that exploits their properties. Our main

contribution in this Chapter is to show that the objective function of the transformed

problem is almost concave when the sensitivities of customers to the prices of the

different products are sufficently close. However, the first issue we must address is

whether or not the demands are an invertible (one-to-one and onto) function of the

prices, so that we may restate the pricing problem in terms of the demands as we

have done for the special case of NL models.

First, we present the family of GEV models in Section 4.2. We review the relevant

literature on the models and the methods that we employ in Section 4.3. We verify

that the demand is indeed an invertible function of the prices for all GEV models in

Section 4.5. After presenting our main result in Section 4.6, we further discuss the

properties of the original profit function 11(p) in Section 4.7.

4.2 The Family of GEV Discrete Choice Models

We first define the model in general over n choices offered to customers, and then

adjust our notation to account for the presence of the (n+ I)th choice of not purchasing

anything. A GEV discrete choice model is characterized by a homogeneous GEV

generating function G : R" -+ R±. The class of such functions is defined below.
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Denote the partial derivative of G(y) with respect to to each entry yi of y by G(-).

The probability that each alternative i is chosen is given by

_yiGi(y).

pi(Z) = [ ,G(y) z = 1, . . (4.2)
pG(y)

The constant p is the degree of homogeneity of G, and is generally chosen to be A = 1.

The vector y represents the attraction of each product. We define

yi = exp{d' - b'zi}, i = 1, .. . , n, (4.3)

where the quality parameter d' C R represents the inherent desirability of product

i, and b' > 0 determines how sensitive customers are to changes in its price. (These

parameters may be adjusted to account for varying profit margins and production

costs across products, as described in Section 3.5.1.) The formal definition of G and

Euler's theorem, also stated below, ensure that the probabilities are positive and sum

to one.

Definition 4.1. A function G : R' -+ R+ is homogeneous of degree p if for all

y E Rn and for all A > 0, G(Ay) = A"G(y).

Definition 4.2. The function G: R' -+I R+ is a p-GEV generating function if

(i) G is homogeneous of degree y > 0,

(ii) G(y) > 0, Vy E RSn

(iii) limeo+ G(y) = oo, Vi = 1,. .. , n

(iv) the mixed partial derivatives of G exist and are continuous. Moreover, the kth

partial derivative with respect to k distinct yi is non-negative if k is odd and

non-positive if k is even.

The last part of the definition states that Gi(y) is non-negative, but that its

derivative with respect to yj, j 5 1 is non-positive. Roughly speaking, this implies

that the choice probability pi is non-negative and that it increases as the price zj
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increases (and yj decreases). We make the following additional technical assumption

on the demand model to ensure that all the demands are strictly positive for any

prices, like in the MNL, NL and CNL models 1. Recall that we have defined the

vector y > 0 such that it is always strictly positive in equation (4.3). We assume

that the partial derivatives Gi are also strictly positive.

Assumption 4.3. For each i = 1, ... , n, we have that yi > 0 - Gi(y) > 0.

The definition of G already requires that Gi(y) ;> 0 and that limdc. G(y) = oo.

This assumption eliminates the possibility that demand for a product i remains zero

based on some condition on the prices of the other products. It is a mild assumption

since it is satisfied even if the demand is positive but very small.

For concreteness, we state the GEV generating function for the models considered

in the other chapters of this thesis:

Example 4.4. Under the cross-nested logt (CNL) model,

M n Rm

G(y) = E E oA yAm,
m=1 j=1

with constant parameters aim E [0, 1] and pm > p such that Em aim = 1, for each i.

The nested logit (NL) model requires that each aim is either 0 or 1 . The multinomial

logit (MNL) model additionally requires that pm = p, Vm, effectively reducing the

function to the sum G(y) = Ei y of the attractions. The parameter p is redundant

for the MNL model, since it simply scales the parameters d' and b' defining each yi.

When y = 1, the function in Example 4.4 is a sum of weighted p-norms, which

are convex. However, we do not assume that G is a convex function in general. Some

authors [36, 20] have considered variants of the NL model that allow for "synergistic"

products through nest scale parameters pm < p = 1. These violate part (iv) of

the definition of G for the second partial derivatives2, so our results do not apply.

Roughly speaking, they may allow a choice probability pi to increase even when the

'This is obvious from Example 4.4 below
2Computed in the proof of Lemma 5.9.
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price z3 of a different product decreases. For simplicity, we do not pursue such an

extensions. If the NL model is deemed inappropriate, we would generally suggest

that a more powerful GEV model such as the CNL be used instead of attempting to

devise NL variants outside of the GEV class. GEV models allow for rich correlation

(including a certain "synergy") between products, without violating the assumption

that they are substitutes [77].

4.2.1 Euler's Theorem and Corollaries

We introduce additional notation for the partial derivatives of G. Let

OG 02 G 093G
Gi(y) = , Gi (y) = , and Giik(y) = .C

Also define the gradient, the Hessian, and the tensor of the third derivatives of G,

respectively, by,

g = [Gi]i, G = [Gij]j , and g = [Gijk]k.

The main tool used in our proofs is Euler's Theorem [56, Appendix B] and its well-

known Corollary 4.6. We apply it to the quantities we have just defined in Corol-

lary 4.7. In particular, this ensures that the choice probabilities sum to one.

Theorem 4.5 (Euler's Theorem [56]). Let G: RS - R+ be continuous and differen-

tiable on R++. Then G is homogeneous of degree p if and only if for all y E R +

n

pG(y) = y Gi(y),
i=1

where Gi(y) = is the ith partial derivative evaluated at y.
'9 yi Iy

3We use that Gij <; 0, i # j to show that the matrix G defined below is diagonally dominant.
This remains true if the off-diagonal Gij are positive but sufficiently small relative to the diagonal
elements Gii. We lose the M-matrix property of L-1 but not necessarily of Jz 1. Both matrices still
have all-positive principal minors (they are P-matrices.). Our results could potentially be extended.
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Corollary 4.6. Let G : R+ - R+ be continuous and twice differentiable on R++- If

G is homogeneous of degree p, then Gi(y) = is homogeneous of degree (jp - 1).

Proof. Differentiating both sides of the equality of Theorem 4.5 with respect to yj

n n

pGj (y) = Gj (y) + yj Gij(y) < (p - 1)Gj (y) = yGi(y).
i=1 i=1

Then by the second part of Theorem 4.5, Gj(y) is (p - 1) homogeneous.

Corollary 4.7. If G is a p-GEV generating function, then g, G, and g are homo-

geneous of degree (t p- 1), (At - 2) and (p - 3), componentwise, respectively, and

(i) yTg = > yjGj(y) = pG(y),

(ii) Gy(yTG)T = (p - 1)g,

(iii) y - g = (At - 2)G,

where (y -4) E Rxf denotes the tensor product with (i, j) component

( - 2)Gij = E Ykgijk.

k

Proof. Follows from Corollary 4.6 and from Theorem 4.5. l

4.2.2 Notation: Adding an Outside Alternative

Although we have defined the GEV model with n choices, we actually use a model

with (n + 1) alternatives for pricing, where the last option represents the possibility

that a customer decides not to purchase any of the products. We set yn1 = 1 without

loss of generality: by homogeneity, scaling all of the yi variables by A > 0 is the same

as scaling both the numerator and denominator in (4.2) by A, and has no impact on

the probabilities. Most of our proofs rely on the homogeneity of G(y). The major

difficulty arises because we have fixed the last coordinate in this manner, and the

resulting function G(yi,..., y,,) is no longer homogeneous in terms of the remaining

free variables Y1, .. . , yn .
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Throughout this chapter, we consider quantities related both to the vector p E R"

of choice probabilities, and the vector p E Rn+1 with the last component Pn+1. We

adopt the convention that quantities of dimension (n + 1) are marked with a bar.

We define the vectors y E R" and y E Rl+, and the corresponding matrices Y

and Y with the respective vectors on the diagonal. By a slight abuse of notation

we continue to write G(y) when it is clear that yn+1 is fixed. The notation defined

above for the partial derivatives of G(y) becomes g, O and g. We re-define quantities

g, G and g as the corresponding n-, n2- and n 3-dimensional quantities with (n + 1)th

components in each dimension removed, respectively. Care must be taken when

applying Corollary 4.7 and similar results, since they apply only to the former (n+ 1)-,

(n+ 1)2- and (n+ 1) 3-dimensional objects g, and 9 that include all the components.

Without regard for their dimension, we write I for the identity matrix, e for the

vector of all ones, and ey for the vector of all zeros with a 1 in the jth position. We

write diag (x) to denote the diagonal matrix with the vector x on the diagonal. That

is, for example, Y = diag (y) and Y = diag (y)

4.3 Literature Review: Pricing under GEV De-

mand Models

There has been no work, to our knowlege, on revenue management under GEV mod-

els in general. We refer the reader to Sections 2.1.1 and 3.3 for a discussion of work

on pricing under MNL and NL models, which belong to the GEV family. In Sec-

tion 5.2 we discuss work on pricing under mixed logit (MMNL) models. They further

generalize GEV models, in a sense, but they also give rise to profit functions with

potentially many local maxima.

Although our results in this section do not assume any particular GEV model,

the cross-nested logit (CNL) is of interest because it is a powerful but straightfor-

ward generalization of the NL model. CNL models are similar to the seemingly less

tractable MMNL models, in that they represent a set of nests, each containing all of
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the products. On the other hand, the nest probabilities in a CNL model depend on

the prices like for more restrictive NL models, and CNL models remain within the

GEV family unlike MMNL models. Both Gallego and Wang [36] and Davis et al. [20]

consider certain variants of the NL with a no-purchase option in each nest (for pricing

and assortment optimization, respectively). These variants may be thought of as CNL

instances with very limited cross-nesting. Unfortunately, the pricing problem under

these models requires solving equations for each nest with potentially non-unique

roots. The assortment problem, which consists of selecting a subset of products to

offer from a mene with fixed prices is NP-hard. Daly and Bierlaire [19] further gen-

eralize CNL models by allowing for a multi-level nesting structure, but focus only on

estimation. By exploiting the defining properties of the GEV family, we aim to solve

the pricing problem under all of these discrete choice models.

In Section 4.7, we will show that the demand function under GEV models satisfies

the univalence4 condition of Gale and Nikaido [30], so it is one-to-one (injective). This

result has been substantially generalized by Mas-Colell [54] and, recently, by Berry

et al. [8] for non-differentiable demand functions. Other conditions for univalence

are given by Fujisawa and Kuh [29], More [62], El Baz [24] and Frommer [28]. The

latter authors provide algorithms to evaluate the inverse demand function computa-

tionally, so that optimization over the market-shares is in fact practically possible.

Any of these injectivity results could potentially be applied to demand models out-

side the GEV family to yield a similar approach to ours. For the case of the GEV

model, we show that the demand is also surjective onto the interior of the probability

simplex, so it is not necessary to impose any additional constraints on the domain

when optimizing over market shares (demands). Mas-Colell [55, Proposition 2] gives

a general sufficient condition for the invertibility of linearly-homogeneous functions,

but imposes restrictions on their Jacobian at the boundary of the positive orthant,

which are violated in our case. We instead show surjectivity based on the necessary

optimality conditions of a certain auxiliary minimization problem.

4This term is synonymous with injectivity, but is traditionally used in economics to refer to this
specific result.
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Our transformation of the pricing maximization problem relies on an intermedi-

ate optimization problem defined by homogeneous functions. The duality result we

apply is a special case of the far more general family of such problems considered

by Lasserre and Hiriart-Urruty [47]. They use this approach to show that certain

nonconvex quadratic optimization problems can be reduced to convex minimization

problems. Our transformed problem has the nonlinear fractional programming form

considered by Dinkelbach [22], who shows that such problems have quasiconcave ob-

jectives when the numerator and denominator are concave and convex, respectively.

A concise survey of theoretical results for nonlinear fractional programs is provided by

Schaible and Shi [68]. Unfortunately, the numerator and denominator do not satisfy

the requirements for quasi-concavity in our case.

4.4 Outline of the Proofs

Like for the special cases of the MNL and NL models discussed in Chapters 2 and 3,

we proceed by first showing that the GEV demand function is invertible. We then

appropriately reformulate the pricing problem by using the inverse demand function,

and exploit the structure of the reformulation. However, the profit H is generally not

a concave function of the demand vector p, even for the CNL model. Instead, we

pursue a reformulation in terms of the unnormalized demands q, which are different

from but closely related to the demands p. As the name suggests, p is simply the

vector q normalized to yield a probability distribution (taking into account the no-

purchase probability pn+i).

Section 4.5 is concerned with the invertibility of the demand function. We charac-

terize the Jacobian matrix L of q with respect to y as an M-matrix by expressing

it in terms of the partial derivatives of the generating function G in (Lemma 4.8).'

This characterization is sufficient to show surjectivity of the demand function in The-

5In Chapter 3, we instead worked with the Jacobian matrix J, of z with respect to p and
obtained a closed form for the NL model. This is not possible in general, so we instead work
with the analogue of its inverse, the Jacobian matrix J;1 of p with respect to z. We also use the
unnormalized demands q instead of p. The vectors y and z are essentially interchangeable, since
their relationship is straighforward and there is a clear bijection between the two.
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orem 4.9, where the necessary optirmality conditions of an auxiliary minimization

problem are used to also show injectivity. This completes the proof that the demand

is invertible in that there is a bijection between z and p, and equivalently between

y and q. The characterization of L 1 also implies that the demand can be inverted

computationally using classical algorithms for solving nonlinear systems of equations.

We describe our reformulation in Section 4.6. The pricing problem expressed in

terms of q is a nonlinear fractional program with objective function

1(q) = 'IV(q)
pG(y(q))'

where TI(q) = qTz(q) is simply the unnormalized profit. Unfortunately, the pricing

problem is not a concave-convex fractional program, for which solution methods are

known. Nevertheless, in the proof of Theorem 4.10, we restate the pricing problem

as a homogeneous optimization problem and recover a parametric programming for-

mulation of the same form as is sometimes used to solve concave-convex fractional

programs. The objective function is parameterized by A > 0:

1(q) = I(q) - ApiG(y(q)).

The function F is decreasing in the parameter A. For the optimal value of A = A*,

maxq {F(q) = T(q) - A*pG(y(q))} = 0, and the solution corresponds to a solution

of the GEV pricing problem (4.1). Then being able to maximize F is sufficient to

find the optimal value of A via a line search. The proof relies on a duality result for

homogeneous problems, which we defer to Lemma 4.11 in order to keep the discussion

separate.

Using the expression for L 1 discussed above, we then derive an expression for

the Hessian matrix of the parametric programming objective function F with respect

to q in the sequence of Lemmas 4.12 through 4.14. A certain sub-stochastic matrix

that we denote by S plays an important role in the expression for the Hessian (as

well as the gradient) of the objective function. It is analyzed in Lemmas 4.15 and C.1

and used in the proof of the main result stated in Theorem 4.16. Specifically, we
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show that, if the ratio of the price-sensitivity parameters is bounded by two6 , then

the Hessian matrix of the parametric programming objective function consists of a

negative-definite matrix plus two correction terms. In computational experiments,

these terms are usually small, and therefore the objective function is usually concave.

Finally, in order to allow general-purpose nonlinear optimization algorithms to

be applied directly to GEV pricing problem, we derive the Jacobian matrix J 1 of

the normalized demands p with respect to y in Proposition 4.17 of Section 4.7. We

then obtain expressions for the Jacobian matrix J. of the prices z with respect to the

demands p, and for the Hessian matrix of the profit fl(p). Unlike for the special case

of the NL model, there is no closed form for the profit in terms of p, and a matrix

inversion is required to compute the partial derivatives of the profit, in general.

4.5 Invertibility of GEV Demand Models

It will become clear that general results from economics [30, 54, 8] imply that the

demand is univalent (injective, one-to-one) after we are finally able to derive the

Jacobian matrix of the demands p with respect to the prices z in Section 4.7. However,

we must also show that there is a vector of prices z which results in an arbitrary vector

of choice probabilities p E An+,. If this were not the case, we would have to enforce

constraints on the feasible region when optimizing over p that might make the problem

intractable. Fortunately, the demand under GEV models is also surjective onto the

interior of the probability simplex. This fact is unsurprising since these statistical

models are intended to fit actual data, but it requires proof in the pricing context

where the model parameters other than the prices have already been fixed.

Rather than rely on the results mentioned above, we prove invertibility by working

with the unnormalized demands defined in the next section. This allows use to sig-

nificantly lighten the notation, prove surjectivity as well as injectivity, and introduce

some notation that will be used in later proofs.

6 This is essentially the same condition required for concavity of the profit under NL demand
models in Lemma B.2 in Chapter 3
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4.5.1 The Jacobian of the Unnormalized Demand Function

Working directly with the demand function p(z) is somewhat cumbersome. Instead,

in most of this chapter, we consider the p-homogeneous function q : Rn+1 -+ R* +1

defined by

qi(y) = yiGi(y), i = 1, ..., n + 1.

We also define the vectors q and E analogously to p and p. Obviously, q- = p- pG(y).

The function q(y) is then simply the demand function before it has been normalized

to yield a probability vector.

The Jacobian of q(-) is readily derived ' as

aj diag (g) + GY.

Denote by L- 1 the submatrix of L 1 with the last row and column removed. Then

L-1 A -y i diag (g) +GY

is the Jacobian of q = q(y) = Yg. We use the inverse notation for consistency with

later notation. Both L- 1 and L- 1 are M-matrices, and as such they are invertible.

(See Definition 3.2 in Section 3.6.)

Lemma 4.8. For y > 0, the matrix - 1 is a strictly row diagonally dominant M-

matrix. The same holds for L- 1 and any other principal submatrix obtained by re-

moving the rows and columns indexed by any set NC {1, 2,. .. ,n+ 1}.

Proof. From Corollary 4.7, we have that the row-sums of L- 1 are

I-le = 9 + Gy = 9 + (p - 1)9 = p4 > 0, (4.4)

where positivity in each coordinate follows from Assumption 4.3. On the other hand,

from the definition of G(.), the off-diagonal elements of L 1 are non-positive. There-

fore, each diagonal element must be positive and larger in magnitude than the sum
7For an explicit derivation, see the proof of Lemma 4.12 that states the second partial derivatives.
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of the off-diagonal elements in its row. It follows that 1-1 is strictly diagonally dom-

inant, and an M-matrix. This property remains unchanged by deleting rows along

with their corresponding columns, because we are simply removing non-positive terms

from the sum above.

4.5.2 Proving Invertibility of the Demand Function

Before proceeding, recall that the relationship between y and z defined in (4.3) is

clearly invertible. Then the vector function p(z) defined by (4.2) can equivalently be

written as a function p(y) = p(z(y)) of y. Temporarily relaxing the assumption made

in Section 4.2.2, that yn+1 = 1 in the vector Y, allows us to exploit homogeneity of

G(y) in the following theorem.

Theorem 4.9. For GEV models, the mapping p: R"-4 An+1 from vectors of prices

z to choice probabilities p > 0 is invertible (one-to-one and onto). Moreover, both

p(z) and the inverse function z(p) = p-1 (z) are differentiable.

Proof. To show that p(.) is surjective (onto), we fix a vector p E An+1 and recover the

corresponding vector of prices z C R". The function p(-) is homogeneous of degree 0 in

y because it is invariant to scaling of y, as mentioned above when we fixed Yn+1 = 1.

We will find a suitable element of Y Y E R n+ : G(y) = -. Afterwards, we can

scale y such that Yn+1 = 1 to recover y and the corresponding z. Over the set Y,

p = q by definition, so we need only show that the system of equations

qi(y) = yiGi(y) = qi, i = 1, ... , n + 1

has a solution for any fixed vector q > 0. Dividing each equation by yj > 0, we have

the equivalent system

Gi i=1,..., n + 1.
yi

These are exactly the necessary first-order optimality conditions of the unconstrained
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minimization problem

(n+1

mi jZ(s) - G(y) -Ei log Yi.j

The objective function Z(-) is coercive on its domain, that is, limtco Z(yt) = o for

any sequence {y'} converging to a point on the boundary of the positive orthant.

This follows from the definitions of G and of the logarithm. Specifically, keeping the

other coordinates fixed,

lim Z(y) = lim Z(y) = oc for each yi.
-4O00 Yi-+0

The limit as yi tends to zero is immediate from homogeneity of G. The limit as

yi becomes large follows because G grows exponentially along a ray by homogeneity,

whereas the negative term grows only logarithmically. Then Z(.) achieves a minimum

where the first-order optimality conditions are satisfied (if we consider the closure of

the domain [see, for example, 9, Proposition A.8]). Recovering the prices z from y,

after scaling such that y,+1 = 1, is trivial. Differentiability follows from the definition

of G and the inverse function theorem 8, since the Jacobian U1 of q(-) is invertible

by Lemma 4.8.

Rather than attempt to directly show that the maximum of Z(y) is also unique,

we apply a result from the literature. To show that p(.) is injective (one-to-one), it

is sufficent to show that q(-) is an injective function of y, because the scaling of y

such that yn+ = 1 is clearly unique. Lemma 4.8 states that the Jacobian L-1 of q(-)

is strictly diagonally dominant on the convex domain y > 0. Then q(-) is a strictly

diagonally dominant function [62, Theorem 2.5]. As such it is injective (one-to-one)

[62, Theorem 3.3]. O

8The inverse function theorem states that if the Jacobian matrix of a function is non-singular at
a point, then the function is invertible in a neighborhood, and is also continuously differentiable,
and the Jacobian matrix of the inverse function is the inverse of the original Jacobian matrix. This
implies that q(-) is invertible. Because G(y) > 0 for y > 0, then q(.) is also invertible.
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4.5.3 The Jacobian of the Prices

By the inverse function theorem, the matrix

L = aj
[oqi _ ii

is the Jacobian matrix of the vector y with respect to the vector of unnormalized

demands q. We define the diagonal Jacobian matrix

D ~ [DI - diag(-b'i,-b'2y2 ... , -b'ay,) = -BY.

containing the derivatives of yj = exp{dj - b zj} with respect to each zi. Immediately,

D A [ - diag (E[-1 - =- -Y)B-1.

Then, by the vector chain rule, the Jacobian matrix of prices with respect to q is

LD - [ = -LY-B- 1.

This matrix is analogous to the Jacobian matrix J,. of the prices with respect to the

normalized demand vector p that we will define later in Section 4.7 for GEV models.

We have already expressed J. in closed form for the special case of the NL model in

Section 3.6. The subsequent development is greatly simplified by working with LD

and its inverse instead.

4.5.4 Inverting the Demand Function Computationally

In the proof of Theorem 4.9, we showed that q(y) belongs to the class of stricly

diagonally-dominant functions. It is also an M-function [62, Theorem 4.5]. Such

functions can be inverted using the nonlinear Jacobi, Gauss-Seidel and related asyn-

chronous methods [62, 24]. Essentially, these methods proceed by independently

solving each equation in a system of nonlinear equations for one variable while keep-
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ing the other variables fixed. They differ in the order and frequency of variables

updates. The resulting nonlinear operators can be shown to converge when the sys-

tem of equations is defined by an M-function. In the linear case, these algorithms

correspond with the linear Jacobi and Gauss-Seidel iterations.

A linear damped Jacobi iteration similar to that presented in Chapter 5 for solving

the pricing problems has proved effective in our computational experiments, without

requiring the solution of any nonlinear equations as in the Jacobi and Gauss-Seidel

methods. We expect that any general purpose algorithm for solving nonlinear systems

would also perform well.

4.6 A Reformulation of the Pricing Problem

We restate the pricing problem in terms of the unnormalized demands q introduced

in the last section. Recall that qi(y) = yiGi(y) = pi - pG(y). We have shown that

the mapping from z (and y) to the demands p (and q) is invertible. The objective

function of the problem (4.1), when expressed as a function of y, is

T n E yiGi(y)zi(y)
tG(y)

This is a nonlinear fractional program [22], but the numerator is not concave in

y in general and the denominator may not be convex. The numerator is also not

homogeneous because each zi varies logarithmically in y. When expressed in terms

of q, the profit is
qTZ

Sq z E" qi z i(q)

) G(y(q)) pG(y(q))

The denominator may no longer be convex in q, even if G is a convex function of

y. On the other hand, we will show that the numerator is often concave, and the

denominator is nearly convex over the region of interest. If they were concave and

convex, respectively, then 11(q) would be a quasi-concave function by well-known

results from fractional programming [22, 68].

In the next theorem, we express the pricing problem as an optimization problem
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over y with a single constraint. The problem is defined entirely by homogeneous

functions. By duality, we recover an optimization problem parameterized by the

scalar A. The optimal value A* corresponds to the optimal profit U* = U(p*), and the

optimal solutions of the parametric program with A = A* correspond to the optimal

solutions of the pricing problem. Such a transformation is well-known for fractional

programs, and the duality result is a special case of a known result for minimization

problems defined by homogeneous functions [47]. We define the function T to denote

the numerator

qJ(y) = q z = yGi(y)zi(y),

where it is understood that Yn+1 = 1 remains fixed, and the vectors q and z are

functions of y. By invertibility, we can equivalently write I(q), as we did above in

the expression for U(q). Notice that each price zi is a scalar function of yi, but that

it depends on the entire vector q through yi. We point out that qn,4 (and Pn+1) is

not fixed in general, but it is nevertheless determined by the n entries of q (and p).

4.6.1 The Parametric Programming Formulation

Theorem 4.10. The optimal objective value A* of the pricing problem (4.1) is the

unique value of A such that

max {F(y) = 'I(y) - ApG(y)} = 0.

Moreover, the maximizers of fl(y) are exactly the maximizers of IF(y) when A = A*.

Proof. Because yn+1 = 1, then yi = yi/Yn+I for each i. Because zi = I (di - log yi)
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by definition of yi, we can equivalently write

fl(y)=pT z

1 pi ( d' - log yi)

n I b'G(y) ( -log y1

H(y)

where both G(-) and

H(y) 5 yiGi(y) d - log ,

are homogeneous functions of degree p. The function H(y) is pa-homogeneous since

Gi(y) is (p - 1)-homogeneous by Corollary 4.7, since each yi is clearly 1-homogeneous,

and since the quantity in parentheses is also clearly 0-homogeneous. But then,

max H(Y) = max H(Y) max H(y) max H(y)
Y>o,Ynel=1 pG(y) Y>o pG(y) g>0,G(y)=.1 pG(y) y>0,G(y)=j

The equality in the last problem can be relaxed to yield

max H(y)

1
s.t. G(y) ;- (P)

y> 0

because both H(y) and G(y) are positive at optimality, as well as homogeneous.

Therefore, if the constraint were not tight, the objective could be increased by scaling

up Y. To see that the profit is positive at optimality, observe that for sufficiently

large values of Yn+1 (or sufficiently small values of y), all the prices z are positive.

We defer the discussion of the duality result that we use until the next section for
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clarity. By Lemma 4.11, proved below, the dual of (P) is

min A

s.t 0 > max H(y) - ApG(y) (D)
y>0

A>0

The value of the constraint in (D) is strictly decreasing in A, uniformly over all values

of y. Theretore all feasible A are contained in the half line [A*, oo), and the dual

optimal solution is some A* for which the constraint holds with equality. We can

scale y such that pG(y) = 1. The same scaling is applied to H(y) by homogeneity.

Then the optimal objective value of the primal (P) is also A*, by weak duality. Clearly,

the solutions of the two problems coincide, up to scaling. But we fix the scaling in

the statement by setting yn+ = 1.

By a similar reasoning as above, the constraint can be rewritten as

0 > max H(y) - ApG(y) .t* 0 > max H(y) - ApG(y),
y>0 y>o,yn+1=1

because the sign of the right hand side does not change under scaling of y. But when

Yn+1 = 1,
n n

H(y) = [yiGi(y)zi = qiz = q'z = T (y).
i=1 i=1

This yields the desired statement. E

4.6.2 Duality for Unconstrained Homogeneous Problems

Lemma 4.11. Suppose G and H are non-zero homogeneous of degree p and that the

set Y is a cone. Then the Lagrangian dual of (P) is (D).
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Proof. The Lagrangean dual of (P) is

inf sup H(y) - A (pG(y) - 1)
A oysy

=inf A + sup H(y) - ApG(y)
A>0 yEY

The function f(y) = H(y) - ApiG(y) is homogeneous of degree p. If there exists

y E Y such that f(y) > 0, then f(y) can be made arbitrarily large by scaling up

y. If not, it can be made arbitrarily close to zero by scaling down y. Thus, for a

given value of A, the value of inner maximization above is either zero or infinite. If

it is infinite for all values of A, the optimal dual solution is +oo and the primal is

unbounded because the numerator H(-) can be made arbitrarily larger than G(-).

Therefore, the dual can be written as

inf A

s.t 0 > sup H(y) - AG(y)
yEY

A > 0.

We have stated Lemma 4.11 in terms of a general cone, rather than only over the

set {y > 01. This suggests that the result can be generalized to allow a conic feasible

region in y. We omit such an extension for simplicity, and limit our goal to showing

that the unconstrained reformulation is tractable.

As mentioned when defining the demand model, the reformulation is made difficult

because we have fixed the value of y.,1. One might consider solving the homogeneous

maximization problem in terms of H(y) instead. But then the Jacobian matrix D of

vectors y with respect to z would no longer be square, nor diagonal. It would gain

a dense last row, because each price z3 would depend on the value of yn1. This is

closer to the approach of Chapter 3, where we computed the Hessian of the profit

with respect to the full vector p for the special case of the NL model.

In Chapter 2, we applied the generalized Charnes-Cooper variable transformation,
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another well-known technique for fractional programming [661. The dual pricing

problem under generalized attraction (GA) models in Section 2.5 is similar to the dual

in Theorem 4.10. There, we considered a constrained problem, and the "attractions"

qj = yiGi(y) were simply denoted by yi. Unlike for GEV models, they were each

functions of only the price of product i.

4.6.3 The Hessian of the Reformulation

It is straighforward to derive the Hessian matrices of T and G with respect to y.

Using a chain rule, we then obtain the Hessians with respect to q. To this end, we

require the Hessians matrices of each qk with respect to the vector y:

Lemma 4.12. The Hessian matrix of qk with respect to y, for k = 1,... ,n + 1, is

ij= yk + Gkek + ek(C),

where o~4k = Gek is the kth column (or row, transposed) of the symmetric matrix G.

Removing the last row and column, the Hessian with respect to y is

k= yg + Gke' + ek(Gk)T.

Moreover, these Hessian matrices £k are related to the Hessian matrix G of G(-) by

n+1

e - k = Z kk - p10
k=1

Proof. See Appendix C.1.1. D

Lemma 4.13. The Hessian of G(y) with respect to q is

-aqa = L (G - Lg - C) LT

Proof. This follows from the chain rule for Hessians of Proposition B.1. l
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Lemma 4.14. The gradient of T(y) with respect to q is

= z + LDq
aq

and its Hessian is

a211 =L (L-1D + D (L-1)T - LDq -k - D diag (g)) LT.

Proof. See Appendix C.1.2.

4.6.4 The Sub-stochastic Matrix S

The expressions for the Hessians of T(-) and G(.) involve the terms LDq - C and

Lg - AC, respectively. To analyze them, we define the scaled sub-stochastic matrix

S A L diag (g) E R"

We re-express the vectors in the two tensor products above as

Lg = Se and - LDq = LB-'Y-lq = SB- 1 e.

The analogous matrix S " L diag (g) E R(n+l)x(n+l) is actually stochastic when scaled

by p. Then pSe = e. We showed in Lemma 4.12 that

n+1

pSe - IC = e - IC = x.~k--p
k=1

Unfortunately, when working with C instead of C we have removed the last term of

this summation. This gives rise to the second error term G below. The first error

term is due to the fact that B- 1 f I, in general.

Lemma 4.15. The inverse M-matrix pS is sub-stochastic. That is, its entries are
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non-negative and its rows sum to less than one. Moreover,

SB-e - IC = LB-'g -'K = -LDq -K

- G + S(B 1 - I)e - C - O,

where G is the upper-left n x n sub-matrix of the tensor product

1 (1~ N) *A
1 1 Sen+1--

p Sn+l,n+1

Proof. See Appendix C.1.3, following the analogous result for 5 .

To interpret the error term G, recall that Lemma 4.12 implies that Ie K: =

I K~n~ =~k -G. Here, the vector of all ones e is replaced by the positive vector

consisting of the last column of the stochastic matrix pS, normalized by its last

entry. Unlike for S1, we are unable to establish a relationship bounding the off-

diagonal elements of S in terms of the diagonal elements, so the error term a can

potentially have a large impact relative to G.9 In practice, it is usually small.

4.6.5 Almost-Concavity of the Reformulation

From the preceding results, we obtain the main theorem of this chapter. It re-

expresses the Hessian matrix of l'(q) derived in Lemmas 4.13 and 4.14 as the sum

of a negative-definite matrix.Aconcave and two correction terms. The condition on

the price-sensitivity parameters is nearly identical to that of Theorem 3.5 and Corol-

lary 3.6 ensuring concavity of the profit function in the special case of the NL model.

It requires that the ratio of the price sensitivity parameters is bounded by two. For

technical reasons, we require the bound to be strict here. In practice, the conclusion

9 It is interesting to note that for the special case of the NL model where the no-purchase alterna-
tive is in a nest by itself, all the entries S1 ,n+1,. - -- , Sn,n+1 in the last column of S except for Sn+1,n+1
are zero. Then the error term reduces to ICf+1, which also has special structure in this case. We
considered such models in Section 3.8, and almost all of the existing results from the literature on
pricing under models in the GEV family consider models of this form. Unfortunately this property
is lost when multiple products are in the nest containing the outside alternative. The stochastic
matrix pS is dense for CNL models.
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often holds even when the condition is violated, as was the case for the results of

Chapter 3. Our computational experiments in Chapter 5 for the CNL model bear

this out.

Theorem 4.16. The Hessian of r(q) = F(q) - ApG(q) is

qq = L (Aconcave + S(B- 1 - I)e - IC - A) LT.

If the price sensitivity parameters b',b',... , b' belong to the range (,1), then the

matrix Aconcave is negative definite. The matrix A is the upper-left n x n submatrix

of the tensor product

(e + (1 + Ap) S en+1 'k7C
Y Sn+1,n+1

where the vector Sen+1 denotes the last column of the matrix S and Sn+1,n+1 iits

last entry.

Proof. See Appendix C.1.4.

Concavity of the profit is equivalent to the matrix in the parentheses being negative

definite, because L has full rank. Unfortunately, Theorem 4.16 cannot show global

concavity of the objective function. The matrix S(B-1 - I)e is non-zero if the price

sensitivity parameters are not all equal. (They can trivially be scaled if they are equal

but different from one, as shown in Corollary 3.6 for the NL model.) The matrix A

may have some (usually small) negative eigenvalues, and its impact may become large

if A is large. Like the matrix G in Lemma 4.15, it arises because we have fixed the

price zn+1 of the outside alternative, and would vanish if this were not the case.

On the other hand, - e C = -G is negative semi-definite when y ;> 1.10 In the

matrix A we have added an additional term to e. As was the case for the error term

O in Lemma 4.15, the new vector is the last column of stochastic /, normalized by

10See Lemma 4.12 and definition 4.2. The matrix 0 is clearly a diagonally dominant M-matrix
when y > 1. It remains positive semi-definite and weakly diagonally dominant when L = 1. To see
this, multiply by Y and apply Corollary 4.7 to show the row-sums are non-negative, as was done in
Lemma 4.8 for the matrix L-1.
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its last entry. This vector is alway positive, but we are unable to bound its entries in

general.

In practice, the Hessian is almost always negative-definite when B satisfies the

assumption. The entries of A are usually small in magnitude relative to those of

Aconcave. Generally, the matrix in the parenthesis is not a negative M-matrix, but its

non-positive off-diagonal elements are small, and it remains diagonally dominant.

For the case of NL models discussed in Chapter 3, the matrix A is negative semi-

definite. The proofs of Theorem 3.5 and Theorem 4.16 bear some similarity and make

the same assumptions on B, but the former is dealing with the original profit function

whereas we are analyzing a reformulation in this section. Concavity of H is a stronger

statement than concavity of AP - ApG. It often does not hold for CNL models even

when the transformed objective is concave. Concavity of the transformed objective

implies only that H is quasi-concave, as discussed in Section 4.6.

4.7 The Original Profit Function

Instead of defining q and T, the derivations of Section 4.5 and Section 4.6 can be

done with respect to the original, normalized demand function p(z) and the original

profit function H(p) as a function of p. However, the expressions involved become

significantly more complicated.

Nevertheless, the sensitivity of demand to prices is of interest. In this section, we

recover the Jacobian of the demand, and state the Hessian of the profit, in terms of p.

We use the same notation as for the special case of NL demand models in Chapter 3,

although we can only recover a closed form for the inverse of the Jacobian for the

general case.

4.7.1 The Jacobian of the Demand

We define the analogue of the Jacobian matrix LD and write its inverse,

JZ JD = [z and J-1 = D- 1 J~ = ,
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where the Jacobian between y and p is

[yy~

We consider the full (singular) Jacobian matrix of p with respect to y, analogous to

the (non-singular) matrix L 1:

--1 '
9

pn+1
-1 =Oi E R(n+)x(n+1)

. a~n+1 aYn+1 .

This matrix is singular because the entries of each row must sum to zero so that p

remains a probability vector, when some yj is increased. Then J-e = 0 and e is a

zero-eigenvector. When y = 1, as is common, the submatrix J- 1 is an M-matrix.

Proposition 4.17. The Jacobians with respect to p and q are related by

1 1 
_ g-1ppT

pG(y)

If p > 1 and y > 0, then J- 1 is a strictly row diagonally dominant M-matrix, and

3- 1 is (weakly) row diagonally dominant.

Proof. Computing the derivatives of p3 = yjGj(y)/pG(y), we have, for i -4 j

y3Gij (y) y3Gi (y)G3(y) _ y3Gij(y) pipj
13 pG(y) (pjG(y))2 yG(y) yi~

If i = j, we must also add the term Gj(y)/1 G(y) = p,/yj. More concisely,

-= GY + Y 1 (P - PP)
pG(y)

1 '
- G(y) (GYf + diag (g)) - pp

= 1 ~ - -T
IG(y) P
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as claimed. Referring to the proof of Lemma 4.8, we have that Lle = pg > 0 and

that the off-diagonal entries of IL-1 are non-positive. The row sums are

Jge + Y 1 p(p Te) = 1p - g) > 0,
i-e-pG(y) P ) pG(y)

because pi 2 1 by assumption. Therefore each diagonal element of J- 1 must be non-

negative and at least as large in magnitude as the sum of the off-diagonal elements in

its row. Thus, J- 1 is weakly diagonally dominant. By Assumption 4.3, p > 0 and the

off-diagonal entries are negative. Removing the last row and column yields a strictly

diagonally dominant M-matrix. This completes the proof.

By the chain rule, the Jacobian of p with respect to z is

J-1 = D-=J-1 = -BYJ- 1.

Then the Jacobian matrix -J.- 1 of the negated demand function is a positive diagonal

scaling of an M-matrix, and therefore it is also an M-matrix [43, Theorem 1.2.3]. As

such, it satisfies the requirements of both versions of the Gale-Nikaido Univalence

Theorem and its generalizations [30, 54, 8]. That is, the negated demand is an injec-

tive (one-to-one) function. We have already proved a stronger result in Theorem 4.9,

which also establishes surjectivity of the demand function onto the interior of the

simplex and does not require that p > 1.

4.7.2 The Hessian of the Profit

Deriving an expression for the Hessian of the profit in terms of p is complicated

because the second partial derivatives of p with respect to y (the analogue to K)

involve many terms. We only state the final result,

= J (L-1D + D (L1)T - JDp -IC - D diag (g) + PTJDp) jT, (4.5)
8pap
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where we use both Jacobian matrices L and J. We compare this expression to that

of Lemma 4.14. The quantity in the brackets is identical except for the last term,

and the substitution of LDq - K by JDp - C. However, in light of the discussion in

Section 4.6, the function T may be concave at a given point while H is not concave.

Our computational experiments in Chapter 5 give rise to some such instances".

Briefly, for large ratios between the price-sensitivity parameters, H is not always

concave for CNL models. However, when the parameters pi,,... , IM of the CNL model

take on moderate values, the function T does remain concave. In our experiments,

both functions H and T do in fact remain concave when the condition on the price

sensitivity parameters is satisfied (their ratios are less than two).

Our practical observations and experimental results show that the condition of

Theorem 4.16 is far from necessary for concavity. The theorem relies on characteri-

zations of negative M-matrices to show negative-definiteness of the Hessian, but the

negative M-matrix property is not a necessary condition for negative-definiteness.

Thus even if it were possible to construct instances that violate this property, the

objective function might remain concave. (It often does in practice.) Moreover, con-

cavity of IT is not a necessary condition for the optimal solution of the pricing problem

to be unique. We explore different sufficient conditions for uniqueness of the optimal

solution in Chapter 5.

We already derived a closed-form expression for the Hessian of the profit under

NL models in Chapter 3 and showed that it is negative definite under the condition of

Theorem 4.16. Our results in this chapter suggest that a similar result does not hold

for GEV models in general. However, the experimental results we just mentioned only

imply that it does not hold when the condition on the price sensitivity parameters is

already violated. Under what circumstances H is concave remains an open question.

Nevertheless, the fractional programming reformulation of Section 4.6 suggests that

the profit H is almost quasi-concave in terms of the market-shares, becauze AP is

almost concave.

"See Table 5.1 in Section 5.8.
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4.8 Conclusions

In this chapter, we have developed a formulation for maximizing the profit when

pricing under general GEV models over the space of market shares. We showed that

the formulation is nearly concave in terms of the unnormalized choice probabilities, if

the price sensitivity parameters for each product are sufficiently close to one another.

More importantly, we have shown that the profit is in fact well-defined over of the

market shares in that the demand function is invertible. We conjecture that the

optimal prices often remain unique even when the reformulated objective function is

not concave.

We have also stated the Jacobian and Hessian matrices of the original profit

function in terms of market shares under general GEV models. The near-concavity

of our reformulation suggests that the profit function itself is nearly quasi-concave.
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Chapter 5

Practical Pricing under GEV and

MMNL Models

5.1 Introduction

In this chapter, we propose a first-order nonlinear optimization method to solve the

pricing problem when customer demand is represented by a model from the generalized

extreme value (GEV) family, or by the mixed logit (MMNL) demand model. A seller

selects the prices Xi, X2 ,... , xn E R of n differentiated substitutable products. We

aim to maximize the profit,

n

max I(x) = ipi~x , (5.1)
xER"

where the function pi(x) denotes the demand for product i. Both demand models

can be adjusted to take into account different profit margins or production costs for

each product: the reparameterization in Section 3.5.1 generalizes in a straightforward

manner.

The profit is not a (quasi-)concave function in the vector x even under the basic

multinomial logit (MNL) model (see Appendix A.2). Under MMNL models, the profit

is the sum of the profits arising under the individual MNL models in a mixture, and

it may have numerous local maxima [40).
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However, in the preceding chapters we have shown that the local maximum of the

profit is often unique under members of the GEV family of models. MMNL models

do not belong to this family, but Hanson and Martin [40] devised an algorithm for

finding "good" local optima under MMNL models. In practice, their method often

appears to find the global maximum. Motivated by these two facts, we propose a

simple, practical algorithm for maximizing the profit under both classes of models.

Leveraging our results from Chapter 4, we begin by analyzing the necessary first-

order optimality conditions (FOCs) of problem (5.1) for GEV models, when it is

expressed as an optimization problem in terms of the (unnormalized) demands. We

argue that the FOCs often define a nonlinear (generalized) diagonally dominant func-

tion. The solution of such systems of equations is unique, and can be computed using

the nonlinear Jacobi or Gauss-Seidel method [62, 28]. Unfortunately, this requires

finding the root of a nonlinear equation for each variable at every step. Each solution

in turn requires multiple costly evaluations of the partial derivatives of the prices x

(with respect to the demands).

On the other hand, we give closed-form expressions for the partial derivatives of

the demands p(x) with respect to the prices x. We use their properties to show

that a linearization of the FOCs can be solved with linear Jacobi iterations. The

iteration matrix obtained is sub-stochastic for any step size a < 1. This suggests

rapid convergence, though we observe empirically that the step size must be reduced

somewhat to ensure convergence despite the linearization. The iteration matrix on

each step of our algorithm is computed rapidly in closed form. We do not require

costly the costly numerical matrix inversions needed to apply the nonlinear Jacobi or

Gauss-Seidel method mentioned above.

Our general algorithm for GEV models can in particular be used to maximize

the profit under the cross-nested logit (CNL) demand model. The CNL model is a

member of the GEV family, but appears similar to the MMNL model in that a number

of nests may represent different segments of a population, who are all offered the same

set of products. Within each nest of both the CNL and MMNL, customers choose

according to an MNL model. The difference is that an arriving customer belongs to
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each nest with a fixed probability under the MMNL, whereas this probability also

depends on the prices in the CNL. Neither of these models is, strictly speaking, more

general than the other. 1

We show that MMNL models can be approximated locally by CNL models with

not only the same choice probabilities in each nest, but also with arbitrarily close

substitution behavior. That is, the partial derivatives of the demands become arbi-

trarily close under the two models as we let the parameters of the CNL approximation

become large.

This motivates us to apply our algorithm to MMNL models directly. There is no

need to explictly construct the CNL approximation in practice, since the required

partial derivatives can be computed directly from the MMNL model. We observe

similar convergence as for CNL models.

Unfortunately, convergence for MMNL models is only to one of the often many

local maxima. Combining our algorithm with the path-following method of Hanson

and Martin [40] finds a good local maximum in roughly the same time it takes to solve

the CNL pricing problem. Based on our experiments, the maximum found appears

to be globally optimal as long as the step size is chosen to be sufficiently small. We

observe fast convergence even for extreme values of the demand model parameters.

In Section 5.2, we review the literature on pricing with multiple customer seg-

ments. We discuss the optimality condittions under GEV models in Section 5.4, and

present the nonlinear and linearized Jacobi algorithms in Sections 5.5 and 5.6, respec-

tively. We then present the CNL and MMNL models and discuss their relationship

in Section 5.7. Our experimental results are presented in Section 5.8.

'Mcfadden and Train [58] show that a MMNL model with a large enough number of segments
("nests") can approximate any GEV model. However, a very large number of segments could
potentially be required. We will show that the reverse, approximating a MMNL model with a CNL
model, can be accomplished locally without increasing the number of segments.
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5.2 Literature Review: Pricing under CNL and

MMNL Models

The pricing problem under the MMNL model was studied by Hanson and Martin [40].

They propose the path-following method that we incorporate into our algorithm, but

they suggested using conjugate-gradient or second-order methods to maximize 11(x)

as a function of the prices x. Because the profit is not concave, the Hessian is relatively

costly to compute, and these methods require line searches at each step, they are slow

to converge and they are prone to finding the nearest local maximum to the starting

point. We propose a method that requires no line search and uses only first-order

information. It appears less prone to get stuck in local minima.

To our knowledge, there has been no work on pricing under the CNL model except

for the slight generalizations of the NL model discussed in Section 4.3. Work on NL

models, where each product is only available to one customer segment, and on single-

segment MNL models is discussed in the preceding chapters.

We argue that the solution to the FOCs often appears to be unique on the basis

of the nonlinear Jacobi and Gauss-Seidel methods. These algorithms are straigh-

forward generalizations of the linear Jacobi and Gauss-Seidel methods for solving

linear systmes of equations. Each equations in a nonlinear system is solved for one

variable at each step, keeping the other variables fixed. Depending on the method,

some or all of the variables are updated between successive steps. The convergence

of theses methods for diagonally-dominant functions was established by More [62].

It was extended to generalized diagonally dominant functions by Frommer [28], who

conjectured that functions with generalized diagonally dominant Jacobian matrices

belonged to this class. The conjecture was verified by Gan et al. [37].

The first-order method we propose defines a non-linear operator for which the al-

gorithm converges to a fixed point. We defer our discussion of approaches for showing

that a given nonlinear operator defines a contraction mapping to Section 5.6.1.
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5.3 Outline of the Proofs

In Section 5.4, we state the FOCs of the reformulated pricing problem under GEV

models from Chapter 4. We show that they are equivalent to the FOCs of the orig-

inal pricing problem for an appropriate value of the parameter A (Proposition 5.2).

Lemma 5.1 presents the FOCs in two different but equivalent ways. The first state-

ment of the FOCs is explored in Section 5.5. Lemma 5.3 computes the Jacobian

matrix of the FOCs to explain why they often appear to define a (generalized) diag-

onally dominant function of the prices. Theorem 5.4 states that, if this is the case,

then the FOCs admit a unique solution, which necessarily corresponds to the global

maximum. In fact, this unique solution can in principle be computed with the well

known nonlinear Jacobi and Gauss-Seidel methods mentioned above, by repeatedly

solving the one-dimensional equations obtained by fixing all but one variable at a

time. Unfortuntately, such an approach may be computationally inefficient because

it requires the inversion of large matrices at each step.

Instead, in Section 5.6, we use the second statement of the FOCs from Lemma 5.1

to develop a new algorithm based on linear Jacobi iterations for solving systems of

linear equations. Lemma 5.5 states the linear Jacobi iteration for the FOCs when

an important quantity (the matrix S) is held fixed, and shows that it converges to

the solution of the system obtained in this way. It forms the basis of our algorithm,

which we present in Section 5.6.3. Lemma 5.6 states the iteration used in our al-

gorithm, where the matrix S is updated based on the value of the current iterate.

It further shows that the iteration matrix at each step (denoted by Mk) is strictly

sub-stochastic. This fact explains the rapid convergence of the algorithm in our com-

putational experiments. Theorem 5.7 verifies that the optimal solution of the GEV

pricing problem is indeed a fixed point of the algorithm. Lemma 5.8 briefly states a

slightly modified iteration that appears somewhat simpler, and shows that the iter-

ation matrix is also sub-stochastic, for an appropriate step size. Although we have

ultimately been unable to show any stronger theoretical results for this version of our

algorithm, the simpler form suggests that it may be more amenable to further analy-
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sis. Specifically, we conjecture that both of the iterations we propose define nonlinear

operators with a unique fixed point. If this is the case, the fixed point corresponds

to the global optimum of the GEV pricing problem.

In Section 5.7, we formally define the CNL and MMNL models, and discuss their

relationship. Lemmas 5.9 and 5.10 give simplified expressions for the Jacobian matri-

ces of the choice probabilities with respect to the prices under the two models. These

matrices are required to implement our algorithm. Theorem 5.11 uses the similar

structure of the two Jacobian matrices to show that a CNL model can locally ap-

proximate a MMNL model, in that both models posess the same choice probabilities,

the same conditional choice probabilities and arbitrarily close Jacobian matrices for a

vector of prices. We end the section by explaining how, together with a known path-

following heuristic [40], our algorithm can be applied to solve the pricing problem

under MMNL models.

In Section 5.8, we present experimental results that explore the performance of our

algorithm. We also empirically test the properties of the pricing problem reformula-

tion from Chapter 4 when the assumptions of Theorem 4.16 are violated. It turns out

that the concavity properties discussed earlier in this thesis appear to persist even for

relatively extreme values of the pararieters. The (generalized) diagonal dominance

property persists for even more extreme values of the parameters.

5.4 The First-order Optimality Conditions

In this section, we state the FOCs for the pricing problem under GEV demand models.

Our approach is based on the results in Chapter 4. We refer the reader to that chapter

for details about the reformulated pricing problem, parameterized by A, which we

restate2 here:

max {F(q) = 'I(q) - AG(y(q))} (5.2)
q>O

2We previously defined the objective as P(q) = T(q) - pAG(y(q)). Because the constant y > 0
can be absorbed into the parameter A > 0 without loss of generality, we can omit it from the
objective of (5.2) in this chapter. In fact, it is often chosen to be y = 1 in MNL, NL and CNL
models.
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The optimization is over the vector of unnormalized demands q = pG(y) . p, and we

refer to Definition 4.2 of the GEV generating function G(y), with y > 0.

The current chapter focuses on the sub-stochastic matrix S introduced in Sec-

tion 4.6.4 to analyze the gradient and Hessian matrix of l'(q). Recall that its inverse

is expressed in terms of the first and second partial derivatives of G(y) as

S-1 = (L diag (g)) 1 = diag (g) 1 L- 1 = (I + diag (g)- 1 GY) , (5.3)

where the matrices diag (g)_1 and Y = diag (y) are positive diagonal, and where G

has positive diagonal and non-positive off-diagonal entries by definition. The matrix

L is the Jacobian matrix of the vector y with respect to the unnormalized demands q,

and can also be expressed in terms of the partial derivatives of G(y) (see Section 4.5.1).

Our new results follow from Lemma 4.15, which established that the matrix S is a

sub-stochastic inverse-M-matrix. We no longer require the characterization of the

second partial derivatives of the profit developed earlier, except briefly in Lemma 5.3

below.

Recall that z is an affine transformation of the original price vector x to allow

for varying profit margins and production costs accross products (see Section 3.5.1).

Its components are related to those of x in terms of the profit margins ai and price

sensitivity parameters bi specific to each product i by

The transformation does not affect the results in this chapter at all. We could,

without loss of generality, assume that the production costs are zero and that the

profit margins are the same across products. Then, x = z. We continue to denote

the prices by z only for consistency. In Theorem 4.9, we showed that the mapping

between z and q is invertible. The same holds for the mappings between y and q,

and between y and p.

We begin with the transformed problem (5.2). The FOCs can be stated in terms

of z, the matrix S and a vector w that depends only on the scalar parameter A.
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Lemma 5.1. The stationary points of F(q) = IP(q) - AG(y(q)) are the solutions of

F'(z) = z - Sw = 0

and, equivalently,

S- 1 z - w = 0, (5.4)

where the vector w (B- 1 + AI)e is constant.

Proof. The first-order optimality conditions follow from setting the derivatives to

zero. Lemma 4.13 gives the gradient of T, and the gradient of G(y(q)) is obtained

by applying the chain rule with the Jacobian matrix L.

-A = z + LDq - ALg = z - SB-le - ASe = z - S(B-1 + AI)e = 0
oBq aq

The equivalence of equation (5.4) follows becase S1 is an M-matrix and thus has non-

zero eigenvalues. We can therefore multiply the first statement through by S- 1. El

We will consider two types of algorithms for computing a stationary point z of

F(-), and argue that z.is likely the unique stationary point. If that is the case, then

it is also a global maximizer of F(.).

By Theorem 4.10, if A = A* = l(z*) is a global maximum of the profit, then a

global maximizer of F(.) is also a global maximizer of H(.). The maximum value of

F(.) is F(z*) = 0. For A > A*, the maximum of F(-) is negative. For A < A*, it is

positive. This follows since F is clearly decreasing in A, uniformly over all values of

Y.

Of course, A* is not known a priori. In principle, we can perform a line search

over values of A, maximizing F(-) and checking whether the resulting maximum F(z)

is positive, for each value of A. This is the approach one would use for the first class

of algorithms that we discuss in Section 5.5.

However, for the iterative algorithm that we will present later in Section 5.6, it

turns out that updating the value of A with the profit H(z) at the current point z

is sufficient. In fact, substituting A = r(z) = pTz into the expression for F'(z) in

115



Lemma 5.1 yields the first-order optimality conditions for the original problem of

maximizing U(z). Therefore, our algorithm in Section 5.6 can also be seen as directly

solving the first-order optimality conditions of the original, un-transformed problem.

Proposition 5.2. Under a GEV demand model, setting A = UI(z) = pT z, the FOCs

of the parametric reformulation in (5.4) are equivalent to the FOCs

-=B =BP (S-1 z - w) = 0Bz

of the unconstrained pricing problem (5.1).

Proof. See Appendix D.2. I

5.5 Nonlinear Jacobi Iterations

We first argue that F'(z) = 0 is likely to have a unique solution because F'(-) often

belongs to the class of diagonally dominant functions. We will apply two results from

the literature guaranteeing that the stationary point of F(-) is unique when this is

the case. To this end, we compute the Jacobian matrix of F' with respect to z in the

next lemma. It is related to the Hessian matrix of F with respect to q computed in

Chapter 4, but different since the second differentiation is now with respect to the

vector z of prices rather than with respect to the vector q of un-normalized demands.

Lemma 5.3. The Jacobian of F'(z) is

I + B- 1 (L-)T BLT - (I - LT
Oz

with the last term

E = BY (S(B-1 - I)e -IC - (1 + Ap)O) LT,

and where the matrix ( i T

fL-1) = (diag (g) + BYG)
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is equal to (L )T when B = I.

Proof. See Appendix D.1.

Consider the Jacobian matrix in Lemma 5.3 when all the price sensitivity param-

eters are equal, that is, when B = I. Then the second and third term are both equal

to the identity matrix, and it reduces to

8F'
= I - E = I+ (1I+ A)YLT

The remaining term E is similar to the non-negative-definite term A in Theorem 4.16.

(There, we expanded the matrix G using Lemma 4.15.) Like the case there, the off-

diagonal entries of E are often small in practice. Clearly, if the off-diagonal entries

of E are small, then the Jacobian is diagonally dominant. This is often the case in

our experiments. Generalized diagonal dominance is a weaker condition which only

requires the matrix

(DF')aFU

to be row diagonally dominant, for some diagonal matrix U. Testing for this property

is non-trivial, but we often observe in practice that the matrix happens to be diago-

nally dominant with the specific choice U = diag (q). Iterative algorithms to find a

suitable scaling U can be found in the literature and are employed in our computa-

tional experiments on random instances [49]. We observed that generalized diagonal

dominance appears to persist even when the price sensitivity parameters vary greatly

across products (B is very different from I), and even in many cases where the entries

of E become large.

We apply two results from the literature guaranteeing that the stationary point of

F(-) is unique, if either the diagonal dominance or the generalized diagonal dominance

property holds.

Theorem 5.4. If the Jacobian of F' is a (generalized) diagonally dominant matrix,

F' is injective and F(z) = 0 has at most one solution.
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Proof. The domain of F is clearly convex. If the Jacobian is (generalized) diagonally

dominant, then F' is a nonlinear (generalized) diagonally dominant function [62, 37].

As such, it is injective[62, 28]. In particular, there is at most one value of z for which

F(z) = 0. D

Nonlinear generalized diagonally dominant equations can be solved using the well-

known nonlinear Jacobi and Gauss-Seidel methods discussed at the end of the litera-

ture review (Section 5.2). However, applying them in practice can be computationally

intensive. Evaluating F and F' requires the computation of S. Except for special

cases like the NL model, this would be accomplished by evaluating S' and then

computing its inverse. Unless the matrix is sparse or well structured, the inversion is

costly. (For example, under the CNL models discussed in Section 5.7.1, the matrix is

sparse if the parameters ait are mostly zero. This implies that the nesting structure

is also sparse, in that products belong to few nests. If the number of nests is small,

then the inversion can be accelerated using the Woodbury matrix identity [38].) It

is not practical to computationally invert dense matrices of dimension greater than

a few hundred at each iteration of an algorithm. To handle models with such a

large number of products, we turn our attention to the equivalent statement of the

first-order optimality conditions in terms of S-1 in the next section.

5.6 A Simple Iterative Algorithm

In this section, we propose an iterative algorithm to solve the FOCs (5.4). Although

it is easy to verify that the resulting stationary point is a local maximum in practice

(on the basis of the Hessian, say), if the condition of Theorem 5.4 is satisfied, the

stationary point is also the global maximum. Specifically, we propose an iteration of

the form

z+ = T(zt)

where T(-) is a nonlinear operator that we fully define below. There has been much

work on establishing the convergence of such procedures to a fixed point z* such that
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T(z*) = z*, and showing that the fixed point is unique. Usually one proves that T(.)

or a related operator defines a contraction mapping in some norm. Unfortunately, we

are unable to determine whether this is the case for our algorithm.

Nevertheless, we will show at the end of the present section, that (a slightly

modified version of) our operator takes the particular form

z-'- = T(zt) = Rtzt + w

when solving the FOCs stated in Lemma 5.1. The iteration matrix Rt on the tth step,

which depends on zt through S- 1, is strictly sub-stochastic. The sub-stochasticity of

Rt follows because S1 is a strictly diagonally dominant M-matrix. We have already

used this fact, in a quite different way, to establish that S itself is also sub-stochastic.

Since the optimal value of A can be found via a line search, showing that T(-)

converges to a unique fixed point for constant w would be sufficient to show that

the optimal solution to the pricing problem is unique. Before proceeding to develop

our algorithm, we outline some approaches that we have pursued on the basis of this

observation.

5.6.1 Literature Review: Contraction Mappings

Uniqueness of the fixed point has been established for a number of related problems.

We briefly mention some techniques that we have explored and provide relevant ref-

erences in the literature.

First, note that the iterate zt obtained on the tth iteration results from the product

of a sequence of t stochastic matrices. Such products are well-studied and are known

to converge rapidly under quite general conditions. Convergence is usually much

faster than suggested by the spectral radius3 of the iteration matrix (denoted Rt in

the case discussed above), and can be qualified in terms of various coefficients of

3The spectral radius of a matrix is the norm of its (real or complex) eigenvalues. For square,
substochastic matrices, it is necessarily less than one. It turns out that the spectral radius is sub-
multiplicative, and can be used to characterize the convergence of powers and products of matrices.
See the cited papers for details.
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ergodicity [70, 42].

If Rt were constant rather than depending on zt, the operator T(-) would cor-

respond to the stochastic dynamic programming operator with transition matrix Rt

and cost vector w. This operator can be shown to converge to a fixed point via a

contraction mapping in the span semi-norm [10]. In fact, the usual proof technique

for showing uniqueness and existence of a fixed point is to establish that T is a con-

traction mapping in an appropriate norm, meaning that applying the operator to two

points reduces the distance between them. Cirid [18] discusses a generalization of this

concept called a quasi-contraction mapping. It is also sufficient to show that applying

the operator a constant number of times reduces the distance (an n-step contraction

mapping), since this simply defined a new operator. One particularly well-known

contraction-mapping result is the Perron-Frobenius theorem for homogeneous linear

operators, including square matrices with positive entries [45].

There has been work on extending the Perron-Frobenius theorem to non-linear

homogeneous operators [46, 80, 44, 48]. Although T(.) is clearly not homogeneous

in our case, there is a bijection between the prices z and the vectors y occurring in

the definion of GEV models (see Section 4.2). We can re-express T(.) in terms of the

vector y that includes the attraction of the outside alternative. The demand model

(and therefore all the quantities involved in our analysis) are invariant to scaling of

y, and the re-expressed operator is homogeneous. The most common proof of the

Perron-Frobenius theorem and the proof of its nonlinear extensions rely on showing a

contraction mapping in Hilbert's projective metric [45]. It turns out that this metric

on the the space RV containing y corresponds to the metric induced by the span

semi-norm on R" containing z.

We have not been able to determine whether the nonlinear operator T(.) is always

a quasi-contraction in either of these norms, but we have observed that it need not

always be a contraction mapping for CNL models. While the results on the conver-

gence of products of matrices suggest that our algorithm converges quickly, we have

not been able to show that they imply that even multiple iterations T"(.) of the op-

erator yield a contraction mapping. Nevertheless, all these results motivate our belief
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that the fixed point is often, if not always, unique. They also help explain why our

algorithm converges rapidly in computational experiments (see Section 5.8).

5.6.2 The Jacobi Iteration for Linear Systems

Although the nonlinear Jacobi method discuseed in Section 5.5 is impractical, we can

use linear Jacobi iterations to define the operator T(-) mentioned above. For a fixed

value of A and a fixed matrix S-1, the system (5.4) is a strictly diagonally dominant

system of linear equations. The Jacobi and Gauss-Seidel methods are known to

converge for such linear systems. These methods depend on a splitting of the matrix

S-1 into a diagonal part E and a full matrix F such that

S-1 = E + F.

In the linear Jacobi method, one simply lets E be equal to the diagonal part of S- 1 .

Then F has zeros on the diagonal. The solution of (5.4) satisfies

S- 1 z - w = 0

(E + F)z - w = 0

Ez = w - Fz

z = E-1 (w - Fz) (5.5)

It is then easy to compute the diagonal matrix E- 1 and update z according to the

last equation on each iteration. The convergence rate is often improved by picking

a step size less than one, thereby only doing a partial update at each iteration. We

apply the following well-known convergence result when S- is fixed before presenting

our algorithm for solving the original nonlinear system.

Lemma 5.5. Fix S- 1. Define the splitting (E, F) where the matrix E is positive

diagonal and F has non-positive off-diagonal elements and zeros on the diagonal,
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such that S = B + F. Then the damped Jacobi iteration, with 0 < a < 1,

zt+1 = (1 - a)zt + aeE-1 (w - Fzt) = zt + aeE-1 (W - S-1zi)

converges to the unique solution of the linear system (5.4).

Proof. In Lemma 4.8 we showed that L- 1 is a strictly row-diagonally-dominant M-

matrix. The matrix S-1 = diag (g)- 1 L- 1 is a strictly row-diagonally dominant M-

matrix by Lemma 4.8, because we have only scaled the rows of L 1 by a positive

diagonal matrix (see Lemma 4.15 or [43, Theorem 1.2.3]). As such, its diagonal E

is positive and F has non-positive entries. The convergence of the Jacobi method

for any diagonally dominant systems of equation is well known [6, and references

therein]. D

5.6.3 A Linearized Jacobi Iteration for the FOCs

Our approach essentially consists in applying linear Jacobi iterations to the nonlinear

system (5.4). We can solve the linear system of the preceding section for a given value

of S-1, say Sk', corresponding to the iterate zk. Then we could update the value

of S1 based on the new value of Zk+L after a suffciently large number of steps L to

ensure appropriate convergence. Instead, we prefer to update S-j more frequently, or

even at each iteration (in which case t = k always). In a similar manner, rather than

explicitly perform a line search over A as discussed above, we can update its value

periodically before convergence is achieved.

We propose the following algorithm, parameterized by an integer L > 1 and a

step size 0 < a < 1:

1. Choose z0 E R". Set k = 0.

2. Let A = II(zk) = (pk)Tzk.

3. Set S-1 = S-1 corresponding to zk.
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4. For t =k +..., k + L, update z' according to (5.6) below. That is, let

zt+1 = zt + aEk' (W - Sk 'zi).

5. If {zt} has converged, stop. Otherwise set k to k + L and go to Step 2.

The starting point in Step 1 is not important, but Theorem 5.7 below defines a

box which contains the optimal solution. Choosing zo in this set will yield faster

convergence.

There is no reason to ever decrease the value of A in Step 2 if the objective value

decreases on a given iteration, because the profit for the prices zt at any iteration t is

clearly a lower bound on the optimal profit. However, we find empirically that testing

for such a decrease in Step 2 is not necessary. Omitting such a check will allow us

to use the same algorithm later when we approximate MMNL models, and the profit

at an iteration is no longer a lower bound on the optimum because of approximation

error.

In practice, there seems to be no advantage to choosing L > 1 in Step 4. In our

experiments, we terminate the procedure in Step 5 whenever the change in A would

be sufficiently small.

The following lemma defines the Jacobi iterations that we apply, and characterizes

the iteration matrix.

Lemma 5.6. Define the splittings (Ek, Fk) where the matrix Ek is the positive diag-

onal of Sk 1 and Fk is negative off-diagonal such that S' = Ek + Fk. Consider the

damped Jacobi iteration, with 0 < a < 1, defined by

zt+= (1 - a)z t + aEk' (w - Fkzt) = zt + aEk (w - SkIz). (5.6)

Then the iteration matrices Mk = I - aEk'Sk7 are strictly row-sub-stochastic. We

may write

z+ T(z') -^ Mkzt + aEk1w.

Moreover, the diagonal entries of Ek1 are less than one.
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Proof. For any k, the splitting is the same as in Lemma, 5.5. Rewriting the iteration in

terms of Mk consists of simple substitution. We must show that Mk is sub-stochastic.

Because Ek is the positive diagonal of the strictly diagonally dominant M-matrix

S k, the matrix Ek1 Sk7 has a diagonal of all ones and non-positive off-diagonal

entries in the range (-1,0]. Moreover, the off-diagonal elements of each row sum

to less than one in magnitude because row-diagonal-dominance is preserved by the

positive scaling due to Ek'. It immediately follows that Mk is strictly sub-stochastic

for a = 1, since its diagonal elements are all zero. For any value of 0 < a <; 1, Mk

is a convex combination of the matrix just discussed with the identity, and therefore

also sub-stochastic.

The diagonal entries of Ek are simply those of Sk'. But they are all greater than

one by its definition (5.3) in terms of the partial derivatives of G(y). Then the entries

of E- 1 are all less than one. L

The stepsize in Lemma 5.5 affects the rate of convergence but not whether the

iterates converge. In contrast, for the method in Lemma 5.6, we must be careful to

choose a sufficiently small stepsize a when updating Sk'. Even if the step size is too

large, the method does not diverge. The iteration matrices are sub-stochastic and

therefore have spectral radius less than one. However, the iterates may oscillate. This

situation is easily detected and the step size can be reduced accordingly.

The following theorem verifies that the optimal solution to the pricing problem

is indeed a fixed point of our algorithm. The theorem also provides a box in R"

that must contain the optimal z*. Recall that each entry of z is simply an affine

transformation of the corresponding entry of x to account for varying profit margins

and production costs across products. Therefore, there is a corresponding box in R"

that must contain x*.

Theorem 5.7. Let x* be the optimal solution to the pricing problem (5.1) under a

GEV model. Then the corresponding z* is a fixed point of the algorithm defined in

this section. Morever, z* E 0, A* + maxi I C R".

Proof. If we chose zo = z* , then in Step 2 of the algorithm, we set A = fl(z*) = A*.
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When A = A*, the optimal solution z* satisfies the system of equations (5.5) by

Theorem 4.10, and Lemma 5.1. This system defines the Jacobi iteration, so z* is

clearly a fixed point of the update in Step 4. Therefore z* is a fixed point of the

algorithm.

By the first equation in Lemma 5.1, any stationary point must satisfy z - Sw.

This holds, in particular, for the global maximum z*. However, we have already

shown in Lemma 4.15 that S is a sub-stochastic matrix. Therefore z* must belong to

the specified set since

0 < S(B- 1 + A*I)e < max h + A* e.

5.6.4 A Simpler Fixed Point Iteration

A slightly simpler iteration can be obtained by replacing Ek with the identity matrix,

and choosing a smaller step size. In Lemma 5.8 below, the additive term on each step

is constant for a fixed value of A, rather than just bounded as in Lemma 5.6. The

corresponding iterative update for linear systems is known as the modified Richardson

iteration [38].

Lemma 5.8. Consider also the damped Richardson iteration

z - T(z') A Rkzt + aw (5.7)

with iteration matrix Rk= I - aSk-. For step size 0 < a , the matrices

Rk are sub-stochastic.

Proof. The proof is essentially the same as for Lemma 5.6, replacing the diagonal

Ek of S-J simply by I . Consider the matrix aS-1 after it is scaled by a. By the

condition on a, the diagonal entries of this matrix are in the range (0, 1]. As before,

diagonal dominance and the M-matrix property is preserved by positive scaling of the
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rows. Then the sum of the (non-positive) off-diagonal entries in each row is strictly

less in magnitude than than the diagonal entry.

Restating the diagonal dominance property in terms of the entries of Rk = I -

aSk1 , and writing [Rkli) for the (i,j) entry of Rk, we have that for each row i,

S [Rk]li < 1 - [Rk]li.
is i

The left hand side is the sum of the magnitues of the (non-negative) off-diagonal

entries of Rk. The right-hand-size corresponds to the diagonal entry of aSpk = I-Rk.

Adding [Rk]i on both sides yields that the entries in each row sum to less than one.

The off-diagonal entries are non-negative because aSk is an M-matrix. The diagonal

entries are non-negative since those of aSki are less than one. Therefore Rk is strictly

row-sub-stochastic.

Using the damped Richardson iteration is more restrictive in theory, since the

step size must be chosen as a function of S-1 to ensure that the iteration matrix

is actually sub-stochastic. On the other hand, the additive term is now constant

and the operator (5.7) has the form of the stochastic dynamic programming operator

mentioned in Section 5.6.1. In practice, the two updates appear to perform similarly

with properly adjusted constant step sizes 4 , even if the actual Richardson iteration

matrix is sometimes not actually substochastic.

5.7 The CNL and MMNL Discrete Choice Models

In this section, we first formally define the CNL and MMNL models, and characterize

the Jacobian matrix of the prices under both of them via two lemmas. Our algorithm

only applies to GEV models, and the MMNL models do not belong to this family.

We will show, however, that MMNL models can be locally approximated arbitrarily

closely by CNL models, which do belong to the GEV family.
4 By this we mean that a stepsize of a = 1 for (5.6) corresponds to the maximal stepsize allowed

for (5.7). Smaller stepsizes for (5.6) correspond to similarly scaled-stepsizes for (5.7).
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Therefore, we can in fact apply our algorithm to MMNL models via this approxi-

mation. There remains the problem that, under MMNL models, the profit often has

many local maxima. We show that we can incorporate the path-following method of

Hanson and Martin [40] into our algorithm to nonetheless find good local maxima

(which we in fact believe to be globally optimal).

5.7.1 The Cross-nested Logit model

We will define the cross-nested logit (CNL) model, and derive expressions for the

matrix S- 1 in terms of the conditional choice probabilities within each nests. We will

use it in our experiments, and to motivate our approach for MMNL models. The

CNL model is defined by the generating function

M n+1M

G(y) = a y!" ,mAYj (5.8)
m=1 j=1

with conditions on the parameters

1. aim ;> 0, Vi, m,

2. Em aim > 0, Vi, and

3. 0 < p < ym,Vm.

Since not all parameters are identified when estimating the model from data, the

normalization i = 1 and Em aim = 1, Vi are common. Ben-Akiva and Lerman [7]

and Train [77] provide details on specific estimation procedures. Bierlaire [11] provides

an up-to-date discussion of the CNL model and the various formulations found in the

literature.

The partial derivatives of (5.8) with respect to the elements of y are

_BG(y) M 1 n+1 PM I-

Gi (y) y o yE"II: a " . (5.9)
a m=1 i(j=1 Y)
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Thus, the choice probabilities are

yiGi(y) 1 . ( 1n+0 )

PM Em ym
pG(y) G(y) n+1 a U Ijk j=1

The choice probabilities can also be re-expressed as

M

p= 1pimqm,
m=1

where

1 n+1 AM y_ y__m

qm a ( im , and pF ilm M . (5.11)
G(y) n+1a,4 'AIMj=1 (Ej=1 3m 3j

denote the probability that a customer choosing nest m, and the probability that

such a customer then chooses alternative i, respectively. As for the NL model of

Chapter 3, we define the matrix P E R(n+l)x(n+l) with the choice probabilities pi on

the diagonal, and the matrix Q E RmX" with the nest probabilities on the diagonal.

The following lemma provides an expression for S- 1 under the CNL model. It also

characterizes the Jacobian of the choice probabilities with respect to prices, denoted

J;1 as in Chapters 3 and 4. The latter matrix will allow us to relate the CNL model

with the mixed logit model.

Like the matrix L 1 compared to L 1 , the matrices 5- 1 and J; 1 have an extra

row and column corresponding to the outside alternative. The matrix .j;1 is actually

singular because the total change in demand as a price changes, when including Pn+1,

must be zero. This implies that the row sums of J;1 are all zero. The abuse of the

inverse notation is for consistency.

By considering j; 1 instead of J;1, we relax the assumption that the price for the

"product" corresponding to the outside alternative is fixed. We define the diagonal

matrix B, which extends B with the price sensitivity parameter bn+1 for the (n + 1)th

product. Similarly, we define the new product's quality parameter dn+1 and its price

zn+1. Our assumption of a no-purchase option amounts to setting both of these
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parameters to zero, and removing the last row of j;1 containing the derivatives with

respect to z,+1. (To recover the square J; 1, we must also remove the last column

corresponding to pn+1. The column is redundant, because, as discussed above, the

row sums of j;1 are zero.)

Lemma 5.9. For the cross-nested logit (CNL) model,

5- = diag (NWe) - NWPIT + p1NP i,

where W = diag(1,...,pM) is a diagonal matrix, PI E Rn+lxm is the matrix of

conditional choice probabilities with [P]im = pilm in the (i, m) component, and N =

P-IPlQ. 5

Moreover, the Jacobian matrix of the choice probabilities with respect to prices is

3-1 = -5 (PS- 1 - ppT) = -5 (diag (Ae) - A) (5.12)

where A E Rn+ 1,n+ 1 is the symmetric matrix

-P W 0 PiT

-OT 1 PT

Proof. See Appendix D.3. D

5.7.2 The Mixed Logit Model

Under MMNL models, the choice probabilities are

dim-b.|mZi

Pmpi7m n+1 edjm-b-Imzj'
m m .1=1

for constant nest sizes -1, ... , yM such that Em ym = 1. That is, the choice proba-

bilites for each product result from a mixture of MNL models defining the probabilities
5 For the NL models with no cross-nesting, N was the incidence matrix of products to nests. It is

no longer constant for CNL models, although the equation given here obviously holds in the special
case of the NL model.
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withing each nest.

For simplicity and without loss of generality, we again include the "price" of the

outside alternative as z, 1, = 0, and the quality parameters d(n+l),l, ... , d(n+ 1 ),M 0,

like in the last section. That is, the last term in the sums over j is equal to e0 = 1

for each nest. This is analogous to setting yn+ = 1 for a GEV model, as can be

seen if we consider the MNL models obtained when M = 1. Like Hanson and Martin

[40], we assume that the price sensitivity parameters b.im are constant for all products

within the MNL model representing each segment.'

We derive the Jacobian matrix of the choice probabilities for MMNL models, and

compare it with the Jacobian for CNL models derived in the preceding lemma.

Lemma 5.10. Under mixed logit (MMNL) models, the Jacobian of the choice prob-

abilities with respect to prices is given by

i-1x = - (diag (AMIXe) - AMIX)

AMIX = PWMIXPiT

where WMIx = diag (b.1 1 1 ,... , b.|MTyM) is a diagonal matrix with the price sensitivity

parameters for each nest scaled by the nest sizes, and P1 c Rn+lxm is the matrix of

choice probabilities pilm .

Proof. See Appendix D.3 E

5.7.3 Approximation of MMNL Models by CNL Models

In Section 2.4 of Chapter 2 we have already provided a local approximation of mixed

MNL models by GA demand models. The major problem when using these approxi-

mations for optimization is that a stationary point of the MMNL profit is usually not
6This is not the same as assuming constant price sensitivity within a nest for the CNL model.

The CNL model has one sensitivity parameter bi per product, and one quality parameter di per
product. For each nest m, both parameters are affected by the scale parameter yIm. We assume
that the MMNL model has one sensitivity parameter b.Im per nest, but the quality parameters dim
are specific to each product and each nest.
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a stationary point of the GA approximation. While they may provide good estimates

of the demand, this makes them less suitable than CNL approximations.

The CNL model is extremely flexible because the parameters aim can be chosen

arbitraritly. It is relativly straightforward to locally approximate a MMNL model by

a CNL model with identical choice probabilities and similar partial derivatives. This

is shown in the next theorem, by comparing J-1x and J;1. The result can potentially

be strengthened to have the Jacobians be exactly equal, if we allow the conditional

choice probabilities PI to differ (but not p) 7.

Theorem 5.11. A MMNL model with a constant price sensitivity parameter for each

nest can be approximated locally, at a give price vector z, by a CNL model the same

choice probabilities 15, the same conditional choice probabilities PI and an arbitrarily

close Jacobian matrix J 1 of the choice probabilities with respect to the prices.

Proof. See Appendix D.1 l

In fact, since we only require the value of the Jacobian matrix in our algorithm, we

may bypass the approximation altogether and obtain S directly from the Jacobian

of the MMNL model. Solving for S-1 in the expression for jz; of Lemma 5.9, we

have

- -P- 1 jU 1 ± T.
z+ep.

We can then replace J;' with Jj'x, and recover an approximation of the required

matrix S- 1 . The matrix B is not defined for MMNL models, since they do not have

per-product price sensitivity parameters. (The per-nest parameters are captured

by the pm parameters of the CNL model in the approximation. See the proof of

Theorem 5.11.) Therefore we take B to be the identity, and simply use

[P~p]in Lmma 59 - ix + e15
7The matrix [Pij>] in Lemma 5.9 is rank-deficient because the last column j~ = Piq is a linear

combination of the conditional choice probability vectors. A change of basis can be performed while
maintaining positivity of the vectors in the basis: write A = PI(W + qqT)piT = PXXTPiT,
where the Cholesky decomposition factor X has all positive entries (this is easy to show from the
Cholesky decomposition algorithm [38]). After appropriate scaling we recover an expression of the
form AMIX. The reverse process is similar, but requires an appropriate choice of q to ensure
positivity while maintaining that Piq= p.
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in the algorithm.

5.7.4 The Path-following Method of Hanson and Martin

Even though we can locally approximate MMNL models, the profit often has many

local maxima. Therefore we risk converging to a suboptimal solution.

Hanson and Martin [40] already proposed a heuristic for finding good local optima

of the profit under MMNL models when optimizing over prices. Their approach serves

both as motivation and as a basis of comparison for our own heuristics. Their key

observation is that, even though the profit is not concave in terms of the prices z in

general, it becomes concave as the mean utilities for all products are scaled down.

Specifically, as both the parameters bi and di approach zero. In the utility theory

maximization interpretation [77], this is equivalent to increasing the variance in each

customer's utility. Intuitively, as the parameters are scaled down and the prices

are held constant, the "randomness" in each customer's utility increases, and the

probability of choosing each product becomes essentially the same.

Their heuristic first solves the problem with the parameters scaled down suffi-

ciently so that the profit is concave. The parameters are then gradually increased

back to their original values on each iteration. The solution of the previous iteration

is used as the starting point in the subsequent iteration. This procedure generates a

path of solutions, which may avoid getting trapped in local maxima of the original

profit function. A number of paths can be generated by selecting different schedules

for scaling the parameters.

In the computational experiments of Hanson and Martin [40] (as well as in our

own), their approach finds better local solutions more quickly than simply choosing

different starting points. However, it still requires solving optimization problems in

terms of prices. As we showed in Chapter 2, this can be quite inefficient even for

single-segment MNL models. Fortunately, we can now implicitly use a local CNL

approximation to the MMNL model, as shown at the end of the preceding section,

and apply our algorithm of Section 5.6. In addition to being faster and simpler

than the conjugate gradient method sugested by Hanson and Martin [40] to solve
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the sequence of MMNL models, our algorithm performs well with a more agressive

schedule of parameter scalings in practice.

5.8 Experimental Results

5.8.1 Small Scale Instances

Table 5.1 shows the number of steps needed for convergence to maximize various

randomly generated CNL profit function, with n = 10 products and m = 4 nests.

The price sensitivity bi parameters are chosen such that their maximum ratio is as

indicated, and the largest value is 1. The scale parameters pm for each nests are

randomly sampled in the range [1, maxm pm]. The parameter p indicates how close

the nesting structure is to a NL model. For p = 1, the aim are sampled randomly. For

p = 0, each product is assigned to a single nest. Intermediate values of p represent a

convex combination of the the two extremes.

The step size a is chosen as a power of - sufficiently small such that a tolerance2

of 10-6 is achieved for the value of A in less than 1000 iterations. The number of

steps needed before convergence is also indicated. The iterates never diverge, but

may oscillate or converge very slowly if the step size is too large.

The last four columns represent our attempt to empirically determine whether the

functions U and T are concave, and whether F' is a (generalized) diagonally dominant

function. This is accomplished by randomly sampling 1000 prices z E [0, A+maxi b; 1 ]"

with the final value of A. (All stationary points must lie in this set by Theorem 5.7).

We then check whether the eigenvalues of the Hessians are negative at all these points.

We also check whether the Jacobian of F' scaled by Y is row-diagonally dominant.

The last column shows our attempt to find some other scaling vector u such that the

Jacobian is a generalized diagonally-dominant matrix. We use the algorithm of Li

[49] with parameter 6 = 0.001 and at most 100 iterations. A zero in the last column

indicates that, for at least one point, the algorithm failed to find an appropriate

scaling of the Jacobian and the result is inconclusive. The function may yet be
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generalized diagonally-dominant.8 A zero in the preceeding three columns represents

a conclusively negative result, since those conditions are easy to check.

bmax/bmin maxm I-m p a Steps F' DD F' GDD
concave concave

2 5 0.5 0.5 15 1 1 1 1
5 5 0.5 0.5 13 1 1 1 1
10 5 0.5 0.5 13 0 1 1 1
15 5 0.5 1 60 0 0 1 1
20 5 0.5 1 78 0 0 1 1
30 5 0.5 1 254 0 0 1 1
40 5 0.5 0.5 15 0 0 1 1
50 5 0.5 0.5 14 0 0 1 1
10 10 0.5 0.5 13 0 1 1 1
10 15 0.5 0.5 17 0 0 1 1
10 20 0.5 0.5 33 0 0 0 1
10 30 0.5 0.5 31 0 0 0 0
10 40 0.5 0.125 77 0 0 0 0
10 50 0.5 0.125 194 0 0 0 0
10 5 0.1 1 9 0 1 1 1
10 5 0.25 1 8 0 1 1 1
10 5 0.5 0.5 13 0 1 1 1
10 5 0.75 0.5 16 0 1 1 1
10 5 1 1 396 0 1 1 1

Table 5.1: Small-scale random CNL instances.

In the first 8 lines of the table, we vary the ratio between the price sensitivity

parameters. Theorem 4.16 shows that 1P is concave when the ratio is less than 2.

However concavity appears to persist for much larger ratios. Even the profit function

H appears to remain concave with ratios up to 5. The Jacobian F' appears to remain

diagonally dominant (column DD) even as the ratio becomes large.

Next, we vary the value of the pm parameters. Large values indicate that the

choices within each nest become almost deterministic in the price. That is, the

demand shifts abruptly from one product to another, within each nest, as prices

change. As these parameters become large, the Jacobian is no longer DD, and for very

large values of the pm we cannot verify that it is generalized diagonally dominant at

8In principle, trying different parameters for the agorithm of Li [49] should find an appropriate
scaling to show geneneralized diagonal-dominance of the Jacobian, or should conclusively show that
it is not GDD. However, the matrices where we fail to obtain a result in our experiments are so
badly scaled to begin with that it is difficult to choose reliable parameters to use across all instances.
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the sampled points. We also observe that a smaller step size is needed for convergence

as the pm become large.

Finally, we vary the parameter p in the last six lines. We note that for all the

values T appears to be concave, but H does not. In Theorem 3.5 we showed that H

is concave when the ration bmax/bmmn is less than 2 for NL models (p = 0), but it is

fixed at 10 for these experiments, so they are consistent with our theoretical results.

We observe that a smaller stepsize is more appropriate for CNL models with strong

cross-nesting (p close to 1), since the second and third row from the bottom required a

reduction in step-size before converging. The botton row would likely have exhibited

faster convergence with a smaller step size.

In general, intermediate step sizes seem to work best. Even for the instances where

the ratios of the price sensitivities are large, a step size of a = 1/8 work well. On the

other hand, even for the first three rows, a reduction to a = 0.5 was required before

convergence was achieved.

5.8.2 Large Scale Instances

In Table 5.2 we increase the number of products to n = 1000 and the number of

nests to m = 100. We use a step size of at most 0.5, and reduce the tolerance to

10 4 . We indicate the time to convergence with a MATLAB implementation running

on an Intel Core 2 Duo laptop. The running time is roughly proportional to the

number of iterations needed, and most of the time is spent computing the value of the

matrix G. We are able to solve these instances in less than 20 seconds, except when

the values of the pm are very large (corresponding almost to a deterministic choice

model; see above.) We remark that Jacobi-type iterations like our algorithm naturally

lend themselves to parallelization, although we have not pursued this. Undoubtedly,

an optimized native implementation would be orders of magnitude faster than our

MATLAB code.

Interestingly, it is possible to use a larger step size for some of the instances that

for the corresponding small-scale instances with similar parameters.

135



bmax/bmin maxm m p a Steps Time (s)
2 5 0.5 0.5 19 9.19
5 5 0.5 0.5 19 9.5
10 5 0.5 0.5 18 9.01
15 5 0.5 0.5 18 8.88
20 5 0.5 0.5 18 8.99
30 5 0.5 0.5 17 8.24
40 5 0.5 0.5 17 8.77
50 5 0.5 0.5 17 8.52
10 10 0.5 0.5 21 10.42
10 15 0.5 0.5 25 12.63
10 20 0.5 0.5 35 17.93
10 30 0.5 0.5 31 18.06
10 40 0.5 0.25 45 34
10 50 0.5 0.5 127 193.67
10 5 0.1 0.25 40 19.24
10 5 0.25 0.5 20 9.83
10 5 0.5 0.5 18 8.81
10 5 0.75 0.5 18 8.67
10 5 1 0.5 18 9.02

Table 5.2: Large-scale random CNL instances.

5.8.3 Heuristics for MMNL Instances

Table 5.3 and Table 5.4 show the value of the local optima and the running times

achieved by four heuristics. HM represents the heuristic of Hanson and Martin [40]

with the most aggressive parameter choices they suggested (A = 0.5, 20 scaling steps).

The optimizations are performed using the pre-conditioned conjugate-gradient (PCG)

method implemented in the MATLAB Optimization Toolbox. This method often

seems to find the global maximum, and we normalize the objective values by HHM

to facilitate comparison.

The value Hrand is achieved by starting the PCG algorithm at 20 random start-

ing points (to make it comparable with the 20 steps of the HM method). HCNL

represents the result of starting the CNL approximation based heuristic at the same

starting points. We report the mean value achieved, and the total running times.

All optimizations are stopped when a tolerance of 10-6 is achieved or when 10000

iterations are reached.

Finally, r1 HM-CNL represents the value achieved when using the same scaling as for
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UIHM, but performing a limited number of iterations (50) of the CNL approximation

based heuristic for each step.

The third column of both tables represents the scale parameter of the MMNL

model. That is, the actual values of the price sensitivity parameters b.im for each

nest are on the order of p-1. The scale of the pm in the CNL approximation of

Theorem 5.11 is then on the order of p-'. That is, if we were sampling comparable

instances for the preceding two tables, the value in the column maxm -Lm would be

approximately . The largest ratio of the price sensitivity parameters is given in

the fourth column. The last column of Table 5.4 shows the maximum number of

iterations needed for convergence to within a tolerance 10-6 for our algorithm.

n m P b-|max/b.Imin U1HM 11rand HCNL IIHM-CNL
15 10 0.10 2 1.00 1.00 1.00 1.00
15 10 0.05 2 1.00 0.99 0.99 1.00
15 10 0.01 2 1.00 0.90 0.90 1.00

100 10 0.05 2 1.00 1.00 1.00 1.00
100 10 0.01 2 1.00 0.97 1.00 1.00
100 50 0.05 2 1.00 1.00 1.00 1.00
100 50 0.01 2 1.00 0.86 0.87 1.00
100 50 0.05 10 1.00 0.96 0.95 0.93
100 50 0.01 10 1.00 0.74 0.75 0.93

Table 5.3: Comparison of heuristic solutions
stances. The profit achieved by each method is

for randomly generated MMNL in-
normalized by UHM-

n m p b.\max/b.min tHM trand tCNL tHM-CNL Max. Iters.

15 10 0.10 2 1.47 2.68 0.18 0.12 42

15 10 0.05 2 1.28 3.65 0.99 0.32 251
15 10 0.01 2 1.17 7.62 2.05 0.30 625
100 10 0.05 2 27.25 84.22 16.95 2.16 525
100 10 0.01 2 24.58 381.19 24.26 2.03 778
100 50 0.05 2 42.17 125.23 22.06 2.67 454
100 50 0.01 2 36.92 748.54 42.17 2.73 1244
100 50 0.05 10 55.58 194.99 33.22 2.78 905
100 50 0.01 10 52.27 473.25 409.85 2.82 10000

Table 5.4: Comparison of the running times of
erated MMNL instances.

the four heuristics for randomly gen-

First, we observe that IIHM and IHM-CNL both appear to achieve the global

optimum in most cases. Of course, we cannot guarantee this in general. However,
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Hanson and Martin [40] showed that there is a unique local (and thus global) optimum

for sufficiently large values of p. This is consitent with our results: for P = 0.10 all

the random starting points result in the same solution as the HM heuristic. For the

last two rows, HIHM-CNL is sub-optimal, but this could likely be resolved by using

a smaller step size a. (The step size was fixed at a = 0.1 in these experiments

for consistency. A smaller step size was clearly needed for the last row because our

algorithm failed to converge even in 10000 iterations. This indicates that the iterates

were oscillating as discussed above.)

Randomly selecting enough starting points usually also finds a good local optimum

even for smaller values of pa. However, his may be prohibitive for large instances.

Clearly, 20 points is insuficient for n = 100 when y = 0.01. Our algorithm performs

only slightly better that the PCG method, but is somewhat faster. Therefore more

trials could be performed at the same computational cost.

The difference between the methods lies in their running times. Since our method

essientially performs a scaled gradient ascent step on each iteration without perform-

ing a line search, it is very fast compared to a PCG method. Indeed, using the HM

scaling along with our algorithm is similar to solving a simple CNL model except that

we are slighly changing the problem as we go along.

5.9 Conclusions

We have provided a simple gradient ascent algorithm to solve the pricing problem for

GEV models. Our experiments show that it converges rapidly for CNL models under a

wide range of parameters. We provide theoretical insights into why our algorithm may

be expected to converge quickly, and why it is reasonable to expect the solution found

to be globally optimal. We verify sufficient conditions for uniqueness experimentally

for a wide range of parameters.

We also adapted our algorithm to solve the pricing problem under MMNL models.

Our experiments show that it finds good local optima as effectively has the algorithm

of Hanson and Martin [40], at a fraction of the computational cost. Because it is a
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first-order method that computes good search directions at each step, there is no need

to resort to second-order or conjugate-gradient methods which may not scale well to

large instances.
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Chapter 6

Conclusions

In this thesis, we have studied the pricing problem under discrete choice models of

demand ranging from the basic MNL model to the MMNL and GEV models used

in current practice. The question of how to efficiently price a set of substitutable

products offered to customers is fundamental in revenue management and marketing.

Our results show that optimal solutions can be found reliably and efficiently even in

the presence of variable profit margins, production costs and inventory constraints.

We have demonstrated that this is true not only for the MNL and the generalized

attraction models that have been popular in the revenue management literature due

to their simplicity and attractive theoretical properties, but also for the rich customer

demand models used in current practice.

From a theoretical standpoint, we have identified the structure of the optimization

problem arising when pricing under MNL models, we have explained how it enabled

existing work in the literature, and we have extended the same approach to all GA

models. We showed that, surprisingly, even NL models share the same concavity

properties under a certain range of parameters. More generally, we showed that the

profit under NL models is a bi-concave function. For the far more general class of

GEV models, we exposed the relationship of the pricing problem to quasi-concavity

results for fractional programming. Even though known techniques cannot be used to

establish the uniqueness of the optimal solution in general, we applied linear algebra

results to show that a certain reformulation often gives rise to an auxiliary concave
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maximization problem. We then applied our results to show that the first-order

optimality conditions are often defined nonlinear generalized diagonally dominant

functions, which admit a unique solution.

We have proposed efficient algorithms for all of the models we considered. We

developped compact closed-form expressions for the Hessian matrices and gradients

required to numerically solve the convex optimization problems arising from our refor-

mulations of the MNL, GA and NL pricing problems. For the MNL, a solution can be

computed in a polynomial number of iterations. Our structural results for NL models

allowed us to apply an iterative optimization algorithms for bi-concave maximization

problems where each iterate can essentially be computed in closed form, so that no

general-purpose solver is required. We also provided readily-computed expressions

for the Hessian matrices and gradients needed to solve the princing problem under

CNL and other GEV models. We showed that the well-known nonlinear Jacobi and

Gauss-Seidel methods can be used to solve the first-order optimality conditions, and

we provided expressions to compute the required quantities. Most importantly, we

developped a simple, intuitive and efficient algorithm for pricing under any GEV or

MMNL model that does not require any second-order knowledge of the profit, and

does not perform expensive line-searches at each iteration. Our method shows that

these seemingly complex and difficult optimization problems can in fact be solved

rapidly in practice. Our algorithm allows for easy implementation and opens the

door for further research on price-based revenue management to parallel recent devel-

opments in multi-period quantity-based revenue management under customer choice.

Since even the quantity-based methods appear intractable for large, complex demand

models, such an alternative approach shows great promise, especially in applications

where prices are easily updated and represent a driving factor in potential customers'

purchasing decisions.
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Appendix A

GA Models and the Dual Pricing

Problem

A.1 Background on Attraction Demand Models

The class of attraction demand models subsumes a number of important customer

choice models by retaining only their fundamental properties. Namely, the form of the

demands (2.1) ensures that they are positive and sum to one. A related feature is the

well known independence from irrelevant alternatives (IIA) property which implies

that the demand lost from increasing the price of one product is distributed to other

alternatives proportionally to their initial demands.

The attraction functions fi(-),i = 1,...,n may depend on a number of product

attributes in general, but we limit our attention to the effect of price. The require-

ments of Assumption 2.1 are mild. The positivity assumption and (i) imply that

demand for a product is smoothly decreasing in its price but always positive. The re-

quirement (ii) implies that the demand grows to 1 if the price is sufficiently negative,

and ensures that increasing the price eventually becomes unprofitable for a seller. As

we demonstrate for specific instances below, if the latter two assumptions are not

satisfied, the attraction functions can be suitably modified.

Though the class of attraction demand models is very general, certain instances

are well studied and admit straightforward estimation methods to calibrate their pa-
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rameters. This is the case for the MNL and MCI demand models [57, 63]. On the

other hand, if assumptions have been made on customers responses to price changes,

appropriate attraction functions can be defined to model the desired behavior. Exam-

ples of this approach include the linear attraction demand model, and the mixtures

of attraction functions discussed in Section 2.4.

A.1.1 Multinomial Logit (MNL) Models

The MNL demand model is a discrete choice model founded on utility theory, where

di(xi) is interpreted as the probability that a utility-maximizing consumer will elect

to purchase product i. The utility a customer derives from buying product i is

U, = V4 + eqwhereas making no purchase is has utility U0 = co. The Vi terms are

deterministic quantities depending on the product characteristics (including price)

and the random variables ei are independent with a standard Gumbel distribution.

It can be shown that the probability of product i having the highest realized utility is

then in fact given by di(x) in (2.1), with fi(xi) replaced by es'. To model the impact

of pricing, we let, for each alternative i = 1, . . . , n,

Vi Vi(zi) = o,i - #1,42, (A.1)

where #0,j > 0 represents the quality of product i and #1,j > 0 determines how

sensitive a customer is to its price, denoted here by 24. When there is a population of

consumers with independent utilities, the fractions di(x) represent the portion of the

population opting for each product in expectation. For ease of notation, we re-scale

the true price si by #1,j to obtain the single-parameter attraction functions (2.2), with

vi = e6 and xi = #1,ji, rather than using the form of the exponents (A.1) directly.

These functions clearly satisfy Assumption 2.1.

Parameters for the demand model used in the experiments of Section 2.6 are

generated by sampling the mean linear utilities V(st) in equation (A.1) for each

product i. Specifically, V(0) and V(xx) are chosen uniformly over [2a, 4u] and

[-4o-, -2a] respectively, where a = ir/v06 is the standard deviation of the random
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Gumbel-distributed customer utility terms e. The parameters 0,i and 3 1,j are set

accordingly. Recall that the mean utility of the outside alternative is fixed at V = 0.

The choice of parameters thus ensures that purchasing each product is preferred with

large probability when its price is set to 0, and that no purchase is made with large

probability when the (unscaled) prices s, are near xmax.

A.1.2 Multiplicative Competitive Interaction (MCI) Models

Another common choice of attraction functions is Cobb-Douglas attraction functions

fi(xi) = aixji, with parameters ai > 0 and #3 > 1. It yields the multiplicative

competitive interaction (MCI) model. Since the attraction is not defined for negative

prices, we use its linear extension below a small price c. Let

a ei-i - (xi - E)aoic-Ai-1 if xz < E,
fi(xi) = (A.2)

aeixi' otherwise.

This is a mathematical convenience, since one would expect problems involving MCI

demand to enforce positivity of the prices. The approximation can be made arbitrarily

precise by reducing c.

A.1.3 Linear Attraction Models

This demand model approximates a linear relationship between prices and demands,

while ensuring that the demands remain positive and sum to less than one. The

attraction function for the ith product is A (xi) = ai -3ixi, with parameters ai, 3 > 0.

An appropriate extension is needed to ensure positivity. For instance, by choosing the

upper bound Zi = c/#3i-c, the following attraction function satisfies our assumptions:

a{ - #ixi if xi ; xi,A
f ) =therwi(A.3)
#e-(xiMi)/ otherwise.
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A.2 Pricing under Attraction Demand Models

A.2.1 Non-Convexity of the Naive MNL Pricing Problem

This sections illustrates why the pricing problem (P) is difficult to solve directly in

terms of prices, as claimed in Section 2.2. Figure A-i shows the profit in terms of

the prices under an MNL demand model when the number of products is i = 1

and n = 2. The dashed line in the first plot shows the demand as a function of the

price. The profit function is not concave even for a single product. With multiple

products, the level sets of the objective are not convex, i.e., the objective is not even

quasi-concave.
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Figure A-1: The
products (right).
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objective functions of (P) with a single product (left) and two-

Furthermore, combining nonlinear constraints with a non-quasi-concave objective

function introduces additional complications. First, it is easy to see that, because the

objective is not quasi-concave, even a linear inequality constraint in terms of prices

could exclude the global maximum in the right panel of Figure A-1, and thus give

rise to a local maximum on each of the ridges leading to the peak. Secondly, the

feasible region of (P) is in general not convex. Figure A-2 illustrates the constraints
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The left panel shows the feasible region in terms of the prices, and the right panel

shows the polyhedral feasible region in terms of the demands. Observe that the last

two constraints are clearly non-convex in the space of prices. On the other hand, the

first constraint happens to belong to the class of convex constraints characterized by

Proposition 2.2.

C~%l
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x1
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d1 (x)

Figure A-2: The feasible region of (P) with two products and three constraints on
the demands.

A.2.2 Representing Joint Price Constraints

This section shows how to incorporate certain joint price constraints into the formula-

tions we have proposed. Under MNL demand models, it is natural to assume that the

consumer's utility (A. 1) is equally sensitive to the price regardless of the alternative

she considers. That is, #1,i = #1,j. Then the constraint (2.4) can be expressed as

fi (xj+ 6ig) vi fj (xj+ 6i) vi _6qdi(x) f; d (x) = d (x) = -e dj (x).
f (x3 ) Vf 3 (x3 ) v
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The assumption regarding the sensitivity to price is required so that the same scaling

described in Appendix A.1.1 is used to relate xi and x3 with ii and sy of equation

(A.1), respectively. This allows fi to be replaced with fj in the preceding equation.

The resulting constraint is evidently linear in terms of the demands and is captured

by the formulation (P). This transformation depends on the relationship between

the attraction functions for different products and is thus specific to the MNL model.

A similar transformation is possible for the linear attraction demand model with the

analogous uniform price sensitivity assumption, #i = #3 in (A.3). From (2.4), we then

have

fi(xi)do(x) fi(xj + 6ij)do(x) <->

di(x) < (a, - #i3 (xj + 6ij))do(x) = (a, - aj - #j 6ij)do(x) + dj (x),

where the do(x) terms can be substituted out using the simplex constraint (2.8).

A.2.3 Convexity of (COP) Under Common Attraction Mod-

els

Corollary A.1. Under the linear, MNL and MCI attraction demand models, the

objective of (COP) is a concave function and any local maximum of either (COP) or

(P) is also a global maximum.

Proof. For each model, we verify the condition (2.12). For the MNL model (2.2), we

have

-lgy-g() -1 1 -2 y' -1gl(y)= ,g'(y)= ,and2g(y)+yg '(y)=-+ =- 0.gi()= lgVi 9 y y yY + gy y

Now consider the attractions (A.3) for the linear model. For x > Yj (i.e., y < fi(Yi))

we have the MNL attraction function so the condition (2.12) holds as shown above.

Elsewhere, when x < Y,

S .- y -1 - 2 -2
gi (y) =g (y) = , g '(y) = 0, and 2g (y)+yg '(y) +0= <0.
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as desired. For the MCI attraction functions (A.2), we have the linear attraction

function for xi < c, otherwise

gi(y)=
a(

-1hy
gi (y) = ~ (±

-1 -1 y 2
(Y) = 1 -

ai i # ai

2g (y) + yg '(y) = + y 1 -)-2
a- oi a( a i # a -

=(-2+--+1) - - Y- 1
#A a i Yi aA #~ a i a

<0

where the inequality uses that #3 > 1. So the condition (2.12) is also satisfied. 11

A.3 The Dual Market Share Problem

Proposition A.2. The dual of (COP) is given by (DCOP). For any A E Rm and

y E R, there exist optimal yi > 0, for i = 1,... , n, so that pi(y*, A, p) > 0 in each of

the inner maximization problems that appear in the equality constraint of (DCOP).

Furthermore, when condition (2.12) (or equivalently, condition (2.13)) is satisfied and

(A, p) is an optimal solution of (DCOP), a primal optimal solution 0* of (COP) is

given by

0 1+ 1
1i~ ±Zy' and 0 = i . n.

* 1+E"= yi''

Proof. For each i = 1, .. . , m', let Ai be the Lagrange multiplier associated with the ith

constraint in (COP). Let p be the multiplier associated with the equality constraint.

The Lagrangian is

L(0; A, p) = aiigi (-) ->ZAk ( A6 -uk -- p 6 - 1

n m' m' k1

= j6 ag g 00 - 1 : Ai - p -1p0 -+ pt -+ E kU.
i=1k=1 k=1
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Taking the supremum successively over the different variables, we obtain the dual

function

L*(A, p) A sup L(6; A, p) = sup sup L(0; A, p)
0>0 00>0 01...0n>O J

m' n m'

S+ IAkuk + sup -100 + sup Oi aigi - Z Akki - p
k=1 60>0 1...>0 (0) k=1

m' n O

PA+ZE Akuk + sup -PO + sup 0#i ( 0, A))
k=1 00 >0 01 ...On> 00

y + AkUk + Sup 00 ( + up ( A, p) , (A.5)
k=1_supy-AAj

where # (y, A, p) is defined as in (2.29). The value of 60 has no impact on the value

of the inner supremums in (A.5) since the optimization is over the ratio i with the00

numerator free to take any positive value. Thus we may write the dual problem as

inf L*(A,Ap)= inf p+ZAkuk+sup0 sup #i(yi A p) .
A>,pA>,p k=1 600 i>0

At optimality, the quantity in the inner parentheses must be non-positive, so we may

write

m'

inf + E Akuk
k=1

n

s.t. P sup #i(yi, A, t)

V>O.
A\ > 0.

The inequality constraint is tight at optimality, because #i(yi, A, P) are strictly de-

creasing in p.

We now show that #i (yi, A, p) achieves a maximum at some y = y' > 0, for any

fixed A and p. For ease of notation, we fix i and drop the subscript. Let

#(y) A #4(y, A, P) = y (g(y) - v), (A.6)
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where we define g(y) A aigi(y) and v A E7i AkAki + p. By Assumption 2.1, there

exists a value Q > 0 for which g(Q) = v, since the attraction fi(.) is defined everywhere

on R and g(-) is its inverse. Moreover, #(.) is strictly positive on the interval (0, Q)
and strictly negative on (Q, oo) since g(-) is strictly decreasing. Also by Assumption

2.1 (ii)

lim #(y) A lim (yg(y) - yv) = lim aiygi(y) = lim aixfi(x) = 0.
y4O y10 y10 z->oo

We consider the continuous extension of #, with #(0) = 0, without loss of generality.

Then, the continuous function #(-) achieves a maximum y* on the closed interval [0, y)
by Weierstrass' Theorem. We have 0 < yi < Q and #(y*) > 0, since #(0) = #(Q) = 0

and # is strictly positive on the interval.

Suppose now that condition (2.12) (equivalently, condition (2.13)) holds. Then

(COP) has a concave objective, a bounded polyhedral feasible set and a finite max-

imum (because the feasible set is bounded). Then the dual (DCOP) has an optimal

solution and there is no duality gap. Consider now an optimal dual solution (A*, pL*)

and corresponding maximizers y*,. . . , y*. Then (A.4) is a primal optimal solution,

since it maximizes the Lagrangian L(O; A, p) by definition of the dual: we have only

made the change of variable y = O.
00

A.3.1 The Dual Problem under MNL Demand Models

Proposition A.3. The dual problem (DCOP) for the special case of MNL attraction

functions (2.2) is given by (DMNL).

Proof. The inverse attraction functions for the MNL model (2.2) and their derivatives

are gi(y) = - log 11, and g (y) = -1, respectively. Then the first order necessary
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optimality condition for the ith inner maximization in (DCOP) is

=y _agi (y) - ANAki - p,+ aiyg (y) = 0
k=1

Y = Vi exp -1 i1kAki+A

The preceding line gives the unique maximizer since one exists by Proposition A.2.

Substituting the optimal value of y back into (2.29) yields that

k Aki+-|-'p#i(y*, A, p) = aivi exp {-1 l a-

which can in turn be substituted into (DCOP) to obtain (DMNL). The constraint

may be relaxed to an inequality which is tight at optimality, since the right hand side

is decreasing in p. E

A.3.2 Solving the Dual Problem in General

More generally, there may not exist a closed form solution for the values #i (y*, A, P).

Then the dual problem may not reduce to a tractable optimization problem. If there

is no closed form inverse for the attraction functions, not even the primal market share

problem (COP) can be solved directly, even if it has a concave objective function.

This is notably the case for the demand models discussed in Section 2.4 (although we

have shown that the primal objective function's gradient and Hessian can nevertheless

be computed efficiently).

In this section, we present a column generation algorithm to solve the dual which

avoids both of these difficulties. It is more general than solving either of the formu-

lations (COP) and (DCOP) directly, since it does not require the convexity of the

primal objective function assumed in Theorem 2.4, and it does not require a closed

form solution for the inner maximizations of the dual problem.

In the dual (DCOP), fixing the variables A uniquely determines the value of

the remaining variable p, because of the equality constraint. Notice that the right
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hand side of the constraint is decreasing in p, because all functions #i(y, A, p-) are

decreasing in p for any value of y. Furthermore, any feasible [p is positive since the

maxima #i(y*, A, p) are positive by Proposition A.2. We define pu(A) as the unique

root of equation
n

FAp) =Ip- max #i(yi, A, p) = 0. (A.7)
yi>0

Its value may be computed by a line search which computes the maximizers y' at each

evaluation. When these one-dimensional maximizations are tractable, it is possible

to evaluate the dual objective efficiently, and the Dantzig-Wolfe column generation

scheme can be applied to solve (COP). (See, for instance, [9] for details.) Specifically,

we propose the following algorithm:

1. Initialization: Set lower and upper bounds LB = -oo and UB = 00.

2. Master Problem: Given market share vectors 60,61,. , oL-1, solve the fol-

lowing linear program over the variables (0, (1,... ,

L-1

1^Y = max E IIf(6f)
f=0

n L-1

SAt. [Aki E( t n<_U k=1...m'n (LP)
i= f=0

L-1

E = 1, (> 0, =0,...,IL -1.
t=0

Let AL be the vector of optimal dual variables associated with the inequality con-

straints. The master problem solves (COP) with the feasible region restricted

to the convex hull of the demand vectors 00, 01,... , L-1. If the optimal value

yL of (LP) exceeds the lower bound LB, update LB:= yL.

3. Dual Function Evaluation: Compute the root p(AL) of the dual equality

constraint FL (p) shown in (A.7), and let 6 L be the primal solution (A.4)

corresponding to the maximizers {yi, i = 1, ... , n}. If the dual objective value

L(6L; AL, LI(AL)) is less than the upper bound, set UB := L(OL; AL, /I(AL)).
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4. Termination: If (UB-LB) is below a pre-specified tolerance, stop. Otherwise,

let L := L + 1 and go to Step 2.

This algorithm requires at least one initial feasible solution 60, which can be

found by solving any linear program with the constraints of (COP). It does not

require (COP) to have a concave objective, since it computes an optimal solution to

its dual, which is always a convex minimization problem. Moreover, it can be used

even if there is no closed form for the inverse attraction functions g(-). Indeed, we

can equivalently represent the functions #i(y, A, p) in terms of the original attraction

functions fi(xi), as

O' (xi, A, p) A fi(xi) axi - A XA - p ). (A.8)
k=1

Then the maximization can be performed over the price xi, and the optimal price for

given dual variables (A, p) is

Xi - airg ax @i(Xi, A, P) = gi(y*)
Xi

The maximum is guaranteed to exist since y* exists by Proposition A.2. It can be

computed via a line search if it is the unique local maximum. The unimodality of #i

(and equivalently, of *i) is guaranteed, for instance, by the assumption of Theorem

2.4, or more generally, by the assumption of Proposition A.4 below. In the column

generation algorithm, the objective of (LP) depends on the prices xi = gi (0/00)

corresponding to the initial feasible point. Because they must satisfy fi(xi) = 00/00

and fi(xi) is monotone, they can also be found using line search procedures in practice.

For each new point 6L, corresponding prices x* are computed in the maximizations

of V#i over xi.

Finally, we remark that it is not necessary to dualize the price bounds represented

by the constraints k = (m + 1),.. , m' defined in (2.9). These constraints may be

omitted if the price bounds x. < xi < Yi are instead enforced when computing the

maximizers x* (or, equivalently, the bounds fi(xi) > yi fi(-i) are enforced when
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computing yi*). This modification reduces the number of constraints from m' =

(m + 2n) to m.

The algorithm just described may also be viewed as a generalization of the proce-

dure presented by Gallego and Stefanescu [31] to general attraction demand models

and arbitrary linear inequality constraints. (Although they arrive at their method by

taking the dual of the price-based formulation (P) for the special case of MNL de-

mand.) Because convergence of column generation algorithms is often slow near the

optimum, we expect that directly solving (COP) or (DCOP) will be more efficient

when it is possible. This, for example, is the case with the MNL demand models

considered by [31]. However, the column generation algorithm applies to demand

models where it is not possible to solve the other formulations. It can provide an

upper bound on the optimal profit when the objective function of (COP) is not con-

cave, and can often compute an approximate solution quickly (accurate within a few

percent in relatively few iterations, as shown in our experiments).

We end this section with the following proposition providing a sufficient condition

on the inverse attractions guaranteeing unique maximizers y*. It requires that the in-

verse attraction functions are "sufficiently concave" (though not necessarily concave)

up until some g, and then "sufficiently convex" afterward. Omitting the ratio 1, con-

ditions (A.9) and (A.10) below correspond to strict concavity and strict convexity,

respectively. However, the first requirement is weaker, and the second is stronger,

because this ratio is less than one. (Recall that g (x) < 0, Vx since fi and gi are

decreasing.) We note that the proposition allows y = 0 or g = oo, in which case one

of the assumptions holds trivially.

Proposition A.4. If for each i = 1, 2, ... , n, there exists a point Vi E [0, oo] such

that

g(y) < g(x) + -(y - x)gi(x), Vx, y E (0, 9i], x < y, and (A.9)
y

gi(y) > gi(x) + x (y - x)g (x), Vx, y E [9i, oo), x < y, (A.10)
y

then the maximizers {y*, i = 1,... , n} are unique for any values of A and L.
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Proof. We fix i and use the simplified notation defined in (A.6). From Proposition

A.2, the maximizer y" > 0 exists, and it must be a stationary point of #. We

will show that the rightmost stationary point to the left of gi maximizes #(y) over

(0, gj], and that the leftmost stationary point to the right of gi maximizes #(y) over

[gj, oc), if they exist. At least one of them must exist since we know a maximum

is attained. If both exist, we deduce that there is an additional stationary point

between them by applying the mean value theorem. This contradicts the fact that

they are the rightmost and leftmost stationary points on their respective intervals,

proving uniqueness of the maximizer.

Suppose y E (0, gi] is a stationary point of #(.), i.e.

#'(y) = g(y) - v + yg'(y) = 0 v = g(y) + yg'(y). (A.11)

We will show that for any other point x E (0, y), whether or not it is a stationary

point,

(x) < #(y) e x(g(x) - V) < y(g(y) - v) e

x(g(x) - g(y) - yg'(y)) < -y 2g'(y) * x(g(x) - g(y)) < (x - y)yg'(y) *

y- ((g(x) -gY '()g(X) - g(y) < (X - ,
() (y<x y)) > gY()

where we used (A.11). Having fixed y, we denote the left hand side as a function of

x by

h x) - g(y) - g(x))h(x) ~____

and note that limx1 h(x) = g'(y). Thus, to prove the inequality, it is sufficient to

show that the continuous function h(x) is decreasing in x on the interval (0, y). We
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consider the derivative with respect to x

, g(x) - g(y) X g' _ g(x) - g(y)\
h( - g( ) - +

y(x - y) y x-y (x - y)2

S(g(x) - g(y)) + -( y) - - (g(x) - g)
(x - y)2 \ g kl

= (x - y)g'(x) - g(x) + g(y))

1 x
= a ) (Y - x)g (x) - gi(x) + gi(y) < 0. (A.12)

(X - y)2 (y

The assumption (A.9) implies that the above derivative is negative, where we have

substituted gi(-) back in, and thus h(x) is decreasing.

A similar argument shows the analogous result for stationary points to the right

of 9i. Take instead x E (gi, oc) to be the leftmost stationary point in the half-line,

and let y E (x, oo) be some other stationary point. We still have that x < y, but now

#(x) > 0(y) - h(x) < g'(y), because h(x) is increasing in x. This is implied by the

assumption (A.10), which shows that the derivative in (A.12) is now positive. O:1

A.3.3 Performance of the Column Generation Algorithm

Table A.1 shows the accuracy achieved and the running time in seconds after a fixed

number of iterations of the column generation algorithm, when applied to randomly

generated problem instances with four overlapping customer segments, using the ap-

proximation of Section 2.4. Only the most recently active 512 columns are retained

in the master problem (LP). We have no closed form for the inner maximizers y* and

instead use a numerical minimization algorithm based on Brent's method to compute

them. Brent's method (see Brent [15]) is also used to solve (A.7) numerically. The

algorithm was halted if six significant digits of accuracy were achieved.

As is often the case for column generation algorithms, we observe fast convergence

early on. After 500 iterations, most of the instances are solved to within 10 percent of

the optimal objective value. Quadrupling the number of iterations further reduces the

duality gap to a few percentage points in all but the largest instances. The solution
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Products Constraints 100 Iteration 500 Iterations 2000 Iterations
(mn) Duality Gap Time

256
256
256
256
256
256
256
16
64

256
512
1,024
2,048
4,096

0.03%
19.63%
31.28%
25.77%
14.39%
4.45%
1.35%
0.03%
6.72%
31.28%

237.23%
215.69%
161.09%
178.72%

0.41
1.10
2.49
4.05
8.74

18.31
35.50

1.49
1.36
2.49
4.02
9.98,

20.73
64.33

Duality Gap Time
(< le-6)
0.68%
4.18%
4.75%
4.12%
1.25%
0.52%
0.01%
0.10%
4.18%
12.77%
24.42%
26.25%
28.96%

0.86
11.83
25.99
38.30
65.91

117.06
212.99

9.54
12.74
25.99
75.98

250.18
583.72

1,561.70

Duality Gap Time
(< le-6)
(< le-6)
0.19%
0.92%
2.71%
1.15%
0.52%
0.01%
0.07%
0.19%
1.79%
5.17%
6.80%
7.76%

0.86
90.05

198.75
263.76
393.85
605.92

1,150.80
55.87
68.91

198.75
638.32

1,882.00
4,636.20

10,944.00

Table A.1: Duality gap as a percentage of LB and running time in seconds for the
column generation algorithm.

times compare favorably with the price

(DCOP) for the single-segment case, but

formulation (P) and the dual formulation

are significantly slower than for the market-

share formulation (COP). Of course, the latter formulation requires the custom

objective evaluation code described in the preceding section when multiple segments

are being approximated. We conclude that the column generation method offers a

viable alternative when the other formulations cannot be applied easily, and only

limited accuracy is needed.
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Appendix B

Derivations for the Nested Logit

Model

B.1 Explicitly Inverting the Choice Model

Lemma 3.1. Under a NL model, for i = 1,... ,n+1,

1 1 _ 1

Yi= 1 1 1 - 1 *
()M JUM* JIM*

Pn+1|m*Qm* Pn+1 Qm*

Therefore the demand function p :R" -+ An+1 is invertible (one-to-one and onto).

Moreover, both p(-) and p-(.) are differentiable.

Proof. In general, the choice probabilities under GEV models, such as the NL, are

defined by the partial derivatives Gi(y) = of the function G(y) stated in (3.4).
ay 

Specifically,

F2-yjGi (y)n,piG =y, i = 1, .. ., n,
pG(y)

where we have implicitly set y = 1 for the NL model. (See Section 4.2 for details.) For

consistency in the proofs, we use the slightly more general definition of the function

G(y) for the cross-nested logit (CNL) model presented in Section 5.7.1. Setting pL = 1

and restricting the aim to be binary parameters reduces the function in Equation (5.8)
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exactly to function we have stated for the NL model in (3.4).

The partial derivatives Gi(y) are stated in (5.9). We can rewrite them slightly

and substitute in the expressions for the conditional probabilities of (5.11) (which

also reduce to those for the NL model).

M

Gi(y) - p E
m=1

M

=P 1
m=1

( L A-z \ 1 1P i p

a , yi'" Am a

j=1

M

= p Pi (QmG(y))1-
m=1

M

(G(y))1 - M
m=1

- 1 1 -
1--- 1 i U mJ

aim mQ

Since aim is nonzero for a single nest m in the NL model, the summation in the last

line reduces to a single term. The expression simplifies to

i 1 1- 1 1-
G (y) = (G(y))1- pPim'''Qmi".

We can now solve for yi in the definition of pi above:

pG(y)
YGi(y) Pi

pG(y)

1 1 1- 1-G1 m QM 

PzIm Qr

S11

Since Yn+I = 1 is fixed and the no-purchase option is in nest mn+1 = m*, we have
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Substituing this quantity back into the expression for any of the yi, we obtain

1 1 1 I

pYi Om- pn+1|m*-= P~im ____ __ ni)

The first equality of the statement follows. The second equality follows immediately

because pi = pilm, Qmn. Invertibility and differentiability are also immediate becase we

have given differentiable close-form expressions for y, and pi. The mapping between

the y, and the prices x is clearly invertible and differentiable.

B.2 The Jacobian of the Prices

In the following proofs, we use the shorthand q A Qm to denote the vector of nest

probabilities Qm = [Q1 Q2 - QM] , for clarity. This is not to be confused with

the vector q defined in Chapter 4. The matrix Q has the vector q on the diagonal.

We find it necessary to deal with functions of p, p or the pair (p, q) at different

times. As a rule, quantities related to p are also marked with a bar, and quantities

related to (p, q) are subscripted. Rather than work directly with J,, we will define

the Jacobians of y with respect to p, p and (p, q), and denoted them by J, j and

Jfpq, respectively.

We denote the vector of all ones by e and the identity matrix by I regardless of

dimension. The vectory ej represents the vector of all zeros except for a 1 in the jth

entry. We also define the diagonal matrices P, P, Y and Y with the vectors p, p,
T

the entire vector~ Y1 jyi Y2 .. 7Yn Yn+i = 1] and the first n entries of y on their

respective diagonals. The diagonal Jacobian matrix D = -B 1 Y- 1 of z with respect

to y is defined in Lemma 3.4 and used throughout.

Lemma 3.4. Let P E R(n+l)x(n+l) and Q E Rmxm be the positive diagonal matrices

with the probabilities 5 and Q1,...,Q, on their respective diagonals. Define the

diagonal matrices of parameters 10 E R(n+)x(n+) and V E RMxM with entries

U i >0 and Vmm = 1 - 1 > 0.
pmi pM
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Then the partial derivatives of z with respect to p are

J - ~K - -M (UP- 1 + NVQ-NT) MTB-1.

Proof. We assume without loss of generality that the outside alternative belongs to

the last nest mn+1 = m* = M. The partial derivatives of the vector y can be

computed directly from the expression in Lemma 3.1. Then, by the chain rule,

J. = JD, where J = LOP,

and where D E R"X" is the diagonal Jacobian matrix with entries

Di - 1 -- - Y-1 =
Dzi b'y,

This follows directly by differentiating Equation (3.7) in Section 3.5.1 with respect to

zi, and taking the inverse of &zi/yi = -b'yi. We now compute the entries of J.

The key observation is that, because y, Lemma 3.1 has the form of a monomial

(with negative and fractional exponents) in the four variables pi, Qmi, pn+ and Qm*,

the partial derivatives have the same form. One can then factor out yi. For example,

By 1 (B.1)
__= -yi.(B1

Opi pipi

All the partial derivatives of y with respect to (p, q) are

UP-1

Jpq = (pn+1ipn+1)-leT Y E R(n+1+M)xn,

VQ-l(NT - JeeT)
where the matrix NT - eMeT is the matrix N with the vector of all ones subtracted

from the last column, transposed. It is straighforward to compute the entries one-by-

one, as we have done above for diagonal elements in the first n rows. The (n + 1)th

row is dense, because all the yj involve Pn+1. For the next-to-last (M - 1) rows, there
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is a non-zero entry (n + 1 +m, j) if product j belongs to nest m (yj depends on Qm).

The last row has a non-zero entry if product j is not in the last nest M = m., because

all the yj depend on QM except if product j is in nest M (and the QM factors cancel

out).

Observe that

NTMT = N I -el NT - emeT

because only the last Mth column of N has a one in the last coordinate. We can

simplify the expression above to obtain

Jpq = Y = [ T M T Y (B.2)
VQ- 1NT  -e] VQ-N T

Applying the chain rule, we obtain the partial derivatives with respect to p,

[I NI Jpq (UP- 1 + NVQ~lNT) MTY. (B.3)

Applying the chain rule again, J = MJ. Substituting back into the expression of

J. = -JY- 1 B-1 yields the result.

B.3 The Hessian of the Profit

B.3.1 A Chain Rule for Hessians

We shall need the following chain rule for Hessians. This and similar results are

common in the literature. For this section, we may assume that the tensors of second

partial derivatives ' and C are zero, since we apply the chain rule only to linear

functions. The full statement will be required in Appendix C to prove the results of

Chapter 4.

Proposition B.1 (Chain rule for Hessians). Consider the twice-differentiable func-

tion fl(y) : R" -+* R, and the continuously differentiable mapping y(p) : Rn -+ R"

from vectors p to vectors y. Let g and Hy denote the gradient and Hessian of U(y),
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respectively. Let J be the Jacobian of y(p). Then the Hessian of H(y(p)) is given by

Hp = JHYJT + g - W,

where g - W denotes the tensor product g - W = >i gijV, and V is the Hessian of yi

with respect to p. Furthermore, if J is invertible, then

H, = J (Hy - Jg. C) J

where Ki is the Hessian of p3 with respect to y.

Proof. The (i, j) element of HP is

h,- - -aH =a I I - =l a (gkJjk)api o9p' api ayj ap 0Y yai pp

By applying the scalar product rule, we obtain the two terms,

h g =+-|- g
k k

k i k09= i (92 9y 0y
Jkzek + 3 9

This proves the first equality in the statement.

If J- 1 exists, then, by the inverse function theorem, the continuously differentiable

inverse mapping p(y) = y- 1 (y) exists in a neighboorhood of the point where the

Hessians are being evaluated. Moreover, its Jacobian is J- 1 . Applying the chain rule

we have just proved, we have that

Hy = J-l HP (j1)T + Jg - ,
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where Jg is the gradient of U(y(p)) by the chain rule. Substituting the last expression

for Hy back into the first equality, we obtain

Hp=H p + J(Jg - C)J T + g -.

Subtracting H, on both sides, we have that g - W = -J(Jg -K)JT. Substituting this

last expression in the first equality of the statment yields the second equality. E

B.3.2 An Explicit Expression for the Hessian

The following lemma gives a first expression for the Hessian. We develop it further

after the proof.

Lemma B.2. The gradient of the profit II = pT z is

VPH = z + JDp,

and its Hessian matrix is

H = DJT + JD + JY-lPB-lY-JT + Dp .-H. (B.4)

Proof. We will show that the gradient and Hessian of the function

H(p) = [z]

0

with respect to f) are, respectively,

VyTH = [~
0

+ JDp,

and

H = -DY]+ [D
0

0] + jY-IPBY1jT + Dp - 7-1.

164



The conclusion then follows directly from the vector chain rule and from the chain

rule for Hessians of Proposition B.1, because the Jacobian of p with respect to p is

MT and their relationship is affine.

The expression for the gradient follows directly from the chain rule, since D is the

Jacobian of the prices z with respect to the vector y. The first term of the Hessian

follows similarly. We still need to differentiate

[jDp]. = E 0 Yk -Pk
k=1 0 Pi ykbk/

with respect to the vector pj. From the product rule, we have, for j < n,

a - ] aYk -Pk + n aYk aYk Pk apj ~.1[ ~Jp. = \\Ykbk + y 3apj k=1 (YS~ kbk k=1 i j 0k Oi jj

If j = n + 1, the expression is the same but the last term is omitted since the

summation is from I to n only. In vector notation,

+ JDp = Dp - W + JY-lPB-lYl1JT + [3D 0].

This completes the derivation. F

B.3.3 Evaluating the Tensor Product

The next lemma gives an alternate expression for the last two terms in the expression

for the Hessian we have just derived.

Lemma B.3. For NL models, denote the Hessian of yk with respect to the vector of

probabilities p by 'k. Then the tensor product Dp -7 evaluates to

Dp - 'N = JY-PB-lY-1 jT -U - -1 - NQ-lWNT, (B.5)

where

W = VNTfB-IPNQ~1.
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Proof. We begin by showing that the Hessians of each yk with respect to the vector

of probabilities and nest probabilitiess (p, q) is

1 (k:) P-1 j
pq = Jaq - (Ja)T - yk diag (Jaq), (B.6)

yk g

where Jk = '9 Yk denotes the kth column Of Jjpq. As shown in Lemma 3.4, the first

partial derivatives of yk have the form of monomials in the four variables Pk, mk , Pn+1

and Qm .. Taking the example in (B.1),

0 yk _1

= Yk,
0 Pk kPk

the second partial derivative is, if j = k, 0

(2Y A 1 t9Yk _1 
0Yk0aYk

DPkaPj  MIkPk aPj Yk DPk DPj

A similar statements holds for any off-diagonal term of the Hessian. This yields the

first term of (B.6). Note that for the example presented here, one of 0 yk or a is
aPk aP3

zero, so the (k, j) entry of the Hessian is zero. This is not the case, say, for 8
2  ,

'
9

Pk'
9
Pn+1'

since yk depends on both Pk and Pn+I. Because yk depends only on four variables,

the Hessian is sparse.

For the diagonal terms of the Hessian, we have, for example,

0 2 Yk _ 1 OYN _ 1 1kI 1 (DaYk ) - I Yk
0 Pk0 Pk ItkPk 0 Pj AkPk Pk yk kPk Pk aPk

That is, we must subtract and additional term, whence the second term in (B.6).

We now show that

Dp - Npq = -JpqY-PB-Y-J, + diag (JpqY-1B-1p). (B.7)
15q Q-1
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Recall that

Dp -NWq = (B-Y-p) - Pkq = --
k ykk kq

The two terms in (B.7) correspond to the weighted sums of the terms in (B.6). The

factor Y-PB-Y- 1 in (B.7) is the diagonal matrix with entries

Pk 1_Pk
ykbk Yk - yk

These entries correspond to the weights in the summation, and the 1/yk factors in

(B.6). The second term of (B.7) is the diagonal matrix from the second term of

(B.6), times the diagonal matrix with the weighted sum of the columns of Jpq on the

diagonal.

We now apply the chain rule for Hessians of Proposition B.1 to each term in the

summation for (B.7) to obtain

Dp )7 Pk kZ Pkl[Dp -k= k

k Ykbk k ykbk

There

and p

Nq[I = I N] (Dp - Ngq) .

are no second order terms, since the relationship between the vectors (p, q)

is linear. Then

Dp = - LI N] JpqY- PB- q [-NT]

NT_

+ [I N] P1
Q-1] diag (JpqY-1B- 1 p) IT

- jY-lPB-Y jT + [I N] P1 diag(JpqY-1B- 1 p) TQ_- NT

In order to simplify the last term, we use the extended matrix B- 1 defined in Sec-

tion 3.7. We may rewrite

MT B-p = MT B-lPe = MT [I o] I5 Pe = (I - en+ie T)5 Pe = 5 Pe,
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because we chose b+ 1 such that

eT5-Pe = eTB-lp + b-ip,±1 = 0.

Substituting the value of Jq from (B.2), we have

JpqY-1B 1p =
TP- 1EVQ-NT M [VB-NT WPe

and then, using the two facts stated after the equation,

Dp - N = -~Y-PB-lY- IJT +

= - Y-lPB-lY-1T

= -Y--PB--lY-1T

= - Y-lPB-lY-1IT

= -~Y-PB-lY-IjT

E NI diag ( [UQ-2
VQ-2N T

53 -1P 1
)-N TI

+ pjP- 2 53-lP + N diag (VQ- 2NT5-1Pe) NT

+ UP-15-1 + NQ-1 V diag (NT--1Pe) Q--NT

+ UP-1- + NQ-lVNT5-PNQ-NT

+ UP-'5- 1 + NQlWNT.

In the third equality, we use that for any vector x and diagonal matrix V,

diag (Vx) = V diag (x) = diag (x) V.

For the fourth equality, we note that for any vector x,

diag (NTx) = NT diag (x) N,

because each row of N is all zero except for one entry.

Applying the chain rule to each term of the sum, as above,

Dp -7( = M(Dp . N)M T

-JY(PBlY~lJT + M (UP-1 - 1 + NQ-lWNT) MT.
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This completes the proof.

B.3.4 Concavity of the Profit

Theorem 3.5. Under NL models, the Hessian of 11(p) is

H = J +JT - Jz

where

J= -M (UP- 15- + NQ-lWNT) MT.

and the matrix W is related to V by

W = VNT5--IPNQ-1.

If 1 <b b'1 ... , b' < 1, then 1(p) is strictly concave.2 - 1, 2 -

Proof. Substituting (B.5) into (B.4) yields the equality. The following matrix is

symmetric, because all the matrices are diagonal except for M and N:

J.B = JDB = J(-Y-1 B1 )B = -M (UP-1 + NVQ-NT) MT.

Adding and subtracting this quantity to the Hessian twice, we have

H = Jz(I - B) + (I - B)JT + (JzB + BJ, - i)

= Jz(I - B) + (I - B)JT + (2J.B - i)

The matrix (I - B) is a strictly positive diagonal matrix by the assumption on the

entries of B. Then by Proposition 3.3, the first two terms are negative inverse M-

matrices, and negative-definite. We need only show that the last term is negative

semi-definite to show strict concavity of the profit.

We first prove an equality we shall use immediately below. Observe that NT PN =

Q, since Qmm = Qm = Z4+ aimpm is just the total choice probability in nest m.
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Then

W - 2V = V(NTPI-NQ- - 21)

= V(NT P-NQ- - 2NTPNQ-l)

= VNT P(5 1 - 21)NQ- 1

= NT (I - O)P(5-1 - 21)NQ- 1 .

For the last line, we have used the fact that VNT = NT(I - U). To see this, observe

that if Nim = 1, then product i in nest m, Vmm = 1 - = 1 - Uii > 0.

Expanding the last term of the Hessian matrix H, we have

2J2B - i = M (UP- 1 (5- 1 - 21) + N(W - 2V)Q-NT) MT

= MUP 1 (5 1 - 21)MT + MNQ- 1 (W - 2V)NTMT

= M 9P1 (5 1 - 21)MT+

MNQ-NT (I - U)(3 1 - 2)PNQ-NTMT (B.8)

By the assumption on the entries of B, then diagonal entries of B are less than 2.

The same holds for the entries of 5-1 because bn+1 was chosen to be negative. Then

the matrix (5 1 - 21) has strictly negative diagonal entries. On the other hand, the

matrix (I - U) has non-negative entries. The diagonal matrices U, P-1 and Q-1
have positive diagonal entries.

It follows that (B.8) is negative semi-definite, because both terms are of the form

ATCA, where C is a negative diagonal matrix. In fact, the matrix is also negative

definite because, for the first term, the matrix A = M has full rank and C =

UP - 1(B- 1 - 21) is negative definite. It follows that the profit is globally strictly

concave in p.
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Appendix C

Derivations for GEV models

C.1 Almost-Concavity of the Reformulation

C.1.1 Partial Derivatives of the Unnormalized Demands

Lemma 4.12. The Hessian matrix of qk with respect to y, for k = 1,...,n+ 1, is

0= Yk +Gke + ek(G),

where xk = Gek is the kth column (or row, transposed) of the symmetric matrix G.

Removing the last row and column, the Hessian with respect to y is

C= ykg ± G+ e + ek(G).

Moreover, these Hessian matrices kk are related to the Hessian matrix G of G(-) by

n+1

e - = ZECk - p7

k=1

Proof. From the scalar product rule, with i = j,

&qj By3 Gj (y) _

yyj Gi (), and 0q-j
Byg

y, Gj(y)- Gj (y) + yj Gjj (y).
Dy3
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These are the entries of L- 1 .

Differentiating again, with i =,4 f j,

= yjGig(y),

a 0q,

Bye Bye
a

aye

a2 = Gy(y) + yj Gig(y), and

(Ge(y) + yeGee(y)) = 2Gee(y) + y3Gee(y).

That is,

Kit = yjg3 + Gje, + ej (Gi)T,

where the matrix GieT (or ej(Gi)T) correspond to G with all but the jth column

(or row) set to zero. Renaming the indices for consistency, we obtain the desired

expression.

Applying Corollary 4.7 of Euler's theorem,

e - IC = (p - 2)G + G + G = G,

as claimed.

C.1.2 The Hessian of the Unnormalized Profit

Lemma 4.14. The gradient of '(y) with respect to q is

= z + LDq
aq

and its Hessian is

= L (L-1D + D (L-1)T - LDq . K - D diag (g)) L T.

Proof. The Jacobian of z with respect to q is LD by the vector chain rule. Therefore

the desired expression for the gradient is

OWq qz
aq &q

=z+LDq.
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Applying the chain rule, we have

= -P L- 1 p L-z + Dq. = zL + gqkD.,k,
O qkk k

where D.,k and L-' represent the kth columns of the respective matrices. Differenti-

ating with respect to y, we apply the vector product rule to each term to obtain

= L-9 Z + z + D +Iqk D k
yy y k ay ' kay k ay '

= L-D+ zckK + (D (L1 )T +diag ( ,... b

= L-1 D +D (L-1)T +z -C - Ddiag(g).

In the second line, we have replaced the last term by a diagonal matrix. Note that

because D is a diagonal matrix, the vector D.,k is all zero except for the kth entry,

Dk,k = b1y. The Jacobian with respect to y is the matrix of all zeros with (k, k) entry

&Dk,k/8yk = k. The sum of these matrices weighted by the entries of q is then the

diagonal matrix with entries k = yGk(Y) = -Gk(y)b, whence the expression inbk yk y2 bkA

the last line. The rest of the derivation consists of simple substitution.

Applying the second chain rule of Proposition B.1, proved in Appendix B.3.1, we

obtain the Hessian matrix with respect to q:

___ (___ a~ XF
-L A-k LT

ayay q /

=L ( -(z+LDq)-C LT

= L (L-1D+D (L-1 ) +z-C-Ddiag(g) -(z + LDq) -C) LT

= L (L-1D + D (L-1 ) - LDq - C - D diag (g)) LT

= DLT +LD -L(LDq.-C+Ddiag(g))L T .
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C.1.3 The Sub-stochastic Matrix S

Lemma C.1. The inverse M-matrix = L diag (g) satisfies S > 0 and Se = e

(it is row-stochastic when scaled by p). Moreover, for any diagonal matrix B E

R(n+l)x(n+1)

55~-le - C =L -Dbq - k- = GC + (5(- 1I))e -IC.

Proof. The inverse of S is

5-= (L diag (g))-1 = diag (g)-1 L- 1

where U 1 is an M-matrix by Lemma 4.8. Then S-1 is also an M-matrix because

we have scaled by a positive diagonal matrix [see, for example, 43, Theorem 1.2.3].

Morevoer, from Equation (4.4) in the proof of Lemma 4.8,

S'e = diag (g)-1 12-e = pe.

The inverse of an M-matrix has all entries non-negative [see, for example, 43, 72].

Thefore S has non-negative entries and,

Se = 5 15-le = e,

so pS is row stochastic.

From the last part of Lemma 4.12

(5e). - KC) = G (C.2)
p
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Then, because D = V-15-',

-iq - IC = 5B-Ie -IC

= (Se -IC) + (S(B-1 - I)e -IC)

= C + (S(B- 1 - I)e .C).

This completes the proof.

Lemma 4.15. The inverse M-matrix p)S is sub-stochastic. That is, its entries are

non-negative and its rows sum to less than one. Moreover,

SB-le - C = LB-'g - K = -LDq - C

= G + S(B-1 - I)e - -O,

where G is the upper-left n x n sub-matrix of the tensor product

- Sen+1 -k.
pSn+1,n+1

Proof. Define S = (L diag (g))-') analogously to 5 of Lemma C.1. That is,

S-1 = (L diag (g))- 1 = diag (g)-1 L- 1 = (I + diag (g)-1 GY) ,

Because L-1 and L- are diagonally dominant M-matrices by Lemma 4.8, their diag-

onal elements are positive and their off-diagonal elements are non-positive. The same

holds for S-1 and S-1 because they result from a positive scaling of M-matrices and

are therefore also M-matrices [43, Theorem 1.2.3]. We may write the componentwise

inequality between two M-matrices

S-1 V S-1 0

u T w 0T m

where u, y < 0, and w > 0. Then, by a well-known result [see, for example, 43,
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Theorem 1.8], inverting both sides yields

> S 0

[ T 1

We conclude that pS is a sub-stochastic matrix by Lemma C.1, and because S also

has non-negative entries since it is also an inverse M-matrix.

We will now make the relationship between S and S more precise. We define the

new matrix

$ S- ] - 5-1 - e - VeT = - en+1 ]
0T -W e ,+u Vn+ e+ I T

where UiT and VT are now the entire last row and column of 5-1 . Then by applying

the Sherman-Morrison-Woodbury formula [38, p. 51], we obtain,

5 5 5en+1 V C~1 S= S+ Sensi en+1 C-1 en+1

e Ti e T+1

where we have used the fact that uT and v are rows and columns of

The matrix C E R2 x 2 is

C [- 5 en+1 -] =1-[en jjTZ
en+1J en+1 Sen+1 en+ 1

e[ 1en+1 155-15+1
=I- T e T e =I- eTSe

enTI15n+1 en+1 n+1 A n+15n+1

1 w -w

the inverse 5'

4
eT+15 1en+1

where we denote the bottom-right entry of S by tb = eT 1 en+1. (Recall that w is

the bottom-right entry of S-1). Substituting C-1 inverse back into the expression for
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5, we have

1 T
L~n+ T~l T T &5 = 5 -I-5en+1 en+1 [en S -- WSen+1en+ 1 s - en+1en+1

L n +1 _±

Notice that the last term is the matrix of all zeros except for the bottom right entry

-1. Moving it to the left side we have that

S 1 = 5 + en+ien+1 =S - -Sen+1en+ 1 5 (C.3)
OT 0 W

We remark that this again verifies the sub-stochasticity of uS, since S in the left-

hand side is equal to the stochastic pS minus a matrix with all positive entries, with

the last row and column removed. The matrix S remains non-negative since it is an

inverse M-matrix.

Continuing with the proof, define the extended matrix

_B 0

OT 1

Right-multiplying eq. (C.3) by B-le on both sides yields,

SB-le _T
= SBe - -Sen+1en+ 1SB-1 e

0

= SI-le - 5en+1
w

where < = e S+1 55-le is a positive scalar. Taking the tensor product with Ic on both

sides we have that, for the left-hand side,

SB-oe SB -le -K i

for some unimportant quantities x-1, R1 and - 3. This follows because KC is simply fC
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with the last entry in each coordinate removed. That is, the left-hand side is simply

the quantity of interest, SB-le -K with an additional row and column.

Also multiplying the right-hand side by I, and then applying Lemma C.1, we

have that

(5-le - k = G + (S(5 1 - I)e) K - (5en+ K;).
w

(C.4)

If we now right-multiply both sides of eq. (C.3) by S(5 1 - I)e instead, we obtain

that

S(B- - I)e]

0
=(B- - I)e - -Sen+Ien+1S(B-1 - I)e

w

= (- I)e - Sen+1
w

where = e 1S(5 1B I)e is a scalar. We can now substitute

S(B- - I)e = S(B I. e+ -5en+1
0 it

back into (C.4), to obtain

SB-le - C

2T is
=G +

S(B :;- I)e]

0

_ S(B-1 -

0

I)e] k (1_- K - iSe+1)

Sen+1 -K

- c,

where we used the fact that

1
- 3 =e15( - I - 5-1)e = -eT+ 1e = ~e

The statement of the lemma follows by considering the preceding equation with the

last row and column removed. l
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C.1.4 Negative-definiteness of the Hessian

Theorem 4.16. The Hessian of F(q) = T(q) - ApG(q) is

= L (Aconcave + S(B 1 - I)e IC - ) LT.

If the price sensitivity parameters Y, b',... ,b' belong to the range (,1), then the

matrix Aconcave is negative definite. The matrix A is the upper-left n x n submatrix

of the tensor product

(e + (1 + Ap-) S en+1 - 7C
y Sn+1,n+1

where the vector Sen+1 denotes the last column of the matrix S and Sn+1 ,n+1 is its

last entry.

Proof. The Hessians of T and G are given by Lemmas 4.13 and 4.14. They are of the

form LALT and LAGLT for matrices A, and AG, respectively. Write the Hessian

matrix of F as A = A, - A[pAG so we can consider the terms resulting from T and

G separately.

Taking the expression from Lemma 4.13, and then substituting in the result of

Lemma 4.15 with B = I, we have

AG =G - Lg - C

= G - (G + S(B-1 - I)e - kC - 0

We will use that

L--DB = -L-1Y = -G - Y 1 diag (g).
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Taking the expression from Lemma 4.14, we consider the other term of the Hessian,

A, = L-D + D (L1) - LDq -K - D diag (g)

L-D(I - B) + (I - B)D (L-1 )T - 2G

- 2Y- 1 diag (g) - LDq- K + B- 1 Y- 1 diag (g)

= L-1 D(I - B) + (I - B)D (L-1) - 2G - LDq - K + (B- 1 - 21)Y- 1 diag (g)

L-1 D(I - B) + (I - B)D (L-1 )T + (B- 1 - 21)Y- 1 diag (g) + A*,

where we define the matrix A*, to which we again apply Lemma 4.15:

A* = -2G - LDq -K

= -2G + (G + S(B1 - I)e - K -

= S(B 1 - I)e -K - G - 0,

We now show that the terms of A4 , are negative semi-definite, except for this last

term A* . Recall that the diagonal elements of B are in the range (j, 1) by assumption.

The first two terms of A4 are M-matrices scaled by the negative diagonal matrix

D(I - B), so they are also negative M-matrices and therefore negtaive-definite. The

third term is negative diagonal since the diagonal elements of B are less than 2. We

can collect the neg.ative semi-definite terms of A to obtain

A= A- ApAG

= Aconcave + A*, - A/AG

= Aconcave + (S(B1 - I)e - K - G - 0) -Ap

= Aconcave + S(B- 1 - I)e - K - G - (1 + Ap) O

for a negative-definite matrix Aconcave. Using Lemmas 4.12 and 4.15, we can expand
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the terms in G and O to obtain

A=Aconcavev+ S(B- - I)e - IC - Ie + ( + Ap) ( 5en+1 -~,
y Sn+1,n+1

where it is understood that we use IC to denote only the upper-left n x n sub-matrices,

without the last row and columns (but including the term Cn+1 in the tensor product).

This completes the proof. E
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Appendix D

First-order Methods for Pricing

D.1 Uniqueness of the Solution

Lemma 5.3. The Jacobian of F'(z) is

BLT (L-)T LT - t

with the last term

5 = BY (S(B-1 - I)e -K - (1 + Ap)5) LT,

and where the matrix

= (diag (g) + BYG)

= I+B (L

( -i-) T

is equal to (L-1)T when B = I.
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Proof. Lemmas 4.13 and 4.14 give the Hessian of F with respect to q. The following

chain rule application, yields the Jacobian of F(z) with respect to z.

OF' 0 (OF\

&q (OF\

Dz k~q~ &q J
q ( 2

F )
&z aqaqJ

= D 1 L-1 a2F

In the last line we have substituted the value of

Og = LD- 1 = D-L-
az

discussed in Section 4.5.3. This is just the Jacobian of the demands with respect to

the prices.

We re-use the same matrices AG and Ap defined in the proof of Theorem 4.16 to

decompose the Hessian of F into the parts arising from the two terms, analyzed in

Lemmas 4.13 and 4.14, respectively.

=F - D~1L- 1 (L (A, - ApAG) LT)az

- D- 1 (A, - ApAG) LT

- D- 1AL T - ApD~DAGL-

The second term of the last line is simply D-1 AGL T - D-lQLT. Expanding the

first term, we have that

D'ApL T = D- 1 (D (L-1)T + L-D - D diag (g) - LDq K) L T

- I + (D-1 L D - diag (g)) LT - D-1 (LDq - C) LT.
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But from the definition of L-' in Section 4.5.1 and of D in Section 4.5.3.

D-'L- D = BY (diag (g) + GY) Y'B-1

= B (diag (g) + YG) B'

= B (L-1)T B-'.

Then, substituting back,

D-'A,,LT = I + B-1 (L-1)T BLT - diag (g) LT - D-1 (LDq - k) LT.

Applying Lemma 4.15 yields

D-AgL T = I + B-1 (L-1)T BL T - diag (g) L T

+ D-1 (G + S(B-1 - I)e - C - )LT

= I + B-' (L1)T BL T - (diag (g) + BYG) L T

+ D-1 (S(B-1 - I)e - K - 0) LT

= I + B-1 (L1)T
T

BL T - (i-1 LT + D- (S(B-1 - I)e - L T.

Adding back the first term from the beginning of the proof, the Jacobian matrix is

OF' = I + B-1 (L-1)T BL T
0z

- (f1L)T T+

D-- (S(B' - I)e - C - (1 + Ap)O) LT .

This completes the proof.
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D.2 FOCs of the Original Profit Function

Proposition 5.2. Under a GEV demand model, setting A =U r(z) = pT z, the FOCs

of the parametric reformulation in (5.4) are equivalent to the FOCs

=n =-BP (S-z - w) = 0
oz

of the unconstrained pricing problem (5.1).

Proof. Applying the chain rule to 11(z) = pTz, and then using the expression for J.-

derived from Proposition 4.17, we have

az J

= D-IJ-lz + p

= -BYJ 1z+ p

=- BYL- 1 z + BppTz + p.
pG(y)

Recall that J-1 is simply J- 1 without the last row and column. Then, from the

definition of S- 1 in (5.3), and from the definition of the demand pi = Gj(u)

BU 1y

-- - G)BY diag (g) S-z + BppT z + p
az pG(y)

= -BPS- 1 z + BPpTz + p

= -BP (S-'z - epTz - B-1e)

= -BP (S 1 z - Ae - B-'e)

= -BP (S- 1 z - (Al + B- 1 ) e)

= -BP (S- 1 z - w)

Because the matrix BP has a strictly positive diagonal, this system of equations is

exactly equivalent to (5.4) in Lemma 5.1, as claimed. l
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D.3 Derivations for the CNL and MMNL Model

Lemma 5.9. For the cross-nested logit (CNL) model,

= diag (NWe) - NWPIT + pNPIT,

where W = diag p1...,pM) is a diagonal matrix, PI c Rn+1xm is the matrix of

conditional choice probabilities with [Pi]im = pilm in the (i, m) component, and N =

P-PiQ. 1

Moreover, the Jacobian matrix of the choice probabilities with respect to prices is

C1 = -5f (PS-1 - ppT) = -B (diag (Ae) - A)

where A E Rn+1,n+1 is the symmetric matrix

f TW 0 Pi a

0P O 1 PT

Proof. The second derivatives of the generating function are, for i fj,

Gij(y) = a 2 G(y)ayiay)

G2G(y)
Gi(y) = y2

M

M

m=

_- -2

(p1- m)(aimcjm) (yjy 3 ) E m a y

2

(1p - Im) (aeim y"1)
1

M

pE (pm - 1) 2 y 2

m=1

-1 -2

Aki Yk

kin Ykm

+

We first find an expression for the matrix ( YGY. Multiplying the preceding

equations appropriately, we have

'For the NL models with no cross-nesting, N was the incidence matrix of products to nests. It is
no longer constant for CNL models, although the equation given here obviously holds in the special
case of the NL model.
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= "Gy) Z'~_-Ir)(irnjm)Pr(yiyj)"
pG(y) ypmamy yy

M

= p (pm - p)pijmpjlmqm,
m=1

"G(y) 5i P.m) (am Y ) 2

am m 2

aknyk)

1 M m

G(Y) (Um

M M

= -p (pm - p)p imqm + p E(pm
m=1 m=1

-GI)YGY

M

= 5('m - 1) qm diag
m= 1

(Pim) - -:P

M=l

M

= yitmqm diag (pim) - P
m=l1

= diag (PI(WQ)e) - Pi(W

Now ,

S= diag (g)-l L1

P-YL- 1

1
= P-1 (diag (Yg) + YGY)

pG

= P- 1 (P + 1YGY)
IG(y)

= P- 1(diag (Pi(WQ)e) - Pi(W - pI)Q)piT)

= diag (P- 1 Pi(WQ)e) - P-1PiWQPIT+ pP-PiQPiT
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cak Yk) p

y Gi (y)
G(y)

+

Then

km Yk) A-

1)pilmqm

p)qmPimP m

M

- ( m- p)qmpimpT

m=1

- - p.



Substituting P- 1 PiQ = N, we we have

S-1 = diag (NWe) - NWPIT + pNP|T

The expression for the Jacobian can be obtained straighforwardly from Proposi-

tion 4.17 and the definitions of S 1 and D. F1

Lemma 5.10. Under mixed logit (MMNL) models, the Jacobian of the choice prob-

abilities with respect to prices is given by

x= - (diag (AMIXe) - AMIx)

AMIX = P|WMIXpIT

where WMIX = diag (b. 1 1 ,-- , b.|M-yM) is a diagonal matrix with the price sensitivity

parameters for each nest scaled by the nest sizes, and PI C Rn+lxm is the matrix of

choice probabilities pijr.

Proof. The MNL model is a GEV model with p = 1, G(y) = sumiy. Then g = e

and G = 0. It is easily verified that

j- = -(P -P
T

In fact, this is a special case of Lemma 5.9. For the MNL, using (5.3), S- 1 =

(I + diag (g)-1 GY) = (I + IOY) = I. Substituting into the expression for J;-I of

Lemma 5.9, we obtained the above expression. But since the price sensitivities are

all equal within a nest, we have

bj 1 -(PppT )

Then j-1 is simply the sum of M such Jacobians, weighted by the segment sizes

7ym as well as by the price sensitivities bim. l
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Theorem 5.11. A MMNL model with a constant price sensitivity parameter for each

nest can be approximated locally, at a give price vector z, by a CNL model the same

choice probabilities P, the same conditional choice probabilities P, and an arbitrarily

close Jacobian matrix Jj- of the choice probabilities with respect to the prices.

Proof. We relax the assumption that yn. 1 is fixed without loss of generality, as dis-

cussed earlier, because fixing it simply removes the last row from the Jacobian matrix

of the demand model. Indeed, given any GEV model over n + 1 products where xn+1

is fixed (i.e. there is no price to change for the outside alternative), the parameters

di, . . . , d,+ 1 can be shifted by a constant such that yn+1 = 1. This does not affect the

demand model, since it corresponds to a scaling of the vector y.

Suppose we are given the matrix of conditional choice probabilities PI and the nest

probabilities Q = diag ([, .... -, 7m]) for a MMNL model with at fixed price vector z.

We construct a CNL approximation. First, choose the parameter 0 < 7m+1 < 1. We

will show that as 7m+1 approaches zero, the approximation of the Jacobian becomes

exact, but the nest scale parameters Li,.. . pM become large. First, fix p = 1 and

select price sensitivity parameters b1 = b2 = ... = bn = bn±1 = 1 YM+1 . Then let, for
1+7YM+1

each m= 1,...,M,

M = p+ +.mQm
7M+1 7M+1

Clearly, lim7-,M4-+0 (YM+1Ipm) = b.imym, and therefore limyM1+0o 7yM+1W = WMIX,

where we refer to the quantities in the expression of the Jacobians in Lemma 5.9 and

Lemma 5.10. We can write,

A = PWPT + ppT,

and therefore,

lim 7M+1A = lim 7M+1PiWPIT + lim 7M+1PP
7fM+1-+0 7M+1-+0 7M+14

0

= Pi WMIXpiT.
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We also have, by the choice of the bi, that

-= _ 72+ I(diag (Ae) - A).

Then, in the limit,

lim J = lim - (diag (AMuxe) - AMIx)
7M+1-0 Z 7M+1-+O 1+M+1

- ( lim 1 (diag (AMrxe) - AMIX)
YM+1->O 1 + 7YM+1

This shows that the Jacobian of the CNL model can be made arbitrarily close to that

of the MMNL model, by choosing a sufficiently small value of y,+1.

We now choose the remaining model parameters that yield the correct choice

probabilities Pi, Q, and p = Pe = PIQe. Notice that the values of Pi and Q
determines the value of p, so we need only show that the former two quantities are

accurate. Let N = Y-1 Pi diag (y). We define the nesting parameters as

aim = P $7U-mYZ 1  Vi IVm.

Solving for the conditional probabilities, and substituting Qm = y yields.

(aimyi) 4 = PiimQm, ViVm. (D.2)

Summing over i, we have

(aimy) ')= QM , Vm. (D.3)

But because both probabilities in (5.11) are normalized, (D.2) and (D.3) are sufficient

to ensure that the equalities hold. (Recall that we set p-I = 1. For (D.2), the factor

Qm scales all the terms for the conditional probabilities in nest m equally.)

We must still scale the aim so that the condition EM aim = 1, Vi is satisfied.
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Because aim always occurs in the products of the form (aim yi) above, scaling the

terms of this sum for product i amounts to scaling yi. This is the same as shifting

the parameter di, which is still free. This completes the proof.

We remark that different authors have employed different but equivalent normal-

izations of the CNL parameters [11]. We also point out that, although we chose all

the price sensitivity parameters to be equal, their relative values are arbitrary. If we

allowed the MMNL model to have different price-sensitibity parameters for the prod-

ucts in each nest, choosing different CNL parameters bi,... , bn+1 could still allow a

good approximation of the Jacobian matrix even though it would no longer be exact

in the limit. E
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Appendix E

Notation Summary

The following pages provide a summary of the notation used in Chapters 3, 4 and 5.

Notation specific to one proof or one section is excluded. Notation for GA models is

defined in the body of Chapter 2. We begin with some basic definitions.

n Number of products.

I Identity matrix.

e Vector of all ones.

0 Vector of all zeros.

ej

diag (x)

An+1 C R"+1

[xijli

[Xijk]ijk

Vector of all zeros except for a one in position i.

Diagonal matrix with x on the diagonal.

Simplex of probability distributions.

The matrix with entries xij.

The tensor with entries xij.

The (i, j) component of the matrix X.
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E.1 Notation Common to all GEV Models

The following quantities are defined for all GEV models.

p = p, ... p]T

P = [Pi, . . . ,pn+1]T

q = a q,. , g]Ta

1 = [qi,..., gn+1]CT

x = [X1, . ... , n] T

Z1, ... , zn

a1,..., an

ci,..., cd

b1,..., bn

B = diag ([b', b's])

di,. ... , dn

d1, . . . , dn

11(x) = 11(z)

H(p) = 1(q)

y =[Y1,...- , yn ]T

y=[yi, . ... ,yn+1 =1T

Y,Y

G(y) = G(y)

g = [Gi(y),... , Gn(y)]T

G = [Gij(y)]iy

g = [Gijk(Y)]ibk

Demands for the n products (choice probabilities).

Demands, including no-purchase probability.

Unnormalized demands.

Unnormalized demands, including lost demand.

Prices of the n products.

Adjusted prices accountomg for the ai and ci.

Profit margins (problem parameters).

Production costs (problem parameters).

Price sensitivities (demand model parameters).

Adjusted price sensitivities (when using z).

Quality parameters (demand model parameters).

Adjusted quality parameters (when using z).

Profit, in terms of the (adjusted) prices.

Profit, in terms of the (unnormalized) demands.

Product attractions under all GEV models.

Product attractions, with no-purchase attraction.

Matrices with attractions y, Y on the diagonal.

Scale parameter under all GEV models. Usually y = 1.

GEV generating function under all GEV models.

Gradient of G(y).

Hessian of G(y).

Tensor of third partial derivative of G(y).
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E.2 Notation for NL, CNL and MMNL models.

The following quantities are defined for NL models (Chapter 3). Some of them carry

over the to the more general CNL model, or even to the MMNL model (Chapter 4

and Section 5.7).

M

P1, ...p P

aim E [0,1]

M = [I eT] E Rnx(n+)

N = [aim] E {0, 1}n+1,M

mi

QM =[Qi, -.. -I QM]T

PIm = [Pi,... ,PnIM]T

fl(pim, QM) = H(p)

J = Ia

H-1 =
H = a r

Number of nests under NL, CNL and MMNL models.

Nest scale parameters under NL and CNL models.

Nesting structure parameters under NL and CNL mod-

els. For NL models, aim E {O, 1}.

Jacobian of p w.r.t. p under NL models.

Incidence matrix of products to nests (NL only).

Nest corresponding to product i in NL models.

Nest probabilities under NL, CNL and MMNL models.

Vector containing the (n + 1)M conditional choice prob-

abilities within each nest under NL, CNL and MMNL

models.

Profit, in terms of the conditional choice probabilities.

Jacobian matrix of z w.r.t. p.

Jacobian matrix of p w.r.t. x.

Hessian matrix of H(p) under NL demand models.
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The following matrices are mainly used in the analysis of NL and CNL models in

Chapter 3 and Section 5.7.

diag (p)

diag (p)

diag (Qm)

R(n+1)x(n+1)

RMxM

R(n+l)x(n+1)

Matrix

Matrix

Matrix

Matrix

Matrix

Matrix

ponent

with choice probabilities on the diagonal.

with choice probabilities on the diagonal.

with nest probabilities on the diagonal.

with parameters p-1 on the diagonal.

with parameters 1 - p- on the diagonal.

B augmented with an additional diagonal com-

bn+ 1 for notational convenience. 1

The following matrices are used in Appendix B, Chapter 4 and Chapter 5.

D = -B- 1 Y 1

D-1 = -BY = __

J = [

J-i = [O,

J1yi ++ 1

J~qE R I(n+l+M)x(n+1)

Jacobian matrix of z w.r.t.

Jacobian matrix of y w.r.t.

Jacobian matrix of y w.r.t.

Jacobian matrix of p w.r.t.

Jacobian matrix of y w.r.t.

y.

z.

p.

y.

(p, Qm ).

.This avoids cumbersome definitions while making clear the relationship with B in a consistent
manner. In Chapter 3, we set the last component to bn+1 = -Pn+1/(eTB-1p). Within the proof of
Lemma 4.15, we let bn+ 1 = 1. In Section 5.7, we let bn+ 1 = 0.
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E.3 Notation: GEV Model Reformulation

The following quantities define the reformulation in Chapters 4 and 5.

A

T(q)

F(q) = P(q) - ApG(y)

F(z) = T(z) - AG(y)

Parameter in the reformulation. Dual variable for

the simplex constraint when maximizing [I(p) or

H(Pn, Qm ). Equal to H at optimality.

Numerator of the profit in terms of q.

Objective of the parametric reformulation.

Objective of the parametric reformulation, in terms of

z, absorbing the constant pu into the parameter A for

convenience (Chapter 5 only).

The following matrices are used in the analysis of Chapters 4 and 5.

L =L-) =

K 1 = [

K = [,'q2 ] j

K = [a k ] ij

= [a =]

KC = a ~k

p~S = pL diag (g)

S1= yt diag (g)-1 L- 1

p5S = pit diag (g)

54= diag (g) 1 IL-'

Jacobian matrix of y w.r.t. q.

Jacobian matrix of q w.r.t. y.

Hessian matrix of qk w.r.t. y,k= 1,..., n + 1.

Tensor of second partial derivatives of EI w.r.t. y.

Jacobian matrix of E w.r.t. y. Singular matrix.

Hessian matrix of qk w.r.t. y,k = 1, . . . , n + 1.

Tensor of second partial derivatives of El w.r.t. y.

A row sub-stochastic matrix of interest.

An M-matrix of interest.

A row stochastic matrix of interest.

An M-matrix of interest.

196



E.4 Notation: Fixed-point Iterations

The following quantities are used to define the steps of the algorithm in Chapter 5.

0 < a <1

L

t

k

w = (B- 1 + AI)e

S- 1 = E + F

S-1 = Ek+ Fk

Mk

T(zt) = Mkzt + aE: W

Rk

T(zt) = Rkzt + aw

Step size parameter.

Number of steps between iteration matrix updates.

Step number.

Number of the most recent step in which the iteration

matrix was updated.

A vector that varies only in A.

Splitting of S-1 into its diagonal entries E and its off-

diagonal entries F, for the linear Jacobi method.

Splitting of Sk 1 , for the linear Jacobi method.

Jacobi-type iteration matrix. Depends nonlinearly on

zk. Substochastic.

Nonlinear operator for the Jacobi-type iteration.

Richardson-type iteration matrix. Depends nonlinearly

on zk. Substochastic.

Nonlinear operator for the Richardson-type iteration.
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E.5 Additional Notation for MMNL Models

The following quantities are used to define MMNL models and explore their relation-

ship with CNL models in Section 5.7.

'71, ...,77M

b.p,) . .. , b-|M

Pi E R(n+l)xM

J;- = [an] 1

Ix= Di

Constant nest probability paramaters (weights).

Price sensitivity parameters for each nest.

Matrix of conditional choice probabilities pi,.

Jacobian matrix of p with respect to z for CNL models.

An (n + 1) x (n + 1) matrix for convenience. The last

row is assumed to contain all zeros.

Jacobian matrix of p with respect to z for MMNL mod-

els. An (n + 1) x (n + 1) matrix for convenience. The

last row is assumed to contain all zeros.
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