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Absti'act

The Rydberg frequency, cR, sets the frequency scale for the spectrum of hydrogen
atoms. From a frequency measurement of one transition in hydrogen, cR,, can be
extracted and the frequency of any other transition can be predicted, given that the
reduced-mass, relativistic, QED, and proton structure corrections can be computed
to the desired accuracy. Recent advances in optical frequency techniques applied to
transitions involving low-lying states of hydrogen have decreased the uncertainty in
cRy to 7.6 x 10712, This thesis presents our measurement of cR., using millimeter-
wave transitions between high-lying “circular Rydberg” states of atomic hydrogen
with a principle quantum number, n, between 27 and 30. This measurement pro-
vides an independent check, in a different regime, of the optical measurements. Our
measurement, cR., = 3289841960 306(69) kHz with an uncertainty of 2.1 x 1071, is
consistent with the CODATA 98 recommended value.
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Chapter 1

Introduction

1.1 Significance of the Rydberg frequency

The Rydberg frequency cR,, sets the scale for the frequency spectrum of atomic
hydrogen. The Balmer formula gives the non-relativistic transition frequency v,

between two states with principal quantum numbers n; and n,:

: 1 1
Vpr = CRoo (—2 - —2) ) , (1.1)
ny nj

The actual transition frequencies in hydrogen include small contributions due to ex-
ternal fields, relativistic effects and the Lamb shift, and there are small corrections
due to the finite mass of the proton.

The Rydberg frequency cR,, is the best known fundamental constant. The rec-
ommended value from CODATA 98[MTO00] for cR, is

cRo = 3289841 960 368(25) kHz, (12

which has a fractional uncertainty of 7.6 x 1072, This value is based on all available
measurements of transition frequencies in hydrogen and deuterium, totalling 23 mea-
surements from 5 different laboratories. The most important of these measurements

are optical measurements involving low-lying states.
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Currently, a more precise value of cR, is needed to extract a better value for the
ground state Lamb shift of hydrogen ELamb(1S1/2) from the 15/ — 2512 transition
frequency. This transition frequency has been measured to a fractional precision of
1.5 x 10~M[UHG*97]. Thus, any improvement in the value for cRe would result in
a more precise experimental value for ErLamb(151/2)-

Another role for the Rydberg frequency is providing a cornerstone in the deter-
mination of other fundamental constants. Bohr theory predicts the value of cRy to

be

a?mec?
cReo = 5n (1.3)

where « is the fine structure constant, m, is the mass of the electron, c is the speed
of light, and h is the Planck constant. For instance, an ongoing effort [BPR*99] to
measure the fine structure constant a utilizes the highly accurate determination of
cRo and Eq. (1.3) to help extract a value for a. The current value of cRo is s0

precise that it does not limit this determination of a.

1.2 Motivation for our measurement of cRw

The history of fundamental constants underscores the importance of independent
measurements. For example, the CODATA 1986[CT87] recommended value for cRoo
has a fractional uncertainty of 1.2 x 1079, but it is fractionally 3.2 x 107? times
smaller than the current recommended value from CODATA 1998 [MTO00]. Such
major revisions of fundamental constants are not that unusual. For instance, a similar
revision of the fine structure constant o occurred in the mid 1960s, and currently there
is significant discrepancy Between different me@surements of a[Kin96].

Our measurement is totally different from previous measurements because it em-
ploys millimeter-wave spectroscopy on high-lying “circular Rydberg” states of atomic
hydrogen. A “Rydberg” state has a principal quantum number n much greater than
one, and a “circular Rydberg” state has the maximal amount of angular momentum,
given its principal quantum number (£ = |mg| = n —1). The frequency metrology in

our experiment is technically different from the optical measurements. The frequency
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of the radiation that we employ is small enough (= 300 GHz) to be easily synthesized
and referenced to a cesium clock, which is the primary frequency reference. Hence,
our measurement providés a check of techniques employed in the new field of optical
frequency metrology. Also, the transitions that we use are different from the opti-
cal measurements. Most notably, they are insensitive to QED and proton structure
perturbations.

While the precision for our measurement of cRy, does not surpass the precision of
the current recommended value, the historical discrepancy of nearly 3¢ in ¢R., shows
the need for a competitive, independent measurement in order to add reliability to

the value for cR.

1.3 Basic method

Our basic method is as follows: We measure the transition frequency of the n = 27 —
28 or the n = 29 — 30 “circular state transition” in hydrogen. By circular state
transition, we mean a transition between circular states. Specifically, the quantum

numbers describing the transitions that we measure are
(nil=n—1|m=n—1) = (n+ ;€ =mn;|mg| =n), (1.4)

where n = 27 or 29. We then subtract off the frequency contributions due to the
external fields and the fine structure (the Lamb shift and the hyperfine structure
are essentially negligible for our purposes) to obtain 127728 or 12930, The Balmer
formula, as given in Eq. (1.1), relates the non-relativistic transitions frequencies v,

to the Rydberg frequency cR.:

Ry = V27—>28( 1 1 )_1

w57 5
1 1\7!
_ 2930 -
Roo = 1,7 (2—93-3—02)
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In this discussion we ignored the corrections due to the finite mass of the proton,
which must be taken into account before determining cR... We discuss the finite-

mass correction and all the contributions to the transition frequencies in Chapter 2.

1.4 Principle of the experiment

We use the Ramsey resonance method on an atomic beam to measure the circular
state transition frequencies. Here we present only a brief description of the principle
of the experiment; details on the lineshape and the experimentdl apparatus are given
in Chapters 3 and 4, respectively.

We dissociate molecular hydrogen into atomic hydrogen. The atomic hydrogen
then flows into a thermalizer at 80 K. The atoms exit the thermahzer, formmg the
atomic beam, and we collimate the beam using a slit.

The atomic beam enters the interﬁction region, which is shown schematically in
Fig. 1-1. We logically divide the interaction region into three sections: the production
region, the separated fields region, and the detection region.

In the production region we use a pulse of optical radiation at 121 nm to excite
the atoms from the ground state to the 2P3/9 state. A simultaneous pulse at 366 nm
further excites the atoms from the 2P/, state to a Rydberg state with n = 27 or
29. Then we circularize the Rydberg atoms using 1.81 GHz circularly polarized RF
radiation, leaving them in the £ = |m,| = n — 1 state.

In the separated fields region, the atoms traverse the waists of two gaussian beém
modes contained in two near-confocal cavities. These are the two oscillatory fields
that we use in the Ramsey resonance method, and they drive transitions between the
circular states with quantum numbers n and n + 1.

In the detection region, we use selective field ionization to count the number of
atoms in the n and n + 1 circular states as a function of the transit time (the time
from optical excitation to detection), the frequency of the oscillatory fields, etc.. The

detector has an aperture which restricts the trajectories of the detected atoms.
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Figure 1-1: Schematic top view of the interaction region.
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Chapter 2

Contributions To The Traﬂsition

Frequencies

We measure the absolute frequencies of transitions between two adjacent circular
Rydberg states with principal quantum numbers, n; and ny = n; + 1, where n;
= 27 or 29. Note that for a circular state with principal quantum number n, the
angular momentum and magnetic quantum numbers take on the maximal values:
¢ = |my| = n — 1. In this section we discuss the contributions to these transition
frequencies that are necessary to determine the Rydberg frequency cRo from our
data.

Throughout this thesis, we use SI units, except we use the CGS unit of mag-
netic field (Gauss) in numerical expressions (10* G = 1 T). We use values for the
fundamental constants as reported in CODATA 98 [MT00].

For clarity, we reserve the symbol E for the energy of an energy level and the
symbol AFE for the difference in E between two energy levels. Experimentally, we
observe the frequency of a transition between two levels, and we use the symbol v to
represent the transition frequency, where v = AE/h. We reserve the symbol Av for
the substructure of a transition, for instance the fine structure splitting of a transition
frequency. |

We start by enumerating the terms in the Hamiltonian H for a hydrogen atom

with a proton of infinite mass, and we list the terms in descending order of importance
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for our measurement conditions:
H=Hn,-+H5+Hz+Hf3+HQED+ths, (2.1)

where H,, is the non-relativistic Hamiltonian for the hydrégen atom, and the other
terms are perturbations due to: the Stark effect, the Zeeman effect, fine structure,
QED effects, and hyperfine structure. |

To set the scale for significant interactions, the transition fr:equencies that we
measure are about 300 GHz, and a fractional uncertainty of 1 x 10~ corresponds to
about 3 Hz. In electric and magnetic fields that we typically apply, the contributions
to the circular state transition frequencies from the terms in Eq. 2.1 are: (Here, the
(£) signs represent the dependence of the transition frequenc:y on the sign of my,
Ms, or m;, where m, and m; are the electron and proton spin quantum numbers.)
Vnr & 3 x 10" Hz, vs &~ —5 x 10% Hz, vz ~ £2 x 10° Hz, vy, ~ —10% £ 2 x 103
Hz, vgep =~ —0.1 £ 1 Hz, and Unfs = 1 Hz. ‘Note that the Stark effect contribution
vs is not the largest contribution compared to the other perturbations: For our
conditions, the first-order Stark effect is the dominant perturbation to the general
energy level structure of Rydberg atoms, but it does not affect the circular state
transition frequencies because circular states do not exhibit a first-order Stark effect.
The value quoted above (vs &~ —5 x 102 Hz) comes from the second-order Stark effect.

In the rest of this section, we discuss each term in the “infinite proton mass”
Hamiltonian (Eq. 2.1). For each term, we calculate the contribution to a circular
state transition frequency, and then we include a correction due to the finite mass

of the proton, which we refer to as a “finite-mass correction”. This correction is a

(&) 2

Me

multiplicative factor of

where ( is an integer that depends on the situation and 1 1s the reduced mass for
hydrogen, defined by
1

A
me 14+m./m,

(2.3)
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In most cases, 3 = 1 and the effect of including this factor is simply to replace
the mass of the electron with the reduced mass. The value of this factor comes
from the measurement of m,/m, = 5.446170232(12) x 1074[MT00], which has a
fractional uncertainty of 2.1 x 1079, so that 1/m, is known to a fractional uncertainty
of 1.2 x 1072, The uncertainty introduced by the finite-mass corrections is negligible.

At the end of this section, we calculate the frequencies of transitions between
“near-circular” states. These states have |my| = n — 2 rather than |m,| =n —1, and
we use them to calibrate the applied electric field because they exhibit a first-order

Stark effect.

2.1 Balmer formula

The eigenvalues of H,, are E,, = —cRu/ n2, and the Balmer formula for hydrogen,
written in terms of frequency, is:
U 1 1
Vm.p = CRoom— (——2- - —2-) y (24)

e \NF T

where we have included the familiar finite-mass correction, the factor pu/m.. Here, as
throughout the paper, the addition of u to the subscript indicates that the finite-mass

correction is included.

2.2 Stark effect

The perturbation Hamiltoniaﬁ for the Stark effect is Hg = er, where F is the
magnitude of the electric field, which is taken to be along the z-axis, and —e is the
charge of the electron. The natural coordinate system for the Stark effect is not the
usual spherical coordinates but is the parabolic coordinates (see, for example, Bethe
and Salpeter [BS77]). The parabolic quantum numbers are n, k, and m,, where n and
m, are the same quantum numbers used in the spherical basis and k is the electric

quantum number (in the notation of [BS77], k = n; — ny). The orbital angular

18



momentum quantum number £ is not good, except for the circular state, which is a
basis state in both the spherical basis (with n,€ = |m,] = n — 1) and in the parabolic
basis (with n, k = 0, |me| = n —1).

The Stark effect perturbation energy can be found to arbitrarily high order [Sil78].

For our purposes, we only need the Stark effect to second order:
3 ( m, L me\’ o2 a2 o 2
Es, = ze aoT nkF — — aoT kF*n*(17n® — 3k — 9m* +19),  (2.5)

where kK = 4me, ag = (kh?)/(m.e?) is the Bohr radius, and we have introduced a
factor of m./u for each factor of ag to correct for the finite mass of the proton. This
finite-mass correction is explained in Appendix A.

A convenient expression for the first-order Stark effect is
ES)/h = 1.920 x 10°nkF Hz/(V/cm). (2.6)

Circular states have k = 0, and the first-order contribution vanishes, so that the
lowest-order contribution is the second-order term. The third-order and the fourth-
order terms are neglected in Eq. (2.5) because the third-order term vanishes for
k = 0 and the fourth-order term is negligible (Eg:‘) /h =0.008 Hz at 1 V/cm for n=30
circular states). For our purposes, the Stark effect for a circular state with principal

quantum number n is

3 .
1 e
Es, = 16 (%%) kF?n*(n +1)(4n + 5). (2.7)

The contribution that the Stark effect makes to the transition frequency is calcu-
lated by finding the difference in E's, between the two circular states involved in the

transition:

v, ? = —12588.06 F% Hz/(V/cm)?, (2.8)
V%0 = _17799.38 F2 Hz/(V/em)?. (2.9)

19



The fractional uncertainty in the fundamental physical constants h (7.8 x 1078) and aq
(3.7 x 107°) leads to a negligible fraction uncertainty in the numerical values quoted
above (7.9 x 1078).

We apply an electric field F in order to maintain the orientation of the circular
states. The applied field overwhelms the residual electric fields in our apparatus.
Without this applied field, the orientation of the circular states would likely adiabat-
ically follow the residual fields, which vary in direction as a function of position. The
adiabaticity criterion [GL86] is that the rotation rate wro of the electric field is less
than the Stark frequency wsiark = (27)(3/2)eagnF, which is the Splitting between
Stark states with Ak = +1.

The size of the residual fields in our apparatus is approximately 5 mV/cm, and
we typically apply a field of about 200 mV /cm. This applied field results in a Stark
effect contribution vg on the order of 500 Hz. Fortunately, the experiment provides
a sensitive measure of the applied electric field F. We measure F' by measuring the
first order Stark effect of a transition between adjacent “near-circular” states. Sec.
2.7 discusses the frequency contributions for the near-circular state transitions, and

Sec. 5.2 discusses this method of measuring the applied electric field.

2.3 Zeeman effect

The Zeeman Hamiltonianis H; = —[i- B, where [ is the total magnetic moment of the
atom and B is the magnetic field. We break up f into its components: i = ¢+ s+ i,
and we write Hz = H z¢+ Hzs + Hz;. The components are due to the orbital motion
of the electron, the spin of the electron, and the spin of the proton, respectively.
For now we ignore the spin components and deal only with the orbital component of
the Zeeman Hamiltonian Hz,. We do this because it is convenient to deal with the
spin components, Hz, and Hz;, in later sections devoted to the fine and hyperfine
structure, respectively.

Note that we have omitted the diamagnetic term from the Zeeman Hamiltonian

because it is negligible in our experiment. For a magnetic field By along the z-axis,
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the diamagnetic term is [CTDL77]

Hp = — B}z + ?), (2.10)

8

For circular states, the expectation of z2 + y? is (2% + y?) ~ afn*, and (Hp) is
approximately

Hz
~ -4 4 2
(HD)/h 1.50 x 10~ B” __G oS

(2.11)
We apply a field By ~ 150 mG. For a circular state with n = 30, (Hp)/h ~ 0.02 Hz.
The contribution of Hp to a circular state transition frequency is even smaller than

0.02 Hz and can be safely neglected.

2.3.1 Parallel magnetic field

For a magnetic field B that is parallel to the electric field (and hence along the z-
axis), the Hamiltonian is Hzy = —fi¢- B)2 = — e By = pp(L./h) Bj[CTDL77], where
up is the Bohr magneton and L, is the projection of the orbital angular momentum
along the z-axis. The parabolic basis states are eigenstates of L, and the energy level
shift is:

Ezq = ppmeBy. (2.12)

This Zeeman effect removes the m, degeneracy.

The circular state transitions change the magnetic quantum number m; such that
Amg = +1 or Amy = —1. Specifically, the quantum numbers describing a circular
state transition with Am, = +1 are (n,£ = n—1,m; = +(n—1)) = (n+1,£=n,my =
n), and for a transition with Am, = —1 they are (n,£ = n —1,m; = —(n — 1)) -
(n+1,¢£ =n,m, = —n). Using Eq. 2.12, the contribution to the transition frequency

for a transition with Am, = £1 is

Vzgp = ,uBAmgB”/h (2.13)

Q

+1.4 MHz/G, (2.14)
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where the (&) sign depends on the sign of Am,. We typically apply a field of B) =~
150 mG, and vzg = 211 kHz. This contribution is large, but we eliminate it by
measuring both the Am, = +1 transitions. The details of this method for eliminating
vz are described in Sec. 5.1. We do not include the correction due to the finite mass
of the proton in Eq. (2.13) because we eliminate vz in such ‘a way that its precise

size is not important.

2.3.2 Perpendicular magnetic field

Now we consider the component of the magnetic field B, which is perpendicular to
the electric field. We apply a magnetic field B &~ 150 mG. The angle between the
electric and magnetic fields is less than 0.1 radians, so that B, < 15 mG. Without loss
of generality, we take B to lie along thé T-axis: B= B2+ B.Z. The Hamiltonian is
Hzey = —pyoB1 = pp(L./h)By. The parabolic basis states are eigenstates of L, so
that the perturbation Hz,, does not produce a first-order effect, i.e., the expectation
value of L, (and hence Hz,, ) vanishes.

We go to second-order perturbation theory for Hz, which mixes the circular
state with the two near-circular states (Jm| = n — 2,k = +1). They lie above
and below the circular state in energy, and the second-order effect cancels to a large
extent. However, thé cancellation is not exact because the two enefgy separations are
slightly different due to the first-order Zeeman effect. The calculation is lengthy. An
approximate result is found in Appendix B, from which we find the contribution to a

transition between two circular states with n; and ny = n; + 1:

=1 4y BB ("f —1_nmi— 1) (2.15)

Vzel & + 2 3 9
2h (%eaoF) ny n:

where the (&) sign depends on the sign of m, for the circular states involved. For
the various experimental conditions that we use, the éize of vze, is always less than 3
Hz. Furthermore, because the sign of vz, depends on the sign of my, it is eliminated
in the same way that vz is eliminated: by measuring the frequency of both the

Am, = %1 circular state transitions and then taking the average. We do not include
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the finite-mass correction to vz, in Eq. (2.15) because we eliminate Vze) in such a

way that its precise size 1s not important.

2.4 Fine structure

We now discuss how the fine structure interaction affects a circular state transition.
The electric and magnetic fields that we apply modify the fine structure energy levels
in a complicated manner. We discuss these modifications step by step: We first
consider the fine structure energy levels in the absence of fields (for which there is an
exact solution) in order to evaluate the size of the various terms. Then we consider
the fine structure energy levels in a strong electric field and show how the circular
state transitions are modified. Finally, we consider how the magnetic field interacts
with the electron spin and modifies the circular state transitions. (We have already

considered how the magnetic field interacts with the orbital motion of the electron.)

2.4.1 Fine structure energy levels in the absence of fields

We first consider the fine structure in the absence of fields in order to evaluate the
size of the various terms for states with high angular momentum. In the absence
of fields, the fine structure is given exactly by the Dirac theory[BS77]. The Dirac

binding energy is

Ep N 97 -1/2
— !1 * (n—j'+ /7 —?) ] -h (219

where j' = j 4 1/2 and j is the quantum number for the total angular momentum J
of the electron. (f= L + S where S is the spin angular momentum, and j(j + 1) is

the eigenvalue of J2.)

Expanding the Dirac binding energy Ep in powers of a2, we obtain

-1 a?/1 3 ot 1 3 6 5
Ep=hcRe |— —— (= — — ) — — - N
D ¢ [77,2 n3 (]/ 4n) 16n3 (]'/3 + ndZ n2jl + 277,3) + O(a )]
(2.17)
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The first term is the non-relativistic binding energy FE,.. The second term, which
is of order a2, is the first-order fine structure energy, which we label as Eg). For

a high angular momentum Rydberg state with n = j = 30, the size of this term is

approximately _
2
1 (0% .
Ep [h = —CRooy— ~ =5 X 10* Hz. (2.18)

The fine structure splitting AEg) between states with j = £+ 1/2 when n = j = 30
is
() a’ 317,
AER [h = cRoo-Eg ~ 7 x 10° Hz. (2.19)
The third term, which is of order o, is the second-order fine structure energy, which

we label as Eg). When n = j ~ 30, the size of this term is approximately

4

ED/h~ —cRm% ~ 2 x 1073 Hg, (2.20)

which is negligible.

2.4.2 Fine structure energy levels in a “strong” electric field

In our experiment, we apply an electric field F in order to maintain the orientation of
the circular states (Sec. 2.2). We refer to the field that we apply as “strong” because
the Stark interaction is much larger than the first-order fine structure interaction.
The strong field criterion is F > Fc, where Fg is the critical field, i.e., the field for
which the fine structure interaction is equal in size to the Stark interaction. We now
find the critical field Fg, for a high angular momentum state with n = 30. We equate
the fine structure splitting between states with Aj =1, as given in Eq. (2.19), with
the first-order Stark splitting between states with Ak = 1, found from Eq. (2.5) to
be AED [h = (3/2)eaonF/h ~ 2 x 10°nF Hz/(V/cm). The critical field F is

_ 2hcRo?
" 3eagn$

c ~ 0.1 mV/cm. (2.21)
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The size of the electric field ' that we apply is typically 200 mV /cm, and it clearly
satisfies the strong field criterion.

The strong electric field mixes states with different ¢ and j so that we can not
use the Dirac theory to find the fine structure. Instead, we use perturbation theory
to get the fine structure energy. The unperturbed Hamiltonian is Hy = H,, + Hg.

Ignoring the higher-order Stark effects, the eigenstates of Hy are the parabolic basis

states: ‘
Hy|nkmem,) = [_Cni;”. + ge (ao—m—e) nkF] [nkmem,). (2.22)
©

The perturbation Hamiltonian comes from an expansion of the Dirac equation in 1 /c

[CTDL77], and we include only the terms of order 1 /*[CTDL77):

4 2 252
—p e 1~ -  7elh (1)
_ 1z 5 =), 23
Hys 8m3c? * 2km2c2 3 2km2c? (r) +O. ct (2.23)
—— _
Hm'u HSO HDarwin

The last term, H Darwin, contains a Dirac delta-function and vanishes for states with
I'# 0. The first term, Hp,,, comes from the relativistic variation of the mass, and the
second term, Hgp, is due to the spin-orbit interaction. Note that in free space, where
J is a good quantum number, the first-order perturbation energy of Hy, gives exactly
the terms of order o? in Eq. 2.17. In order to get the terms of order a? in Eq. (2.17),
we would have to include the terms of order O(1/c*) in Hy,, but we do not because
they contribute only ~ 2 x 103 Hz to an energy level, as mentioned above.

Because the Stark effect due to the strong electric field lifts the degeneracy between
the parabolic states connected by Hy,, we do not have to use degenerate first-order
perturbation theory. The first-order perturbation energy due to H s 1s simply its
expectation value:

E(IS) = (nkmgms[Hfslnkmgms). (2.24)

To calculate this expectation value for a given parabolic state, we first decompose
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the parabolic state into spherical states of different L.
|nkmems) = Ankm,e|EMems), (2.25)
¢

where the coefficients anim,¢ can be found[Par60] using Clebsch-Gordan coefficients.
Because Hy, is diagonal in £, the expectation value is just the sum of the contributions

from each of the spherical states, without any cross terms:
E(ls) =Y |@nkmye|® (nlmemg| Hyo|nbmems). (2.26)
¢

The expectation value of Hy, for a spherical basis state with £ # 0 is calculated in
Appendix C.

A circular state is a basis state in both the parabolic and spherical bases:
|n;k =0;me = £(n —1);m;) = [n;€=n—1;me = +(n — 1); ms). (2.27)

For a circular state, the sum in Eq. 2.26 reduces to just one term, and the coefficient
Gnkm,e 1S €qual to one. Using the results from Appendix C, the first-order fine structure

energy for a circular state |n,f =n —1,m¢ = £(n — 1)) is

2 2
p a3 1 [T MMy
FE¢, = hcRpy—— | — — hcRoo——% 2.28
fon = NGl too 03 (4n n—1/2) +heR mend n(n —1/2)(n—1)’ (228)

S -

~—

Emvu ESOIJ

where the factor of p/m, is the finite-mass correction[Eri77].
The first term E,,, is due to the relativistic mass variation, and is a simple energy

contribution. For a circular state with n = 30
Epmop/h =~ —6 x 10* Hz, (2.29)

which is approximately the same size as Eg) in Eq. (2.18).
The second term Fgo, is due to the spin-orbit interaction, and “splits” a state

symmetrically into two fine structure states, corresponding to the two spin states
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(my = £1/2). We label the energy splitting between the two spin states as AFEsop,,

and it is
2
H a“myg
= — . 2.30
Ason = he e e =Ty ) (2:30)
For a circular state with n = 30 this energy splitting is
AEgo, =~ 7 x 103 Hz, (2.31)

which is approximately the same size as AEg) in Eq. (2.19).

The spin-orbit energy Es0, is due to the interaction of the electron spin with the
magnetic field arising from its motion in the Coulomb field[CTDL77]. We label the
effective field that the electron “sees” as B_"go,‘ = Bsouz, and we call it the “spin-orbit

field”. The energy eigenvalues for a spin in the spin-orbit field are

E.S'Op = gsﬂ'BmsBSOp (232)
2ppms Bso,, (2.33)

H

where, according to the Dirac theory, we set the electron g-factor equal to 2. (We defer
consideration of the anomalous magnetic moment to another section which discusses
QED effects.) We find the size of the spin-orbit field by equating this expression for
Eso, with the expression for Eso0, in Eq. (2.28):

hcRoo? p 1
2up ment(n—1/2)

Bso, = (2.34)

For a circular state with n = 30, the size of Bgg, is approximately 3 mG.

2.4.3 Transitions with fine structure in a strong electric

field

The relativistic variation of the mass makes a simple contribution to the circular

state transition frequencies. This contribution is calculated by finding the difference
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in Emy, (Eq. 2.28) between the two circular states involved in the transition:

p¥-28 = 12188.30 Hz and v73,%" =8527.76 Hz (2.35)

fsp sp

These values were calculated using a = 7.297 352 533 (27) x 1072 [MT00]. The
‘uncertainty in alcontributes a negligible uncertainty to these values (< 10~* Hz).
The main uncertainty in these values for vy,, comes from the higher-order terms that
we dropped. Their size is about 2 X 102 Hz, which is negligible. |

The spin-orbit interactidn splits each circular state into a spin doublet—one state
for m, = +1/2 and one state for m; = —1/2. The selection rule for m; is Amg, = 0,
and a circulé,r state transitionvsplits symmetrically into two transitions—one transi-
tion between states with spin up and one transition between states with spin down.
We label the frequency difference between these two transitions as Avy, and refer to
it as the “fine structure splitting of the transition frequency”. Using Esou as given
in Eq. (2.28) for the states involved in the transitions, we find that

AVZTD% =207410 Hz and  Avg2™ =1358.64 Hz. (2.36)

The uncertainty in these values due to the uncertainty in o is negligible (= 1073 Hz).
We can write the fine structure splitting of the transition frequency in terms of the
spin-orbit field Bso,:

Avgs, = 2upABsou/h, (2.37)

where ABso, is the small difference in Bso, between the two n-states in the transi-
tion. We see that the splitting Avy,, arises from the difference in the spin-orbit field

between the two n-states.

2.4.4 Fine structure in strong electric and magnetic fields

We now introduce the interaction of the electron spin with an external magnetic field.
Without loss of generality, we take the perpendicular component of B to lie along

the z-axis: B = By + B, %. The external magnetic field modifies the eigenstates
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of the spin, and hence modifies the spin-orbit interaction, which in the absence of
a magnetic field is given by Fgo, in Eq. (2.28). The expression for fine structure
splitting of the transition frequency Avy,,, given in Eq. (2.36), is altered by in a
magnetic field. In general, the splitting Avy,, depends on the size and direction of
the magnetic field.

The electron spin “sees” both the external magnetic field B and the spin-orbit
field Bso,Z2. In an early incarnation of the experiment, we tried to shield the ambient
magnetic fields in order to be in thé weak magnetic field limit, |§| < Bsoy, so
that we could safely ignore the effects of B on the spin-orbit interaction. However,
we found that the size of the residual fields were on the order of Bgg,, resulting
in unpredictable dynamics for the electron spin. In the currqnt incarnation of the
experiment, we apply a uniform magnetic field B = 150 mG inside the magnetic
shields, which overwhelms the residual fields. The effect of fhe'applied magnetic field
is to maintain the orientation of the electron spin. We refer to the applied magnetic
field as “strong” because it is much larger than the spin-orbit field: B > Bgo,.

We align the coils which produce the magnetic field such that the angle between
the applied magnetic field and the electric field is less than 0.1 radians. The magnetic
field components are thus: B = 150 mG and B, < 15 mG. We first consider the
effect of B) on the spin eigenstates and transition frequencies, and then we treat B,
as a perturbation. |

With just the parallel component By, the electron spin sees a total field of Bl'li =
(Bsou + By)2. In this case, the Hamiltonian is Hy, = 2up(S./h) » and the eigen-
values are

E’Zs|| = 2m,ug(Bsou + By), (2.38)

where m, is the eigenvalue of S,. The interaction of Bj with the electron spin modifies
the energy difference between states with different spin, but has no effect on the
transition frequencies because the selection rule for mg is Ams; = 0. In contrast,
recall that the spin-orbit field Bsp, does have an effect on the transition frequencies

because it is n-dependent. Thus, with the introduction of B), the fine structure
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splitting in the transition frequency is still solely due to the spin-orbit field and is
unchanged.

We use perturbation -theory to find the effect of B, on the spin eigenstates and
transition frequencies. The perturbation Hamiltonian is H Zs1 = 2up(Sz/h)By. The
eigenstates of the unperturbed Hamiltonian H7, are |m, = £1/2) and the eigenvalues
are given in Eq. (2.38). The first-order perturbation energy of Hzs, vanishes (E'Z$ =
(ms|Hy|ms) = 2upB 1 {m,|Sz|ms) = 0) because the expectation of S, vanishes, and
we go to second-order perturbation theory. |

The second-order perturbation energy of Hzs, is a sum over all other spin states,
of which there is only one. Theé matrix element of Hz,, between the two spin states is
(m,=%1/2|Hzs1|m.=F1/2) = ppB., and from Eq. (2.38) the unperturbed energy
separation between the two states is, 2up(Bsopu +B||). The seco;ld-order perturbation
energy is then

B® _ kB B}
Zsl — 2 B||+BSO;L

(2.39)
where the (£) sign depends on the spin state: (4) for spin up and (-) for spin down.
Of course, E'(Z2$) | has the effect of repelling the two spin eigenstates; it increases the
energy separation by an amount ppB? /(B + Bsou)-

We now find the contribution to the transition frequencies due to the effect of
Hz,, on the spin-orbit interaction. We calculate the difference in E(ZQS) | between the
two n-states involved in the transition. This difference in EZs |, which we label as
AE(ZZS) |, is due to the slight change in the spin-orbit field Bsoy, which depends on
n via Eq. (2.34). We approximate AE , by differentiating EZs | with respect to
Bsoyu:

B2
AE®D ~xHB___ "L _AB 2.40
251 = F 2 (B“ +BSOM)2 SOu» ( )

where ABgso, is the change in Bso, between the two n-states involved in the tran-
sition, and the (F) sign depends on the spin state. The contribution to the fine
structure splitting of the transition frequency is: ‘
B2
AUZS_L N —UB—T5 B —+=ABsou/h, (2-41)
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where we have approximated B + Bso,, as By. We combine Avzs, with the unper-
turbed splitting Avy,,, as given in Eq. (2.37), in order to get the new splitting, which
we label as Avy ,:

B2 . .
Avp, = (1 — ﬁ) 2upABso,[h (2.42)
[
BY
~ (1 - Q_Bﬁ) Avg,, | (2.43)

The effect of the magnetic field that we apply is to slightly reduce the fine structure
splitting of the transition frequency. We align the coils which produce the magnetic
field such that B, < 0.1B). We (somewhat arbitrarily) take B, to be given by
B? = 0.005(5)B|2|, so that the numerical values of the fine structure splitting are

AV}QL—QS - 2068.9(52) Hz and AV/29—>30 =1 355.2(35) HZ, (2.44)

Ssp

where the uncertainty is due entirely to the uncertainty in B?

The resolutioﬁ of our experiment is such that we do not entirely resolve the split-
ting Avyg,,. We drive circular state transitions for both spin states simultaneously,
and the resonance lineshapes are the sum of the spin up contribution and the spin
down contribution. If the electron spins are unpolarized, then the transitions for
both spin states have equal weights. In this case, the splitting Avy,, does not bias
the centroid of the composite lineshape, because it is symmetric. Thus, the exact
size of the splitting, and hence the uncertainty in it, are unimportant to the centroid
frequency. However, to the extent that the electron spins become slightly polarized,
the size of the splitting becomes important.

In our experiment, we endeavor to populate both the spin up and spin down
states equally. From fits of the data, the polarization v of the electron is always
less than about 0.02. The uncertainty in the fitted centroid frequency depends on
the uncertainty in the splitting, but only by an amount reduced by the polarization

. Thus, the uncertainty of 5.2 Hz for AvZ7>? in Eq. (2.44) translates to an
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uncertainty in the transition frequency of less than about (5.2 Hz)(0.02) = 0.1 Hz,
which is negligible.

2.5 Quantum electrodynamics effects

The quantum electrodynamics (QED) effects for the circular states with n = 30 are
small and essentially negligible. Because of this, we ignore the corrections to the
QED effects due to the finite mass of the proton. For states with ¢ 76 0, there are
two lowest-order QED effects [Eri77]: self-energy and anomalous magnetic moment.
(The vacuum polarization effect only applies to states with ¢ = 0. [Eri77])
For states with £ # 0, the self-energy contribution is [Eri77]
8a’

ESE = hCRwWC, : (245)

where £ is the Bethe logarithm. To evaluate the size of £, we use an extrapolation

from Ref. [Eri77]

0.1623834 [ /1\%/?2 11\3/2
=21 |\7) T \n 2.4
BTG e
which has a fractional uncertainty of [Eri77) .
ac 1 1(e+1\*?
f=§_z<'_n ) : (2.47)

This fractional uncertainty in E is quite large (= 1/4 for circular states with £ = n—1).
However, this is not a problem because Egg turns out to be negligible. For a circular
state with n = 30, Esg/h =~ 0.035 Hz, and the contribution to the frequency of a
circular state transition is even smaller. For the n = 29 — 30 transition, vsg ~ 0.01
Hz, which is a fractional contribution of only 4 x 10714

The anorﬁalous magnetic moment of the electron is the largest QED effect for
circular states with n =~ 30. In Dirac theory, the g-factor of the electron is g. =
2. QED modifies the g-factor: g. = 2(1 + a.) where to lowest order a. = a/2m.

The anomalous magnetic moment contributes only to the symmetric fine structure
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splitting of the transition frequency AV}SF. The expression for the fine structure

splitting as given in Eq. (2.43) becomes

’ @ B
Astu+am7m ~ (1 + _2?) 1- -2F|2| A-stp- (248)

The anomalous magnetic moment fractionally increases the splitting by about 1.2 x

1073,

2.6 Hyperfine structure

The interaction of the proton magnetic moment and the tot‘al electron magnetic
moment causes hyperfine structure, and this structure is roughly a factor of m, /m,
smaller than the spin-orbit ﬁné étructure. For the circular state transitions that
we drive this structure is on the order of 1 Hz, and is well below the resolution of
our apparatus. We have no reason to believe that the proton magnetic moment is

polarized, so the structure should be symmetric and thus cause no net contribution.

2.7 Near-circular state transitions

In order to calculate the second-order Stark effect on circular state transitions, we
measure the electric field by measuring the first-order Stark effect on “near-circular”
state transitions. The near-circular state transitions that we drive are described by

these quantum numbers:
(nisk = 1;|my| = n; — Lymg) = (ng k= 1;]m| = ny — 1;my), (2.49)

where ny = n; +1 and n; = 27 or 28. In this section, we discuss the frequency contri-
butions to the near-circular state transitions which are necessary for our measurement
of the first-order Stark effect. We consider each term in the Hamiltonian as given in
Eq. (2.1). To set the scale for significant interactions, we determine the near-circular

state transition frequency to about 100 Hz, and contributions which are less than 10
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Hz are considered negligible.

The main contribution comes from the Balmer formula, given in Eq. (2.4). This
contribution depends only on the principal quantum number and is the same for both
circular and near-circular state transitions.

We use Eq. (25) for both states involved in order to find the Stark effect contri-
bution to a near-circular state transition.

Vg;—ﬂs = 1920363 F Hz/(V/cm) — 13352 F2 Hz/(V/Cm)2, (2.50)

v = 1920363 F Hz/(V/cm) — 18814 F* Hz/(V/em)”.  (2.51)

Note that the first-order Stark effect is the same for any near-circular state transition.
We do not include the third-order Stark effect because it is negligible (less than 7 Hz
at a field of 2 V/cm).

We eliminate the Zeeman effect for the near-circular state transitions in the same
way as for the circular state transitions. We measure measure both the Am, = +1
circular state transitions and take the average. 7

To calculate the fine structure contribution to the near-circular state energy levels,
we decompose the near-circular state into spherical basis states and use the expecta-

tion values of Hy, as calculated in Appendix C. The results are

_ her PO (3 n-l

Emy = heReg (4n (n_3/2)(n_1/2)), (2.52)
_ pa? nn-1/2)+(n-3/2)(n—-2)

ESOp = hCRoo;n—e‘n—ams 2n(n_1/2)(n_1)(n_3/2) . (253)

To find the effect of the relativistic mass variation on the near-circular transition, we

use Eq. (2.52) for both n states involved:
v = 13208 Hz and  1}o,%" = 9251 Haz. (2.54)

Next we find the fine structure splitting of the transition frequency Avy,,, which

is due to the spin-orbit energy Eso, as given by Eq. (2.53). Recall that Avy,, is
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the frequency difference between the transition with spin up (m, = +1/2) and the
transition with spin down (m, = —1/2). We ignore the effects of the magnetic field
on the spin-orbit energy ‘because it contributes less than 10 Hz to the splitting. The
splittings are

Av2%8 = 2125 Hz and Av?7%0 =1389 Hz. (2.55)

fsp fsp

The QED effects and the hyperfine structure contribute less than 10 Hz to the

near-circular state transitions and are negligible.
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Chapter 3

Time-Resolved Ramsey
Resonance: Lineshape and Fitting

Procedure

In this section we discuss our model of the lineshape for time-resolved Ramsey reso-
nance and our procedure for fitting the data. First, we discuss some important points
about the nature of the lineshape. Then, we describe the ideal Ramsey resonance
lineshape and our basic lineshape model and fitting procedure. Then we consider
modifications to the basic lineshape model due to a more realistic description of the
oscillatory fields and the effects of shifts in the resonance frequency while the atoms
interact with the oscillatory fields. Finally, we discuss effects which arise because we
do not have a perfect two-level system and because of imperfections in our detection

apparatus.

3.1 Nature of the lineshape

In typical atomic beam resonance experiments, the lineshape is written as F; f(w),
which is the transition probability as a function of the radiation frequency w. We
prefer to write the lineshape in terms of the “inversion”, defined as I(w) = 2P; s(w)—1.

As discussed later in this chapter, the inversion is the vertical component of the Bloch
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vector.

Also, in typical atomic beam resonance experiments, the lineshape represents an
average over the velocity distribution of the atomic beam—in other words, an average
over the transit time distribution. The transit time is the time 7 that it takes for an
atom with velocity v to travel the length £ of the atomic beam (7" = £/v). In our
experiment, we define the transit time to be the time from production to detection.
We produce the atoms in a pulsed fashion, and we measure the transit time for each
atom. Consequently, we can analyze our lineshape in terms of the transit time, i.e.,
we can analyze a set of time-resolved lineshapes rather than one transit-time-averaged
lineshape.

Experimentally, we count the number of atoms in the initial and final states, Ci(w)
and C/(w), as a function of the radiation frequency w. We sel;arate the counts into
several time bins of width 7g;,, in order to form a time-resolved set of experimental
lineshapes. Thus, we can analyze the experimental lineshape for each time bin in-
dividually. The j-th time bin contains the number of atoms in the initial and final
states C}(w) and C'Jf (w) as a function of frequency w for atoms with transit times 7
satisfying T; — Toin/2 < T < T; + Tein/2, where T; is the center time of the j-th time

bin. For the j-th time bin, the experimental lineshape ez ; (w)>is

Cf(w) = Cj(w)
Cl(w) + Ci(w)

(3.1)

Tezpj(w) =

3.2 Two-level resonance and the Bloch vector

In this section, we lay out the basics of two-level resonance in terms of the Bloch

vector for Am,; = +1 electric dipole transitions.
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3.2.1 Wavefunction, matrix elements, and expectation val-

ues

We write the initial and final states as |b) and |a). The two states have energies hwy

and fiw,, respectively. We write the wavefunction of an atom as
|¢) = Ae™™|a) + Be *|b), (3.2)

where A = ae~** B = be~*#. We label the transition frequency as wp = w, —w and
the phase between the states as ¢g = ¢q — P,

From Bethe and Salpeter, Eq. 65.2 [BS77], we can find the matrix elements
between adjacent circular states. In the limit of large principal quantum number =,
for circular state transitions with Am, = +1, the matrix elements of the position

operators z, y, and z are (where zq, = (a|z|b))

Tap = %a0n2, (33)
]

Yab = :F'2-ao"2, (3.4)

zap = 0, (3.5)

where the (F) sign depends on the sign of Amy, ag is the Bohr radius, and n is the
principal quantum number of the initial state.

We write the electric dipole operator as § = —e7, where e is the proton charge
and 7 is the position operator. The expectation values of the cartesian components of
the electric dipole operator are (¥|p|¥), (¥|py|¥), and (Y|p.|¥). We can write them

in terms of A and B and alternatively in terms of a, b, and ¢y:

(p:) = —eza2Re [A*Bei“’°t] = —2exqabcos (wot + ¢o) , (3.6)
(py) = Fexq2Im [A*Bei‘”°t] = F2ezqpabsin (wot + ¢o) , (3.7)
(p:) = 0, (3.8)

where the (F) sign depends on the sign of Am,. The expectation value (p) rotates
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in the z-y (horizontal) plane. As viewed from above, it rotates counter-clockwise for

Amy = +1 and clockwise for Am, = —1.

3.2.2 Form of the perturbation V

We now consider the fofm of the resonant perturbation V' for Amg = %1 electric
dipole transitions. The perturbation Hamiltonian is given by V = —p"- E, where 7 is
the dipole operator and E is the oscillating electric field. If we take the electric field
to have amplitudes E, and E, (E, is irrelevaht), then we can write V in the following

form:
V = e[zE, cos(wt + ¢s) + yBy sin(wt + ¢,)] = e [T E~(t) + rrEr)], (3.9

where = and y are position operators and the quantities r* and E%(t) are complex

and given by

= \/Li(a: + iy) (3.10)
Ex(t) = —\}—5 [E, cos(wt + ¢) £ iEysin(wt + ¢y)] (3.11)

We can rewrite E£(t) in terms of the circular basis:
B (1) = 5 [Byetiertss) 4 BeTirre)], (3.12)

where, as in Eq. (6.1), E;e™*+ and E_e - are the complex amplitudes for the
circular basis. (Note the distinction between the E*(t) and Ey variables.) |
Using Eqgs. (3.3-3.5) for the position matrix elements gives the matrix elements

of r*:

(3.13)

. _ V2za @ Ampg=+1
0 : Amg=-—].
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0 : Amg=+1
¢ Vo2zaw : Amy=-—1

[
I
+

Il

(3.14)

Using the matrix elements for r* and Eq. (3.9), the perturbation matrix elements

are

Vi = V2exnEF(t) (3.15)
Vie = V2eznaEX(t), " (3.16)

where the (F) and (%) signs depend on Am,.

3.2.3 The Bloch vector: definition, dynamics, interpreta-
tion |

Now we introduce the Bloch vector picture and we derive the equation of motion
for the Bloch vector subject to an oscillatory perturbation. Although most of the
material in this section is well known,[FVH57] we rederive it here because we need
to firmly establish the conventions for sign, phase, direction of rotation, et cetera. In
addition, we need to keep some parameters slightly more general than in reference
[FVH5T7].

We use the Bloch vector picture [FVH57] to describe the atomic wavefunction and
its evolution under the perturbation V' due to the resonant electric field. The Bloch
vector picture is a geometrical description of a single two state system or a collection
of non-interacting two-state systems. In the Bloch vector picture, the Schrodinger
equation is transformed into a real three-dimensional equation: § = x § where §
specifies the wavefunction and 0 represents the perturbation. In the case of a spin %
system, the Bloch vector 5 is the expectation value of the spin and Qs proportional
to the magnetic field. In our case, we have Am, = %1 electric dipole transitions, and
the vectors 5 and € have different interpretations.

We first consider the Bloch vector in the lab frame and then in the frame rotating

at the perturbation frequency. Then we consider the dynamics and the interpretation
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of the Bloch vector picture for Am, = %1 electric dipole transitions.

Definition of the Bloch vector

In the lab frame, we label the components of the Bloch vector as 5 = (s7, 55, 53).
We define the horizontal components, s} and .3’2, to be proportional to the horizontal
components of the expectation value of the electric dipole moment as given in Eqgs.
(3.6-3.7), and we define the vertical component s§ to be the inversion of the two level

system:

s{ = —2Re[A"Be™! (3.17)
sy = F2Im[A"Be| , (3.18)
sy = A*A—B*B, (3.19)

where the (F) sign depends on Am, and A and B are the upper and lower state
amplitudes, as in Eq. (3.2). The Bloch vector is of unit length when |¢) is normalized:

\/3'12 + 542 4+ 552 = A*A + B*B = 1. Given the normalization, it only takes two
parameters to specify the Bloch vector—the polar and azimuthal angles # and ¢, for
example. In the absence of a perturbation, A and B are constant, and 5’ simply
precesses around the vertical axis at the transition frequency wg, with the vertical
component sj remaining constant.

When subject to a oscillating perturbation, the dynamics of the Bloch vector are
easier to visualize and solve in a frame rotating at a frequency w, at or near the
perturbation frequency w. In the frame rotating at w,, the components of the Bloch

vector § are (simply multiplying the horizontal components of § by e~*(wrt+ér)):

s1 = —2Re[A"Bei(Cort+é] (3.20)
sy = F2Im[A*Be(Cort+é)] (3.21)
s3 = A"A— B"B, (3.22)

where Ag, = w, — wp and the (F) sign depends on Am,. If the frame is rotating at
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the resonance frequency (Ao, = 0) then, in the absence of a perturbation, 5 does not
move. (Usually, the frequency of the rotating frame is set equal to the frequency of
the perturbation: w, = w, but we do not do this right away because we need a more

general result for use in chapter 6.)
Equation of motion for the Bloch vector
To find the dynamics of § given a resonant perturbation V' with matrix elements

Vi = Vi = (a|V|b) and Vo= Vi = 0, we use the Schrodinger equation which gives

{RA = Be**'Vy (3.23)

ihB Aem oV, ‘ (3.24)

Using Egs. (3.23-3.24) to find the differential equation for § gives the simple result:

§=0x3, - (3:29)
where () has three real components:
Q, = F2Re [Yg—“e-*(“r“d’f)] (3.26)
Q, = —2Im [Kg‘ie—‘(%twr)] (3.27)
Q3 = FAor, _ (3.28)

where the (F) sign depends on Am,. We refer to §) as the pseudo-torque because it
rotates the Bloch vector according to Eq. (3.25). The Bloch vector precesses around

the instantaneous direction of €I with angular velocity 13).

The pseudo-torque 0

Plugging the matrix elements from Egs. (3.2.2) into Eqgs. (3.2.3) gives,

+
Q, = F2V2ezq,Re [Ph—e‘i(“’"”")] (3.29)
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E* _.
Qz = —2\/2-615051771 [—h—e_'(“’r!‘i'¢r)] (330)
Qs = FAor (3.31)

where the (%) and (F) signs depend on Amg. If we: replace the E* in these equations
with the expression in Eq. (3.12), take the rotating wave approximation, and define

the Rabi frequency to be
wrs = V2ex By /R, : (3.32)

then these equations for ) become

0 = Fwrs cos(At + ¢ry) (3.33)
O = —wpesin(Art+¢rs) (3.34)
QG = Fhor (3.35)

where A, = w—w, is the detuning of the radiation frequency from the rotating frame
frequency, ¢,+ = ¢+ — ¢, is the phase of the field with respect to the phase of the
rotating frame, Ao, = w, — wp is the detuning of the rotating frame frequency from
the resonance frequency, and the + and F signs depend on Am,.

For the Am, = +1 transition, the pseudo-torque is given by Q= (—wry cos(At+
b4), —wry sin(A,t+¢4), —Aq,). Here the first two components are the negative of the
z and y components of the field in the rotating frame. For the Am, = —1 transition,
the pseudo-torque is given by Q = (wr_ cos(A,t + ¢_), —wr—sin(A,t + ¢_), Agr). In
this case, the first two components are equal to the z and y components of the field

in the rotating frame.

Frame rotating at the perturbation frequency

So far, we have kept arbitrary the frequency of the rotating frame, w,. We have done

this to get a more general result for use in chapter 6. We now go to the frame rotating
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at the frequency of the perturbation where
wr = w. (3.36)

We take the phase of the rotating frame such that the pseudo torque lies along the

r-axis:

Or =

{ by +m : Amp=+1 (3.37)

d- : Amp= -1
The 7 is needed for the Am, = +1 transition because the azimuthal phase of the
pseudo torque is opposite the phase of the electric field. The pseudo torque in this

frame is very simple:

‘Ql : WR+ (338)
2 = 0 (3.39)
Q; = FA, (3.40)

where A = w—wyj is the detuning of the perturbation from resonance. The relationship

between the Bloch vector and the A and B coefficients is given by

51 = *2Re[4"Bei(At+és)] (3.41)
sy = 2Im [A*Be‘*(At+¢*)] (3.42)
s3 = A"A- B*B. (3.43)

Visualizing the Bloch vector dynamics

The main benefit of the Bloch vector picture is that it is easy to visualize the motion
of the Bloch vector. The Bloch vector equation of motion, §=0x §, is difficult to
solve in general. For all but the simplest problems, the equation of motion must be
integrated numerically. However, the Bloch vector picture can be used to visualize a
difficult problem and gain insight into the problem.

The most basic motion of the Bloch vector s occurs if the direction of the pseudo
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torque {1 is constant. In this case, the Bloch vector precesses around ) at the “effective
Rabi frequency” Q = |{}| = Vwhy + A3, where Ao, is defined after Eq. (3.35).
Evolving the Bloch vector from time ¢; to time t, it rotates through a total angle of

, |
a= [ dtqQ. | (3.44)

13}

If the magnitude of Q is also constant, then the angle is a = Q(t2 —t;). The rotation
may be written as )

5(t2) = R(Q, )5(t1) (3.45)

where R({2, a) is an operator denoting a right handed rotation about the direction
) through an angle . In the frame rotating such that  lies in the z-z plane, the
direction of 2 can be specified by the angle x between ) and the z-axis:

siny = %, S cosx = %. , (3.46)

With this definition of x, R(£2, @) can be written in matrix form as

cos? x +sin? xy cosa —siny sina siny cosx (1 — cosa)
R(Q, @) = sin x sina cosa —cosy sina (3.47)

sinx cosx(l —cosa) cosy sina  sin®x + cos? x cosa

Four special cases of Eq. 3.47 are of interest. First, if A = 0, then ’R(Q,a) is a

rotation about the z axis, R(Z, a), where

1 0 0
R(Z,a)=| 0 cosa —sina |, (3.48)

0 sina cosa

and « is given by Eq. (3.44) with Q@ = wg. The second case is if wg = 0. Then
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’R,(Q, a) is a rotation about the z-axis, R(2,a), where

cosa =sina 0
R(%,a) = | Fsina cosa 0 |- (3.49)
0 0 1]

The third important case is if (1 is constant. This corresponds to a pulse of radiation
that is constant in time with constant detuning A and Rabi frequency wrs- In this
case, R(Q, ) is given by Eq. (3.47) with a = Q(ty — t1). The fourth case is if
|A| < wgs. In this case we can take sin x = FA/wg and cosx = 1 and Eq. (3.47)

becomes

1 +2sina F5(1—cosa)
R(Q,a) ~ :{:WA-—R sina cos & —sina ; (3.50)
Fir(l—cosa)  sina cosa

where a = Q(ta — t1) = wg(t2 —t1).

3.3 Ideal Rabi resonance lineshape

In the Rabi resonance method, the atoms start in the initial state and travel with
velocity v. They encounter a region of length [ where they “see” a field oscillating at
w which couples the two states. The oscillatory field is on for a time 7 = l/v. After
the atoms pass through the oscillatory field region,' their inversion is measured.

In terms of the Bloch vector, the Rabi resonance method is represented as
§(t = 1) = R(Q,Qr) 5(t =0), - (3.51)

where ¢ = (wgx,0, FA). We write the lineshape (w) in terms of the inversion, which

is the z-component of 5. If the atoms start out in the lower state, then the initial
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Figure 3-1: Rabi resonance lineshape, Eq. (3.53). The interaction time 7 was chosen
such that wgT = m, yielding the maximum amplitude for the lineshape.

state is given by 5(t = 0) = (0,0, —1) and the inversion after time t = 7 is
I(w) = —sin® x — cos? x cos(Qr). (3.52)

Using the definition of x from Eq. (3.46), the lineshape 1s:

Iw) = _A2 + w%, cos (,/w%& + A? 'r)

wy + A2

(3.53)

Note that this does not depend on the sign of Am,: the lineshape is the same for
both Am, = +1 and Am, = —1 transitions. Fi-gure 3-1 shows the Rabi resonance

lineshape as given in Eq. (3.53) for a 7 pulse, which gives the maximum amplitude.
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The linewidth of the resonance is Apwgy = 5/7, in terms of angular frequency.

To decrease the linewidth and improve the preciSion of the Rabi method, we would
have to increase the interaction time 7. With the velocity distribution of the atomic
beam as a given, the way to increase 7 is to lengthen the interaction region. However,
it becomes impractical to maintain a uniform interaction region over a large distance.
The Ramsey resonance méthod[RamSG] provides a practical technique for reducing

the linewidth, and we turn to it next.

3.4 Ideal Ramsey resonance lineshape

In the Ramsey resonance method, the atoms start in the initi.al‘ state and travel with
velocity v. They first encounter a region of length I where they “see” a field oscillating
at w which coupies the two states. They then travel a distance L > [ for which there
is no oscillatory field. Finally, they again encounter a region of length [ where they
see another oscillatory field. In terms of time, the oscillatory field is on for a time
7, off for a time T > 7 and then on again for a time 7. The relation between the
lengths and times is given by L = vT and | = v7. “After the atoms pass through the
second oscillatory field region, their inversion is measured.

In terms of the Bloch vector, the Ramsey resonance method is represented as
5t =T +21) = R(Q, Q1) R(2, F(AT — o)) R(Q,Q7) 3(t =0). (3.54)

Starting from the right, the first rotation represents the action of the first oscillatory
field. The second rotation R(2, F(AT + ¢+)) corresponds to both the phase evolution
of the atomic dipole moment, AT, and the phase difference between the two oscillatory

fields:
B0 = ¢1 — P2, | (3.55)

where ¢; and ¢, are the phases of the first and second oscillatory fields, respectively.
The F sign depends on the sign of Am, and is for the different sense of rotation

between the two transitions. The rotation through ¢, takes the Bloch vector from
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the rotating frame appropriate to the first oscillatory field to the rotating frame
appropriate to the second oscillatory field. Finally, the third rotation represents
the action of the second oscillatory field, which is characterized by the same Rabi
frequency and duration as the first. »

If the atoms start out in the lower state, then the initial state is given by §(t =

0) = (0,0,—1) and the inversion after time t = T + 27 is

I(w) = cos? X{— sin? x [1 — cos(Q27)]? cos(AT — ¢p) t (3.56)
F2sin x sin(27) [1 — cos(Q7)] sin(AT — ¢)
+sin?(Q27) cos(AT — ¢0)}
- [sin2 X + cos? x COS(QT)] ?

Note that this does not depend on the .sign of Amy. Although there is a F sign,
sin ¥ has the same F dependence so that they cancel. Thus, the lineshape is the
same for both Am, = 4+1 and Am, = —1 transitions. Figure 3-2 shows the Ramsey
resonance lineshape as given in Eq. (3.56) for wgT = /2, which gives the maximum
amplitude. The lineshape I(w) is sinusoidal in w with a “period” of approximately
1/T; a longer interaction time T leads to a lineshape which oscillates “faster” in w.
The amplitude and phase of the sinusoidal lineshape are modulated by the “Rabi
envelope”. The amplitude modulation of this envelope determines the gross structure
of the lineshape, and its shape roughly corresponds to what the lineshape would look
like for just one of the oscillatory fields.

The lineshape in Eq. (3.56) is quite complicated and not particularly useful to us.
We can make it much simpler if we only consider detunings near the resonance where
Al € wg. In thié case, to zeroth-order in A/wg, sinx = 0 and cosx = 1, and the

lineshape simplifies to
I{w) = sin*(wpT) cos(AT — ¢y) — cos?(wrT), (3.57)

where the period is exactly 1/T. In this'approxima.tion, the effects of the Rabi

envelope are absent.
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Figure 3-2: Ramsey resonance lineshape, Eq (3.56). The interaction time 7 was
chosen such that wgT = 7, yielding the maximum amplitude for the lineshape.

In order to estimate the effects of the Rabi envelope on the Ramsey lineshape,
we now go to first-order in A/wg. We allow the resonance frequency of the atom to
vary: w; during the first oscillatory field, w, during the second oscillatory field, and

wo between the oscillatory fields. Now the conditioﬁ for small detunings is:
|A;] € wh, »|A2| Lwr, |A] < wg, | (3.58)
where A; = w — w; and Ay = w — wo. In terms of the Bloch vector, we write
5t = 1) = R(Da, Qy7) R(z, F(AT — ¢0)) R(SYy, Q7) 5t = 0), (3.59)

where §; and €, are the pseudo torques for the first and second oscillatory fields,
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respectively. We use the rotation matrix in Eq. (3.50) (which is good to first-order
in A/wg) to evaluate the first and last rotations in Eq. (3.59). Taking §(t = 0) =

(0,0,—1), the inversion is, after some algebra
A .
I(w) = sin®(wgT) cos [AT — ¢ + ZW—12 tan(wR'r/Z)] — cos®(wgT), (3.60)
R

where A1y = (A; + As)/2 is the average detuning during the oscillatory fields. The
amplitude modulation due to the Rabi envelope is absent in this expression, and it
is purely sinusoidal in w. However, there is some phase modulation due to the Rabi

envelope, given by the term involving the tangent function.

3.5 Effects due. to the Rabi envelopé

We now consider the small effect of the phése modulation due to the Rabi envelope,
present in Eq. (3.60), but not in Eq. (3.57). If we set wjp = wp, then the term in Eq.
(3.60) which involves the tangent function modulates the phase in such a way that the
period of the sinusoid is 1/T" rather than 1/T, where T" = T +tan(wg7/2)/(wgr/2). If
we further consider just the interaction time for which wgpT = wgT(I/L) = /2, then
T' = T(1 + 3{). The phase modulation has the effect of making the period 1/T",
slightly shorter than 1/T. This can be seen as due to the evolution of the phase of
the atom not just during the interaction time 7', but also during the oscillatory field
times 7.

If wi2 # wp, then the phase modulation dué to the Rabi envelope not only modifies
the period, but also, as we show below, has the effect of “pulling” (shifting) the line-
shape. The frequency w;s can differ from wg for three main reasbns: non-uniformity
of the electric field, non-uniformity of the magnetic field, and the first-order Doppler
effect. (The first-order Doppler effect can be viewed as a shift in the resonance fre-

quency while the atoms interact with the oscillatory fields.) We write w3 as

w12 = wp + 0WFields + 0Wpop, (3.61)
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where dwp,p is due to the first-order Doppler effect and éwrieds is due to the non-
uniformity of the external fields. The first-order Doppler effect depends on the velocity
v, or equivalently on 1/T, where T' = L/v is the interaction time. To make this 7-

dependence explicit, we write 1t as

To

Swpep = Jw%apT, (3.62)

where Jw%op is the first-order Doppler shift for an atom with (arl;itrary) interaction
time Tp. We calculate the vﬁlue of 6w, later in Sec. 3.8.2. In the present discussion
we just need the T-dependence of dwpep. |

In order to estimate the size of the “pulling” due vt‘;o the Rabi envelope when

wig # wp, we rewrite Eq. (3.60) with the above definitions of wio and dwWpop:

I(w) = Acos [ (w — wp) (T + M@) - 5wFieldsM (3.63)

wr/2 wr/2
To tan(wgp7/2) :
0 0 R
— —_—— B 3.64
Owop wr/2 +¢°] + 5, (3.64)

where A = sin?(wg7) and B = cos?(wg7). This expression is complicated and difficult
to interpret. To simplify it, we perform a Taylor series expansion on the argument of
the cosine function around T = T, and we let T be the interaction time that satisfies
wrTo(l/L) = /2. (Note that before performing this expansion, we replace 7 with
T(I/L).) We only keep terms up to first-order in the Taylor series, and we express

the result in terms of new variables in order to compare it to Eq. (3.57):
I(w) = Acos|[(w — wp)T' + ¢) + B, (3.65)

where we refer to w), T, and ¢} as the effective resonance frequency, effective inter-
action time, and the effective end-to-end phase, respectively. These new variables are

given by:

l 4\ 1
w{, = wo+ 22(50)1:'{6143 + (2 — ;) E(Sw%op, (366)
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variables. The effective resonance frequency wy is pulled from wy, by dwpiegs and
6w%op, but only by an amount which is reduced by = I/L. The end-to-end phase is
also pulled by a small amount. The effective interaction time is s.Iight]y longer, but

it is not affected by the pulling, i.e., it does not depend on SWpieas OT &u%op.

approximate formula, given in Eq. (3.57) as the starting point for our basic single-
time-bin lineshape model. Later, we use the result in Eqs. (3.66-3.68) to show that,

in our experiment, we cap safely neglect the frequency pulling due to the fact that

takes the form:

I(6) = sin®(wg ) cos[0T — (8,T + Po)] — cos?(wgr). (3.69)
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Rewriting this in terms of the parameters we actually use to fit the j-th time bin of

resonance data, we have:-

I_,((;) = Aj COS (JT'J — (PJ) + Bj, o ) (370)
where ®; = 8T} + do. (3.71)

For each fime bin j, our model has four fit parameters. The four parameters are:
the amplitude A;, the interaction time Tj, the phase &;, and theAbaseline, B;. The
phases ®; and the interaction times T}, for all the time bins j, are the important
parameters because they contain information on the resonance detuning §p through
Eq. (3.71). Specifically, Eq. (3.71) states that ®;, which is the phase of the sinusoidal
lineshape at the scan center for bin j, is a linear function of fl;j, which is the of the
interaction time for bin j, with slope &, and “y-intercept” ¢. In principle, for each
time bin we could fix the three parameters A;, B;, and Tj, but instead we let them
be fit parameters because they are modified by many effects which are difficult to
predict, as discussed later in this section.

Our basic fit procedure, which we use to extract the resonance detuning dp, is as
follows. The form of the experimental lineshape for each time bin is given by Eq.
(3.1). We reprint this equation here, but for clarity we drop the subscripts j and the

functional dependence on w: _
cf-Ct

et (3.72)

Iez'p =

If we take the uncertainty in the counted number of atoms to be the square root of
the number of atoms and then use the normal rule for error propagation, we find that

the uncertainty in the measured inversion is

2VCict

Aleyp = ————=75-
feer (Cf +C)*?

(3.73)

Actually, the uncertainty in the number of counted atoms is greater than just the
square root of the number of atoms because of fluctuations in the atomic hydrogen

source, laser excitation, et cetera. These fluctuations, however, affect the number
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of atoms counted in both the initial and final states, causing no fluctuations in the
measured inversion.

We fit the resonance data to Eqs. (3.70-3.71) in a two-part procedure: First, we
perform a least-squares fit of the experimental lineshape for each time bin to Eq. 3.70,
yielding both the phase ®; and the interaction time Tj for each time bin. (This fit
also yields the amplitudes A; and the baselines B;, but these are not important in the
analysis to follow.) Then, we.perform a second least-squares fit of our measurements
for ®; to Eq. 3.71; this equation shows that ®; is a linear function of T}, with slope
éo and “y-intercept” ¢. In this fit, we use two fit parameters, §y and ¢, and we fix
the values of T; because the uncertainties in the results for T; from the first fit are
negligible. (Unfortunately, we have no direct way to measure the end-to-end phase
¢ so we must leave it as a fit parameter.) The resonance frequency wo is then found
from the result for the fit parameter &y using: wy = do + we, where wc is the (known)

scan center-frequency.

3.7 Effects due to the nature of the oscillatory
fields

3.7.1 Square pulses versus gaussian pulses

The ideal Ramsey resonance lineshape assumes that the amplitude of the oscillatory
field as a function of time is described by two shOrt square-pulses of time 7 separated
by a time 7' >> 7. In our experiment, the atoms traverse the waists of two separate
gaussian beam modes, thus the atoms see two gaussian pulses—not square pulses.
This change slightly affects the shape of the Rabi envelope. It turns out that there
is no analytical solution for gaussian pulses, except for when w = wy. For small
detunings, however, the approximate form for the lineshape given in Eq. 3.57, on
which our basic lineshape model is based, is valid for both square and gaussian pulses.
In this equation, the amplitude and baseline depend on the area of each pulse (given

by wgT for a square pulse), and there is no dependence on the shape of the pulses.

95



Because the amplitude and baseline are arbitrary fit parameters in the basic lineshape

model, we do not need to change it.

3.7.2 Variations in the oscillatory field amplitude and phase

Another effect due to the nature of the oscillatory fields is that atoms with different
trajectories see different oscillatory field amplitudes and phases. The oscillatory fields
are actually gaussian beam modes of two separate near-confocal cavities. The absolute
value of the amplitude varies like |sin(kz)|, where k is the wave-vector and z i1s
the distance along the axis of the gaussian beam mode, while the phase changes
by 7 between neighboring anti-nodes. Hence, the amplitude seen by a particular
atom depends on the z-coordinate at which that atom intersects the gaussian beam
mode, and the phasé differs by m depending on which anti-node the atom intersects.
(Changes in phase if the atom has any motion in the z-direction and the field has
a running-wave component reéult in a first-order Doppler effect, which is discussed
later.)

We use slits to collimate the atomic beam such that it has a width of about 1/2 of
a Wavelength, equal to about 1/2 mm. We align the atomic beam so that the atoms
tend to intersect just one anti-node of each of the two standing-waves. Almost all of
the atoms “see” the same oscillatory field phase, but they “see” a range of oscillatory
field amplitudes. The resulting lineshape is an average over sinusoidal lineshapes with
the same phase ®; and period 1/T;, but with varying amplitude A; and baseline B;
because these two parameters depend on the Rabi frequency, which in turn depends
on the oscillatory field amplitude. Only the amplitude A; and baseline B; of the
resultant sinusoidzﬂ lineshape are modified, and these effects are absorbed into the

arbitrary fit parameters, A; and Bj, of the basic model, given in Egs. (3.70-3.71)

3.8 Pulling when wis # wy

If the average resonance frequency during the oscillatory fields, wip = (w1 + w2) /2,

is different from the average resonance frequency between the oscillatory fields, wo,
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then the Rabi envelope is shifted and it “pulls” the lineshape, i.e., it biases the fitted
resonance frequency away from wy. The approximate effect of the pulling can be seen
in Eqgs. (3.66-3.68) We first consider the pulling due to non-uniformities in the electric
and magnetic fields, and then due to the Doppler effect.

3.8.1 Pulling due to shifts in Stark and Zeeman effects

Circular state transitions exhibit a second-order Stark effect, and any difference be-
tween the stray elgctric fields in the two regions of the oscillatory fields and the stray
electric fields in between the oscillatory fields contribute to dwp;erqs. However, the
Stark effect due to stray fields in all of the interaction region is estimated to be neg-
ligible, as described in Sec. 5.2, so that any pulling due to differences in the stray
electric fields is also negligible.

Circular state transitions exhibit a first-order Zeeman effect, and we measure both
the Am, = %1 circular state transitions to eliminate it. If the lineshape is pulled
one way for the Am,; = +1 transition, then it will be pulled the other way for the
Am, = —1 transition. Any pulling due to non-uniformity of the magnetic field is

eliminated.

3.8.2 Pulling due to the first-order Doppler effect

The first-order Doppler effect occurs because of phase changes that an atoms “sees” as
it travels across an oscillatory field. We interpret this effect as a shift in the resonance
frequency of the atom. Two aspects of the geometry of our experiment combine to
reduce the first-order Doppler effect dwp,, to a negligible level: 1) The atomic beam
is nearly perpendicular to the direction in which the oscillatory fields travel, and 2)
the oscillatory fields are nearly perfect standing-waves, produced by cavities.

We write the first-order Doppler effect for an atom with interaction time T as

L
Jw%op = a,BC—Tb'wO, (374)

where a is the angular deviation from perpendicularity and 3 characterizes the (small)
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size of the travelling wave component. We align the cavities such that @ < 0.005 rad.
The factor 3 is defined by 8 = (Ainc — Are )/ (Ainc + Are ), where A, and Ares are
the amplitudes of the tWo travelling waves in the cavity. The relative size of these
amplitudes is determined by the reflectivity of the cavity end mirror: Ares = |TelAine,
where |r] =1— € and € K 1, s0 that we can write 8 = ¢/2. From measurements of
the cavity finesse, we find that e = 5 X 1073. For the mean velocify of atoms in our
experiment, the factor of L/(cTp) is = 3 X 10~6. Using these values and a resonance
frequency of wp & (2m)3 x 10'!, we find that Jwgop < (2)11 Hz. |

From Eq. (3.66), we see that the frequency pulling due to the Doppler effect is
reduced by a factor of ~ 0.7(l/L). This result is for a square pulse of radiation of
length [, and the atoms in our experiment “see” a gaussian pulse with waist wo = 3.6
mm. We model this gaussian pulse as a square pulse of leng;ch | = 2.4wp, so that
| = 8.6 mm. The length between the oscillatory fields is L = 508 mm. The pulling
due to the first-order Doppler effect is then 0.7(/ L)§wh,, < (2m)0.13 Hz, which is
negligible.

3.8.3 Pulling due to Bloch-Siegert and Millman effects

The Bloch-Siegert effect [Ram56] arises out of the rotating-wave approximation, where
the counter-rotating wave is ignored. The counter-rotating wave perturbs the reso-
nance frequency during the oscillatory fields, and contributes to éw the following
amount[Ramb6]: \
Swp_g = Z’—LZ (3.75)
Typically in our experiment, wrT = 7/2 when 7 = 10ps, so that wp_s = (27)5x 10~*
Hz, which is a negligible contribution to dw.
The Millman effect [Ram56] contributes to éw and can pull the resonance fre-
quency. It arises if the direction of the oscillatory field rotates along the length of
the oscillatory field region. In our experiment, the atoms cross the gaussian beam

mode at an anti-node near its waist where the wave front is nearly planar, so that

this effect should be small. Furthermore, we measure both the Am; = %1 circular
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state transitions which are oppositely sensitive to rotations in the direction of the os-
cillatory field. By averaging these two transitions, we eliminate any residual pulling

due to the Millman effect.

3.9 Second-order Doppler effect

The second-order Doppler effect, sometimes referred to as time-dilation, is easier to
calculate than the first-order Doppler effect, since it does not depend on geometry.

It is given by wglp = —(1/2)(v/c)’wp. Using (v/c) ~ 3 x 107¢ and wy /27 ~ 3 x 1011,

the approximate size is wglp /2m =~ 1.4 Hz. The second-order Doppler shift is easily
included in our basic model lineshape by redefining ®;, given in (Eq. 3.71), to include

an extra term: wg,),PT,- = —(1/2)(L*/(T;c*)wo.

3.10 Circular Rydberg atoms versus two-level atoms

We now discuss the modifications to our basic lineshape model which are necessary

because there are more than just two levels in our atomic system.

3.10.1 Fine structure doublet

The most important modification to our basic lineshape model arises from the fact
that we do not completely resolve the fine structure. As discussed in Sec. 2, we
drive two two-level systems—one system for each spin state. For the n = 2930
transition, the fine structure splitting in the transition frequency (i.e., the splitting in
the transition freqﬁency between atoms with spin up and spin down) is Avy, = 1.4
kHz, and for the n = 2728, it is Avy, ~ 2.1 kHz. These splittings are comparable
to the period of the sinusoidal lineshape, so when the lineshapes from the two spin
components add, they interfere either constructively and destructively, depending on
the period of the lineshape 1/7; and the splitting Avy,. The interference is entirely
destructive when the interaction time is given by: T = m/(2Avy,), where m is a

positive, odd integer. As discussed in Sec. 7.3, we believe the two spin components
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have essentially equal weights. However, in the following discussion we allow the two
spin components to have arbitrary weights.

When we include both spin components, the resultant lineshape for a given time
bin is the sum of two component lineshapes, each of the form given in Egs. (3.70-
3.71) The two component lineshapes share the same period, amplitude, and baseline,
but they have different phases. The resonance detunings for the two component
lineshapes are & + d75/2 and &y — 0y /2, where 65, = 2mAvy, is the fine structure
splitting in the transition frequency. The phases of the two component lineshapes are
®; = (8o + 875/2)T; + o and &; = (do — 85s/2)T; + ¢o. Allowing for polarization of
the electron spin, the two component lineshapes have different weights, P, and P_,
where P, is the fraction of states contributing to the high frequency fine structure
component, and P_ is the fraction for the lower frequency component. Since the
two component lineshapés have the same period, we can write their weighted sum
as one cosine function in same form as Eq. 3.70, but with the coéine function being
multiplied by a factor of Cy, and an additional terni’ ¢ss added to the argument of

the cosine function, where Cy, and ¢y, are given by

Cps = (% [1 + 9%+ (1 —v?) cos((sfsTj)])l/2 (3.76)

¢fs = arctan [1,b tan (éfs?T’-)] . (3.77)

Here, 1 is the polarization, defined as ¢ = Py — P_. Thus we can continue to use
our basic model in Eq. 3.70, so long as we allow the arbitrary amplitude parameter
A; to absorb the factor of Cys, and redefine the phase of the lineshape ®;, given in
Eq. 3.71, to include the additional term: ®; = 80T} + ¢o + bfs-

If we consider the case of completely polarized electrons (¢ = +1), then Cy, =
1 and ¢y, = £65,7;/2, and the lineshape reverts to a single component lineshape
with a resonance detuning (the detuning of the resonance from the scan center) of
8o = 87,/2. If we consider the case of completely unpolarized electrons, (¢ = 0), then
Cjs = cos(65:T;)/2 and ¢y, = 0. In this case, the interference of the two components
modulates the amplitude sinusoidally in T; by the factor Cys, but the phase of the
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lineshape is left unchanged. In this case, the amplitude goes to zero at an interaction

time T¢, given by
2mm

Te =
C 26]'3’

(3.78)

where m is an odd positive integer. If there is some small amount of polarization
(¢ < 1) then the interference is not total: Cy, never goes completely to zero, and
the phase ¢, deviates from zero, especially near the minima of Cf,.

It should be noted that there is also hyperfine structure, but this structure is on
the order of 1 Hz, well below the resolution of our apparatus, and it is symmetric, so

that it causes no net shift of the lineshape.

3.10.2 Spontaneous decay and thermal radiation

We now examine another way in which our system differs from a perfect two-level
system. In addition to the transitions that we goherently drive between the lower and
upper circular states in our system (which have quantum numbers n; and ny = n;+1),
there are incoherent transitions which occur due to spontaneous decay and thermal
radiation. These incoherent processes drive transitions between the lower and upper
circular states. They also drive transitions out of the two-level system to nearby
states. In this section, we discuss the rates for these incoherent transitions and
consider their effect on the lineshape. Peter Chang’s thesis shows that the frequency
shifts due to the thermal radiation are negligible (<0.2 Hz for any temperature less
than 300 K). |

A circular state with quantum number n spontaneously decays to the next lower
circular state with quantum number n—1. This is the only spontaneous decay channel
allowed. The spontaneous decayk rate is given by the Einstein A coefficient. Forn > 1,
A= 2a3n7%(4mcRy) for the n — n—1 transition (and the n+1 — n transition). For
the n = 30 — 29 decay, A = 5 x 10%s™1, corresponding to a natural lifetime of 75 =~ 2
ms. In our experiment we detect atoms over a wide range of the velocity distribution,
and the interaction time T ranges from about 0.1 to 0.7 ms.

Thermal radiation mainly drives transitions to the next lower (n — 1) and next
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higher (n + 1) circular states. The rate for transitions driven by blackbody radiation

hv [ kT,

at temperature T, is An, where 7 = (e —1)7! is the mean photon occupation

number for the transition frequency v. For circular Rydberg state transitions, v =
n3(2cRw)-

Including both spontaneous decay and thermal radlatlon the total rate for the
n — n — 1 transition is A(1 + 72), and the total rate for the n — n + 1 transition
is A7i. Hence, the total decay rate out of a circular state is A(1 + 2n). At room
temperature, 7 =~ 25, leading to a total decay rate about 50 times greater than
spontaneous decay alone. To reduce the effects of thermal radiation, we cryogenically
cool the environment to 4 K, and we find that 7 ~ 0.3 for photons with the n =
99 — 30 transition frequency, which corresponds to a blackbody temperature of = 9
K. Further cooling would not increase the lifetime much, as the lifetime is dominated
by spontaneous decay. |

The thermally-driven transitions between the lower and upper circular states have
the effect of reducing the amplitude A of the sinusoidal lineshape. The spontaneous
decay from the upper circular state to the lower circular state both reduces the am-
plitude A and lowers the baseline B of the sinusoidal fringe. Incoherent transitions
out of the two-level system to nearby states with n # n; and n # ny simply reduces
our counting rate R because these states are not detected. Incoherent transitions out
of the two-level system to near-circular states with n = n; or n = ny have the effect
of reducing the amplitude and modifying the baseline of the sinusoidal lineshape be-
cause our detectors do not discriminate a near-circular state with principal quantum
number n from a circular state with principal quantum number 7.

For a given atom in our experiment, the processes described above can happen
multiple times and in different combinations. It is difficult to model the exact effect of
these processes, and we do not attempt to do this. Instead, we allow the parameters
for the amplitude and the baseline for each time bin, A; and Bj, to be arbitrary fit
parameters, and the net effect of these incoherent processes is absorbed into A;j and
B;.

We are limited by the natural lifetime from using much longer interaction times.
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Longer interactions times not only reduce the number of atoms detected, because
more atoms spontaneously decay out of the two-level system, but also reduce the
amplitude of the lineshape for the atoms that are detected, because spontaneous

decay from the upper level to the lower level reduces the phase coherence between

* the two levels.

3.11 Effects due to the detection apparatus

3.11.1 Imbalance of the detector efficiencies

The atoms are detected by two channeltrons; one channeltron detects the atoms in
the initial (lower) state, and the other detects those in the final (upper) state. The
resolution between the initial and final states is practically perfect. However, the two
detectors have different efficiencies, e;, and es. After a little algebra, the detected

inversion I; can be written as

A+ -al-1)

la= Q+1)+a(l-1)

(3.79)

where a is the relative efficiency, a = e;/es. If a # 1 there is a baseline shift and the
shape of the fringe is slightly distorted. Typically, a = 0.7 — 0.8. This effect, does
not bias ®;, the phase of the lineshape. Nevertheless, we include this effect in our

data analysis.

3.11.2 Finite width of the time bins

Thé sinusoidal lineshape model given in Egs. (3.70-3.71) is actually for a discrete
interaction time 7; which depends on the time bin j. The relationship between
the transit time 7; and the interaction time Tj depends on the ratio of the length L
between the two oscillatory fields and the length £ of the atomic beam: T; = T;(L/L).

We separate our Ramsey resonance data into about 20 time bins of width 7Ty, = 50

us so that the experimental lineshape for each time bin j is an average over a narrow
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range of transit times around 7;. To model this effect, we average Eq. (3.70) over a
range Thin = Tyin(L/L) around T;. We assume that the center of the frequency scan
is close to the resonance frequency (so that &g - Thin < 1), and we get:
sin (%ﬂé) "
I; = Tmflj cos (0T; — ®;) + B;. (3.80)
2

The new factor is of the form sinz/z and tends to wash out the lineshape for large
detunings from the resonance, but it does so in a symmetric manner. For our data, at
the largest detunings, the sin z/z factor is never less than about 0.9. This factor does
not bias the phase or period of the lineshape—the parameters important to our fit
results—but we include it in our fit function anyway because it increases the goodness
of the fit. ‘

It should be hoted that this equation doesn’t include the varying weight of line-
shapes with different interaction times. The amplitﬁde of the lineshape varies slightly
over the bin width, and in addition the number of atoms contributing varies due to
the velocity distribution. These two effects tend to bias the the period of the line-
shape 1/T; away from the period corresponding to the center of the time bin. Rather

than try to model this, we simply allow T} to be a fit parameter.

3.12 Summary of our lineshape model

In this section we summarize our lineshape and fitting procedure. Not including the

differing efficiency of the two detectors, the single-time-bin lineshape is given by:

sin( L2 §) '
i= Wza)—-x‘l] COos (57} - (I)J) + Bj. (381)
2 :
where  ®; = 80T + ¢ — ;J—Cé% + arctan [w tan (6{;—7})] . (3.82)
j
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Including the relative detector efficiency a, the lineshape is:

o (Q+1)—al-1)
i A+1)+al 1)

(3.83)

To find the resonance detuning &, we fit all the time bins in a data set to Eq. 3.83
with a as a global fit parameter, as well as the four fit parameters for each bin: Aj,
B;, ®;, and T;. We then fit our results for ®; to Eq. 3.82 using our results for T; and
three fit parameters: 1, o, and ¢o. The frequency of the transition wp is given by do
through its definition: wy = wc + 8, where w¢ is the experimentally chosen center of

the frequency scan.
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Chapter 4

Experimental Apparatus

4.1 Atomic hydrogen beam

4.1.1 Hydrogen source

We produce atomic hydrogen by dissociating molecular hydrogen in an RF discharge
contained in a water cooled Pyrex tube. The atoms then flow through a teflon tube
and into the thermalizer, which is a channel (~ 2.3 mm in diameter and ~ 9.5 mm
in length) in an aluminum block. We cool the thermalizer to 80 K. Each atom tends
to make several collisions with the walls of the channel, which thermalizes the atoms
at 80 Kelvin. The flux Q out of the thermalizer follows a cosine distribution[Ram56]:
dQ(6)/dY = (Q/) cosf. By measuring relevant gas pressures and volumes we esti-

mate the forward flux out of the thermalizer to be (assuming 100% dissociation)

— —_ . _[

The mean speed of the atomic beam at 80 K is ¥ = 1.41 mm/ps.

4.1.2 Vacuum design

Our vacuum apparatus has three separate chambers, each with its own pump. The

source chamber contains the hydrogen source, the main chamber contains the in-
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teraction region, and these two chambers are connected by a differentially pumped
chamber. We keep the pressure of the background gas low so that it does not atten-
uate the atomic beam or significantly perturb the transition frequencies.

A cryopump (pumping speed of 2000 1/s) maintains the source chamber pressure
at about 1075 torr when the beam is on. The differentially pumped chamber is
pumped by a small turbo pump (pumping speed of 50 1/s). The pressure in this
differentially pumped region is about 2 x 107 torr. The main vacuum chamber
contains the interaction region, which is a long copper enclosure that we cool to 4 K,
and it is surrounded by a cryogenic shield which we cool to 80 K. The main chamber is
pumped on by a larger turbo pump (pumping speed of 170 1/s). The pressure outside
the cryogenic shield is about 1 x 1073 torr when the beam is on and 1 x 10~ torr when
the beam is off. Inside the interaction region, however, the main pumping mechanism
is the walls of the interaction region which cryogenicélly pump the hydrogen gas load,

and the pressure of the background gas should be much lower.

4.1.3 Beam collimation

We collimate the atomic beam, mainly so that it “sees” only a limited distribution
of the oscillatory fields’ amplitude and phase. In this section, we first describe the
geometry of the oscillatory fields, and then the horizontal and vertical collimation of
the atomic beam.

Each oscillatory field is the fundamental gaussian beam mode of a near-confocal
cavity. The axis of the atomic beam is horizontal. The axis of each cavity is horizontal
and perpendicular to the atomic beam. The atomic beam intersects the two gaussian
beam modes near their waists. Along the axis of each gaussian beam mode, the field
amplitude and phase vary on the scale of 1/2 a wavelength, or about 0.5 mm. The
waist of each gaussian beam mode is about 3.6 mm, so the field is much more uniform
along directions perpendicular to the gaussian beam mode axis.

The horizontal collimation is illustrated in Fig. 4-1. 4-1. The atomic beam exits
the thermalizer hole (diam. = 2.3 mm) and travels for 37 cm before we collimate it in

the horizontal direction with an adjustable slit (typically 0.7 mm wide). As described
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Detector
Aperture
500 um

Thermalizer Collimating
Aperture Slit
wg =2.26 mm w, =700 pm

lc=37cm

[¢S

J.q =109 cm

Figure 4-1: Horizontal Collimation. The four lines drawn are the limiting trajectories
between the thermalizer aperture and the collimating slit. This diagram is roughly
to scale, but the vertical scale has been expanded by about a factor of one hundred
relative to the horizontal.

in[Ram56)], this produces a trapezoidal intensity distribution. At position z., which
is the position along = with respect to the collimator, the upper and lower widths of

the trapezoid are

Py = lwc + (we — ws)f—c (4.2)
dy = |We+ (we +ws)f—c : (4.3)

respectively, where w, and w, are the source and collimator widths, and I, is the
source-collimator distance. The FWHM of the trapezoid is (py +dg)/2. The detector,
located 109 cm from the adjustable slit, has a fixed aperture (0.5 mm wide) which
accepts only a small portion of the horizontal distribution. The combination of the

adjustable slit and the detector aperture restrict the trajectories of the detected atoms
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Thermalizer
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I( ly=63 cm A l,q=83cm )l

Figure 4-2: Vertical Collimation. The four lines drawn are the limiting trajectories
between the thermalizer aperture and the outer dimensions of the light beam. This
diagram is roughly to scale, but the vertical scale has been expanded by about a
factor of one hundred relative to the horizontal. )

so that they tend to “see” just one anti-node at each gaussian beam mode. At the
detector, we calculate the FWHM of the trapezoidal distribution to be 6.7 mm, so that
the detector only accepts 0.5/6.7 ~ 8% of the horizontal atomic beam distribution.
The vertical collimation is illustrated in Fig. 4-2. The adjustable slit and the
detector aperture do not limit the distribution of the atomic beam in the vertical
direction. However, the optical excitation light that we use to produce Rydberg
atoms effectively collimates the excited portion of the atomic beam in the vertical
direction. The optical excitation light intersects the atomic beam from the side and
at a distance of 63 cm from the thermalizer. The diameter of the optical excitation
light beam is effectively w; = 0.25 mm. The combination of the thermalizer and the
optical excitation light restrict the vertical distribution of the excited portion of the
atomic beam. The vertical distribution has a trapezoidal shape and has widths py
and dy similar to Eqgs. (4.2-4.3). At position z;, which is the position with respect
to the laser, we have |
i

lwl + (Wl - Ws)ﬂ

(4.4)

i~
Il

d = ’WI-I-(WI-FWS);D—I
sl

: (4.5)
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where w, and w; are the source and light widths and [ is the source-light distance.
The FWHM of the vertical distribution is &~ 0.5 mm at the first oscillatory field, ~ 2.4
mm at the second oscillatory field, and =~ 3.1 mm at the detector. The aperture of
the detector does not restrict the vertical distribution of the atomic beam; the entire
vertical distribution is detected. The vertical distribution does not contribute much
to the distribution in field amplitudes “seen” by the excited portion of the atomic
beam because the waist of the gaussian beam modes is ~ 3.6 mm. At the second
oscillatory field, the upper and lower limits of the vertical distribution “see” a field

amplitude reduced by about 70%.

4.1.4 Number of atoms

In this section,v we make an order of magnitude estiniate of both the number of atoms
in a pulse of the atomic beam and the number of atoms detected per pulse.
We use pulsed light to excite the atoms from the ground state to the Rydberg

state. The number of atoms excited in a,sin‘gle pulse is given by
N = ppVene, | (4.6)

where pg is the density of ground state atoms at the point of optical excitation, Vg
is the volume of the intersection of the light with the atomic beam, and ng is the

excitation efficiency. The number of detected atoms per pulse is given by

Np = peVenenp, (4.7)

where np is the detection efficiency. As discussed below, we fold several different
factors into the detection efficiency, which we estimate to be np = 0.025.

The density of the atomic beam at a distance r from the thermalizer is given by

(r) = T—ig%g)), (4.8)

where, as discussed in Sec. 4.1.1, 7 = 1.41 mm/pus is the mean speed and dQ(0)/d2 =

70



8 x 107 sr! 571 is the forward flux. The actual density is less than this because of the
imperfect dissociation fraction of roughly 75%. Also, the entrance to the interaction
region is covered by a fine mesh with a 60% open area. Including these factors, the
density at the excitation point is pg = 0.45p(r = 63Acm') =6 x 10® cm™2.

The excitation volume Vg is the overlap of the atomic beam and the excitation
light. The horizontal width of the atomic beam at the point of excitation is restricted
to approximately 0.7 mm by' the adjustable slit, and the diameter of the excitation
light is about 0.25 mm. The volume Vg is a column of atoms which is 0.25 mm in
diameter and 0.7 mm long, and Vg = 3 x 1073 cm3. Combining these results, we
estimate the number of atoms per pulse to be on the order of N = 5000.

We include several factors in the detection efficiency np: As discussed in a previous
section, the width of the detector aperture is such that it only accepts 8% of the
excited atoms. The detector aperture is covered with a 60% transmission mesh,
further reducing np. Also, we include the effects of spontaneous decay and thermal
transfer, which put roughly a quarter of the Rydberg atoms into undetected states.
Assuming that the channeltron detectors themselves are 70% efficient, the detection
efficiency is only np = 0.025. |

Combining these results, we estimate the number of detected atoms per pulse to
be Np = 130. Experimentally, when all the subsystems are working well, we observe
Np = 300, which is in reasonable agreement with this estimate.

We run the experiment at f = 61.00 Hz. The relationship between the counting

rate R and the average number of atoms per pulse N is

R

R= fNnp or N=——.
fnp

(4.9)

4.2 Production region

In the production region, we make circular Rydberg atoms from ground state atoms.
We cannot optically excite a circular Rydberg state directly because it has n — 1

units of angular momentum, and one photon can supply at most one unit of angular
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momentum. Instead, we optically excite an m, = 0 Stark sub-state of an n manifold,
and then transfer the population to the circular state using a rotating RF field and a

slowly varying DC field.

4.2.1 Optical excitation to Rydberg level

The atomic beam enters the production region in the ground state, 15;/2. A 10 ns
pulse of L, radiation nearly saturates the 15,/ — 2P, transition. Simultaneously,
a 10 ns pulse of radiation at 366 nm fully saturates the transition from the 2Pz,
state to a Rydberg state with n = 27 or 29. If both transitions were fully saturated,
the population in the three states involved would be equalized, and the efficiency of
the optical excitation would be 1/3. We do not fully saturate the 1512 = 2Py
transition, and we estimate that ng = 0.25. .

We excite the lowest energy Stark state of the n = 27 or 29 manifoid, which has
parabolic quantum numbers m; = 0 and k = —(n — 1) The linewidth of the light
for the 2P;5 to n transition is about 1 GHz. In order to resolve the lowest energy
Stark state of the n-manifold, we perform the optical excitation in an electric field of
about 100 V/cm, which separates the Stark energy levels by about 6 GHz but does
not cause level-crossing between states with different n.

The two optical excitation pulses are counter-propagating light beams which are
perpendicular to the atomic beam and lie in the horizontal plane of the atomic beam.
The diameter of the L, light beam is & 0.25 mm, and the other beam is larger in
diameter, &~ 1.0 mm, for ease of overlap. |

The excitation light is linearly polarized in the vertical direction. This is important
because elliptically polarized excitation light can polarize the electron spins, causing

an imbalance in the fine structure of the Ramsey resonance data.

4.2.2 Laser system

The two radiation pulses are produced using two UV dye lasers which we built and

are described in the thesis of Robert Lutwak[Lut97]. These are high power dye lasers,
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utilizing both a grating and an etalon for frequency selectivity. Both dye lasers operate
at around 365 nm, use DMQ dye dissolved in P-Dioxane, and have linewidths of about
1 GHz.

One UV dye laser produces about 10mJ/pulse, and its frequency is subsequently
tripled by four-wave mixing in a Kr/Ar gas mixture, resulting in the L, radiation
needed for the 1S to 2P excitation. The other produces about 1mJ/pulse for the
2P to Rydberg transition. After the light exits the dye lasers, we ensure its linear
polarization by using Glan-laser polarizing prisms and by paying attention to the
birefringence of the optics.

Both dye lasers are pumped by the same XeCl excimer gas laser, which operates
at 308 nm and provides about 300 mJ/pulse. We set the repetition rate of the excimer
laser to be 61.00 Hz. We use 61.00 Hz and not, say, 60 Hz,v because, as discussed
in Sec. 7.4, this limits the sensitivity of" the spectroécopy to the 60 Hz noise on the

millimeter-waves.

4.2.3 Circularization

About 2 us (or about 2 mm) after the optical excitation, we begin the circularization
process which lasts for about 2 us. We transfer the population from the m, = 0,
k = —(n — 1) Rydberg state to the |m¢] = n — 1, k = 0 circular Rydberg state.
The circularization process and apparatus are described in detail in a previous paper
[LHC*97). '

Basically, we apply a rotating RF field and a slowly changing DC field (~ 30
V/em), and the atoms absorb n — 1 circularly polarized RF photons, leaving the
atoms in the circular state with m, = +(n — 1), where the (+) sign depends on
the sense of the RF field rotation. It is important that we can produce either the
mg = +(n — 1) or the my = +(n — 1) circular state, because we use both in order to

eliminate the first-order Zeeman effect.
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4.2.4 Near-circular state production

In addition to populating the circular state with n, k = 0, and m, = £(n — 1), we
can also populate the “near-circular” states with n, k = £1, and m, = £(n —2). We
populate near-circular states in order to drive near-circular state transitions that we
use to calibrate the electric field, as discussed in Sec. 5.2.

To populate a near-circular state with qua.ntﬁm number n, we laser excite the two
states with quantum numbers (n,k = (n — 2),mg = 1) rather than the one state
with (n,k = (n — 1),m, = 0). Then, the circularization process leaves the atoms
in the near-circular states. For some reason, we produce more k = +1 near-circular
states than k = —1 near-circuiar states, so we perform spectroscopy on the k = +1

states.

4.3 Separated fields region

After the atoms are circularized, they go into the separated fields region, where they
pass through the separated oscillatory fields which we use to perform Ramsey reso-
nance spectroscopy. Throughout this region, we apply uniform electric and magnetic
fields. These applied fields maintain the orientation of the electron’s orbital and spin

motion, respectively, as discussed in Secs. 2.2 and 2.4.4.

4.3.1 Static fields

In the separated fields region, we apply a uniform, vertical electric field by biasing
the top plate with +V Volts and the bottom plate with —V Volts, where V' is on the
order of 0.25 V. The top and bottom plates are separated by ~ 2.4 cm, and the side
walls are separated by =~ 7.6 cm and are grounded. In order to reduce stray electric
fields, we coat the interior surfaces of the interaction region with Aerodag, which is
micron-sized graphite that is in the form of an aerosol.

We shield the entire interaction region from the ambient magnetic field using two

long cylindrical magnetic shields with endcaps. The residual fields are on the order of
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1 mG. Inside the shields we produce a magnetic field over the length of the interaction
region with four wires which run the length of the shields. The connections between
these wires and to the power supply leads are located outside the endcaps. The
geometry of the wires was chosen for optimal uniformity over the region of the atomic
beam. We use a current of ~ 1 A through the wires, which produces a magnetic field

of about 150 mG.

4.3.2 Oscillatory Fields

The separated fields region contains two identical near-confocal Fabry-Perot cavities
for the millimeter-wave radiation. We use the fundamental gaussian beam modes of
the cavities as the two oscillatory fields for performing Ramsey spectroscopy. The
separation between the centers of the cavities is 50.8 cm. We use standing-waves in
cavities rather than running-waves in order to reduce the first-order Doppler effect
and ensure a well defined spatial distribution of the radiation.

Each cavity has an input coupler made of a 500 line/inch copper mesh with a
60% open area. Each mesh is epoxied to the concave surface of a plano-concave fused
silica lens with 25 mm diameter and 92 mm radius of curvature. To avoid unwanted
focusing of the input beam, the plano-concave lens is sandwiched against a plano-
convex lens of the same curvature. The end mirrors of the cavities are machined from
copper, and also have a 92 mm radius of curvature.

The length of each cavity is D =~ 80.4 mm. The copper end mirrors are each
mounted on three 80 pitch screws, using three vspring‘s to keep the assembly together.
The three screws each have a 24 tooth gear which are meshed with one central 12
tooth gear. This gear, in turn, is coupled to a handle outside the vacuum chamber
via a rotational feedthrough. Qne degree on the handle corresponds to about 0.4 pm
of translation for the end mirror. The cavity resonance is about 2 ym wide.

We fine tune each cavity length by hand from outside the vacuum chamber while
watching the atomic signal. We send about enough radiation for a m/2-pulse into
the cavity to be tuned. We block the radiation into the other cavity. We then tune

the cavity length such that the measured inversion is maximized. We estimate that
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this tuning procedure is accurate to less than or about one quarter of a degree, which
translates to about 0.1 um or approximately 5% of the cavity width. After tuning
a cavity, we disengage the central gear from the cavity in order to avoid accidental
mistunings. Note that because we cool the entire interaction region (including the
cavities) to liquid helium temperature, the thermal expansion due to temperature
fluctuations is negligible.

Using “Gaussian Beam Mode Analysis” [KL66] thevfrequencies of the cavity modes

are given by
vmng = o |4+ 1+ (14 m+n) cos (1= d/R)], (4.10)

where m and n are the rectangular transverse mode numbers,- q is the longitudinal
mode number, R is the radius of curvature for the mirrors, and d is the cavity length.
For the n = 29 — 30 (256.3 GHz) transition we tune the length of the cavities to
~ 80.43 mm and use the T EMj 136 mode. For the n = 27 — 28 (316.4 GHz) transi-
tion we tune the length of the cavities to = 80.3‘3 mm and use the TEMj,168 mode.
In the above two cases, the waist of the mode is 3.8 mm and 3.4 mm, respectively.

The size of the residual first-order Doppler effect depends on the size of the ampli-
tude imbalance between the two counter-propagating running waves which form the
standing-wave. As discussed in Sec. 3.8.2, this imbalance is determined by the reflec-
tivity of the end mirror, 7., and we now make an estimate for r.. From measurements
of the power reflected from the cavities as a function of the cavity length, we estimate
that the finesse is about 300. Assuming that the reflectivities of the end mirror 7,
and the input coupler r; are approximately equal, r. = r; = r, we can write the cavity
finesse as F = m/(1 — r2). Solving for r when F = 300, we find that r =~ 0.995. For
more on the Doppler shift, see Sec. 3.8.2.
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4.4 Millimeter-wave system

The millimeter-wave system produces the radiation which we couple into the cavities
to form the oscillatory fields. We use the 4th and 5th ha;monics of a Gunn diode
to produce radiation at 256 GHz and 316 GHz, respectively. These two frequencies
correspond to the n = 27 — 28 and n = 29 — 30 transition frequencies. We operate
the Gunn diode at 64 GHz, and we phase lock it to a cesium clock (HP 5061A) using

a frequency synthesizer (HP 8662), multipliers, and harmonic mixers.

4.4.1 Frequency chain

For the n = 29 — 30 transition, the Gunn diode operates around feunn = 64,075.5
MHz, and we use the fourth harmonic of this, about 256.3 GHz. For the n = 27 — 28,
the Gunn diode operates around fgun, = 63,283.1 MHz, and we use the fifth harmonic
of this, about 316.4 GHz. We first consider the various frequencies involved in the
chain for the n = 29 — 30 transition, ahd then consider one small modification to
the chain which is necessafy for the n = 27 — 28 transition.

We use the cesium clock output (10 MHz) as the frequency standard for the
frequency synthesizer which produces two signals: one at a fixed frequency of exactly
640 MHz and another frequency foyn:s that we tune near 75.5 MHz.

We multiply the 640 MHz signal by 10 up to 6.4 GHz and send it into the LO port
of a harmonic mixer. The RF port of the harmonic mixer samples the Gunn diode
frequency fgunn. The IF signal f;r of the harmonic mixer comes from the mixing of
the tenth harmonic of the LO with the RF. Thus, f;r = feunn — 64 GHz. When the
frequency chain is locked, the f;p ~ 75.5M H 2.

We send the frr signal, along with the fsyntn signal, to a home-built “phase lock
box”. The function of the phase lock box is to maintain the control voltage to the
Gunn diode such that the f;r signal is phase locked with the fsyntn signal. Thus, the
phase lock box ensures that the frequency of the Gunn fgyun, is exactly equal to 64
GHz + foynen.

For the n = 27 — 28 transition, there is one minor modification that we make
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to the frequency chain. For this transition frequency, the IF frequency is near fip =
716.9 MHz, which is outside the bandwidth of the phase lock box. Before we send
the IF signal to the phase lock box, we mix it with the 640 MHz signal in order to
downconvert it to 76.9 MHz, which is within the bandwidth of the phase lock box.
In this case, the phasé lock box ensures that fgu.. is exactly equal to 63.36 GHz -

f synth-

4.4.2 Millimeter-wave optics

We use both waveguide and quasi-optical techniques. To adjust the overall power,
we use two wire-grid polarizers in conjunction with a waveguide attenuator. In order
to mode-match the radiation into the two cavities, we pass the radiation through a
cavity to reject unwanted modes. We balance the power in the two cavities'by using a
Frustrated Total Internal Reflection (FTIR) prism beamsplitter to adjust the relative

input power to the two cavities.

4.5 Detection region

We detect the Rydberg atoms by selective electric field ionization. We use a field of
about 1 kV/cm to ionize the atoms and then detect the ions with a charged particle
detector. Since circular states of different n ionize at different fields, we are able
to discriminate the upper circular state from the lower one. To accomplish this, we
ramped t_he ionization field plates at a 4 degree angle, so that the upper circular state
ionizes about 2 cm before the lower circular state. Two channeltrons detect the ions
from the two different states, and the resolution between the two states is practically
perfect.

We use a multi-channel scaler to group the counts into time bins based on the
transit time, which is the time between laser excitation and detection. The time bins
are 50 ps wide, and the atoms that we detect have fra.nsit times that range from

about 0.2 ms to about 1.2 ms, for a total of about 20 time bins.
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Chapter 5

Stark and Zeeman Effects

In this section we describe our experimental procedures for dealing with the Stark
and Zeeman effects. The dependence of these two effects on the external electric and

magnetic fields is discussed in Sec. 2.

5.1 Correction for Zeeman effect

To eliminate the first order Zeeman effect (see Sec. 2.3) we must alternate between
taking data on the Am = 41 and the Am = —1 transitions and then take the average

of the two results. To drive the Am = +1 transition, we use the m = +(n — 1)

circular state as the initial state. Similarly, to drive the Am = —1 transition, we
use the m = —(n — 1) circular state as the initial state. We perform two essentially
simultaneous frequency scans on the Am = +1 and the Am = —1 circular state

transitions, thus reducing our data’s sensitivity to long term variations in the magnetic
field. The scans are each about 15 kHz wide and are separated by about 400 kHz
which is the first order Zeeman difference between them due to the applied field of ~
150 mG. The two frequency scans are made up of 60 points each, for a total of 120
points. We spend one second on each point and switch between the two transitions

after each point. Finally, we typically average over ten such scans during a 20 minute

run.
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5.2 Correction for Stark effect

Circular state transitions are shifted by the second-order Stark effect. (There are no

odd-order shifts, and the fourth-order shift is negligible.) In a field of magnitude F,

the shift is | |
vs = aF?, ‘ (5.1)

where the constant a is computed from perturbation theory. We-must apply a field
F > 50 mV/cm in order to overwhelm the stray fields and keep the orientation of the
circular states stable. Because the stray fields are non-uniform, the magnitude of the
total field F(z) is a function of z, the distance along the atomic beam. For Ramsey
spectroscopy, the shift is averaged over the region between the two oscillatory fields,
yielding 75 = oF (z)2, where F(z)? is the average of F(z)? over the SOF region. We
cannot measure F(z)2, but we can measure F(z) by performing Ramsey spectroscopy
on a “near-circular” transition, which has a first-order Stark shift, as described in Sec.

2.2. Unfortunately, F(z)2 # F (:v)2 due to the non-uniformity of the stray fields.
To examine the difference between F(z)? and F(:r)z, we define F(z) = (V/d) +

f:(a:), where V is the voltage between the plates, d is the effective plate spacing, and
f+(x) is the field due to stray charge. We further define fulz) = [fo+ fi(@)])z + fi(2),
where f) (z) is the perpendicular component of the field and fj(z) satisfles fi(z) = 0.
If we assume that f; << V/d, then we find:

2 |
FEP = (Y4 h) +HEP+FiEp (5:2)
1 = (505 T

2
For = (S+4) +TGP (5.4
F@2-F@) =~ fE° (5.5)

The difference is due to the variation in the 2 component of the stray field.
What we typically do to correct for the Stark effect is measure F(z) for four
different biases: V = +£1,40.1 Volts. Then, by fitting this data to Eq. 5.3, we
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determine d, fy, and Tx)2 Besides these values, we also need to know W in
order to evaluate the second-order Stark correction by using Eq. 5.2. Unfortunately,
we have no way to measure W For this reason, we have made efforts to keep it
so small that the uncertainty in the shift due to it is negligible.

To keep the stray fields small, we thoroughly cleaned the plate surfaces and coated
them with “Aerodag”, which is made of graphite. We can perform a “spot check” on
the level of the stray fields by measuring fi(z) in the area of each oscillatory field. We
do this by performing Rabi spectroscopy on the first-order Stark shifted near-circular
transition. We measure the first-order Stark effect for positive and negative V', and we
extract a value for fj(z) in these regions which is in the range of 1-3 mV/cm. We find
that the stray field in the area of each oscillatory field does not change significantly
from day to day. From Ramsey resonance data on the near-circular state transition,
we find values for fo and f, (z)2. Typical sizes for these values are are: |fy| ~ 0.2
mV/cm and f) (z)? ~ (4 mV/cm)?, and these values do not change significantly from
day to day. » |

We cannot measure fj(z)2 itself; we simply assume that fi(#)? = (3 mV/cm)2.
We use this value because it is about the same size as fi(z) as measured ivn the areas
of the oscillatory fields, and also about the same size as f; and fl_(:r)7 We assign a
fractional uncertainty of 50% to the assumed value for W Explicitly, the value

we use to correct for the Stark effect is

fi(x)? =9.0(45) (mV/cm)2. (5.6)

This value results in a correction of vs = 0.11(6) Hz for the n; = 27 — n F =28
transition and vg) ~ 0.16(8) Hz for the n; = 29 — n 5 = 30 transition. These shifts
are almost negligible, and the uncertainty in them is negligible.

The above analysis leaves out the variation in the field due to any non-uniformity
in the plate spacing d. For the small biases V that we use, this non-uniformity
introduces a negligible error. From the construction of the plates, we expect the

fractional difference between the RMS spacing and the average spacing to be less
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than 3 x 1073. For a typical bias of V = 0.5, the RMS value of the field due to the
variation in the plate spacing is: fraurs =~ (3x1073)(0.5 V)/(2.443 cm) = 0.6 mV /cm,
which is negligible.

Another technique we use to correct for the Stark effect is simply to measure the
circular state transition frequency for several different values of the bias V. These
results fall on an upside-down parabola due to the second-order Stark shift. We fit
the results to a parabola with d, fo, and v as fit parameters, where 1y is the “field-
free” frequency or “top” of the parabola. This technique is slightly less accurate than

using the first-order Stark shifted transition to measure the field because it is unable

to yield up either f, (z)2 or fj(z)2. Also, it is slightly less precise for a given amount
of running time.
In conclusion for this section, we can measure the average magnitude of the field

F(z) but not the average of the squared magnitude of the field F(z)2. This means

that we cannot measure the term fj(z)? in Eq. 5.2. We do, hbwéver, have indirect
indications of the size of this unknown term. From these indications, we estimate its
effect to be about 0.4 Hz (which is at about the 1 part in 10'? level), and thus we
consider it negligible and ignore it. If this term is much larger than we estimate then

our results will be in considerable error.
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Chapter 6

Lineshape with Interaction
between Dipoles in the Atomic

Beam

Our Ramsey resonance data exhibits a distortion which increases with the density of
the atomic beam. We believe this distortion is due to the interaction between the
coherent dipoles in the atomic beam that are created when the atoms pass through
the first oscillatory field. This is a collective effect, closely related to super-radiance.

In this chapter we develop an approximate model for this effect and present a
numerical model lineshape which semi-quantitatively accounts for the distortion in the
resonance data. The geometry of our experiment is such that the dipole interactions
are too complex to allow accurate modeling, and we can not use this model to extract
cR., with any confidence, especially from the data taken at higher densities.

This chapter culminates with a fit of the model lineshape to data on both the
n = 2930 and n = 27—28 transitions. We use data with the highest atomic
densities that we achieved, for which the distortion is well pronounced. The model
lineshape fits quite well to the data for the n = 20330 transition. The least-squares
fitting routine converges readily and the goodness-of-fit parameter x2 is close to one.
However, for some reason the model lineshape does not work well the n = 27—28

transition. For this transition, the fitting routine does not converge reliably, and the
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the x2 is not much better than a simple straight-line fit. The difference in the model
performance is likely related to the difference in the fine structure splitting Avy;,
which plays a large role in this effect.

As far as we know, this coherent dipole-dipole interaction has not been observed in
any other precision resonance experiment. However, as discussed later in Sec. 6.5.4,
we anticipate that the effect should be observable in atomic clocks based on hyperfine
transitions at fractional accuracies greater than 10715 and atomic densities greater

than 10° cm™3, under certain conditions.

6.1 Overview

6.1.1 Nature of the observed distortion

As an example of what the distortion in the resonance data can look like, Fig. 6-
1 shows data for the lineshape phase ® versus the interaction time T" for both the
Amy = 41 and Am, = —1 transitions. This data represents the highest atomic
beam densities that we achieved, and the distortion is quite pronounced: ideally, the
data should lie along an almost straight line. The model for the fit is that given in
Eq. (3.82), assuming zero spin polarization (¢ = 0). The two data sets in Fig. 6-1
were fit simultaneously, and the reduced chi-square for the fit is x? = 15.4, which is
unacceptable.

The shape of the distortion is similar to the shape produced by spin polarization,
but we believe that spin polarization is not involved. We have three main reasons for
believing this. First, we believe that the spin polarization is negligible, as is discussed
in Sec. 7.3. Second, any imbalance between fine structure components caused by
spin polarization would switch sign when the sign of Am, is reversed. This is because
the sign of the L - S interaction should change sign. However, we observe that the
distortion to the phase ® is the same for Am, = +1 and Am, = —1, as can be seen
by comparing the residuals in Fig. 6-1. Third, our model for the lineshape with spin
polarization, given in Eq. (3.82), does not fit the data well: If, for the fit shown in
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left and the one on the right, were fit simultaneously and the reduced chi-square is
= 15.4.

2

Eq. (3.82), does not include dipole interactions. The two data sets, the one on the
T

Figure 6-1: Example of distortion to phase of lineshape. This data represents the
highest atomic beam densities that we achieved, and the distortion is quite pro-
nounced. The data deviates markedly from the fit. The model for the fit, given in



Fig. 6-1, we allow the spin polarization ¥ to be fit, then the reduced chi-square for
the fit is x2 = 5.59, which is still unacceptable. Finally, as shown at the end of this

chapter, our model for the lineshape with the dipole interactions produces a good fit.

6.1.2 Basic physical picture

Our basic physical picture is as follows: The first oscillatory field puts the atoms into
a coherent superposition of the initial and final circular states, which have Amy = +1
or Amy, = —1. Each atom has an electric dipole moment which rotates in the z-
y (horizontal) plane. The dipoles rotate at the transition frequency. As an atom
passes between the two oscillatory fields, it “sees” a fleld due to the distribution
of other rotating electric dipoles. This field oscillates on resonance and perturbs the
atoms, modifying the phase and inversion of the atomé, thereby distorting the Ramsey
resonance data. » |

The fact that we do not entirely resolve fine structure complicates this picturé. The
lineshape fhat we detect is the sum the lvineshapes for atoms with electron spin up and
down. As discussed in section 2.4.4, the resonance frequency of atoms with electron
spin up and atoms with electron spin down differ by the fine structure splitting Avy,.
This means that the phase of the electric dipole for an atom with electron spin up
evolves at a rate different by Avy, from the same atom with electron spin down.
Thus, the field “seen” by an atom is the sum of the field due to the electric dipoles
of atoms with electron spin up and down. Also, the perturbation to an atom due to
the field depends on its own spin state. This is because the perturbation to an atom
depends not only on the phase and magnitude of the perturbing field, but also on the

phase and magnitude of the atom’s electric dipole.

6.1.3 Nature of the model

The model we present in this chapter is a perturbative model and good only to
first-order: i.e., we calculate the perturbation to the atoms due to the field of the

unperturbed atoms. A second-order model would go on to to calculate the “new”
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field due to the perturbed atoms and then determine the effect of the new field on
the atoms. In an “exact” model, on the other hand, the state of the atoms and
the fields they produce would be consistent. We have not developed an exact model
or even a second order model because the geometry of the atomic beam makes the
problem too complex. Because our model is only first-order, it is only good when
the perturbations to the atoms are srﬁall, where the meaning of “small” is defined
later in Eqgs. (6.33-6.34). The geometry of the atomic beam complicates the problem,
making it necessary to numerically calculate the electric field due to the distribution
of dipoles.

For reasons of simplicity and also because of the time-consuming nature of the
numerical integration, we make gross approximations in order to make the prob-
lem tractable. Perhaps the biggest approximation is that the model only considers
the perturbation to atoms Which,trvavel exactly along the axis of the atomic beam.
In other words, while we calculate the field due to all the unperturbed atoms, we
calculate the perturbation to only the atoms on the axis of the atomic beam. Exper-
imentally, we detect a range of trajectories—not just trajectories exactly along the
axis. We find that atoms which are near the ‘a.ucis see fields wifh, for the most part,
similar amplitudes and phases to atoms which are on-axis. Hence, we expect that

this approximation is fairly good.

6.2 The field due to atomic electric dipoles

In this section, we find an integral expression for the rotating field due to a distribution
of rotating dipoles. First, however, we derive an expression for the rotating electric

field of a single rotating dipole.

6.2.1 The co-rotating field of a rotating dipole

We start by giving an expression for the electric field of a rotating electric dipole. In
the rotating-wave approximation, we are interested only in the “co-rotating” compo-

nent of the electric field. For example, for the Am, = +1 transition, all the dipoles
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are rotating in the counter-clockwise direction as viewed from above, and at any given
point we are interested only in the counter-clockwise component of the electric field;
the clockwise component is the “counter-rotating” component and has essentially no

effect on the atoms. In other words, if we write the electric field at a given point 7 as
E(#1) = (Bre%+e, + E_e - €_) et (6.1)

then we are interested only in the projection of E(7,t) along é,: € - E(Ft) =
E+e—i(“’0t+¢0) .

From Jackson[Jac98], the electric field at position 7 due to an electric dipole at
the origin is given by

= 1 . N 1 ik e
E(r,t):m{kQ(rxﬁ')><r;+[3r(r.ﬁ‘)—p](-73—r—2)}ek, (6.2)

where k = wy/c is the wavenumber and r = [7]. We take the dipole to be complex:
7= éxpoe™ ™", (6.3)

where py is the real magnitude of the dipole and the & sign depends on the sign of
Am,.

We label the co-rotating field amplitude as £(7,t) and define it as & (7, t) =
(éxe~ot)* . E(7,t), where the (%) sign depends on the sign of Am,. Using some
vector algebra and the properties of the é, uﬁit vectors, the co-rotating field ampli-
tude at position 7" due to a rotating dipole at the origin is, regardless of the sign of
Amy,

. 2 2 -
7 4) =3P [, _sin"0) k” (E'z_)i_'_’i ikr
8(r,t)—x/§47r60 [(1 5 ) —+(5sin’f —1 o | Kl (6.4)

3

where py is the magnitude of the rotating dipole and @ is the polar angle, i.e. the
angle of 7 from 7 where 2 points up. It is easy to show that Eq. (6.4) also gives the

co-rotating field at the origin due to a rotating dipole at position 7.
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Eq. (6.4) gives the co-rotating field amplitude of a classical rotating dipole of
magnitude pp. What we actually need to consider, however, are quantum mechanical
atomic dipoles. For the classical dipole magnitude pp in Eq. (6.4), we use the mag-
nitude of the expectation value of the electric dipole moment, |[(5)|. Specifically, we

use

Po = /(p2)? + (p,)2 + (p.)2. (6.5)

Using the expectation value of the dipole as given in Egs. (3.6—3:6) and the matrix
elements from Egs. (3.3-3.5), the dipole magnitude is

Po = eagn’ab. (6.6)

6.2.2 The co-rotating field due to a distribution of rotating
dipoles

Next, we discuss our procedure for calculating the co-totating electric field amplitude
E(7,t) due to all the atomic dipoles in the atomic beam. What we actually calculate is
the macréscopz'c electric field: i.e., the electric ﬁéld averaged over some small volume
centered on the point'in question, where the length scale of the averaging volume is
much smaller than both the smallest length scale of the atomic beam and the wave-
length of the radiation. This amounts to treating the atomic beam as a continuous,
polarized medium (thereby ignoring the microscopic structure of the electric field)

and integrating over the entire polarized medium.

Expression for the field at the origin

To calculate the amplitude of the co-rotating field at the origin we must integrate
Eq. (6.4) over the volume of the atomic beam, weighted by the atomic beam density.

The integral is, taking the origin to be the point where we wish to calculate the field,

V2 .. . sin?0\ k2 /3 _, 1 ik\] .
Tres /ir p(7,t)po(T, 1) (1 - - + (5 sin® @ — 1) 3 e,
: (6.7)

E(t) =
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where p(7,t) is the atomic density, po(7,t) is the expectation value of the dipole
magnitude, and both p(7,t) and po(7,t) are complicated functions of position 7 and
time t. The density p(7,t) depends on the geometry of the atomic beam. Because
the beam is pulsed, p(7,t) also depends on time t and the velocity distribution of
the atomic beam. The dipole magnitude at point 7 and time t, po(7,t), depends on
which part of the standing-wave oscillatory field an atom at point 7 and time t went
through. Also, po(7,t) depends on how long the atom spent in the first oscillatory
field.

Behavior of the integral near r =0

The integrand has a singularity at r = 0. Near r = 0 we can consider p(7,t) and
po(7,t) as constants, so that we can write the integral in terms of r and #. The radial
integrals for the 1/r and 1/ r2 terms are integrable, but the radial integral for the 1/7°
term is not integrable—it blows up. However, the angular dependence of the 1/73
(and the 1/r? term) is such that the angular integral vanishes, so that the end result
of the integral for the 1/ r3 term is indeterminate.

The 1/r3 term is the ustatic” term of the oscillating dipole field. It gives rise to the
contact interaction between dipoles, which is described by a Dirac delta function po-
tential. Perhaps the most familiar example of the contact interaction is the hyperfine
interaction for the ground state of hydrogen which is exclusively due to the contact
interaction. We believe that in our case, we can ignore the contact interaction. We
expect that there should be little overlap of two atomic wavefunctions because as two
hydrogen atoms approach each other, the Coulomb repulsion between the protons

should prevent aﬁy contact.

90




Co-rotating field at arbitrary point 7

The co-rotating field at the origin is given by the integral in Eq. (6.7). We generalize

this expression to give the field at point 7:

. v2 1., . . sin0'\ ¥ /3 . 1 ik\]
S(To,t) = mﬁr' p(T,t)po(T,t) 1-—- 5 74— (5811120,—1) 7‘73—7‘_’2- e" ’
(6-8)

where the integral is over 7/ = 7" — 7, ¢’ is the polar angle of 7, and ' = ||

6.3 First-order solution to the Bloch vector equa-
tion of motion

In this section we examine the first-order solution of the Bloch vector equation of
motion. From Eq. (3.25), the Bloch vector equation of motion is & = ( x §. The
general expression for the pseudo torque Qfora Amg = %1 electric dipole transition
in a frame rotating at frequency w, is given in Eqgs. (3.33-3.35).

We take w, to be equal td the resonance frequency wy. We take the phase of the
rotating frame such that the unperturbed Bloch vector lies in the z-z plane. We
take the frequency of the field w to be equal to the resonance frequency wpy. Hence,
the variables Ay, and A, in Egs. (3.33-3.35) are given by Ag, = w, — wp = 0 and

r =w —w, = 0. (In general, w is only loosely the “frequency of the field”. This
is because in general we allow the phase of the field, ¢, to be time-dependent. If ®
is the phase of the field, then the instantaneous frequency is strictly defined as the

time-derivative of ®: & = w + ¢) With these values, the pseudo torque is

U = Fwgscos[@ Op,t/2 + o] (6.9)
Q = —wpesin[@ §;t/2 + ¢4) (6.10)

Q; = 0, (6.11)

where the F operand and the + subscripts depend on the sign of Am,, the @ operand
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depends on the fine structure component, ¢ is the phase of the co-rotating field
amplitude £(t), and wgy is the Rabi frequency. The Rabi frequency wry is given by
the expression in Eq. (3.32), where Ey is the absolute value of the co-rotating field
amplitude |£|.

We now expand the equation of motion in terms of the Rabi frequency wgy, and
keep terms up to first-order. To do this, we replace wgps with Awgy, where Alis a

dimensionless constant which we will later set equal to one. The-expression for the

pseudo-torque in Egs. (6.9-6.11) becomes

Ql = :F)\UJR:I: COS[@ 5fst/2 + ¢:|:] (612)
QQ = —/\wRi sin[@ 6fst/2 + (,b:t] - (613)

Q = 0, _ L , L - (6.14)
We expand the Bloch vector in terms of A: ‘
§=50 4250 £ X250 ... (6.15)

We plug Egs. (6.12-6.15) into the equation of motion, and we keep only up to first-

order in A. Then, separating the powers of A, we arrive at equations for § © and

g,

The zeroth-order equations of motion are simple:
t=0=0 Pt=0=0 Pt=0)=0, (6.16)

Without the perturbation, the Bloch vector is constant. We write the initial condi-
tions as

O =0)=4, sDt=0)=4,=0, sQ(t=0)=4s. (6.17)

'As mentioned earlier, we take Ay = 0 corresponding to the Bloch vector to starting
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out in the z-z plane. The zeroth-order solution is
sO) =41, sP(t)=0, sP@t) = A4, (6.18)

The first-order equations of motion are:

sV = —Agwpy sin[® 6,t/2 + ¢s] » (6.19)
égl) = +Aswrs COS[@ (stt/2 + (ﬁi] (620)
§) = +Ajwps sin[@ 57.t/2 + i (6.21)

If we ignore fine structure by taking 67, = 0 and if we also assume that wgy and ¢4

are independent of time ¢, then the change in 5§() is linear in time:

o)

= —tA3wR:|: sin (}5* (622)
sgl) = =tAzwps cos Py (6.23)
S:(;I) = +tA1(4)Ri sin ¢:|: . (624)

In this case, given §©® and §®, we find the first-order solution from Eq. (6.15) to
be the following sum § = §© + A5, Setting X\ = 1, the components of § are to

first-order:

51 = A1 - tA3wRi sin ¢:|: (625)
So = =FtAszwpy cosdy (6.26)
s3 = Az3+tAjwpesingy. (6.27)

In general, when wgy and ¢4 are time-dependent and § rs # 0, the solution is found

by integrating Egs. (6.19-6.21).
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6.4 Nature of the effect on the Ramsey resonance

data

6.4._1 Overview of the effect on the resonance data

Recall the method that we use for determining the transition frequency from the
Ramsey resonance data, which is summarized in Sec. 3.12. Basica}ly, we measure the
phase ®; of the sinusoidal lineshape for several different time bins j and then find the
slope of ®; versus interaction time, which determines the transition frequency.

The interactions between the atomic dipoles (that occur while the atoms are
between the oscillatory fields) perturb the phase of the sinusoidal lineshape. The
effect of these interactions is not as straightforward as a simple %requency shift, which
would only perturb the slope of the phase ®; versus interaction time. Instead, the
perturbation to the phase ®; is a complicated function of the interaction time. The
effect can be broken down into two somewhat distinct mechanisms for perturbing the
phase of the lineshape.

The first mechanism is relatively straightforward: The interactions perturb the
phase of the dipoles, and hence the phase of the lineshape. However, this mechanism
is complicated in that the size of the phase perturbation is a complicated function of
the interaction time.

The second mechanism is less straightforward: The interactions effectively last
on the order of 100 s, which corresponds to a time-limited bandwidth of (27 100
ps)™! = 1.6 kHz. This bandwidth is comparable to the fine structure frequency
difference, given in Eq. (2.44). Hence, the fine structure plays a role in the interaction
between dipoles that cannot be ignored: the perturbation resolves the fine structure
so that the inversion and the phase of the atoms depends on which fine structure
state is occupied. In other words, the effect can give an atom with electron spin up
a different inversion than the same atom with electron spin down. This results in
different lineshape amplitudes for the two spin states. The difference in lineshape

amplitude for atoms with spin up and spin down mimics the effects that polarized
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electrons have on the Ramsey resonance lineshape.

The second mechanism can be viewed as generating a “pseudo polarization”

Ay —A_

YA A

(6.28)

where A, and A_ are the lineshape amplitudes for the high and low frequency fine
structure components, respectively. Recall that in the case of real spin polarization

b

% = Py — P_ where P, and P_ are the probabilities for the two spin components.

6.4.2 Perturbation to the Bloch vector angles © and ®

As described in Sec. 3.2.3, we define the Bloch vector angles © and @ to be the polar

and azimuthal angles:

© = cosls; (6.29)
& = tan~!2 (6.30)
51

When we perform the Ramsey resonance method, the atoms start out in the lower
energy state |b). In the rotating frame (and in the lab frame) the Bloch vector points
straight down: § = (0,0,—1). The polar angle is 7 and the azimuthal angle is
undefined. The first oscillating field induces a rotating electric dipole in each atom.
At this point, the Bloch vector phase (or equivalently, the dipole phase) ® of every
atom is determined solely by the phase of the oscillatory field, and the polar angle ©
of each atom is determined by how much a of pulse the atom “saw”. For example,
a m/2-pulse would rotate © from 7 to 7/2, (from down to horizontal). How much
of a pulse a particular atom gets depends on its velocity and on which part of the
standing wave the atom intersects. For instance, an atom intersecting at a node gets
no pulse at all.

What we are interested in is the perturbation to the Bloch vector after the time T
that it takes for an atom to travel from the first oscillatory field to the second. Because

we have two fine structure components, we need two Bloch vectors to describe the
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Figure 6-2: Bloch vector angles. The angles ® and O are for the unperturbed Bloch
vector 5. The angles ® and ©’ are for the perturbed Bloch vector §'. The perturba-
tion angles ¢ and @ are the difference: ¢ = @' — ® and 6 = ©' — O.

evolution of the atoms between the oscillating fields. We use subscripts to denote the
two fine structure components. We label the unperturbed Bloch vector angles at time
T as O and @4, where +/— is for the high/low frequency component. Similarly, to
denote the perturbed angles at time T', we use ©, and ®/,. We define new variables

to be the difference between the perturbed and unperturbed Bloch vector angles:

6y = ©,— 0. (6.31)
by = T, — s (6.32)

These variables isolate the perturbation, and we refer to these angles as the pertur-
bation angles. Figure 6-2
In the limit of small perturbations, which is a requirement for our first-order

model, the perturbation angles are generally much less than one:

by < 1 (6.33)
$r < 1. (6.34)
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We also define new variables to be the average and difference of the the perturbation

angles:

_ 0+

i = = | (6.35)
¢ = ﬁ%&; (6.36)
80 = &;L (6.37)
5 = ﬁ%i; | (6.38)

We use these variables later, in Eqgs. (6.46—6.49).

6.4.3 Model for the phase of the lineshape, ;bj as a function

of the interaction time T;

The Bloch vector representation of the Ramsey resonance method is given in Eq.
(3.54). For purposes here, we use an approximate version of this equation. We assume
that A < wg. Then, to zeroth-order in A/wpg, the Bloch vector representation in

Eq. (3.54) simplifies to
§(t =T +27) = R(Z,wr7) R(2, F(AT — ¢0)) R(%,wrT) 5(t = 0). (6.39)

Now we modify this equation to include the perturbation angles ¢, and 6. Assuming

that the initial state is the lower state, 5(t = 0) = (0,0, —1), we can write
§(t =T +2r) = R(Z,wrT) R(Z, F(AT — ¢o) + ¢1)) R(&,wrT —04) &(t = 0). (6.40)

Going from right to left, the first rotation represents the action of the first oscillatory
field plus the perturbation to the polar angle, 8, where the + subscript depends on
the fine structure component. The second rotation R(2, (AT —¢)+¢=) corresponds
to both the unperturbed evolution of the dipole moment and the perturbation to the
phase ¢;. The + subscript depends on the fine structure component, while the F
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operator depends on the sign of Am,. Finally, the third rotation represents the action
of the second oscillatory field, which is characterized by the same Rabi frequency and
duration as the first.

The inversion after time T + 27 is given by the z-component of the Bloch vector:
I(w) = sin(wrT — 0+) sin(wgT) cos(AT — ¢o F ¢+) — cos(wrT — 0) cos(wrT), (6.41)

where the F operator depends on the sign of Am,. We rewrite this in the form of the
basic lineshape model, given in Egs. (3.70-3.71). The perturbed lineshape model for

a single time bin j and a single fine structure component is:

I;+(6) = Ajpcos(6T; — &;5) + Bjx (6.42)
where ®;1 = 60T @5fs I Ly +¢o, - (6.43)

where the @ operator depends on the fine structure corhponent and the + operator

depends on the sign of Am,. The lineshape amplitude A;+ and offset B;; are

T 7T
. = sgin(—=% — 4
Ajx sin (QTO Gi) sin (QTO) (6.44)
T} 7T} :
o= 1 _ 4
Bj+ cos (2T0 Oi) cos (2T0) (6.45)

where T} is the interaction time for which atoms receive a 7/2-pulse at each oscillatory
field.
Summing the two fine structure components, we find the total lineshape, I; (6) =

I;+(8) + I;_(6), and write it in terms of the angles in Egs. (6.35-6.38):

I;(8) = Ajcos(6T — @;) + B; (6.46)
where ®; = &Tj + ¢5s £ & + o, (6.47)

where A; and B; are arbitrary fit parameters, the “fine structure phase” ¢y, is given
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by

$5s = tan™? [¢ tan (5f2—T’ + 6¢)] , (6.48)
and the pseudo polarization 1 is given by
) A+ - A_ (’IT]} —)
=———=—cot|—==—0)tanéh. 4
P A, A co 2T, an (6.49)

6.5 Application of model in a simple case

In order to illustrate the essentials of our model, we now apply it to a simple case
which can be solved analytically. For simplicity, we ignore fine structure. We assume
the distribution of circular atoms is a sphere of fixed radius R; and we consider the

perturbation to an atom located at the center only. We take the density to be

: <R
oty =4 7 . (6.50)
0 : r>=R

We take the expectation value of the dipole magnitude to be constant
po(’f-", t) = Po- (651)

6.5.1 The co-rotating field amplitude £(t)

The co-rotating electric field is given by Ey = £ (t)éx, where the (+) sign depends
on the sign of Am,, which we leave arbitrary. To find the amplitude & (t) of the
co-rotating field at the center of the spherical distribution, we plug p(7,t) and po(7,t)
into Eq. (6.7). We integrate over the angles first. Because the sphere is uniform,
the angular integrals for the 1/r? and 1/r% terms vanish. Of course, the 1/r3 radial
integral blows up at the origin, but we ignore this because we assume that there is a

hard core interaction which prevents overlap of the atoms. Thus we are left with the
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1/7 term:

\/§ ’ 4 R eikr
£W) = fe—rm(en) (5) % [ (6.52)
2v/2 : -
= %[—ppo —1+e’kR(1—sz)]. (6.53)
0

If we take the radius to be R = 1/k, then the amplitude of the co-rotating field is

E(t) = 23\/5

=" ppo (0486100 (6.54)
€p :

In our experiment, the highest density of circular atoms is on the order of 10° cm™3,

For a m/2-pulse, the magnitude of the dipole moment, py, takes on a maximum value
of pg = eagn?/2 = 3.7 x 10~2C-m. Using these values, the absolute value of the field
amplitude is |(t)] = (1.9 x 1075) V/m. Examining Eq. (6.3) and Eq. (6.54), the
phase of the rotating field lags behind the rotating dipoles by 0.668 radians.

6.5.2 First-order solution to the Bloch vector equation of

motion

In this section we examine the first-order solution. The general first-order solution is
discussed in Sec. 6.3.

First we consider the pseudo torque Q). The form of the pseudo torque is given
in Egs. (6.9-6.11). From Eq. (6.54), the phase is ¢4 = —0.668. The Rabi frequency
wg+ is given by the expression in Eq. (3.32), where E; = |£|. We have

: _ 4o (1 2\’
s = 35 (2ea0n) (0.486) (6.55)

~ (9 x10%)s7L

(This value for wgy is actually on the same order of magnitude as wgy in our exper-

iment at the highest densities.) The pseudo torque is then

(= (9 x 10?) s~1(F0.785,—0.619, 0), (6.56)
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or equivalently,
0, =F707s7Y, Qy=-557s"1, Q3=0. (6.57)

Given that €} is constant, we can use the first-order solution as given in Egs. (6.25-
6.27). The solution depends on the initial conditions via A; and As (As = 0). Next,

we examine two different cases.

Case 1: 7/2-pulse

If the first oscillatory field >gives the atoms a m/2-pulse, then the initial conditions
are s§°’ =1 and sgo) = ng) = 0, so that A; = 1 and A; = A3 = 0. To first-order,
the phase of the Bloch vector, given by ®(t) = tan™? :—f%%, is unperturbed. The phase
® starts at zero and .remains at zero. The inversion of the Bloch vector, given by
the vertical component s3(t), is perturbed to first-order. Given the pseudo torque in
Eq. (6.57), we calculate the inversion at ¢t = 0.5 ms, which is a typical interaction
time in our experiment. we find: s3(t = 0.5 ms) = —Qyt = 0.279. The perturbation
angles are: # ~ —0.283 and ¢ = 0, which loosely satisfy the “small perturbation”
criterion in Egs. (6.33-6.34) (ignoring the = sign in this equation which corresponds

to fine structure). This perturbation to the inversion does not affect the phase of the

Ramsey resonance lineshape—it affects only the amplitude.

Case 2: m/4—pulse

If the first oscillatory field gives the atoms a m/4-pulse, then the initial conditions
are s = 1/v72, s = o, s® = —1/4/2. To first-order, the phase at time t is
®(t) = Q¢ and the inversion is s3 = —%(1 + Qst). Because the atoms are given only
a m/4-pulse, their dipole moments are weaker by a factor of v/2. This means that
the electric field is weaker by a factor of v/2, and hence the ©; and Q3 components
of the pseudo torque are weaker by a factor of V2 compared to Eq. (6.57). Using
this weaker pseudo torque, the phase at time t = 0.5 ms is: ®(t = 0.5 ms) = F0.250,
where the F sign depends on Amy, and the inversion is s3(t = 0.5 ms) = —0.568.

The perturbation angles are then: ¢ = F0.250 and 6 = —0.139. which loosely satisfy
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the “small perturbation” criterion in Egs. (6.33-6.34) (ignoring the =+ sign in this

equation which corresponds to fine structure).

6.5.3 Perturbation to the Ramsey resonance data

In the case presented here, the effect on the resonance data is quite simple. The
lineshape is given by Egs. (6.42-6.43), but with the & subscripts dropped and 65, = 0
because we are ignoring fine structure.

The polar perturbation angle, 8, only has the effect of perturbing the amplitude of
the lineshape, which is a benign effect. However, the azimuthal perturbation angle, ¢,
causes an apparent shift in the transition frequency. We label this shift as v4_q4, where
the subscript “d-d” stands for dipole-dipole. The shift arises because the perturbation
8¢ modifies the slope of the lineshape phase ®; with respect to the interaction time
T; (where j denotes the time bin). |

We now consider the vy_g for “case 2" above (m/4-pulse). The new slope, which

we label as 6y, is given by

d
o
oy = 60:I:dT6¢» » (6.58)
= St (6.59)

This corresponds to a frequency shift of
Vg_q = £, /(27) ~ —10° Hz. (6.60)

Given that the transition frequency is about 3 x 10! Hz, this is a fractional shift of

about —3 x 10710, The frequency shift is independent of the sign of Am,.

6.5.4 Application to a hyperfine fountain clock

We can apply the idea of the simple case discussed in the previous section to the case

of a fountain clock based on a hyperfine transition in Rubidium. In order to calculate
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the field, we consider the atoms to be a spherical cloud with magnetization
M = pugeiots (6.61)

where p is the density of atoms and p#p 1s the Bohr magneton. We take the radius
of the cloud to be R = 1/k =~ 0.7 cm, where k = 27/) is the wavenumber of the
hyperfine transition. One can show that the magnetic field at the center of a atomic
cloud is

B %pﬂO“B (0.486) +(1=0668) 5 (6.62)

where pg is the permeability of free space. One can also show that the Rabi frequency

for this field is

2
wp = §p,u0,u,23(0.486) /h. A (6.63)

If we take p = 10°/cm?, (this density is used under some circumstances[FG00] then
wp=32x10"*s"1. (6.64)

If we take an interaction time of T' = 1 second, then the total angle through which
the Bloch vector precesses is @ = wgT = 3.2 x 10~* radians. The direction of rotation
depends on the phase of the field and the direction of the Bloch vector. If we take
the worst-case scenario, then all the precession is in the azimuthal direction, and the

apparent frequency shift is

'2N3.2x10‘4 rad
T ls

Wi_g = = (2m)(5 x 107> Hz). (6.65)

For a Rubidium clock, this corresponds to a fractional frequency shift of

Wa—d _ 9 X 10_5 Hz _ -15
= e =8 X 107, (6.66)

which should be observable. (It’s not actually possible for all of the precession to be

in the azimuthal direction, but almost all of it can be.)
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6.6 Application of model to the atomic beam

In this section we apply the model to a rough representation of the atomic beam: i.e.,
the expressions that we use for the density p(7,t) and the expectation value of the

dipole moment py(7,t) are rough approximations.

6.6.1 The atomic density p(7,t)

The density is a function of position 7 and time t. We take the time ¢ to be the time
after the optical excitation. We take the origin of the coordinate system to be the
intersection of the atomic beam axis and the axis of the excitation light. We let the
z-axis point in the direction of the atomic beam and the z-axis to point up.

We write the density in terms of simpler functions:

p(70) = A, ) f (0, 2)g(=,2) B (X

The function A(z) is the longitudinal density of the atomic béam, defined such that

the number of atoms between z and z + dz is equal to

dN = A(x)vd;r (6.68)
= N\(z)dz, (6.69)

where N is the total number of atoms in the pulse and A(z) is the longitudinal
density for a pulse with only one atom. The functions f (y,z) and g(z,z) are the
probability distributions describing the transverse dependence of the density. They

are normalized such that

| two)dy=1 (6.70)

/Z g(z,z) dz =1. (6.71)

Given the z-coordinate of an atom, the probability P that the atom is located between
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Y and y + dy and also between 2 and z + ¢ is given by:
P = f(y, z)9(z, ) dy dz. (6.72)

Transverse dependence of p(7, ¢t)

and d in Egs. (4.2-4.5). For simplicity, we make the crude approximation that the
widths of the collimators are zero: We = w; = 0. We rewrite Eqgs. (4.2-4.3), which

give p and d in the horizontal directjon:

Py =dy = ws'ﬁl, | (6.73)

sc

where z is the position along the z-axis with respect to the collimator. In the vertical

direction Egs, (4.4-4.5) become:

We = wp = 0, the transverse dependence is rectangular, not trapezoidal. From the
normalization of f (¥, ) and 9(2,z), as given in Eq. (6.70), we find that their heights
are 1/py and 1 /pv, respectively.

Longitudinal dependence of p(7t)

The longitudina] density A(z, t) is determined by the velocity distribution of the
atomic beam. We define PY(v)dv to be the probability that an atom in the beam

has velocity between 1 and v + dv. For 3 thermal atomijc beam, we have[Ram56]

(6.75)
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where a = 1/2kpT/m is the most probable velocity for an atom in a gas. For a gas of
atomic hydrogen at 80 K, a = 1150 m/s. We find A(z,t) from Eq. (6.75) by setting
Az, t)dz = PV (v)dv and using z = vt and dz/dv = t. The result is:

223 |
Mz, t) = ﬁe—@/a“’. (6.76)

At time the time of excitation, ¢ = 0, this blows up. The actual linear density does
not blow up at t = 0 because of the excitation volume has finite size. This is not a
problem because we are only concerned with the atomic density for times ¢ after the

atoms pass through the first oscillatory field.

6.6.2 The expectation of the dipole moment po(7, ta)

We take the expectation value of the dipole moment to be a function of position 7
and time t,. We take the time #, to be the time since the atom passed through the

first oscillatory field. In terms of ¢,, the time ¢ since optical excitation is given as

v I
t =1ty + vl =to + %T, | (6.77)

where v iS the atomic velocity, lj, is the distance between the excitation light and
the first oscillatory field, L is the distance between the oscillatory fields, and T is the
time between the oscillatory fields. As in the previous section, we take the origin of
the coordinate system to be the intersection of the atomic beam axis and the axis of
the excitation light. We let the z-axis point in the direction of the atomic beam and

the z-axis to point up.

Dipole induced by the oscillatory field

The first oscillatory field induces a dipole moment in each atom. The strength of the
dipole moment depends on the angle o through which the first oscillatory field rotates
the Bloch vector. The dipole moment is proportional to sin c, where a = wg7. Here,

wpr the Rabi frequency and 7 is the time spent in the field.
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Figure 6-3: Path through oscillatory field, as viewed from above. The path starts at
the collimating slit and ends at point (z,y). The path intersects the first oscillatory
field at point (I.q,y;), where y; is given in Eq. 6.78. This diagram is roughly to scale,
but the vertical scale has been expanded by about a factor of one hundred relative to
the horizontal.

The Rabi frequency wg is proportional to the amplitude of the oscillatory field.
The oscillatory field is a standing wave perpendicular to the atomic beam axis, and
hence the amplitude varies as cos(ky), where y is the position along the axis of the
oscillatory field and k = 2w /X. We take the Rabi frequency to be wr = w% cos(ky;),
where w9 is the Rabi frequency for an atom passing exactly through an antinode of
the standing wave. We ignore the amplitude variation of the oscillatory field in the
vertical direction because the range of amplitudes sampled vertically is small.

In Fig. 6-3, we consider the trajectory of an atom through the first oscillatory field,
as viewed from the top. As in the previous section, we make the crude approximation
that the width of the collimator is zero: w, = 0. Hence, the trajectory begins at the
zero-width collimating slit, at point (—I,,0). We consider the trajectory which ends
at point (z,y). We ignore the vertical component of the trajectory. We label the
distance from the atomic beam axis at the first oscillatory field as y;. In terms of z

and y, y; is given by
lca

x+lcl.

vi=y (6.78)
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The angle a through which the Bloch vector rotates is

lea
a = whTcos (kyx _: lcl) . (6.79)

Given that an atom traveled a distance z — [;, in a time t,, where [}, is the distance

from the excitation light to the first oscillatory field, we find that

Ity
T — lla,

T =

(6.80)

where [ is the width of the oscillatory field. We can now write the expectation of the

dipole moment as a function of position and time:

) Clty lea
po(z,y, 2,ts) = posin [w%x — cos (kym n ld)] , (6.81)
where py = (1/2)eaon? is the maximum magnitude of the rotating dipole moment.

Spontaneous and thermal decay

Once a dipole has been induced in the atoms, a significant portion of the atoms spon-
taneously decay or undergo a transition driven by thermal radiation. These atoms do
not contribﬁte coherently to the field rotating at the transition frequency, and we can
ignore them. Hence the expectation value of the dipole moment in Eq. (6.81) decays
in time as e~Tt, where T is the rate of incoherently driven transitions out of a given
circular state, averaged over the two circular states involved in the transition.

We find T' from the expressions in Sec. 3.10.2. Instead of averaging over the n
and n + 1 circular states as mentioned above, we just use the average value of n in
the expressions of Sec. 3.10.2. For a radiation temperature of T = 9 K we have

Poa@+omyad 00 T n=2T5 (6.82)
840s™' : n=295
where for the n = 27 ——) 28 transition we have used n = 27.5 and for the n = 29 — 30

transition we have used n = 29.5.
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Beating of the fine structure components

Another significant effect is the beating of the fine structure components. The two
components, one corresponding to spin up and the other to spin down, oscillate at
slightly different frequencies. The amplitude of the expecﬁation value of the dipole
moment is modulated sinusoidally at the difference frequency Avgs =~ 2 kHz. Precise
values of Avj, are given in Eq. (2.44). We take the two spin states to have equal pop-
ulations. The expression for the expectation value of the dipole mément in Eq. (6.81)

needs a factor of cos(6ssta/2), where 85 = 2mAVys.

Final expression for po(z, Y, 2, ta)

Including the variation in oscillatory field strength, incoherent transitions, and fine

structure beating, the expectation value of the dipole moment is

lca - —_
po(Z,Y, 2, ta) = Po sin [w?{ cos (kym )] ¢~ Tta g TUaT/L cog(8f5ta/2)- (6.83)

x-lla

We make a crude approximation to this equation, separating the position variable y

from the time t:

po(T, Y, 2,ta) = Posin (w%z li“lla) cos (k ;%;) ¢ Ttae~TUaT/L cos(8fta/2)-
(6.84)
The latter expression is not totally accurate, but using it allows the integral in
Eq. (6.85) to be made time-independent, removing a level of complexity and sig-
nificantly simplifying the calculation. In the next two paragraphs, we examine the
justification for this approximation.

Figure 6-4 shows two density/contour plots which illustrate the difference between
Eq. (6.83) and Eq. (6.84). One plot is for sin[mu cos(nv)] and the other plot is for the
simpler expression sin(mu) cos(mv). Here mu = wllte/(z—li,) and 70 = kylea/ (z+1a)-
We can also write mu = (7/2) (T/Tp), where T is the interaction time and and To is
the interaction time for which mu =7 /2, i.e., the speed for which atoms travelling

down the axis of the atomic beam get a n/2-pulse. The range in u corresponds
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sin[rtucos(mv)]
_ ——

Figure 6-4: Plot of sin[nucos(mv)] and sin(nu)cos(nv). The two plots share the
same contour intervals and greyscale scheme. White corresponds to +1.0 and the
black corresponds to -1.0. The contour interval is 0.2. These plots demonstrate that
approximating the upper plot by the lower plot is quite good for v < 0.6 and good
to about 30% for 0.6u < 0.8. For u > 0.8, the dipole interactions are small and the
quality of the approximation not so important.
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to the range of interesting beam velocities: u = 0 corresponds to the very fastest
atoms and u % 1 corresponds to the atoms which are travelling so slowly that they
are getting a m—pulse. The range in v corresponds to a distance in y; of a couple of
wavelengths (a couple of millimeters), which is the approximate range of interest in
the experiment. The two plots share the same contour intervals and greyscale scheme.
White corresponds to +1.0 and the black corresponds to -1.0. The contour interval
is 0.2.

Figure 6-4 shows that over a large range, u < 0.6, the approximation of Eq. (6.83)
by Eq. (6.84) is quite good. Over the range 0.6 < u < 0.8, the approximation is good
to roughly 30%. For 0.8 < u < 1.0, the approximation bears little resemblance to
the actual function. However, this small range, corresponding to the slowest atoms,
is unimportant: as u — 1 both the atomic density and the size of the induced dipole

go to zero. Hence the dipole-dipole interactions are unimportaﬁt in this range.

6.6.3 The co-rotating field along the atomic beam axis

In this section, we find an integral expression for the co-rotating field at an arbitrary
point along the axis of the atomic beam (the z-axis). We then describe our procedure

for numerical evaluation of the integral.

Expression for the co-rotating field

Eq. (6.8) gives the expression for the co-rotating field at an arbitrary point 7% =
(0, Y0, 20) and time t. We are interested in points along the z-axis with y = 29 = 0.
Inserting the expressions for p(f,t) and py(7,t,) from Eq. (6.67) and Eq. (6.84),

respectively, we have

Elaunts) = 222 pue e T o512
ﬁf"’ {A(z‘,t =1, + %T)f(y,x)g(z, z) sin(w%x lt"l ) coslkylea/(z + 1a1)]
— Ya

sin?@'\ k2 /3 ., 1 k] g
(=55 Gurr ) G- o

111



where the transverse dependence of the atomic density, f(y, z) and g(z,z), is rectan-
gular in y and z with widths given by Eq. (6.73) and Eq. (6.74), respectively. The

integral is over 7/ = 7 — 7, ¢ is the polar angle of 7/, and 7' = |7].

Approximations/simplifications to the integral

Equation (6.85) is difficult to evaluate because it requires numerical integration of a
three-dimensional integral, where the integrand is oscillatory and has a singularity.
Furthermore, evaluating it once gives the electric field at only one point in space and
time; the evaluation must be performed at several points in space and time along
a given trajectory in order to calculate the perturbation to an atom. To make the

numerical integration manageable, we make three simplifications:

1. Along the longitudinal direction, we cut the integral off after 5 v_vaveléngths
(~5 mm). Beyond this, we find that the contributions to the integral wash out

ikr’

because the integrand oscillates as e

2. We ignore the longitudinal dependence of both the density p(7,t) and the dipole
magnitude py(7,¢,) because these functions are approximately constant over the
5 wavelengths involved in the integration. Ignoring the longitudinal dependence
of p(7,t) and py(7,t,) makes the integrand even in the longitudinal direction,

reducing the integration space by a factor of two.

3. Since we are limiting our consideration to points along the beam axis, the
integrand is even along the two transverse directions, further reducing the inte-

gration space by a factor of four.

With these three changes, the expression for the co-rotating field becomes

] lia . lt,
E(xo,ta) = 4‘7{;0poe‘”"e‘”'”“ cos(dysta/2)A(z,t = ta + LT) sin(wh——7-)
8 5\ pH[2 pv /2
dz’ / dy [ dZ ky'lea /(2o + Le
PPV /0 ’ 0 Y 0 ¢ {COS[ Y /(xo l)]

sin?@'\ k2 (3 ., , 1 k] g
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A result of these simplifications is that the integral in Eq. (6.86) is independent of the
time ¢,. This means that, for each position zq, it only has to be evaluated once—not
repeatedly for differentA times t,.

We split the expression in Eq. (6.86) into two functions:

S(E(], ta) = 51 (1'0)82(1'0, ta), (687)

where £,(zo) contains the integral and £,(zg,t,) the time-dependent portion:

i

5’\ PH /2 PV ,
&1 (zo) 47reo p— / dy’ dz cos[kylea [(zo + 1))

sin?0'\ k2 /3, 1 ik\] .
(40 e (- 2)] o

‘ | | lla o lta |
Ea(zo,ta) = e TeeTheT/L cog(§p,t,/2)A(z,t = te + IfT) sin(w%x ; ).(6.89)
— la

Note that £(zo,,) is real, and hence & (o) contains all the phase information. The
units for £ (zo) are Volts and the units for £(x,) are m~?, giving Volts/m for £(zo, ).
We now turn to the evaluation of & (zo), the time-independent portion containing the

integral.

Numerical Integration

As discussed in Sec. 6.2.2, we do not expect any contribution from the 1/r2? and
1/ terms near ' = 0. We cut off the numerical integration for the 1/r"® and 1/r"?
terms below small value of ' (typically ' = 1/ k). To cut off the integration, we
simply set the value of the integrand equal to zero for ' < 1 /k. We find the results
of the numerical integration to be essentially the same for small changes in the cut
off position.

We use Mathematica to perform the numerical integration at about 10 points along
the beam axis. The points are equally spaced, and they cover the range between the
two oscillatory fields. The calculation for the ten or so points takes only a few minutes

on a 500 MHz G3 Apple computer. Figure 6-5 shows the mathematica results for
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Figure 6-5: Numerical results from Mathematica for & (xzq), which is defined in
Eq. (6.88). The top graph is the absolute value of & (zy), and the bottom graph
is the phase of £;(z¢). In other words, if we write & (z = 0) = ae®, where a and b
are real, then the top graph is of a and the bottom graph is of b. Multiplying & ()
by &»(xo,1), as given in Eq. (6.89), yields the field amplitude £(zq,t) at point zo and
time ¢.
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&1(xo). The top graph shows the absolute value and the bottom graph shows the
phase. Results are shown for both the n = 27 — 28 and the n = 29 — 30 transitions.
The absolute value of &£,(zq) decreases with z, because the interatomic distances

increase as the beam diverges.

Field “seen” by a given atom along the beam axis

We now consider the field “seen” by an atom travelling down the beam axis at velocity
v with a corresponding interaction time of T = L/v, where L is the distance between
the two oscillatory fields.

In the previous section we found the field as a function of z¢, the position along
the beam axis, and ¢,, the time after the first oscillatory field. “The position is given

by

zo = s + %ta. (6.90)

We can write the field as a function of T and ¢, rather than as a function of o and

to, and we can write it in terms of the functions & (zo) and &>(t). We have
E(T, ta) = 81 (170 = lIa + Lta/T)gz(l'o = lza + Lta/T, ta). (691)

Thus, an atom with interaction time T sees the field £(T,,) as a function of time ¢,.

6.6.4 First-order solution to the Bloch vector equation of

motion

In this section we examine the first-order solution to the Bloch vector equation of
motion. The general first-order solution is discussed in Sec. 6.3. The form of the
pseudo torque Qis given in Egs. (6.9-6.11), where ¢ is the phase of £ (T,t) and wry
is the Rabi frequency, given by the expression in Eq. (3.32), where Ey = |E(T, t)).
We now consider the solution, given in Eq. (6.18), to the zeroth-order equations of
motion. The solution is static and is given by the initial conditions, i.e., the conditions

right after the first oscillatory field, which rotates the Bloch vector from (0,0,—1) to
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(sin 2:,7: ,0, — cos 3 L) where Ty is the interaction time for a 7/2—pulse. We have for

the solution to the zeroth-order equations:

T
sO() =0, and s{)(t) = —cos — z

) aT
1 (t) =sin — T

Ty (6.92)

which are independent of ¢.
Moving on to the the first-order equations of motion, given in Egs. (6.19-6.21),
we find the solution for 5()(¢) for an atom with interaction time T is given by the

following integrals:

sO() = —0035770 / At wrs sinf® 87:t'/2 + 4] (6.93)
sgl)(t) = JFcos ﬁ(—, /dt Wre cos[@ 055t /2 + du) v (6.94)
sgl)(t) = + sm — /dt wrs sin[@ 05t /2 + P4], (6.95)

where wgy and ¢4 are considered to be functions of the dummy variable ¢'.

We now rewrite Eqs. (6.93-6.95) at time t = T. We replace wgy with the
expression in Eq. (3.32), where Ey = |E(T,t)|. We write |£(T,t)| in terms of both
|Ei(zo = lia + Lt,/T)|, shown in Fig. 6-5, and |Ea(z0 = Lo + Lt,/T,t,)| given in
Eq. (6.89). We have

2 3
Oy — _0% ey 2L ppenp g 7T T
51 (t = T) = —\/ﬁe T/ NWB ] SIHQ—T—COS2—,ITO

T -t
/ dt' |&x(zo = lia + Lt T)| S c0S0rst'/2) Gl 6,48 /2 + 6] (6.96)

t+ l[aT/L
2 3
Wy = 7097 rwrey 2L e gy T T
t=T) = WT/LN =2 ~cos o
sy ( ) \/_h —e Na4T3 sin T, cos T,

e~ T cos(d;,t'/2)

/ dt' |E(z0 = e + Lt'/T))| cosl® 65t /2 + 61 (6.97)

t+ 1, T/L
(V)p _ _ eaO" —Tl,,T/L 203 @D w2 L
s3 (t=T) = \/_he ! N—a4T3e ! F sin o

e T cos(;5t'/2)
t+ llaT/L

/0 dt' &) (o = lia + L' /T)| sinl@ 6,8 /2 + dx].  (6.98)
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Here the variable ¢, refers to the phase of the field. Below we use ¢ and ¢4 to refer
to the phase of the Bloch vector.
The Bloch vector é,ngles at time T are given by Eqs. (6.29-6.30) with ¢ = T

© = cos™![s3(¢t = T)] and & = tan! %(i—:% The perturbation angles, 8 and ¢, are

defined in Egs. (6.31-6.32). We write 6 and ¢ in terms of 5 (¢t = T) and 5 (¢ = T)

0 = cos s\t = T) + s (t = )] - cos_l[sgo) (t=T)] (6.99)
st =)

¢ = tan’! .
st =T)+ sVt =1

(6.100)

6.6.5 Concrete demonstration of the model

In this section we make a concrete demonstration of the model. We choose the
parameters of the model to correspond to the data shown in Fig. 6-1. Specifically, we

use the parameters in Table 6.1.

Symbol Value Description

n 29.5 Average of n = 29 and n = 30
a 1150 m/s | most probable velocity for hydrogen gas at 80 K

Amy, +1 Change in magnetic quantum number m,
T 400 ps Interaction time T which gets a /2-pulse
N 20000 Total number of atoms in the pulse
dfs (27)1355 s~ | Fine structure splitting for n = 2930 from Eq. (2.44)
r 840 s™1 decoherence rate from Eq. (6.82)

Table 6.1: Parameters used for a concrete demonstration of the model.
These parameters correspond to the data in Fig. 6-1. As we will see,
the sign choice for Am, does not matter. The choice of To = 400 ps is
a rough guess. The choice of N = 20000 is a rough guess derived from
the number of atoms detected per pulse and other factors described in
Sec 4.1.4.

Bloch vector angles

We use Mathematica to evaluate the Bloch vector angles # and ¢, given in Egs. (6.99—
6.99), for the both the high and low frequency fine structure components. We use the
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parameter values listed in Table 6.1. Figure 6-6 shows the results of the evaluation
The top left graph shows 6., where the + subscript depends on the fine structure
component. The top right shows ¢4. The other four graphs show the average and
difference angles. Note that for the Am, = —1 transition, but with the same param-

eters as above, the only change to Figure 6-6 is the sign of the azimuthal angles ¢,

¢-, ¢, and 6¢.

Perturbation to the Ramsey resonance data

Equations (6.46-6.49) give the resonance lineshape in terms of the Bloch vector angles
8, 80, ¢, and 8¢. Using these equations and the angles from Fig. 6-6, the results for
the lineshape parameters are shown in Fig. 6-7. The bottom left shows the pseudo
polarization 1, the upper left shows the fine structure phase ¢y, ’tvhe'top right shOWs
the average phase perturbation ¢ (this is the same as in Fig. 6-6), and the bottom
right shows the total perturbation to the phase of the lineshape due to the interaction
between the dipoles, ¢, + é.

As specified in Table 6.1, Fig. 6-6 corresponds to a Amy = +1 transition. For a
Amy = —1 transition, the azimuthal variables, ¢ and é¢, would change sign. However,
the lineshape parameters are independent of the sign of Am,. This can be seen from
Egs. (6.46-6.49), where the & operator in front of the azimuthal variables also depends
on Amy, thus the two sign changes negate themselves.

The bottom right graph of Fig. 6-7 is to be compared to the residuals in Fig. 6-1:
the two are very close. The size and shape of the total perturbation to the phase of
the lineshape, ¢y, + ¢, depends sensitively on the values of the parameters listed in
Table 6.1. Among fhese parameters, N and T are not accurately known. In the next
section, we describe our numerical model for fitting the data, and we allow the two

parameters, N and Ty, to be fit.
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Figure 6-6: Mathematica results for the perturbation angles, § and ¢, as given in
Egs. (6.99-6.100), using the parameters in Table 6.1. The top left graph shows 6y,
where the + subscript depends on the fine structure component. The top right shows
¢4+. The other four graphs show the average and difference angles. Note that for the
Amg = —1 transition, but with the same parameters as above, the only change to
Figure 6-6 is the sign of the azimuthal angles ¢, , ¢_, @, and §¢.
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Figure 6-7: Evaluation of the lineshape parameters using the pertur-
bation angles given in Fig. 6-6. The bottom left shows the pseudo
polarization ¢, the upper left shows the fine structure phase ¢y;, the
top right shows the average phase perturbation ¢ (this is the same as
in Fig. 6-6), and the bottom right shows the total perturbation to the
phase due to the interaction between the dipoles, ¢, + é.

6.6.6 Demonstration of fitting the model to the data

The lineshape is given by Eq. (3.81), which we reprint here:

sin(Tha §)
Ij = (1‘%1+26)AJ COS (6'13 - (I)]) + Bj. (6101)
When we include the interactions between the dipoles, the phase of the lineshape, ®;,

is slightly different from Eq. (3.82):

2 A 8¢.7T: ' -
®; = 60T+ Po— ;462‘—;10 —tan~! [cot (-72% - 0) tan 66 tan (%T’ + 6¢)] +¢. (6.102)
j

To get this expression for ®;, we have taken 9 in Eq. (3.82) to be zero: i.e., we have

taken the real polarization to be zero. We then added the pseudo polarization phase,
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¢7s, given by Egs. (6.48-6.49), and we also added the extra phase +.

The challenge of the model is to calculate the angles 0, 60, ¢, and 0¢. They
are defined in terms of 0+ and ¢4 in Egs. (6.35-6.38). These, in turn, are given by
Eqgs. (6.99-6.100) in terms of the “zeroth-” and “frst-order Bloch vectors”, 5 and
§M)| respectively. These in turn are given by Eq. (6.92) and Egs.(6.96-6.98). To
evaluate Eqs.(6.96-6.98) we need to use numerical integration. We use Mathematica
to evaluate the numerical integrals for several different values of T, for both the
n=27—28 and the n=29—-30 transitions. We then program these numerical results
into our fitting routine, which is written in the C programming language. Our fitting
routine uses an interpolation procedure to get the value of the numerical integrals
at arbitrary T. The fitting routine treats N, the number of atoms per pulse, and
Ty, the interaction time for which atoms traveling along the atomic beam axis get
a m/2-pulse, as fit parameters. .The fitting routine uses fixed values for the other
parameters in Eqgs.(6.96-6.98). For the n=29—30 transition, these fixed values are
given in Table 6.1.

Figure 6-8 shows the fit of our numerical model, given in Eq. (6.102), to the same
data used in Fig. 6-1. This data represents the highest atomic beam densities that we
achieved, and the distortion is quite pronounced. To ease comparison, the scales of
Fig. 6-8 are the same as the scales of Fig. 6-1. The two data sets in Fig. 6-8 were fit
simultaneously, and the reduced chi-square for the fit is x2 = 1.29(27), which is fairly
consistent with one. (The number in parenthesis is the expected one o deviation from
a value of x2 ~ 1. For a large number of degrees of freedom v this deviation is given
by approximately 2/1/v, as can be checked by tables for the X2 distribution.) We fix
the parameter values listed in Table 6.1 except for NV and Ty, which we allow to be
fit. The fit results for these parameters are quite reasonable: N = 28400(2100) and
To = 359(11) ps. However, the fit values for these parameters must be taken with a
grain of salt. This is because the model is approximate and the parameters are not
physically well-defined.

Figure 6-9 shows the fit of our numerical model to data on the n=27 —28 tran-

sition. This data represents the highest atomic beam densities that we achieved for
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Figure 6-8: Fit of the model, given in Eq. (6.102), to example data for n=29 —30.

This figure is to be compared to Fig. 6-1. The quality of the fit is good: The two

= 1.29(27), which is fairly consistent with one.

data sets shown here were fit simultaneously, and the reduced chi-square for the fit is
2
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Figure 6-9: Fit of the model, given in Eq. (6.102), to example data for n

= 3.10(35), which is six o away from one.

The quality of the fit is not good: The two data sets were fit simultaneously, and the
2
T

reduced chi-square for the fit is x
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the n=27 —28 transition, and the distortion is fairly well pronounced. The two data
sets in Fig. 6-9 were fit simultaneously, and the reduced chi-square for the fit is
x2 = 3.10(38), which is 5.5 o away from one. This is only marginally better than
a straight-line fit to the data which yields x? = 3.94(33), which is 8.9 ¢ away from
one. For some reason the model lineshape does not work well for our data on the
n = 27—28 transition.

The main difference between the n=27—28 and the n=29—30 transitions is the
time T, given in Eq. (3.78), for which the interference between the two fine structure
components of the lineshape is totally destructive (assuming no real or pseudo polar-
ization ). The times T are 242 ps and 369 us for the n=27 —28 and the n=29 —30
transitions, respectively. It is for times near T¢ that the phase of the lineshape is the
most affected by an imbalance in the weights of the two fine structure components.
Because of this difference in the‘ ﬁhe structure beating, the optimal value of Tp is
different for the two transitions. |

We briefly describe the other fit parameters, of which there are four: &pt, ¢oz,
where the + subscript signifies the sign of Am,. Recall that 84 is the frequency of
the transition with respect to the scan center wgy: dp+ = wor — wex. The average,
80 = (604 + 80-)/2, is the magnetic field free transition frequency with respect to the
average scan center w, = (wWey +we_)/2. Again, these parameters must be taken with

a grain of salt because the model is approximate in many ways.

6.7 Conclusion

In this chapter we developed a semi-quantitative model for the distortion to the
phase of the lineshape due to the interaction between the dipoles in the atomic beam.
We refer to the model as semi-quantitative because we make approximations which

introduce unquantifiable error. The most problematic approximations include:

o Keeping only terms to first-order in the strength of the perturbation.
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¢ Considering only the perturbation to atoms which travel exactly down the axis

of the atomic beam.
¢ Use of a simplified representation of the atomic beam geometry, p(7,t).

¢ Use of a simplified representation of the expectation value of the dipole moment,

po(7,1).

Despite these approximations, we showed that the model is sﬁccessful at (semi-
quantitatively) describing éome of the data. It fits the n=29 —30 data well, but
does not fit the n=27 —28 data. We do not know specifically why the model does
not fit well to the n=27 —28 data, except that the model is approximate. We con-
clude that the dipole interactions are too complex to allow accurate modeling, and
we can not use this model to extract cRo, with any cqnﬁdence, especially from the
data taken at higher densities. |

As far as we know, this coherent dipole-dipole interaction has not been observed
in any other precision resonance experiment. However, as discussed in Sec. 6.5.4, we
anticipate that the effect should be observable in atomic clocks based on hyperfine
transitions at fractional accuracies greater than 10~!5 and atomic densities greater
than 10° cm~3, under certain conditions. In a fountain clock, the calculation for the

distortion should be much easier because
e A first-order treatment would be well justified.
* The geometry of the atomic cloud is a simple sphere.
e The atoms all see the same pulse of radiation.

e The problem can likely be done analytically.
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Chapter 7

Sources of Systematic Error

7.1 Effect of Blackbody Radiation in the Millimeter-

Wave Cavities

7.1.1 Introduction

Thermal radiation drives transitions and shifts transition frequencies. The shifts
are referred to as AC Stark shifts. As explained in Sec. 5.2.6 of Peter Chang’s
thesis[Cha92], the AC Stark shift in the resonance frequency due to blackbody radi-
ation is negligible (<0.2 Hz at any temperature below 300 K). The AC Stark shift is
small because both the lower and upper states are shifted by close the same amount.
For example, in blackbody radiation at 300 Kelvin, the AC Stark shift of a circular
state with n = 30 is about 2 x 10® Hz, but the differential AC Stark shift between
circular states with n = 29 and n = 30 is only about 2 x 10~2 Hz, which is negligible.
However, we easily observe the transitions driven by thermal radiation. Sec. 3.10.2
discusses how we cool the ambient radiation to an effective temperature of about 9 K
in order to reduce the thermal transition rate below the spontaneous transition rate.

The thermal radiation contained in the millimeter-wave cavities does not follow a
blackbody distribution. The spectral energy density of the radiation contained in the
cavities is peaked at the frequencies of the cavity modes, given by Eq. (4.10). One
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of the fundamental transverse cavity modes is tuned to the atomic resonance under
investigation. In this section we find expressions for the transition rate between the
two states, I'y, and the AC Stark shift to the transition frequency, Vac, both of which
are due to the thermal radiation in the resonant cavity mode. We also present data
on the transitions driven by the thermal radiation in the cavities. From this data we
extract the transition rate I'{. Using this rate, we make an estimate for v4c. We then
find L&Y the apparent frequency shift to the Ramsey resonance data due to the

“pulling” of v4c. We show that via™* is negligible.

7.1.2 Expressions for I' and v ¢

In this section we find expressions for I'¢ and v4¢, which, as we will show, are closely
related. As usual, we take z-axis to point in the direction of travel of the atomic
beam, the y-axis to lie along the cavity axes, and the z-axis to point up. There is
no electric field along the y-direction, and the electric field along the z-direction is
irrelevant because we observe Amg = %1 transitions, not Am, = 0 transitions.

For the purposes of estimation, we approximate the shape o.f the gaussian cavity
mode as a uniform cylinder. We take the length to be d = 80.4 mm. We take the
diameter to be equal to the waist of the gaussian beam given by wy = 3.4 and 3.8
mm for the n = 27—28 and the n = 29—30 transitions, respectively.

The AC Stark shift to the resonance frequency of a two-level system due to a

distribution of radiation is [FW81]

e?an*

o 1 1
= 2 d 1
Vac 167h2 /0 Eo(w) (wo —w + wo + w) n (7.1)

where e is the proton charge and E2(w) dw is the square of the electric field amplitude

along the z-direction in the range w to w+ dw. The transition rate due to the thermal

radiation is [FW81] (from Fermi’s Golden Rule)

7re2a2'n,4
I = 280 B (w = wy) (7.2)
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In Eq. (7.1) and Eq. (7.2) we have used zo = jaon® for the matrix element of

p
z between the two circular states with quantum number n» and n + 1. Note that
Eq. (7.1) incorporates the equal and opposite AC Stark shifts of the upper and lower
states.

Next, we estimate E2(w) at an antinode of the cavity. In thermal equilibrium

at a temperature T, the energy in the resonant cavity mode is kT (assuming that

kT > huwg). The energy density is given by
u=kT/V, (7.3)

where V is the volume of the cylindrical cavity. This result is a spatial average—along
the cavity axis, the actual energy density varies sinusoidally as cos?(ky). Integrating u
over the volume of the cavity yields the total energy kT'. The spectral energy density

has a Lorentzian distribution:

2o (v/2)?
™ (W —we)? + (v/2)*

u,(w) = (7.4)

where w, is the center frequency of the cavity mode and v is the FWHM of the
Lorentzian. From measurements of the reflected power as a function of frequency we
find 7 to be about v = 27 - 5 MHz. We have normalized u,(w) such that integrating
u,(w) over w yields u = kT/V. From electrodynamics, the energy density due to a
standing plane-wave is €gE? = €9 E2 cos?(k - 7) cos?(wt + ¢), where E is the magnitude
of the electric field and Ej is the amplitude of the oscillating electric field. The spatial-
and time-averaged energy density is u = %E&, where the factor of four comes from
averaging the sinusoidal terms: (cos?(wt) cos?(k - 7)) = 1. It follows that the spectral
energy density is

(W) = FE2(w). (7.5)

Combining Eqs (7.3-7.5), we find

8kT (v/2)

2 —
Bl) = vy = + /P

(7.6)
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Using this result for £2(w) and Eq. (7.1), we find the AC Stark shift to be

Vac

_ e2aZnt 8kTv /Ow (v/2) ( 1 1 )dw. (7.7)

= +

167h% eV y (w—w)? + (v/2)2 \wg — w wo + w
We take the rotating-wave approximation by dropping the anti-resonant term (the
term with wy + w in the denominator). Letting u = (w — we)/(v/2) and up = (wy —
we)/(7/2), the integral has the form

[ 1 1 Ug

I = du =
“ Wu§+1’

- 7.8
—o I+ u2uyy—uy (7.8)

where we have taken the principal part of the integral and have approximated the
lower bound of the integral as negative infinity. The lower bound is actually —2w, /v,
the absolute value of which is much greater than one. Note that wg is the fractional
mistuning of the cavity from the resonance, in terms of half the cavity linewidth. The
AC Stark shift is then

e?alntkT w,
_ . 7.9
S oreh Vg 4 1 (%)
Using the above result for E2(w) and Eq. (7.2), we find the thermal transition rate

when the cavity is tuned on resonance (we = wp)

e2a2n’kT

= —
¢ egh2V7

(7.10)
Inspecting Egs. (7.9-7.10), there is a close relationship between v, and I' ¢. Com-

bining these equations, we find that the AC Stark shift is given by

C UO

Vac = =L —r"
AC 2rud +1

(7.11)

which depends only I'f and the fractional mistuning of the cavity, ug.

The temperature T in Egs. (7.9-7.10) is not well defined. This is because the
radiation is not in thermal equilibrium. The radiation is coupled to the 4 K cavity
mirrors and, via the input coupler, to the 300 K room temperature environment. The

effective radiation temperature 7, is determined by the temperature, the emissivity,
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and the transmission of
e the ~80 K Teflon window on the liquid nitrogen cooled cryogenic shield
e the ~4 K fused silica optic used for the input coupler of the cavity.
e the ~4 K solid copper end mirror of the cavity.

We do not attempt to calculate T, because of our lack of knowledge of most of these
parameters. In the next section we present and analyze some data from which we

extract I'¢, and in turn T, for the purpose of estimating vac.

7.1.3 Presentation and analysis of the data which shows the

effect of the cavities

In this section we present data taken under special circumstances in order to make
transparent the effect of the thermal radiation in the resonant cavity mode on the
inversion of the atom. We analyze this data and extract the thermally-driven transi-
tion rate I'¢ and then solve for the value of the effective cavity radiation temperature
T..

Figure 7-1 shows the data from which we extract the transition rate I'f due to
the thermal radiation in the cavities. Figure 7-1 also shows the fits to a function
of the form y = ma + b, where the slope m is fit and the “y-intercept” b is fixed
at -1. The meaning of these fits is discussed below. The data was taken on the
n = 27—28 transition. The method for taking this data is straightforward: We turn
off the millimeter-wave radiation. We prepare the atoms in the n = 27 circular state.
We pick a cavity and measure the inversion of the atoms with this cavity tuned and
then mistuned. The difference in the atomic inversion is due to the thermal radiation
in the resonant cavity mode. We repeat this process for the other cavity.

For a simple understanding of this data, we consider the thermally-driven and
spontaneous transitions as a small perturbation and keep only terms up to first order
in time t. Also, we take the spontaneous decay rate and thermally-driven rates to be

independent of the principal quantum number n. This is a good approximation in
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Inversion

Inversion

---- First cavity ON resonance, slope =707(5) s™
— First cavity OFF resonance, slope = 639(5) s™!

—— Second cavity OFF resonance, slope = 713(5)s™" el
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Figure 7-1: Effect of the radiation in both the first and second cavities on the final
state inversion. When a cavity is tuned on resonance, the thermal radiation tends to
drive the atoms from the lower state to the upper state, which means the inversion
goes up. This effect increases with the amount of time spent in the cavity: The
change to the inversion is more pronounced for the slower atoms (the atoms with
longer interaction time T). As described in the text, the straight lines are a fit of a
first-order model to the data. The fit results for the slope are quoted in the figure.
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the limit of high n, where n is the principal quantum number. We take all N atoms
to be prepared in the lower state: Na(t = 0) = 0 and Ny(t = 0) = N. We label the
spontaneous decay rate as ', and we label the thermally-driven rate as I';. The atoms
spend a time t. = wo/v = (wo/lLia)tia in the cavity, where v is the atomic velocity,
wp is the waist of the cavity mode, 4 is the distance from production to detection,
and t4 is the time from production to detection. We label the thermally-driven rate
between the upper and lower states while the atoms are are in the cavity as I';. We
ignore the spontaneous decay induced by the cavity mode—it is a relatively small
effect when 7 = kT/(hwp) > 1. To first order, the population in the upper and lower
states just before detection at time ¢t = ¢4 is easily shown to be

Nylt=ty) = N (r_t + %r:) ta (1)
w

Nit=ty) = N+N (—213 T, -3 "r‘;) ta. (7.13)

. | id
These expressions, being only good to first order, neglect the return of atoms that
have been transferred out of a state. The inversion, Z = (Np — N1)/(N2 + Ny), is

given to first order by

T(t = tig) = —1+2 (%Ff + P,) tia. (7.14)

If the cavity is tuned far from resonance, then the expression for the inversion reduces

to

I(t = tld) = —1+4 2T 4. (7.15)

The quality of the fits in Fig. 7-1 is not good. If we include a second-order term,
then the fit is good. For simplicity, we neglect second-order effects. From Egs. (7.14)
and (7.15), it can be seen that the difference in inversion between the tuned and
untuned cavity is

),AT = 2(;:——:1"ft,d = AT - ti, (7.16)

where AT is the difference in slope between tuned and untuned cavity. From the
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fit parameters shown in Fig. 7-1, we find that the difference in the slope AT is, for
the first cavity, AT = 42(4) s7!, and is, for the second cavity, AT = 34(4) s7!. The
average for the two cavities is AT = 38(3) s~!. The uncertainty quoted is a statistical
uncertainty only. The total uncertainty is probably about 30% because we dropped
the second-order terms. Solving Eq. (7.16) for I'¢ we find

lld 3 -1
|‘C—_ﬁ|‘-—4'7x 0°s . 7.17
t 2'LUO 1 ’ ( )

where we have used [;y = 0.834 m, wp = 3.4 mm, and AT' = 62 s™!. Combining

Eq. (7.10) and Eq. (7.17), we derive an estimate for T

la €oh2V~
2wp e2a@nk

T = AT =18K. (7.18)

We expect that Eqgs. (7.17-7.18) are accurate to about 30% or so, with most of the

inacéuracy coming from the fact that we dropped the second-order terms.

7.1.4 AC Stark shift

We now find an expression for the AC Stark shift by combining Eq. (7.11) and
Eq. (7.17):

_ l[dAF Ug

C dmweud+ 1

Vac (7.19)

As described in Sec. 4.3.2, we tune the cavities to a fractional accuracy of about 5%.
Hence we use (up) = 0 with an uncertainty of Aug = 0.1. This translates into an

uncertainty for v4o of

Avyc = Vo Auy. (7.20)

Using Egs. (7.19-7.20), our best estimate of v4c in the cavities is
Vapc = 0(70) Hz. (721)

This shift “pulls” the Ramsey resonance lineshape, leading to an apparent fre-

quency shift reduced by the ratio of the cavity diameter to the inter-cavity separation.
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From Eq. (3.66), the shift to the fitted frequency is

s =28, (722
where Tz¢ is the average of vy for the two cavities, given by Vac = 0(50) Hz. Our

best estimate for the shift to the Ramsey resonance data is
yRemsey — 0.0(7) Hz, (7.23)

which represents a fractional uncertainty in the resonance frequency of about 2 x 10712,

which is unimportant.

7.2 Collisions with residual gas

This brief section is based on Peter Chang’s thesis[Cha92]. Collisions of the Rydberg
states with the residual gas result in a frequency shift which is proportional to the
pressure. The main gas load in the interaction region is from the hydrogen beam.
To estimate this shift, we use a measurement of the pressure shift due to Hy on
Rb Rydberg atoms, which is 150 MHz/torr[TKSW89]. We estimate the gas density
in the interaction region, expressed in equivalent room-temperature pressure, to be
p &~ 3% 10712 torr. The pressure shift is £, = 4 x 10~* Hz for an n ~ 30 level, and the
relative shift between the n level and the n + 1 level is much smaller. This pressure

shift is negligible.

7.3 Spin polarization

As discussed in Sec. 3.10.1, if the electron spins have some non-zero polarization ¢
along the quantization axis of the circular states then the two fine structure com-
ponents will not have equal weights. Here, ¢ = Py — P_ where P, and P_ are the
probabilities for the two spin states. Spin polarization perpendicular to the quan-

tization axis does not affect the weighting. We do not entirely resolve the two fine
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structure components, and an imbalance between them can lead to a systematic error.

In early versions of the experiment, the electron spins were slightly polarized
(¥ = 0.1) along the qﬁantiza.tion axis. We deduced that the only mechanism for
producing spin polarization was elliptical polarization of the excitation light. How-
ever, this mechanism would create spin polarization along the axis of propagation
of the excitation light—not along the quantization axis. We then realized that the
(essentially random) residual magnetic fields had the effect of unpredictably rotating
the spin polarization. The interaction of the spins with the residual magnetic fields
was about as strong as the spin-orbit interaction, further complicating the dynamics.
Thus, some of the spin polarization created along the axis of the excitation light was
rotated to be along the quantization axis. Although our lineshape model can account
for a constant spin polarization, but the spin polarization was not constant due to
the time-dependent rotations caused by the residual magnetic fields.

In the current generation of the experiment we reduced this problem to a negligible
level by using linearly polarized excitation light and by applying a small (150 mG)
magnetic field to stabilize the dynamics of the spin polarization. We measure the
power in the unwanted linear polarization component to be a factor of 2000 smaller
than the power in the desired linear component. This means the spin .polarization
we impart to the electrons is less than ¥ = 5 x 10~%. The uniform magnetic field
that we apply is roughly parallel to the quantization axis. This magnetic field has a
strength of about 150 mG and overwhelms the residual magnetic fields and the spin-
orbit interaction. Any spin polarization we create adiabatically follows the direction
of the‘magnetic field. Thus, any small amount of spin polarization caused by the low
level of elliptical polarization of the excitation light stays roughly perpendicular to the
quantization axis, reducing the spin polarization 1 along the quantization axis. The
angle between the magnetic field and the quantization axis is less than 0.1 radians,
so that 1 < 5 x 107°. This level of spin polarization is negligible; the fine structure
splitting is ~ 2 kHz, and a spin polarization of ¥ =5 x 107° leads to a bias of only
about 0.1 Hz.
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7.4 Absolute frequency and spectral purity of the
millimeter-wave radiation

The millimeter-wave radiation we use to do spectroscopy has a frequency on the
order of 300 GHz. Its frequency is referenced to the 10 MHz output of a cesium clock
(Hewlett-Packard, model 5061A) by a frequency multiplication chain. We regularly
check the long term frequency accuracy of the cesium clock by comparing it to atomic
clocks maintained by the U.S. Naval Observatory. We do this comparison with a
Loran receiver (Stanford Research Systems, model number FS700), and the fractional
accuracy of our cesium clock is typically better than 1 x 1072 over several hours.

The short term accuracy of the millimeter-wave frequency is dominated by phase
noise on the millimeter-wave radiation due to the cesium clock and/or the frequency
chain picking up noise from the 120 VAC electrical power. This phase noise is at
multiples of 60 Hz away from the carrier and is not random—its phase is related to
the phase of the 60 Hz, 120 VAC electrical power. In our experiment, we make many
short time-scale measurements: about 106 measurements a night, each of which lasts
about 1 ms. The effect of random phase noise tends to average out over many short
time-scale measurements. The systematic phase noise may or may not average out
in this manner, depending on the exact timing of the measurements relative to the
timing of the noise.

To eliminate our sensitivity to this systematic phase noise, we set the repetition
rate of the lasers to be 61.00 Hz and accumulate data for 61 shots before changing
parameters. The effectiveness of this approach can be seen by taking the Fourier
transform of noise at 60 Hz which lasts for one second. The noise power spectrum is
maximized at 60 Hz and is zero at 61 Hz. Consequently, we always take data for one

second at each point with the lasers operating at 61.00 Hz.

136




Chapter 8

Data Analysis: extraction of cRug

from the Ramsey resonance data

This chapter is the culmination of this thesis. In it, we describe the data analysis

that we perform in order to extract cR., from our Ramsey resonance data.

8.1 Overview

8.1.1 Final data

As in all such precision measurements, the final data was acquired after a long period
of data taking to search for, diagnose, and hopefully eliminate systematic errors.
Thus the final data represents only a small fraction of all the data acquired. The final
data, described in Table 8.1, comes from four separate days and involves both the
n = 27—28 and n = 29—30 transitions. Table 8.1 itemizes each data set of the final
data. It gives the date that the data was acquired, the circular state transition used,
the bias voltage for the electric field, and the the average counting rate R, which is
the average number of atoms detected per second.

The instantaneous counting rate fluctuates significantly from shot to shot, due
mainly to fluctuations in the power of the optical excitation light, but the average

rate R is relatively stable over the time to acquire a given data set in Table 8.1. The
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Index | Acquisition Date | Transition Bias Voltage Counting Rate R
1 April 12 2728 | 40.19993(1) V| 1.10 x 10% 51
2 April 12} 27528 | —0.19993(1) V| 1.10 x 10* -1
3 May 8 * 2728 | 4+0.19995(1) V[ 0.51 x 10% 51
4 | May 16 27-28 | +0.50005(1) V| 1.15 x 102 =1
5 May 16 2728 | —0.50006(1) V| 1.22 x 104 s-1
6 May 16* 2728 | +0.50000(1) V | 0.81 x 104 -1
7 May 16* 2728 | —-0.50001(1) V| 0.75 x 104 -1

-8 | May 21F 29—30 [ +0.40009(1) V| 225 x 10% 51
9 May 21 _ 2930 | —0.40009(1) V | 2.20 x 10¢ -1
10 |} May 21* 2930 | +0.39991(1) V| 0.69 x 10? -1
11 | May 21* 29430 | —0.39991(1) V| 0.67 x 10% -1

Table 8.1: Summary of final Ramsey resonance data on circular tran-
sitions. Each row describes a data set, and each data set includes both
Amy = +1 and Am; = —1 data. We index the data sets for later
reference. The asterisks mark the data taken at low densities. The
and * symbols mark the data shown in Figs. 6-8 and 6-9, respectively.

average counting rate R for a given data set is the total number of atoms counted
divided by the time duration of the data set.

The maximum counting rate we can achieve is in the range 0.5-2.5 x104 s~! and
varies from day to day aﬁd also within a single day due to variations in the efficiency
of the atomic source and optical excitation. In acquiring this data, we exercised
some control over the counting rate R. On May 16, we allowed the counting rate
to drift down on its own by about 40%. On May 21, we changed the counting rate
by attenuating the laser used for Rydberg state excitation. We divide the data in
Table 8.1 into two rough categories: high and low counting rate R. The low counting

rate data is marked with an asterisk.

8.1.2 Data analysis

Our procedure for analyzing the data is as follows: First, we extract a value of cR,
for each data set listed in Table 8.1. For this purpose, we use the relatively simple
lineshape model summarized in section 3.12. This lineshape model does not include

the the distortion to the lineshape phase due to the dipole interactions. In order to
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estimate the error in this result introduced by ignoring the dipole interactions, we use
the fact that the dipole interactions are density-dependent. We compare the results
for cR., as a function of counting rate R, which is proportional to the density, and

we form an estimate for the error introduced by ignoring the dipole interactions.

8.2 Extracting cR,, from a single data set

We extract cR, for each data set in Table 8.1 using the procedure described in
Section 3.12. First, we fit the sinusoidal lineshape to each time bin of the data for the
Amy = +1 transition. We then repeat this for the data on the Amy = —1 transition.
These fits yield the phase of the sinusoidal lineshape, ®;, for each time bin centered at
interaction time T}, where j denotes the time bin. We then fit our model for the phase
of the lineshape, Eq. (3.82), to the results for ®; as a function of T;. This fit gives the
frequency of the transition. Note that the spin-orbit effect symmetrically splits each
transition into a fine structure doublet, and the fit gives the centroid frequency of the
fine structure doublet. [The splitting of the doublet, Avyg,, is given by Eq. (2.48).]

Then, as described in Sec. 5.1, we eliminate the Zeeman effect to first-order in By
by averaging the transition frequencies of the Am, = +1 and Am, = —1 transitions.

As described in Sec. 5.2, we correct for the second-order Stark effect using mea-
surements of fhe first-order Stark effect on near-circular state transitions.

Finally, we correct for the fine structure contribution due to the relativistic mass
variation vy,,, given in Eq. (2.35). The result is the non-relativistic, field-free transi-
tion frequency vy, for hydrogen.

As discussed in Chapter 2, QED effects are negligible, except for the anomalous
magnetic moment of the electron which is included in the splitting Avy,, given in
Eq. (2.48). Hyperfine structure is also negligible.

Using the Balmer formula with the finite-mass correction, given in Eq. (2.4), it is

a simple matter to extract cR,..
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8.3 Example analysis of a single data set

In this section we describe the extraction of cR, from the data set listed in Table 8.1
that was acquired on May 8, 2000. The analysis in this section neglects the dipole
interactions. The uncertainty arising from this effect is discussed later in this chapter.
Although the data set considered in this section has a relatively low counting rate,
R = 5.1 x 10% s~ the statistical uncertainties in this data set are gmall because most

of the day was spent acquiring data for this one data set.

8.3.1 Sinusoidal lineshape fit

We start with the first stage of the fitting process: the fit of each time bin j of
resonance data to the sinusoidal lineshape.

The form of the experimental lineshape for each time bin is given by Eq. (3.1),
and the associated statistical uncertainty is given by Eq. (3.73). The lineshape model
and fitting procedure are summarized in Sec. 3.12.

Figure 8-1 shows the fit for each time bin of raw data to the sinusoidal lineshape
model given in Egs. (3.81) and (3.83). The data on the left of Figure 8-1 is for the
Am, = +1 transition, and the data on the right is for the Am, = ;1 transition. We
use 15 separate time bins for the data in Fig. 8-1. Each time bin in Fig. 8-1 is labeled
with its start time. The time bins are Ty, = 50 us wide, and the range of arrival
times 7~ covered by all the time bins is 250 us to 1000 ps. Recall that the arrival time
is the time from production of the Rydberg state to detection. Each frequency scan
in Fig. 8-1 has 60 points, separated by 250 Hz, which gives a scan range of 15 kHz.
The data set of the Amy = +1 transition is similar to that of the Am, = —1. The
main difference between the Am; = +1 and Am, = —1 data is the center frequency,
which differs by ~ 414 kHz because of the first-order Zeeman effect in the 150 mG
applied magnetic field. The center frequency (v¢ = wc/2m) of the Am, = +1 scan
(left) is vc = 316415664 177.4 Hz. The center frequency of the Am, = —1 scan
(right) in Fig. 8-1is v = 316415249927.4 Hz.

Three factors affect the amplitude of the sinusoids in Fig. 8-1. First, the fastest
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Figure 8-1: Fit of sinusoidal lineshape to Ramsey resonance data. The “y-axis” is
the inversion and the “z-axis” is the millimeter-wave frequency. The data on the
left is for the Am, = +1 transition, and the data on the right is for the Am, = —1
transition. The center frequencies for the two scans differ by ~414 kHz because of
the Zeeman effect. Each time bin is labeled with its start time, on the right side of
the figure. The time bins are 7j;, = 50 us wide, and the range of arrival times 7
covered by all the time bins is 250 us to 1000 us. The arrival time 7 is the time from
production of the Rydberg state to detection, whereas the interaction time 7T is the
time an atom spends between the oscillatory fields.
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and slowest atoms tend not to “see” the ideal m/2-pulse at each oscillatory field,
and this reduces the amplitude. There is no arrival time 7 for which all of the
detected atoms “see” éxactly a m/2-pulse. This is because of the spread of atomic
trajectories across the oscillatory fields. Second, the interference of the two fine
structure components reduces the amplitude by a factor of Cy,, given in Eq. (3.76)
with the polarization 1 = 0. The factor Cy; is sinusoidal and vanishes at interaction
times T¢ that satisfy Eq. (3.78). For the data shown in Fig. 8-1, Tc = 241 ps,
which corresponds to a arrival time 7¢ = 396 us, and the amplitude is small for the
time bins which start at 350 us and 400 us. The amplitude can be seen to change
sign between these two time bins, which corresponds to Cy, changing sign. Finally,
the slower atoms are more affected by spontaneous decay and -transitions driven by
thermal radiation, both of which reduce the amplitude.

For each sign of Am,, we fit all 15 time bins simultdheously. Each time bin 7 in
Fig 8-1 has four fit parameters: A; (amplitude), B; (baseline oﬁ'sét), ®; (phase), and
T; (interaction time). There is one parameter common to all of the bins: the relative
detector efficiency a. Thus, there is a total of 61 fit parameters. The important fit
parameters are ®; and Tj, where ®; is the phase of the j-th sinusoid at the center
of the frequency scan, and 7} is the interaction time of the j-th sinusoid (1/T; is the
period).

For the fits in Fig. 8-1, the reduced-chi-squareds are x2 = 1.22(5) and x2 = 1.09(5)
for the left and right, respectively. Given that there are 60-15 = 900 data points and
61 fit parameters, we expect the x2 distribution to be nearly gaussian with a standard
deviation of ¢ = 0.052. The value of x? for these fits is then 4.2 and 1.8 standard
deviations away from the expected value of (x2) =~ 1.000. As a test, We added
more parameters (linear and quadratic background, amplitude, and phase) and the
reduced-chi-squared stayed the same. Hence, we believe that the excess ﬂuctuatidns
are random. Because of the large pulse to pulse fluctuations in the excitation process,
any non-linearity in the detection scheme could easily account for such random scatter.
A uniform increase in the size of the error bars by about ten percent would correct for

this, but since this is such a small adjustment, we neglect it for the sake of simplicity.
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8.3.2 Fit of the lineshape phase

Now we go through the second stage of the fitting process—the fitting of the lineshape
phase versus the interaction time—in detail for the example data.

Figure 8-2 shows the (®;, T}) pairs resulting from the fits shown in Fig. 8-1. The
top and bottom graphs are for the Am; = +1 and Am, = —1 transitions, respectively.
We plot the uncertainties in the fit values of ®;, but we do not plot the uncertainties
in the fit values of T;. The uncertainties in T} are negligible conipared to those for
®;. |

The uncertainties in the values of ®; vary in size for different interaction times
T;. This is because the amplitude of the lineshape and the number of atoms detected
varies as a function of T;. The uncertainty is largest for the fastest and slowest atoms
and also for the interaction times near Tp = 241 us, where the interference between
the two fine structure components is entirely destructive.

Figure 8-2 also shows the fits of thé model for the phase ®; of the lineshape, given
in Eq. (3.82). These fits assume zero spin polarization (i = 0), which is justified
in Sec. 7.3. The fit function is a nearly straight line with slope 6 and “y-intercept”
#o. The line has a slight curvature because of the second-order Doppler effect. The
values of the two fit parameters, 8 and ¢y, along with the goodness of fit parameter,
X2, are listed in the figure. The important fit parameter is the slope &, which is the
detuning of the resonance frequency wy from the center frequency of the scan, we.

The reduced-chi-square x?2 is significantly larger than unity for both of these fits.
Given that there are 15 data points and 2 fit parameters, we expect the x2 distribution
to be centered on (x?) ~ 1.00 and to be nearly gaussian with a standard deviation
of 0 = 0.40. The reduced-chi-squares are x? = 1.91(40) and x2 = 2.15(40) for the
Amg = +1 and the Am, = —1 data, respectively. Statistically, the x2 would be
higher than this 2% and 1% of the time, respectively.

We believe that these x2 values are too large because of the distortion due to the
interactions between the dipoles in the atomic beam. As mentioned at the beginning

of this section, the data considered in this section represents the lowest density of
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Figure 8-2: Fit of model for the phase of the lineshape, given in Eq. (3.82) with
¥ = 0, to the (®;, T;) pairs resulting from the fits shown in Fig. 8-1. The fit function
is nearly a straight line with slope &y and “y-intercept” @;. The slight curvature is
due to the second-order Doppler effect. The Am, = +1 data is on the left, and the
Amy = —1 data is on the right. The values of the two fit parameters, §y and ¢, are
listed in the figure. The y? is significantly higher than one for both fits. We attribute
this to the interactions between the dipoles in the atomic beam.




all the data in Table 8.1. The fits for the higher-density data sets in Table 8.1 are
of poorer quality. Figure 6-1 shows the poorest quality fit. The data in Figure 6-1
represents the highest-density that we achieved and corresponds to index number “8”
in Table 8.1. The quality of the fits call into question the validity of the fit results,
especially for the high-density data. At the end of this chapter, we discuss and
estimate the error introduced by using a model which ignores the dipole interactions.

Recall that the fit parameter & is defined as the resonance frequency wp with

respect to the scan center wg: & = wg — we. Table 8.2 give the values of these

Amy = +1 Amy = -1
Scan center w¢ /27 316415664 177.4 3164152499274
Relative fit frequency &,/27 —12.2(38) T —12.2(35)
Absolute fit frequency wy/27 | 316415664 165.2(38) | 316415 249 915.2(35)

Table 8.2: Values of the frequency parameters, we, &, and wp, for both
the Am, = +1 and the Am, = —1 transitions. The units are Hz.

parameters for both the Am, = +1 and the Am, = —1 transitions. The fractional
uncertainties in the resonance frequency wy are 1.2 x 10~ and 1.1 x 10~! for the

Amgy = +1 and Am, = —1 transitions, respectively.

8.3.3 Eliminating the Zeeman effect

It is a simple matter to eliminate the first-order Zeeman effect: we take the average
of the two values of wy found from the data on the Amg = +1 and the Am, = —1
transitions. If we label the average of the center frequencies w¢ as wc and the average
of the fit values for the resonance detunings &y as &, then the average transition

frequency, which we label as @y, is

@o/2m = (@ + bo)/2m = 316415457 052.4 — 12.2(26) Hz (8.1)
= 316415457 040.2(26) Hz (8.2)
(8.3)

145



where the uncertainty of 2.6 Hz comes from the uncertainty in the two fit values of

So: 1/(3.8)2 + (3.5)2/2 = 2.6.

8.3.4 Correcting for the Stark effect

In this section, we correct for the second-order Stark effect due to the uniform applied
field and the stray fields.

As discussed in Sec. 5.2, by measuring the first-order Stark effect at several
different voltages V', we defermine: the effective plate spacing d, the constant offset
field fy, and the horizontal mean-square field W Also discussed in Sec. 5.2 is
our estimate of the stray vertical mean-square field: fj(z)2 = 9.0(45) (mV/cm)%
Combining Egs. (5.1) and (5.2), we find the size of the second-order Stark effect as a
function of the plate bias V' and the field parameters:

vs = a (% + fo) + afL (@) + afy(@). (8.4)

The uncertainties in the field parameters, éfy, dd, and df, (x)?2, are largely uncorre-

lated, and the uncertainty in vg is

Svg = \‘ (%‘fzav)z + (EZ—Vafo)2 + (2‘2‘;254)2 + (o«sﬁ(T)z)2 + (a&W)z.

(8.5)

For the data considered in this section, the bias voltage was V=-+0.19995(1).
From measurements of the first-order Stark effect performed on the same day, we
find the field parameters to be: fo = 0.099(23) mV/cm, d = 2.44598(13) cm, and
f1(x)? = 20.8(31) (mV/cm)?. The values of the field parameters are consistent
from day to day for the data sets shown in Table 8.1. Using Eqs. (8.4-8.5) and
a = —12588.06 Hz/(V/cm)?, the second-order Stark effect is vg = —84.32(8) Hz.

The uncertainty in this result is negligible.
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8.3.5 Correcting for the fine structure

We correct for the relativistic mass variation by subtracting vy, given in Eq. (2.35)
Visy = 12188.30(0) Hz ' (8.6)

from the measured resonance frequency. Recall that the fine structure splitting

Avygsy, = 2068.9(52) is dealt with in the fitting process.

8.3.6 Extracting v,,, and cR.

Table 8.3 summarizes the process we used to extract Vnru and cR from the fit

v for Amy = +1 316415664 165.2(38) Hz | 1.2 x 10~

vy for Am, = —1 316415249915.2(35) Hz | 1.1 x 10~11
Uy (Zeeman corrected) 316415457040.2(26) Hz | 8.2 x 10~12
vs (Stark correction) +84.32(8) Hz | 0.3 x 1012
Vysu (fine structure correction) —12188.30(0) Hz | negligible

Vnry (non-relativistic and field free) | 316415444 936.2(26) Hz | 8.2 x 1012
hydrogen Balmer formula:

CRH = Vary (s — 72) +9.623190840122 x 105 | exact
finite-mass correction

cRe = cRy (1 + 2¢) x 1.000544 617023 2(12) | 1.2 x 10~12
Rydberg frequency cR., 3.289841960257(27) kHz | 8.3 x 10T

Table 8.3: Extraction of the Rydberg frequency cR,, from the data set
shown in Fig. 8-1. The stated uncertainty in this value for cR is due
entirely to statistical uncertainty of the data in Fig. 8-1: the Stark, fine
structure, and finite-mass correction add negligible uncertainty.

transition frequencies wy, taken from Table 8.2. First we average these two results
resulting in the frequency corrected for first-order Zeeman shifts. Then we correct for
the second-order Stark contribution, and the fine structure contribution due to the
relativistic variation of the mass. This yields v,,,. Note that the Q.E.D. and hyper-
fine effects are negligible. Then we solve for the hydrogen Rydberg frequency cRy.

Finally, we apply the finite-mass correction to arrive at the infinite-mass Rydberg
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frequency cR,. The uncertainty of 2.7 Hz in cR, is dominated by the statistical

uncertainty in the fit transition frequencies taken from Table 8.2.

8.4 Final result for cR,

8.4.1 Results for cRw from each data set

Using the procedure described in Secs. 8.2 and 8.3, we extracted cR from each data

set in Table 8.1. We present the results in Table 8.4. The data set acquired on May 8

Index | Date Bias | Counting Rate R cR (kHz) Uncertainty
1 April 12 | +0.2 V| 1.10x 10%s™! [ 3289841960275(33) | 1.0 x 10~
2 April12 | 0.2V | 1.10x 10*s™! | 3289841960321(33) | 1.0 x 10~11
3 May 8% | +0.2 V| 051 x 10?s~! | 3289841960257(27) [ 0.8 x 10~
4 May 16 | +0.5V | 1.15x 107s™! [3289841960263(26) | 0.8 x 10~ 1
) May 16 | —05V | 1.22x10*s7! 3289841960305(34) | 1.0 x 10~
6 May 16* [ 40.5V | 0.81 x 10* s™' | 3289841960262(41) | 1.2 x 10~
7 May 16* | —05V | 0.75x 10*s™! | 3289841960387(36) | 1.1 x 10711
8 May 21 | +0.4 V| 225 x 10*s™" | 3289841960342(35) | 1.1 x 10711
9 May 21 | —0.4V | 2.20 x 10*s7! 3289841960304(40) | 1.2 x 1071
10 | May 21* | +0.4 V| 0.69 x 10 s™! | 3289841960452(76) | 2.3 x 1071
11 |May21* | —04V | 0.67x10*s7! | 3289841960341(80) | 2.4 x 10~

Table 8.4: Extraction of the Rydberg frequency cR. for all the

n=27—28 data sets listed in Table 8.1. The stated uncertainty in
cR is dominated by the statistical uncertainty of the Ramsey reso-
nance data. The Stark, fine structure, and finite-mass corrections add
negligible uncertainty. These results have not been corrected for the
systematic error due to dipole interactions.

is the one used as an example in Sec. 8.3. The uncertainties for cR,, in Table 8.4
are discussed in Sec. 8.3.6 for the example data set. They are dominated by the
statistical uncertainty of the Ramsey resonance data. In the next two sections, we
discuss uricertainty due to excess fluctuations and systematic error associated with
dipole interactions.

Figure 8-3 shows the results for cR,, from Table 8.4. The cR, results are organized

along the z-axis according to the index numbers from Table 8.4. The figure separates
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Figure 8-3: Plot of cR., results for low- and high-density. The index number cor-
responds to those in Table 8.1 and 8.4. The solid horizontal lines are the weighted
means. The dashed horizontal lines represent the standard deviations of the means.
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the data by low- and high-density. As discussed later, we use only the low-density
results, marked with an asterisk in Table 8.4. The upper plot in Fig. 8-3 displays all
the results, the upper-middle plot shows the low-density results, the lower-middle plot
shows the high-density results, and the lower plot shows the low-density results with
enlarged error bars, as explained in the next section. Each plot has a solid line which
is a fit of a horizontal line to the data in the plot. Thus each solid line is the weighted
mean of the data in the plot. FEach plot has a pair of dashed lines which represent the

standard deviation of the mean, as reported by the fitting routine. Table 8.5 gives

Plot weighted mean P%:
All results 3 289 841 960 300(11) kHz | 1.8
Low-density results 3 289 841 960 306(18) kHz | 3.3
High-density results 3 289 841 960 297(13) kHz | 0.9
Low-density results with enlarged error bars | 3289841960306(33) kHz | 1.0

Table 8.5: Statisti.cs for low- and high- density cR., results. The
weighted means are plotted as solid lines in Fig. 8-3.

the weighted mean, the standard deviation of the mean, and the reduced-chi-square

x2 for each of the four plots.

8.4.2 Excess scatter in low-density results

As can be seen in the upper-middle plot in Fig. 8-3, the distribution of low-density
results for cR.,, shows excess scatter. The reduced-chi-square for the fit in the upper-
middle plot is x2 = 3.3. Statistically, we would expect a x2 this high or higher about
one percent of the time. We do not know the origin of this excess scatter for the
low-density data, but we assume that the scatter is due to random fluctuations which
average to zero. In this case, the proper approach is to increase the uncertainties by
a factor of v/3.3 = 1.8 such that the x2 is equal to one. Because the error bars are
increased by a uniform factor, the value of the weighted mean remains the same while

the standard deviation of the mean goes up (by a factor of 1.8).
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8.4.3 Estimation of the systematic error due to dipole in-

teractions

The cR,, results in Table 8.4 are questionable because the fit model ignores the chief
systematic, the dipole interactions, resulting in poor quality fits. This is especially
the case for the high-density results. Consequently, we do not use the high-density
results except to estimate the the systematic error in the low-density results.

Examining Table 8.5, it can be seen that the result for cR, is surprisingly in-
dependent of the density. The difference in the result for cR, between low- and
high-density is AcRo = (cRoo)1ow — (cRoo)nigh = 9(35) kHz, which is consistent with
zero difference. Thus, while the distortion to the lineshape phasg is significantly more
pronounced for the high-density data, the slope of the lineshape phase is not signifi-
cantly different for the high-density data. In other words, the dipole interactions have
a statistically significant effect on the shape of the lineshape phase versus interaction
time T, but the dipole interactions do not have a statistically significant effect on the
fit value for the slope of the lineshape phase versus interaction time 7.

We now estimate the systematic €error, Agipole, in the low-density result for cR.,
due to the dipole interactions. The fact that there is no statistically significant de-
pendence on the density does not mean that we can assume that there is zero density
dependence. Instead, we take the expected value of the density-dependence of the
low-density result to be zero, but with some uncertainty. We take the value of this
uncertainty to be the RMS difference between the low- and high-density results, given
by

V{(ACR%)?) = ([(cReo)iow — (cRoc)ign?), (8.7)

From Table 8.5, the difference in cR., between the low- and high-density results is
AcRo = 9(35) kHz. Using this, it can easily be shown that the RMS difference is
given by 36 kHz (/92 + 352 = 36). The uncertainty in Agipote of 36 kHz is correlated
with the uncertainty in (cRe)iow of 33 kHz. To be conservative, we arbitrarily take
these two uncertainties to be completely correlated such that the total uncertainty in

the low-density result is the sum: 33 kHz + 36 kHz = 69 kHz.
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8.4.4 Final result

Table 8.6 summarizes the final result for cR,. The top line is the weighted mean

Low-density result for cRo 3289841 960 306 (18)
Low-density result for cRo, with enlarged error bars | 3289 841 960 306 (33)
Systematic error due to dipole interactions, Agipole 0(36)

Final result for cR 3289841 960 306 (69)

Table 8.6: The fractional uncertainty of the final result for cR is
2.1 x 1071, '

of low-density results for cR,. The second line is the same except the error bars
are increased to account for the excess scatter in the low-dersity results for cR.
The third line is the estimated systematic error due to dipole interactions. The
bottom line is the final result for cR.,. To be conservative, we have arbitrarily taken
the uncertainties in the second and third lines to be correlated such that the -total
uncertainty is the sum: 33 kHz + 36 kHz = 69 kHz.

Table 8.7 compares our final result with CODATA 98[MT00] recommended value,

Rydberg frequency Rydberg constant relative
cR R, , uncertainty
Our result 3289841 960 306(69) kHz | 10973731.56834(23) m~1 | 2.1 x 10!
CODATA 98 | 3289841960 368(25) kHz | 10973731.56855(8) m~! | 7.6 x 10~'*
Combined 3289841960 361(24) kHz | 10973731.56853(8) m~! [ 7.3 x 10~

Table 8.7: Comparison and combination of this work and CODATA 98.

which is based on all measurements (except this one) and is up to date. The CODATA
98 result is largely based on optical measurements of transitions in hydrogen and
deuterium involving low-lying states. Our result is in acceptable agreement with the
CODATA 98 result. The uncertainties of our result and the CODATA 98 result are
uncorrelated. The third line in Table 8.7 is the weighted average of the CODATA

result and our result. The uncertainty in the combined result is a few percent less
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than the CODATA result, and the value of the combined result is 0.3 ¢ smaller than
the CODATA 98 result.

Our final result has little impact on the currently accepted value of cR., because
of its large uncertainty. Nevertheless, the impact on our confidence in cR., is large
because we use a completely different technique and because our measurement is

insensitive to Q.E.D. effects and nuclear size effects.
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Appendix A

Finite-Mass Correction to Stark

Effect

After searching the literature, we could not find any reference on how the finite mass
of the proton modifies the Stark effect. We use a simple classical argument to show
that the problem of two bodies bound by a Coulomb field and also subjected to a
uniform electric field can be separated into two one-body problems: one problem for
the center of mass motion and the other problem for the relative motion.

The classical equations of motion for both the electron and the proton are:

- e -7 .
myf, = —i———ts +eF,
K |Te — 7|
2 — —
=, €” Te — Tp —
MeTe = ——T15 513 eF,
K |Te — 7l

where e is the charge of the proton, k = 4mey, and F is the electric field. By making

the usual transformation to the variables

=
Il

— ~—

Te — Tp

- MeTe + Mpip

R = ———=,
Me + My
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we obtain

MR = 0
- e’ 1 —
F = ——— —eF
KT k2 0

where M = m, + m, is the total mass and y = memy/(me + m,) is the reduced
mass. Thus, the problem remains separable in a uniform electric field, and in order
to correct our quantum Stark calculations for the finite mass of the proton, we just
replace the electron mass m, with the reduced mass o

The Stark effect, as given in Eq. (2.5), contains the mass of the electron via the
factors of ay = kh?/m.e2. To replace m, with p, we simply multiply each factor of

ao with a factor of m,./pu.
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Appendix B

Second-Order Perturbation

Theory for B, on circular state

In this appendix, we calculate the effect of a non-parallel magnetic field by finding
the second-order perturbation energy for a circular state due to Hzey = ppL.B).
We ignore both the electron spin and the finite mass of the proton. We ignore the n-
mixing due to the Stark effect, so that the eigenstates of the unperturbed Hamiltonian

Hy = H,, + Hs + Hyzy are the parabolic states:

R
Hol'ﬂ.kﬂlg) = (_C + §ea0nkF + }LB'ITI,(B”) |nkmg) (B].)

n? 2

We start with the circular state for which n,£ = m; = n — 1, and we label this
circular state as [¢). Later we will generalize the result to include the circular state
which has the opposite sign of m,. The expression for the second-order perturbation
energy involves a sum over all other states |7), and is given by:

i|Hze|5)1?
20 vl B.2
) Z E,' _ E ? ( )
J#i J
where E; and E; are the energies of the |i) and |j) states, respectively, and the

summation is over all possible states |j) other than the state |i). For parabolic basis

states, the selection rules for Hz,, are Am; = +1 and An = 0. Hz, only connects
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|5) to two other parabolic basis states, the near-circular states |n;k = £1;m, — 1),
which we label |[+) and |—). We find that these two matrix elements are identical:
[(i[Hzer | £)|* = 27! (upB1)®. The computation of these two matrix elements is
straightforward: we decompose the |+) states into spherical basis states: [£) =
%ﬂn,f, my — 1) £ |n,€ — 1,mg — 1)), and then employ the ladder operators, Ly =
L, +iL,. Because the states |£) lie above and below the circular state, their effects
cancel to a large extent. However, the exact cancelling is prevented by the first-order
Zeeman effect due to B.

The expression for E,-(z), including only the two non-zero terms is

| Hzel [ | [(ilHzer|[ =) _n—1 2 1 1
g® _ ilHze = B :
; E—E, ' E—& T B gt e T
(B.3)
We write the energy separations in the denominators as
3
E; — Ei = :F§60,077,F + ¢, (B4)

where q:%eaonF is the separation due to the first-order Stark effect and € is the
separation due to the the first-order Zeeman effect. Because |¢] < |3nF|, we can

approximate the two terms in parentheses in Eq. B.3 as

1 1 €
+ ~-2— B.5
(—%eaonF +e€ %eaonF + e) (geaonF)2 (B.5)

If € were zero, the expression for E,-m would vanish.

We calculate € with the help of Eq. (2.12):

€ = ppB)me— (me—1)]
= ppB). (B.6)
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Using this expression for € and Eq. B.5 we obtain the following result for E‘,-(z):

@ _n—1 p}BBY
,‘- ~ = 2 .
2 (geaonF)

(B.7)

Now we turn our attention to generalizing this result to include the circular state
which has the opposite sign for the magnetic quantum number: m, = —(n—1). The
matrix elements (i|Hz,, |+) stay the same, as do the energy separations due to the
first-order Stark effect, but the sign of ¢ changes. We only need to make one small
change to Eq. B.7, which is to change the sign. To include this sign change, we
make the simple replacement: (n — 1) = m,. The general result for the second-order
perturbation energy due to Hz, on a circular state is:
me_pp B BY

Ezy =~ ——

2 (%eaOnF)Q. (B8)
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Appendix C

Expectation Value of fs for

Spherical Basis States

The goal of this appendix is to calculate the expectation value of H s for the spherical
basis states, which we write as E;, = (n, ¢, me|Hyg|n, €, my), or simply Ey, = (Hy,),
with the quantum numbers understood. The Hamiltonian H s, given in Eq. 2.23, is

duplicated here:

4 2 242
—p e 1~ 5 7eh (1)
Hy, = 1z 5 2. C.1
f 8m3c2 = 2km?2c? r3L S+ 2km2c? (r)+0 ct (C.1)
N———r’ — — v ~ v

Hmv HSO HDar'win

For ease of calculation, we rewrite this Hamiltonian with several changes: 1) we
exclude the Darwin term which vanishes for states with ! # 0, 2) we rewrite L - S
using the ladder operators, defined as: Ly = L, + iLy and S; = S; +14S,, and 3) we

rewrite p* using the expression for the unperturbed Hamiltonian

2 2

2m. K1

159




With these changes, the perturbation Hamiltonian is

5 e €2 et e2 1
H: + Hy,y— + —H, + + —(L,S, —2L_Sy —2L,S_).
" KT K2r?

KT 2km2c? 13

-1
Hys = 2m.c?

o "

——
—

H, ' Hso
(C.3)

We start by calculating the expectation value of the first term: Epy = (Hmo).
Using the eigenvalues of H,, and the expectation values of 7" given in Bethe and

Salpeter [BS77] we get

B - _ 1 —hcR\ 2 N —hcRo €2 €2 —hcRo. et
T 2mec? n? n?  kayn? kapn®? n? k2agn3(€ +1/2)
a® (3 1 .
= heR (2 - C4
o3 (411 e+1/ 2) (C4)

Next we calculate the matrix element of the second term: Ego = (Hso). Using the

matrix elements for the ladder operators: Ji|j, m) = h\/(j Fm)(JEm+1)|j,mEl),
we find that the expectation value of the terms containing the raising and lowering

operators vanish, leaving only:

e h2mems,

Eso = C.
s0 2km2c? adnd0(€+1/2)(¢+ 1) (C-5)
a2 mymg

“n30(0+1/2)(€+1)

= hcR

(C.6)

Adding E,,, and Esp, we get the following result for the expectation value of H,

for a spherical basis state:

2
3 1 mems ] . (C.7)

(81
Ero=heReol5 | 1 ~ T 1/2 TS YD)
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