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ABSTRACT

This thesis is concerned with answering the following
question: "Glven a finite poset, P, how many lists of
the elements of P are needed to satisfy the condition
that x 1s below y in P if and only if it is before
y in each of the lists?" Chapter 1 gives a new proof of
a theorem by Hiraguchi which states thaf for a poset
containing n &gt; 4 elements, at most [&gt;] lists are
needed. In Chapter 2 we use the ideas &amp;f Chapter 1 to
Characterize those posets on 2n &gt; 6 elements which
need n such lists. The last two chapters solve the
same problem for posets on 2n + 1 &gt; 7 elements which
need n such lists. =
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Introduction

The idea of dimension pervades many branches of

mathematics, extending far beyond its geometric origins,

In many cases the introduction of an intrinsic dimension

has been a fruitful source of new ideas. As a purely

combinatorial invariant, however, the dimension of a

discrete structure is often extremely hard to calculate

or even characterize in any simple wav. The case of

Kuratowski's theorem and the general problem of testing

graphs 86r planarity is an outstanding exception.

The theory of partially ordered sets (posets)

provides a natural but difficult problem of this type:

given a poset P, find the smallest integer k such

that P can be imbedded in RY, preserving the natural

componentwise ordering of RK, We define k to be the

dimensionof~P, It then turns out that this invariant

has another important combinatorial interpretation:

it 1s the smallest number of lists of the elements of

P such that x &lt;y in P if and only if x 1s

before y 1n every list.

Desplte the elementary nature of the problem,
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very few results were known until recently. The first

papers - of SzpilraJn [8], Dushnik and Miller [6],

ete, ~ gave simple classes of examples and proved

the equivalence of the two definitions given above.

The malin result was that a product of k chains itself

has dimension k, More recently, a paper of Baker,

Fishburn and Roberts [1] gives a thorough analysis of

the case k = 2, The starting point for this paper,

however, 1s the work of Hiraguchi [7] in 1951, the

subject of which 1s primarily concerned with bounds on

the dimension of P,

In his paper, Hiraguchi proves a basic inequality:

if P 1s a poset on a set X, then the dimension of P

is at most 1x1. His proof was extremely long and

complex, and was shortened somewhat by Bogart [3]. The

first main result of this thesis 1% a strengthening of

Hiraguchl's theorem, together with a new proof which is

far shorter and more illuminating than either of the

previous ones. This proof is contained in chapter 1.

In recent work, Bogart and Trotter were able to

characterlze those partially ordered sets P for which

the dimension is Hx provided that |X| 1s even, and
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k &gt; 3, With a single exception when k = 3, they

are obtained by taking the elements of ranks 1 and

k-=1 in a Boolean algebra wlth k atoms, In chapter 2

we show how the methods of section 1 lead naturallv to

a short proof of Bogart and Trotter's theorem,

The next two chapters are concerned with solving

the same problem when [X| 18 odd. That is, we

characterize those posets with 2k + 1 elements and

dimension k., The final solution is that, aside for

13 exceptions when k = 3, every such case 1s obtained

by adding a single point arbitrarily to one of the

Bogart-Trotter examples. The proof of this result is

much more difficult than the preceding ones, although

most of the difficulty lies in handling the small cases.

In fact, it is relatively easy to give a short,

self-contained proof for the case k &gt; 5. This is the

content of chapter 3.

In chapter 4 we continue the much more difficult

case k = 4, These arguments in turn are based on a

list of exceptional posets for k = 3 obtained by

exhaustlve search of all posets on 7 points.

One of the most difficult problems in this area -
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stlll largely unsolved - 1s to find good methods for

computing the dimension of explicit posets, Even when

the number of points is small, the problem can be

prohibltively difficult, In the course of proving the

maln results of this thesis, it was necessary to develop

a wlde variety of computational tools. In the absence

of good algorithms, it is results of this tvpe which may

be the most useful for developing a full understanding of

the subject
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Chapter 1

Hiraguchl's Theorem

A poset, P, on a set, X, 1s a partial order relation

P €X x X. A linear extension, L, of P 1s a linear

order L CX x X such that P CL. If &lt;x,y&gt; ee P we

write x LY or y 25%, and we say that x 1s below

in P or y 1s above x in P. If the partial order

is obvious we simply write x &lt;y or y &gt; X. Two elements

x and y of X are said to be incomparable in P 1f

neither &lt;X,y&gt; nor &lt;y,x&gt; 1s in P (and we write

Xx vy). An antichain, A, in P is a subset of X whose

 vy

elements are mutually incomparable in P. A chain, C,

in p is a subset of X linearly ordered by P. For

any x e X, [x] + = {y € X|x &gt; y} and is called the

closed principal ideal determined by x; dually,

(x) += {y e X|x &lt; y} and is called the open principal

filter determined by x. If X = {xq Xos eos Xn? is

linearly ordered by L and XxX; &lt; X, &lt; ... &lt; X,, We

will represent this as L = X1Xo ees SA If two disjoint

sets X and Y are linearly ordered by K &amp;nd L,

respectively, then concatenf&amp;ion of the two strings,

KI, will represent KU L U(X x Y). Finally, let PF
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be a poset on X and let Y CX, Then P|Y = PNY x V,

Now, let P be a poset on X. Let Z be the set

of all linear extensions of P, Then by a theorem of

Szpilrajn [8], we have that P = /) I. With this we
L ed

can make the following

Definition: The dimension of P, d(P), is the smallest

size of set of linear extensions of P whose inter-

section is P.

We conclude this preliminary section with one last

Definition: The width of P, w(P), is the greatest

size of an antichain of P.

For the rest of the paper we assume that P 1s a poset

on a set X., In this chapter we assume |X| = n.

We begin with some basic elementary results CON

cerning the calculation of d4(P),

Lemma 1:

(1) If YCX then d[P|Y]&lt;d(P).

(11) If P 1s a poset on YU Z and P 1s the

disjoint union of PlY and P|Z, then
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d(P) = max {d(P|Y), a(rl|2), 2}.

(111) If p has a maximal element x, then

4(P) = d[P|x\{x}].

(iv) If x and y have the same comparabilities

(z &lt;x iff z &lt;y and z &gt; x iff z &gt; y for all

other z € X), then d(P) = d(P|X\{x}) if x % y and

d(P) = max {a(P|x\{x}), 2} if x nN vy.

(v) If X 1s a chain, then d(P) = 1 and if

X is an antichain, d4(P) = 2

Proof:

(1) If P=1L, ...\L,, then P|Y=

Ly YN ALY.

(11) Let P|Y =1,N...NL, and let

Plz = M;N...NM, where J &lt; k. Then

= LMOMun Ne ALOLLAny

P

(111) Let P[X\{x} = L.N...NL,.

L,xN. ..N LX.

Then

(1v) Let P|X\{x} =r1,N...NAL,. Then L, = M,yN,

for some M, and N., for 1 =~ i « k. Ifvv »
 _— vy. then
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P = Mya, Ooo Myx, If y ~ x, then

= M,yxN, N MoxyN, MN... AM xyN,D

(v) If X is a chain then |{| =1., If X 1s

an antichain, then P = (Xx;%X, ... X,,) N (x cos XoXq).

Lemma 2: If x e X, then d(P) &lt; 1 + d[P|x\{x}].

Proof: Let P[X\{x} =L N...NL,. For 1

*

let L, be a linear extension of P such that

L, = Ly [X\{x}. Let Lg = [L.|(x)+Ix[L, [X\ExJ+] and

let Ly oq = [Ly [X\[x14]x[L, [(x) +]. Then
¥

NooNL

Corollary 3: If Y CX then d(P) &lt; |X\Y| + d(P|Y).

Lemma 4: TLet C be a chain in P. Then there exists

a linear extension of P in which everv element of C

is above everything with which it is incomparable.

Proof: Let C = {x,,...3x} with =~ -~

Let X~ = X\[x,J4, let X. = [x .TM\I[x,4
 Ap

or

m
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1 &lt;1 &lt;m and let X, = [x It. For 0 &lt;1 &lt;m, let

L, be a linear extension of PX. Then

[, = LgLy "en Lg is the reauired linear extension.

We are now in a position to prove two basic

inequalities for d(P). The first was known to

Hiraguchi [7]. The second is new.

Theorem 5:

(1) d(P) &lt; w(P)

(11) da(P) &lt; max {2, n-w(P)}

Proof:

(1) By Dilworth's Theorem [5] there is a set of

w(P) chains in P whose union is X. For each chain of

such a set construct a linear extension of P as in

Lemma 4, Then P is the intersection of these linear

extensions.

(11) Let AC X be an antichain of P of size

w(P) and assume that |[X\A| &gt; 2. Let x and y be

any two elements of X\A. Then by Corollary 3,

d(P) &lt; d(P|A U {x,y}) + n-w(P) = 2. But by the

reduction of Lemma 1, it is clear that P|AU {x,y}
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has the same dimension as one of the four following

posets:

%

\

~
ie

"\ *
A L 7 ar

2

RD

It 1s easily verified that all of

these posets have dimension 2; for instance, the

first is a,a,Xagzy N a38,yaqX. Thus,

i(P) &lt; 2 +n - w(P) = 2 = n - w(P) provided that

n - w(P) &gt; 2. Otherwise d4(P) &lt; 2.

We obtain as an immediate corollary the following

Corollary6:(Hiraguchl) Let P be a poset on a set

containing n &gt; 4 elements, Then d(P) &lt; rs1.

4

This was the main result of Hiraguchi's 1951 paper [7].

His proof was extremely long and Bogart recently gave a

shortened version [3]. In a sense, Theorem 5 can be

regarded as a refinement of Hiraguchi's theorem. The

proof is much simpler and more direct than those of

Bogart and Hiraguchi and it contalns more information.
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In fact the technique used here is the basis for our

attack on the next two problems of this paper.
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Chapter2

Characterization of 2n element Posets with Dimension n.

In 1941 Dushnik and Miller [6] gave an example

of a poset, P, on a set, X, where |X| = 2n and

d(P) = n; namely, let X be the set of n-1 element

subsets and 1 element subsets of the set {1,...,n}

and let P be set inclusion. We call this poset Son

Furthermore, there is a six element poset,
J

A J’ of dimension 3. Bogart and Trotter [4]A

showed that for n &gt; 3 these are the only examples. In

this chapter we show how the methods of Chapter 1 can be

used to give a relatively short proof of this result.

The main idea 1s to find conditions under which

the basic inequality d(P) &lt; n - w(P) can be made strict,

In Lemmas 9, 12 and 13 we give three important conditions

of this type. By Corollary 3 it is sufficient to give

conditions under which |[X\A| = 3 and d(P) &lt; 2 since

adding more elements preserves the relation

i(P) &lt; |x|-1lal.
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But first we need some ground work. In this chapter,

ACX will be a maximal antichain in P. Given A, we

define IN to be the elements of X\A above some

element of A and we define Ay dually. Thus, X is

the disjoint union of A, At and A,.

In Lemma 1 we gave some conditions whereby we could

remove an element from a poset without lowering its

dimension. In such a case we say, after Hiraguchi [7],

that x 1s d-removable. We now give another such

condition

Definition: x &lt;y (y covers x) iff x &lt; y and there

is no z € X such that x &lt; z &lt; y., Furthermore, we

refer to such a pair, x &gt; vy as a cover.

Lemma 7: Let y be a maximal element of P covering

precisely one element x. Suppose that the element of

X incomparable with x have a minimum or a maximum

element. Then unless X\{y} is a chain, 1a

d-removable.

Proof: Let PIX\{y} = LN... NL, k &gt; 2. Suppose

that the elements incomparable with x have a minimum

2lement, z. We may assume that in Li, Xx 1s below =z.
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Let Ly' be Ly with y placed immediately above x.

Then P = L;'N LoyN.e..N\L,y. Suppose then that the

elements incomparable with x have a maximum element =z.

We may assume that in Ly Xx 1s above z. Then for

k, let L,' be Ls with y placed immediately

above x. Then P = L,y Int} ous 35,1.

q

Corollary8:Let y and x be as in Lemma 7. Suppose

that the elements of X incomparable with x have

k minimal elements. Then if d(P|X\{y}) &gt; k, y is

d-removable.

Proof: Let P|X\{y} = LN .e.NL,, m&gt;k. We may

assume that x is below each of the k minimally

Incomparable elements at least once in the first k linear

extensions. For 1 &lt;1 &lt;k, let L,' be L,

placed immediately above x. Then

L. 48 ce NL Ne NL gy Ne NL

* ¥

Lemma 9: Suppose A; is empty, w(P|A') &lt;2 and PlA

does not contain a subposet isomorphic to

Then d(P) &lt; 2.
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¥
Proof: By induction on |A |. By Theorem 5 the

* Co
assertion is true for |A | =1, 2. If [A | =n &gt; 3

and plat has a maximum element, then by application

of Lemma 1 we can use the inductive step. Suppose then

that w(p|ah) = 2, Then by Dilworth's Theorem, there

are two maximal chains, C; and C,, in plat such

that c, U C, = AY, Suppose C, has one element,

Xx, and Ch has n-1 elements, Yi &gt; eee 2 Yne1* By

Lemma 1 we can assume that everything in A 1s below

elther x or y,. Let X; = {ae Ala &lt;x and a &lt;vy,

and a § yy,,} for 1&lt;i&lt;n, Let Y, ={aeAlaidx

and a &lt;y; and a 4 Vi41} for 1 &lt;1 &lt;n. By Lemma 1,

we can assume that X, = {ay} and VY, = {v,} for

1 &lt;1i&lt;n., Then P = by “on b18n-1Yn-1 coe AVX

N aq eee a, _1%¥b,_1Yn1 ooo Dyyqe We can therefore

assume that Cy and Cs both contain at least two

elements. Let Ww &gt; x be the top two of Cq and

y &gt; 2 be the top two of Che We can assume w #¥ y by

Lemma 1 and we can assume that x # z by Lemmas 1 and 7.

Now, by hypothesis we must have w &gt; 2z or vy &gt; x, If

both, we can agaln use Lemmas 1 and 7 to reduce to the
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inductive step. Thus, we can assume w &gt; Zz and y “ Xx,

By Lemmas 1 and 7 we can assume everything in A is

below both w and y. By the inductive step

PIX\{w} = L, MN Ly. Since P|X\{w} contains two maximal

elements, x and y, we have Ly = Mx and L, = Myy

for suitable My and Ms. Then P = My xw (\ Mwy.

Lemma 10: Suppose x 1s maximal in P and vy is

minimal in P and x ~y. Then d4(P) &lt; 1 + d(P|xX\{x,y}).

Proof: Suppose P|X\{x,y} = LiN...N L,. Then

Pp vL-xN...NyL,xN (Ly 1) $)x (Ly | X\[xTN\ [vy 19) y(n, | (y)4).

Definition: A cover, x &lt; y, is sald to be a cover of

rank k iff there are precisely k pnairs, &lt;a,b&gt;, such

that v and a~vb

The following very useful lemma is due to Hiraguchi [7].

Lemma ll: If x &lt;y 1s a cover of rank 0 or

d(P) &lt; 1 + d(p|x\{x,y}).

Proof: Let P|X\{x,y} = L,N...NL,. If x&lt;y 1s a

cover of rank 1, let &lt;a.,b&gt; be the pair of incomparable
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elements such that x &lt;a and Db &lt; y and assume L, is

a linear extension of P|X\{x,y} in which b &lt; a. Now,

let L,' = (Ly 1G) x (Ly 1 (yr) 4X [x D9) vw (Ly [X\[y 14) and let

'

Lpgy = (Dp IXANDxIH) x (Ly [(x)M\[yI)y(Ly|(y)4).For

1 &lt;1&lt;k let Ly! be a linear extension of P such

that L, = L,'"IX\{x,y}. Then P =1L.'N...NL,..

Example: Let x &lt;y be a cover in which x is covered

only by y. Then x &lt;y 1s a cover of rank O.

* *
Lemma 12: Suppose P|(A U Ay) +] e or PJA

and A; has one element, Then d(P) &lt; 2.

Proof: If either At or A; 1s empty, then the

assertion follows from Lemma 9. Assume then that

a" = {x,y} and A; = {z}. Then the following cases

are possible: x &gt; y &gt; z3 x &gt; y and

X;¥ Vv 23x&gt;2zandX,z2 vy; or Xx &gt; y,z and y Vv z,

In the first case we can assume by Lemmas 1 and 7 that

everything is below x. Then by Lemma 1 and Theorem 5,

the result holds. The second case follows immediately

from Lemma 1 and Theorem 5. In the third case we can

assume, using Lemma 7, that everything in A is elther
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between x and 2 or below both x and y. By Lemma l

we can assume that A has two elements. The resulting

poset has 5 elements, and hence 1lts dimension is 2.

In the last case P has the same dimension as

3 \ We may remove the circled
\

element by Lemma 7 and we may remove Vy by Lemma 1.

Thus we have d(P) «&lt; 2  Ny

* *
Lemma 13: Suppose |A U A,| = 4 and neither A

Ay 1s empty. Then d(P) &lt; 3.

nor

Proof: By use of the elementary reductions from the

preceding lemmas (incomparable minimal and maximal

elements or covers of rank 0) we reduce the cases to the

*
following two: A = {a,b,c} and A, = {d} with

%
an antichain and a,b,c &gt;d or A = {a,b} and

Ay = {c,d} with both being antichains and a,b &gt; c,d.

Using Lemma 1 we can assume that A has at most

15 elements - a,, comparable only to a; a,, comparable

only to bj; ag comparable only to c; ay comparable only

to d; a. comparable only to a and b; ars comparable
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only to a and cj; as comparable only to a and dj;

ag comparable only to b and c; ag3 comparable only

to b and 4d; aq» comparable only to c¢ and dj;

ays comparable to all but dj; a,,s comparable to all but

C3 aj3s comparable to all but bj; ayy comparable to all

but a; and a5 comparable to all four. Then in the

first case, P =

a 83368881148, 527 3878708 pBg27Ac2A5DA Nn...

A a,a-dazagaqa,,284,8,5788¢2887 08, (aC, N “oa

MN da)a, ja ydgdgaigdy dy 1852oba;jagaqa.

In the second case. D

ca,a

ana bag...ara a a aaqpuag 9 2daja ana)Caygdq3362752735

A a,dagcaza; aga; ag 12153) ,Paga 3272928), \ . en

MN ajaccazajsa, dgagda, a,,ay3a; 5892 baa lu1)

The above proof is an example of a proof by "brute force".

There appears to be no elegant reduction in view of the
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¥
fact that any of the elements of A U A, may be

removed and still leave a poset of dimension 3, Further-

more, there are plenty of examples of posets where

removing two maximal or two comparable extremal

elements lowers the dimension by 2. The only recourse

then was to find three linear extensions of P whose

intersection ylelded P, These were found by the author

in a relatively short time, but they were done mainly

by trial and error. Thus, 1f the reader attempts to

find the motivation for these lists, he may encounter

some difficulty.

We can summarize the results of Lemmas 9 12 and 13

in the following form.

Corollary 14 Suppose A 1s a maximal antichailn and

IX\a|] &gt; 3. Then d(P) &lt; |[X\A| except possibly in the

following cases:

(1) X\A is an antichain lying either entirely

above or entirely below A

(11) |x\a] = 3 and PIX\A = \/ or AN

with A

of X\A.

lving between the minimal and maximal elements
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%
Proof: If |X\A| &gt; 4 and A # ¢ # Ay, then the

corollary follows from Lemma 13. If Ay, = ¢ and X\A

1s not an antichain, then the corollary follows from

Lemma 9, Hence (1) must hold. If |X\A| = 3, then

either (1) or (ii) holds by Lemmas 9 and 12,

The main theorem now follows easily:

Theorem 15: (Bogart and Trotter [4]). Suppose d(P) =n

|X| = 2n and n&gt; 3. Then P = S,, or C, (or the

dual of Cg) .

Proof: If n = 3, then there are only a few six element

posets satisfying the restrictions of Theorem 5 and

Corollary 14. Examination of these yields the conclusion.

If n &gt; 4 then we may assume from Theorem 5 and Corollary 1.

that X = AU A" for two n element antichains A and A"

Now, let Xq E A and yi € at be incomparable. If no

such palr exists, then d(P) = 2 &lt; n. Thus, by Lemma 10,

a(P|X\{x;,y,1}) =n -1 and by induction PIX\{xy,v,} 3

Sop.pe Thus, A = {x150005x} and A = {yqsecesv.

where Xy vYy for 1 &lt;1 &lt;n. Removing Xq and

allows us to conclude that ¥ y; for 2 &lt;1, J  Nn
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and 1 # J. Removing Xx, and Yo, allows us to conclude

that x; &lt; Yq for 1 &lt;i, J &lt;n and 2 #1 # J # 2,

Flnally, removing X3 and 3 allows us to conclude

Yo and Xo &lt; Vqe Thus P = Son:“_
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Chapter 3

Characterizationof2n+lelementPosets

with Dimension n, n &gt; 5

After Bogart and Trotter proved the preceding theorem,

they posed the question of characterizing maximal

dimensional posets with an odd number of elements, The

techniques they had used to prove Theorem 15 were too

cumbersome to attack this problem, They had not discovered

Theorem 5 (ii), which is extraordinarily useful. Using

this fact, we conclude that a 2n+l element poset having

dimension n must have width n or n+l, Armed with this

knowledge, we proceed in the following manner; first,

if the poset has width n+l, we show that it consists of

two antichains, one of size n and the other of size n+l.

If the width is n, we show that the poset has two disjoint

n element antichains. If n &gt; 5 we then show that the

poset in fact has a subposet which 1s isomorphic to Son®

This says that there are no really new examples of

posets of dimension n, if we are allowed 2n+l elements

in our poset instead of only 2n. To make this more

precise, we first make the following
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Definition: A poset P on X 1s said to be irreducible

if for every x € X, d(P|X\{x}) = d(P) - 1. In other

words, 1f we remove any element of X, we lower the

dimension.

In this chapter, we will prove the following

Proposition: For n &gt; 5 there are no irreducible

2n+l1 element: posets of dimension n.

Suppose then that |X| = 2n+l1 and d(P) =n &gt; 3,

We know that w(P) =n or n+l, Suppose for now that

w(P) = n+ 1. Let n=3 and let A CX be a four

element antlichain., Assume that A; 1s empty. By

Lemma 9, at must be a three element antichain.

Examination of the seven element posets satisfying

the above conditions yields the following seven examples:

"5
_ rrmJ J.

\
fe

w IN
&amp;

Q

\

dd © eo &amp; ;

3d

aN &amp; 2 NN
Note that first four contain a subposet isomorphic to Ses
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and the last three are irreducible, We are now in a

position to state

Lemma 16: Suppose |X| = 2n + 1, d(P) =n and w(P) =n +

for n &gt; fj, Then P contains a d-removable element.

-

1

Proof: Let A be an antlichaln of slze n + 1.

Corollary 14 we may assume that A is also an antichain

and Ag 1s empty. Then there is at least one pair of

incomparable minimal and maximal elements. Supnose

n=4, A= fa), ay, a3, 2, ag} and
¥

A = {os by, bag, by} with a; vb;. By removing them

we must be left with one of the seven posets of

dimension 3 listed above. Suppose we are left with the

first irreducible poset:

b, bg b,
a

o

yr oy’ =, NN
2 a3 ay 5

If ag hy by then removing them allows us to conclude

that ay &lt; Dos bss by. But then either a, or ag

would be d-removable., So we may assume a.

Now removing as, b, must leave either
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b, b,
a

\

by

‘N
b,
\

D 5
.

by,
A

OTa

5

24 a,
&amp;

a)
N
a,

“a
J

a. ——y a),
»

ag
-

In both instances we conclude that by &gt; age By symmetry

we are also led to conclude by &gt; a5, a). Now if

a, 4 Doss then removing bg and a leaves a poset of

dimension 2. Again by symmetry we may thus conclude

that a. &lt; bss Das b),. Thus

b.,b, by
~

© But then removing

eo

b,, ag leaves a poset of dimension 2, contradicting the

hypothesis that d(p) = L.

Suppose that removing A bq leaves the last

irreducible poset:
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OA b3
A

b,
-  Ny

a, a. ay By

As before, we may assume that ag &lt; Dy.

Now removing ays Db), allows us to conclude that

ay .&lt; bss bs. But then removing ag, b, leaves a

poset of dimension 2.

Finally, suppose that removing 2 b, leaves the

second irreducible poset:
b.- by,

»

» \

Removing a5, bg allows us to deduce that a, &lt; bss by

and ap &lt; b,. Removing ac, b, allows us to deduce that

a; &lt; Dae Removing a, b, then leaves a poset of

dimension 2.
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Thus, by induction removing a pair of incomparable

minimal and maximal elements leaves a poset containing

Sopen® Proceeding in a manner similar to above allows

us to conclude that P contains a subposet isomorphic

to Sop thus establishing the Lemma.

We now proceed to develop the tools necessary for handling

the case w(P) = n., The following lemma gives important

conditions under which d(P) &lt;n - w(P) = 1. The proof

is very much like the proof to Lemma 12 and the lists

used here are based on those of Lemma 12. Due to the

length of the proof and the fact that it has little

expository value, it is given in the Appendix.

Lemma 17. Let A be a maximal antichain of P such
*

that neither A nor A; 1s empty and at least one
%

ls not an antichain. If [A UJ Al &lt;

then d(P) &lt; 3.

Proof: Given in the Appendix.

Lemma 18: Let A be the set of all minimal elements of

»

a poset. P. Then d(P) &lt; 1 + w(Pla®

®
Proof: Let P|A = C. U LU C,. where each Cy is a
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chain, Let Lys l &lt;1 &lt;k be a llnear extension of

in which every element of Cy is below everything

Incomparable to it. Let L,,= (M]a) (5, |A") where

M reverses the order of Ly on A. Then

F

P = LN eo NL,

Lemma 19: Let A be the set of minimal elements of P
* *

If |A| =5 and w(P|A') &lt; 3, then d(P) &lt; 3.

Proof: If w(P|a™) &lt; 2, then d(P) &lt; 3 by the

previous lemma. Hence, we may assume that w(P|A™) = 3,

Then IN = c,U c, U Cs where these are disjoint

chains. By the now legendary pigeon-hole principle

we may conclude that Cy has only one element.

Then d(P) &lt;1 + d(P[AUC,U C3) &lt; 3 by Lemma 9 unless

Plc, VU C3 = | [- We can remove either C; or C,

and use Lemma 9 unless neither is a cover of rank O

which can happen only if plat \/\/ But then

removing the top element of C, allows us to use

Lemma 9.

Ve can summarize the results of Lemmas 17 and 19 in
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Corollary 20: Suppose A is a maximal antichailn and

|IX\A| &gt; 5. Then d(P) &lt; |X\A| - 1 except possibly in

the following cases:

(1) X\A lies either entirely above or below

and w(P|X\A) &gt; |xX\a| - 1

A

(11) X\A = A'U A, and A
oi

and A, are both

nonempty antichains.

Proc.i -

(1) follows from Lemma 19 and

(11) follows from Lemma 17.

We are now ready to start on the case where w(P) = n.

Lemma 21: Suppose |X| = 2n+1, d(P) = w(P) = n &gt; 5,

Furthermore, suppose that for some n-element antichain, A,
*

in P, A 1s an n element set. Then P contains a subposet

isomorphic to Son =

Proof: Let Ay = {cl}, A = {by5¢..5,b1 and

% %

A = {aj,..05a 1. Then Corollary 20 says that A is

an antlchain., We may assume that c¢ &lt; b,. Removing

(c,b} by Lemma 11 allows us to conclude that
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PlA Ua™\{a_,b_} 2 Sy_ps With a; vb, for 1 &lt;1 &lt;n- 1.

Now for 1 &lt;1 &lt;n=-1, let L; DP be constructed as

as follows. Place by above a;. Now c¢ is elther

incomparable to or below ay. If 1t is incomparable to

ay place 1t above ays otherwise, it must be put

below ay. Do the same for bs keeping in mind that

b &gt; c. Now, if a, is incomparable to bys place it

below by but above ay and by. Otherwise it must

be place above Dy. Now place the rest of A" above

by and a, arbitrarily, place the elements of A

above ¢ between c¢ and b_ and place the remaining

elements below ¢ and aye Note that if c¢ &lt; by for

some Jj # i, then c¢ &lt; ay by hypothesis. Now, if

a, &gt; Ds then P = L, cee NL _J. So we may suppose

a, nN b. If a, &gt; ¢, then we use the same linear orders

as above with the following modifications. We find

some 1 between 1 and n - 1 such that by ~oay

or a "by. If none exists, then Pla) AY a Son

If b, vay and a, VDy, then b is immediately

below a in Lig reverse them, Then P=r1,N...NL _,.

If b, “va; and a, &gt; by, place b immediately above

a, and for some J # i, for which b, &lt; ass place
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bs immediately above bo in Ly - note that such ay

must exist or else w(P) =n + 1, Then P = LN oN IER

If b. &lt; ay and a, Vv Dy» then we place a, immediately

below b, and for some J ¥ i, for which a, &gt; bys place

ay immediately below a, in Ly - again such aq

must exist, Then P = L, MN oN Looqe If a, “vc,

then follow the above instructions replacing b, by

Again, 1f this 1s not possible, then P|x\{b } 2 Xo

Now suppose we have a seven element poset with three

minimal elements and three maximal elements. Further-

more, suppose that the remaining element is below at

least two of the maximal elements and above at least

two of the minimal elements. The onlv two such posets

which don't have a d-removable element by Lemma 1 are

2)

~
4

The ones which do have a d-removable element all have

dimension 2 and so do these two. Thus, all such posets
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have dimension 2, We are now ready for

Lemma 22: Suppose |X| =9, d(P) = w(P) = 4; further-

more, suppose P has four maximal elements, four

minimal elements and a ninth element below at least

two of the maximal elements and above at least two of

the minimal elements. Then P restricted to the

maximal and minimal elements is isomorphic to Sg.

Proof: Let ays ao, a3, ay be the minimal elements, let

bys bss Pas by be the maximal elements and let

81s 85 &lt; C &lt; Das b,. If either ag or a, is

incomparable to either by or bo, then removing them

leaves a poset of dimension 2. Now aq and a, must

have different comparabilities and so must

ag and ays by and b,, and bg, and b,. We may

therefore assume bq &gt; a; Vv b, and by, &gt; a; ~b,., Now,

if a, “by, then b, 1s d-removable by Corollary 8.

Likewise for ag if as Vv bse If a, &lt; bys then

 ¢c &lt; b, is a cover of rank 0, and removing it leaves a

poset of dimension 2. Thus, a5 Vv Dye Similarly,

az ~ by. But then P[X\{c} =z Sg. If az 1s also

below c¢, then we must have ayy 8p, Ag all below
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by and b, or else removing two leaves a poset of

dimension 2, But then ays 8, Or a, is d-removable.

Thus, we have the lemma.

Lemma 23: Suppose |X| = 2n + 1, d(P) = w(P) =n &gt; 5

and P has n minimal elements. Then P contains a

subposet isomorphic to Sone

Proof: Let A = fa;,...,a } be the set of minimal
*

elements, Then by Corollary 20, w(P|A ) = n., Let
*

B = {byseeesb } CA be an antichain and let c¢ be
#

the element of A \B. Now if c¢ is not above at least

two elements of A and below at least two elements of B,

then the lemma 1s established by Lemma 21. Suppose

then that 31s 8, &lt; c &lt; bo_1&gt; [oN Now suppose that

33seees8, &lt; Dyyeaayb5.Then P|x\{a;,b,} has

dimension 2 which contradicts the hypothesis that

d(P) = n &gt; 5, Assume then that az v bs. Removing them

glves a poset satisfying the hypothesis of Lemma 22.

Thus we conclude that ay by for 1 &lt;1 &lt;n and

a, &lt; bj for 2 #1 #J# 2, Now, if ay wv bys

1 &lt;1 &lt;2 then removing them implies that b, has

the same comparabilities as b, and is therefore
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d-removable, Thus ag &lt; ys bse Similarly,

b, &gt; . &lt;2 a,_1s a, Now a, c¢c 1s a cover of rank 1,

Removing it implies that ag &lt; by, 1 &lt;1 &lt;n and

1 # 3, and removing ec, b, implies that bs &gt; ay,

1 &lt; 1&lt;n and 1 #3, Thus P|AUB=5,.

We wrap us the remaining difficulties with

Lemma 24: Suppose A is a maximal antichain in P

* %

such that |A |, |A¢] &gt; 2 and [AU Ag| = 6. Then

d(P) &lt; ly,

Proof: Given in the Appendix,

This immediately strengthens Corollary 20.

Corollary 25: Suppose A is a maximal antichain and

IX\A| &gt; 5. Then d(P) &lt; |X\A| = 1 except possibly in

the following cases:

*
(1) either A

size |X\A| = 1 or

or A, contains an antichain of

(11) |X\A| = 5. [A [, [Ag] - 2 and both are
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antichains.

Lemmas 16, 21 and 23, and Corollary 25 are summarized in

Theorem 26: For n &gt; 5, there are no irreducible

2n+l element posets of dimension n.
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Chapter 4

Characterization of 2n+l element Posets

with Dimension n, n &lt; 4

In Chapter 3 we were able to show that there were

no irreducible 2n+l element posets of dimension n for

n &gt; 5, In this chapter we will show that this same

statement holds for n = 4, but not for n = 3.

The existence of seven element irreducible posets

of dimension 3 has been known for some time, Baker,

Fishburn and Roberts [1] give an example isomorphic to

A

de

\or a

and Bogart and Trotter give the following example:

b I
~~ N

&amp;» Ng

Subsequently Trotter and this author have independently

examined all seven element posets of width 3 and U4 to

discover all those irreducible of dimension 3.
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Including the first two mentioned, here - along with

duals of course - is a complete list:

\
N

A

3 x

om
|
\

~

x "

J

"

Ar

N

»

T

ib
# iF ®

®

\

ye &lt;4

AAar
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With this knowledge we can ask the question, "are

there any irreducible nine element posets of dimension 42"

If the width 1s 5, the answer 1s no by Lemma 16, If the

width 1s four, then by the previous lemmas we can conclude

that such a poset has two disjoint antichains of size 4

*
or it has a four element antichain, A, such that A and

Ay are antichains of sizes 2 and 3. In the first case

we can assume by Lemma 22 that we have a four element

*
antichain A, such that A has one element and A, 1s

also an antichain.

Lemma 27: Suppose |X| = 9 and d(P) = w(P) = 4,

Furthermore, suppose that P has two disjoint antichains

of size 4, Then P contains a subposet isomorphic to Sq

Proof: The only case not covered by Lemmas 20 and 21 is

the case in which the remaining element is above both

antichains, and removing 1% along with an element it

covers, leaves an irreducible poset of dimension 3 in

seven elements, Let A be a four element antichain.

Then we can assume A = {a,, 85s 83, aul,

%

Ay = {by bss bs, by} and A = {c}. Clearly, if

¢c is above a,, a,, a, and a,, then PAL) A, = Sq.
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Assume that a, VC &gt;a), a, ag. Suppose the removal

of ays ¢ leaves |

ur -»

I] . Then we can assumeLy
without loss of generality that the poset is labelled

as follows: aA 2 a.

&gt; ®

by b, bg
Now, by removing c, a,, we can conclude that bys b, &lt; ay

Removing c, ag we can also conclude that b,, b), &lt;

But then removal of a, b. leaves a noset of dimension 2
IY

Suppose that the removal of a;, C

Then 1G can be lapelled either

a.ay b.
nr

A

leaves

-
“5

b

3
ot

b_

Lo»

a

A

\
ah

nD os b. b),

In either case, removal of cc, as

that by ~ a; &gt; by, bs, b,. Then a, or a, can be

allows us to conclude
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removed, Finally, suppose removal of a,, C leaves

A ; a
2 4 a. |

 ll
i

- gh.

_—

Then 1t can be labelled either

a) as a
_AoY

yt?  ~~
—

fed\
ey

“1
- TR D

y ® v eo
In either case, removal of ays by leaves a poset of

dimension 2.

Assume that ayy 85 &lt; B Vag, a).

~{" 2. 2 leaves

=/[=

a
2

Again we can assume it is labelled A

% “4
3 5

Suppose removal

By
oe

a

 Nu

# ¢
ba bi

Removing c, a, We can conclude bys b, &lt;a; wv Pas by

or a. &gt; b,s b,, by, by. In the first case either

a, or a, can be removed. In the second case a, &gt; b,

is a cover of rank 0 and removing it leaves a poset of

dimension 2.
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Suppoee that removal of c, a, leaves
2

NN
AR,

No
Then 1t can be labelled either

an aq a),

&lt;&lt; -

oo

-

A), 43
A ;Ne —

p-—-

mB A
. -

a

v= w A) No «“ ww Ne Neo
1 ob, bg b), bq ob, bg ob),

In the first case, removing c, a, allows us to conclude

that bys bas by, &lt;a nv bs. But then removing a,, b.

leaves a poset of dimension 2. In the second case,

removing c¢, a, allows us to conclude that

bq &lt;a; nv bys D3, bye But then elther a; or a, can

be removed. Suppose then that removine c¢, a, leaves

cal

ga

For any way that this is labelled, removal of c¢, a,

rives ay the same comparabilities as ass and hence,

either can be removed.

Finally, assume that a. &lt; c nv a,, a, a.

Suppose that removal of c¢, a, leaves

 C
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Again we can assume that it is labelled
a A 2 a |

—

&gt;
b1 bo 3 *oy

Then ay &gt; by, 1s a “cover of rank at most 1 unless

b, &lt;a, and c¢c bq. In the first case, removing

ay, by leaves a poset of dimension 2. In the second

case removing ays by leaves a poset of dimension 2.

Suppose that removal of «c, aq leaves
y—

wl

Then we can label it &lt; 23
P

 a

-

4
ng

b, b,
XN

bo b |

Removing aq bay we can conclude that

2 | ¥\la,. bt
a.

=

Ja

bq | »D

Then removing a;, b,; we conclude
»

a4

Ep] a 3 ay
 an ’

pn

My
_

0 !
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But then removing aq by leaves a poset of dimension 2.

So we may assume that removing ec, a, leaves

ak. »_A
~~

which can be labelled

a, “ a,
4

-&gt; |]

But then removing a3, bg leaves a poset of dimension 2.

The proof of this last statement illustrates the

straight forward technique used to show that certaln

types of nine element partially ordered sets have

dimension three or less. The same techniaue can be

used to show that for the type of nine element poset

mentioned immediately before Lemma 27, its dimension 1s

at most 3. Since the proof is tedlous and unenlightening,

consisting essentially as an exhaustion of such posets,

only the statement of this result is glven here,

has also been verified by Trotter.

In view of Lemma 27, the statement of Theorem 26

holds for n = 4, Thus, summarizing the results of

this chapter gives us
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Theorem 28: There are 13 seven element irreducible

posets of dimension 3 up to isomorphism and dual

isomorphism classes, For n &gt; U4, there are no

2n+1 element irreducible posets of dimension n.
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Appendix

Proof to Lemma 17: We have two possibllities:

lA] = 3 or 4, Suppose |A | = U4, If w(PlA") &lt; 2,

* #®

then d(P|ALUJ A) &lt;2 unless P|A = by

Lemma 9. In that case, removal of one of the two

top chains by Lemma 11 and Corollary 14 gives the
%

conclusion, Thus we may assume that w(P|A ) = 3,

This gives us five cases:

)

D0 -
“

» 2) \ ™)“~ \
A

3) A or 5)

ge!

Fy
+
in a

Let d be the element of Ay. For the rest of this lemma,

let ays 1 &lt;1&lt; 15 have the same interpretation as in

Lemma 13; also, let X45 1 &lt;1 &lt; 15, be comparable only

to x. and the same things to which ay is comparable.
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Let Xx, be comparable only to x. As in Lemma 13, we

can assume that x has only the elements listed.

Case 1: By removing a, x we can assume that

by, ¢ &gt;d. If a ~vd, then removing b leaves

poset equivalent to a

8

\ C

=r

-

s
a- xq X

vr 1,

Using Lemma 7, we can replace ay by an element covering

a and age But this poset has dimension 2 by Lemma 9.

Thus, we may assume that a

When x &gt; 4d, P =

X12183%X62628%112119X1581 5%X1327331 21 (CX p81 p28 ¢XsaXgXagaa,ba N “ns

ApXgardXgXgXq 3X) 1X 5X) 5X) XBq20a) 3818 587 58884308 bag jaca, MN...

MN daja, ga) yagdgly g¥y 52) p¥) p211X 185X58,ba, 3X g86X ca7X,2,Ca,X Xa

When x ~ d, we use the same linear orders as above with the

following modifications: we drop Xgs X15 X33 and X153
and in the second linear order we put d immediately above X.
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Case 2: As above we can assume that a, b, ¢ &gt; d. We

can also use the same linear orders with the following

modifications: we drop X¢s Xgs Xqy and X53 and in

the third linear order we put x immediately below b.

Case 3: As 1n case 1 we can assume a, b, ¢ &gt; d, We

can also use the same linear orders with the following

modifications: we drop X19 and Xy535 and in the

flrst linear order we put x immediately below c.

nase Ho.

Xq8. rr

Agaln we can assume that a. b. ¢  &gt;» 4d. Then 2

XgAgX119% 5% 3% 487 0X CX pXqXsXraX,ba XX X MN...

MN ZX X5AX XgX 1 3X1 Xq XX 8X gXgXy DX XX Xaq gagcay[) “oes

M XodXyayXy 81 gXq4XgXgX 5% 0X1 X5X bX 2X eX Xa,C8 . aX

Case 5: Agaln we can assume that a, b, ¢ &gt; d. Then we

can use the above linear orders with the following

modifications: we drop ag and a,05 and in the

second linear order we but x immediately above c.

Suppose In" = 3 If A; is a chain, then removal of
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*

Ay, by Lemma ll gives the result unless A is an
*

antichain. Let A, = {x &gt; d} and A = {a, b, c}.

Then we can assume that a, b, ¢ &gt; d, and we have the

following cases

Case l: x &lt; a3  Hh oC. Then P

118286888, 10XX] cB) 5X1 387 3X1 481 F101 00%] 281 2X gBoXarasaazbxyay(.

N a,ar-daqacay 3XXnX, 38118)5X15875X158188gXn2aXaqbXqgayga-cxyayl)oes

N daja, ga; y2qlq gy pXXyX  gX1488%XgX 5X 9811858508 3X Xq8ga,8 C842

Case 2: ¢ ~ X &lt; a, b. Then we can use the above linear

orders with the following modifications: we droo

X10° ¥13° X14 and X153 and in the first linear order we

place x immediately above c

Case 3: a, C Nn x &lt;b, Then we use the linear orders

of case 2 with the following modifications: we droop

Xo and X10 and in the second linear order we place

immediately above a.

y

Now. assume A, = {¢,d} 1s an antichain,



a

J

Then P|A = 1) »

1 \ q

R)AN2) : \/ rY

w 3

Case 1: Using elementary facts we can assume that

a. b&gt;c.,d, If x &gt;¢c¢c, d. then
vy

dayXqajangXaay 5X C8 gXq3XgXy 5X XgXa) 3808, 58g 185828, yag@gasbag MN RE

N a daca; 02g, XgasX 18, 1%] 587 5%; pq pDAgK gXq 3X 7X Kay asa aay) eee

MN X18,85X;Ca38589 1X 18¢Xca3da4 87 3X 387 5X 580A XX 5XAq DAA, pa

If d vx &gt; ¢, then we can use the same linear orders as

above with the following modifications: we drop

ST X09 X13 and X153 and we put XX 1¥X5X immediately

below ¢ 1n the first linear order.

If x vc, d, then we can use the preceding linear

orders with the following modifications: we drop Xg

and X113 we put XX immediately below d in the

first linear order and we place a; immediately below

 xX in the third linear order.
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Case 2: By removing x, a and x, b we can assume

that a, b &gt; ¢, d, Then P =

day XX XgXq 588 gX) 0X) 3X 6X 5X 1 X58K XgX oX bX 3X gXa 5 ON * es

N X pdX qCa 3X 3X1 0A] (XgXy yXeKqq Ky 5X1 pDX EX  gXpx ax yx oxay( | "on

M XX1X5Ca3X 3X 5X 1 XeXgdXy Xq 5Xq 3X pXgXpbhAX, 4X XE 102

Case 3: By removing a and then bh, we can assume

that a, b &gt; ¢, d. Then we can use the same linear

orders as in case 1 with the following modifications:

we drop X15 Xg» Xe and X13} and we place x immediately

below bb in the second limear order,

Case 4: By removing o we are left with a noset of

1imension 2.

Proof to Lemma 24: Let ATU Ay = {a, b, ¢, dd, x, Vv}.

We can assume that a={a,, |0 &lt;1, J &lt;7}, as follows:

of the three elements {a, b, x} agy 1s comparable

to none, a5 1s comparable only to a, CPT is

comparable only to b, any 1s comparable only to x,
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a) 1s comparable only to a and b, ag is comparable

only to a and x, 264 1s comparable only to b and x,

and An 5 1s comparable to all three for O &lt; J £7; of the

three elements {e¢, 4d, y} ayo 1s comparable to none,

844 is comparable only to c, ayo is comparable only

to d, a;5 is comparable only to vy, ayy is comparable

only to ¢ and 4d, ag is comparable only to ¢ and vy,

256 1s comparable only to d and y, and aq 1s comparable

to all three for 0 &lt;1 &lt;7. Let My; be a linear

ordering of fay,10 &lt;J &lt;7} for 0&lt;1i&lt;7T., Let

Ny be a linear ordering of lay; |0 &lt;1 &lt;7} for
* |

0 &lt;J&lt; 7. Suppose A = {a, b, vy} and Ay; = {c, d, x}.

Then by Corollary 20 and Lemma 13 we can assume that both

are antichains and a, b, y &gt; ¢, 4d, x.

Lq = dxMqyM; My xMMaMM,bM,y,

L, = deM,xM MMM) bMM, aMyz,

Ls = xdN, NyeNyN, NeNoyNo Nba and

Ly = XNoN3eNoNgdN, Noy N,N, ba. Let Kq be the same

as Ly with the following changes: put aay

immediately above y and put a) Just above

[Let K be the same as L, with the following

a5
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modifications: put ago immediately below ays and

B53 at the bottom, Let K3 be the same as Lg with

the following modifications: put ag, right above b

and put ays right below d. Let Ky be the same as

Ly with the following changes: put ag) Just below

As and put ass immediately above CEPR It is also

necessary for ay3ayg to be the last two elements of

My» ag to be the first element of Mss a3 to be

the bottom element of No and ag5a yg to be the last

two elements of N.. Then P = K.[) KX MN K MN Kj»5 1 2 3
¥

Now suppose A = {a, b, ¢, d} and Ag = {x, vy}.

Again we can assume both are antichains and

a, b, ¢, d &gt; x, vy. Let

Ly = yMoMy MxM M aMcM,bMde,

Ly = yMyxM MMM)bMM,aMcd,
La = XNoN) NyyNN,eNgN,dN ba and

Ly = XNo§N NN, Ny dNgN, eNg. Let Ky be the same as

Ly with the following changes: put appdyo immediately

. tabove Ags and 43383; between c¢ and c Le

be the same as Loe Let Ka be the same as I.,

K,
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with the following modifications: put 233

immediately below aso and put an at the bottom,

Let KX, be the same as IL, with the following changes:

put Agr immedlately below as and a5 at the

bottom. It 1s necessary for agq to be below agg

in Mc. Then P =k.()k,/) Ko) Ky.
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