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Abstract

This thesis revisits the portfolio selection problem in cases where returns cannot be modeled as Gaus-
sian. The emphasis is on the development of financially intuitive and statistically sound approaches to
portfolio risk minimization. _

When returns exhibit asymmetry, we propose using a quantile-based measure of risk which we
ca,ll shortfa.ll Shortfall is related to Value-at-Risk and Conditional Value-at-Risk, and can be tuned
' 'iture tail risk. We formulate the sample shortfall minimization problem as a linear program.

iUsmg Tesults from empirical process theory, we derive a central limit theorem for the shortfall portfolio

estlmator We warn about the statistical pitfalls of portfolio selection based on the minimization of rare

Ul ’events which happens to be the case when shortfall is tuned to focus on extreme tail risk.

--In-the ‘presence of heavy tails and tail dependence, we show that portfolios based on the minimiza-

“.tion of alternative robust measures of risk may in fact have lower variance than those based on the

minimization of sample variance. We show that minimizing the sample mean absolute deviation yields
portfolios that are asymptotically more efficient than those based on the minimization of the sample
variance, when returns have a multivariate Student-t distribution with degrees of freedom less than or
equal to 6. This motivates our consideration of other robust measures of risk, for which we present linear
and quadratic programming formulations. We carry out experiments on simulated and historical data,
illustrating the fact that the efficiency gained by considering robust measures of risk may be substantial.

Finally, when the number of return observations is of the same order of magnitude as, or smaller
than, the dimension of the portfolio being estimated, we investigate the applicability of regularization
to sample risk minimization. We examine both L1- and L2-regularization. We interpret regularization
from a Bayesian perspective, and provide an algorithm for choosing the regularization parameter. We
validate the use of regularization in portfolio selection on simulated and historical data, and conclude
that regularization can yield portfolios with smaller risk, and in particular smaller variance.
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Chapter 1

Introduction

Consider the problem of selecting a portfolio that has minimal risk, subject to a given expected return
constraint. Under the assumption that asset returns' are multivariate Gaussian, with known covariance
matrix, every wealth-seeking, risk-averse investor will prefer the portfolio that has minimal variance
(see for example the introductory texts in financial economics, Huang and Litzenberger, 1988, and
Ingersoll, 1987). Letting R. be the random return vector in R, with mean g and covariance matrix
¥, the preceding proposition means that each and every wealth-seeking, risk-averse investor prefers the

portfolio that solves the optimization problem

minimize x!'¥x
subject to x’e =1 (1.1)

by —
X'y =rp,

where x'p =rp is the given expected return constraint, r, being a target return, and x’e =1 is the
budget, or convexity, constraint.
Now suppose that the distribution of returns is unknown, except that the expected return vector p

and the target return are r, given?. Also, assume that a sample of return observations Ry, ..., Ry is

!By returns, we mean net returns, i.e. if the price of an asset is P; at time ¢, and P41 at time ¢+ 1, then the net return
of the asset over the period is R = (Piy1 — Pi)/Ps.

2The assumption that the expected return vector is known is not realistic. In practice, the expected return vector
would be estimated, through a mix of fundamental and technical analysis. The problem of estimating the expected return
vector g will not addressed in this thesis. In fact, to keep the problem simple, we will not even model the possible
dependence between g and the sample of return observations. We leave this last issue for future research, and throughout
this document we will assume that p is deterministic.

12




available. Then, a natural approach to selecting a portfolio with minimal risk is to solve the problem

minimize x'Yx

subject to x’e =1 (1.2)
xtp' =TP7
where
L1 & :
= — i R 5 T R
=7 ;(R R)(R: - R)

is the sample covariance matrix, and

is the sample mean. Solving Problem (1.2) can be expected to be optimal under two conditions: (i)
the data are in fact multivariate Gaussian (and independent and identically distributed) and (ii) T is
large compared to N. Because of the Gaussian assumption (i), the variance is the optimal measure of
risk, and the optimal portfolio is the solution to (1.1). Then, if (i) and (ii) are satisfied, the sample
covariance matrix is the maximum likelihood estimate of X, and the solution to Problem (1.2) will be
the optimal estimator of the solution to Problem (1.1), according to classical asymptotic statistics (for
example, by the invariance principle of maximum likelihood estimators).

But in actual financial markets, the Gaussian model may be completely unsatisfactory:

e the empirical distribution of asset returns may in fact be asymmetric. This is obvious for assets
like options (see, e.g. Bookstaber and Clarke, 1984). More generally, skewness may occur due to
the greater contagion and spillover of volatility effects between assets and markets in down rather
than up market movements, see, e.g. King and Wadhani (1990), Hamao, Masulis, and Ng (1990),
Neelakandan (1994), and Embrechts, McNeil, and Straumann (1999).

e even if one decides to model asset returns as multivariate elliptically symmetric®, the empirical

distribution of asset returns may still may have heavier tails and have more tail dependence than

3 A multivariate random varianble R with mean g and dispersion matrix 2 has an elliptically symmetric distribution if

13




the Gaussian. With heavy tails, marginal return distributions tend to have tails that decay more
slowly than the Gaussian - see for example Campbell, Lo and MacKinlay (1997) and Bouchaud
and Potters (2000) for a discussion of heavy-tailed distributions in finance. Tail dependence?
simply reflects the observation that the extreme return of one asset is likely to be accompanied
by extreme returns in other assets, for example, in the context of a market crash or of a market
surge - see again Embrechts, McNeil, and Straumann (1999) for a discussion of tail dependence
and its applications in risk management, and Lindskog (2000) for evidence that stock returns may
have more tail-dependence than the Gaussian. The Gaussian has zero tail-dependence, so that
extreme events occur independently; but other elliptically symmetric distributions, such as the

multivariate Student-t, may have positive tail dependence.

These departures from normality will cause the following two difficulties. First, asymmetry in the
distribution of returns makes variance (or standard deviation) as a risk measure intuitively inadequate
because it equally penalizes desirable upside and undesirable downside deviafions from the mean. So
even if ¥ were known, Problem (1.1) would not be the right problem to solve for every wealth-seeking,
risk-averse investor. This might discredit using Problem (1.2) as an approach to portfolio selection.
Second, even if one is ready to assume that the distribution of returns is elliptically symmetric®, heavy
tails and tail dependence may have a negative impact on the portfolio estimation procedure (1.2) - this
idea is made rigorous in Chapter 5. Intuitively, this difficulty arises because extreme returns, or outliers,

are more frequent than under the Gaussian, which makes the estimation of variances and covariances

its probability density f(.) is of the form

1 tey—1
r)= ——g((r—p)Q (r-— ,
f(x) = (c~p)Q " (x—m)
where g(.) : R* — R't. If the covariance matrix of R is well-defined, then (2 is proportional to the covariance matrix. See
appendix for more on elliptically symmetric distributions.
4 A measure of tail dependence can be defined for pairs of random variables X and Y. Let the distribution functions
of X and Y be F; and F: respectively. Then a coefficient of (lower) tail dependence between X and Y is

lim, P[Y < F;" () | X < F{* (@] =,

provided a limit A € [0,1] exists. If A € (0,1] then X and Y are said to be asymptotically dependent (in the lower tail);
if A = 0, then they are asymptotically independent. See Embrechts, McNeil, and Straumann (1999) for more details.

% Notice that departures from normality within the class of elliptically symmetric distributions actually do not affect
the optimality property of variance as a risk measure (assuming second-moments are well-defined): each and every wealth-
seeking, risk-averse investor still prefer the portfolio that has minimal variance (for every level of target return). See
Ingersoll (1987). However, this result says nothing about whether using (1.2) to choose portfolios is a good idea. In fact,
we will prove that under certain circumstances, it is not.

14
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less efficient - i.e., the variance of the estimates of variance and covariance will be higher.
In response to these difficulties, we propose in this thesis an alternative approach to portfolio selection

that is based on a very simple observation. Notice that we can rewrite Problem (1.2) as

minimize, ming & YL (x'R; — g)?
subject to x'e =1 (1.3)

x'p =rp.
Notice also that the sample variance of portfolio x € R can be expressed as
1 Z
A2 N a4 2SRy
F4(x) —m‘;nT;(xR,, q)°.

Now consider the problem that is obtained by replacing the objective function in (1.3) with the
sample mean of a piecewise linear function. Specifically, consider the alternative portfolio optimization

problem

minimizex ming % Y1 ; [x'R; —q]
subject to x'e =1 (1.4)

xtp =rp,
and more generally the problem

minimizex ming 7 ST Pa(X'R; — )]

subject to x'e =1 (1.5)
xt’J’ =Tp,
where
1
Pa(2) = 2 = —zl{zcq), (1.6)

for a € (0,1). For a = 50%, p,(.) is equal to the absolute value (see Figure 1-1), and Problem (1.5) is

15
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Figure 1-1: (a): apy(.), @ = 10%; (b): p,(.), a = 50%.

equivalent to Problem (1.4). We define a corresponding measure of risk,

T

fa(x) = min > IR = ) (L7)
which we call the (sample) a-shortfall, or shortfall for short, of portfolio x € RY. For a = 50%, (1.7)
is the sample mean absolute deviation.

This thesis will show that the problem defined by (1.5) can serve as the basis for an alternative
approach to portfolio selection that is more intuitive, and statistically more robust than (1.3), under
departures from normality. We also will address the small-sample issue in portfolio selection, and will
show how to amend (1.5) and (1.3) in situations when the number of return observations T is of the
same order of magnitude, or smaller than, N the dimension of the portfolio being estimated. Note
that we will deal exclusively with the static version of the portfolio selection problem, its multi-period

extensions being outside the scope of this thesis.

1.1 Literature Review

We review here previous work on portfolio selection based on the minimization of alternative measures
of risk. We begin with Markowitz himself, who explicitly suggested, in the line of research that led
to his Nobel prize in economics, that alternatives to variance should play a role in portfolio selection.

His proposal included a measure of risk which he called semi-variance. The semi-variance of random

16
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variable X with mean p is defined as

0-2 =E[(IJ’_X)—]2’

semi
where the expectation is taken with respect to the distribution of X, and where

_ p—X X <p
(h=X)" = _
0 otherwise.

Other similar downside measures of risk in the financial economics literature include the lower partial

moments, defined as
LPM; = E[(c- X)7],

with ¢ = 0,1, or 2, for an arbitrary ¢ value. LPMj portfolio selection corresponds to Roy’s (1952)
”safety first” rule, which minimizes the probability of a loss, for a given target expected return.

Variance is an optimal measure of risk when returns are multivariate Gaussian, or more generally
multivariate elliptically symmetric, because wealth-seeking, risk-averse investors maximize their ex-
pected utility by choosing a portfolio that has minimal variance (for every level of target return). Bawa
(1975, 1978) related LPM; portfolio selection to expected utility maximization by finding distributional
conditions for one asset to be stochastically dominated® by another. The conclusion is that LPMy
portfolio selection yields portfolios that are not first-order stochastically dominated, i.e. such portfo-
lios are preferred by at least some wealth-seeking investors, among all portfolios with the same level
of target return. Similarly, mean-LPM; portfolio selection yields portfolios that are not second-order
stochastically dominated, for every level of target return, i.e. such portfolios are preferred by at least
some wealth-seeking, risk-averse investors, among all portfolios with the same level of target return..
These results do not depend on the underlying return distribution being multivariate Gaussian.

In recent years, the quantile-based measures of risk Value-at-Risk (VaR) and Conditkiona,l Value-at-
Risk (CVaR) , have found extensive use in the financial industry. The a-level VaR (see e.g. Jorion,
1997, Dowd, 1998, and Duffie and Pan, 1997) of random variable X, which is just (minus) its a-quantile,

8See appendix for a review of stochastic dominance concepts.
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is defined as
VaR = —inf{z | Pr(X < z) > a}.

While VaR measures the worst return which can be expected with a certain probability, it does not
address how large these returns can be expected to be in the small-probability even that returns are
below the VaR. Also, it is not a convex risk measure and may therefore discourage diversification.
To address this issue, CVaR, also called mean-excess function, Tail VaR, or expected shortfall (see
Embrechts, McNeil, and Strauman, 1999, and Artzner, Delbaen, Eber and Heath, 1999), can be used.
The a-level CVaR is defined as

CVaR=-E[X | X € ¢a,

where g, is the a-quantile of X.

Optimization of the LPM; and LPM; measures of risk has been claimed to be difficult (see for
example Grootveld and Hallerbach, 1999), because of the discontinuity due to the (.)~ operator - we
claim otherwise, and in fact show that these problems can be formulated as generic linear and quadratic
programs. Using VaR in portfolio selection has been considered in Lemus (1999) and Lemus, Samarov,
and Welsch (1999). CVaR optimization has been formulated as a linear program in Rockafellar and
Uryasev (1999), who, with Tasche (2000) have examined some of the mathematical properties of CVaR.

The statistical properties of these alternatives to variance seem to have received very little atten-
tion. Grootveld and Hallerbach (1999) mention that LPM’s do not seem to offer significantly different
portfolios when used instead of variance in portfolio selection. Yamai and Yoshiba (2001) mention the

need to develop efficient estimation techniques for VaR and CVaR.

1.2 Thesis Organization

In Chapter 2, we motivate the shortfall measure of risk by examining its population properties, i.e.
we operate under the assumption that the distribution of returns is known. Shortfall is related to
VaR and CVaR, mentioned earlier, and is indexed by a probability level @. When the distribution

of returns is asymmetric, the parameter a may be chosen so that upside and downside returns are
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penalized differently, and shortfall may be preferable to variance. Also, when the distribution of
returns is symmetric, shortfall is proportional to the standard deviation, meaning that shortfall portfolio
selection is equivalent to variance portfolio selection. We investigate the natural connection between
shortfall portfolio selection and expected utility maximization. We obtain closed form expressions for
the gradient and hessian of the shortfall. We show that shortfall is a convex risk measure, giving it
an important advantage over VaR. Finally, we discuss how classical mean-variance portfolio analysis
results, such as two-fund separation and the concept of beta, generalize to mean-shortfall analysis.

In Chapter 3, we formulate the sample shortfall portfolio optimization problem as a linear pro-
gram (LP). We also formulate the problem in a way that emphasizes its connection with the sample
variance, LPM;, LPM>, and CVaR optimization problems. We claim that any of these problems can
be formulated as either an LP or a quadratic program (QP), making them solvable with generic LP
and QP solvers. We introduce the concept of regularization in sample shortfall portfolio optimization,
and sample portfolio optimization in general, as a tool to enforce the uniqueness of the solution to
the optimization problem, when the number of return observations T is less than N, the dimension of
the portfolio that is being estimated. We revisit this important issue in Chapter 6, from a statistical
perspective.

In Chapter 4, we prove a central limit theorem for the shortfall portfolio estimator, and compare it to
a similar result for the variance portfolio estimator. The framework we consider is the following. Given
independent and identically distributed realizations Ry, ... , Ry of the random return vector R € RV,
we consider the estimators defined by minimizing sample risk, subject to a deterministic set of linear
equality constraints. We show that both the variance and shortfall portfolio estimators are consistent
and asymptotically normal. Based on the form of the asymptotic covariance of the shortfall portfolio
estimator, and based on a computational experiment, we warn against shortfall portfolio estimation
based on small values of a.

In Chapter 5, we address the issue of robust portfolio estimation, i.e. the estimation of variance
minimizing portfolios under departures from normality within the class of elliptically symmetric distri-
butions. We develop a measure of portfolio estimator performance which we call estimation risk, and
show that alternatives to the variance portfolio estimator may in fact have lower estimation risk under
departures from normality, such as when returns have heavier tails and more tail dependence than the

Gaussian. One alternative to the variance portfolio estimator, when returns are elliptically symmetric,
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is the shortfall portfolio estimator. We prove, using the results from Chapter 4, that the shortfall
portfolio estimator asymptotically outperforms the variance portfolio estimator when the distribution
of returns is multivariate Student-t with less than 6 degrees of freedom. Other alternative portfolio
estimators include the Huber portfolio estimator, the trimean portfolio estimator, and the trimmed
mean portfolio estimator. We show on artificial and real data that these alternative estimators may in
practice outperform the variance portfolio estimator under departures from normality.

In Chapter 6, we revisit the topic of regularization in portfolio estimation, which we introduced
in Chapter 3. However, our point of view here is statistical. =~ We show how regularization can
be motivated from both the Bayesian perspective, and from the perspective of balancing estimation
error and approximation error. We provide an algorithm for choosing the regularization parameter,
based on cross-validation. We then show, in examples involving simulated and historical data, that
regularization may improve the finite sample performance of portfolio estimators when the the number
of return observations T is less than, or of the same order of magnitude as, the dimension N of the
portfolio that is being estimated.

Finally, in Chapter 7 we conclude this thesis by summarizing our contributions to the portfolio

selection literature, and by offering directions for future research.

1.3 Some Notation

In this thesis, we will use the following notation.
e : vector of ones, whose size can be determined by the context in which it is used.
Ok: (K x K) matrix of zeros.
O: arbitrary matrix of zeros, whose size can be determined by the context in which it is used.
Ix: (K x K) identity matrix.
~ : "converges in distribution to”.
N : the number of assets.
T : the number of return observations in a sample.
¢ : the transpose operator.
o(1): term that converges (deterministically) as T’ grows.

0p(1): term that converges in probability as T' grows.
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Chapter 2

Population Properties of the a-Shortfall
Risk Measure

Suppose that asset returns R € RY have a multivariate normal distribution, or more generally a
multivariate elliptically symmetric distribution, with mean g and covariance matrix 3. The mean-

variance optimization problem is

minimize x'¥x
subject to x‘e=1, (2.1)

t, —
X'p=Tp,

where rp, is the target portfolio expected return. Mean-variance portfolio selection is consistent with
expected utility maximization in the sense that all wealth-seeking, risk-averse investors (i.e. investors
with increasing, concave utility functions') will, for any target return rp, prefer portfolios with the
smallest variance, or standard deviation. More generally, investors will be able to maximize their
utility by restricting their portfolio choice set to portfolios that solve (2.1) for some level of r,. The
set of portfolios that solve (2.1) for some level of 7, is called the minimum variance portfolio set.

Now suppose that returns are not elliptically symmetric. Then it is not true anymore that all wealth-
seeking, risk-averse investors will, for any target return, prefer portfolios with the smallest standard

deviation. In fact, there exist increasing, concave utility functions u(.), and random return variables

!See appendix for a review of utility theory and stochastic dominance.
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X and Y, such that E[u(X)] > E[u(Y)] even though E(X) = E(Y) and the standard deviation of
X is greater than the ste;,ndard deviation of Y, i.e. ox > oy (see Ingersoll, 1987). When returns
are asymmetric, mean-variance portfolio selection looses its expected utility maximization properties.
In addition, the standard deviation equally penalizes returns above and below the mean, making it
intuitively unappealing. |

Notice that, in direct analogy to (1.3), we can rewrite Problem (2.1) as

minimizexy ming E(x'R — g)?
subject to x‘e =1 (2.2)

xt”' =TP7
since the variance of portfolio x € R¥ can be expressed as
200\ — i tn _ 2
o“(x) = min E(x’'R — ¢)*.
q

In this chapter, we show that we can address some of the shortcomings of mean-variance portfolio
selection that occur in the presence of return distribution asymmetry, by considering the portfolio

selection problem

minimizex min, E[p,(x'R — q)]
subject to x‘e =1 (2.3)

t,, —
X' =Tp,

where the objective function in (2.2) has been replaced by the expectation of the piecewise linear function

defined by
1
Pa(2) =2 — EZI{KO}’ (2.4)
for a € (0,1). We define a corresponding measure of risk,
Sa(x) = min Elpo(XR - )], (2.5)

which we call the a-shortfall, or shortfall for short, of portfolio x € RY. Notice that this chapter
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examines portfolio selection from a population perspective, i.e, assuming that the distribution of R
is known. The optimization and statistical properties of shortfall portfolio selection from a sample
perspective - i.e. assuming the distribution of R is unknown, but a sample of return observations is
available - will be examined in later chapters.

This chapter is organized as follows. In Section 1, we provide an alternative definition of (2.5), that
gives a more intuitive flavor to the shortfall measure of risk. We then examine the relationship between
shortfall and other risk measures, including Value-at-Risk (VaR), and Conditional VaR (CVaR), and
the standard deviation. In Section 2 we motivate shortfall portfolio selection by relating it to expected
utility maximization. Via theorems of stochastic dominance, we show that optimal shortfall portfolios
maximize the expected utilities of at least some Wealth-seeking; risk-averse investors, for any given level
of target return rp. In Section 3, we examine some of the mathematical properties of shortfall, and in
Section 4 we extend some classical mean-variance portfolio analysis results to the mean-shortfall setting.
Finally, in Section 5 we present the results of a numerical experiment involving portfolio selection with

asymmetrically distributed return data, and in Section 6 we summarize our findings.

2.1 Alternative Definition of the Shortfall Risk Measure, and Rela-
tion to Other Risk Measures

Let X € R be a random variable with a continuous density. We have the well-known result
i EIX — oll =
arg min [1X —ql] = o5,
where ¢g 5 is the median of X. More generally, we have
arg min Elpo (X - q)] = g, (2.6)
where ¢, is the a-quantile of variable X (see van der Vaart, 1998), i.e.

go = inf{z| P(X <2)2>a}
= F (o),

23

3o .



where F is the distribution function of X. Now suppose that random variable R € R¥ has a continuous

density and mean p. We can then write the shortfall of portfolio x € RY as

sa(x) = minE [pa(x'R—q)]
= E[pa(x'R—ga(X))]
= B|(¢Rga(x) ~ + (¢Ra(3) ] xtmcgu o)
= xtu—E[xtR|xtR<qa(i)], (2.7)

where the second equation follows from (2.6), and the third equation follows from (2.4), and where
da(x) = inf{z | P(x’'R < 2) > o}

is the a-quantile of portfolio x. According to (2.7), for every level of target return x‘u =rp, shortfall
captures the tail risk below the a-quantile of the portfolio. A small o parameter, say 1%, can then
serve to uncover risk in the tail, that may not be obvious if a symmetric measure like standard deviation
is used.

We next show how shortfall is related to VaR, CVaR, and the standard deviation.

2.1.1 Relation to VaR and CVaR

Recall that the a-level VaR of portfolio x can be defined as
VaR(x) = —qa(x),

and the a-level CVaR. of portfolio x can be defined as

CVaR(x) = —E[x'R | X'R < ¢ (X)].
Clearly, we have

sa(x) = x'u+CVaR(x).
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Some advantages of shortfall over CVaR are as follows:

e first, the mean-adjustment makes shortfall proportional to standard deviation when returns are
elliptically symmetric (see next subsection). Therefore, when returns are elliptically symmetric,

shortfall portfolio optimization recovers optimal mean-variance portfolios.

e second, shortfall consistent with the traditional definition of risk as a measure of volatility in-
dependent of a location parameter, typically the mean. For example, the standard deviation is

independent of the mean. Notice in particular that for a = 50%,

50.5(x) X'u— Ex'R | X'R < q05(%)]

= E|xtR—q0_5(x)|,

where go5(x) is the median of portfolio x. sp.5(x) is the mean of absolute deviations from the
median, which turns out to be a more robust estimation of volatility than the standard deviation
when returns have heavier tails and more tail-dependence than the Gaussian. More on this in

Chapter 5.

2.1.2 Relation to the Standard Deviation

We show here that when the multivariate distribution of returns is elliptically symmetric, the shortfall of
a portfolio is proportional to its standard deviation, where the coefficient of proportionality only depends
on a. Therefore, when the multivariate distribution of returns is elliptically symmetric, mean-variance

optimization is strictly equivalent to mean-shortfall optimization for any o.

- Proposition 1 (a) If the distribution of R is multivariate normal with mean p and covariance matriz

Y, then
Sa(Xx) = ﬁ(az;"—)\/x"ﬂx,

where ¢() is the density of the standard normal, and z4 is its a-quantile.

(b) If the distribution of R is multivariate elliptically symmetric with mean p and covariance matriz
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Y, then
sa(%) = g(a) VX'IX,

where g(.) is independent of X.

Proof. (a) When the distribution of R is multivariate normal with mean g and covariance matrix
¥, then the variable X = tR has a univariate normal distribution with mean p = x’p and variance

02 = x!Tx. Therefore,
sa(x) = p— E[X | X < ga,x]

where go, x is the a-quantile of variable X. Therefore,

_ 1 9o, X (17 — #)2
sa(X) = p gy /_oo T exp (— 52 dz
1 Qo X (.’E — ,J‘)Z
= - B Gt 0
aoy/2m /_oo (= p)exp ( 202 .
o %o y?
= xp | —= | d
oo /;ooye p < D) ) Y
$(2a)

= —F0.
(6]

The proof of (b) is analogous. =
The remarkable implication of the previous proposition is that when returns are multivariate ellip-

tically symmetric, the solutions to the mean-shortfall and mean-variance problems are identical.

2.1.3 Optimal Bounds on Shortfall

In this subsection, for given values of the mean and standard deviation of a portfolio, we obtain universal
bounds on the quantile and shortfall that are best possible in the sense that there exist probability
distributions that attain them. This allows us to compute bounds on the quantile and shortfall even if
the distribution of returns is unknown. For ease of notation, let us write sq := sa(X) and go = qa (x),

and o := Vx'Ex. We use the techniques from Bertsimas and Popescu (1999) to derive these bounds.

Theorem 2 The inequalities in Table 2.1 are valid and best possible..
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(a) Optimal Bzound.s on go co A=) a+n< e <ovald—a) +m

given p and o
(b) Optimal Bounds on sq —(qa — 1) ifga —p <0
given p, 0%, and ga (Ga—p(l—-a)/a ifga—p>0

(c) Optimal Bgunds on Sq 0< sa <o/ —a)/a.

given p and o

}<sa<a (1-a)/a,

Table 2.1: Optimal Bounds on Quantile and Shortfall
o |l i
0.1 1.7550 3.0000
0.05 || 2.0627 4.3589

0.01 | 2.6652 9.9499
0.005 || 2.8919 14.1067

Table 2.2: Calculating shortfall: normal approximation vs. worst case distribution.

Proof. See appendix. m

Given u and o2, Table 2.2 compares the normal approximation to the shortfall, given in Proposition
1, and the worst case value given in Table 2.1. We see that when a = 10%, the normal approximation
underestimates shortfall by up to (3 — 1.755)/3 = 41%, and when a = 1%, then normal approximation
underestimates shortfall by up to (9.9499 — 2.6652)/9.9499 = 73%.

2.2 Relation to Expected Utility Maximization

Now let us consider the mean-shortfall portfolio optimization problem

minimize  $4(X)
subject to x‘e =1, (2.8)

t,,
X' = rp,

where 7}, is the target return. To relate mean-shortfall portfolio selection to expected utility optimiza-
tion, we will use the following theorem, due to Levy and Kroll (1978), and which we prove analytically
in the appendix. This theorem states conditions under which one portfolio is preferred to another by all
investors whose utility functions are in Uz := {u(z) | ' (z) > 0, —oo < u”(z) < 0 Vx € R}, the class of
all increasing, concave utility functions. These investors form the family of wealth-seeking, risk-averse

investors. Note that this theorem fits into the large literature on stochastic dominance, which attempts
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to find distributional conditions under which one alternative investment will be preferred to another by
all investors whose utilities belong to a certain class of functions - see Levy (1992) and Fishburn (1980)

for review papers on this topic.

Theorem 3 (Levy and Kroll, 1978) Suppose that X andY are the random returns of two portfolios.
Then X is preferred to Y by all investors in Uy (or X ”second-order stochastiéally dominates” Y') if
and only if

E(X|X <dqax) 2 E(Y|Y < 4gay) Ya € (0,1), and > for some a,

where qo x and qoy are, respectively, the a-quantiles of X and Y.

Let € (0,1) be fixed. From the alternative definition of shortfall - see Equation (2.7) - and
from Levy and Kroll’s theorem, it is then clear that given a target return rp, the shortfall minimizing
portfolio (or portfolios) will be preferred by at least one investor in U, (otherwise, this would contradict
the theorem). Another way of saying this is that the shortfall minimizing portfolio is non-dominated,
in the sense that there exists no portfolio with the same mean and higher shortfall, that is preferred by
all investors in U;. Note that this result holds for arbitrary distributions of returns. In fact, mean-
variance portfolios have this property also. However, under the assumption that the distribution of
returns is elliptically symmetric, they are the only such portfolios. We just saw that in general, i.e.

under asymmetry, they are not.

2.3 Mathematical Properties of Shortfall

The results that we prove here are of independent interest, and are used in the next section.

2.3.1 Positive Homogeneity and Convexity

Proposition 4 Let the random variable R €RY have mean p. Then
(a) sa(x) > 0 for all x ERY and o € (0,1). Moreover, the shortfall so(x) is equal to zero for some

x and « if and only if X*R. is a constant with probability 1.
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(b) The. shortfall is positively homogeneous, i.e, for allt > 0,
3a(tx) = tsq(x).
(c) The shortfall is convez, i.e. if x,y ERY, and X € [0,1], then
5a(Ax+(1 = A)y) < Asa(Ax) + (1 — N)sa(y)-
Proof. (a) Let X := x'R, and ¢q := ga(x). Then, conditioning on the event X < go, we get

Sa(x) = E(X) _E[X | X gqa]
= (1-a){BX | X >q]-E[X | X < ql},

so that so(x) > 0 and is equal to 0 if and only if P(x'R is constant) = 1. Clearly, if P(x'R is
constant) = 1, then s(x) = 0 for all « € (0,1).

(b) Clearly g, (tx) = tgo(x) for all ¢ > 0, and the result follows.

(c) Let x,y €RY and let X := x'R and Y := y*R. Then

Sa(Ax+(1 = N)y)
= Dx+(1=Ny'p—EPX+ (1 =NY | AX + (1 = NY < gan)
= AXpu—EX | AXX+(1-NY <ap]) + (1 =2 (¥'u—BY | XX + (1 - NY <dapl),

where gq » is the a-quantile of random variable AX + (1 — A\)Y. But it is obvious that

EX | AX + (1= NY < qapn]
> E[X | AX < ga(Xx)]
= E[X | X < ga(x)]-
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The same reasoning applied to Y yields the result

Sa(Ax+(1 = N)y)
S AMEp-EX|X<q@®)])+1-XNFr-EY |Y <))
= Asa(x) + (1= N)saly),

and we are done. W

Remark. Artzner, Delbaen, Eber and Heath (1999) propose four axioms which, they argue, every
measure of risk should satisfy. They call measures of risk that satisfy these four axioms coherent.
While Artzner et al. (1999) considered only discrete probability spaces, Delbaen (2000) extends their
definitions to arbitrary probability spaces. Let X be an investment’s net return. A coherent risk

measure k(.) satisfies

(i) (Translation Invariance). For any a € R, k(X +a) = k(X) —a.

(ii) (Subadditivity). For any investments with net returns X and Y, k(X +Y) = (X) + &(Y).
(iii) Positive Homogeneity)v. For all t > 0, k(tX) = tk(X).

(iv) (Positivity). If P(X > 0) = 1, then &(X) < 0.

It is easy to verify that CVaR is in fact coherent, while risk measures independent of the mean, such
as the standard deviation, semi-variance, and shortfall, violate axioms (i) and (iv). Notice however
that these axioms were developed in the context of setting margin requirements for certain investment
strategies, and not for the purpose of portfolio selection. In the context of portfolio selection, we
feel that the only important axioms are (i) and (iii), which together imply that the risk measure is
convex, and therefore that risk is diversifiable. Note that VaR, or even a centered version of VaR,
is not convex - and in fact is not coherent - and that may be a reason for not using VaR in portfolio
selection. Convexity also has important implications for portfolio optimization and the statistical

analysis of portfolio estimation, as we will see in, respectively, Chapters 3 and 5.
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2.3.2 Derivatives

The gradient of the shortfall, which we present below, can also be found in Tasche (2000) and in Scaillet
(2000).

Proposition 5 Let the random variable R €RN have mean pu and a continuous density. Then the

gradient of sq(x) with respect to x ERY is
Vxsa(X) = p — E[R | xR < ga(x)], (2.9)
and the Hessian of sq(X) with respect to X 1is
VZo,(x) = fo(Za-(x—))Cov[R | xR < ga(x)], (2.10)

where fyurr(.) is the density of x'R and where Cov[R | .] is the conditional covariance matriz of R.

Proof. Consider x;, the i*" element of x. Then

0sq(X) 19 t
8wi =u; — Ea E[x R | x Qa(x)],

where p; is the i*® element of . Writing the last expectation as a bivariate integral in the variables

U= E#i zjR; and V' = R; and differentiating with respect to x;, we obtain

Osa(x) 10

ox; = KT o sz

// (u+ xiv)l{“+$w<qu(x)}fUV(U, v)dudv
ch(x)—w,'v
a 31‘, / / (v + zv) fuy (u, v)dudv
Ja X)—IJ,,‘U
= WA __/ / vfuv(u,v)dudv

= pi—

o O,
190 0a
a7 | ( %ai x) —v) fuv(qa(x) — z;v,v)dudv. (2.11)
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By definition of the quantile g,(x)

a = //RZ 1{u+mw<qa(x)}fU,V(u,fv)dud,v
0 qg(x)—a;‘-y
- / / Fo (u,v)dudv.
—o00 J—00

Differentiating the last expression with respect to z; we see that the last term in (2.11) is zero. The
result then follows.
The proof expression for the Hessian follows from similar arguments. m

Remark. (2.10) also implies that the shortfall is convex.

2.4 Some Results from Classical Portfolio Analysis

In this section we recover two results from classical mean-variance portfolio analysis (see Ingersoll, 1987):

two fund separation in the presence of riskless asset, and the concept of a portfolio’s beta.

2.4.1 Two Fund Separation in the Presence of a Riskless Asset

One result from classical mean-variance analysis is that the set of solutions to the mean-variance problem

minimize x'¥Yx
subject to x'e =1, (2.12)

T, e
xtpu=rp,

where rp, is the target portfolio expected return, form a convex curve is in reward-risk space, i.e. in
mean-standard deviation space, as shown in Figure 2-1. In the presence of a riskless asset with rate of
return 7, the problem becomes

minimize x'Yx

(2.13)

subject to x‘p + (1 —x‘e)ry =7y,
and the solutions to (2.13) for 7, > r; (and assuming that the portfolio with minimum variance, among
all solutions to (2.12) has expected return greater than ;) span a line which passes between ¢ and the

tangency portfolio, marked by a circle in Figure 2-1. Any portfolio on this frontier can be constructed
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by combining the riskless asset with the tangency portfolio. And if the all investors choose portfolios
that solve (2.13), then the tangency portfolio is the market, which is the Capital Asset Pricing Model
result.

Tasche (2001) shows that this form of two-fund separation holds whenever the risk measure is
convex and positively homogeneous, which is the case with shortfall, as we showed in the previous

section. Therefore, the solutions to

minimize  $4(X)
subject to x‘e =1, (2.14)
xtp = rp,
for all r, form a convex curve in reward risk space, i.e. in mean-shortfall space, and in the presence of

a riskless asset, the solutions to

minimize  $q(X) (2.15)

subject to x‘p + (1 — xte)ry = rp,

span a line which passes between the riskless asset and the tangency portfolio.

2.4.2 Shortfall Beta
We define the shortfall beta, derived by analogy with the standard beta from mean-variance analysis.

Definition 6 Assume that R has mean p, and a continuous density. Then the a-shortfall beta of

asset i with respect to portfolio x € RY is

B = L O5al¥) _ = E(Ri | XR < ga(0)

sa(X) i Sa (%)

The quantity 3; ,(x) can be interpreted as the relative change in shortfall when increasing the weight

of asset 7. Note that, as with the standard beta from mean-variance, we have

N -
inﬂi,a(x) =1,
i=1
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Figure 2-1: Two-fund separation: — : minimum risk frontier, -. : minimum risk frontier in presence of
riskless asset, o = tangent portfolio. 7y =5.

which effectively gives a decomposition of the portfolio shortfall into the individual assets’ contributions,
cf. Tasche (2000) for a similar decomposition in terms of VaR. The following result is similar to the
classical Capital Asset Pricing Model result, relating the expected return of an optimal portfolio with

the expected returns of the individual assets.
Proposition 7 Call x, the optimal solution to 2.15. Then, x; o, the ith component of Xa, satisfies
pi =1 = Bia(Xa)(rp — 7)-

Proof. The Lagrangian of Problem (2.15) is L(x,7) = sa(%) +7(rp — (x* 4+ (1 —x’e)ry)). Taking

its partial derivatives with respect to x and 7y, and setting them to 0 yields

= p-ER|xR<qa(x) +7(n—ers)=0 (2.16)

= r1p— (uix+ (1 - xte)rf) =0.

SHISEIS
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Now, multiplying the equation (2.16) by x* yields

x'p— Ex'R | X'R < (X)) + 7(x'p — X'ery) = sa(X) +7(rp —17) =0,

so that v = —s4(x)/(rp — 7). Plugging in the value of 7 in equation (2.16) we get

(/14 _ e,rf) _ H— E(R L:c(c;cRa')g Qa(xa)) ("'p _ T'f)

or

(n— erf) = ﬂa(xa)(rp - Tf)’ (2.17)

by definition of 8,(X4), and we are done. m
More interesting, however, is the shortfall beta’s dependence on a. Some assets may contribute
little to risk for some levels of , but significantly at other levels of «. We illustrate this fact empirically

in the next section.

2.5 Computational Experiment

In this experiment, we illustrate the fact that in the presence of asymmetrically distributed data, mean-
variance and mean-shortfall optimization may yield different portfolio weights. Furthermore, we show
that the risk-sensitivity of a portfolio with respect to any of its underlying assets, its shortfall beta, may

also depend on the value of a.

Data

We generate data for three assets: (A) symmetrically distributed, (B) skewed to the left and (C)
skewed to the right . The assets are designed to have the same mean and standard deviation, and to
be uncorrelated with each other, which will make mean-variance optimization blind to their differences.
Asset A has a normal distribution. Asset B is the distribﬁtion of a portfolio consisting in a stock with
a lognormal distribution, combined with a call on 756% of the value of the stock, financed by borrowing
at a riskless rate 7y = 2.5%. Finally, asset C is the distribution of a portfolio consisting in a stock with

a lognormal distribution, combined with a put on 75% of the value of the stock, financed by borrowing
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Figure 2-2: Histogram of returns for each asset, sample of size 2000.

at a continuously compounded rate of return 7y = 2.5%,

The log of the underlying stock returns have normal distributions with mean equal to 8% and
standard deviation equal to 20%. The price of the call and put options, used to calculate the returns
of those options, were determined using the classical Black-Scholes formula, assuming a maturity of one
period, and a strike price equal to the price of the asset. In each sample that we use in our experiments,
the mean and standard deviation of each asset are standardized to be 8% and 20% respectively. Figure
(2-2) shows histograms of the returns of each asset, for a sample of 2000 observations. The distributional

asymmetry of assets B and C is clear.

Shortfall and Shortfall Beta of Fixed Weight Portfolios

Next we examine the shortfall of three different fixed weight portfolios: zr=[1 /3 1/3 1/3 ], 2o =

[01 08 01 ]and z3 = [01 01 08 ] for different values of a. We repeat the following experiment
100 times:
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(i) generate a sample of T' = 2000 observations from the asymmetric multivariate distribution described

above;
(i) standardize the data so that each asset has mean and standard deviation 8% and 20% respectively;

(iii) calculate the shortfall of each portfolio z1,x2, and x3, and the beta of each asset with respect to

each portfolio.

In Figure (), for values of a between 2% and 50%, we plot the median shortfall, over the 100
experiments, of each portfolio. We also plot the 10% and 90% quantiles, over the 100 experiments,
to give intuition about the variability of the shortfall estimates. A expected, portfolio z2 has a higher
shortfall than portfolio 3 for values of a below 40%, reflecting that fact that portfolio z is highly
loaded on the negatively skewed asset B, whereas portfolio x3 is heavily loaded on the positively skewed
asset C. Note however that portfolio z, the equally weighted portfolio, has the lowest shortfall of all
portfolios, at every value of «, a clear reflection of the power of diversification.

In Figure 2-4, we report the shortfall beta of each asset with respect to portfolio ;. For portfolio
z1 and low values of a, asset B has the highest shortfall beta, indicating asset B is responsible for most
of the shortfall of the portfolio. Asset C has the smallest shortfall beta. For portfolio z; and high v
values of a, all assets have shortfall beta about 1, indicating comparable contributions to the portfolio’s
shortfall. The message is that contrary to the standard beta, the shortfall beta can vary with «,
indicating that an asset can have different contributions to the risk of a portfolios at different values of

.

Weights given by Mean-Variance and Mean-Shortfall Optimization

Next we propose to compare the portfolio weights obtained via mean-variance optimization and via
mean-shortfall optimization on samples of our asymmetric distribution. We repeat the following exper-

iment 100 times:

generate a sample of T' = 2000 observations from the asymmetric multivariate distribution described

above;

standardize the data so that each asset has mean and standard deviation 8% and 20% respectively;
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Figure 2-3: Shortfall of portfolios 1 (—), z2 (---), and z3 (-.-.). For each portfolio and a-level
combination, the 10%, 50%, and 90% quantiles over 100 samples are represented.
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Figure 2-4: Shortfall beta of each asset with respect to portfolio z;. For each asset, and a-level
combination, the 10%, 50%, and 90% quantiles over 100 samples are represented.

do mean-variance optimization and mean-shortfall optimization for values of a between 2% and 50%.

We use a target rate of return of r, = 8%, and constrain the weights to be non-negative.

Figure 2-5 shows cumulative distribution function of returns for the optimal portfolios MV, S(0.01),
and S5(0.10) on one sample of 2000 observations: the shortfall portfolios dominate in the tails, as
expected, but the MV portfolio dominate in the mid-range (+/- 10%).

Figure 2-6 gives the weights assigned to each asset, for a ranging from 2% to 50%. We see that
MYV optimization (which is independent of a) gives equal weight to each asset, as expected. Shortfall
optimization, especially for low levels of «, puts less weight on asset B, and extra weight on asset C,
also as expected. The weight assigned to asset A, the symmetrically distributed variable, seems to be

the same for MV and shortfall optimization.

2.6 Conclusion

In this chapter, we introduced shortfall, a quantile-based asymmetric measure of risk. ~We showed
how it arose naturally as a measure of risk by considering distributional conditions of second order

stochastic dominance. We examined its connections with other risk measures such as VaR, CVaR, and
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Figure 2-5: Cumulative distribution of MV (—), $(0.10) (---), and S(0.01) (-.), sample of 2000 obser-

vations.
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Figure 2-6: Weights for each asset:: —: V, -+ =s,. For each portfolio, asset, and a-level combination,
the 10%, 50%, and 90% quantiles over 100 samples are plotted.

the standard deviation, and its mathematical properties. We also showed that two results from classical
mean-variance analysis, two-fund separation with a riskless asset, and the concept of an asset’s beta,
extended to mean-shortfall portfolio analysis. In the next Chapters 3 and 4, we examine the sample
shortfall portfolio optimization problem, and develop a central limit theorem for the shortfall estimator.
In Chapter 5 we show that the shortfall estimator can outperform the variance portfolio estimator even

when returns are elliptically symmetric.
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Chapter 3

Sample a-Shortfall Portfolio

Optimization

Given a sample of T return observations Ry, -+ ,Rr, where R; € RV i =1,--- ,T, for any a € (0,1),

consider the sample a-shortfall portfolio optimization problem, introduced in Chapter 1, and defined

generally as
min.im.izex,q %ZT pa(xtRz_q) (3 1)
subject to Ax =D, |
where
1
Pa(2) =2 = Z2l(zop, 42

and where A is an (M x N) matrix with linearly independent rows and b is an M-dimensional vector.
In this chapter, we develop a linear programming formulation of problem (3.1) and examine some of
its properties. We emphasize comparisons between Problem (3.1) and the sample variance portfolio
optimization problem defined as

minimize x%x

(3.3)
subject to Ax=Db,
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where

i=1

is the sample covariance mean.

This chapter is organized as follows. In Section 1 we develop a linear programming (LP) formulation
of Problem (3.1) with N 4+ 1 + T variables and M + 2T constraints, with N + 1 dense columns. In
Section 2 we present an alternative formulation of the sample variance portfolio optimization problem
which does not make use of the covariance matrix. This formulation highlights the similarities between
the shortfall and variance problems, and has computational advantages when T' < N — M. We also
provide alternative formulations for the sample CVaR, LPM; and LPM> portfolio optimization problems,
which show that each of these problems is solvable using a generic LP or QP solver. In Section 3 we
note that when T" < N — M, the sample a-shortfall and the sample variance portfolio optimization
problems will have a non-unique and unbounded set of solutions. We introduce regularization in sample
portfolio optimization to guarantee solution uniqueness. Regularization is implemented by adding a
strictly convex penalty to the objective of the sample portfolio optimization problem, where the penalty
is proportional to either the Li- or the Ls-norm of the weight vectbr x; Finally, in Section 4 we
present the results of some numerical experiments. First, we compare the running times of our portfolio
optimization formulations against the classical formulation of the variance problem with covariance
matrix. Then we show that the sample a-shortfall portfolio optimization problem, because it is an LP,
can readily incorporate cardinality constraints. We use this fact to solve an index tracking problem

using shortfall optimization.
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3.1 Linear Programming Formulation of the Sample a-Shortfall Port-

folio Optimization Problem

Using the definition of p,(.) we can write Problem (3.1) as

minimizey, = ST(x'Ri—q) — £ 57 L(x'Ri—q)1(xtri<q}

subject to Ax=Db,
which can then be rewritten (using the usual LP formulation tricks), letting

_ 1 Z
R=7> R

i=1

: i 1 T
Minkgz XR—q+55) i 2

s.t. Ax=Db

which has N + 1 + T variables and M + 2T constraints, with IV + 1 dense columns. Note that Uryasev
and Rockafellar (1999) have independently derived a formulation similar to the one described above, in
the context of CVaR portfolio optimization - see Section 2. |

We now notice an interesting geometric fact. Let (Xqa,gq) be a solution to (3.4), and let P, be the
convex-hull of all solutions to (3.4). Let 7 = {1,... ,T} and H denote the set of K = N — M element
subsets of 7. Elements h of M have relative complement & = 7 — h. Let R(h) denote the (K x N)

matrix with rows R;, 7 € h.

Proposition 8 Every optimal basic feasible solution to (3.4) has the form

A Oy Ty
(foQOL)t = [ ] [ ] I
R(h) —en-M |- On—_n

for some h € H. Also, Pq is the convez-hull of all such solutions.
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Proof. Follows from the definition of basic feasible solution and the formulation (3.4). See Bertsi-
mas and Tsitsiklis (1997) for a discussion of basic feasible solutions in linear programming. ®m

The preceding lemma says that every optimal basic feasible solution x, (and its associated a-quantile
go) determines a hyperplane P = {R €R" | x{,R = ¢, } that passes through at least the N — M points
in the sample {Ry,... ,Rr}.

3.1.1 Alternative Derivation of the a-Shortfall Optimization Linear Programming

Formulation

It is interesting to note that we can derive the formulation (3.4) by starting with the alternative definition

of shortfall presented in chapter 2, namely
sqa(x) =x'u — EX'R | X'R < q4(%)],
where
ga(X) = inf{z | P(x’R < 2) > a}

is the a-quantile of portfolio x. The sample a-shortfall of portfolio x, can be defined in direct analogy

to its population counterpart, namely

T

. _ 1

8a(x) =x'R — —= ) (*x'Ri)1xtmi<an )} (3.5)
oT

i=1

where R = (EZT=1 Ri> /T is the sample mean, and where §,(x) is the sample a-quantile of portfolio x
defined as

T

. . 1

do(x) =1inf{z € R | T Zl{xtRiSz} > a}.
i=1

Using (3.5), we can formulate the shortfall optimization problem as
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minimize §4(X%) (36)
subject to Ax =D, .

A naive formulation the sample a-shortfall portfolio optimization problem follows from the observation

that (3.6) can be rewritten as the following linear program (assuming that K := oT is integer):

minimize xR —z
subject to Ax=Db (3.7)

% ZieS(XtRi) 2z,

where S ranges over all K-element subsets of {1,--- ,T}. Of course, the number of constraints is
exponential in the number of observations T, so unless N and T are small, the problem as formulated
in (3.7) cannot be directly input into a computer (however, see the Appendix for a description of
an algorithm which solves (3.7) by sequentially generating the constraints of the problem, and which
terminates in polynomial time).

The next theorem shows that formulations (3.7) (which does not involve g) and (3.4) are equivalent.

Theorem 9 Assume that oT is integer. Then the problems (8.7) and (3.4) have the same optimal

solution.

Proof. Let K := oT. Given a vector v €RT, observe that the optimal solution of the linear

program

minimize, Zszl V;U;
subject to Y u; =K, ‘ (3.8)
0Kwu<1,i=1,...,T

is equal to the sum of the K smallest components of the vector v, i.e. it is equal to Zfil (), Where

vy <+ < vr) are the components of v ordered from smallest to largest. By strong duality, the
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optimal solution of problem (3.8) is the same as the optimal solution of the dual problem

maximizegy Kgq+ PDAREY
subject to t+y; > vi,i=1,...,T (3.9)
v <0,i=1,...,T.

Now notice that Problem (3.7) can be written as

minimizey x'R — & min, YL (x'R;)u;
subject to Ax=Db
ZiT=1 u; = K,
0<u<l,i=1,....,T

Using (3.9), we can rewrite the last problem as

minimize, x'R — & max,y(Kq+ Y-, vi)
subject to Ax=Db
g+y; =2xR;,i=1,...,T
vi<0,i=1,...,T.

Using the fact that max(f) = —min(—0), we obtain,

minimize, xR —q-— % Z?:l Yi

subject to Ax=Db

and the conclusion follows by letting z; = —y;. m
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3.2 Alternative Formulations of the Sample Variance, CVar, LPM;,
and LPM; Portfolio Optimization Problems

Before we present alternative formulations of other portfolio optimization problems, let us notice that

for any a € (0,1), the sample a-shortfall portfolio optimization

minimize %77 po(xX'R; — g)

subject to Ax =Db.

problem can be also be written as - using definition (3.2) -

. T T -
MINUMZEy cRN geR,t+€RT,t+cRT % S ti+ % > (% -1t
subject to Ax=Db (3.10)
xRi—qg=t—t7,i=1,...,T,

1

tH.t= >0,

In particular, the sample 50%-shortfall problem

minimize &Y [X'R; — q|
3

subject to Ax=Db.

can be rewritten as

... 1 T ,+ 1 T ,—
minimizeyx ey geR t+cRTHeRT T )i t T 72 b

subject to Ax=Db
xRi—q=tr -t ,i=1,...,T,

tT,t= > 0.
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3.2.1 Alternative Formulation of the Sample Variance Portfolio Optimization Prob-

lem

From the definitions of the sample covariance matrix and the sample mean, the sample variance problem

(3.3) can be rewritten as

minimize % ST (xR, — g)?

subject to Ax =Dbh.

It is then easy to see that the problem can be rewritten without a covariance matrix, as follows:

minimize, gy ,q€R,t+eRT t+eRT % Ef(tf )2 + % ZT (tz— )2
subject to Ax=Db
xR, —g=tf-t7,i=1,...,T,
tt,t= >0,

(3.11)

which is a QP with N + 1 + 27 variables, and M + 3T constraints, with N 4 1 dense columns.

3.2.2 Alternative Formulation of the Sample CVaR Portfolio Optimization Problem
The sample CVaR (with parameter « € (0,1)) optimization problem is
minimizeycgy  — a5 i (XRi)LixtRi<a(x)}

subject to Ax=Dh.

The following formulation of the sample CVaR optimization problem is due to Uryasev and Rockafellar

(1999):

P T
minimize,cpy ger  —4 = 3 2 (X Ri — @)1 peRri<q)

subject to Ax =b,
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which can be reformulated as

minimize, g ger i+ RT t+eRT —4F o Yt
subject to Ax=bDb
xXRi—g=t}—t7,i=1,...,T,
tt,t= >0,

(3.12)

which is an LP with N + 1 + 27 variables, and M + 3T constraints, with NV + 1 dense columns.

3.2.3 Alternative Formulation of the Sample LPM, Portfolio Optimization Problem
The sample LPM; (with parameter ¢) optimization problem is

minimize,cgy = Yy (€ — X'Ri)1{xtR;<c}

subject to Ax=Db.

which can be reformulated as

Minimize, cgN i+cRT,1+eRT % 231 b
subject to Ax=Db
xXRi—c=tf —t7,i=1,...,T,
t+,4= >0,

(3.13)

which is an LP with N + 1 4 2T variables, and M + 3T constraints, with N + 1 dense columns.

3.2.4 Alternative Formulation of the Sample LPM; Portfolio Optimization Problem

The sample LPMjy (with parameter ¢) optimization problem is

e . T
minimize,cgy 7 Y (¢ ~ X' Ri)?Lpen <o)

subject to Ax=Db.
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which can be reformulated as

C 1N T -2
MmINIMIZex RN ++cRT t+eRT T Zi (ti )

subject to Ax=Db (3.14)
xR;—c=tf —t;,i=1,...,T,
tt,t= >0,

which is a QP with N + 1 + 2T variables, and M + 3T constraints, with IV 4 1 dense columns.

3.3 Non-Uniqueness and Unboundedness of the Sample Solution Set

and Regularization

In this section, we propose a solution to the problem of non-uniqueness and unboundedness which
characterizes the sample shortfall and varianée portfolio optimization problems when T' < (N — M) for
example. Note that T' < (N — M) is realistic, and corresponds to any sample portfolio optimization
problem where the number of assets is large, but the number of observations is limited. For example,
consider a sample portfolio optimization problem involving 2000 stocks, with monthly returns going
back only 10 years - see Ledoit (1995) for an example of sample variance portfolio optimization with 10
years of monthly return observations on a relatively largé set of assets, consisting of all stocks in the
CRSP universe.

Fof the a-shortfall problem, T' < (N — M) implies that there exists no basic feasible solution. For
the variance problem, T' < (N — M) implies the covariance matrix has rank less than N. This will of
course create computational difficulties for any LP and QP solver. More disturbing, however, is the fact
that for the sample portfolio optimization problems we are considering, the optimal objective funﬁtion

will be O (the optimal solution has 0 risk), and that the optimal feasible set will be unbounded.

Proposition 10 Assume that T < (N — M). Then the sample a-shortfall and the sample variance

portfolio optimization problems have an unbounded solution set for which the sample risk is 0.

Proof. Assume without loss of generality that the vectors Ry, ... , Ry are independent, and inde-
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pendent of the rows of A. Then the matrix

has T'+ M linearly independent columns. So the system

b
Mx = (3.15)
ge
has at least one solution, for arbitrary ¢, as does the system
Mx =0. (3.16)

Therefore, any portfolio optimization of the form

minimizexe]RN ,g€R % E:zr f (xtR'i - Q)

subject to Ax =b,

- where f(.) > 0 and f(0) = 0 - has at least one feasible solution with 0 sample risk - since there exists
x which satisfies (3.15) - and the solution set is unbounded - since there exists at least one feasible
direction satisfying (3.16). m

The problem of the non-uniqueness and unboundedness of the optimal solution set can be solved

1 Notice that we can enforce uniqueness in our sample

by regularization methods, as we describe now
portfolio optimization problems by adding a strictly convex penalty to the objective function. This is

exactly what regularization does. Specifically, we will consider two types of penalty.

e Li-norm penalty |[x||} = 3N |z;| where |.| stands for the absolute value, and z;, i = 1,... ,N

are the elements of x;

e Ly-norm penalty ||x||2 = SN (z:)2.

!Note that regularization is also motivated, but from a statistical perspective, in Chapter V.
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Now, consider the sample a-shortfall portfolio optimization problem. The Li-norm regularized
version of the problem is

minimizex g 8a(X) + AllX — Xml 1 (3.17)

subject to  Ax =b.

where )\ can be an arbitrary positive real, and X, € RY 2 This can be written as an LP using the

usual trick with absolute values:

minimizeyx g 8o(X) + A PIARE
subject to Ax=Db
2 2T —Tim,1=1,... ,N

%2 —Zi+Tim,i=1,... ,N.
The Lo-norm regularized version of the problem is

mim'mizex,q R (X) + )‘| ’x - Xm| |% (3 ]_8)
subject to Ax=h.

which can be written as a QP. In fact, the sample a-shortfall and variance portfolio optimization
problems with L;-norm or Le-norm regularization can each be solved as either an LP or a QP, using
the usual algorithms for either problem formulation. In addition, with the added penalty, the objective

functions will be strictly convex, guaranteeing a unique solution.

3.4 Computational Experiments

We implemented our portfolio optimization formulations in CPLEX, which is a solver for LPs and QPs.
All data manipulations described below (except for the optimizations) were done in Matlab, and CPLEX
was called from Matlab using executable "mex” files (for the optimizations). These files allow us to
pass data to the CPLEX solver, which then returns the optimal solution after optimization. We ran
our experiments on a Dell Precision 410 with a 400 Mhz Dual Pentium II, and with 256MB of RAM.

In what follows we report the running times of portfolio optimization problems and formulations,

2 Again, see Chapter 5 for motivation and suggestions concerning the choice of A and xm
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for datasets of different sizes. We also consider an application of the a-shortfall portfolio optimization
problem which leverages the fact that the problem can be formulated as an LP. Specifically, we consider
the index tracking problem, and show that this hard QP with integrality constraints can be solved by

considering an easier LP formulation with cardinality constraints.

3.4.1 Comparing the Running Times of Sample Portfolio Optimization Problems

and Formulations

We will compare the running times of the following problems and formulations:

e shortfall: formulation (3.4) for the sample a-shortfall portfolio optimization problem, imple-

mented with o = 50%;

e variance-A: formulation (3.3) for the sample variance portfolio problem implemented with co-

variance matrix;

e variance-B: formulation (3.11) for the sample variance portfolio optimization problem imple-

mented without covariance matrix calculation.

We solve these problems for datasets of size (T' X N), where N = 100,200,500, 1000, 2000, and
T = 120, 260,520. Notice that the values of 7' which we choose represent, respectively, the number of
months in ten years, the number of trading days in one year, and the number of weeks in ten years.
For each combination of N and T, the dataset consists in 7" observations from the distribution N(0,X),
where ¥ is an (N x N) covariance matrix with ones on the diagonal, and 0.5 off-diagonal elements. -

The following tables reports the running times to optimality for each problem. For T' < N, we do
not report the results of the ”unregularized” optimization problems, for the reasons that we described
in Section 4 above. Problems are regularized using X, = 0 and A = 1, where X, and X are defined as in
(3.17) and (3.18) . Ll-regularization is only implemented for shortfall. For variance-A and variance-B,
and for L2-regularized shortfall, the CPLEX barrier optimizer (based on interior point methods) was
used. For shortfall and shortfall-L1, the dual simplex solver was used, as it gave shorter running times.

The following insights emerge from this experiment.

1. for values of N and T less than 500, the variance-A is solvable in CPLEX about an order of

magnitude faster than the other two problems, with or without regularization.
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N=100 N=200 N=500

variance-A T=120 | 0.1

T=260 | 0.1 0.5

T=520 | 0.1 0.5 11.1
shortfall T=120 | 0.4

T=260 | 2.4 4.8

T=520 | 9.6 24.6 43.5
variance-B  T=120 | 0.3 :

T=260 | 1.5 3.3

T=520 | 7.2 14.6 36.1

Table 3.1: Sample Portfolio Optimization Problems (unregularized)

N=100 N=200 N=500 N=1000 N=2000 |
variance-A T=120 | 0.1 0.5 9.6 92.3 606.2
T=260 | 0.1 0.5 9.5 78.7 606.3
T=520 | 0.1 0.5 9.4 92.0 717.0
shortfall T=120 | 0.6 1.0 2.6 54 10.1
T=260 | 2,7 5.9 15.0 26.0 46.7
T=520 | 17.6 - 27.5 61.4 120.0 176.7
variance-B  T=120 | 0.5 1.0 2.4 4.8 10.1
T=260 | 2.4 5.5 12.6 21.0 37.0
T=520 | 13.2 25.3 51.4 80.3 138.7

Table 3.2: Sample Portfolio Optimization Problems (L2-regularized)

shortfall

| N=100 N=200 N=500 N=1000 N=2000
T=120 | 0.6 1.8 10.5 35.0 129.5
T=260 | 2.2 6.5 30.4 102.7 354.9
T=520 | 8.6 22.5 101.1 310.5 1036.8

Table 3.3: Sample Portfolio Optimization Problems (L1-regularized)

55




2. for N = 2000, and after L2-regularization, the situation is inverted, with shortfall and variance-B
vastly outperforming variance (by a factor of 60 for N = 2000, 7" = 120, for example). To see why
this is happening, notice that in the variance-A problem, the factor determining running time is
the size of the quadratic matrix, which in this case is (2000 x 2000), and dense. In the other two
problems, the only dense part is the constraint matrix, which is only (7" x 2000). This constraint

matrix is smaller than the corresponding dense quadratic matrix, and the problems run faster.

3. Ll-regularization is at least five-times more expensive than L2-regularization, for large N, such

as N = 1000 or 2000.

We conclude this experiment by noting that we did not notice a strong dependence of running time
on « in the case of shortfall. In regularized problems, the value of the A parameter may affect running
times, but we have not examined this issue. We also note that while we do not report the average
running time over Monte Carlo repetitions of our experiment, we did run a small Monte Carlo (10

repetitions), and the insights described above do not change.

3.4.2 Solving the Index-Tracking Problem with Cardinality Constraints Using Sam-
ple Shortfall Portfolio Optimization

In this experiment, we consider the index-tracking problem, which we define as follows. Given N assets,
whose return vector R is a random variable with mean p and covariance matrix %, and given a portfolio
Xp - b for ”benchmark” - of these assets, find a portfolio x > 0 of K < N assets which has minimum

tracking error, where tracking error is defined as

\/E[(xtR — xtR)?2] = /(X — Xp)'2* (X — %), (3.19)

where * := pu!+Y. We also add the following twist to the problem: the nonzero elements in x must
lie in the interval [a, b].
The index-tracking problem can be formulated as a QP with cardinality constraints. To this end,
we introduce binary variables
1 if asset 7 is included in X,

Y= _
0 otherwise.
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Then, the problem can be written as

minimizex g (X — Xp)'2*(x — X;)

subject to  x‘e =1
x'y =K
ay; <z; <by,i=1,...,N,
yie{0,1},i=1,...,N,

x> 0.

(3.20)

This QP with cardinality constraints is a hard problem for which there exists no commercially available
solvers.

To solve (3.20), we use the fact that when returns are normal, the shortfall of a portfolio is pro-
portional to its standard deviation. Technically speaking, the exact relationship - see Chapter 1 -

is

5a(X = X5) = ‘75(2“) VE =) X =)

where ¢(.) is the density of the standard normal, and 2, is the a-quantile of the standard normal, and
where s,(X — X;) is the a-shortfall of portfolio x — x;, assuming returns are normal with covariance

matrix ¥*. This shows that Problem (3.20) is equivalent to

minimizey ; Sq(X — Xp)

subject to  x'e =1
xly =K
ay; < z; Kby, i=1,... ,N,
% €{0,1}, i=1,... N,
x=0.

Now this last problem can be approximately solved as an LP, by generating data R, i=1,...,T

from a multivariate normal distribution with mean 0 and covariance matrix £*, and solving the related
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sample shortfall portfolio optimization problem, i.e., by solving

minimizey, X'R —q+ 7= Y %
subject to  x‘e =1
xly =K
ay; <z <byi,t=1,...,N, (3.21)
zi2q—(x—x)R}, i=1,...,T,
y; €{0,1}, i=1,...,N,
x,z 2 0.

where we have used the formulation of Problem (3.4) above. Problem (3.21) is a mixed integer linear
program, for which there is a large literature as well as several commercially available solvers.

To illustrate our approach to the index-tracking problem, we run the following experiments for
N = 96, using a covariance matrix ¥ and a mean vector g which were calculated from SP100 data
obtained in the CRSP database®. We generated random samples of size T = 100, 200, 500, 1000 from
a distribution with mean 0 and covariance ¥*, with ©* as defined after (3.19). We let x; = e/N,
an equally weighted index or benchmark. We let a = 0.3%, and b = 10%. We finally let o = 50%.
We solve Problem (3.21) using the mixed integer solver in CPLEX, and we report in Table (3.4) the
tracking error, and in Table (3.5) the running time, both as a function of K and T. Tracking error is
calculated using (3.19). We run the mixed integer programming algorithm in CPLEX until five feasible
solutions have been found. The reason for stopping the algorithm after five solutions is that running
times to exact optimality can be excessive for problems of the size which we are considering. Moreover,
the best solution found among the first five solutions is typically either the optimal or very close to the
problem.

The following insights emerge from this experiment:

1. the proposed approach successfully solves the index tracking problem, for a given p and X, within

reasonable running times.

341 was calculated as the sample mean, multiplied by 21, of 96 stocks, for the period January 02, 1996, to December 31,
1999. X was calculated as the sample covariance matrix, multiplied by 21, of those same stocks over the same period. The
96 stocks were selected using the following criteria: they were in the SP100 on December 31, 1999, and had daily return
data for the entire four year period under consideration. The data come from the CRSP database, and were obtained
using the Wharton Research Database Service (WRDS).
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| K= [96 90 80 70 60 50 30

T=100 | 0.0% 0.46% 0.54% 0.66% 0.81% 0.90% 1.1%
T=200 |0.0% 0.38% 048% 0.63% 0.72% 0.93% 1.1%
T=500 | 0.0% 0.29% 0.46% 0.59% 0.73% 0.79% 1.0%
T=1000 | 0.0% 0.27% 0.37% 0.54% 0.60% 0.78% 0.90%

Table 3.4: Tracking Error (per month) as a function of K and T.

[K= [96 90 80 70 60 50 30 |
T=100 [0.7 1.7 32 50 74 93 125
T=200 (0.8 7.0 11.7 180 21.8 271 324
T=500 |09 328 595 816 1027 121.9 135.8
T=1000 | 1.2 128.2 206.6 313.3 372.9 4364 519.3

Table 3.5: Running Time (in seconds) as a function of K and T.

2. as expected, the tracking error increases as K decreases, since it becomes increasingly more difficult

to track the index with a smaller number of assets.

3. the running times are monotonically increasing as K decreases and T increases.

3.5 Conclusion

In this chapter we developed an LP formulation of the sample a-shortfall portfolio optimization problem,
and alternative formulations of the variance, CVaR, LPM; and LPM; portfolio optimization problems.
The alternative formulation of the variance portfolio optimization problem circumvents the need to
calculate the covariance matrix. We noted the need to regularize our problems when T < N — M.
When N is large and T is less than N — M, we showed via simulation that our formulations may have
significantly lower running times than the classical formulation of the variance portfolio optimization
problem, which involves the covariance matrix. This improvement in running time occurs because when
T < N — M, our formulations do not require the manipulation of a dense (N x N) covariance matrix.
Finally, we showed that we could solve the index-tracking problem, a QP with cardinality constraints,

by solving a related sample shortfall optimization problem, due to the linearity of the latter problem.
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Chapter 4

Central Limit Theorem for the

a-Shortfall Portfolio Estimator

Let R be a random return vector in RY with mean p, positive definite covariance matrix ¥, and a
continuous density. Let A be an (M x N) matrix with linearly independent rows and let b be an
M-dimensional vector. Assume b # 0 so the next problem is non-trivial. The optimal shortfall
portfolio, for a € (0,1), over the set Ax = b is the vector xo which along with its quantile go(xa) =

inf{z| Pr(x’R < z) > a} solves the problem

(% Ga(a)) = a8 guin, Elpa (xR — q))
geR

where

" { s ifz>0
pal2) =
(

1-1)z ifz<o.

Now suppose that we do not know the distribution of R, but that we are given independent and
identically distributed realizations Ry, ... , Rz of the random return vector R. Given these realizations,

we want to estimate x,. We define the shortfall portfolio estimator is defined as the vector X, which,
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along with its sample a-quantile §,, solves

T
1 ,
(Rarda) = arg min — ) “lpa(x'Ri — q)], (4.1)

This chapter establishes the asymptotic normality of %4, proving that %, converges to X, at the usual

VT rate.

For completeness, we also establish the asymptotic normality of the the variance portfolio estimator

%Xy which solves
a . =
Xy = arg min x'¥Yx
v 8 Ax=b ’

where 3 = $= ;"1:1(RL —R)(R; — R)!/T is the sample covariance matrix, and R = L, Ri/T is the

sample mean, showing that Xy converges to
St
Xy = arg min X'Xx
14 g Ax=b )

at the /T rate. Notice that Xy, along with its sample mean gy, solves

T
(Rv,dv) = arg min % Z(X*E- -q)%. (4.2)
geR i=1
This last fact will be used in the proofs to follow.

This chapter is organized as follows. In Section 1, we start by proving the asymptotic normality of
the variance portfolio estimator. We start with the variance estimator because proving its asymptotic
normality is easier, and will serve as a blue-print for the proof of the asymptotic normality of the shortfall
estimator. In Section 2, we derive the asymptotic normality of the shortfall portfolio estimator, using
some results from empirical process theory. In Section 3 we present the results of a computational
experiment which illustrates that shortfall portfolio estimation with small values of o: may be dangerous.

Finally in Section 4 we offer some concluding remarks.
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4.1 Asymptotic Normality of the Variance Portfolio Estimator

Establishing asymptotic normality is easier for Xy than for %X,, so we start with the variance portfolio
estimator. The ideas that will be developed here are similar to those used in the shortfall proof, to
follow in the next section. But there, the details are more involved because the function p,(.) is not

differentiable at 0. An alternative, somewhat more direct, proof for Xy is provided in the appendix.

4.1.1 Assumption (A)

We start by making an assumption on the distribution of R.

(A): R, with mean g and covariance matrix ¥, has a continuous density, and R has finite fourth
moments.

The assumption of finite fourth moments is necessary for the existence of the asymptotic covariance

matrix of Xy, as we will see below.

4.1.2 Notation

To simplify notation, we introduce the following. Let W = (Rt, —1)%, and let P be the distribution of

W, E(.) be the expectation with respect to W. Define yy = (xv,qv)",§v = (%%, §v), and

y {(x',q)' | Ax=Db, g€ R}

= {y eRV*'| Agy =b},
with Ag = [A 0], and 0 is an N-dimensional vector of zeros. Note that

yy = argmink [(th)2]
yey
= argminy’ E[WW'ly
yey

= argminy'Uy (4.3)
yey
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where ¥ = E[WW?| and

(%
<
(I

T
. it for 12
arg min lT ;:1 (y'w;) ]

T
1
— in vt b
= arg;neg}y lTE (wzwz)jly

i=1

. T
= argminy'Vy, 44
ey Ty o

where ¥ = [% Zz;l(wiwf-)]. Define Z = {z € R+ | Ayz = 0}, the space of first order feasible
variations.
4.1.3 Outline of Proof

We outline below the proof of the asymptotic normality of Xy .
Stepl: Writing the Lagrangean of the problem
minimize y'Uy
subject to Agy =0,

we can get a closed form expression for §y,, which depends on the product of a random matrix
(converging in probability to a positive definite matrix) multiplied by a random vector (converging '
in distribution by virtue of the CLT). Then, using Slutzky’s Lemma (see below) and some linear
algebra, one gets VT(§,—yy) ~ N (0, L3, Q5,L3;), for some L}, and Qf, expressible in closed
form. This is Theorem 13. '

Step 2: Using linear algebra, from the asymptotic normality of ¥ one gets the asymptotic normality
of Xy, \/T(J‘cv—xv) ~+ N(0, LyQv Ly), for some Ly and Qy expressible in closed form, which is
Corollary 14.

4.1.4 Uniqueness of the Variance Portfolio Estimator

We will need the following lemma in the proofs to follow.

Lemma 11 yy is uniquely defined, and §yv are uniquely defined with probability one.
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Proof. Notice that

[l

which shows that U is positive definite. ~Also, with probability one, 3 is positive definite, by the

assumption that R has a continuous density. Therefore,

[

where R is the sample mean. Therefore, ¥ is positive definite. From the fact that ) is a convex set,
and from the strict convexity of the objective functions in (4.3) and (4.4), we conclude that both yy

and y are the uniquely defined. m

4.1.5 Proof of Asymptotic Normality

We will need the following lemma, whose proof can be found in van der Vaart (1998), Lemma 2.8.

Lemma 12 (Slutsky’s Lemma) Let § and Y be random vectors in RN such that § ~Y. Let M
be a random N x N matriz that converges in probability to a constant invertible matriz M. Then,

assuming M is invertible, M~1§ ~»M~1Y.
The next theorem proves the asymptotic normality of §v .

Theorem 13 Let v be defined as in (4.4). Suppose assumption (A) holds. Then
VT(§v—yv) ~ N(0, Ly QY L)
where

Qy = Cov(WW'yy)
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and where L3, is the upper-left (N + 1)-dimensional corner of My, 1 where

T A}
Ay Oy

My =

s nonsingular.

Proof. Notice that, along with a unique vector of Langrange multipliers Ay € RM, yy uniquely

solves the system of linear equations

Ty +AfX =0

(4.5)
Agyy +0yA =bhb.
Let
1Y AB
My =
Ay Opm

Then My, is invertible by uniqueness of yy and Ay in (4.5). Notice also that, along with a unique set

of Langrange multipliers A € RM, with probability one ¥ uniquely solves

by +AN =0

(4.6)
Agy +0pA =D,
and let
. ¥ AY
My =
Ay Oy

With probability one, My is invertible by uniqueness of § and Ay in (4.6).
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Using (4.6), write

0 R n Uy, —
- MV Yv + MV YV Yv (47)
b Av Av—Av
Tyy+ALA .| yv-
_ yv oAV + Ny }:V Yv _
b Av—Ay

Since My is invertible with probability one, we can rewrite (4.7) (after multiplying both sides by v/T)

I | g ] | B AR |0
Av—Av 1o b

VT (Tyy+AsAy) ]
0

as

= —(MV+0P(1))_1[

Notice that

VT(Iyy+AbAy) = VT(T-D)yy, + Tyy+AjAy)
VT[(§—0)yy] by (4.5),

T .
= VT (% > wiwlyy — E(WWtYV)) :

i=1

Il

Therefore, by the classical central limit theorem, VT (¥yy+AbAy) converges in distribution to a normal

vector with mean 0 and covariance
Qi = Cov(W Wiyy)

So by Slutsky’s Lemma, and from (4.8)
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where Uy is normal with mean 0 and covariance

v 0
Cov(Uy,) =M;;! Qv Mt
0 On

Now write

Myt =

Bi1 B
By Ba

where By; has dimension (N + 1) x (N + 1) so that

Bi1 B Qv O Bi1 Bia
By, Bzzj 0 Oy By Bx

By Bio QvBi1 QvBi2
By By || O Om

-
B11QvB11 B11QvBi2
| BuQvBii BnQvBi2

Cov(Uy,) =

It follows that the asymptotic covariance of vT(§ — yy/) is asymptotically normal with mean 0 and
covariance By1Qy B1;. The conclusion then follows with Ly, :=DB;;. m

Focusing on Xy instead of §y (remember that §y=(%%,,gv)") , we get the following corollary, which
proves the asymptotic normality of the variance portfolio estimator, and gives its asymptotic covariance

matrix in closed form.

Corollary 14 Let Xy be defined as in (4.2). Suppose assumption (A) holds. Then

VT (%v—xv) ~ N(0,LyQv Lv),

where

Qv = Cov[(R - pu)(R*xv—qv)]
= Cov[(R — p)(R - p)txy],
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and
Ly =271 -2 1AYAZ AN TAD L
Proof. We know from Theorem 13 that
VT (v-yv) ~ N(0,LyQ} L)
where
Q} = Cov(WWtyy)

and where L}, is the upper-left (V + 1)-dimensional corner of M;,', where

U Af
My =
Ay Oy

Ly ¢
y=|"
£ d

where Ly is the upper-left N-dimensional corner of M{,‘l, and where f €RY, deR. Let I' = E(RR’).

Write

Then since (i) T is positive definite, by virtue of X being positive definite, and (ii) My is invertible from

Theorem 13, we have from Proposition 51 in the appendix

Ly = T 1T lAYAZIAYN)TASY (4.9)
f = [Z7' -z 'AYAZTTANTIAS T

= Lyp. (4.10)
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We now partition Q7 as

Q) = Cou(WWtyy)
= E[WW!(Wiyy)?] — E [W(Wlyy)] E [W{Wyy)]
E[RR'(R'xv —qv)?] E[-RR'xv —qv)?
E[-R'R'xy —qv)?] E[R'xy —qv)% }

E [R(Rth —qv)]
0

[ ER!'R'xy —qy)] 0 ] , by definition of yy and W,

ERR'(R'xy — qv)?] — E[R(R'xy — qv)|[R{(R*xv — qv)] E[-RR'xy —qv)?|
E[-R*(R'xv — qv)?] E[R'xv — qv)

_ l: Qu Q2 } - (4.11)

Qs Q2

Notice that by definition of ¥y we have

Ry —Xy = [ Iy O ] Fv—-yv)

69




where here 0 € RY. It follows that /T(Xy—xy) is asymptotically normal with mean 0 and covariance

matrix
In
= Iy

= LV

= LV

= LV[I

= Ly [Qu + pQis + Quap’ + pQ22p’] Ly,

In
0 ]L"{/Q?fLi’/ ]
Ot
Ly f | Ly £ ] 1y
0 ] Qv
fiod fiod h%

f]Q?/ [ftv

¢ ] Qu Q12
Qiy Q22

[ Qu Q12 ]
u]

ty Qa2 |

)

(4.12)

where the second to last equation follows from (4.9) and (4.10). Focusing on the middle term in (4.12),

and using (4.11), we write

[Qu1 + uQiz + Quap’ + pQaop']
= ERR'R'xv —gv)’] - ER(R'xv — gv)JR (R'xy - qv)]

+uE[-R'(Rixy — qv)?] + E[-R(R'xv — qv)*|’

+uE|(Rixy — qv)?|p’

= B(R-p)R-p) Rixv —av)] - E[(R-p) R'xy —qv)] E[R - p)' (R'xv - qv)]

= Cov[(R—p) R'xy — qv)] == Qv

But notice that by definition gy, gy = p'xy so that.

Qv

= Cov [(R — ) (Rixy — (IV)]
_ O [(R - p) (R — v
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Using Qv in (4.12) yields the following simple expression for the asymptotic covariance of /TRy —xy) :

LyQvLy.

4.2 Asymptotic Normality of the Shortfall Portfolio Estimator

Our approach to proving the asymptotic normality of the shortfall portfolio estimator is inspired by
the work of van de Geer (1990) and Pollard (1991) on the asymptotic properties of the least absolute
deviations (LAD) linear regression estimator. Using the Asymptotic Equicontinuity Criterion stated
below, a result from empirical process theory, we show that the minimizer of the empirical function
(4.1) approaches in probability the solution to a quadratic optimization problem. We use the closed
form solution to this QP, which is a random variable, to derive the asymptotic distribution of the
shortfall portfolio estimator. Notice that classical theorems such as Huber’s M-estimator consistency
and asymptotic normality theorems (see for example Huber, 1981) do not apply directly to our estimator,

because of the non-differentiability of the p, function.

4.2.1 Assumption (B)

We start by making an assumption about the distribution of R.

(B): R, with mean p and covariance matrix ¥, has a continuous density, and for every x € RV
and g € R such that fy:g(g) > 0, the density fg xtr(r,q) is well-defined, Cov[R | x!R—gq = 0] is well
defined, and the rank of Cov[R | xX*R—q = 0] is N — 1.

Obviously, the rank of Cov[R | x*R—g = 0] is at most N —1. Assumption (B) will hold for example
when Cov[R | xX*R—q = 0] is well defined for every x € R and q € R such that fyg(g) > 0, and when

the density of R is continuous and has a support which is closed in R¥.

4.2.2 Notation

We introduce some notation. Let W = (R’, —1)?, and let P be the distribution of W, E(.) be the
expectation with respect to W. Let Pr = (1/T) EzT=1 lw,, where 1w, is the point mass at W, :=
(R}, —1)t, and let [gdPr = (1/T) Y.L, g(W;) for any function R¥+1 — R. For any function g :
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RN+ R, let
llgllz, = llgllzop) = Blg*(W)).
Define yo = (Xa,4a)%, ¥ = (X, da), and
Y={y e RV | Agy = b},
with Ag = [A 0]. Note that
Yo = arg min Elp, (y*W)] (4.13)

As in the previous section, define Z = {z € RV*+! | Agz = 0}, the space of first order feasible variations.

We will need the following result, in the form of a lemma.

Lemma 15 The gradient and Hessian of E[p,(y*W)] = E[p,(x'R — q)] are well-defined and can be

written as
ER) — LER1{n_
VW) = | o0 e
-1+ 1Pr(x'R - ¢ <0)
1
= E(W) -~ ~E(Wlgyiweop), (4.14)
and
1 | E[RR! | xXXR—¢=0] E[R|xR—q=0
VW) = fenl@ | Tror | XREa=0] BR xR =0
al ER|xR—¢g=0] 1
= fyw(O) EIWW! | y'W =0, (415)

where fygr(.) is the density of variable xR, and fyew/(.) is the density of variable y*W.

Proof. See the appendix. m
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4.2.3 Outline of Proof

We outline below the proof of the asymptotic normality of X,.

Stepl: Using the Asymptotic Equicontinuity Lemma (defined below), a result about the convergence
of empirical processes indexed by functions that form a polynomial class (i.e. a class that is ”not

too complex”), we show that the empirical process

T

Ir(z) = a)_ [Pa(YEWi—T_l/ 2ZtWi)'—Pa(YZWi)]
=1

1
= Z'Up+ Ezt2az+0p(1),

uniformly over ||z|| < K. The matrix X, is deterministic and expressible in closed form. Ur
converges to a known distribution by the classical CLT for i.i.d. vectors. This is Lemma 21.

Note that the minimizer 2 of I7(.) is expressible as Z =vT(¥,—¥a)-
Step 2: Write the Lagrangean corresponding to
minimize z'Ur + 32'Z,z
subject to Apz =0,

to get a closed form solution Z for the problem. By a convexity argument and some linear algebra,
we show that Z converges to Z whose asymptotic distribution just follows by the classical CLT for
iid. vectors. This shows that vT(¥,~y,) ~ N(0,LLQ%LLY), for some LY and QY expressible

in closed form. This is Theorem 22.

Step 3: Using linear algebra, from the asymptotic normality of §, one gets the asymptotic normality
of %o, VT (Xy~%Xa) ~ N(0,LaQuLy) for some Lo and Q, expressible in closed form, which is
Corollary 23.

4.2.4 Uniqueness of the Shortfall Portfolio Estimator

In the following proofs, we will need the results below.

Lemma 16 Under assumption (B), the following statements are true:

73




(a) For all z € Z,
Elpo((ya +2)'W) = po(ya W) = %Zt[ViE[Pa(YtW)Hya]Z +o(||zl%),
(b) For allz € Z,
2 [V3 Elpa(y"W)]lyalz > Xallz]|?

for some Ag > 0.

(c) There exists an €q > 0 and a v, > 0 such that for all z € Z, ||z|| < €a,
Elpa((at2)'W) = pa(yeW)] > allzl*

Therefore z = 0 is the unique minimizer of E[p,((Ya+2)'W) — po (Y& W)] over Z, and yq is the unique
minimizer of the shortfall E[p,(y'W)] over Y.

Proof. See the appendix. m

Remark 17 Let Xy = an,E[pa(th)”ya. From the preceding Lemma 16 (b), we see that

minimize Z'3qz

subject to Agz =0

has a unique solution, 0 ERN*L.  Writing the Lagrangean L(z,X) = z'Saz + A(Ayz) of the above

problem and taking its derivative with respect to z we get

Yoz + AbX
VenL(,) = [ 0 ]
Aoz

MH
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with

Y. Al
Ma ==
Ay O

By uniqueness of the optimal solution 0, and by uniqueness of its Lagrange multipliers X\, the system
ViaL(,-) =0
must have a unique solution. This implies that M, is invertible.

- 4.2.5 Asymptotic Equicontinuity

We will need some results from empirical process theory - see Pollard (1985) and Pollard (1984, Ch.
II). We start with the following definitions.

Definition 18 A class of sets D is said to be a polynomial class (also called a Vapnik-Cervonenkis class)
if there exists a polynomial p(.) with the property: for every finite set A there are at most p(card(A))
distinct subsets of the form AN D with D in D. (Here card(A) is the cardinality of A).

Definition 19 The graph of a function g : RN*1— R is defined as the set
{(wit) eRV*2 | 0<t < g(w) or0>t > g(w)}.

A collection G of functions is said to be a polynomial class if the graphs of all the functions in G

form a polynomial class of sets. Define the class of functions

G={gsn RN R | gov(w) = 2'Wl{ytweviw}, 2,V € RV}
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Notice that the graph of g, for z,v € RV*! can be written as

{wi) € RV 0<t <2 Wigtweviwy 08 02 ¢ 2 2'Wliyrweviwy}
= {{0<n{0<~t+2wpn{0< (v -ya)'w}
U{{0>5n{0> —t+2'w}n{0< (v —ya)'w}

U{{t=0}n{0> (v-yq)'w}.

~ Therefore, the graph of g, v is the union of three sets, each of which is the intersection of three halfspaces.
From Lemma 15 in Pollard (1984, Ch. II), we know that a class of sets expressible as finite unions and
intersections of halfspaces is a polynomial class. So the collection of functions G as defined above is a
polynomial class.

For any g € G, define the empirical process
vr(g) =T"/? /gd(PT —-P), geg.

Also define the envelope of G as any measurable function G such that |g| < G almost surely for all
g € G. We will need the following lemma for polynomial classes (see Lemma 15 in Pollard, 1984, Ch.
VII).

Lemma 20 (Aymptotic Equicontinuity) Suppose that G is a polynomial class with envelope G sat-
isfying ||G||L, < co. Then the asymptotic equicontinuity criterion holds: for all § > 0, there is a Ts
such that

Pr( sup  lurlg) —vr(@)| > 8) <8

9.9€G
llg—9llzy <6

for all T > T§.
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4.2.6 Proof of the Asymptotic Normality of the Shortfall Portfolio Estimator
Consider the process

T

Ir(z) = &} [pa(yaWi=T"22W;) = po(yiW5)| (4.16)
i=1

indexed by z € Z, the space of first order feasible variations. We show in the next lemma that lr(z)

converges in probability to a random quadratic function of z, uniformly over ||z|| < K, for K fixed.

Lemma 21 Let K >0 be fived. Under assumption (B), forz € Z,
¢ 1
Ir(z) =2z'Ur + 32 Taz +op(1),

uhiformly over all ||z|| < K, where

Yo = fng(O)E(WWt|Y¢th = 0),
and where Ur does not depend on z,

UT 2 N(07 QZ))

with

Qi = Cov [(1 - ) Wity weop — aWlgy, wsop)] -
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Proof. We expand (4.16) using the definition of p, to get

Ir(2)

T

= Z [a(yaWi —T—l/zztwi) l{yaWi —T- 1/2z"'W,->0}

i=1

+ (1 - a)(T—1/2thi — yawl,;) l{y.,W,'—T_l/zth,'SO}]

T
- Z [e(yaWi) iy . w,s0} + (1 — @) (=yaWi) iy, w.<0}]

i=1

T T
(1= a) Y T2 Wilyy, wicr-1mpewy — @ Y _T /2 Wilyy wosr-1siw,

=1 i=1
T T

— Z yO;Wil{ogyawiST—lﬂztw‘.} + Z yan;].{O)yawi?T—l/zztwi}, (417)

=1 =1

where the second equality follows after some algebra. Consider the first term in expression (4.17). Let
G(K) = {gay : RV R | guy(W) = 2WLiysweviw)y 2,V € RV, [[2]| < K} CG. G C G(K), G(K) is

still a polynomial class, and since

K||W[ > sup g(W)
g€G(K)

its envelope G(.) satisfies

E[G(W)*] < E[(K||W|))?] = K%0” < o0,

where 02 := E[||[W]|?] < oo by definition of W and assumption (B). Moreover,

||gz,T-1i/2z - QZ,OH.ZLz E(ztw(l{yaWQT—l/'ﬁ’ziW} - l{yaWSO}))z

N

E(] izllzl|W||21{0<|yaW|<T—1/2|th|})

N

B(E?||W|*1o¢|y. wicT-1/2120w]})
K*E(|[W| IZ)E(1{0<|yaWI<T"1/2KHW“})-

N
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80 ||g, 7-1/2, = 9a,0l|z, = 0(1) uniformly in ||z]] < K, by ndomiated convergence. Therefore, by the

Asymptotic Equicontinuity Criterion,

VT(gy,1r-1/2) = v7(92,0) + 0p (1),

uniformly in ||z|| < K. We can therefore write the first term in (4.17) as

T
1
(1 - a)ﬁ Zztwil{yaWiST‘lﬂthi} = (1 - a)VT(QZ,O) + (1 - a)Tl/Z /gz,T—l/szP + OP(]-))
i=1

(4.18)
uniformly in ||z|| < K. Define

T
1

Uiz === [Wilggweoy ~ E(Wilpzweo)] -

i=1

Then (4.18) becomes

T
1
(1 - a)ﬁ Z ztwil{ytaW;sT—l/szW;} = (1 - a)ZtUl,T + (1 - a)T1/2 /(gz,T—l/Zz)dP + OP(1)7
i=1 )

(4.19)
uniformly in ||z|| < K.
Similarly, for the second expression in (4.17), we find
1 X
a—=> ZWiliworipgw,y = 02'Usr +aTY? [ (g, 7-1/2,)dP + 0p(1), (4.20)
ﬁ . {ytwi> } )

i=1

uniformly in ||z|| < K, where

T

1

Uy = Nia [Wiltyswsop — E(Wilgiwsap)]
£

k2

and where g, 7172, € G(K) = {fz,v : RV R|g, v (W) = 2'Wliyt wovtw}, 2,V € RV ||z]| < K}
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Consider the third term in (4.17). Define for w € RN+1,
hT—1/2z,T1/2(W) =T 2(ytaw)1{0<y*aw<T-1/2ztw}'

Let H(K) = {h‘T_l/zz,T]-/2 : RN+ ]thT—lfzz,Tl/2 (W) = Tl/z(yzxw)1{0<y3W<T—1/zztw}az € RN+1) ”Z” <

K}. Then H is a VC-graph class, and its envelope H satisfies

IH|2, < TE[(y:w)*Lioeyt wer—1/2xwi)]

< BK|WI)? = K%? < oo,
where as before 02 = E(|[W]|?). Also, ||p-1/24 /2L, = 0(1) uniformly in ||z|| < K by dominated
convergence, 80 vr(hp-1/2, r1/2) = 0p(1) by the Asymptotic Equicontinuity Criterion. Then
T

Zyzwil{osyf,w,;sT—Wztwi} = VT(hT—1/2z,T1/2)+T1/ 2 / hT—1/2z,T1/2dP

i=1

— T2 / he-1/25 71/2dP + 0p(L), (4.21)

uniformly in ||z|| < K, and similarly, the fourth term in (4.17) can be written as

T

ZYiWil{OMLWi;T-l/Zth,-} = VT(}_’JT—llzz,:rlﬁ)"‘Tl/2 / BT—llﬁz,Tl/zdP
i=1

T/? / hp-1/25 71/2dP + 0p (1), (4.22)
uniformly in ||z|| < K where
hp-1/271/2(W) = T/ Z(fow)l{o>y3w>T—l/2ztw}-
Using (4.19), (4.20), (4.21) and (4.22), we can write Ip(z) as

lT(Z) = Zt[(l - a)Ul,T - aUg,T]
+(1 —a)T/? / (9g.7-1/22)dP + aTl/? / (95, 7-1/25)dP

-T2 / hp-2gp12dP + T2 / hp-1/2571/2dP + 0p(1),
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uniformly in ||z|| < K. But notice that for z € Z

(1—a)T*? / (9p1-1/2,)dP + oT /2 / (Ga,7-1/2,)dP
+T1/2/hT_1/22lT1/2dP + T1/2 /BT_I/zszl/zdP
= /Tl/Zztw [(1 - a)l{yg‘wsT—l/zztw} - al{yf,w>T—1/zztw}] dp

+ /Ty3W[_1{0<y&w<T—l/2ztw} + 1{0>y‘txw>T—1/22tw}]dP
= oTElpa((ye —T"%2)'W) = pa(y4W)]
= o [T ) (T Elpaly Wil %)+ (25l by Lemma 16,

1
= Ezt[aviE[pa(th)] |y£,]z + 0(1),
uniformly over ||z|| < K. Therefore,
1
Ir(z) = 2'[(1 — @)Ur,r — aUsz7] + Ezt[E(WWtIYLW = 0)]z.fyr w(0)+op(1),

uniformly over ||z|| < K , where we have used the expression for V2 E[p,(y"W)] found in Lemma 15.
The result follows by defining Ur = (1 — a)Uy 7 — aUz 7. ®
We now use the preceding lemma to get the asymptotic distribution of the shortfall portfolio esti-

mator and its associated sample quantile.

Theorem 22 Under assumption (B),
\/T(ya_)’a) ~ N(07LZQZLZ)7
where

Qa = Cov [(1 - ) Wlgysweo — aWlyewsop)] ,
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and where LY, be the matriz consisting of the upper-left (N + 1)-dimensional corner of M3, where

E(WW'y,W =0).fy: w(0) Aj
M, = )
Ao On

which is invertible.

Proof. Let o = E(WW'y,W = 0).fy:w(0) and Ur ~ N(0,Qz) as in the Lemma 21, and

consider the minimizer of
t 1,
'I'T(z) =z'Ur + EZ Yz,

over z € Z. Writing the Lagrangean of the last expression and taking its derivative, we see that the

minimizer of ®7(z) must satisfy the following set of linear equations:

Ur+3.z +ASA =0
A()Z = 0,

or

where XA € RM | and where

Yo Ab
M, = ’
Ay O

which is invertible (see the remark after Lemma 16). Write the inverse of M, as the partitioned matrix

_ Bi1 Bia
Mt=
B12 Bzz
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Let V, be the matrix consisting of the upper-left (IV + 1)-dimensional corner of M;!. Then, the

minimizer of ®7(2z) over z € Z is
7z = —B; Ur.

We next show that Z, the minimizer of 1 (z), converges to Z in probability.

Let § > 0, and let Bs = B(Z,§) denote the closed ball in RV+! with center Z and radius §. Write
t L ¢
lr(z) =2z'Ur + 2 Yoz +1(z).

Because U converges in distribution, Uy is stochastically bounded, and we can choose a compact set

K such that Bs C K with probability arbitrarily close to one. Over this set K, by Lemma 21, we have

Ar = sup |r(z)] — 0 in probability.
z€ZNK

Consider any z € Z N B§, where B§ is the complement of Bs in RN+, and suppose z = Z+3v with
v ERN*! and ||v|| = 1. Let z, = Z+6v, and notice that z, is on the boundary 8Bs of Bs. By the

convexity of l7(.) we have

Sir(a) + (1 - %)lT(Z') > Ir(ze),

so that
— _@ —
12(2) ~ () > Dlir(ae) ~ 1n(@)
Using the definitions of I7(.) and z. we have

lr(ze) —Ir(Z) > zLUr+ EZZZQZS— [(z)"UT + E(z)tﬁaz] - 2Ar
= 'Up +6viZZ + %62vt20v —2Ap

= v'Ur+ 6vtEa(—BnUT)+%52vt2av —2Ar, (4.23)
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where the last line follows from the definition of Z. Using the expressions for M, and its inverse, we

B Bz
Bl Ba
_ YoB11 + AbBt, 4B+ A§Bo ]

| AoB11 AOBl2
= L

can write

Y. Al
Ag O

M M7l =

It follows that v* = v*(ZqB11 + A§Biy)= v*(ZoB11) since v €Z, by definition of Z. Using this last
fact in (4.23) yields

Ir(z) —1r(Z) > §v'Up—6viUp+ %62vt2av YN
= %62vt20v - 2Ar
> 62fy||v||2 — 21

= 52’7 - 2AT7
where v > 0 by Lemma 16. The last expression does not depend on z . Now

inf [Ir(z) — Ir(2)] > Z[6%y — 2A7).

z€EZNB§

> ™

Since 6%y — 2Ap > 0 with probability approaching one, the minimum of I7(.) cannot occur outside of
Bs. This shows that the event ||z — Z|| > 8, where 2 is the minimum of I7(.), has a probability that
converges to 0. Since Ur ~» N(0,Q}) and Z = —B1; Ur we know that

% ~N(0,B11Q%B11).

Finally, note that %z =v/T(§,—Yy.), by definition of I7(.), which yields the desired convergence in distri-
bution of ¥4, with L}, = B1;. =

Focusing on %, instead of ¥, (remember that §o=(%%,4s)*) , we get the following corollary.
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Corollary 23 Under assumption (B),

\/ﬁia—xa) ~ N(0, LaQoLs),

where
Qa=Cov [(R - 7) (lxtrega) — )]
and where
1 1
Lyo=———(0Q+ —Q‘r‘rtﬂ) ,
fxaR(qa) ( 6
with

Q@ = [r-ra (Ar—lAt)‘lAf—l],
= 7TIAY (ATIAY) AT U,

T = ER|X,R =q,), and

I = ERRXR=q,).

Proof. We know from the previous theorem that
VT(9a=Ya) ~ N(0,L5Q4LY)
where
Qo = Cov ((1 - a)Wlgeweop — aWlgywsop)

and where Ly, is the upper-left (V + 1)-dimensional corner of M;1. Write
L, f
L =
£t d
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where L, is the upper-left N-dimensional corner of M3, and where f €R"Y, deR. Let I' = E(RR' |
xtR = ¢o) and 7 =E(R|x,R = ¢a). M, can be rewritten as

_ 1 t
r T fng(qa)

My = fxaR(qa) —t 1 0
1
fxaR(qajA 0 OM
Since (i) T is positive definite, by virtue of Cov(R|x!\,R = g,) having rank N—1, and (ii) M, is invertible
from the remark after Lemma 16, we can get a closed form expression for M;! from Proposition 51,

and in particular we can get closed form expressions for L, and f as follows (noticing that Cov(R |

xt,R = q,) is singular):

1 1
Ly = ———— Q+—ertﬂ) 4.24
: fng(Qa)( ; (4249
f = ;(Q-i-lﬂ'rrtﬁ)
fxf,R(qa) 6
= LC!T (4.25)
where
Q= [r'-rAf (AT AY) T AT
and

§=7'T-1A! (AT1AY) " AT 7.

We also partition @}, as follows. Notice that, by definition of W,

(1- )Wl weop — aWlytwsop = (1 = R Lpnce) — ORlpgroe) ]
Yo = Ya -

| —(1 - )izt R<ga} T L (x4 R>ga)
_ | Blpereg) — @)
| ~(lpgRr<qe} — @)
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Then

Qa
= Cov((1 - a)Wlgyeweop — aWliyiwsop)
B { R (lperega) — )

| ~(xtR<ga} — @)

[ R (1xtReaa} = @) —(LixgRega} =) ] }

R (lixtr<ga} — @

i _(1{xLR<Qo=} - a) i
_ E[RR’ (1{xt R<gu) — @) § E[-R(1pineqa) = @)
E[-R (Lpgreg) — )] Bl(lpgrag) —@)]
E|R (lixtrgg) — @

) [0 i Rl : ] [E[Rt (Lxsrega) = @) 0]
[ ERR! (LpgReg} — )]
= . - E[R (1{xf1R<q:u} - a)] [Rt (l{xfoSch} - a)]
| BFR (Lirega) — a)’] Bl(lpxmeqnt —@)’]
_ Qu Q12

| Q2 Qx

E[-R (1ixtR<ga} — @)’

Notice that by definition of ¥, we have

Ra—Xq = [ Iy O ] (S’a_ya)
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where here 0 € RY. It follows that /7T (Xq—Xs) is asymptotically normal with mean O and covariance

matrix

[ * * * IN
i IN O]LaQaLa|: Ot ]

: Le £ [La £][ v
. L,
= | La f]%[ft }
r Qu Q2 [ Lo
= L, f
L ] |: 1{2 Q22 ] ] ft :l

Qu Q2 11
= La I LOA
| T][Qiz Qn [rt]

= Lo [Qu +7Qiy+ Quut’ + 7Q201"| La, (4.26)

where the second to last equation follows from (4.24) and (4.25). Focusing on the middle term in (4.26)

we write

Qu + 7Qls + Quam’ + TQaT*

= E[RR' (Ipereq) — )]~ ER (Ltreg) — )R’ (Lxgreg) — )]
TE[-R! (Lpgr<q — @)1+ E[-R (Lixtreg} — @) 17"
+7E[(Lpareq — @) 7"

= E[R-7)®R-7) (Lprea) ~ )]
~E[R—7) (Lpgreat — 0)] B[R - 7)" (Lpgreag) = )]

= Cov[R-7) (lpxtRea) ~ )] = Qa
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Using this last expression in (4.26) yields the following simple expression for the asymptotic covariance

of \/IT(ia —Xq)

LoQaLq.

Note that the expression for the asymptotic covariance of the shortfall estimator contains the term

()

which suggests that for low ‘values of a, for example o = 1%, the portfolio estimator may be badly
estimated, compared to a = 50%, since we would expect the density fxt R(da) to be relatively small in
the tails. Intuitively, this can be explained by noticing that for low values of a, we are relying on rare
events to build a portfolio. This may not be a good idea unless there are many observations, meaning

large T'.

4.3 Computational Experiments

4.3.1 Simulated Data

In this experiment we highlight, on simulated data, the pitfalls of using small values of « in shortfall
portfolio estimation. We repeat the following experiment 500 times, with N = 10, with 7 in the range

25 to 500, and for four values of o (50%, 10%, 5%, 1%):

1. generate a sample of size T from a multivariate Gaussian with mean 0 and covariance 5 equal to

an equicorrelated matrix with off-diagonal elements equal to 0.5. Solve the problem

minimize  §4(x)

i

subject to e'x=1,

where 34(x) is the sample shortfall of portfolio x. Call the result %,.

89




ol st

o g g T

oa 1 1 1 L ]

o7}

0.6

[ =]
th
—T—

ﬂ .

o

¥

Hoaf 1

o]

:

“oar 1
02 4

o1 (

|

Figure 4-1: Average scaled loss over 500 Monte Carlo replications. :a =50%; - -1 a =10%; -. :

a=5%; -+ : a=1%.
2. calculate the scaled loss defined by

5a(Xa) — Sa(Xa)
Sa(Xa)
\/J’cgzica - \/xgExa

/XL Yx,, ’

where the last equation follows from Proposition 1 in Chapter 2. The scaled loss can be interpreted

as the relative extra risk, in the form of shortfall, incurred by the estimation process.

Figure 4-1 shows the average scaled loss over 500 Monte Carlo replications, for various values of o
and T. The message is clear. The estimation process deteriorates for small values of a, for all values

of T.
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4.3.2 Historical Data

In this experiment, we again show how shortfall portfolio estimation using small values of @ may fail to
deliver. We use the biotech data described in Chapter 5, which consists of four years of daily returns
on 16 stocks. On average, the stocks are positively skewed, with an average coefficient of skewness of
about 0.5. We run a backtest in which we use a rolling window of 5 months of return data, rebalancing
every month, and estimating the sample variance portfolio V, and the sample shortfall portfolios S,

(a = 50%,25%,10%) using the constraints

t
xRi1 = Tps

where 7, in the range 160%/260 (which corresponds to an annualized target return of 160%) to 0,
where R;_; is the vector of mean returns calculated over the last five months. Five months was chosen
arbitrarily, and corresponds to 100 trading days. Figure 4-2 shows the resulting minimum variance
frontiers of the ex-post returns, for each estimator. The overall performance of the shortfall estimator
peaks at o = 50%, and decreases for smaller values of a, with the risk-reward opportunities worsening

for a = 25% and then for 10%.

4.4 Concvlusion

This chapter proved central limit theorems that showed that the shortfall portfolio estimator, as well
as the variance estimator, converge towards their population counterparts at the usual T rate. We
ended this chapter with a note of caution, as we argued that shortfall portfolios for low values of @ may
be more difficult to estimate than shortfall pbrtfolios for moderate values of «, such as 50%. Chapter 5
uses the results from this chapter to prove that when return are generated by an elliptically symmetric

distribution, the shortfall estimator may outperform the variance estimator.
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Chapter 5

Robust Portfolio Estimation

Let R be a random return vector in RV with mean u, positive definite covariance magtrix Y, and

a continuous density. Consider the problem of selecting a risk minimizing portfolio, subject to a

generally, a multivariate elliptically symmetric distribution, every wealth-seeking, risk-averse investor
will prefer will prefer the portfolio that has minimal variance, i.e. every wealth-seeking, risk-averse

investor will prefer the portfolio that solves

minimize xtyx
subject to e'x =1

t
""x:"r[h

where r, € R is the target return.

Now suppose that we do not know the exact distribution of R, but that we are given independent
and identically distributed realizations Ri,...,Ry of the random return vector R, Suppose also that
R has a multivariate elliptically Symmetric, but not necessarily Gaussian, distribution Then, given
these realizations, every risk-averse investor wants to estimate the minima] variance portfolio defined

generally as

Xy = argﬂi_n x'Tx, (5.1)

where the set Ax = b corresponds to the constraints etx — 1 and pix = Tp- A natural estimator of Xy
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is
- e
= by .
Ry = arg min XXX, (5 2)
where 3. is the sample covariance matrix. We saw in Chapter 3 that we can rewrite (5.2) as

T
(v dv) = arg guin 7> (<Ri — 0, (53)
geR i=1

where gy is the sample mean of portfolio &y. When returns are multivariate Gaussian, the term x*R—q
is Gaussian, and (Xy, §y) may be interpreted as maximum likelihood estimators of the weight x and the
location parameter g. Therefore, under normality, we expect (Xv, dv) to be asymptotically efficient, a
desirable property. |

However, even if one is willing to assume that the distribution of returns belongs to the multivariate
elliptically symmetric class, there is empirical evidence that returns may perhaps not be satisfactorily
modelled as Gaussian. The following two departures from normality, inconsistent with the Gaussian
assumption, have been documented. The first is heavy tails, meaning that marginal return distributions
tend to have tails that decay more slowly than the Gaussian - see for example Campbell, Lo and
MacKinlay (1997) and Bouchaud and Potters (2000) for a discussion of heavy-tailed distributions in
finance, and evidence that stock returns sampled daily, or at higher frequencies, exhibit heavy tails.

The other documented departure from normality is tail dependence, which reflects the observation
that the extreme return of one stock is likely to be accompanied by extreme returns in other stocks, for
example, in the context of a market crash or of a market surge - see Embrechts, McNeil, and Straumann
(1999) for a discussion of tail-dependence and its applications in risk management, and Lindskog (2000)
for evidence that stock returns may have more tail dependence than the Gaussian. The Gaussian
has zero tail dependence, so that extreme events occur independently; but other elliptically symmetric
distributions, such as the multivariate Student-t, may have positive tail dependence. The practical
implication of tail-dependence is that portfolios of assets with heavy tails also have heavy tails.

In this chapter, we argue that departures from normality in the form heavy-tailedness and tail
dependence will degrade the performance of the variance portfolio estimator (5.3). We introduce a

family of alternative ”robust” portfolio estimators whose performance degrades less quickly than the
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variance portfolio estimator under departures from normality, at the price of lower performance under
the Gaussian. The term ”performance’ is made precise in Section 1. Note that the multivariate
Student-t distribution plays a critical role in our analysis, because it exhibits both marginal heavy
tails, as well as tail dependence, and also because it is very tractable from both a computational and a
calculation point of view.

The robust portfolio estimators which we introduce are listed below:

1. the least absolute deviation (LAD) portfolio estimator;
2. the Huber portfolio estimator;
3. the trimean portfolio estimator;

4. the trimmed mean portfolio estimator.

The LAD portfolio estimator is defined as

T
(Rosdos) = arg guin 3" xR — g, (54)
g€R i=1

where go5 is the sample median of portfolio %g5, and where |.| stands for the absolute value. Note
that the LAD portfolio estimator is the sample 50%-shortfall portfolio estimator, defined in Chapter
| 2. The trimean and trimmed mean portfolio estimators are based on underlying shortfall portfolio
optimizations, as will be seen below. The Huber portfolio estimator can be seen as a hybrid between
the variance and 50%-shortfall portfolio estimator. These ”robust” portfolio estimators are defined
in direct analogy to their counterparts in the location and regression problems in the robust statistics
literature - see for example Huber (1981), and Basset and Koenker (1978) for an excellent introduction
to the topic of robustness. We will see that their implementation turns out to be computationally
efficient.

This chapter is organized as follows. In Section 1, we define a measure of portfolio estimator
performance which we call estimation risk, and which we claim has an intuitive financial interpretation.
We also introduce asymptotic estimation risk, as an approximation to estimation risk when the number
of observations T is large. Then in Section 2 we evaluate the asymptotic estimation risk of %y and %5

under the assumption that returns are multivariate normal, or Gaussian, and we show that %y has lower
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asymptotic estimation risk than %o 5. However, under the assumption that returns have a multivariate
Student-t distribution with degrees of freedom equal to or less than six, we show in Section 3 that Xy
has higher asymptotic estimation risk than Xo.s. The fact that %5 may outperform Xy under certain
departures from normality with the class of elliptically symmetric distributions leads us to consider, in
Section 4, other robust portfolio estimators. In Section 5 we empirically investigate the performance

of %y and our robust portfolio estimators, on simulated and historical return data.

5.1 Estimation Risk: a Measure of Portfolio Estimator Performance

As argued in the introduction to this chapter, under the assumption that returns have a multivariate
elliptically symmetric distribution, each and every wealth-seeking, risk-averse investor wants to estimate
xy, defined by (5.1). Let % be an arbitrary portfolio estimator satisfying the given deterministic
constraints Ax = b. We will measure the performance of estimator X with a measure which we will

call estimation risk, defined below.

Definition 24 The estimation risk of portfolio estimator X, satisfying A% = b, is
Ly = E(®'D%) — x|, Zxy. (5.5)

In (6.5), the expectation is taken with respect to the sample Ry, ..., Ry, X being a function of the
sample. In words, Li measures how much extra risk, in the form of variance, we incur with respect
to the population optimal solution xy, because we do not know the distribution of R, and we estimate

xy by %. Notice that

Ly = BE[(&-xv+xv)S(&—xv +xv)]-x}, Txv
= E[&- xv)tE(fc — xy)] — 2xy ' SE[(% — xv)]+x} Dxy —x}, Txy

= Eltr (& —xv)[(& —xv)")] - 2xy ' SE[(% — xv)],

where tr (.) stands for the trace. We expect that, asymptotically at least, we can approximate the

estimation risk Ly by a measure which we call asymptotic estimation risk, defined below.
Definition 25 Assume that % is an asymptotically unbiased estimator of xy. The asymptotic estima-
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tion risk of portfolio estimator X,
Lz = E[tr (ZCou(%))],

where Cov(X) is the asymptotic covariance of X.

For example, in Chapter 4, we showed that both Xy and X5 are asymptotically normal with mean
xy and Xg 5 respectively, and asymptotic covariances Cov(Xy) and Cov(Xg5) respectively - we used Xg 5

“to refer to the portfolio that, along with its median gp 5, solves
(X0.5,90.5) = arg min E[|x'R - q],
Ax=b
‘ geR

Since x¢5 = xy from Proposition 1 in Chapter 2, we see that both Xy and Xg5 are estimating the
same portfolio xy. Now let Ly denote the asymptotic estimation risk of %y, and let Lo s denote the
asyrmptotic estimation risk of X9 5. In the sections that follow, we will show that under the assumption
of that R has a multivariate Gaussian distribution, Ly < Los. However, when R has a multivariate
Student t-distribution with 6 degrees of freedom on less, Lgs < Ly. This means that in certain heavy-
tailed and tail-dependent conditions, Xg5 may outperform Xy, at least asymptotically. This will also

be our motivation for considering other robust portfolio estimators.

5.2 Asymptotic Estimation Risk Under the Multivariate (Gaussian

Distribution

We calculate closed form expressions for the asymptotic estimation risk of Xy and Xps5 under the

assumption that R has a multivariate Gaussian distribution. Below, we will use the fact that
—
Xy = arg min X'Yx.
v arg Ax=b X
can be expressed in closed form as

xy = S LAY AXIAY) b, (5.6)
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where the last expression follows immediately by writing the Lagrangean of

minimize x!¥x

subject to Ax=Db.

We also collect the following two corollaries from Chapter 4, for easier reference.

Corollary 26 Suppose that R, with mean p and covariance matriz X, has a continuous density, and

suppose that R has finite fourth moments. Then
VT (&v—xvy) ~ N(0, Ly Qv Lv),
where

Qv = Cov[(R— p)(Rixv—gv)]
= Cov[R - p)R - p)'xv],

and
Ly =31 -3 1A} AT TAY)1ASL,

And as we mentioned in the introduction to this chapter, the least absolute deviation portfolio
estimator is the 50%-shortfall estimator, so we will use the following result concerning the asymptotic

distribution of shortfall portfolio estimators.

Corollary 27 Suppose that R, with mean p and covariance matriz X, has a continuous density,
and for every x € RN and q € R such that fxr(q) > 0, the density frxr(r,q) is well-defined,
Cov[R | xX*R—q = 0] is well defined, and the rank of Cov|R | xX*R—q = 0] is N —1. Then

VT (&a—%a) ~ N(0, LaQaLa),

where

Qo = Cov [(R—7) (1pxgRega} — ¥)) »
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and where

1 1
Lo=—— Q2+ —Q‘r‘r’ﬂ) ,
* fng(qa) ( 4

with
Q = [07'-T7'Af(AT'AY) T AT
= 7'T7A (AT 'AY) AT U,
T = ER|XR =q,), and
I' = ERRYxXR =q,).

We use these corollaries in the following propositions.

5.2.1 Variance Portfolio Estimator

Theorem 28 When R has a multivariate Gaussian distribution, the asymptotic risk of Xy is

- 1
Ly = tr (ETLVQVLV)

— 7 (o) [V - ).

where x4, Txy is the variance of the optimal portfolio xy .

Proof. Let R := (R — p)'xy. Then
Qv
= Coy((R—p)R)

= Covp (E [(R - wR| f%]) +Ej (Cov [(R —wR | R]) , by decomposition of variance,
= Covp, (RE [(R —w | R]) + B (R200v [(R | R]) . (5.7)
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Now [ (R - p)t R ] has a multivariate normal distribution with mean 0 and covariance matrix

p)) ZXV
x, S xbIxy ,

by definition of E. Then from Proposition 43 in the Appendix we have

ZXVR,

and

Cov [(R —p) | ﬁ] =% - ———Zxyxi T,

X%, EXV

Using the last two expressions in (5.7) we get

_ (1 ) i 1 t | P2
Qv = CO’UR (x%/szExVR ) +ER ([2 5 EXVXVE] R )

1 ~ 0 : 1 o1
|z ) 7 ([xtvz'xv ] )

) 1 ¢ P2
+E5 ([E - ZxVxVE] R )
1

= ———Txyx}T (E(R‘*) - [E(f#)]z) + [z - —1—2xvx§,z: E(R?). '(5.8)

(xt, Txy) Xy Lxy

Since R has a normal distribution with variance xi,¥xy, we have E(R?) = xt,Txy and E(R?) =

3 (xﬁ/ilxv)z - since the moment generating function of the standard normal distribution is e~/

follows that the fourth moment is equal to 3. Then, plugging these last results in (5.8) yields

Qv=X (XQ/EXV) + EXVX%E.

it

We can now simplify the expression for the asymptotic covariance of 1/T'(Xy —Xv'), as given in Corollary
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(26), as follows.

LyQvLy
= [Z7' -z lAfASTIAY) AT
(2 (x,Zxy) + Expxh E) [B71 - ZTAYASTIAY)TTAS
= (xTxy) - 'AYAZTIANTIA] BT - =TT ANASTTAY) TTAT T
+[1-= AN AZTIAY) A ] xyx, [T- AM(AZTTAY) TTAS T (5.9)

But notice that we must have

[1- Z—IA*(AS-lAt)—lA] xy = xy— Y AHADTIAY AT TIANAZTIAN) D
= xy - AYAZIAH D

= 0,

where the first and last equations follow from (5.6). Then, (5.9) becomes

LvQvLy = (xZxy)[I-S'ANAS AN TA] [B7 - S TANAT AN TTAD ]
= (x)Zxy) [} -2 IANATZTTAY)TTAS Y.

We now can get a very simple expression for the asymptotic statistical risk Ly of &y

LV = E[tr (ECOU(ﬁv))]
= tr (%Z (x%,ExV) [2—1 _ E—IAt(AZ}—lAt)_IAZ}—l])

(xb Zxy) tr (Iy — A"(AZTAY)TTAS T

1
T
% (xt,Zxv) [tr (In) —tr (AZT'AY)TTASTIAT)]
1

7 (

xt, Exy ) [N — M]. (5.10)
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5.2.2 Least Absolute Deviation Portfolio Estimator

First, let us prove two lemmas which will be used in the next theorem.

Lemma 29 Assume that the distribution of R is continuous. Then the optimal 50%-shortfall portfolio

Xo.5, and its median qo 5, defined as

(%0.5,905) = arg min |x'R —g], (5.11)
geR

satisfy

‘ 1
E [R (1{x3.5R<q0.5} - 5)] = At)\y
for some A € RM,

Proof. The proof follows by writing the Lagrangean of (5.11), and taking its derivative with respect

to X equal to zero. =
Lemma 30 LetT' = E(RR' | x{, R = qo5). Then p'T—lp =1

Proof. This follows by singularity of Cov [R | R= x’{,p,]. ]
Now under the assumption that R is multivariate Gaussian, we know that xg5 = xyy. We use this

fact in the following Proposition.

Theorem 31 When R has a multivariate Gaussian distribution, the asymptotic estimation risk of Xo.5

18

1
Los = tT(ETLo.sQo.sLo.s)

2
N (fxt Rl(qo.S)) % (e Zxy) [N = M]
- % (xbSxy) [N — M],

where fxi’ r(.) is the density of random variable X, R, and where xt,Xxy is the variance of the optimal

portfolio xy .
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Proof. In what follows, we let o = 50%. Let Ry = x‘{,R. Notice that Ry is univariate Gaussian,

and for o = 50%, g = xt, u. Now [ R! Ry ] has a multivariate Gaussian distribution with mean

p ):XV
xtE xtExy ’

by definition of Ry. Then from Proposition 43 in the appendix we have

[ p xp ] and covariance matrix

T = E[R|xyR=4qa] =E[R| Ry =x}pu]

— b t _ ot
r Ty Xy (Xy p — Xy 1)

_— (5.12)

This shows in particular that

Qo = Cov [(R —-T) (1{x€,R<qa} - a)]
= Cov [(R — W) (1{x%,R<qa} - a)] by (5.12),

- B[R-w R (lpgners —) |
B[R (gncan —e)| B[R (togmeany — <)
- B[R-w®R- (1pgners o) |
B [R (L reqn) — o) | B[R (1o reaur = )] -

where the second to last equation follows from the definition of the covariance, and the last equa-

tion follows because F (1 (x, R<qa} ~ a) = 0 by definition of the quantile g,.  But notice that

2
(1{x§,qua} - a) =1/4 because a = 0.5. Also, from Lemma 29,

B[R (Lpg rew =)
= Af)\,,
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for some A, € RM. Therefore,

1

Q. = ZE [(R—p) (R-p)] - AXNA
)y

= I- ADGA. (5.13)

Now notice that from Proposition 43 in the Appendix we also have

Cov [R | R= x%,,u] = T~ Yxyxt, D

xt, Exy
1

xt, Yxy
1

xt, Exy

= - Y TAYAZTIAY) b (ASTIAY) TTAS TS, from (5.6),

- Y-

AYAZTTAY) BB (AT TIAY) A

so that

1
x%,ExV

S = Cow|R|R= xﬁ,p] + AYAS AN Ibbt(AT 1A 1A
- E[RRt | R:x%,u] —E[R | R=x§,u]E[R* | R:x‘{,p]
1

AYAYIAYH Ibbi(AZS AN 1A
Xy ( ) ( )

—+

1
xt, Txy

= T —pp'+ AYAXTIAY)Ibbi(AZTIAY) A, (5.14)

where the last equation follows from (5.12) and by definition of I.  Using (5.13) and (5.14), we get

1
xt, Yxy

Qn = 7 (T -+ S AYARTTAY TYATTIA) A - ANNA

_1 _ i t_]; 1 —1 Aty—1 i —1At\—-1 _ t
= 4(r ppt) + A <4x‘{,2xv(A2 AN 1bbi(AZTIAY) A ] A
1
= Z(F—uut)+AtEA, (5.15)
with
= 1 1 —1 A t\—1ypab/ A =1 A By—1 t
:=Zx{,2xv(A2 AHTIbb (AZTTAY L — AN
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We can now simplify the expression for the asymptotic estimation risk of %,. This asymptotic

estimation risk can be expressed as

Lo
= Eltr (SCov(Ra))]

1
= F [tr (ETLQQQLQ)]

- (th l(qa))2 !, (2 (Q+ %Qp/fﬂ) Qa (Q + %Qmﬁl)) : (5.16)

where we have used the definitions of Cov(%,), as given in Corollary (27), and L,. But notice that

Qo (Q + %qutﬂ)

- (z (T - pat) + A"”A) <n+ %ﬂum) by (5.15),

= % (T — ppt) (Q + Sﬂuutﬂ) since AQ = 0,

= % (FQ Pt + 6I‘Quutﬂ - gupf’ﬂpu Q)

= % (1" (I ~1rg - 6thpI> p;ﬁQ)

— i ( (AT1AN)TAITT — (I - 3(1 — AYATTAYH)TIATTY) 4 %(1-5)1) mm)

- 2 ( — AYAT'AH) AT %At(AF‘lAt)‘lAtI“luu"Q) . (5.17)

where the second to last equation follows by definition of Q2 and because

pop = pt [r-l ~T 1A (AT1AY) ! Ar—l] M
— Il‘tl—‘_lp' _ [Ilt]:‘_lAt (Ar\—lAt)_l AF_I
= 1-4,
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by definition of § and because p!T'~!p =1 from Lemma 30. Similarly,

by (Q + %qutﬂ)

= (r —ppt+ At(AE‘lAt)‘lbbt(AZ‘lA*)"lA)

xt, Txy
(Q + %Quutﬂ
= (F - p,p,t) (Q + %Qupﬁl) since AQ2 =0,
= (I — AYATTIAY AL - %At(AI“lAt)_lAtI‘_lpth) : (5.18)
where the last equation is obtained by following the steps immediately preceding (5.17). Therefore,

using (5.17) and (5.18) we get

) (Q + %Quutﬂ) Qa (Q + %Qmﬁﬂ)
= i (IN—At(AI“lAt)‘lAtI“l - %At(AI“lAt)‘lA”I“lp,th>
(IN—At(Ar—lAt)—lAtr—1 — %At(AI“lAt)‘lAtI“luth>

- 411 (IN—A‘(AI“IAt)‘lAtI“l - %At(AP‘IA*)“AtF“IW*Q) ) (5.19)

where the last equation follows after some algebra, using the fact that A2 = 0.
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~ We now can get a very simple expression for the asymptotic estimation risk Los of %5. By (5.16)

and (5.19) we have

I

2
Ton ) ) T (E (Q-i- 6qu Q) Qu (Q+ 69”'“ Q))

Los
= ( = )) L (1 AY(AT AN AT —%At(AI‘_lAt)‘lAtI‘_lp.pr>

x%,R(qa))

1
4T

2
_ 1
B (f (qa)> (N M)

where the last equation follows because

(tr(IN) —tr (AXTAN)TTATTTAY) - %tr (At(AI“lAt)‘lAtl'“luth))

4;

tr (AY(ATTAN AT ')
= tr((ATTTAH AT L uptQAY)
= 0, since AQ=0.

Now,

1\ Ly (Lo :
fxt,r(da) V2r(xE, Txy) 2(xt, Txy)

2m(xt, Txy ),

since go = X%, 1, and since x%, R has a Gaussian distribution. The result follows. m
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5.3 Asymptotic Estimation Risk Under the Multivariate Student-t

Distribution

We calculate closed form expressions for the asymptotic estimation risks of %y and %, under the

assumption that R has a multivariate Student-t distribution with v degrees of freedom.

5.3.1 Variance Portfolio Estimator

Theorem 32 When R has a multivariate Student-t distribution with v > 5 degrees of freedom, the
asymptotic estimation risk of Xy is

= 1

Ly = tr(E5LvQvLly)

1(v-2)
T(w—4)

(xb, Sxv) [N — M],

where x4, Txy is the variance of the optimal portfolio xy .

Proof. Let R := (R — p)’xy. Then

Qv
= Cov((R—p)R)
= Covg (E [(R —wR| R]) +Ep (Cov [(R —wR| R]) , by decomposition of variance,
- cm%(éEkR—¢o|ﬂ)+¢%(é%hukR-1g|RD. (5.20)

Now [ (R - p,)t R ] has a multivariate Student-t distribution with v degrees of freedom, with mean

0 and covariance matrix

'z EXV
xt, Y xt Txy ’

by definition of R. Then from Proposition 45 in the Appendix we have

Exvjé,

Bl 8] =0 sk

108




and

] _ <V+R2/(”—;2x'{,2xv)) v—2

1 i
— - Yxyxi 2| .
Cov [(R w) | R 1 » [ I vXy ]

Using the last two expressions in (5.20) we get

Qv

| 1 - v—2 v+ R/ (2x!, Sxy) 1 P

| = - ——— = - b)) by

| Covg (xﬁ,ExV YxyR ) +Ej ( > ( ] z XSy xyxy 2| R
= E L sy B2 LI N -2 t

o xt, Sxy v xt, Sxy v

1 =0 1 51"
- Txy R
o ( oy D o ([X%Exv * ]

[2 S zxvx%fz] Ej ((V + R/ (V%waxv)) R2>

xt, Exy v—1

A
N
)

- ﬁi)xvxﬁ/z (B - (B(E)P)
xt, Xx

v—2 1 t ~0 ~q YV — 2 t
- + E—— 21
+ ( 1) [2 iy EXVXVZ] ER (I/R R /( XVEXV)X (5 )

Since R has a Student-t distribution with variance x¢,£xy, we have E(R?) = xt,¥xy and E(RY =
3 (x‘{,ExV)2 (v —2)/(v—4) - see for example Johnson, Kotz, and Balakrishnan, p. 365. Then, plugging
these last results in (5.21) yields

QV = X (X@EXV) VE/V;—zl) (l/ + 3#)

o (45 1 ()

—Zxyx}, T (3 EZ : Z; —-1- uzjv_—21) (V * 3(V—i4)>>

The result then follows directly from reasoning identical to the proof of Theorem (28). m
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5.3.2 Least Absolute Deviation Portfolio Estimator

Theorem 33 When R has a multivariate Student-t distribution with v > 3 degrees of freedom, for

a = 50%, the asymptotic risk of X4 is
= 1
Los = tT(EfL0.5Q0.5L0.5)

v—1\2 2
- (V_ ;) (fﬁ Rl(q0_5)> = (4 2x) [N = M

—1)2 INEA 2
LGRS (r(iz—z)) (b Sxcy) [N = M].

where fx%, r(.) is the density of random variable x{,R, and where xt,Xxy is the variance of the optimal

portfolio Xy .

Proof. Let Ry := xi,R. Notice that Ry is univariate Student-t with v degrees of freedom, and
for @ = 50%, go = xipu. Now [ R' Ry ] has a multivariate Student-t distribution with mean

[ p xbhp ] and covariance matrix
P EXV
xt T xtIxy ,
by definition of Ry. Then from Proposition (45) in the Appendix we have

T = E[R|x}R=qa) =E[R| Ry =x{u]
1
= p+ X%ITXVZXV(J&/# — Xy p)

= I_[,_
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and

Cov [R | R= x’{,p,]
t 1y — xt )2/ (Y=2xt _
(V+(xwt xyp)” /(5= Zbcv)) v—2 (2_ : 1 Sxy s 2)
v—1 v Xy LXy

_ (v - ?) (Z ; EZ—lAt(AE—lAt)—lbbt(Az—lAt)—lAz'IZ)) , from (5.6),
V —

= (”‘2) (2— : L At(Az—lA*) bbi(AXTAY) ™ lA)

Then, the same reasoning as in Theorem (31) leads to the following simple expression for the asymptotic

= v—1)\2 1 2
Los = (V - 2) (fxt R(qu)) N = M)

estimation risk Lo s of Xg.5:

Now,

1 ’ _ (v (E2xt, Soxy) /2 -2
fyn(@s) T OTE) (v (g — xtw)?/ (252 Ex) OO

since go.5 = X%, and because x!, R has a Student-t distribution with v degrees of freedom. The result

follows. =
5.3.3 Comparing the Asymptotic Estimation Risk of the Least Absolute Deviation
and Variance Estimators

Here we use the theoretical results from the last two Theorems, and simulation results, in order to
compare the asymptotic estimation risk of the least absolute deviation and variance portfolio estimators

under the assumption that returns have a multivariate Student-t distribution.
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2.5

scaled asymptotic estimation risk

0.5

1 1
0 2 4 6 8 10 12 14 16 18 20
degrees of freedom

0 | | 1 |

Figure 5-1: Scaled estimation risk as a function of degrees of freedom of multivariate Student-t: -0 =
variance, — = LAD.

Theoretical Performance of Least Absolute Deviation and Variance Portfolio Estimators
Let us define the scaled asymptotic estimation risk of estimator X to be

- asymptotic estimation risk of X
° Axt, Sxy (N — M)

Note that the scaling factor in the denominator is just the asymptotic estimation risk of the variance
portfolio estimator, under the assumption that returns are multivariate Gaussian. Using the results
from the last two theorems, Figure 5-1 plots Ly for the LAD and variance estimators, for the multivariate
Student-t,.as a function of the degrees of freedom of the distribution.

Figure 5-1 shows that as the degrees of freedom increases, and the multivariate Student-t approaches

the multivariate Gaussian, Sy approaches one, and Sp5 approaches 7/2 ~ 1.5, which is their scaled
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asymptotic estimation risk under the Gaussian. Figure 5-1 also suggests that, asymptotically at least,
we should expect the 50%-shortfall portfolio estimator to outperform the variance portfolio estimator

as soon as the degrees of freedom of the distribution is, or goes below, six.

Simulated Performance Least Absolute Deviation and Variance Portfolio Estimators
Here we use simulation to validate the theoretical results presented previously. For simplicity we will
focus on the estimation of

Xy = arg min x'¥x,
etr=1

in the case where N = 10, and where ¥ is equicorrelated (the correlation matrix has equal off-diagonal

elements p = 0.5) with equal variances equal to one - ie.

1 05 05
X=[05 . 05
05 05 1

Now define the scaled loss of portfolio estimator X to be equal to

- Y% — xtb, Sxy

s(X) = 13

Lxt, Sxy (N — M)’ (5.22)

Table 5.1 shows the average scaled loss over 500 Monte Carlo replications and for 7' = 500 observations,
and the scaled asymptotic estimation risk for Xy and %o 5, for the Stﬁdent—t with degrees of freedom
equal to 3, 5, 7, and oo (i.e. the Gaussian). The simulated results agree with the theoretical results
for all distributions, except for %y and the Student-t with 5 degrees of freedom!. Finally, Figure 5-2
shows the average scaled loss over 500 Monte Carlo replications, as a function of 7', for the estimators

Xy and %o 5, and for the four distributions we just considered.

'We ran another Monte Carlo with 500 replications of the following experiment: N = 2, T' = 10000, and we obtained,
for &y, I, = 3.0085 with standard error (0.3075), which agrees with the theoretical result L, = 3.
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Distribution Xy Xo.5

— [ 5.2503 2.4844
(0.1834)  (0.0535)

Student-t (d.f. = 3)

1)

I, | NA 2.4674
- 2.1483 1.8522
Student-t (d.f. =5) I (0.0543)  (0.0383)
I, |3 1.8506
_ 1.6399 1.7628
Student-t (df = 7) ls (00368) (00367)
L | 1.6667 1.7349
Gaussian I e (0035
* | (0.0216)  (0.0353)
L | 1 1.5708

Table 5.1: Average scaled loss, and scaled asymptotic statistical risk, over 500 Monte Carlo replications

Multivariate Student-t (d.f. = 3) Multivariate Student-t (d.f. = 5)

I

average scaled loss
w [6)]
Ol\: W ! P O

average scaled loss
NN N N
N M b O @ W

n

—
2]

200 400 600 0 200 T 400 600
T

Multivariate Student-t (d.f. = 7) Multivariate Gaussian

w

w
N
n

average scaled loss
—
o N

average scaled loss
N
[4)]

N

!

0 200 460 600 0 200 400 600

-~

Figure 5-2: Average scaled loss over 500 MC: -0 = %y , — = X¢5
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5.4 Other Robust Portfolio Estimators

In this Section we introduce three additional robust portfolio estimators: the Huber portfolio estimator,

the trimean portfolio estimator, and the trimmed mean portfolio estimator.

5.4.1 The Hubér Portfolio Estimator

The Huber contrast function - with parameter 7 - can be algebraically expressed as -

22 if |2] <y
m(2) = . , (5.23)
2y|z| = ifz>7

and it is graphed in Figure 5-3. We will define the sample Huber portfolio estimator as the solution to

minimize % ST 7,(X'R; — q)

subject to Ax =Db.

(5.24)

In particular, compare (5.24) to (5.4) and (5.3). Intuitively, the Huber portfolio estimator should be

Figure 5-3: Huber contrast function, v = 0.5.

less sensitive to outliers than the variance portfolio estimator, since deviations from ¢ are only penalized
linearly instead of quadratically. When returns have heavy tails and tail-dependence this may be a

good thing, as we saw in the case of the LAD estimator.
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Quadratic Programming Formulation of the Sample Huber Portfolio Optimization Prob-

lem

The sample Huber portfolio optimization problem has a simple QP formulation. We will use the

following Lemma from Mangasarian and Musicant (2000).
Lemma 34 The Huber contrast function 1,(2) of (5.23) is given by
— min #2 —
ny(2) —»rtré%t +2y]z—t], z€R.
This last Lemma allows us to write Problem (5.24) as

P e . 1 T ,2 1 T t
minimizey, gy gerteR” T D=1t T T Lzt 2VXRi —q — i

subject to Ax =D,

which can be rewritten as the following QP:

P, 15 T,2 15T + 4 -
MINIMIZEy RN gcRteRT zeRT T Ei i+ 2 +7)

subject to Ax=Db
(5.25)
xRi—q—ti=z —2z,i=1,...,T,
zt,z= >0,

which has N + 1 + 37T variables and M + 3T constraints, with IV + 1 dense columns, and a sparse

quadratic objective function.

Choice of the v Parameter

In the Huber portfolio estimation procedure, deviations beyond +/- <y of the location parameter g are
penalized linearly instead of quadratically. Intuitively, this will reduce the influence of outliers on the
estimation procedure. The choice of the y parameter in beblem (5.24) can be motivated by minimax
arguments, as in Huber (1981). We will choose v to be proportional to the mean absolute deviation

of portfolio Xp5. Let R be a random variable. The mean absolute deviation is a robust measure of
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deviation defined as
MAD = E[|R — gos]],

where qo 5 is the median of R’s distribution. Under normality, the mean absolute deviation is propor-

tional to the standard deviation, and is equal to

MAD = cr\/E
T

- see Bouchaud and Potters (2000). Our procedure for choosing 7 is outlined below:

1. calculate (%o.5,do0.5), as described in Chapter 2;

2. calculate the sample M AD of portfolio Xg 5, defined as

T
. 1 - .
MAD(%05) = ; > I®%bsRi — dosl;

i=1

3. set

m -
Y= Z1—a \/;MAD(Xo_s),

where 2;_ is the (1 — a)-quantile of the standard normal.

As defined above, when returns are multivariate Gaussian, observations that are in the a% upper
and lower tails are de-emphasized (i.e. beyond +/- z1_o0 of the mean), and penalized linearly in the

Huber portfolio optimization procedure.

5.4.2 Trimean Portfolio Estimator

The trimean portfolio estimator is a linear combination of three shortfall portfolios. For an arbitrary

a € (0,0.5), we will define the trimean estimator to be

ki=aXy + (1 — 2a)%o5 + oX1—_q-
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For example, for o = 25%,

fi=Lr0zs + L0+ 18
t—4x0.25 2x0.5 4X0.75-

5.4.3 Trimmed Mean Portfolio Estimator

The trimmed mean portfolio estimation procedure begins with the estimation of the shortfall portfolios
(Ra» Ga) and (X1—q,d1-a), for @ € (0,0.5). Then, observations R; which are beyond the region defined
by the hyperplanes (Xq, §o) and (X1—a,§1—a) are put aside, and the variance portfolio estimator is used
on the rest of the data. We expect the trimmed mean portfolio estimator to be less sensitive‘ to outliers
than the variance portfolio estimator applied to the entire set of observations, and this may help the

variance estimator when return distributions exhibit heavy-tailedness and tail-dependence.

5.5 Computational Experiments

In this section we apply our portfolio estimators to artificial and real datasets.

5.5.1 Simulated Data

Here we use the same simulation framework as in Section 3. The portfolio estimators that we consider

are:

e V: variance;

LAD: least absolute deviation;

e H1: Huber, with v = 1.96\/§MAD()‘(0_5);

H2: Huber, with v = 1.64,/FMAD(%¢35);

T1: trimean, ®;=21%0.25 + 305 + §X0.75;

o T2: trimean, %;=0.3%g.3 + 0.4%0.5 + 0.3%0.7;
o TM1: trimmed mean, a = 5%;

e TM2: trimmed mean, a = 10%.
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The following figures report the average scaled loss (5.22) over 500 Monte Carlo replications, for
different values of T. Figure 5-4 compares V and LAD to H1 and H2; Figure 5-5 compares V and LAD
* to T1 and T2; and finally Figure 5-6 compares V and LAD to TM1 and TM2. The simulation reveals
that:

1. For large values of T, i.e. asymptotically, all the robust estimators listed above, except LAD,
outperform estimator V as soon as the degrees for freedom of the Student-t are less than or equal

to 7. LAD outperforms V when the degrees of freedom is less than or equal to 5.

2. The difference in performance between different versions of the estimators, H1 and H2, T1 and

T2, and TM1 and TM2, is negligible for all values of T

3. For small values of T, the situation is mitigated, with estimator V having notably better per-
formance than T1, T2, TM1, and TM2 for the T = 25, the smallest T under consideration.
Estimators H1 and H2, however, seem never to perform worse than V, for any T, even for the

Gaussian!

4. The Huber estimators seem to be the safest alternative to estimator V, since its performance is
never worse than V, and yet is significantly better than V for low degrees for freedom of the

Student-t and large values of T
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mean | standard deviation | skewness | kurtosis
0.2227 | 4.8955 [ 05431 [ 8.7186

Table 5.2: BTK stock return sample statistics, averaged over 16 stocks.

5.5.2 Historical Data

Here we work with a dataset consisting of the daily returns of stocks in the BTK biotechnology index.
The data span the time period 3 /20/1997 to 3/22/2001. The index has 17 companies, but we removed
CRA because it did not have return data before 4/28/1999. We also removed three dates: 11/1/1999,
1/28/1998, and 5/8/1997, because some companies had no data on those days. The final dataset we
work with has 1008 observations on each of 16 stocks. Table 5.2 summarizes some sample statistics.
Notice in particular that the average kurtosis is 8.7, whereas if data were normally distributed, one
would expect this number to be close to 3. This average kurtosis figure indicates the presence of
heavier tails than the Gaussian.

In this experiment, we build portfolios using the estimators

e V: variance;

LAD: least absolute deviation;

e H: Huber, with v = 1.96 M AD(%05);

T: trimean, X;=0.3%q 3 + 0.4%¢.5 + 0.3%0.7;

e TM: trimmed mean, a = 10%.

The only constraint that we impose on the portfolios is that the weights sum to one. For each
estimator, starting on 9/1/1997, and at the beginning of each month after that until 3/1/2001, we use
the data of the previous 6 months for estimation. We then collect the ex-post returns of the portfolio
estimate over the next monfh. For each estimator, we collect all the ex-post returns into one vector,
spanning 9/1/1997 to 3/22/2001. We also calculate the returns of the equally-weighted portfolio EQ,
rebalanced every month, over the same period. Table 5.3 reports some sample statistics of these ex-post

returns. The statistics that we consider are:
e mean: the sample mean of daily ex-post returns;
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e STD: the sample standard deviation of daily ex-post returns;

¢ information ratio: we have defined the information ratio here as a signal to noise ratio equal to

—4—1'2%)1%“1, where the standardization by 1/260 makes the information ratio an annual estimate,

assuming 260 trading days per year;
e a-VaR for @ = 5% and 1%: the sample a-quantile of the daily ex-post return distribution;

e o-CVaR for o = 5% and 1%: the sample conditional mean of the daily ex-post return distribution,

given they are below the a-quantile;

e MaxDD: the maximum drawdown, defined as the largest percent decrease in the value of the

portfolio over the period under consideration.

e CRet: cumulative return.

The numbers in bold indicate the ex-post performance of the corresponding estimator was better
than the performance of estimator V, according to the corresponding statistic. The following insights

: emerge from examining the table:

1. estimator H outperforms V according to every measure of performance which we consider. As our

experiments on artificial data showed, the Huber estimator seems like the safest robust estimator.

2. estimator TM vastly outperforms V according to cumulative return. Extreme returns also seem
to be controlled better in TM, as both the 1%-Var and 1%-CVar are the lowest of all portfolio

estimators, and MaxDD is also the lowest among each estimator.

3. estimator EQ under-performs estimator V according to every measure of performance, except the
mean ex-post daily return. This shows that portfolio optimization may add value compared to a

simple equally-weighted rebalancing strategy.

We also repeat the previous experiment, except that we add an expected return constraint to the

optimization problem. That is, at every month t’s beginning, we add the constraint

t —
X ey —Tpa
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| |V | LAD H T ™ EQ
mean 0.2334 0.2419 0.2375 0.2374 0.2667 | 0.2345
STD 2.6726 2.7348 2.6665 2.7107 2.8196 3.1455
information ratio 1.4080 1.4261 1.4359 1.4122 1.5254 1.2020
5%-VaR 4.1230 4.1825 4.0809 4.1748 4.1850 5.0497
1%-VaR 6.8058 -7.6358 6.7576 7.2469 6.3173 8.5239
5%-CVaR 5.4477 5.7555 5.4102 5.5908 5.4991 7.1423
1%-CVaR 7.9494 8.4141 7.9449 8.1057 7.7089 | 10.3449
MaxDD -32.68 -36.73 -32.42 -33.90 -30.92 -47.44
CRet 486.5393 | 523.1102 | 509.2406 | 502.4341 | 662.9031 | 423.2045

Table 5.3: Portfolio Estimator Performance on BTK Data, convextity constraint only. All statistics are
expressed as percentages, except the information ratio.

for rp in the range 160%/260 (which corresponds to an annualized target return of 160%) to 0, where
1, is the vector of mean returns ovér month ¢. This is equivalent to having a perfect forecast of average
monthly returns. We now proceed as in the previous experiment, collecting the ex-post returns of
estimators V, LAD and H. The resulting minimum variance frontiers (the lowest level of standard
deviation for every level of target return) is plotted in Figure 5-7. It is clear that estimator H improves
upon V on the mean-variance scale, offering lower risk, as measured by standard deviation, for every
level of expected return.

Finally, we repeat the initial experiment but with a five month rolling window, adding the constraint
'R —
X Rt—l =Tp,

where 7p in the range 160%,/260 (which corresponds to an annualized target return of 160%) to 0, where
R;_1 is the vector of mean returns calculated over the last five months. Five months was chosen arbitrar-
ily, and corresponds to 100 trading days. Figure 5-8 shows the resulting minimum variance frontiers
of the ex-post returns for V, LAD, and H. Table 5.4 reports the results for rp; = 100%/260, 52 =
80%/260, rp3 = 60%/260,7p4 = 40%/260, and Figure 5-9 shows the cumulative return for these four
values of target return rp,, for V and LAD (the cumulative returns for H were similar to V). In Table
5.4, the numbers in bold indicate the ex-post performance of the corresponding estimator was better
than the performance of estimator V, according to the corresponding statistic. The cumulative returns
and information ratio of LAD are impressive compared to V, with the information ratio of LAD being

about 20% higher than that of V, and cumulative returns being about 40% higher. The other statistics
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of the LAD are more mitigated, though the 1%-VaR is consistently lower for V. H always has lower
STD and CVaR, at both 1% and 5%, and higher information ratio and cumulative returns.

Figure 5-9 shows the cumulative returns from estimators V and LAD.
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V (rp) |LAD (rp) | H (rp) V (rp2) | LAD (rps) | H (rp2)
mean 0.2429 0.3011 0.2468 0.2342 0.2959 0.2379
STD 2.8946 2.9396 2.8868 2.7890 2.8233 2.7831
information ratio | 1.3532 1.6518 1.3786 1.3539 1.6901 1.3782
5%-VaR 4.3786 4.6094 4.3324 4.2980 4.5060 4.2956
1%-VaR 8.3108 8.0370 8.3232 8.1151 7.9135 8.0487
5%-CVaR 6.2348 6.3200 6.1858 5.9455 5.9619 5.9141
1%-CVaR 9.2525 9.4662 9.1182 8.7808 8.6382 8.6617
MaxDD -45.21 -44.65 -43.70 -40.89 -38.28 -39.47
CRet 504.0782 | 903.7305 | 526.8074 474.0644 | 887.7804 | 494.2505

V (rp3) | LAD (rgs) | H (rp3) V (rp1) | LAD (rps) | H (rps)
mean 0.2254 0.2799 0.2294 0.2167 0.2635 0.2216
STD 2.7175 2.7821 2.7141 2.6828 2.8166 2.6823
information ratio 1.3377 1.6224 1.3626 1.3025 1.5084 1.3322
5%-VaR 4.1586 4.2642 4.1920 4.0724 4.3380 4.1322
1%-VaR 7.4643 6.6035 7.2389 6.8855 6.6551 6.9184
5%-CVaR 5.6923 5.7784 5.6661 5.4915 56309 | 5.4800
1%-CVaR 8.3091 8.3235 8.2099 7.9230 8.1587 7.9029
MaxDD -36.35 -34.25 -35.11 -32.05 -30.26 -0.32.09
CRet 440.5369 | 765.5921 | 460.2708 5 || 404.3046 | 641.6139 | 426.934

Table 5.4: V, LAD and H Performance on BTK Data: 5 month window, expected return constraint.
All statistics are expressed as percentages, except for the information ratio.

5.6 Conclusion

In this chapter we considered the problem of estimating portfolios from return data, when the return
data are generated from an elliptically symmetric distribution. We showed that when the distribution
of returns has heavier tails and more tail dependence than them multivariate Gaussian, there are al-
ternatives to the variance portfolio estimator which may have superior performance. We started by
introducing the LAD portfolio estimator. We showed that when returns have a multivariate Student-t
distribution with less than 6 degrees of freedom, the LAD estimator asymptofica,lly outperforms the
variance estimator. This motivated our consideration of other alternative robust portfolio estimators.
Among those alternatives, the Huber portfolio estimator is the most robust, behaving almost like the
variance estimator when data are Gaussian, but vastly outperforming it under departures from normal-

ity. Our experiments on simulated and historical data suggest that robust portfolio estimation may

have a role to play in actual implementations of portfolio selection in the financial markets.
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Chapter 6

Regularization in Portfolio Estimation

Let R be a random return vector in RN with mean g, positive definite covariance matrix ¥, and a
continuous density, and suppose that R has an elliptically symmetric distribution. ~As in Chapter
5, suppose that we do not know the exact distribution of R, but that we are given independent and
identically distributed realizations Ry, ... ,Ry of the random return vector R. Suppose we want to

estimate the optimal variance portfolio defined as
st
Xy = arg min x'Xx 6.1
v & Axob o (6.1)

where A is an (M x N) deterministic matrix with linearly independent rows, b is an M-dimensional

vector, and b # 0 so the problem is nontrivial. In Chapter 5, we saw that we could estimate xy with

T
(%,¢) = arg min (% > n(x'R; - q)) ; (6.2)

gcR i=1

where ¢ is a measure of location, and where 7(.) is a cost function, which is (.) for variance portfolio

estimation, |.| for LAD portfolio estimation, and

22 if [2] <
") = o (63
29|zl — % ifz>7x

for some v > 0 in Huber portfolio estimation.

Now suppose that the number of observations T is of the same order of magnitude, or less than
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N. Then, asymptotic results such as those from the last two chapters are logically useless, and the
estimates of the portfolio weights will be very imprecise. Sample portfolio estimation using (6.2) runs
the risk of overfitting the data, because there are not enough observations relative to the number of
parameters (portfolio weights) that we are estimating. In what follows, we show how to improve the
precision of the weight estimates via regularization. Specifically, we consider the family of regularized

portfolio estimators of the form

T
(R(V).4() = arg oin (% S (xR; —g) + Al xmng) , (64)
q€R i=1

where:

e ) > 0 is the regularization parameter;

e ||.|p is the Ly-norm in RV for x €RY, ||x||, = Zy:l |zi|P, where z;,i = 1,...,N, is the ith

coordinate of x;

e X, € RY is a prior portfolio, and is deterministic.

We will only consider the values of p = 1 and 2, which correspond respectively to L1 and L2
regularization!. Regularization will be motivated below from a Bayesian perspective. But we note
that the inclusion of the penalty term \||x — Xm/|[b can be explained at an intuitive level as follows. The
A parameter in (6.4) penalizes the objective function in such a way that extreme deviations from the
prior are unlikely. The term A||x — X,,||5 is a penalty that reflects the investor’s a priori confidence in
the portfolio X,,. X could be the investor’s current position, or a benchmark. A large ) reflects strong
confidence in x,,, and conversely, a small \ reflects weak confidence in x,,. In the limit, if A = 0, then
the estimate %(0) is just, respectively, the - unregularized - sample portfolio estimator. An appropriate
choice of A will reduce the variability of the portfolio estimate, without biasing the estimate too much.
We below provide evidence that this is a good thing.

The rest of this chapter is organized as follows. In Section 1, we motivate the use of regularization

in portfolio estimation from a Bayesian perspective. In Section 2, we motivate regularization with

'Note that in least-squares linear regression L2 regularization corresponds to ridge regression - see Hoerl and Kennard
(1970a, 1970b) and Gruber (1998) - and L1 regularization corresponds to the "lasso” - see Tibshirani (1994).
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a bias vs. variance argument. In Section 3 we suggest an algorithm to choose the optimal value of
A. In Section 4 we carry out computational experiments on simulated and historical data that show
that regularized portfolio estimators may have better performance than their unregularized (A = 0)
counterparts, according to several measures of performance including the information ratio, standard

deviation, VaR, and CVaR.

6.1 Regularization from a Bayesian Perspective

6.1.1 Literature on Bayesian Portfolio Selection

The classical Bayesian approach to portfolio selection - see Bawa, Brown and Klein (1979) - is to assume
prior distributions on both the mean of the returns, and on their covariance matrix. Assume there
exists an informative prior distribution on the parameters p and X. Call the density of this prior
distribution fo(pt,X). Then, given the sample Ry, ... ,Ryr, the distribution of the parameters can be

updated using the formula

f(”,Z‘lRl’ <o ,RT) ~ f(Rla R aRTIF’a E)fO(IL,E),

where the term on the left is called the posterior distribution, and where ~ stands for ”is proportional
to”. In this Bayesian franiework, the posterior distribution f(g,X|Rq,...,Rr) is then used as an
input to the mean-variance portfolio selection problem. Using informative priors typically ”shrinks”
the sample estimate of the parameters towards a prior mean, where the degree of shrinkage is related
to the degree of confidence in the prior. Jorion (1986) shrinks the sample mean towards a constant
times a vector of ones, where the optimal shrinkage parameter is obtained by empirical Bayes methods.
Pastor (2000) uses an informative prior to estimate the mean, where the prior reflects a priori belief in
an asset pricing model, such as the CAPM or the APT with a specified set of factors 6r benchmark
portfolios. Ledoit (1995) uses a prior on the covariance matrix to shrink the sample covariance matrix
towards a structured covariance matrix such as the identity matrix. His choice of shrinkage parameter
depends on the estimation of a matrix norm which serves as a distance between covariance matrices.
Frost and Savarino (1986) use an empirical Bayes approach to shrink the sample estimates of both the

mean and covariance matrix towards respectively, a constant times a vector of ones, and a matrix with
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equal diagonal terms and equal off diagonal terms.

Our approach is different in that instead of having a prior on the covariance matrix ¥, we have a
prior on the weights x. This may be more natural in situations where a prior portfolio choice x,, exists,
as was discussed in the introduction. In addition, our approach also works for cases in which we are
interested in estimating optimal shortfall portfolios x, as opposed to optimal variance portfolios xy .
In such cases, the estimation of the covariance ¥ is not necessarily useful. We bypass the estimation
of the underlying distribution, and in particular X, and directly focus on the estimation of the optimal
weights that minimize sample risk plus a penalty that depends on the prior distribution for the weights
X.

Note that we do not consider the problem of estimating the mean p. That is, if p is part of the

constraint matrix A , p will be assumed to be given.

6.1.2 Bayesian View of Regularization in Portfolio Selection

For p = 2 and p = 1, we can think of our estimation problem as fitting into the following Bayesian
framework. Assume that given the weight vector x and location parameter g, deviations v = x'R—q ,

conditional on x and g, have a density
F(vlxg) o e 1R,

Notice that in the absence of a prior on x, the maximum likelihood estimate of the parameter x (along

with an estimate of the location parameter q) given Ry, ... Ry, is just

T
o a 1
(%,4) = arg min = > n(xRi—q),
q€R i=1

which is the sample ”risk minimizing” portfolio estimator.

Priors on x and ¢

We will consider the following two forms for the prior on x.
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e The multivariate normal density

1
Fx(%) = Gy =373 gy -7z P RUCEESIEE

e The multivariate Laplacian density

1
fx(x) =(2)(N—M)(A)—(N—M) exp [—z\”(X - xm)”ﬂ :

Notice that in both cases, the density fx(x) integrates to one over the N — M dimensional manifold
defined by the constraint set Ax = b. Notice also that higher values of A correspond to lower values

for the variance of the elements of x. This matches our interpretation of A as the degree of confidence
n Xm,.

We will also assume a diffuse prior on the location parameter q,
fq(g) < constant.

Posterior Distributions of x

Now the posterior distribution of x and g, given the values v1,... ,vr - where v; = xX'R;—q - is

f(x,q I Vi,... ’VT) & f(U17-" yvr | x:‘])fx(x)fq(Q)

o« f(vr,.-.,vr | x,9) fx(x).
It is easy to see that the posterior log-likelihood
logf(x,q l Viy--- aVT)

is maximized over x € X and ¢ € R by solving the regularized problem

minimize 4 Zf;l N'R; — g) + A|x — x5
subject to Ax=Db
gER,
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where

e p = 2 corresponds to a multivariate normal prior on x,

e p = 1 corresponds to a multivariate Laplacian prior on x.

We have not yet answered the question of how to find ), the degree of confidence in the prior. We

address that issue in Section 3.

6.2 Approximation Error vs. Estimation Error

As in Chapter 4, let us define the estimation risk of portfolio estimator X, satisfying A% = b, as
Lz = E(X'T%) — x, Txy, (6.5)

where the expectation E(.) is taken with respect to the sample R;,- - , Ry, of which % = %(Ry,--- ,Rr)
is a function. We argued in Chapter 5 that estimation risk is the extra risk, over the optimal portfolio
variance x%,Xxy, that is incured by not knowing the distribution of R, and having to estimate the
portfolio X.

Now consider the family of portfolio estimators
1 X
(%,42) = arg moin (T > n(x'Ri — ) + Aljx — me|£> ,
JER 1=1
indexed by A, where 7(.),Xm,, p are given. Define
(xx,qx) = arg min (E[n(x"R - g)] + Mx — xm|[f)
geR

Now notice that the estimation risk of %) can be written as

Lil\ = [Lf(A _LXA] + [Lx’\]

= [E(ZZ%) - x';Ex,\l + [X5Ex) — x) Txv],
(@) (&)
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where we call (a) the estimation error, and (b) the approximation error. Notice that when A is
decreased, estimation error is increased but approximation error is decreased. Inversely, when A is
increased, estimation error is decreased, but approximation error is increased. In particular, if A =0,

then the approximation error is 0, since by elliptical symmetry of R,
in E tp _ -
arg gn,é%}b (xR — q)] = (xy,qv)
q

On the other hand, if A\ = oo, then the estimation error is 0. Let Ag > 0 be the value of A that minimizes

estimation risk, i.e.
Ao = arg min Ly
g A>0 XN\

where Lg,. Then )¢ is between 0 and oo, and optimally balances estimation error and approximation
error. |

Of course, in practice, we do ﬁot know )o, and we have to estimate a A from the data, which is what
we explain how to do in the next section. Let us also note that the degree of approximation error will

be intimately linked to the choice of the prior portfolio Xn,.

6.3 Choosing the A\ Parameter

As argued in the previous section, the optimal value of A minimizes estimation risk, defined as
Lz = EX'Z%) — xt, Sxy.

One way to pick A is to choose a \ value that minimizes an estimate of the term E(X'Y%), the variance
of the estimator. We propose to evaluate the variance of the estimator by p-fold cross validation.

We next describe p-fold cross-validation. Let X be given.

Step 1: remember that our data consists in T observations R1,... ,Rr. Suppose for simplicity that

T is a multiple of p. Divide the T observations into p subsets of T'/p observations. Call these

subsets T'(j), for j=1,---,p.
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Step 2: for every j =1,--- ,p calculate

Xx(7),4r(7)) = arg min __ 1 'R, — X —
D000 = ers i, | Sy ,;ET\ZT(,)["("R* DI+ Allx = xml[3 ),

where card(T\T'(j)) is the cardinality of set T\T'(5).

Step 3: for every j =1,--- ,p the sum of squared errors

PE\(j) = ) [B()R: — r(5))7.
€T (j)

Step 4: calculate the total sum of squared errors

P
PE, = ZPEA(J').
j=1

Now given a list of candidate values of \, one strategy is to chooses the value of A with minimum
total sum of squared errors, which is an estimate of the variance of the portfolio estimator. The extreme

case with p = T corresponds to "leave-one-out” cross validation.

6.4 Computational Experiments

6.4.1 Simulated Data

"This experiment uses data generated by a multivariate normal distribution with N = 100, a correlation
matrix with off-diagonal elements equal to 0.5, and with standard deviations generated by a lognormal
distribution with dispersion parameter 1/2. Call the resulting covariance matrix ¥, and call x the

solution to -

minimize x'¥Yx

subject to x'e = 1.
We will consider the estimators (where the only constraint is the convexity constraint):

e V: variance;
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V2: L2-regularized variance;
e LAD;

e LADI1: Lil-regularized LAD;

LAD2: L2-regularized LAD;

e H: Huber;

H2: L2-regularized Huber.
For T = 60, 120,200,400, we repeat 100 times the following steps:

Step 1: generate the standard deviations according to the description above, and calculate xy.

Step 2: generate a dataset with T observations, and calculate the estimators. We use five-fold cross-
validation to choose the A pé,rameter for regularization, and we use an equally weighted portfolio -

as the prior X,,. Note that for T = 60, the estimators V and H are not well-defined.
Step 3: calculate the scaled loss for each estimator, where the scaled loss of estimator is defined as

2% — xt, Txy

ls(X) =
8( ) xﬁ/sz

Notice that [, will always be positive.

Table 6.1 reports the average scaled loss of each estimator, over the 100 replications of the simulation,
as a function of . Standard errors are in parentheses. EQ corresponds to the equally-weighted prior
X,. The conclusion is that regularization helps significantly when the number of assets is of the same
order of magnitude as the number of observations. For example, with 7' = 120, V is almost 500% more
risky than the optimal portfolio xy, but V2 is only 115% more risky than xy. Even at T = 200, the
improvement of V2 over V is substantial. Though LAD underperforms V and H, LAD1 performs the
best out of all estimators. We suspect this is the effect of L1 regularization rather than the effect of
the piecewise linear objective in the LAD. In fact, LAD2 performs worse than V2.

Finally, 6.2 shows the results for the experiment repeated with data generated from a multivariate

Student-t with three degrees of freedom, and with the same mean and covariance as before. Though
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| T = 60 120 200 400 |
EQ 47.7781 49.9621 49.6050 46.1965
(1.3507) (1.3513) (1.7711) (1.2289)

\Y% 4.9940 0.9834  0.3307
(0.0189) (0.0020) (0.0006)

V2 1.9723  1.1582  0.7330  0.3061
(0.0649) (0.0032) (0.0018) (0.0007)

LAD  207.1015 6.8723  1.4738  0.5042
(53.7248) (0.2056) (0.0211) (0.0051)

LAD1 1.4714  0.8361  0.5522  0.2861
(0.0467) (0.0419) (0.0268) (0.0057)

LAD2 2.8534  1.4806 0.9178  0.4573
(0.0865) (0.0463) (0.0239) (0.0099)

H 5.4425  1.0629  0.3377
(0.2509)  (0.0224 (0.0052)

H2 3.6554  1.3148  0.7697  0.3257
(0.5703) (0.0462) (0.0286) (0.0068)

Table 6.1: Average loss over 100 Monte Carlo replications (sté,ndard error in parenthesis), Gaussian
data.

LAD looses to V and H, LAD1 performs the best out of all estimators. V and H perform similarly, as
do V2 and H2.
6.4.2 Historical Data

This experiment uses daily return data on 40 indexes, from 5/14/1992 to 5/14/2001, which amounts to
2243 days of data. The indexes cover various combinations of industries and countries. For example,

they include the Dow Jones index and the BTK biotech index, as well as international indexes. The

complete list of indexes, and the data, are the property of FleetBoston Financial.

We study the performance of the following estimators:
e V: variance;

e V2: L2-regularized variance;

o LAD: least-absolute deviations;

e LAD2: L2-regularized least-absolute deviations (L2-regularized estimation worked better here, so

we do not present the results for L1-regularization);
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T= 60 120 200 400
EQ 477791 471906 46.4628 48.1079
(1.7598) (1.2255) (1.2218) (1.1320)

% 5.6606  1.4194  0.5802
(0.2443) (0.0311) (0.0094)

V2 21940 14452 1.0320  0.5531
0.0702 (0.0462) (0.0360) (0.0160)

LAD 2022074 83680 1.8635  0.6544
47.8392 (0.4122) (0.0435) (0.0118)

LAD1 17469 09589  0.6888  0.4011
0.0742 (0.0283) (0.0264) (0.0105)

LAD2 25914 16243 1.1243  0.5924
(0.0765) (0.0508) (0.0390) (0.0114)

H 6.6413  1.4526  0.5602
(0.3174) (0.0325) (0.0090)

H2 44259 14830  1.0297  0.5361
(1.0115) (0.0468) (0.0385) (0.0141)

Table 6.2: Average loss over 100 Monte Carlo replications (standard error in parenthesis), Student-t (3
d.f.) data.

e H: Huber estimator, as defined in Chapter 5;

e H2: L2-regularized Huber.

For every estimator, we use the following simple investment strategy: use a 100 day rolling window
of past daily returns, and rebalance the portfolio every 5 days. We do not model transaction costs.
The portfolio optimization problems that we solve include the convexity constraint, and a target return

constraint, i.e.

xte = 1

R —
xR = rp,

for p in the range 80%/260 to 180%/260, and where R is the sample average return over the 100 day
window of past returns. The unregularized estimators V, LAD, and H, also have the box constraints
that every estimated weight must be in the interval [-5,5]. Notice that this actually improves the
performance of V, LAD, and H: without these box constraints, the information ratios that we obtained

are all close to 1 (as opposed to 2.5, as we will see below). The resulting stream of ex-post portfolio
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returns is collected for each estimator/target return combination. We record the following statistics of

the ex-post returns of each estimator/target return combination.
¢ mean: the sample mean of daily ex-post returns;
e STD: the sample standard deviation of daily ex-post returns;

e information ratio: we have defined the information ratio here as a signal to noise ratio equal to
——l“zﬁg(r_r%w’, where the standardization by /260 makes the information ratio an annual estimate,

assuming 260 trading days per year;
e a-VaR for a = 5% and 1%: the sample a-quantile of the daily ex-post return distribution;

e a-CVaR for a = 5% and 1%: the sample conditional mean of the daily ex-post return distribution,

given they are below the a-quantile;

e MaxDD: the maximum drawdown, defined as the largest percent decrease in the value of the

portfolio over the period under consideration;

e CRet: cumulative return.

Figure 6-2 shows the resulting minimum-variance frontiers of the ex-post returns for V2, LAD2, and
H2. The V2 estimator has a better mean-variance profile than the other two estimators. Table 6.4
reports the results for r,; = 180%/260, rp2 = 160%/260,7p3 = 140%/260,7p4 = 120%/260. Again, in
Table 6.4, the numbers in bold indicate the ex-post performance of the corresponding estimator was
better than the performance of estimator V2, according to the corresponding statistic. The striking
result is the dramatic improvement in the performance of the regularized portfolio estimators, as opposed
to their unregularized counterparts, according to every measure of performance that we are considering.
Sharpe ratios, for example, are improved by 20%. For example, V with target return rp; has an
information ratio of 2.47, but V2 has an information ratio of 3.02. We attribute this improvement in
performance to the fact that regularization, with the A parameter chosen by cross-validation, optimally
balances the approximation and estimation error of the estimation procedure. Given that we have 40
indexes and only 100 returns, achieving this balance results in significant improvement in performance.
Figures 6-3, 6-4, 6-5 show, in mean-standard deviation space, estimators V, LAD, and H respectively,

and their L2-regularized counterpart.
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Figure 6-1: Minimum variance (standard deviation) frontier, estimating returns from past: — = V; - -
=LAD; -. = H.

80, T T

(4. (=2}
g8 8

% return (annualized)

&

30-

! !
2 15 20
% standard deviation (annualized)

Figure 6-2: Minimum variance (standard deviation) frontier, estimating returns from past: — = V2; - -
= LAD2; -. = H2.

142




[RPORNP S | [y DOV PR [N ! S0 SRR R

70+

=]
o
T
\
\

% return (annualized)
3
T

&

30

1 1 1
0 12 14 16 18 20 22 24
% standard deviation (annualized)

Figure 6-3: Minimum variance (standard deviation) frontier, estimating returns from past: — = V; - -
= V2.
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Figure 6-4: Minimum variance (standard deviation) frontier, estimating returns from past: — = LAD;
- - = LAD2.
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V (rp1) | LAD (rp1) [ H (rp) [V (rp2) [ LAD (rp) | H ()

mean 0.2265 0.2323 | 0.2267 || 0.2019 0.2082 | 0.2031
STD 1.4776 | 1.5725 | 1.4714 1.3421 1.4252 | 1.3352
information ratio | 2.4720 2.3818 | 2.4839 || 2.4253 2.3559 | 2.4525
5%-VaR 2.3150 2.4514 | 2.2790 2.1203 2.2537 | 2.0865
1%-VaR ‘ 3.5635 3.7846 3.5746 3.3625 3.5228 | 3.3771
5%-CVaR 3.1012 3.3481 3.1157 || 2.8469 3.0614 | 2.8581
1%-CVaR 4.2158 4.6147 | 4.2218 || 3.8755 4.2014 | 3.8853
MaxDD -41.33 -31.75 -41.32 -39.99 -29.47 | -40.24
CRet 2297.6 2454.5 | 23057 1615.3 1752.1 | 1648.6

V (r3) | LAD (ry3) [ H (rps) [ V (rpa) | LAD (rp) | H (rpa)

mean 0.1774 0.1830 | 0.1784 || 0.1528 0.1551 | 0.1571
STD 1.2125 1.2850 | 1.2069 1.0909 1.1502 | 1.0852
information ratio | 2.3592 2.2058 | 2.3836 || 2.2587 2.1749 | 2.3346
5%-VaR 1.9643 2.0663 | 1.9329 1.7822 1.8432 | 1.7382
1%-VaR 3.1134 3.3295 | 3.0777 || 2.8849 3.0695 | 2.7556
5%-CVaR 2.6036 2.8185 2.6141 || 2.3811 2.5734 | 2.3866
1%-CVaR 3.5725 3.8268 | 3.5681 | 3.3227 3.5458 | 3.2832
MaxDD -38.97 -31.34 -39.17 -38.04 -30.64 | -37.77
CRet 1125.8 1212.7 | 1145.2 771.2 792.8 [ 829.2

Table 6.3: V, LAD and H Performance on index data. 100 day rolling window. All statistics are
expressed as percentages, except for the Sharpe ratio.

6.5 Conclusion

In this chapter we have shown that in situations where the number of assets is of the same order of
magnitude as the number of observations, L1 and L2 regularization can improve the performance of
portfolio estimators. We justified regularization from a Bayesian perspective by arguing that intuitively,
deviations from a prior portfolio should be penalized. From a frequentist perspective, we argued that
there existed values of the regularization parameter such that approximation error and estimation error
were optimally balanced. We suggested choosing the regularization parameter by using p-fold cross-
validation. Experiments with artificial and real data showed that regularization, in the context of

portfolio selection, works in practice.
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V2 (Tpl) LAD2 (’I“pl) H2 ('r'pl) V2 (’f'pg) LAD2 (’I‘pg) H2 (’r‘pg)

mean 0.2702 0.2621 0.2652 0.2422 0.2329 0.2297
STD 1.4428 1.5334 1.4437 1.3079 1.3746 1.3006
information ratio 3.0198 2.7562 2.9618 2.9859 2.7326 2.8482
5%-VaR 2.1340 2.2578 | 2.1158 1.9549 2.0579 1.9662
1%-VaR 3.3162 3.5045 | 3.3085 3.1178 3.2700 | 3.1129
5%-CVaR 2.9348 3.1960 2.9676 2.6816 2.9005 2.7176
1%-CVaR 4.3542 4.8266 | 4.1545 4.0087 4.4207 | 3.8792
MaxDD -22.69 -23.60 -25.39 -22.72 -24.84 -24.69
CRet 4494.7 3898.8 4166.4 3026.2 2592.8 2505.9

V2 (153) | LAD2 (rp5) | B2 (753) || V2 (tpa) | LAD2 (rpa) | H2 (1p1)

mean 0.2131 0.2070 0.2035 0.1829 0.1873 0.1760
STD 1.1774 1.2310 1.1696 1.0518 1.0937 | 1.0476
information ratio 2.9190 2.7116 2.8049 2.8038 2.7617 2.7094
5%-VaR 1.7482 1.8569 1.7807 1.5843 1.6540 | 1.5827
1%-VaR 2.8585 3.0822 2.9173 2.6016 2.7324 2.6363
5%-CVaR 2.4450 2.6198 2.4748 2.2236 2.3597 2.2533
1%-CVaR 3.6707 4.0600 3.5955 3.3555 3.7134 | 3.3204
MaxDD -22.56 -21.91 -23.84 -22.30 -22.89 -23.14
CRet 1987.6 1789.3 1712.7 1264.9 1347.2 | 1134.6

Table 6.4: V2, LAD2 and H2 Performance on index data. 100 day rolling window. All statistics are
expressed as percentages, except for the information ratio.
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Chapter 7

Conclusion

Let R be a random return vector in RY with mean p, and assume that a sample of return observations
Ri,..., Ry is available. In the introduction to this thesis, we noted that we could rewrite the sample

variance minimization problem

minimize x!¥x
subject to x‘e =1

t, _
X' =rp,
where rp, is an arbitrary target return, and where 3 is the sample covariance matrix, as

minimize, ming &Y 1, (X'R; — ¢)?
subject to  x’e =1 (7.1)

x'p =rp.

The rest of this thesis examined the properties of portfolio selection where the objective in Problem
(7.1) is replaced by a piecewise linear function. Specifically, we considered the alternative portfolio

selection problem

minimizex ming 3 Y7, [pa(x'R; — g))
subject to x‘e =1 (7.2)

t,, —
XK =Tp,
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where

1
pal?) = 2 = ~2liz<op (7.3)
for o € (0,1). We called the term
1 I
a i in. .
Sa(x) = min ;[pa(x R; —q)], (7.4)

the (sample) a-shortfall, or shortfall, of portfolio x € RV,

In the presence of return distribution asymmetry, we showed that the shortfall has an intuitive
advantage over variance. As a measure of risk in portfolio selection, the shortfall can capture downside,
tail risk for @ < 1/2. The shortfall is related to VaR and CVaR, which are quantile-based measures
of risk which are currently receiving recognition in the field of risk management. And if returns are
elliptically symmetric, shortfall is proportional to the standard deviation. Moreover, classical mean-
variance portfolio analysis results such as two-fund separation in the presence of riskless assét, and the
concept of an asset’s beta, generalize to shortfall.

We showed that the sample shortfall portfolio optimization problem can be formulated as a linear
program with a number of constraints proportidnal to the number of observations. We derived a
central limit theorem for the shortfall portfolio estimator. In the presence of departures from normality
within the class of elliptically symmetric distributions, and in particular in the presence of heavy tails
and tail dependence, we showed that the shortfall portfolio estimator can outperform the variance
portfolio estimator. We also introduced other "robust” portfolio estimators, such as the Huber poftfolio
estimator, that outperform the variance portfolio estimator under departures from normality within the
class of elliptically symmetric distributions.

Finally, we introduced the concept of regularization in portfolio estimation, which consists in adding
a penalty to the portfolio optimization objective which is proportional to the norm of the difference
between the portfolio estimate and a prior portfolio. We considered L1 and L2 regularization, corre-
sponding to penalties that are proportional respectively to the L1 and L2 norm of the portfolio. We
showed that when the number of return observations was of the same order of magnitude as, or less

than, the dimension N of the portfolio, regularization could dramatically improve portfolio estimator
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performance.

7.1 Future Research

Using definition (7.4) and (7.3), we can rewrite the a-shortfall of portfolio x as

Sa(x) =

T
Zpa tR —q]

'ﬂl

T
1
Z [|xtR, q|1{xtR1>q} + (— - 1) |xtR»z QIl{xtRWSQ}:'

'ﬂl

For o = 50%, we saw in this thesis that shortfall is the mean absolute deviation

8af m1n = Z [x'R; — g

1—1

A natural extension of the shortfall is a measure of portfolio risk which we call a-variance, and which

we define as
1 T
20 = min k> [RER )
i=1
1< 1
= mgnT Z [(XtR,; - q)zl{xtm>q} + (a - 1) (xtR,L' — q)zl{xtmgq} .

i=1

For o = 50%, the a-variance 02(x) is the variance

62(x) = mm— Z x'R; -
T=
of portfolio x. In Figure 7-1, we show p,(.) and p2(.) for & = 10% and 50%.

We conjecture that the a-variance is related to third order stochastic dominance. a-variance
portfolio optimization would fit naturally into the framework developed in Chapter 3. Like shortfall,
the a parameter can be chosen to penalize downside (below the location parameter) returns more
severely than upside returns.

The central limit theorems that we proved assumed that the constraint set Ax = b was determin-
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Figure 7-1: (2): apy(.), @ = 10%; (b): pa(.), @ = 50%; (c): api(.), a = 10%; (d): p2(.), @ = 50%

istic. An extension of this framework would be to let Ax = b depend on the sample Ry,--- ,Rz. In

particular, the case where Ax = b contains the constraint
xR =1,

where rp is the target return, and R is the sample mean, might be considered. Another extension
would be to consider higher term asymptotics, which might be a useful tool to cope with the issue of
small samples that is going to plague any portfolio estimation problem with a large number of assets.

On the robustness front, other portfolio estimators might be experimented with, in addition to
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the ones we considered. Any robust procedure used in the location and regression problems could
conceivably be adapted to the portfolio selection problem. Of these, let us mention high breakdown
estimation procedures such as the least median of squares, the least trimmed sum of squared, and the
least trimmed sum of absolute deviations (see Hawkins and Olive, 1999). Their optimization, however,
will be more difficult than the optimization of the convex portfolio selecﬁon problems that we considered
here. '

We feel that the topic of regularization in portfolio estimation deserves further attention. Though
we have showed that it works extremely well in practice, we feel that our mathematical motivation
could be significantly improved upon. And maybe more importantly, better ways of choosing the
regularization parameter could be devised, that might be less computationally intensive than the p-fold
cross-validation.

Finally, the extension of the themes that animated this thesis - namely, portfolio selection under
departures from normality, and the application of linear programming to portfolio optimization - to the

multi-period framework would undoubtedly be of practical interest.
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Appendix A

Review of Stochastic Dominance for

Classes of Utility Functions

The expected utility maximization paradiglln1 states that investors make investment decisions in order to
maximize their expected utility. That is, faced with two investment choices, whose random returns can
be described by X and Y, an investor with utility u(.) chooses X over Y if and only if E[u(X)] > Efu(Y)].
Instead of focusing on specific utility functions, which may be hard to articulate for any particular
investor, the financial economics literature has also analyzed the properties of classes of utility functions.

The following classes have been considered.

U : = {u(z) | u(z) is finite for every finite x, u'(z) >0 Vz € RL
Uy : ={u(z)|u(z) €U;, —oo<u'(x) <0Vz R}
Us : ={u(x)|u(z) € Uy, co>u"(x)>0VreR}

Note that U; D Uy D Us. Uj corresponds to the class of (nonsatiable) wealth seeking investors. U
corresponds to the class of wealth-seeking, risk-averse investors. (investors in this class will refuse to
participate in bets were the expected return is 0, which follows directly from Jensen’s inequality). Us
corresponds to the class of wealth-seeking, risk-averse investors with a preference for skewness preference.

Stochastic dominance theorems can be used to determine if, between two investment alternatives X

1The material in this appendix can be found in Huang and Litzenberger (1988), Bawa. (1975), and Levy (1992).
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and Y, one is preferred by all investors belonging to a certain class of utility functions. A distribution
F stochastically dominates a distribution G for all utility functions in class U; if F' is always preferred
to G by any investor with utility function u € U;. This last condition can be expressed mathematically

as
Ep(u) > Eg(u) for all u € U;,

where Erp(.) stands for the expectation with respect to distribution F.  Stochastic dominance for
all utility functions in U; is called First Order Stochastic Dominance (FSD). Similarly, stochastic
dominance for utility functions in Us is called Second Order Stochastic Dominance (SSD), and for all
utility functions in Us is called Third Order Stochastic Dominance (FSD). Necessary and sufficient
conditions for each type of stochastic dominance are given in the theorem below, adapted from Bawa

(1975).

Theorem 35 F FSD G if and only if
F(z) < G(z) Vz € R, and < for some .
F 85D G if and only if
T T »
/ F(t)dt < / G(t)dt Vz € R, and < for some z.
a a
F TSD G if and only if

Bp 2 Mg and

T t T 17
/ / F(y)dydt < / / G(y)dydt Vz € R, and < for some z.
a a a a
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A.1 Stochastic Dominance and Lower Partial Moment (LPM) Con-

ditions on Distributions

Define the it* order lower partial moment of distribution F, calculated at point c as
z I3
LPM;(c, F) = / (@ — 1) dF(t).
—00

Notice that LPMy(c; F) = F(c) is the probability that the return is below ¢, which is Roy’s (1952)

Safety-First measure of risk. The following theorem is due to Bawa (1975).

Theorem 36 (Bawa, 1975) F' FSD G if and only if

LPMo(c; F) < LPMy(c;G) Ve € R, and < for some x..
F SSD G if and only if

LPM(c;F) < LPM(c;G) Vz € R, and < for some .
F TSD G if and only if

Br 2 pg ond

LPM,(c;F) < LPM;(c;G) Vr €R, and < for some z.

Proof. The proof for FSD is obvious. For SSD, notice that

/_ ; Flt)dt = [F(t)t c - / ctdF(t)]
_ [F(c)c — F(a)a - / ’ tdF(t)]

_ / (c—t)dF(2) a

—00

= LPM(cF).
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For TSD, notice that

LPMy(c;F) = / " (= 1)2dP(@)

[(c—t)*F(®)]° +2 / (c—t)F(t)dt

—00

= 2fic-o [ rowe.s [ [ Py}
= 2/_; /_; F(y)dydt,

which finishes the proof. m

A.2 Stochastic Dominance and Quantile-Based Conditions on Distri-

butions

First and second-order conditions for stochastic dominance, can be restated in terms of quantile-based

risk measures, namely VaR and CVaR. We define the a-quantile of distribution F as
qo(F) = inf{z|F(z) > a}.
Then, the a-level VaR of distribution F is defined as
VaRu(F) = —quo(F)
and the a-level CVaR of distribution F is defined as
CVaRy(F) = —E[X | X € ¢u(F)].

The following theorem is due to Levy and Kroll (1978). They provide a geometric justification for
their result. We offer an analytical derivation of the result, assuming that the densities of the variables

under consideration are well-defined.

Theorem 37 (Levy and Kroll, 1978) Let X and Y be two random variables with distributions F
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and G respectively, and assume that their densities are well-defined. Then F' FSD G if and only if
4a(F) 2 ¢o(G) Ya € (0,1), and > for some a,
or, alternatively,
VaRy(F) < VaRy(G) Va € (0,1), and > for some a.
F SSD G if and only if
E(X|X < go(F)) 2 E(Y|Y £ qa(G)) Va € (0,1), and > for some
or, alternatively,
CVaR,(F) < CVaR,(G) Ya € (0,1), and > for some a,

Proof. The proof of the FSD condition is obvious when one remembers the definitions of F(z) and

¢o(F), and is omitted. To prove the SSD condition, we need to show that

T T
/ Ft)dt < / G(t)dt Vz € R, and < for some z

—00

9o (F) 9 (G)
= / tdF(t) > / tG(t) Va € (0,1), and > for some a.
—0

—00

To show (=) notice that for any o € (0,1) and any z € R, using integration by parts and the fact that
F(ga(F)) = a for any distribution F', we have

‘ch(F) QO:(G)
/ tdF(t) — / tdG(2)

—00 —00

— bFe© - [

—00

F(t)dt — [tG(t))%=©@ + / =@ G(t)dt

—0Q

qa(F)

= ¢u(F)a— /_ ) F(t)dt — qa(G)a + / () G(t)dt

—0Q

T qa(F) Z
/_ (G) = FO)t+ (gu(F) - Z)a - /m F(t)dt + (z — ga(G))a — / C(dt. (A1)

do (G)
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Now assume that [*  F(t)dt < [* G(t)dt Vz € R, and let o € (0,1) be given. Choose z = g4(G).
Then

@-a@a- [ cat=o,

22(G)

and if go(F) > z,

(ga(F) — z)or — /z = F(t)dt >0,

since for ¢ € [7,gq(F)], F(t) < a, and Equation (A.1) is greater than or equal to 0; and if g, (F) < =,

qa(F) x
(qa(F) — 2o — / FOdt = ~@-aa(Pert [ o 0
2 0)

since for t € [go(F), x|, F(t) > a,and Equation (A.1) is greater than or equal to 0. It follows that

T T Quc(F) q“(G)
/ Ft)dt < / G(t)dtvz € R = / tdF(t) — / tdG(t) > 0 Va € (0,1).

—00

Also, assume that [* F(t)dt < 2 G(t)dt for a given z € R. Let o := G(x). We then have
4o(G) < z. Then

(@ — qu(G))ar — /,,, w(g) Gt)dt =0,

since G(t) = a for t € [ga(G), ], and we also have
ga (F)
(4a(F) - z)a - / F(t)dt >0,
T
as shown above. It follows that Equation (A.1) is greater than 0,

/ " ()t < / " Glydt= / ) aF ) > / ™ 4G for a = G(a).

-0

We are done proving (=).
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To show (<) notice that for any z € R and any a € (0,1), we can rewrite Equation (A.1) as

/_ :(F(t) _ G(t)dt

7a(G) ga(F)
_ /_ tdG(t) /_ tdF(t) + (ga(F) — z)o
9a (F) T
- / F(t)dt + (z — ¢o(@))a — G(t)dt.
T 9.(@)

(A.2)

Now assume that ff;gF) tdF(t) > ﬁ;gc) tdG(t) for all a € (0,1), and let z be given. Choose o = F(z).

Then ¢o(F) < x and

o (F)
(galF) =)o | " pdr =0

since F(t) = a for t € [ga(F),z], and if ¢o(G) < =,
T
(@ = ga(G))ar — / Gt)dt <0,
42(G)
since for t € [go(G), z], G(t) > a, and Equation (A.2) is less than or equal to 0; and if ¢4 (G) > =,
T
(z — 4a(@))a — G(t)dt <0,
2a(G)
since for ¢ € [z, qa(G)], G(t) < -a,and Equation (A.2) is less than or equal to 0. It follows that
9a(F) 92(G) m m
/ iR (t) - / tdG(t) > 0 Va € (0,1) = / Ft)dt < / G(t)dtvz € R.
—00 —00 —00

—00

Also assume that ffggF) tdF(t) > ff‘;ﬁG) tdG(t) for a given a € (0,1). Choose z = go(F'). Then |

9o (F)
(qa(F) - c)a - / F(t)dt =0,
T
and if ¢4(G) < z, and as shown above,

(@ - ga(@))a — / Y Gwdt<o.

Qa(G)
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It follows that Equation (A.2) is less than O,

/qa(F) tdF () > /qa(G) tdG(t) = /w F(t)dt < /w G(t)dt for z = ga(F).

—0o0 —00

We are done proving («<). m
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Appendix B

Multivariate Elliptically Symmetric

Distributions

This appendix is dedicated to reviewing some facts about multivariate elliptically symmetric distribu-
tions, and to presenting some results related to those distributions. The results that we present are

used in Chapter 5.

B.1 Definition

Let R be a random vector in RY. In the following definition, a singular density refers to a density that

is defined over a hyperplane that has dimension less than V.

Definition 38 R has a multivariate elliptical distribution if its (possibly singular) density can be ex-

pressed as
o =1 T M2 ol — w)'Q (r — p)iK], (B.1)
i|A;7#0
where §) is the nonnegative definite dispersion matriz with eigenvalues A;,i = 1,...,N, K is the rank

of Q, Q is its generalized inverse and p is the vector of medians.
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The generalized inverse of ) is defined as the matrix Q~ that satisfies
QO Q=Q.

Then, when (2 is invertible, Q= = Q~!. If the mean of R is well-defined, then £t is equal to the mean
of R. If R has a well-defined covariance matrix %, then € is proportional to the covariance matrix of
R, i.e.Q = 7Y for some 7 > 0.

If K < N, then f(r) integrates to one over a hyperplane of dimension K, containing p. For example,
consider in R? the vector R =(R, 2R + 1)¢, where R ~ N(1,1). R has mean p =(1,3) and covariance

matrix

with v = (1/v/3,2/+/3)t. Then

As defined, R has a singular multivariate Gaussian distribution

@) = (VB exp | (o - w2 - )]

Let M = {r € R?|r = p+kv, k € R}. M is a hyperplane of dimension one. It is easy to verify that

/M f(r)dr=1

- but note that [z, f(r)dr is not well-defined.
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B.2 Characteristic Function and Stability Under Affine Transforma-
tions

Suppose that R has a multivariate elliptically symmetric distribution with density given by (B.1), and
let E(.) denote the expectation with respect to R. Then its characteristic function is, by definition, a

function ¢g : RV — R, such that

¢r(z) = BT
= eizt“zp(ztﬂ"z) for some function 1(.) - see for example Muirhead, 1982.  (B.2)

Proposition 39 Suppose that R has a multivariate elliptically symmetric distribution. Any affine

transformation of R also has a multivariate elliptically symmetric distribution..

Proof. Let U = HR + v, where H is an (M x N) matrix and v €R™. The characteristic function
of Uis

du(z) = B(e=EHRHY)

= ZHB)y (2t HQ Hbz), | (B.3)

so U has a multivariate elliptically symmetric distribution with mean Hy + v and dispersion matrix
HQ H'. =
B.3 Conditional Expectation and Conditional Covariance

Let R have a multivariate elliptically symmetric distribution with density given by (B.1), characteristic

function given by (B.2), and partition R, g, and Q as

R Q Q
R= 1 = Ky o= 11 12 ’ (B.4)
R o Qo1 Q29

where Q41 is N1 x Ny and Qgp is (VN — N1) X (N — Np). To get the conditional mean and conditional

covariance of R; given Rg, we will need the following Lemma.

162




1 L 1 ipge: 0 [l e 0] gl WREUR ] 3eiies] s 1o e For

Lemma 40 Let ), a positive nonnegative deﬁm’ie matriz, be partitioned as in (B.4) Then
N (f222) C N (f12)

and
C (Q221) C C(Q02),

where N(.) stands for the null-space of the argument, and C(.) stands for the column space of the

argument.

Proof. See Muirhead (1982), Lemma 1.2.10. =
The following Proposition is based on Problem 1.28 in Muirhead (1982).

Proposition 41 Let R have a multivariate elliptically symmetric distribution, and let R be partitioned

as in (B.4). Then, conditional on Ry, Ry has mean
E(R1|Rz) = py + Q1202 (Ra — 1)
covariance matriz proportional to {1112 = Q11 — Q1205,801, that is,
Cov(R1|R2) = h(R2)Q1.2

for some function h(.).

Proof. By Lemma 40 we have C (Q21) C C (Q22). Therefore, there exists a N7 x (N — N;) matrix
B such that Q91 = Q99 B?, or Qtzl = Q19 = BQs2. We can therefore write

01205,Q22 = BQ925,80 = BQogs = 42, (B.5)

where the second equality follows by definition of the generalized inverse. Let

I —1205
F = M 12 2 . (B'6)
0 IN—N1
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Now consider the random vector

FR - Invy, —$21285, R,
0 Iyn-m R;
_ ( R - Qqu_sz )

The characteristic function of FR is

¢rr(z) = E(™(M)
= (Fi)o(zt FOF'z),

for some function 9(.). FR therefore has an elliptically symmetric distribution with mean

— Q1205
Fu= M1 123899 Mo ’
Ha2

and dispersion matrix (letting Q112 = Q11 — 21205,221)

FOFt — In, —$285, D1 Q2 In, 0

|0 In-m Qo1 Qa2 050021 In-m,
[0, 0 | ]I 0

= 12 M using (B.5)
O O | | -0 Iv-m
g o

_ 11.2 _ (B.7)

0 Qa2 :

The rank of FQF" is equal to then rank of €, since F is invertible. Since FR = (U,R,) has an

elliptically symmetric distribution, its density can be written as

f(ua r2)

= | H Api|1/2

1| A #0
gl(a = (py = 12Q519)) Uy (0 — (g — Q12Qppt9) + (Pa—pao) QU (r2—p1))iK],  (B.8)
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for some g(.), where Ap; are the eigenvalues FQF®. Therefore, conditional on Ry, Ry has mean
E(R1|Rz2) = py + 012055 (R — po)
covariance matrix proportional to 13 o, that is,

ow(R1[R2) = h(R2)Q1s
= h(Re2)(11 — 1205,021).

B.4 Examples of Multivariate Elliptical Distributions

B.4.1 Multivariate Gaussian Distribution

Definition 42 Random vector R € RY is said to have a multivariate Gaussian distribution if its

density has the form

$66) = gl 1 M2 |50 - w0 - ).

i A;#0

where K is the rank of Q, and \;,i=1,... ,N are its eigenvalues.

If R has the density given above, then
ER) =

and

The following proposition

Proposition 43 Let R have a multivariate Gaussian distribution, and let R be partitioned as in (B.4).
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Then, conditional on Re, Ry has mean
E(R1|R2) = p; + Q12055(Ra — pp)
covariance matriz equal to
Cov(R1|R2) = Q1 — 91292‘2921.
Proof. Partitioning R, p, and  as in (B.4), we see that the marginal density of Ry is

1 _ 1 -
f(x1) =(—2W| H 0l /2 exp [—5(1'1—#1)t911(1'1—ﬂ1)]
i16:#0

where K is the rank of 1, and 8;,i = 1,... ,N; are its eigenvalues. Let F be defined as in (B.6), so

that

Using (B.8), we see that the joint density of U and Rj is

f(U,l‘z)

1
= ____l AF’il_l/z
K/2 II
(2m)*/ 1| Ai£0 '

1 _ _ _ -
P [_5 [(“ — (kg — Q129221‘4‘2))@11.2(11 — (1 — Q2Q515)) + (r2—p2)'Q3p(r2—15) ]
where Ap;,i = 1,...,N are the eigenvalues of FQF?, and K is equal to the rank of FQF" (which
is equal to the rank of Q by invertibility of F'). Order the eigenvalues of FQF" in such a way that

Ari,% < N are the eigenvalues of Q7] 5, and Agi, N1 <4 < N are the eigenvalues of Q7; 5. Call Kjthe
rank of 0112, and K3 the rank of 52. Notice that K = K1 + Ka. The conditional distribution of U
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given Ry is by definition equal to

f(ulrs)
= f(u,r2)/f(r2)

1
= w5l [ Al
K/2

exp [_% [0 = (g = 2519)) Qi (1 = (g — R12Qpm05)) + (rz_l‘z)tﬂz_z(r2_“2)]]

1 ) . )

/ ((27r)(K2)/2| H AFil 1/2 exp [—i(rz—ﬂz)tﬂzz(rz—ﬂz)})
N1<i|Ap;#0

1

(27T)K1/2

_ 1 _ _ _
| H AFil 1/ exp [—5 [(u —(py — Q12922”2))]@11.2(11 —(p — Q12922“2)]] .
i< N1|Api7#0

Therefore, using the definition of U, it can be seen that the conditional distribution of R; given Ry is

f(r1lre)

- W‘ i<Nﬂ11ai#o si
exp [_% [(r1=(pey + Qa2 (r2 — 22))) 7 21— (g + Q12055 (r2 — 112)))] | -
It follows that the conditional mean of Ry given Ry is
E(R1|R2) = py + Q12Q5(r2 — o),
and the conditional covariance of R; given Ry is

Cov(R1|R2) = Q1.2 = Q11 — 12055001,

where the second equality follows by definition of Q;12. m
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B.4.2 Multivariate Student-t Distribution

Definition 44 Random vector R € RY is said to have a multivariate Student t-distribution with v

degrees of freedom (v € N*t, the set of all positive integers) if its density has the form

| TTijp g0 Xl 712

r) =Ck(v ’
T = e w0
where K is the rank of Q, and \i,i=1,... ,N are its eigenvalues, and where
)= )
V) = — .
K) = TR )

I'(.) is the gamma function, defined as
I(x) =/ ¥ e Vdu, = >0.
0

It can be shown - see Press (1972), Ch. 6, Section 2 - that if R has the density given above, and
v > 1, then the mean of R is well defined, and

ER) = p.

If v is equal to 1, then R is said to have a multivariate Cauchy distribution, and its mean does not

exist. Also, if v > 2

CO’U(R) ='I/%29

Proposition 45 Let R have a multivariate Student-t distribution with v degrees of freedom, and let R

be partitioned as in (B.4). Then, conditional on Ry, Ry has mean

E(R1|R2) = py + Q205 (R2 — po)
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covariance matriz equal to

_ vt (=)' 0 (Ta—p9) (o -
Cov(R1|R2) = OES 43 (Qu1 = 21205,921) .

Proof. Partitioning R, , and 2 as in (B.4), we see that the marginal density of R; is

| T Tij6,20 6,722
[v + (r — p)' Qg (r — )| HED/2

f(r1) =Crk, (v)

where K is the rank of 31, and 6;,i =1,... , N; are its eigenvalues. Let

Ry — Q1205Ry | U
FR = 1 1248 699102 _ .
Rz RZ

Using (B.8), we see that the joint density of U and Ry is

f(ua 1'2)

o Al Y2
— CK(V) |Hz|/\ﬁé0 Fl

v+ (u— (g — Q1205 19))'01; 5 (1 — (1) — Q2 tta)) + (Ta—pao) s (T2 —pag)] /2

where Ap;,i = 1,...,N are the eigenvalues of FQF?, and K is equal to the rank of FQF® (which
is equal to the rank of 2 by invertibility of F'). Order the eigenvalues of FQF® in such a way that
Ari, @ < N1 are the eigenvalues of Q1) 5, and Api, N1 < i < N are the eigenvalues of Q]; ,. Call Kithe
rank of ;3 2, and Ky the rank of (295. Notice that K = K; + K5. Now the conditional distribution of
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U given Ry is

f(ulrs)
= f(u,r3)/f(rs)

= Cx@)| [] Aml7?
A0

v+ (u—(p - 912Q§2P2))t91_1.2(“ — (g — Q2 pr) + (1‘2—”2)t92—2(r2—#'2)]_(u+K)/2

| Tnvs<ipapio Aril ™2
/| Ck,(v) — =
? [v+ (I‘Z—Mz)mzz(rz—#2)](V+K2)/2

_ CkW) (v +a) K2 [ Aml2
Cra (V) i< N1|Api#0

v+ (u = (i — Q12Qp)) Q1 5 (0 = (g — Do) + ang] ¢+

_ Gk RGO I | P
CKZ,(V) i< N1 | Api7#0

[ v+ Ks)+ (u— (pg — 912922M2)) [911 2

(V+K2)(V+K)/2
(v + agg) WK/

— CL(V)_(,/ + Kz)("+K2)/2(l/ + a22)—K1/2(V + K2)K1/2|

CKz (V)

ku+Kw+wu—uﬁ—nunammt@az

where age = (ra—pg)Q5y(r2—py). Notice that

w+am) 2w+ K T w2 =

i< N1|Api#0

170

(v + K>)
(1/+a22)

(v + K>)
(I/ -+ azz)

—((v+K2)+K1)/2
o i)
H /\F'i |—1/2
i< N1 AR 7#0
—((v+Kz)+K1)/2
| (w= (= Qa1 (B9)

-1/
I ()]

_i<N1|)\F.-9£0

—-1/2
H Cz] ’

i, #0
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where (;,i = 1,,N; are the eigenvalues of [Qn,zi(ﬂ_—a;:)l] , and

Ck(v) v+ Ky VP21 (LK) v/ (e£K2)
Gy 1D (Wré)) (Wr&)

(V+K2)(V+K2)/2F V+K22+K1)
mk /2T (1)
= Cg,(v+ K3).

It then follows from (B.9) and the definition of the multivariate Student t-distribution, that conditionally
on Rz, U must have a multivariate Student t-distribution with (v + K3) degrees of freedom, and
dispersion matrix [911_2 %%] . Therefore, using the definition of U, it can be seen that the conditional
density of Ry given Ry is

f(r1lr2)
~1/2
= Cr (v + K3) [ II (1]
i|¢;#0
[(v + K2)

(V + azz)

+(r1—(pq + Qa2 (r2 — p1)))" [Qllfz(y+—K2)

] (1‘1—([.1,1 + 01205, (r2 — l/,z)))]—(V+K2))+K1

It follows that the conditional mean of R; given Ry is
E(R1[R2) = py + Q12Qy(r2 — 1),

and the conditional covariance of R; given Ry is

Cov(R1|Rg) = (V(_,V_ _Il;'sz)2) [Qu.z EZ i ;?z))]

(V -+ azz) _
= rK-2 (Q1 — Q1205,021)

_ (vt (r2—py)" Q5 (r2—psp)) _ -
= W+ Ks-2) (Qu1 — 21295,001),

where the second equality by definition of 1.2, and the third by definition of az;. m
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Appendix C

An Alternative Polynomial Time
Algorithm to Solve the Sample
a-Shortfall Portfolio Optimization

Problem

Assume for simplicity that K := Ta is integer. Then, even though formulation (3.7) has an exponential
number of constraints, it can be used to develop an algorithm which will solve the sample a-shortfall

portfolio optimization problem in polynomial time.

C.1 Complexity According to Formulation (3.7)

The linear program corresponding to formulation (3.7) can be solved in polynomial time. To show
this, let us first prove that we can solve the Separation Problem for the polyhedron P = {x € R,
z€R| Ax=b, £ Y ,cs(x'R;) > z} and where S ranges over all K-element subsets of {1,--,T}in

polynomial time. The Separation Problem is to:

(a) either decide that (x,z) € P, or
(b) find a constraint (indexed by S), such that L3 ies(X"Ry) > 2 is violated.
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Let a pair (x, 2) be given. Checking whether Ax = b holds can be done in O(N) steps. To find out
if an inequality % > ,;cg(x*Ri) > z is violated for some S which is a K-element subsets of {1,---,T},

" do the following. First calculate

rl(x) : =xtR1,

rr(x) = xRy,

which will take O(NT') steps. Then order the sequence [r1(x), - - - ,r(x)] from smallest to lafgest, and
call the resulting sequence [r(;)(x),: - ,r(7)(x)] , which will take O(T) steps If A5k, T(i)(%) < 2, we
have found a violated constraint. Else if 4 SE, 7()(X) > 2, then (x,2) € P, because & 3K | T()(X)
is a lower bound for &Y, ¢ 7(i)(x) for all S, by virtue of our ordering. So the Separation Problem
can be solved in O(NT) steps. Using Theorem 8.5 in Bertsimas and Tsitsiklis (1997), it follows that
the shortfall optimization problem can be solved in time polynomial in NT + 1 and log U, where U is a

bound on the size of the problem parameter values.

C.2 A Practical Algorithm to Solve the a-Sample Shortfall Portfolio

Optimization Problem According to Formulation (3.7)

The algorithm used in Theorem 8.5 by Bertsimas and Tsitsiklis (1997) (see previous Section) is the
Ellipsoid Method for Optimization. ~This algorithm can be used to prove theoretical results, but
typically performs poorly in practice. We propose the following practical algorithm to solve the sample
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a-shortfall portfolio optimization problem .

_1 Step 1: Start by solving the problem with the equality constraint, and a small subset
' of the inequality constraints.

Step 2: Find a violated constraint in the entire set of inequalities (that is equivalent
to (b) in the Separation Problem above). If no constraints are violated, then the
solution is optimal and the algorithm terminates.

Step 3: Add the violated constraint to the constraint set, and solve using the
dual-simplex method. This is efficient because the last dual solution stays

feasible after a constraint is added, yielding a (typically good) starting point.

Go to Step 2.

BT i
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Appendix D

Proofs from Chapter 1

In this appendix we find optimal (the tightest) upper and lower bounds on the shortfall of a distribution
under two different set of assumptions: 1.) we are given the mean u, variance 02, and a-quantile g, of
the distribution; and 2.) we are given the mean x and variance o? of the distribution. We also provide

2

optimal bounds for the a-quantile g, of a distribution, given its mean x and variance g°, as not every

triplet (u,02,q,) in fact corresponds to a distribution. The results are summarized in Table (2.1).

D.1 Bounds on ¢, Given y and o*

We find a lower bound on the a-quantile g, of a distribution, given its mean p, variance o2, We first
consider an intermediate problem, that of finding an upper bound on the probability that a random

variable with mean x and variance o? is below a given value ¢. This problem can be expressed as

maxy [?  f(z)dz

st [5 f()dz=1
[, 2f(2)dz =
[, 2 $(2)dz = 2 +
f(z) 2 0.
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Its dual formulation, for which strong duality holds (see Issi, 1960), is

Mily; yp,ug U1 + U2t + U3 (/1'2 + 02)
1Vz € (—00,9) (D.1)

s.t. U1 + ugz + ’LL322 P
uy + ugz + uzz? > 0 Vz € (g,00).

Theorem 46 The optimal upper bound on the probability that a random variable X ~ (u, 0?) is below

a given scalar q s

max_Pr(X <

X~ (p,0?)

= o*/lo?+(q—w? ifqg—p<0,
1 ifqg—pu>0.

Proof. The optimal upper bound on the probability that a random variable X ~ (p, o) is below

a given scalar g is the solution to Problem (D.1), which can be rewritten as

ming(z) EZ~(u,cr2) [g(Z)]
s.t. g9(2) 2 1Vz € (—00,q)
9(2) 2 0 Vz € (q,00)

g(2) 1= uy + ugz +ugz?.
The optimal solution to the preceding problem is also the optimal solution to

mina,b,c EZ~(p,cr2)[a’(Z - b)2 + C]
s.t. a(z—=b)?+c>1Vz € (—00,q)
a(z —b)%2+¢>0Vz € (g,00).

Note that a > 0 is a necessary condition for the function g(2) := a(z — b)* + ¢ to be feasible.
Now for any feasible g(z) withb < g, we have g(2) > ¢1(2) := 1, and g1 (2) is feasible, Ez.(,,2)[91(Z)] =
1. For any feasible g(z) with b > g, we have g(z) > g2(2) = a(z — b)? with g2(gq) = 1. Therefore

alg—b?i=1a=

1
(g—b)%’
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so that ga(2) = (2 — ¢)%/(¢ — )%, and Ez.(,0%)[92(2)] = [0* + (b — )]/ (b — q)* := m(b). Notice that

[02 +(g—m)?  2(g—n)

m(b)=1+_ (b—q)? (b—2q)
and
angz(;b) = _@_2—(1)3[0“ CEIDEE A CEDICET)
= g - W ==,
so that
om(b) _ . [02 + (¢ — )2
b 0if b—gq -

m(b) is +oo at b = ¢, lim, 1 /_ m(b) = 1, and m(b) has a unique local minimum at b = [02 + (g —

w)?)/( = q) +g. Tt follows that

arg minm(b) =

{ 02 + (g — )2/ (u—q) +q ifq-pu<0,
b>q

400 : ifg—pu>0,

and we are done. m
Now to find a lower bound on the o-quantile gq := inf{q| Pr(X < q) > o}, all we need to do is set

the upper bound in the Theorem above to o, which yields-

(1-0a)

a

—0 +/-L<qa-

To find an upper bound on the a-quantile g, of a distribution with mean p variance 62, we consider

the intermediate problem of finding an lower bound on the probability that a random variable with
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mean p and variance o2 is below a given value q. This problem can be expressed as

ming [? _ f(2)dz

st.  [% f(z)dz=1
[ 2f(2)dz =
[, 2 (2)dz = p? + 02
f(z) 2 0.

Its dual formulation is

MaXy) ug,ug U1 + ugu + us (NZ + 0.2)
ot w1 +upz +ugz? < 1z € (~00,9) (D2)
<

2

U1 + ugz + ugz? < 0 Vz € (g, 00).

Theorem 47 The optimal lower bound on the probability that a random variable X ~ (u, 0?) is below

a given scalar q is

min Pr(X <gq) =
X (X <9q)

0 ifg—p <0,
1-0/[o* +(¢—-w? ifg—n>0.

Proof. The optimal lower bound on the probability that a random variable X ~ (u,0?) is below

a given scalar q is the solution to Problem (D.2), which can be rewritten as

maxXg(,) EZ~(M02)[Q(Z)]
s.t. 9(2) <1Vz € (—00,q)
9(z) <0 Vz € (¢,0)

9(2) := u1 + ugz + ug2?.

The optimal solution - g(2) - to the preceding problem is also the optimal solution to

maXgp,c EZN([J,O'2) [a‘(z - b)Z + C]
s.t. a(z—b)>+c < 1Vz € (—00,9)
a(z —b)? + ¢ < 0Vz € (g,00).
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Note that a@ < 0 is a necessary condition for the function g(2) := a(z — b)2 + ¢ to be feasible.
Now for any feasible g(2) with b > g, g(2) < g1(2) := 0, and g1(2) is feasible, Ez.(, ,2)[g1(Z)] = 0.
For any feasible g(z) with b < g, g(2) < g2(2) := a(z — b)%? + 1 with g5(q) = 0. Therefore

: 1
a(q—b)2+1=0©a=—m,

so that ga(2) = —(z — 9)2/(q — 1)? + 1, and Ey(uon)[92(2)] = 1~ [02 + (b — w)3/(b — q)? == m(b).
Notice that

m(b) = — [0+ (g—mw? 2(g—w)

b—q2  (b—9q
and
afg_lgb) = (b_—2q)3[02+(q—u)2+(q—#)(b"Q)]
- (b_—2q)3[02+(q—u)2+(q—ﬂ)(b—Q)l,
so that

om(b) _ . _lo*+@—p’
% = 0iffb—gq= i —q .
m(b) is —oco at b = g, limy_, 4 /_o m(b) = 0, and m(b) has a unique local maximum at b = [0 + (g —

1)?]/(— q) +q. It follows that

arg min m(b) =

—o0 ifg—p<0,
[0* +(q - w)?/(u~q) +q fqg—p>0,

and we are done. ®m
Now to find an upper bound all we need to do is set the lower bound in the Theorem above to a,

which yields

N

9o =)
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D.2 Bounds on Shortfall Given u, o?and g,

In this Section we find lower and upper bounds on the shortfall s, of a distribution, given its mean pu,
variance 02 and a-quantile g,. Let us first consider the search for an upper bound on the shortfall.

The problem we are trying to solve can be expressed as

max; L [% 2f()dz

st [2 f(2)dz=1
J2o2f(2)dz = pu
2. 2 f(2)dz = p? + o?
2 f(2)dz = o
f(z) > 0.

Its dual formulation is

b MmNy ey (U + U2k +us(u? + 0%) + uga]
s.t. Uy +ugz +ugz? +ug 2 —2 Vz € (—00, ga) (D.3)

uy +ugz +uzz? = 0 Vz € (gq, o).
The dual can be solved in closed form. The proof relies on the geometry of the underlying problem.

Theorem 48 (Optimal upper bound on the shortfall of a distribution) The optimal upper

bound on the shortfall sq of a distribution, given its mean p, variance o? and a-quantile qq is

max S$q(X)=0v/(1-a)/a.
X"'(I—haza‘h)

Proof. The optimal upper bound on the shortfall of a distribution, given its mean y, variance o2

and o-quantile gy, is the solution to Problem (D.3), which can be rewritten as

pot mingy 2Bz (,02,0,)19(2)]
s.t. g9(z) 2 —z Vz € (—00,4a)
g(z) = 0 Vz € (qa, 0)

9(z) == ug +ugz + usz? + Usliz<qa}-
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where 1(,<,.} = 1 if 2 < g and 0 otherwise. The optimal solution - g(2) - to the preceding problem
{2<42}

is also the optimal solution to

mina,b,cm EZ~(p,a2,qa)[a(Z — b)2 +c+ u41{z<qa}]
s.t. a(z = b)? +c+us > —2 Vz € (—00,4q) (D4)
a(z —b)?+ ¢ >0 Vz € (gq, ).

Note that a > 0 is a necessary condition for the function g(z) := a(z — )% + c+ugl(,¢q,) to be feasible.

Suppose g(z) is optimal. Then it is necessary that a(z — b)2 + ¢ +ug = —z for some z € (—00, a);
otherWise one could choose uj < u4 so that ¢'(2) := a(z — b)® + ¢ + Ul ¢q,} < 9(2) Vz € R and ¢/(2)
is feasible. '

Now consider the following two cases:

(a) If g(¢ga) = —¢o then b > g, and it follows that ¢ = 0. Furthermore, a must be such that
g(z) is tangent to the line —z at go; otherwise, one could choose a’ < a, and uj such that

g'(2) :=d'(z = b)? + c+ ujlcq,} < 9(2) V2 € R and ¢'(2) is feasible.

If g(2*) = —z* for some 2* < gq, then g(z) must be tangent to the line —z at z*. Furthermore, one must
have b 2> gq; otherwise one could choose ' < a and )y such that ¢'(z) := a/(z — ga)? +uplizcqa} <

9(z) Vz € R and ¢'(2) is feasible.

- We have just shown that Problem (D.4) has the same solution as

min Ela(z - b)? + u4l{><q0}]
st a(z—b)2+uy > —2 Vz € (—00,q4) | (D.5)

a>20, b>qa, and a(z* —b)? +ug = —2* for some z € (—00, ¢q).
Now suppose that g(z) := a(z — b)? +usl{,<g,} a feasible solution of Problem (D.5). We know that
%(z*) =—-1& 2a(z* —b) = -1,
so that
. x _ 32 1 .
g9(z") = a(z* —b) tug = fug= -z =E_b’

181




1
’U/4—E—b,

with 2* = b — 1/(2a) < go. We therefore have

Blg(2)] = alo®+ (u— b2 +ua

1
= alo?+ (=) + [ o= m(a,b),
with the constraints @ > 0, b > gq, and 1/(2a) — b < g. Problem (D.5) is therefore equivalent to

mingy m(a,b) = alo? + (u—b)?] + [£ — b
st b—1/(20) < ga (D.6)
b> G, a 2 0.

The Lagrangean for the above problem can be written as

L : =L(a,b, A1, A2, A3)
= alo+ (- b+ [ ~Ha
F2a(b—1/(20) — o) + Na(ga — b) + Aa(—a),

with A1, A2, A3 = 0. The Kuhn-Tucker necessary conditions are

OL _ 12,y _p2— L I
% [0" + (p—b)] .4a2°‘+’\12a2 A3 =0
oL
% = —2a(u—b)—a+)\1—)\2=0
M(b—-1/(2a)—ga) = 0
/\Z(ch"b) =0
)\3(—0,) = 0.

Since a = 0 is not possible, we must have A3 = 0. We are left with the following four cases:
Case 1: A1 > 0,)X2 > 0,)3 =0. Then b = qq, and 1/(2a) = 0, so this scenario is impossible.
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Case 2: Ay = 0,A2 = 0,A3 = 0. Then the optimal parameters are a* = 0,/(20) and b* = p + ac/cq,
where 04 := y/a(1 — a). Plugging in these parameters into the function m(a, b) yields the optimal
value for Problem (D.6), m(a*,b*) = 004 — pa. This is the optimal solution when

1
b* — 20" S o
b* 2 Qa,

or

which is equivalent to

1-a) a
< —u < .
a YlTHhSO 1l-a

—0

Case 3: A\; =0,z >0,A3 =0. Then the optimal parameters are a* = \/a/ [2\/02 + (- qa)z] and
b* = go. In this case the optimal value for Problem (D.6) is m(a*, b*) = /a\/02 + (4 — ga)?2 —gac.

For this to be the optimal solution, there must exist Aj > 0 such that

oL .
= —2a*(p—ga) —a— A5 =0.

That is, we must have

—2a*(p—go) —a >0,

or

where 04 1= /a(l — a).
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Case4d: \; > 0, A2 = 0,3 = 0. Then the optimal parameters are a* = 1/[2(y/[02 + (k0 — ¢a)?]/(1 — @))]
and b* = go + /102 + (1 — 4a)?]/(1 — ). It follows that the optimal value for Problem (D.6) is
m(a*,b*) = /1= ay/02 + (1t — ga)? — ga — (1t — ga). For this to be the optimal solution, there

must exist A} > 0 such that

& = —2a'(u=b) —a+ X =0.
That is, we must have
a+2a*(p—b*) >0,
or
da = < 1 ;a),

where 04 := 1/a(l — ).
We know that given u and o2, possible g, must satisfy —o4/(1 — a)/a < go — p < 04/a/(1 — ),

so that only Case 2 above is feasible. The result follows. m
Next we consider the search for a lower bound on the shortfall s, of a distribution, given its mean

u, variance o2 and a-quantile g,. This problem can be expressed as

ming pu— 2 [ 2f(2)dz
st.  [% flzydz=1
[ 2f(2)dz = p
[, 22 f(2)dz = i + o
2 f(z)dz =
#) >0

184




[esapratr b ssrt o pron-shmsedl it ol st i

Its dual formulation is

Kt MaXu; up us,us é[ul + ugp +ug (ﬂz + 0.2) + uqq]
s.t. uy +ugz +u32? + ug < —2 Vz € (—00,4a) (D.7)

Ul + Uz2 +U322 <0Vze (‘Ia)oo)-

Theorem 49 (Optimal lower bound on the shortfall of a distribution) The optimal lower

bound on the shortfall s, of a distribution, given its mean u, variance 02 and a-quantile qq is

. —(GQa—p) if g — <0,
min  so(X) = _
X~ (p,0?,00) (Ga—p)(l—a)/a ifge—p>0.

Proof. The optimal upper bound on the shortfall of a distribution, given its mean yu, variance
0? and a-quantile q,, is the solution to Problem (D.7). Let g(z) = uy + ugz + uzz? + ugl(zcq,) be
feasible. Let g1(2) := —z + ga(1 — l{z<q}) and ga(2) := —Qal{.<q,}, and notice that both g, and go
are feasible. Then if min,{u1 + u2z + usz?} < qu, 9(2) < g1(2), and if min,{u1 + ugz + u32?} > qq,

then g(2) < g2(2). It follows that the optimal solution to Problem (D.7) is

1
M+ E max{EZN(p,a2,qa) [gl (Z)] ) EZN([J,U'z,q::x) [92 (Z)]}

1
= u “+ E ma.x{—,u + qa(]' - O!), —Qaa}7

and the’result follows. m

D.3 Bounds on Shortfall Given x and ¢?
The results above allow us to bound shortfall given x and o2 :

Proposition 50 The optimal lower bound on the shortfall s, of a distribution, given its mean ©oand

variance 0% is 0. The optimal upper bound on the shortfall so of a distribution, given its mean p,

variance a2 is 04/(1 — a)/a.

185




s o

Appendix E

Proofs from Chapter 2

E.1 Proof of Lemma 15

Proof. The gradient:
Notice that

Blpa(xR—g)] = (x'n — )=~ Fl(XR~0)1pun_<0))

We will first prove (4.14) for the k-th component of VxE[p,(x’R—q)]. We have

apa (xtR_q) 19
e M a o PR~ ) lper—gcor]

Writing the expectations above as a bivariate integrals in the variables U = Z#k z;R;, and V = Ry,

and differentiating with respect to =y we obtain

9ps(x'R—q)
—QW = —a%;//w U+ Tk — 9)L{utav—g<0p SOV (U, v)dudv

= -—— / /q—zkv (u+ zkv — q) fuv (u, v)dudv
= — —/ /q—wkv vfuv(u,v)dudv

——C-;/ (—v)0fuv (g — zkv,v)dv

= p— aE[Rkl{x*R—qso}]-
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The gradient of E[p,(x*R—q)] with respect to g is found using the same arguments.
The Hessian:
Let j and k, j # k, be fixed indices in {1,--- ,N}. We will prove (4.15) for the jk-th component of
%Elpa(x'R~q)]. We have

OFE [Pa(xtR—q)]
oy,

1
= W — EE(Rkl{xtR-q@})-

Let U = Z#k’j z;R;, and V = R;, and W = Ry, which have a joint density fyy,w(.,.,.) since R is

assumed to have a density. Differentiating the last equation with respect to z; we obtain

OE[ps(x*'R—q)]
6a$UjafEk - aaw, // W1{u+m,u+mkw<q}fuvw(u v, w)dudvdw

q—T;V—Tpw
= ———/ / / fovw (u,v,w)dudvdw

o Ox;

= ——/ w/ (=) fuvw (g — zjv — zpw, v, w)dvdw
aJ —00

= _é //RN Te(=T;) fRxer (T, @)dr

= ~fan@3 [[_ ) mentrio)ds
= fxtR(Q)éE[RkRj | x'R—q =0].

The case where j = k is handled the same way.

- Now, let kin {1,--- , N} be fixed, and let U = Z#k z;R; and V = Ry. We then have

OFE [Pa (xtR_q)]
dqOxy, = ozaq // Ul utawsqr fov (U, v)dudy

q—TV
= _Ea_q/ / fuv(u,v)dudv

- __/ vfuv(d — Thv, v)dudy

= // Tk fRxR(T,q)dr

= —fxtR(q)a /_/]RN "'Ich]x‘R(rlq)dr

= —fen(0) 2 ElRe | XR-g=0].
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The expression for V2E([p,(x*R—q)] follows in similar fashion. m

E.2 Proof of Lemma 16

Proof. (a) Note that the gradient and Hessian of E[p,(y5W + zW)] exist by Assumption (B) and
Lemma 15, and we can expand E[p,(y, W + z'W) — p,(y:,W)] around y, to obtain

E[po((yo +2)'W) = po(ya W)]
= Yy Elpa(y' W)lly. + 52 [V3Elpa(y W)lly.lz + ol |zl ?). (B1)

Now because y,, solves

minimize  E[p,(y*W)]
subject to Agy = b,

we must have (writing the Lagrangean of this last problem and taking its derivative with respect to y)
VyElpa(y"W)]lya + Apra=0,

for some A, € R™. This means that
VyEloa(y'W)llya = —AjAa,

and for all z €Z

ZtVyE[Pa(YtW)”ya = —ZtABAa
= 0, (E.2)

by definition of Z. Therefore, the linear part in (E.1) vanishes for all z €2, proving (a).
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(b) Consider the quadratic part in (E.1). Use (4.15) to write,

ViBlpoy'Wlly, = fxtR@a)[ o e ; ]
+Frer(ga) [ ~E[R| x,R~go = 0] } { _E[R| X, R—ga = 0] }

1

We see that the rank of V2 E[p,(y*W)]ly, is equal to the rank of Cov[R | x{R—g, = 0] plus one.
From Assumption (B), we know that the rank of Cov[R | x,R—qs = 0] is N — 1, so the rank of
V2E[po(y"W)ly, is N. Let us write

N+1
vner[pa(th)]'Ya = Z AiVin,

i=1

where A} = 0 < A2 < -+ < Ayj1, and viv; = 0 for all 4 # 4, ||vi|| = 1 for all i - i.e the v; form an

orthonormal basis in RV*!. Therefore for all z €2,

N+1 N+1
ZViElpa(y'W)llyalz = D N(@vi)2> X Y (ztvi)?
i=1 =2

Xollzl[* = Ao (z'v1)? = Agl[z][* — Aa||zl[?|[v1][? cos(z, v1)?

||z|*2, (E.3)

\Y

with X := Ag[1 — (sup,cz cos(z,v1))?]. Using the fact that V2E[po(y"'W)]|y, has rank N it is easy to
verify that

V! [V2E[po(y"W)]ly.]v =0 if and only if v is a multiple of y, = (x,, ga)".

Therefore v; must be a multiple of y,, so Agv; # 0, and v; ¢ Z by definition of Z. Therefore

SUp,cz cos(z,v1) < 1 and A > 0, proving (b).
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(c) Using (E.2) and (E.3) in (E.1) we see that for all z €Z

Epo((Ya +2)'W) — po (Yo W)]

1 _
> sllal*X+o(|lz]?),
which shows that there exists €5 > 0 such that

Elpa((ya +2)'W) — po(yaW)] > = l[z][? for all z €2 and ||z]] <ea.

]

The results follow with « := 1), and by noticing that by convexity of E[p,((ya + 2)"'W) — po (Y4 W)

any local minimum is also a global minimum. m
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Appendix F

An Inverse of a Partitioned Matrix

Let R €RY have mean p and covariance matrix ¥, possibly nonnegative definite. Define the matrix

r —-p At
M= | —ut 1 0 (F.1)
A 0 On

where I' = E[RR'], and A is an M x N dimensional matrix of rank M < N with linearly independent

TOWS.

Proposition 51 Assume that M as given in (F.1) is invertible, and assume thatT = E[RRY] is positive

definite. If ¥ is nonsingular, then the inverse of M can be written as

M1
T - olANAD1AY)1AE-L

= | [T -STA AT TIAY)TIAS Y] Lo ptelAY(ASIAY) LAY
(AZ1AH) T AD-L (AZ1AY) T AD-1p — (Az-1AH)7

where we have only written the lower triangular part of M~ and where

n=1-p'T p
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If ¥ is singular, then the inverse of M can be written as

M1
Q-+ 1QupiQ
= | p(Q+ 3Qup'Q)
QAT (I + pptiQ)

S S

AT 'p & (LA 1pp'T-1A%® — 1)

where we have only written the lower triangular part of M~1, and where

o= (AT'AN) T,

Q= [ -T'A®AT],
and
8= p' T IA'RAT .

Proof. Case 1: X nonsingular.

Let ac RY b e R, c € RM. We will solve for x € RY, g € R, v € RM the system of equations

X a
My q =
Y C

Using the definition (F.1) of M, the system of equations can be rewritten as

)
I'x —pg +Aly =a

ﬁ —p'x  +q

(F2)
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Remember first that if ¥ = I' — put is nonsingular, its inverse can be written as

- _ 1 - _
»l=r l+mr lﬂ[.l.tr 1,

and we must have
1— T £0.
Now, using (F.4), we can solve the second equation in (F.2) for g, yielding

qg= “[b +p'Tla — T 1A%y

1
1 — ptr-1

which can be plugged into the third equation in (F.2) to yield
. i . i )
c = A [F 1 (a + um— [b + utI‘ la — ﬂtr lAt’)’] - At’y):l

1— 'l

1
= (AT '4A——
( AT T

I“Iupfl"l) a+ 1 _1MAP—1“b
— (_1 — “:F_IMAI‘—IM“tF—IAt + Al-\—lAt) ~
= A (r-l + ﬁr—lmfrl) a+mAI‘_lub
- |2 (i e
SO |

_ _ _ 1 _
¥ = [AE lAt] 1 (AZ la—f—mAI‘ 1[J,b—C)

where we have used (F.3). Putting (F.6) into (F.5) yields the expression

1

=71 w1y
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(F.3)

(F.4)

(F.5)

(F.6)

1
b tl'\—l tp—1 At —1At1—1 -1 -1 _ .
[ +uTla—p T A'AR A [ AX a+1 T AT pub—c (F.7)




B T T

Finally, using (F.7) and (F.6) in the x equation of (F.2) yields

x = I 'a+pg—Aly)
= I'la

_ 1 - 1
1 tr—1, _ ,tT—1At —14t1-1 -1 -
A e {b+u1‘ a— p'T A [AZT1AY [AZ] a+———1_”tr_1uAI‘ lub—c]}

p'Ttp
_ 1 ’
_l-\—lAt Az—l -1 -1 -1,
(AR AN | AS et e AT b
1 1
— (r I1putr—! -1
( + = pp'T a+T B p,tl"—lp.b

_ 1 _ _ 1
—(r14 ——M_r1 tI“1> At [AD-1AY T [AZ‘1a+ AT 1pb—
( 1-— [,l,t]:‘_lp rp [ ] _ll-" K c

1— ptT
1
— 2—1 -1
a+Tl u———l_utr_lu
—T AT [AZIAY T AR la
1 —1pt —1 11 -1 - _ -1
= (zt-zla'[azT'Al T AT a
1 —1 At —1 1171 -1
+1_Mtr_1“(l ZAf [AZTIAT TN A) T b
+X 1A [AZIAY] e (F.8)
Now write
My, Mys Mg
M™ = | My My M
Msy Msz Mss
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We can get the blocks in M1 by writing

X a
¢ [ = M7
Y Cc

My Mig Mg a
= My My My b |
M3z, Mss Msg c

and then matching the terms a, b and ¢ terms in (F.6), (F.7) and (F.8) with Mj; through Mss. This

yields the following form for the inverse of M:

M—l
1 - ZlAN(AN1AY)1ARE
= | guTHI-AYASTIANTIAST] g [n— T 1A ARTAY) AT 1]
(AZTAH T Ax-? L(An-1AYT AT 1y ~ (Az-1AN

where we have only written the lower triangular part of M1, and where
n=1-p'T ut. (F.9)

The last expression for M~! can be simplified somewhat by noticing that

L
n

1 -1

= 1 _ ”tl-\_llllr I‘Li by (F'g))
1

— -1 -1 tp—1
= (P ot et )“
= X',
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yielding

M1
¥l _ 5 1AYAZ AN TAT!
= | p[Z7-STANASTTANTIAS ] L - pfSTIANASTIAY)TIAR
(AZ1AY) Tt Ax- (AZ1AY) T AS 1y — (AZ1AH 7

Case 2: ¥ singular.

Let ac RV, beR, c € RM, We will solve for x € RV, g € R, v € RM the system of equations

x a
M) qg | =
v C

Using the definition (F.1) of M, the system of equations can be rewritten as

([ Ix ~pg +A'y =a
| —H'x  +q =
{ Ax =c.
r x =T"'(a+pg—Aly)
& { - (a+pug—A%)] +¢ =b (F.10)
| Al (a+pg—Aly)] =c.

Solving the third equation in (F.10) for v we get

v = (Ar'A) T [ATHa+ pg) — ¢
= ®[ArY(a+pg) —d], (F.11)

with

® = (AT 1AH)L.
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Note that @ exists since A has linearly independent rows. Plugging (F.11) into the second equation in

(F.10) becomes

b = —p'T™' (a+pg— A'®[AT Y (a+pg) —c]) +¢
= —p' 7' —T7'A'®AT Ya+ (1 — pf [ —T1A'GAT ] p) g — p'T LA D

= —u'Qa+ (1 - p,tQu) q— piT IA® 1,

with
Q=['-T'A'QAT!].

Therefore,

1 s L S S

g=cpQa+<b+ _pu'TA'dc, (F.12)

) 6 6

with
§=1-p'Qp,

with § # 0 from the assumption that M is invertible. Therefore, using (F.12) in (F.11) we get
v = (ATT'AY) ' [AI Y (a + pg) — c]
= (Ar"l'AH! {AI“I <a + p% (,ma+b + utI‘_lAt(AI‘_lAt)'lc>) - c]
= QAT! (I + %mﬁﬂ) a (F.13)
+loart b

]
+%<I> (AI‘_lp,p,tl"_lAtCI) — I) c.
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Also, using (F.12) and (F.13) in the first equation of (F.10) yields

x = I l(a+pg—A'y)
= I latTllpg—T 1A%y
= T'la
1, (1 1 1 oime1at
+I " p E/J,Qa+5b+3ur A'dc

1

5@ (AT ppTIA'® —T) ¢

1
—T1A! [<I>AI“1 (I + %mﬁn) a+ 3<I>AI“1ub+

= [r-l%r-lum —TA'®AT! (I + %upfﬂ)] a

6
+ [lr-luutr—lAtQ—r—lAtcb (%AF‘IthF_IAtQ - 1)] c

+ (11‘—1” - %F_lAti’AI‘—lp) b

6
= (I-l—%Qp,y.t) Qa (F.14)
1

(I + %Qmﬂ) I 1Atdc,

+

where the last equation follows by definition of Q.

Now write

My Mz Mg
M™=| My My Mo
M1 Mz Mss
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We can get the blocks in M~! by writing

X a
g | = M b
~ c
My M Mg a
= | Ma M Moy b |
Mz Mz Mss c

and then matching the terms a, b and ¢ terms in (F.13), (F.12) and (F.14) with M;; through Ms;3.

This yields the following general form for the inverse of M:
M—l
Q+ 1QpptQ
= % ”t Q

1
3 -
QAT (I + pp'3Q) AT 'p & (JAT 1pp'T-1A!D 1)

’

where we have only written the lower triangular part of M1, and where

o= (AT'AY) 7,
Q=["'-T'A'®AT ],

and

§=1—p'Qpu.

When ¥ is singular, notice that

pTlp=1 (F.15)
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(otherwise

b)) (F_l + F_lpp,tl"‘1>

1—ptl-1py
1

— ot S U ST SV o | . .

= (1" e ) (1" —+ 1= pﬂT—luF pup'l ) , by definition of the covariance,

= 1,

and we have a contradiction). Therefore, § simplifies to
§= W' T IA'QAT L.
Also, notice that

(Q + %Qupfﬁ) p = % (6Qp. + Quut [I‘“1 — F"lAtQAI‘"l] p,) , by definition of 2,

= L (8~ 6Qp+Qpp'T ") , by definition of 6

tp—1
Il p
—0
6‘ ”
= %Qu, by (F.15),

so we can rewrite M1 as

M1
Q+ 1QppiQ
= | pt(Q+ 3Qup'Q)
SAT! (I + ppiiQ)

= =

SAT 'y @ (AT lppT1A'® —T)
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Appendix G

Alternative Proof of Asymptotic
Normality of the Variance Portfolio

Estimator

We present an alternative, more direct proof of the asymptotic normality of the variance portfolio
estimator, a result we obtained in Chapter 4. Let R be a random return vector in RY with mean u
and covariance matrix X, which we assume is positive definite. Also, assume that R has a continuous

density. Let Ry, --,Rq be realizations of variable R. Suppose that we want to estimate the parameter
P
= ¥x
Xy = arg min x'¥x,

where A is an (M x N) matrix with linearly independent rows, and b is an M-dimensional vector.
Assume that b # 0 so the problem is non-trivial. Notice that xy is unique by strict convexity of x*¥x

and convexity of the set Ax = b. The variance portfolio estimator is
-~ - i Cal
= » 1
X = arg min x°2x, (G.1)

where =T (R; - R)(R; — R)!/T is the sample covariance matrix, and R =T R,/T is the

sample mean.
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Proposition 52 Suppose Assumption (A) from Chapter 4 holds. Let % be defined as in ( G.1 ). Then
VT(& - xv) ~ N(0,VQV)
where
Q = Cov[(R — p)[(R — p)’xv],

and where V =X 1—S 1A} AL-1AY)~TAZ"! is the upper-left (N x N) corner of M~ where

T Al
M=
A O

Proof. Notice that, along with a unique vector of Langrange multipliers Ay € RM | xy uniquely

solves the system of linear equations

Txy +AAy =0
{ v v (G.2)

Axy +0\y =bhb.
Let
Al
M= .
A0
M is invertible by uniqueness of xy and Ay in (G.2). ¥ is positive definite with probability one from

the assumption that R has a continuous density. Notice then that, along with a unique set of Langrange

multipliers X € RM with probability one % uniquely solves

% +A!A =0
AxXx +0\A =b,
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and let

. 5 At
M= .
A 0Oy
With probability one, M is invertible by uniqueness of % and X in (G.3).
Using (G.3), write

0 N R X —
Moo | Y e | T (G.4)
b Av A—Av |
_ EXV-I-AtAV 4 M )‘f — Xy .
b A-Av

' Since M is invertible with probability one, we can rewrite (G.4) (after multiplying both sides by /T

\/T X — Xy _ —ﬁM_l 2XV+AtAV _ 0
P b b

= —(M+o0p(1))! [ VIT(Exy + A7) } :

as

(G.5)
Onr

Notice that
VT(Sxy+AiAy) = VT[S — D)xy+Sxy+Aly)
= VT(E-T)x,

T
= VT (% Y [Ri-R)R:~R)' — BR - p)(R - u)t]) Xy
=1

T
= VT (% S IR: — 1) (Ri — )'xy — B(R — 1) (R — u)*xvl) (G.6)

i=1

+VT[(p — R)( — R)'xy.
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Notice that by the classical central limit theorem, the first term in (G.6) converges in distribution to a

normal vector with mean 0 and covariance
Q=E{R-p)[R - p)'[(R - u)'xv]’} - E[(R - p) R — p)xv]E[R - p)(R — p)'xv]".

The second term in (G.6) converges to zero in probability. So by Slutsky’s Lemma (see for example
van der Vaart, Lemma, 2.8) vT'(£xy+AAy) converges in distribution to a normal vector with mean 0

and covariance Q, and from (G.5)

VT | X7 | w,
A=Ay

where ~ stands for ”converges in distribution”, and where U has mean 0 and covariance

Qo
0 0

QU=M_‘1 |: M

The inverse of M is

Y S1(Iy + A'FAZ-1) —S-lAtF
—FAXS! F ’
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where F = —(AX'AY~L. Then

Qu

i

T(Iy + A'FATTY)
~FAL!
T(Iy + A'FATY)
—FAX!

F

_SIAMF |

F

Iy + A'FAYSH)Q 0

—-FAY1Q

The result then follows. m

0

_$1A'F | [Q 0

|

0 0

Ut vl oo 3l b et o

S1(Iy + A'FAZ-!) —Z-1AMF ]

—-FAX!
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[ NIy + A'TFAY QS (Iy + A'FARY) -2~ YIy + A'FATH)QE AR
] —-FAS1QEZ1(Iy + A'FAT D)

FAX IQZ7lA'F
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