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ABSTRACT

This thesis is concerned with answering the following
question: "Glven a finite poset, P, how many lists of
the elements of P are needed to satisfy the condition
that x 1s below y in P 1if and only if it is before
¥ in each of the lists?" Chapter 1 gives a new proof of
a theorem by Hiraguchi which states thag for a poset
containing n > 4 elements, at most [=] 1lists are
needed. In Chapter 2 we use the ideas &6f Chapter 1 to
Characterize those posets on 2n > 6 elements which
need n such lists. The last two Chapters solve the
same problem for posets on 2n + 1 > 7 elements which
need n such lists. -
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Introduction

The 1dea of dimension pervades many branches of
mathematics, extending far beyond its geometric origins.
In many cases the introduction of an intrinsic dimension
has been a fruitful source of new ideas. As a purely
combinatorlal invariant, however, the dimension of a
discrete structure is often extremely hard to calculate
or even characterize in any simple wav. The case of
Kuratowski's theorem and the general problem of testing

graphs £6r planarity is an outstanding exception.

The theory of partially ordered sets (posets)
provides a natural but difficult problem of this type:
given a poset P, find the smallest integer k such
that P can be imbedded in Rk, preserving the natural
componentwlse ordering of Rk. We define k to be the

dimension of P, It then turns out that this invariant

has another important combinatorial interpretation:
1t 1s the smallest number of lists of the elements of
P such that x <y in P 1if and only if x 1is

before y 1n every list.

Desplte the elementary nature of the problem,
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very few results were known until recently. The first
papers - of Szpilrajn [8], Dushnik and Miller [6],
etec, «~ gave simple classes of examples and proved
the equivalence of the two definitions given above.
The main result was that a product of X chains 1itself
has dimenslon k., More recently, a paper of Baker,
Fishburn and Roberts [1] gives a thorough analysis of
the case k = 2, The starting point for this paper,
however, 1s the work of Hiraguchi [7] in 1951, the
Eubject of which 1s primarily concerned with bounds on

the dimension of P,

In his paper, Hiraguchi proves a basic inequality:
if P 1s a poset on a set X, then the dimension of P
1s at most %IX[. His proof was extremely long and
complex, and was shortened somewhat by Bogart [3]. The
first main result of this thesis 1% a strengthening of
Hiraguchl's theorem, together with a new proof which is
far shorter and more illuminating than either of the

previous ones. This proof is contained in chapter 1.

In recent vork, Bogart and Trotter were able to
characterlze those partially ordered sets P for which

‘the dimension 1s %JXJ provided that |[X| 1s even, and
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k > 3. With a single exception when k = 3, they

are obtalned by taking the elements of ranks 1 and

k=1 1n a Boolean algebra wlth k atoms, In chapter 2
we show how the methods of section 1 lead naturallv to

a short proof of Bogart and Trotter's theorem,

The next two chapters are concerned with solving
the same problem when |[X| 18 odd. That is, we
characterize those posets with 2k + 1 elements and
dimension k., The final solution is that, aside for
13 exceptions when k = 3, every such case 1s obtained
by adding a slngle point arbitrarily to one of the
Bogart-Trotter examples. The proof of this result is
much more difficult than the preceding ones, although
most of the difficulty lies in handling the small cases.
In fact, i1t 1s relatively easy to give a short,
self-contained proof for the case k > 5. This 1s the

content of chapter 3.

In chapter 4 we continue the much more difficult
case k = 4, These arguments in turn are based on a
1list of exceptional posets for k = 3 obtained by

exhaustlve search of all posets on 7 points,

One of the most difflicult problems in thils area -



8.

still largely unsolved - is to find good methods for
computling the dimension of explicit posets, FEven when
the number of points is small, the problem can be
prohibitively difficult, In the course of proving the
main results of this thesls, 1t was necessary to develop
a wlde variety of computational tools., In the absence

of good algorithms, it is resulss of this type which may
be the most useful for developing a full understanding of

the subject.
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Chapter 1

" Hiraguchi's Theorem

A poset, P, on a set, X, is a partial order relation
P €X x X, A linear extenslon, L, of P 1s a linear
order L C X x X such that P C L. If <x,y> e P we
write x fp“y or y'zpwx, and we say that x 1is below vy
in P or y 1s above x in P. If the partial order
is obvious we simply write x <y or y > x. Two elements
x and y of X are said to be incomparable in P 1if
pelgher <x,y> nor <y,x> is in P (énd we write
X ~y). An antichain, A, in P 1s a subset of X whose
elements are mutually incomparable in P, A chain, C,
in P 1is a subset of X 1linearly ordered by P. For
any x e X, [x] + = {y € X|x > y} and is called the
closed principal ideal determined by x3; dually,
(x) 4= {y e X|x <y} and is called the open principal
filter determined by x. If X = {xl, Xos soss xn} is
linearly ordered by L and X, < X5 < ... < X, we

%
will represent thlis as L = XqX5 eee Xpo If two disjoint

n
sets X and Y are linearly ordered by K &nd L,
respectively, then concatens&ion of the two strings,

KL will represent KU L U (X x Y). Finally, let P
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mn

be a poset on X and let Y C X, Then P|Y = PN Y x VY,

Now, let P be a poset on X. Let &£ be the set
of all linear extensions of P. Then by a theorem of

Szpilrajn [8], we have that P = N L. wWith this we
L ed

can make the following

Definition: The dimension of P, d(P), is the smallest

size of set of linear extensions of P whose inter-

section 1s P,

We conclude this preliminary section with one last

Definition: The width of P, w(P), is the greatest

size of an antichain of P,

For the rest of the paper we assume that P 1s a poset

on a set X. In this chapter we assume |X| = n.

We begin with some bhasic elementary results con-

cerning the calculation of d4(P).
Lemma 1:
(1) If YCX then d[P|Y] < d(P).

(14) If P 1s a poset on YU Z and P 1is the

disjoint union of P|Y and P|Z, then
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d(P) = max {d(p|Y), d(prlz), 2}.

(111) If P has a maximal element x, then
a(p) = alP|x\{x}].

(iv) If x and y have the same comparabilities
(z < x iff z <y and z > x 1ff =z > y for all
other 2z € X), then d(P) = d(P|X\{x}) if x %y and

d(P) = max {d(P[x\{x}), 2} if x ~ y.
(v) If X 1s a chain, then d4(P) = 1 and if
X is an antichain, d(P) = 2,
Proof:
(1) 1f P=1L, ...\ L, then PlY =
Ly Y Nee o |y,
(11) Let P|Y = Llﬂ «o.NL, and let
P[Z =M \...\M; where J < k. Then
P o= LMy ) MELzﬂ...ﬂMjLJ-ﬂ...f\MJLk
(111) Let P|x\{x} = L,N...NL,. Then

P = len. |Cr\ ka.

(1iv) Let P|x\{x} = L,N...NAL,. Then L, = MyN

: | i !

for some M; and Ny, for 1 <1 < k. If y < x, then
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P = Mlnyl(\...f\Mkny If y ~ x, then

k.

P=M ny1(\ szysz\...f\kayN

1 k*
(v) If X 1s a chain then |[{] =1, If X 1is

an antichain, then P = (xlx2 cos xn)(w (xn .o xle).

Lemma 2: If x € X, then d(P) < 1 + d[P|X\{x}].

Proof: Let P|xX\{x} = Llﬂ...(\Lk. For 1< 1 <k

*
let L

1 be a linear extension of P such that

Ly = L:|X\{x}. Let L; = [Lkl(x)+]x[Lk|X\Ex]+] and
let L;_'_l = [Lklx\[x]ﬂx[Lkl(xH]. Then

* *
P = Llﬁ...ﬂL

k+1°

Corollary 3: If Y CX then d(P) < [X\Y| + a(P|Y).

Lemma 4: ILet C be a chain in P. Then there exists
a linear extension of P 1in which every element of C

is above everything with which 1t is incomparable.

Proof: Let C = {xl,...wxm} with xy < ... < x.

Let X, = x\[x1]+, let X, = [xi]+\[xi+l]+ for
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1<1i<m and let X = [me+. For 0 <1 <m, let
L; be a linear extension of P]Xi. Then

L = LOLl o Lm is the reguired linear extension.

We are now in a positién to prove two basic
inequalities for d(P)., The filrst was known to

Hiraguchil [7]. The second is new.
Theorem 5:
(1) da(pr) < w(P)

(11) a(p)

A

max {2, n-w(P)}

Proof':

(1) By Dilworth's Theorem [5] there 1is a set of
w(P) chains in P whose union is X. For each chain of
such a set construct a linear extension of P as 1n
Lemma 4, Then P is the intersection of these linear

extensions.

(11) Let A C X be an antichain of P of size
w(P) and assume that |X\A| > 2. Let x and y be
any two elements of X\A. Then by Corollary 3,
a(P) < da(P|a U {x,y}) + n-w(P) - 2. But by the

reduction of Lemma 1, it is clear that P|AU {x,y}
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has the same dimension as one of the four following

posets:

- z X X
/\/\A I A y or
a; a, ag I

X v A
A
y It is easily verified that all of

these posets have dimension 2; for instance, the
first is alaaxaBy'r\a3a2yalx. Thus,
d(P) <2 +n - w(P) =2 =n - w(P) provided that

n - w(P) > 2, Otherwise d4(P) < 2,

We obtain as an immediate corollary the following

Corollary 6: (Hiraguchl) Let P be a poset on a set X

containing n > 4 elements. Then d(P) < [g].

This was the main result of Hiraguchi's 1951 paper [7].
His proof was extremely long and Bogart recently gave a
shortened version [3]. In a sense, Theorem 5 can be
regarded as a refinement of Hiraguchi's theorem. The
proof 1s much simpler and more dlrect than those of

Bogart and Hiraguchl and it contalns more information.
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In fact the technique used here is the basis for our

attack on the next two problems of this paper.
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Chapter 2

Characterization of 2n element Posets with Dimension n.

In 1941 Dushnik and Miller [6] gave an example
of a poset, P, on a set, X, where |X| = 2n and
d(P) = n; namely, let X be the set of n-1 element
subsets and 1 element subsets of the set {1,...,n}
and let P be set incluslon. We call this poset S, .

Furthermore, there is a six element poset,
Cg = , of dimension 3. Bogart and Trotter [4]

showed that for n > 3 these are the only examples. In
thlis chapter we show how the methods of Chapter 1 can be

used to give a relatively short proof of this result.

The main idea i1s to find conditions under which
the basic inequality d(P) < n - w(P) can be made strict.
In Lemmas 9, 12 and 13 we give three important conditions
of this type. By Corollary 3 1t is sufficient to give
conditions under which |X\A| = 3 and d(P) < 2 since
adding more elemenhts preserves the relation

d(pP) < |x|-|A].
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But first we need some ground work, In this chapter,
A C X will be a maximal antichain in P. Given A, we
define A* to be the elements of X\A above some
element of A and we define Ay dually. Thus, X 1s

*
the disjoint union of A, A and A,.

In Lemma 1 we gave some conditions whereby we could
remove an element from a poset without lowering its
dimension. In such a case we say, after Hiraguchi [7],
that x 1s d-removable. We now give another such

condition

Definition: x <y (y covers x) iff x <y and there

is no 2z € X such that x < z < y. Furthermore, we

refer to such a pair, x >y as a cover,

Lemma 7: Let y be a maximal element of P covering
preclisely one element x. Suppose that the element of
X Incomparable with x have a mimimum or a maximum
element. Then unless X\{y} 1is a chain, y is

d-removable.

Proof: Let PIX\{y} = Llf\...f\Lk, k > 2., Suppose
that the elements incomparable with x have a minimum

element, z. We may assume that in Ll’ x 1s below z,
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Let Ll' be Ll with ¥y placed immediately above x.

Then P = L;'( Lzyfﬁ...f]ka. Suppose then that the

elements 1ncomparable with x have a maximum element z,
We may assume that 1n Ll x 1s above z. Then for

2 <1 < k, let Li' be Li wlth y placed immediately
above x. Then P = Llny Lg'f\...(\Lk‘.

Corollary 8: Let y and X be as in Lemma 7. Suppose

that the elements of X incomparable with x have
k minimal elements. Then if d(P|Xx\{y}) > k, y 1is

d-removable.

Proof: Let P|X\{y} = L;N...NL , m> k., We may
assume that x 1s below each of the X minimally
incomparable elements at least once in the first k linear
extensions., For 1 <1 < k, let Li' be Li with vy
placed immediately above x., Then

P=L/0 e Nn ' N Ny v N Ny

¥ %
Lemma 9: Suppose Ay 1is empty, w(P|A ) < 2 and PlA
does not contaln a subposet isomorphic to I I

Then d(P) < 2.
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Proof: By induction on IA*l. By Theorem 5 the
assertion is true for |A*| w 1. By If -IA*I =n > 3
and PIA* has a maximum element, then by application
of Lemma 1 we can use the inductive step. - Suppose then
that w(P]A*) = 2, Then by Dilworth's Theorem, there
are two maximal chains, C; and C,, 1in P|A* such
that CllJ c, = I\ Suppose C, has one element,

x, and C, has n-1 elements, yq > ... >y, 1. By
Lemma 1 we can assume that everything in A 1is below

elther x or y;. Let X, = {aeAla<x and a <y,
and a { Yy41} for 1< i<n, Let Y, ={ace Ala 4 x
and a <y, and a 4 V441} for 1 <1 <n, By Lemma 1,
we can assume that X, = {ai} and Y, = {bi} for

1 <i<n, Then P =5b; ... Db X

1 n=-12n-1¥n-1 *** 219y

f\ 8 eee an_lxbn__lyn_l ese blyl‘ We can therefore

assume that C1 and 02 both contain at least two
elements. Let w > X be the top two of Cl and

y > 2 be the top two of C,. We can assume w # y by
Lemma 1 and we can assume that x # z by Lemmas 1 and 7.
Now, by hypothesis we must have w >z or y > x, If

both, we can agaln use Lemmas 1 and 7 to reduce to the
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inductivé step., Thus, we can assume w > z and y " X,
By Lemmas 1 and 7 we can assume everything in A is
below both w and y. By the inductive step

P|x\{w} = L, N L,. since P|X\{w} contains two maximal

elements, x and y, we have L1 = Mlx and L, = M,y

for suitable M, and M,. Then P =M1anM2wy.

Lemma 10: Suppose x 1is maximal in P and v 1is

minimal in P and x ~ y. Then d(P) < 1 + d(P|X\{x,y}).

Proof: Suppose P|X\{x,y} = Llf\...f\Lk. Then

P = yLoxfa.NyLyx N (L [ GO9Iy [X\[xTN Iy 1)y (L | (v)4).

Definition: A cover, x < y, 1s saild to be a cover of

rank k iff there are precisely k pairs, <a,b>, such
that x < a, b<y and a ~ b,
The following very useful lemma is due to Hiraguchil [7].

Lemma 11: If x <y i1s a cover of rank 0 or 1, then

d(P) < 1 + d(P|x\{x,y}).

Proof': Let P|X\{x,y} = Llf\...f\Lk. If x<y 1s a

cover of rank 1, let <a,b> be the pair of incomparable
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elements such that x < a and b < y and assume Lk is
a linear extension of P|X\{x,y} in which b < a, Now,

let L' = (Lk|(x)+)x(Lk|(y)+\[x}+)y(Lk|x\[y]+) and let

]
Lpay = (T IANDxIH)x (L, | GOMN\[yI)y (L, [(y)+). For
L £d < Kk ek Li' be a linear extension of P such

that L, = Ly'|X\{x,y}. Then P =1,'N... L

L]

k+1°*

Exampler Let x <y be a cover in which x 1is covered

only by y. Then x <y 1is a cover of rank O,

n

* *
Lemma 12: Suppose P|(A U Ay) _I eor P|A = I

and Ay has one element. Then d(P) < 2,

Proof: TIf either A* or A; 1s empty, then the
assertion follows from Lemma 9. Assume then that

A* = {x,y} and A; = {z}. Then the following cases
are posslible: x > y > zZ; x > y and

X;¥ vzy x>z and X,z VVy; or Xx > y,z and y v z,

In the first case we can assume by Lemmas 1 and 7 that
everything is below x. Then by Lemma 1 and Theorem 5,
the result holds. The second case follows immediately
from Lemma 1 and Theorem 5. In the third case we can

assume, using Lemma 7, that everything in A 1s either
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between x and 2z or below both x and y. By Lemma 1
we can assume that A has two elements. The resulting
poset has 5 elements, and hence 1lts dimension is 2.

In the last case P has the same dimension as

X

y
We may remove the circled

Z

element by Lemma 7 and we mayv remove y by Lemma 1.

Thus we have d(P) < 2,

* %
Lemma 13: Suppose |A U Ay| = 4 and neither A nor

Ay 1s empty. Then d(P) < 3.

Proof: By use of the elementafy reductions from the
preceding lemmas (incomparable minimal and maximal
elements or covers of rank 0) we reduce the cases to the
following two: A¥ = {a,h,e} and A, = {d} with I

an antichain and a,b,c > d or At = {a,b} and

A, = {c,d} with both being antichains and a,b > c,d.
Usling Lemma 1 we can assume that A has at most

15 elements - aq, comparable only to aj; Ay, comparable
only to b; a3 comparable only to c¢3 ay comparable only

to d; a5 comparable only to a and b; P comparable
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only to a and c; 8, comparable only to a and d;
ags comparable only to b and c; 395 comparable only
to b and d; a1 comparable only to ¢ and d;

a7 comparable to all but d; a10s comparable to all but
C; 213 comparable to all but b; aqys comparable to all

but a; and a)5s comparable to all four. Then in the

first case, P =

[\ a2a5da7a6a13a11312a15a1aa9a8a1ubaloaBGau(\ oo
N daja, g8 4283931 521 287 1852,P21 33687830242

In the second case, P =

I} s

dauala7a12ca10al3a6a15alla5aa1ua8a9a2ba3
(\ a2da9caBaIOaBaluaSallal5a12ba6a13a7alaaur\ -

/W alaScasazallasanalua12a13a15a9a7baaloau

The above proof 1s an example of a proof by "brute force".

There appears to be no elegant reduction in view of the
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fact that any of the elements of A U A, mav be

removed and still leave a poset of dimension 3. Further-
more, there are plenty of examples of posets where
removing two maximal or two comparable extremal

elements lowers the dimension by 2. The only recourse
then was to find three linear extensions of P whose
intersection ylelded P, These were found by the author
in a relatively short time, but they were done mainly

by trial and error. Thus, if the reader attempts to
find the motivation for these lists, he may encounter

some difficulty.

We can summarize the results of Lemmas 9, 12 and 13

in the following form.

Corollary 14 Suppose A 1is a maximal antichain and

[X\A| > 3. Then d(P) < |[X\A| except possibly in the
following cases:
| (1) X\A 1is an antichain lying either entirely

above or entirely below A

(11) |x\A] = 3 ana PI|X\A = .\/° or J/ﬂ\\

with A 1lying between the minimal and maximal elements

of X\A,



25.

Proof: If |[X\A| > 4 and AT # g Ay, then the
corollary follows from Lemma 13. If A, = ¢ and X\A
1s not an antichain, then the corollary follows from
Lemma 9. Hence (1) must hold. If |X\A| = 3, then

either (1) or (i11) holds by Lemmas 9 and 12,

The main theorem now follows easily:

Theorem 15: (Bogart and Trotter [4]). Suppose d(P) = n

|[X] = 2n and n >3. Then P=zS, or Cc (or the

dual of 06).

Proof: If n = 3, then there are only a few six element
posets satisfying the restrictions of Theorem 5 and
Corollary 14, Examination of these yvields the conclusion.

If n > 4 then we may assume from Theorem 5 and Corollary 14
that X = AUA" for two n element antichains A and A%,
Now, let Xy € A and vy, € A* be incomparable. If no

such palr exists, then d(P) = 2 < n, Thus, by Lemma 10,

d(P|X\{K1sY11) =n -1 and by induction P|X\{x1,y1} g
%

Sopepe Thus, A = {x;,...,x } and A = yyseeesyy,}

where Xy vy for 1 <1 < n. Removing X4 and vy

allows us to conclude that Xy < yj for 2 <i,J <n
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and 1 # J. Removing X and Yo allows us to conclude

that <

Xy Yy for 1 <1, J<n and 2 # 1 # J # 2.

Finally, removing x3 and y3 allows us to conclude

X1 <V, and Xy < Yy Thus P = S2n'
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Chapter 3

" Characterization of 2n+l element Posets

with Dimension n, n > 5

After Bogart and Trotter proved the precedling theorem,
they posed the question of characterizing maximal
dimensional posets with an odd number of elements, The
techniques they had used to prove Theorem 15 were too
cumbersome to attack this problem., They had not discovered
Theorem 5 (11), which 1s extraordinarily useful. Using
this fact, we conclude that a 2n+l element poset having
dimension n must have width n or n+l, Armed with this
knowledge, we proceed in the following manner; first,
if the poset has width n+l, we show that it consists of
two antichains, one of size n and the other of size n+l.

If the wldth is n, we show that the poset has two disjoint
n element antichains., If n > 5 we then show that the
poset 1n fact has a subposet which 1s isomorphic to Szn’
This says that there are no really new examples of

posets of dimension n, if we are allowed 2n+l elements

in our poset instead of only 2n, To make thils more

precise, we first make the following
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Definition: A poset P on X 1is sald to be irreduclble

if for every x e X, d(P|X\{x}) = d(P) - 1. 1In other
words, 1f we remove any element of X, we lower the
dimension.

In this chapter, we will prove the following

Proposition: For n > 5 +there are no irreducible

2n+l element posets of dimension n.

Suppose then that |X| = 2n+1 and d(P) = n > 3,
We know that w(P) = n or n+l. Suppose for now that
w(P) = n+ 1. Let n=3 and let A CX be a four
element antichaln. Assume that A, 1s empty. By
Lemma 9, A* must be a three element antichain.
Examination of the seven element posets satisfying

the above conditions ylelds the following seven examples:

DU A S N

Note that first four contain a subposet isomorphic to 86,
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and the last three are 1lrreducible., We are now in a

position to state

Lemma 16: Suppese |X| = 2n + 1, d(P) = n and w(P) =n + 1

for n > 4, Then P contains a d-removable element.

Proof: Let A be an antichaln of size n + 1. By

%
Corollary 14 we may assume that A 1s also an antichain
and A, 1s empty. Then there is at least one pair of
incomparable minimal and maximal elements. Suppose
n=4, A= {al, 8y, a3, 2y, a5} and

*
A = {bl, bys bs, by} with ay; v b;. By removing them

we must be left with one of the seven posets of

dimension 3 listed above. Suppose we are left with the

first irreducible poset:
b b3 bu

2

If ag " bl’ then removing them allows us to conclude
that a; < by, b3, by. But then elther a, or ag

would be d-removable. So we may assume a5 < bl.

Now removing 85, b3 must leave elther
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In both instances we conclude that b.L > ag. By symmetry
we are also led to conclude bl > as, ay. Now if

a; v b2, then removing b3 and a) leaves a poset of

dimension 2, Agaln by symmetrv we may thus conclude
that a; < b2, b3, bu. Thus

bl b2 b3 by

P = But then removing

al 32 3.3 au 3.5

b2, a3 leaves a poset of dimension 2, contradicting the
hypothesis that d(P) = 4,
Suppose that removing a4 hl leaves the last

irreducible poset:
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b2 b3 bu
au a5
As befope, we may assume that a5 < hl.

Now removing ays bﬂ allows us to conclude that

a, .< b2, b3. But then removing a3, bh leaves a

poset of dimension 2.

Fimnally, suppose that removing aq, b1 leaves the

second irreducible poset:
b2 b3 bu

Removing a b3‘ allows us to deduce that a; < by, by

2,
and a5 < bl' Removing a5 b2 allows us to deduce that
a; < b3. Removing a), b3 then leaves a poset of

dimension 2.
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Thus, by induction removing a pair of incomparable
minimal and maximal elements leaves a poset containing
S2n-2' Proceeding in a manner similar to above allows
us to conclude that P contains a subposet isomorphic

to SZn’ thus establishing the Lemma.

We now proceed to develop the tools necessary for handling
the case w(P) = n, The following lemma gives Iimportant
conditions under which d(P) < n - w(P) = 1. The proof

is very much like the proof to Lemma 12 and the lists

used here are based on those of Lemma 12, Due to the
length of the proof and the fact that it has 1little

expository value, it is given in the Appendix.

Lemma 17. Let A be a maximal antichain of P such
#
that neither A nor A; is empty and at least one
¥
is not an antichain. If |A U A4l < 5,

then d(P) < 3.
Proof: Given in the Appendix.

Lemma 18: Let A be the set of all minimal elements of

*
a poset, P. Then d(P) < 1 + w(P[A"),

#
Proof: Let P|A = 01L} &5 Ck where each Cy is a
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chain. Let Li’ 1l <1<k be a llnear extension of P
in which every element of Ci 1s below everything

*
incomparable to it. Let L, 4 = (MlA)(LlIA ) where

M reverses the order of Ll on A, Then

P = Llf\...f\Lk+l.

Lemma 19: Let A be the set of minimal elements of P.

If |A"| =5 and w(P|A®) < 3, then a(p) < 3.

Proof: If w(P|A") < 2, then d(P) < 3 by the
previous lemma. Hence, we may assume that w(PIA*) - 3,
Then A* = Clll 02(J 03 where these are disjoint
chains. By the now legendary pigeon-hole principle

we may conclude that Cl has only one element.

Then d(P) < 1 + d(P|lA U 02LJ C3) < 3 by Lemma 9 unless

Plczk) C3 =z [ [. We can remove either C; or €,

and use Lemma 9 unless neither is a cover of rank 0

\V/\V/° But then

removing the top element of C2 allows us to use

*
which can happen only if P|A

n

Lemma 9.

We can summarize the results of Lemmas 17 and 19 in
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- Corollary 20: Suppose A 1is a maximal antichailn and

|IX\A| > 5. Then d(P) < |X\A| - 1 except possibly in

the following cases:

(1) X\A 1lies either entirely above or below A

and w(P|X\A) > |xX\a| - 1

* *
(11) X\A = A U A, and A and A, are both

nonempty antichains.

Proof:

(1) follows from Lemma 19 and

(11) follows from Lemma 17.

We are now ready to start on the case where w(P) = n,

Lemma 21: Suppose |X| = 2n+l, d(P) = w(P) = n > 5,

Furthermore, suppose that for some n-element antichain, A,
#

in P, A 1s an n element set, Then P contains a subposet

1somorphic to SZn'

Proof: Let Ay = {c}, A = {by,ece5b } and

® #
A = {al,...,an}. Then Corollary 20 says that A is
an antichain, We may assume that ¢ < bn. Removing

{e,b } Dby Lemma 11 allows us to conclude that
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*
PlalUa \{a ,b } =8, ,, with a, vb, for 1<1<n-1,

Now for 1 <1 <n -1, let Li' 2 P be constructed as
as follows. Place bi above a;. Now ¢ 1is elther
incomparable to or below ay . If 1t is incomparable to
ay place 1t above ays otherwlise, it must be put
below ay+ Do the same for bn’ keeping in mind that

b, > c. Now, 1if a, is incomparable to by place 1t

below b1 but above ay and bi' Otherwilse it must
*
be place ahove bi' Now place the rest of A above

bi and a, arbitrarily, place the elements of A

above ¢ between ¢ and bn and place the remaining
elements below ¢ and 8y Note that if ¢ < bJ for
some J # i, then ¢ < ay by hypothesis. Now, if

a_ > bn, then P = Llf\ ...f\IJ So we may suppose

n n-1°

a, ™ bn. LE a, > ¢, then we use the same linear orders

as above with the following modifications., We find

some 1 between 1 and n - 1 such that bn n ay

S

m

A
or a ~b,. If none exists, then P[aAl) A on®

n

If b, vay; and ag ﬂ:bi, then bn is immediately

below an in LiJ reverse them, Then P = Llf\...f\Ln_l.

If bn noa and a, > bi’ place bn immediately above

i

a, and for some J # i, for which by < ays place
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b Immedliately above bn in L'j -~ note that such a.j

i

must exlst or else w(P) = n + 1, Then P = Llf\ .../\ Ln—l‘

IT bn < and a, ™ bi’ then we place a immediately

. |
below b~ and for some J ¥ 1, for which B B bj’ place

ay immedlately below a, in LJ -~ agalin such a'j

must exist. Then P =1L, ()\...M\L_ ,. If a_ ~e,

n
then follow the above instructions replacing bn by c.

X

mn

Again, 1f this 1s not possible, then PlX\{bn} on*
Now suppose we have a seven element poset with three
minimal elements and three maximal elements. Further-
more, suppose that the remaining element is below at
least two of the maximal elements and above at least
two of the minimal elements. The only two such posets

which don't have a d-removable element by Lemma 1 are

or

The ones which do have a d-removable element all have

dimension 2 and so do these two. Thus, all such posets
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have dimension 2, We are now ready for

Lemma 22: Suppose |X| =9, d(P) = w(P) = U4; further-
more, suppose P has four maximal elements, four
minimal elements and a ninth element below at least
two of the maximal elements and above at least two of
the minimal elements. Then P restricted to the

maximal and minimal elements is isomorphic to S8.

Proof: Let a1, 8y, 83, 8y be the minimal elements, let

bys by, b3, b, be the maximal elements and let

815 85 < ¢ < b3, bu. If eilther az or a), is

incomparable to either bl or b2, then removing them
leaves a poset of dimension 2. Now a4 and a, must
have different comparabllities and so must

ag and a, bl and b,, and b3 and by. We may
therefore assume b1 >a; vb, and b, > a) ﬂ:h3. Now,

: 63 v by, then b, 1s d-removable by Corollary 8.

2y
Likewlse for as if azg " b3. If a, < by, then

c < b, 1is a cover of rank 0, and removing it leaves a

poset of dimension 2, Thus, an v b Similarly,

1.
as v by. But then P|X\{c} = S5, 1If a; 1s also

below ¢, then we must have a1, s, as all below
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bl and b2 or else removing two leaves a poset of
dimension 2, But then ays 85 OT ag is d~removable,

Thus, we have the lemma.

Lemma 23: Suppose |[X| = 2n + 1, d(P) = w(P) =n ¥ B
and P has n minimal elements, Then P contains a

subposet isomorphic to SZn'

Proof: Let A = {al,...,an} be the set of minimal
*
elements, Then by Corollary 20, w(P|A ) = n, Let
#
B = {bl""’bn} C A be an antichain and let c¢ be
#*
the element of A \B. Now if ¢ 1is not above at least
two elements of A and below at least two elements of B,
then the lemma 1s established by Lemma 21. Suppose

then that a1, 8, < ¢ < bn-l’ b Now suppose that

n
Q3504058 < byse.esb 5. Then PIX\{al,bn} has
dimension 2 which contradicts the hypothesis that

d(P) = n > 5., Assume then that az "~ bz, Removing them
glves a poset satisfying the hypothesis of Lemma 22,
Thus we conclude that a; v by for 1 <1 <n and

a; < by for 2 # 1 #J# 2, Now, 1f a, &b

3 1»
1 <1 <2 then removing them implies that b3 has

the same comparabilities as bi and is therefore
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d=removable, Thus a3 < bl’ by. Similarly,

b3 > a,_1s e Now a, <c¢ is a cover of rank 1.

Removing it implies that < bi’ 1 <1 <n and

a3

1 # 3, and removing ¢, b, 1mpliles that by > ay,

1<1<n and 1 # 3. Thus PIAUBESQn.

We wrap us the remaining difficulties with

Lemma 24: Suppose A 1is a maximal antichain in P
% %

such that |A |, |Ag]l > 2 and |A U Ay| = 6. Then

da(P) < 4,

Proof: Given in the Appendix.

This immediately strengthens Corollary 20.

Corollary 25: Suppose A 1is a maximal antichain and

|XNA| > 5. Then d(P) < |X\A| = 1 except possibly in

the following cases:

%
(1) either A or A, contains an antichain of

size |X\A| -1 or

*
(11) |x\a| =5, |a'|, |Ax| > 2 and both are
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antichains.

Lemmas 16, 21 and 23, and Corollary 25 are summarized in

Theorem 26: For n > 5, there are no irreducible

2n+l element posets of dimension n.
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Chapter 4

" Characterization of 2n+l element Posets

with Dimension n, n < 4

In Chapter 3 we were able to show that there were
no irreducible 2n+l element posets of dimension n for
n > 5, In thls chapter we will show that this same

statement holds for n = 4, but not for n = 3,

The existence of seven element irreducible posets
of dimension 3 has been known for some time. Baker,

Fishburn and Roberts [1] give an example isomorphic to

and Bogart and Trotter give the following example:

Subsequently Trotter and this author have indenendently
examined all seven element posets of width 3 and 4 to

discover all those irreducible of dimension 3,
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Including the first two mentioned, here - along with

duals of course - is a complete list:

ST 7
IS PG X

ISR (AR
SRS
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With this knowledge we can ask the auestion, "are
there any irreducible nine element posets of dimension 42"
If the width 1s 5, the answer 1s no by Lemma 16, If the
width 1s four, then by the previous lemmas we can conclude
that such a poset has two disjoint antichains of size 4
or it has a four element antichain, A, such that A* and
Ay are antichains of sizes 2 and 3. In the first case
we can assume by Lemma 22 that we have a four element
antlichain A, such that A* has one element and Ay 1s

also an antichain,

Lemma 27: Suppose |[X| =9 and d(P) = w(P) = 4,
Furthermore, suppose that P has two disjoint antichains

of size 4., Then P contains a subposet isomorphic to Sge

Proof: The only case not covered by Lemmas 20 and 21 is
the case in which the remaining element is above both
antichains, and removing it along with an element it
covers, leaves an lrreducible poset of dimension 3 in
seven elements, Let A be a four element antichain.

Then we can assume A = {al, 2y, a3, ayts

"
Ay = {bl, bss b3, by} and A = {ec}. Clearly, if

mn

c is above a,, a,, a; and ay, then PlAa Q) A, Sge
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Assume that au Ve 2 aq, a,, ag. Suppose the removal

of a;, ¢ leaves %/I . Then we can assume

without loss of generality that the poset 1s labelled

as follows:

®
b, b2 b3 b4

Now, by removing c, a5, we can conclude that bl’ b? <ag.
Removing c, a3 we can also conclude that b3, bh < aq.

But then removal of ay, b3 leaves a noset of dimension 2.

Suppose that the removal of a;, C leaves ‘éé;%;g§3k<::

a2 a3 a),
Then it can be labelled either
a a a
) 4 3 bl b, b3 by
or

In either case, removal of ¢, a, allows us to conclude

that by ~ a; > bl’ b2, b3. Then a, or a, can be
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removed. Finally, suppose removal of a;, ¢ leaves

% g : a2 8.3 aq

Then 1t can be labelled eilther

au a2 a
or

by b3 bl
In elther case, removal of ay, by leaves a poset of

dimension 2.
Assume that ay, ap < ¢ v a3, 8 e Suppose removal

of ¢, a, leaves

Again we can assume it is labelled

1 2 D3 by
Removing ¢, a, Wwe can conclude bl, b2 <aqg v b3, b!‘l

or a; > by b2, b3, by. In the flrst case elther
al or a, can be removed, In the second case ay > b&

is a cover of rank 0 and removing it leaves a poset of

dimension 2.
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Suppoee that removal of ¢, ay leaves

Then it can be labelled either

AR - AR

In the first case, removing 3y a2 allows us to conclude

that bl’ b3, by < a; v bz' But then removing ays b1

leaves a poset of dimension 2. In the second case,
removing ¢, a, allows us to conclude that

b1 <aq; v b,, b3, by. But then eilther a or a, can

2 p

be removed, Suppose then that removinpg ¢, ay leaves

For any way that this 1s labelled, removal of ¢, as
glives a4 the same comparabilities as ass and hence,

either can be removed.

Finally, assume that a,y

Suppose that removal of ¢, a4 leaves

< ¢ nvay, ag, a.
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Agaln we can assumg that 1t 1s labelled
2o 3 24

b1 3 - Oy
Then ay > bu 1s a“cover of rank at most 1 unless

bu < ay and ¢ v b In the first case, removing

1-
ay, bu leaves a poset of dimension 2, TIn the second

case removing ays b3 leaves a poset of dimension 2.

Suppose that removal of ¢, ay leaves

Then we can label it B a ay

by b2 b3 bu
Reroving a3, b3 we can conclude that

C

P[X\{a3, b3} = ay

1 “l
b, 6N by by
Then removing ay, by we conclude
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But then removing ajs b1 leaves a poset of dimension 2.

So we may assume that removing c, al leaves

which can be labelled
5.2 a au

Dy D, b3 S
But then removing asz, b3 leaves a poset of dimension 2,

The proof of this last statement 1llustrates the
straightforward technique used to show that certailn
tyvpes of nine element partlally ordered sets have
dimenslion three or less. The same technique can be
used to show that for the type of nine element poset
mentioned immediately before Lemma 27, its dimension 1s
at most 3. Since the proof is tedious and unenlightening,
consisting essentially as an exhaustion of such posets,
only the statement of this result is glven here., It

has also been verified by Trotter.

In view of Lemma 27, the statement of Theorem 26
holds for n = 4, Thus, summarizing the results of

thls chapter gives us
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Theorem 28: There are 13 seven element irreducible

posets of dimension 3 up to isomorphism and dual
isomorphism classes., For n > i, there are no

2n+l element irreduclble posets of dimension n.
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- Appendix

- Proof to Lemma 17: We have two possibllities:

* # :
|A"| = 3 or 4, Suppose |A | =4, If w(PlA*) < 2,

e

Lemma 9. 1In that case, removal of one of the two

n

% %
then d(P|AUA) < 2 unless P|A

top chains by Lemma 11 and Corollary 14 gives the
%
conclusion., Thus we may assume that w(P|A") = 3,

This gives us flve cases:
" b a b e
b c
c
1) ® o 2) ° 3)
% % X

5) e o 5

w

a b a b s

Let d be the element of Ay, For the rest of this lemma,
let ays 1 <1 < 15 have the same interpretation as in
Lemma 13; also, let Xy 1 <1 <15, be comparable only

to x. and the same things to which ay is comparable,
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Let x, be comparable only to x., As in Lemma 13, we

can assume that x has only the elements listed,

Case 1: By removing a, X we can assume that
b, ¢ > d, If a ~d, then removing b leaves a

poset equlvalent to a

Using Lemma 7, we can replace ay by an element covering
a and ag. But this poset has dimension 2 by Lemma 9.
Thus, we may assume that a > d.

When x > 4, P =
xla1a3x6a6a8xllalldx15a15x13a13alua10cx12a12a9x7a7x5xa5aa2bau_f\...
a2x5a5dx7x6xl3xllxl2x15xlxa7a6al3a11alzal5a1aa9a8alubaloa3cau (\...
(\ daualealua8a9a15x15al2x12a11xlla5x5a2ba13x13a6x6a7x7a3calxlxa

When x “~ d, we use the same linear orders as above with the
following modifications: we drop Xgs X305 Xq3 and X153

and 1n the second linear order we put d immediately above Xx.
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Case 2: As above we can assume that a, b, ¢ > d. Ve
can also use the same linear orders with the following

modiflcations: we drop Xgs x7, X1y and x and in

153

the third linear order we put x immediately below b,

Case 3: As in case 1 we can assume a, b, ¢ > d, We
can also use the same linear orders with the following
modifications: we drop X171 and X153 and in the

first linear order we put x 1immediately below c,

Case 4: Agaln we can assume that a, b, ¢ > d, Then P =
x1a3x3xstxlldx15x13x1ualoxlocxl2x9x7x5ax2bauxuxOx/ﬂ\...
f\ xoxgxsdx7x6xl3x11x12x15xlax9x8xlubx10x3xuxaloa3cauf\ voo
(W xodxuauxloalOxlux8x9x15x12xllx5x2bxl3x6x7x3a3cslax

Case 5: Agaln we can assume that a, b, ¢ > d. Then we
can use the above linear orders with the following
modifications: we drop asg and 24105 and in the

second linear order we put x 1immedliately above c.

#
Suppose |A | = 3, If A, 1is a chailn, then removal of
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%
Ay by Lemma 1l gives the result unless A is an

¥
antichain, Let A, = {x > d} and A = {a, b, cl.
Then we can assume that a, b, ¢ > d, and we have the

followlng cases

Case 1: x < a, b, ¢c. Then P =
a1a3a6a8alldxx15a15x13a13xlualuxloalch12a12x9a9x7a7a5aa2bxuau(\...

f\ daualoal"agalSalzxxuxloxluagx9x15x12a11a532ha13x13x7a6a733cala

Case 2: ¢ "~ X < a, b. Then we can use the above linear
orders with the following modifications: we drop

X100 X130 X714 and X153 and in the first linear order we

place x 1immedlately above c.

Case 3: a, ¢ v x < b, Then we use the linear orders
of case 2 with the following modifications: we drop
x7 and X103 and in the second linear order we place X
immediately above a.

Now, assume A, = {c,d} 1s an antlchailn.
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a X a b
& b
Then P|A = 1) o 2) s 3) or
% a b X
X
Ly b
a

Case 1l: Using elementary facts we can assume that

a, b >¢, d. If x> ¢, d, then P =
daux13137x7a12x12caloxl3x6x15xllx5xa1336a15a11a5aalua8a9a2ba3(\ & ol
f\ agda90a3a1Oasaluxsasx11a11x15a15x12a12ba6x6x13x7xlxal3a7alaauf\...

f\ x1a1a5xSca3a2allx11a6x6a§dalual3xl3a15x15a9a7x7x12xa12baaloau

If d ~x > ¢, then we can use the same linear orders as
above with the followine modifications: we drop

x7, Xq0s x13 and X155 and we put x6xllx5x immediately

below ¢ 1n the first linear order.
If x ve¢, d, then we can use the preceding linear
orders with the followlng modifications: we drop Xg

and x;,3 We put X X immediately below d 1in the

first linear order and we place ay immediately below

x in the third linear order,
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Case 2: By removing x, a and x, b we can assume

that a, b > ¢, d. Then P =
daqxuxlx7xlzcaloxlOx13x6x15x11x5axlux8x9x2bx3x0xa3(\ e
{\ xadxgca3x3xloa1Ox8x14x5xllx15x12bx6xl3x7x1axux0xa4(\ o

fﬁ]xOxlx50a3x3x2xllx6x8dxlux12xl3x15x9x7bax1Oxuxaloau

Case 3: By removing a and then b, we can assume

that a, b > ¢, d. Then we can use the same linear
orders as 1n case 1 with the following modifications:

we drop X1s Xg» x7 and x13; and we place x Iimmediately

below b 1n the second limear order.

Case 4: By removing c¢ we are left with a poset of

dimension 2.

#
Proof to Lemma 24: Tet A U A; = {a, b, ¢, 4, x, v}.

We can assume that1¥4a1J|0 <1, J < T}, as follows:
of the three elements {a, b, x} agy 1s comparable

to none, alJ 1s comparable only to a, 8oy is

comparable only to b, a3J is comparable only to X,
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ayj is comparable only to a and b, aSj is comparable
only to a and x, a6j 1s comparable only to b and x,

and a.?|j 1ls comparable to all three for 0 < j < 73 of the
three elements {c, d, vy} a4 1s comparable to none,
a3q is comparable only to c, 245 is comparable only

to 4, ai3 is comparable only to y, ayy 1s comparable

only to ¢ and 4, ai5 is comparable only to ¢ and y,

316 1s comparable only to d and y, and a17 1s comparable
to all three for 0 < i < 7. ILet My Dbe a linear
ordering of f{a;y[0 <J <7} for 0 <41 <7. Let

Ny be a linear ordering of {aij|0 <41 <7} for

0 <J < 7. Suppose At = {a, b, ¥y} and Ay = {c, 4, x}.
Then by Corollary 20 and Lemma 13 we can assume that both
are antichains and a, b, v > ¢, d, x. Let

Ll = dxMOMlMuxMBMTaMGMszsy,

L, = chexM3M6M7MubM5MlaMOz,

L3 = delN5cNuN7N6N3yN2NOba and

Lu = xNON3cN2N6dN7N5yNuNlba. Let X, be the same
as Ll with the following changes: put a3u

immediately above y and put ayg Just above a5u.

Let K2 be the same as L2 wlth the following
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modifications: put a52 immediately bhelow au3 and

at the bottom, Let K3 be the same as L with

23 3
the following modiflications: put a52 right above b
and put ays right below d. Let Ky be the same as
Lu with the following changes: put a34 Just below
a25 and put a23 immediately above a32. It is also
necessary for a43auo to be the last two elements of
My s agg to be the first element of MS’ P to be
the bottom element of N2 and aZSaHS to be the last

two elements of Ng. Then P = Ky N Kgf\ Ky N Ky .

*
Now suppose A = {a, b, ¢, d} and A, = {x, v}.
Again we can assume both are antichains and
a, b, e, d > x, vy. Let

L, = yMOMIMuxM aM6M2bM3dc,

517
L2 = yM2xM3M6M7MubM5MlaMOcd,

L3 = XNONINMyN5N7°N6NEdN3ba and
Ly = xNgyN3N6N NudN5N1°NO‘ Let K be the same as

1 &

L1 with the following changes: put appdyo immediately
above a55 and a33a35 between ¢ and c¢. Let K2

be the same as L2. Let K3 be the same as L3
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with the following modifications: put

433

immediately below aso and put ayy at the bottom,

Let Ku be the same as Lu with the
put a35 immedlately helow asy and
bottom. It 1s necessary for agq to

in M Then P = Klﬂ Kzﬂ K3ﬂ Ky

5.

following changes:
a) 5 at the

be below 355
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