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Abstract

This thesis consists of three essays that apply techniques of operations research to problems
in financial engineering. In particular, we study problems in portfolio optimization and
options pricing.

The first essay is motivated by the fact that derivative securities are equivalent to specific
dynamic trading strategies in complete markets. This suggests the possibility of constructing
buy-and-hold portfolios of options that mimic certain dynamic investment policies, e.g.,
asset-allocation rules. We explore this possibility by solving the following problem: given
an optimal dynamic investment policy, find a set of options at the start of the investment
horizon which will come closest to the optimal dynamic investment policy. We solve this
problem for several combinations of preferences, return dynamics, and optimality criteria,
and show that under certain conditions, a portfolio consisting of just a few european options
is an excellent substitute for considerably more complex dynamic investment policies.

In the second essay, we develop a method for pricing and exercising high-dimensional
American options. The approach is based on approximate dynamic programming using
nonlinear regression to approximate the value function. Using the approximate dynamic
programming solutions, we construct upper and lower bounds on the option prices. These
bounds can be evaluated by Monte Carlo simulation, and they are general enough to be
used in conjunction with other approximate methods for pricing American options. We
characterize the theoretical worst-case performance of the pricing bounds and examine how
they may be used for hedging and exercising the option. We also discuss the implications
for the design of the approximate pricing algorithm and illustrate its performance on a set
of sample problems where we price call options on the maximum and the geometric mean of
a collection of stocks.

The third essay explores the possibility of solving high-dimensional portfolio optimization
problems using approximate dynamic programming.. In particular, we employ approximate
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value iteration where the portfolio strategy at each time period is obtained using quadratic
approximations to the approximate value function. We then compare the resulting solution
* to the best heuristic strategies available. Though the approximate dynamic programming
solutions are often competitive, they are sometimes dominated by the best heuristic strat-
egy. On such occasions we conclude that inaccuracies in the quadratic approximations are
responsible for the poor performance. Finally, we compare our results to other recent work
in this area and suggest possible methods for improving these algorithms.

Thesis Supervisor: Andrew W. Lo
Title: Harris & Harris Group Professor of Finance
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Chapter 1

Asset Allocation and Derivatives

Abstract

The fact that derivative securities are equivalent to specific dynamic trading strategies in
complete markets suggests the possibility of constructing buy-and-hold portfolios of options
that mimic certain dynamic investment policies, e.g., asset-allocation rules. We explore this
possibility by solving the following problem: given an optimal dynamic investment policy,
find a set of options at the start of the investment horizon which will come closest to the
optimal dynamic investment policy. We solve this problem for several combinations of pref-
erences, return dynamics, and optimality criteria, and show that under certain conditions,
a portfolio consisting of just a few options is an excellent substitute for considerably more
complex dynamic investment policies.

Co-author: Andrew Lo
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1.1 Introduction

It is now well-known that under certain conditions, complex financial instruments such as
options and other derivative securities can be replicated by sophisticated dynamic trad-
ing strategies involving simpler securities such as stocks and bonds. This “delta-hedging”
strategy—for which Robert Merton and Myron Scholes shared the Nobel Memorial Prize in
Economics in 1998—is largely responsible for the multi-trillion-dollar derivatives industry
and is now part of the standard toolkit of every derivatives dealer in the world.

The essence of delta-hedging is the ability to actively manage a portfolio continuously
through time, and to do so in a “self-financing” manner, i.e., no cash inflows or outflows
after the initial investment, so that the portfolio’s value tracks the value of the derivative
security without error at each point in time, until the maturity date of the derivative. If
such a portfolio strategy were possible, then the cost of implementing it must equal the
price of the derivative, otherwise an arbitrage opportunity would exist. Black and Scholes
(1973) and Merton (1973) used this argument to deduce the celebrated Black-Scholes option-
pricing formula, but an even more significant outcome of their research was the insight that
there exists a correspondence between dynamic trading strategies over a period of time and
complex securities at a single point in time.

In this paper, we consider the reverse implications of this correspondence by constructing
an optimal portfolio of complex securities at a single point in time to mimic the properties
of a dynamic trading strategy over a period of time. Specifically, we focus on dynamic in-
vestment policies, i.e., asset-allocation rules, that arise from standard dynamic optimization
problems in which an investor maximizes the expected utility of his end-of-period wealth, and
we pose the following problem: given an investor’s optimal dynamic investment policy for
two assets, stocks and bonds, construct a “buy-and-hold” portfolio—a portfolio that involves
no trading once it is established—of stocks, bonds, and options at the start of the investment
horizon that will come closest to the optimal dynamic policy. By defining “closest” in three
distinct ways—expected utility, mean-squared error of terminal wealth, and utility-weighted
mean-squared error of terminal wealth—we propose three sets of numerical algorithms for
solving this problem in general, and characterize specific solutions for several sets of prefer-
ences (constant relative risk-aversion, constant absolute risk-aversion) and return dynamics
(geometric Brownian motion, mean-reverting processes).

The optimal buy-and-hold problem is an interesting one for several reasons. First, it is
widely acknowledged that the continuous-time framework in which most of modern finance
has been developed is an approximation to reality—it is currently impossible to trade continu-
ously, and even if it were possible, market frictions would render continuous trading infinitely
costly. Consequently, any practical implementation of continuous-time asset-allocation poli-
cies invariably requires some discretization in which the investor’s portfolio is rebalanced
only a finite number of times, typically at equally spaced time intervals, with the number
of intervals chosen so that the discrete asset-allocation policy “approximates” the optimal
continuous-time policy in some metric. However, Merton’s (1973) insight suggests that it
may be possible to approximate a continuous-time trading strategy in a different manner,
i.e., by including a few well-chosen options in the portfolio at the outset and trading con-
siderably less frequently. In particular, Merton (1995) observes that derivatives can be an
effective substitute for dynamic open-market operations of central banks seeking to engage
in interest-rate stabilization policies. Therefore, in the presence of transactions costs, deriva-




tive securities may be an efficient way to implement optimal dynamic investment policies.
Indeed, we find that under certain conditions, a buy-and-hold portfolio consisting of just
a few options is an excellent substitute for considerably more complex dynamic investment
policies.

Second, the approximation errors between the optimal dynamic policy and the buy-and-
hold policy will reveal the importance of dynamic trading, the “completeness” of financial
markets, and the ability of investors to achieve certain financial goals in a cost-effective
manner.? In particular, the conditions that guarantee dynamic completeness are nontrivial
restrictions on market structure and price dynamics (see, for example, Duffie and Huang,
1985), hence there are situations in which exact replication is impossible. These instances of
market incompleteness are often attributable to institutional rigidities and market frictions—
transactions costs, periodic market closures, and discreteness in trading opportunities and
prices—and while the pricing of derivative securities can still be accomplished in some cases
via equilibrium arguments,® this still leaves open the question of how expensive it is to
achieve certain financial objectives, or how close one can come to those objectives for a given
budget?

Finally, the optimal buy-and-hold portfolio can be used to develop a measure of the risks
associated with the corresponding dynamic investment policy that the buy-and-hold port-
folio is designed to replicate. While there is general agreement in the financial community
regarding the proper measurement of risk in a static context—the market beta from the Cap-
ital Asset Pricing Model—there is no consensus regarding the proper measurement of risk
for dynamic investment strategies. Market betas are notoriously unreliable in a multi-period
setting,? and other measures such as'the Sharpe ratio, the Sortino ratio, and maximum draw-
down have been used to capture different risk exposures of dynamic investment strategies.
By developing a correspondence between a dynamic investment strategy and a buy-and-
hold portfolio, it may be possible to construct a more comprehensive set of risk measures
for the dynamic strategy through the characteristics of the buy-and-hold portfolio and the
approximation error.

In Section 1.2 we provide a brief review of the strands of the asset-allocation and deriva-
tives pricing literature that are most relevant to our problem. We describe the buy-and-hold
alternative to the standard asset-allocation problem in Section 1.3 and propose three meth-
ods for solving it: maximization of expected utility, minimization of mean-squared error, and

1Taxes can be viewed as another type of transactions cost, and the optimal buy-and-hold portfolio offers
several additional advantages over the optimal dynamic investment policy for taxable investors.

2Pinancial markets are said to be “complete” (in the Arrow-Debreu sense) if it is possible to construct a
portfolio of securities at a point in time which guarantees a specific payoff in a specific state of nature at some
future date. The notion of “dynamic completeness” is the natural extension of this idea to dynamic trading
strategies. See Harrison and Kreps (1979) and Duffie and Huang (1985) for a more detailed discussion.

SExamples of continuous-time incomplete-markets models include Breeden (1979), Duffie and Shafer
(1985, 1986), Follmer and Sonderman (1986), Duffie (1987), and He and Pearson (1991). Examples of
discrete-time incomplete-markets models include Scheinkman and Weiss (1986), Aiyagari and Gertler (1991),
Heaton and Lucas (1992, 1996), Weil (1992), Telmer (1993), Aiyagari (1994), Lucas (1994), and He and
Modest (1995). Other aspects of pricing and hedging in incomplete markets have been considered by Magill
and Quinzii (1996), Kallsen (1999), Kramkov and Schachermeyer (1999), Bertsimas, Kogan, and Lo (2000),
Goll and Rueschendorf (2000), and Schael (2000).

4Gee, for example, the short-put strategy described in Lo (2000).
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a hybrid of the two (minimization of utility-weighted mean-squared error). While the first
approach is the most direct, it is also the most computationally intensive. The latter two
approaches are simpler to implement, however, they do not maximize expected utility and
as a result, the portfolios that they generate may be suboptimal. These issues are addressed
in more detall in Sections 1.4 and 1.5 where we implement the three methods for geometric
Brownian motion, the Ornstein-Uhlenbeck process, and a bivariate linear diffusion process
with a stochastic mean-reverting drift. Extensions, qualifications, and other aspects of the
optimal buy-and-hold portfolio are discussed in Section 1.6, and we conclude in Section 1.7.

1.2 Literature Review

The literature on asset allocation is vast and addresses a broad set of issues, many that
are beyond the scope of this paper’s main focus.> Most studies that consider derivatives in
the context of asset allocation use option-pricing methods to gauge the economic value of
market-timing skills, e.g., Merton (1981), Henriksson and Merton (1981), and Evnine and
Henriksson (1987). Carr, Jin and Madan (2000) solve the asset-allocation problem in an
economy where derivatives are required to complete the market. Carr and Madan (2000)
consider a single-period model where agents are permitted to trade the stock, bond and
European options with a continuum of strikes. Because of the inability to trade dynamically,
options constitute a new asset class and the impact of beliefs and preferences on the agent’s
positions in the three asset classes is studied. In a general equilibrium framework, they derive
conditions for mutual-fund separation where some of the separating funds are composed of
derivative securities. None of these papers explores the possibility of substituting a simple
buy-and-hold portfolio for a dynamic investment policy.

Three other strands of the literature are relevant to our paper: Merton’s (1995) functional
approach to understanding the dynamics of financial innovation,® the literature on dynamic
portfolio choice with transactions costs, and the literature on option replication.

Among the many examples contained in Merton (1995) illustrating the importance of
function in determining institutional structure is the example of the German government’s
issuance in 1990 of ten-year Schuldschein bonds with put-option provisions. Merton (1995)
observes that the put provisions have the same effect as an interest-rate stabilization policy
in which the government repurchases bonds when bond prices fall and sells bonds when
bond prices rise. More importantly, Merton (1995) writes that “... the put bonds function
as the equivalent of a dynamic, ‘open market’, trading operation without any need for actual
transactions”. This automatic stabilization policy is a “proof of concept” for the possibility of
substituting a buy-and-hold portfolio for a particular dynamic investment strategy, and the
optimal buy-and-hold portfolio of Section 1.3 may be viewed as a generalization of Merton’s
~ automatic stabilization policy to the asset-allocation problem.

Magill and Constantinides (1976) were among the first to point out that in the presence
of transactions costs, trading occurs only at discrete points in time. More recent studies by

®See Sharpe (1987), Arnott and Fabozzi (1992), and Bodie, Kane and Marcus (1999) for more detailed
expositions of asset allocation.
%See, also, Bodie and Merton (1995) and Merton (1997).
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Davis and Norman (1990), Aiyagari and Gertler (1991), Heaton and Lucas (1992, 1996), and
He and Modest (1995) have contributed to the growing consensus that trading costs have a
significant impact on investment performance and, therefore, investor behavior. Despite the
recent popularity of internet-based day-trading, it is now widely accepted that buy-and-hold
strategies such as indexation are difficult to beat—transactions costs and management fees
can quickly dissipate the value-added of many dynamic asset-allocation strategies.

The option-replication literature is relevant to our paper primarily because of the cor-
respondence between a complex security and a dynamic trading strategy in simpler secu-
rities, an insight which gave rise to this literature. The classic references are Black and
Scholes (1973), Merton (1973), Cox and Ross (1976), Harrison and Kreps (1979), Duffie
and Huang (1985), and Huang (1985a,b). More recently, several studies have considered the
option-replication problem directly, in some cases using mean-squared error as the objective
function to be minimized,” and in other cases with transactions costs.® In the latter set of
studies, the existence of transactions costs induces discrete trading intervals, and the optimal
replication problem is solved for some special cases, e.g., call and put options on stocks with
geometric Brownian motion or constant-elasticity-of-variance price dynamics, or for more
general derivative securities under vector-Markov price processes.

We take these somewhat disparate literatures as our starting point. Merton’s (1995)
automatic stabilization policy illustrates the possibility of substituting a static buy-and-hold
portfolio for a specific dynamic trading strategy, i.e., an interest-rate stabilization policy. The
fact that trading is costly implies that continuous asset-allocation is not feasible, and that
alternatives to frequent trading are important to investors. The technology for replicating
options is clearly well established, and a natural generalization of that technology is to
construct portfolios of options that replicate more general dynamic trading strategies. We
begin developing this generalization in the next section.

1.3 The Optimal Buy-and-Hold Portfolio

The asset-allocation problem has become one of the classic problems of modern finance,
thanks to Samuelson’s (1969) and Merton’s (1969) pioneering studies over three decades
ago. The simplest formulation—one without intermediate consumption—consists of an in-
vestor’s objective to maximize the expected utility E[{U(Wr)] of end-of-period wealth Wr
by allocating his wealth W; between two assets, a risky security (the “stock”) and a riskless
security (the “bond”), over some investment horizon [0,77]. The bond is assumed to yield a
riskless instantaneous return of 7 dt and with an initial market price of $1, the bond price at
any date ¢ is simply exp(rt). The stock price is denoted by P; and is typically assumed to

7See, for example, Duffie and Jackson (1990), Schweizer (1992, 1995, 1996), Schél (1994), Delbaen and
Schachermeyer (1996), and Bertsimas, Kogan, and Lo (2000a).

8See Leland (1985), Hodges and Neuberger (1989), Bensaid, et al. (1992), Boyle and Vorst (1992), Davis,
Panas, and Zariphopoulou (1993), Edirisinghe, Naik, and Uppal (1993), Henrotte (1993), Avellaneda and
Paras (1994), Neuberger (1994), Whalley and Wilmott (1994), Grannan and Swindle (1996), and Toft (1996).
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satisfy an It stochastic differential equation:
dP, = u(P,t)P.dt + o(P,t) P,dB, (1.3.1)

where B, is standard Brownian motion and p(P,,t) and o(P,,t) satisfy certain regularity
conditions that ensure the existence of a solution to (1.3.1). The standard asset-allocation
problem is then:

l}/Ia,;( E[U(Wr)] (1.3.2)
subject to
AW, = [r+w(p—r)W,dt + wW,odB, (1.3.3)

where w; is the fraction of the investor’s portfolio invested in the stock at time ¢ and (1.3.3)
is the budget constraint that wealth T, must satisfy at all times ¢ € [0, T).°

Denote by {w;} the optimal dynamic investment policy, i.e., the solution to (1.3.2)-
(1.3.3), and let W} denote the end-of-period wealth generated by the optimal policy. The
question we wish to answer in this paper is: how close can we come to this optimal policy
with a buy-and-hold portfolio of stocks, bonds, and options? We measure closeness in three
ways: a direct approach in which we maximize the expected utility of the buy-and-hold
portfolio, and two indirect approaches in which we minimize the mean-squared error and
weighted mean-squared error between W and the end-of-period wealth of the buy-and-hold
portfolio. These three approaches are described in Sections 1.3.1-1.3.3, respectively.

1.3.1 Maximizing Expected Utility

Our reformulation of the standard asset-allocation problem (1.3.2)~(1.3.3) contains only two
modifications: (1) we allow the investor to include up to n European call options in his
portfolio at date 0 which expire at date T;'° and (2) we do not allow the investor to trade
after setting up his initial portfolio of stocks, bonds and options. Specifically, denote by D;
the date-T" payoff of a European call option with strike price equal to k;, hence:

D = (Pr—k)*. (1.3.4)

See Merton (1992, Chapter 5) for details.
10Without loss of generality, we focus exclusively on call options for expositional simplicity. Parallel results
for put options can be easily derived via put-call parity (see, for example, Cox and Rubinstein (1985).
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Then the “buy-and-hold” asset-allocation problem for the investor is given by:

Max E[U(Vzy)]  subject to (1.3.5)

{G,b,Ci,ki}
Vi = aexp(rT) + bPr + aaD1 + Dy + -+ + Dy (1.3.6)
Wo = exp(—rT)E?[V7] (1.3.7)
where a and b denote the investor’s position in bonds and stock, and ¢, ..., ¢, the number
of options with strike prices ki, ..., kn, respectively. Note that we use Vz instead of Wr to

denote the investor’s end-of-period wealth to emphasize the distinction between this case
and the standard asset-allocation problem in which stocks and bonds are the only assets
considered and intermediate trading is allowed.

The budget constraint is given by (1.3.7), where E?[-] is the conditional expectation
operator under the equivalent martingale measure @.'' This constraint is highly nonlinear
in the option strikes {k;}, creating significant computational challenges for any optimizer.
Moreover, for certain utility functions, it is necessary to impose solvency constraints to avoid
bankruptcy, and such constraints add to the computational complexity of the problem.

For these reasons, our approach for solving (1.3.5)—(1.3.7) consists of two steps. In the
first step, we assume that the strike prices {k;} are fixed, in which case (1.3.5)—(1.3.7) reduces
to maximizing a concave objective function subject to linear constraints. Such a problem
has a unique global optimum that is generally quite easy to find. This is done by discretizing
the distribution of Pr and solving the Karush-Kuhn-Tucker conditions which, in this case,
are sufficient for an optimal solution.'> We will refer to this problem—where the strikes {;}
are fixed—as the “sub-problem”.

The second step involves determining the best set of strikes. We propose to solve this
problem by specifying in advance a large number, N > n, of possible strikes where the
N strikes are chosen to be representative of the distribution of Pr. We then solve the sub-
problem for each of the (¥) possible combinations of options and select the best combination.

In selecting the set of N strikes, we must ensure that their range spans a significant
portion of the support of Pr. Therefore, the distribution of Pr must be taken into account
in specifying the strikes. Given a distribution for Pr, we select an interval of its support and
choose N points—spaced either evenly (for simplicity) or according to the probability mass
of the distribution of Py (for efficiency)—so that approximately 4 to 6 standard deviations
of Py are contained within the interval.

In solving each sub-problem, we discretize the distribution of Pr. This yields a straight-
forward nonlinear optimization problem with a concave objective function and linear con-
straints, which can be solved relatively quickly.

For concreteness, we provide a detailed analysis of this approach in Section 1.4 for two

U Note that specifying Q yields pricing formulas for all the options contained in our optimal buy-and-hold.
portfolio since exp(—rT)E?[D;] is the date-0 price of option i. Therefore, option-pricing formulas are implicit
in (1.3.7). For example, it is easy to verify that under geometric Brownian motion, exp(—rT)E?[D;] reduces
to the celebrated Black-Scholes formula.

12Gee, for example, Bertsekas (1999).
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specific utility functions, constant-relative-risk-aversion (CRRA) and constant-absolute-risk-
aversion (CARA) utility:

U(Vy) = VTTW (CRRA) (1.3.8)

U(Vy) = —M (CARA) . (1.3.9)

One subtlety arises for CRRA utility: the function is not defined for negative wealth. In
such cases, the following n+2 solvency constraints must be imposed along with the budget
constraint to ensure non-negative wealth:

o
INA

aexp(rT)

o
IN

aexp(rT) + bk

o
IA

aexp(rT) + (b+c1)kys — ciky

(1.3.10)

o
IA

aexp(rT) + (b+ea+-+cn)kn — (kg + - + Cn—1kn_1)

o
IA

b+ e+ -+ e

)
IA

ki < ky < o000k

1.3.2 Minimizing Mean-Squared Error

In situations where the computational demands of the buy-and-hold asset-allocation problem
of Section 1.3.1 is too great, a less demanding alternative is to use mean-squared error as
the metric for measuring the closeness of the end-of-period wealth V4 of the buy-and-hold
portfolio of stocks, bonds, and options with the end-of-period wealth W7 of the optimal
portfolio. In addition, for dynamic investment policies that are not derived from maximiza-
tion of expected utility, e.g., dollar-cost averaging, a mean-squared-error objective function
may be appropriate. In this case, the buy-and-hold portfolio problem becomes:

Min E[(W; —Vz)?]  subject to (1.3.11)

{a,b,ci,k;}
Vr = aexp(rT) + bPr + oDy + Dy + -+ + ¢,D, (1.3.12)
Wo = exp(—rT)E®[Vy] (1.3.13)

15
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If W depends only on the terminal stock price Pr and not on any of its path {P;}—as
is the case when {P,} follows a geometric Brownian motion and Wy is the end-of-period
wealth from an optimization of an investor’s expected utility—it can be shown that Vz can
be made arbitrarily close to W in mean-square as the number of options n in the buy-
and-hold portfolio increases without bound. If we do not impose any additional constraints
beyond the budget constraint (such as the solvency constraints (1.3.10) of Section 1.3.1), the
corresponding sub-problems for (1.3.11)—(1.3.13) can be solved very quickly, and the first
order conditions, which are necessary and sufficient, merely amount to solving a series of
linear equations. '

Specifically, the sub-problem associated with (1.3.11)—(1.3.13) consists of selecting port-
folio weights for stocks, bonds, and options to minimize the mean-squared error between Wr.
and Vi, holding fixed the strike prices {k;} of the n options available to the investor. It is
clear from (1.3.11)—(1.3.13) that for fixed strike prices, the objective function is convex so
the first-order conditions are sufficient to characterize an optimal solution. These conditions
may be written as

exp(rT) E[S]  E[D] .-+ E[Dn] a E[Wr]
exp(rT)E[Sy] E[S%] E[D1S7] --- E[DnSr] | | b E [W2Pr]
exp(rT)E[D:] E[SrD:] E|[D}] -«+ E[DpD1] a | | EWzDi]
exp(rT)E[Dy] E[SrDs] E[D1Ds] --- E[D,Dy 2 E [Wi1Ds)
exp(rT)E[D,] E[SrD,] E[DiD,] --- E[D2] Cn E [W;D,]
(1.3.14)
or, in matrix notation:
 n = e. (1.3.15)
Inverting (1.3.15) to compute
7 = X le (1.3.16)
and then substituting# =[a b & --- &, | into the objective function (1.3.11) yields the

optimal value for a given sub-problem. Repeating this procedure for all (]X ) sub-problems
and selecting the best of these solutions gives an approximate solution to (1.3.11)—(1.3.13).

However, for some utility functions, it is necessary to impose the solvency constraints
(1.3.10), in which case the solution to the sub-problem cannot be simplified according to
(1.3.16).
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1.3.3 Minimizing Weighted Mean-Squared Error

A third alternative to the two approaches outlined in Sections 1.3.1 and 1.3.2 is to maximize
expected utility but where we substitute an approximation for the utility function. This
yields a weighted mean-squared-error objective function where the weighting function is the
second derivative of the utility function evaluated at the optimal end-of-period wealth Wiy.
This is a hybrid of the two approaches proposed above that provides important economic
motivation for mean-squared error, and approximates the direct approach of maximizing
expected utility described in Section 1.3.1.

Specifically, consider the sub-problem of Section 1.3.1 in which we maximize expected
utility holding fixed the strike prices {k;}:

Max E[U(VT)]

{avbici}

subject to the budget (1.3.7) and solvency constraints (1.3.10). Take a Taylor expansion of
U(W; £ MWz — V) about the global optimal WW;:

EUWr £ AWz —Vp))] ~ E[UW7)] £ XE[(W7 —Vo)U' (Wz)] +

)\;E[(W; — Vp)2U" (W3] . (1.3.17)

If Vr were “budget feasible”, by which we mean that exp(—rT)E®[Vy] = Wy, and Vi were
sufficiently close to W7, then this implies that (W3 — V7) is a feasible direction of travel
from Wy. For sufficiently small ), (1.3.17) implies that

E[(W; — Vo)U'(W3)] = 0

under certain regularity conditions. Therefore, maximizing E[U(V7)] should be equivalent
to maximizing

SEI(W7 — Vi) U"(W7)] (1.3.18)

for Vr sufficiently close to Wy. This gives rise to a third approach to the buy-and-hold
asset-allocation problem, one that involves approximating W} in mean-square rather than
explicitly maximizing expected utility:

Min E[—U"(W3)(Wz — Vp)?] ' (1.3.19)

{aab:ciaki}
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subject to

Vi = aexp(rT) + bPr + 1Dy + 2Dy + -+ + Dy (1.3.20)
Wy = exp(—rT)E?[Vy] . (1.3.21)

For CRRA utility, we still need to impose solvency constraints, but even with such con-
straints we can solve the sub-problem much more quickly in the weighted mean-squared
error case than in the maximization of expected utility proposed in Section 1.3.1. Indeed,
the computational challenges for the weighted mean-squared error approach are comparable
to the mean-squared error approach of Section 1.3.2.

A potential difficulty with the utility-weighted mean-squared-error approach is that some
of the expectations in (1.3.19) may not be defined. Even when the expectations are defined,
it is possible that some of them are very difficult to compute when they are ill-conditioned,
ie., “close” to being undefined. In such cases the approach either will not work or will be
very difficult to implement. This typically occurs for low values of relative risk-aversion.
Fortunately, it is precisely for low values of risk aversion that a direct maximization of
expected utility works best. The reason is that the discretization of the support of Pr leads
to approximation errors that can be extreme for high values of risk aversion. In particular,
the discretized distribution has finite support, hence the optimal buy-and-hold strategy
obtained with this distribution may perform poorly outside this finite support. The power-
law specification of CRRA preferences will magnify small approximation errors of this type
when the risk-aversion parameter is large.

Therefore, the maximization of expected utility and the minimization of utility-weighted
mean-squared-error complement each other. As we will see in Section 1.5, when both
approaches work well, they result in almost identical portfolios and certainty equivalents.
Therefore, in the numerical examples of Section 1.5, we will maximize expected utility for
low values of relative risk-aversion and minimize utility-weighted mean-squared-error for
higher values when computing the utility-optimal buy-and-hold portfolios.

1.4 Three Leading Cases

To derive the optimal buy-and-hold portfolios according to the three criteria of Section 1.3,
we require a few auxiliary results that depend on the specific utility function of the investor
and the stochastic process for stock prices. In this section, we derive these results for CRRA
and CARA utility under three leading cases for the stock-price process: geometric Brownian
motion (Section 1.4.1), the trending Ornstein-Uhlenbeck process (Section 1.4.2), a bivariate
linear diffusion process with a stochastic mean-reverting drift (Section 1.4.3).

In the case of geometric Brownian motion, the required results are straightforward—we
are able to characterize W explicitly for both CRRA and CARA preferences, and all three
approaches to the optimal buy-and-hold portfolio can be readily implemented. However, for
the other two stochastic processes, the optimal dynamic asset-allocation strategies are path
dependent, which implies that no buy-and-hold portfolio of stocks, bonds, and European call
options can ever achieve the same certainty equivalents as the optimal dynamic strategies.
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In such situations, we propose an alternative to Wy as a target for the optimal buy-and-hold
portfolio, and derive this alternative explicitly in Sections 1.4.2 and 1.4.3.

1.4.1 Geometric Brownian Motion

In the case of geometric Brownian motion, the stock price P, satisfies the following stochastic
differential equation (SDE):

dP, = uP,dt + oP,dB, (1.4.1)

where B; is a standard Brownian Motion. Recall that the standard asset-allocation problem
in the absence of derivatives is given by (1.3.2)—(1.3.3):

Max E[U (WTr)]

{we}

subject to the budget equation
th = [T + wt(,u, - T')]Wt dt + thtO' dBt

where w; is the fraction of the investor’s portfolio invested in the stock at time ¢ (see Mer-
ton, 1969, 1971 for a more detailed exposition). For concreteness, we consider two specific
utility functions: constant absolute risk-aversion (CARA) and constant relative risk-aversion
(CRRA) utility. These are well-known utility functions for which we have closed-form solu-
tions to the standard asset-allocation problem. In particular, for CRRA utility, we have:

oy
UWy) = % (1.4.2)
ET(2y-1) §Br )

Wi = Wyexp <’rT— + 1.4.3
T 0 21—7)?  (1-9) (143

* H—=r
wy = A=7)0? (1.4.4)

and for CARA utility,
—yW.
UWr) = — ﬁ;—ﬂ (1.4.5)
2 _

W = YWo exp(rT) + €T + £Br ’ ¢ = =T (1.4.6)

y o
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* exp(—T(T—t))f
w = po 7 : (1.4.7)

Given these closed-form solutions, we can make explicit comparisons of the optimal buy-
and-hold portfolio of stocks, bonds and options with the standard optimal asset-allocation
strategies for the two utility functions.

1.4.2 The Ornstein-Uhlenbeck Process

If stock prices are predictable to some degree, the asset-allocation problem becomes con-
siderably more challenging since the optimal investment strategy is path-dependent. This
implies that W3 is also path-dependent and extremely difficult to compute explicitly, hence
the mean-squared-error approaches of Sections 1.3.2 and 1.3.3 are not feasible. However,
in certain cases, it is possible to derive an upper bound on the certainty equivalent of the
optimal buy-and-hold portfolio of stocks, bonds and options, which provides some indication
of the benefits of options in replicating dynamic investment strategies. We present such
an upper bound in this section for the case where log-prices X; = log P; follow a trending
Ornstein-Uhlenbeck process:!3

dX, = [=6(X;—pt—Xo)+pldt +0dB, , §>0. (1.4.8)

which has the solution:
t
X = Xo + pt + aexp(—&t)/ exp(ds) dB; . (1.4.9)
0

The solution to the standard asset-allocation problem (1.3.2)—(1.3.3) in this case is charac-
terized by the following Hamilton-Jacobi-Bellman equation:

2
0 = MaX{Jt + WiJw <T+wt[—5(Xt—Ht—Xo)+N+%—T]> +
Ix(—6(Xy — pt — Xo) + p)+

1 1
+ §wt202Wt2JWW + §U2JXX + azthtJXW} (1.4.10)

13Gee Lo and Wang (1995) for a more detailed exposition of its properties. We also derive results for the
standard Ornstein-Uhlenbeck process (without trend), which are included in the Appendix.
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where

J (W, X,t) = MaxE,[U(Wr)] . (1.4.1'1)

The solutions to (1.4.10) for CRRA and CARA utility are given in the Appendix.

Because Wy is path-dependent in this case, even if we allow the number of options n in the
buy-and-hold portfolio to increase without bound, the certainty equivalent of the buy-and-
hold portfolio will never approach the certainty equivalent Wr. However, an upper bound on
the certainty equivalent of any buy-and-hold portfolio can be derived by allowing the investor
to purchase an unlimited number of options at all possible strike prices. The certainty
equivalent of the end-of-period wealth in this case, which we denote by V;°, is clearly an
upper bound for any buy-and-hold portfolio containing a finite number n of options.

To derive VF°, we require the conditional state-price density of the terminal stock price
Pr, defined as:

where 77 is the unconditional state-price density of the terminal stock price.'* The economic
interpretation of 74 is the price per unit probability of 1 unit of wealth at time T in the
event that Pr = b. By definition, 7. is given by:

E [ﬂ-Tl{PT=b}]

7. = Elrp|Pr=15
T [rr|Pr = 0] E [Lipr]

(1.4.13)

The numerator of (1.4.13) is computed by applying Girsanov’s Theorem and noting that the
Radon-Nikodym derivative d@}/dF of the equivalent martingale measure Q with respect to
the true probability measure F is equal to exp(rT)mp. Under @Q, the stock price at time T
is given by

2 —_———
PP = exp(Zr) = Pyexp ((7‘ — %) T+ UBT) . (1.4.14)

where é} is a standard Brownian motion under Q. Under the true probability measure, F,

!*See Duffie (1996) for a more detailed exposition of state-price densities.
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recall that the stock price at time 7T is given by

T
Pr = exp(Xr) = exp <X0—|—,uT+ae—5T/ e‘ssst). (1.4.15)
0

With this in mind, we can write (1.4.13) as

exp(—1T) £, (b)
f Pr (b)

7 = (1.4.16)

where fp, and ng denote the log-normal density functions of Pr under F' and () respectively.

Simplifying (1.4.16) yields:
logh—p,\*  [logh— g \?
(M) _ (Og_#_) D (1.417)
0, Oz

z 1
= (Z—) exp (—TT— 7

where

e = Xo+pT , 02 = ;—Z(l—exp(—QéT))
| (1.4.18)

2

W, = Xo—l-(r—%)T , 02 = T .

Using 75 as the state-price density process, we can derive the optimal buy-and-hold portfolio
in which options of all possible strikes may be included. Using the approach proposed in
Cox and Huang (1989) for the case of CRRA utility, the problem reduces to:

Y
max E [(—V;i] subject to  E [mh.Vy| = Wo (1.4.19)

which has the solution:

Wo () 7

B[ (nh)™]

Ve = (1.4.20)
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where

B0 =2 (%) e (;T—Tz * I az])

and

2 0503 (v — 1)

— . - (1.4.21
N T 42y
This, in turn, implies:
o — w02 _ Wi e\am]

CE(V®) = (yU™)7

where CE(-) denotes the certainty equivalent operator.

The case of CARA utility can also be handled in a similar manner.

Having solved for the optimal buy-and-hold portfolio and its certainty equivalent in the
infinite options case, we can now compare this upper bound to the optimal buy-and-hold
portfolios with a finite number of options. We use the same method as in the geometric
Brownian motion case (see Section 1.4.1), hence we omit the details.

1.4.3 A Bivariate Linear Diffusion Process

We now turn to a third set of price dynamics for P,, one in which there are two sources
of uncertainty, implying that markets are incomplete. Nevertheless, we are still able to
compute optimal buy-and-hold portfolios of stocks, bonds and options, and can also derive
the upper bound to the buy-and-hold certainty equivalents as in Section 1.4.2. Specifically,
let X; = log P, satisfy the following bivariate linear diffusion process:

2

dXt = (,U/t — %) dt + UldBlt (1422)

diuy = k(0 — py)dt + 09dBoy (1.4.23)

where By; and By, are two standard Brownian motions with instantaneous correlation coef-
ficient p. Kim and Omberg (1996, 1998) derive the optimal value function for the standard

asset-allocation problem with these price dynamics for an investor with HARA utility. De-
spite the fact that markets are incomplete, it is clear that options can be replicated using
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trading strategies in only the stock and the bond,'> hence options can be priced by arbitrage
in this case. Therefore, we can perform the same analysis for these dynamics as we did for
geometric Brownian motion in Section 1.4.1 and the Ornstein-Uhlenbeck process in Section
1.4.2.

To derive V& for the bivariate diffusion (1.4.22)—(1.4.23), we perform a similar set of
calculations as in Section 1.4.2. We begin by solving (1.4.22) and observing that Pr is
lognormally distributed with parameters:

2

0 — ]
px = Xo+ (90— %)T + a (exp(—kT) — 1) ‘ (1.4.24)
o2 = 0T + 20,09p [T—i— exp(—kT) 1] N
K K K
2
o3 3 exp(—2xT)
e [T/c 5+ 2exp(—kT) — — 5| (1.4.25)

The conditional state-price density then follows in the same manner as (1.4.17):

. logh — p, logh — g \ >
+ = (e[t ()])

where
o2
. = Xo+ (T—?)T , Uf = ¢’T (1.4.27)

With the conditional state-price density in hand, V° and its certainty equivalent are readily
derived.

1.5 Numerical Results

To illustrate the practical relevance of our optimal buy-and-hold portfolio, we provide numer-
ical results in this section for CRRA preferences under each of the three stochastic processes
of Section 1.4 using the nonlinear programming solver LOQO and the algebraic mathemati-
cal programming language AMPL.'® Before turning to those results, we begin with a simple

5For further discussion, see Lo and Wang (1995).
16 AMPL is described in Fourer, Gay, and Kernighan (1999). Tnformation on LOQO can be obtained from
http:/ /www.princeton.edu/ logo/.
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example to motivate our analysis. Let

UWr) = %5 | 5 = —4 | W, = $100,000 , T = 20 years
Py = $50 , r = 05 , pu = .15 Lo o= .20

which implies a relative risk-aversion coefficient of 5, a portfolio weight wy of 50% for the
stock in the optimal dynamic asset-allocation policy (1.4.4), and a certainty equivalent of
$448,169 for W. Now consider the problem of constructing an optimal buy-and-hold port-
folio containing stocks, bonds, and a maximum of 2 options, assuming that there are only 4
possible options to choose from, with the following strikes:

ky =$176 , ky=8976 , k3 =9$1,775 , k,=$2,575.
For the approach outlined in Section 1.3.1, we maximize the expected utility:

{ 1\b/Ia)’cc } E[U(Vr)]  subject to

Vi = aexp(rT) + bPr + 1Dy + cD,
Wy = exp(—rT)E®[Vz]

and the corresponding solvency constraints. We discretize the support of Pr using a grid of
4,000 points, chosen in such a way that the weight associated with each point in the objective
function is equal to 1/4000. A direct optimization then yields the following certainty equiv-
alents for sub-problems of the optimal buy-and-hold problem for the various combinations
of strikes:

Options Used: land2 1and3 1land4 2and3 2and4 3and4

(1.5.1)
CE(V3): $447,307 $447,137 $447,067 $437,971 $437,850 $436,506

From (1.5.1), it is apparent that the optimal buy-and-hold strategy is to use options with
strikes k; = 176 and k; = 976, and the optimal portfolio positions are:

- a"=$36,097 , b*=1521 , ¢ =-907 , & =—353. (1.5.2)
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With only two options, the optimal buy-and-hold portfolio yields an estimated certainty
equivalent of $447,307,'7 which is 99.8% of the certainty equivalent of the optimal dynamic
asset-allocation strategy, a strategy that requires continuous trading over a 20-year period!

Note that the portfolio weights implied by the positions (1.5.2) are 36.1% in bonds, 76.1%
in stocks, and —12.2% in options. The optimal buy-and-hold portfolio consists of shorting
options 1 and 2, and investing the proceeds—approximately $12,100—in stocks and bonds
along with the initial wealth of $100,000.

Alternatively, we can minimize the mean-squared error between Vr and Wy according to
Section 1.3.2:

{ Min ‘}E[(Wr_,’i — V)% subject to
Ve = aexp(rT) + bPr + a1Dy + Do
Wo = exp(—rT)E?[Vy]

and also subject to the solvency constraints (1.3.10). The root-mean-squared-error (RMSE)
(as a percentage of E[W;]) of each of the sub-problems is given by:

Options Used: 1and2 land3 land4 2and3 2and4 3and4
RMSE (%): 627 473 569 647 575 995

Under the mean-squared-error criterion, the optimal buy-and-hold portfolio consists of a
different set of options than under the expected-utility criterion—in this case, options 1 and
3—and the optimal positions are:

at =$20928 , b*=10980 , ¢f=-1,508 , c5=—291. (1.5.3)

With such a buy-and-hold portfolio, the root-mean-squared-error is 4.73% of the expected
value of W, and the certainty equivalent of this portfolio is $436,034, which is 97.3% of the
certainty equivalent of the optimal dynamic asset-allocation strategy. Despite the fact that
(1.5.3) is only an indirect method of approximating W7, the certainty equivalent is almost
identical to that of the optimal dynamic strategy. The portfolio weights corresponding to
(1.5.3) are 20.9% in bonds, 99.0% in stocks, and —19.9% in options.

Finally, if we minimize the weighted mean-squared-error according to Section 1.3.3,

Min B[ U"(WE)(W; = Vi)'

17The estimation error is due to the discretization of the distribution of Pr. Once we obtain the strategy
(1.5.2), we can compute the certainty equivalent exactly, and in this case, it is $446,034, which is 99.5% of
the certainty equivalent of the optimal dynamic asset-allocation strategy.
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subject

Vi = aexp(rT) + bPr + 1 D1 + 3D,
Wo = exp(—rT)E®[Vy]

and the solvency constraints (1.3.10), we obtain the following weighted RMSE’s for the
various sub-problems:

Options Used: land2 land3 land4 2and3 2and4 3andA4
Weighted RMSE  0.738 0.764 0.777 1.830 1.839 2.013

which yields an optimal buy-and-hold portfolio containing options 1 and 2 and positions:
a*=$35321 , b*=1,523 , ¢;=-930 , ¢, =-349. (1.5.4)

Although the weighted RMSE of the optimal buy-and-hold portfolio, 0.738, is somewhat dif-
ficult to interpret, the certainty of equivalent of the portfolio is $445,967 which is 99.5% of the
certainty equivalent of the optimal dynamic asset-allocation strategy. With portfolio weights
of 35.3% in bonds, 76.2% in stocks, and —11.5% in options, the minimum utility-weighted
mean-squared-error approach yields an almost-identical solution to the maximum expected-
utility approach (recall that the portfolio weights of the latter are 36.1% in bonds, 76.1%
in stocks, and —12.2% in options). Therefore, the hybrid approach provides an excellent
approximation to the maximization of expected utility.

In Sections 1.5.1-1.5.3, we perform more computationally intensive optimizations for the
three stochastic processes of Section 1.4 under CRRA preferences using the three approaches
described in Section 1.3: maximizing expected utility, and minimizing mean-squared error
and weighted mean-squared error. In particular, for each stochastic process, we compute two
optimal buy-and-hold portfolios for each of six different values of the relative risk aversion
coefficient (RRA =1, 2, 5, 10, 15, 20): a utility-optimal buy-and-hold portfolio obtained
by either direct maximization of expected utility or minimization of utility-weighted mean-
squared error (as in Sections 1.3.1 and 1.3.3, respectively), and a mean-square-optimal buy-
and-hold portfolio (as in Section 1.3.2). For each stochastic process and each value of the
relative risk-aversion coefficient, we consider N = 45 possible strike prices and up to n=3
options for the utility-optimal buy-and-hold portfolios and up to n=>5 options for the mean-
square-optimal buy-and-hold portfolios. This yields up to (435) =14,190 and (455) =1,221,759
sub-problems for each of the two optimizations, respectively.

The strikes are selected in the following way. Letting p, and o, denote the mean and
variance of Xz = log Pr, we partition the interval [exp(u; —30;), exp(ug +30,) ] into 45
evenly spaced points which we denote by s; = exp(uz —30,),. .., 545 = exp(pz+30;). We
then use these points as our strikes, k; =s;, i = 1,...,45. Such a procedure for choosing
the set of strikes {k;} is simple to implement, however, more sophisticated methods can be
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employed to improve the performance of the overall optimization process.
To facilitate comparisons across different optimal buy-and-hold portfolios we use one set

of 45 strikes for each of the three stochastic processes considered in Sections 1.5.1-1.5.3, i.e.,
for each stochastic process, we construct one set of 45 strikes and keep these fixed as we
vary the values of relative risk-aversion and the number of options n in the buy-and-hold
portfolio. This is clearly suboptimal—for example, when n =1, we can optimize the buy-
and-hold portfolio over several thousand possible strike prices very quickly—but holding the
strikes fixed allows us to gauge the impact of other parameters such as the risk-aversion
coefficient and the number of options on the objective function being optimized. In practical
applications, the set of possible strikes should be optimized for each specification of the
buy-and-hold problem; in our limited experience, simple heuristics for optimizing the set of
strikes can lead to substantial improvements in overall performance.

For each of the three cases considered in Sections 1.5.1-1.5.3, we maintain the following
set of assumptions:

UWwr) = 2

Y
vy = 0,—1,—4,-9,—14,—19
W, = $100,000 , T = 20 years
(1.5.5)
P, = $50 , r = 0.05
E[]Og(Pt/Pt_l)] = 0.15
Var[log(Pt/Pt_l)] = 0202

where the values of 7 correspond to relative risk-aversion coefficients of 1, 2, 5, 10, 15, and
20, respectively.

1.5.1 Geometric Brownian Motion

For geometric Brownian motion (1.4.1), we set the parameters (u,0) to match the mean and
variance of continuously compounded returns specified in (1.5.5). Based on our algorithm
for constructing the set of strike prices from the distribution of log Pr, we select the strikes
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for our n options from among the following 45 possibilities (in dollars):

69 401 733 1,066 1398 1,731 2,063 2,396 2,728
3,061 3,393 3,725 4058 4390 4723 5055 5388 5720
6,052 6,385 6,717 7,050 7,382 7,715 8,047 8379 8712
9,044 9,377 9,709 10,042 10,374 10,706 11,039 11,371 11,704
12,036 12,369 12,701 13,033 13,366 13,608 14,031 14,363 14,696

Utility-Optimal Buy-and-Hold Portfolios

Table 1a reports the utility-optimal buy-and-hold portfolios for various levels of risk aversion
and, for each risk-aversion parameter, for the number of options n varying from 0 to 3.
For example, the first panel of Table la contains results for the log-utility case (y=0, or
RRA =1). This is a very low level of risk aversion—by most empirical and experimental
accounts, an unrealistically low level—and implies that the investor’s objective is to maximize
the expected geometric average rate of return of his portfolio. Examples of investors with such
preferences are proprietary traders and hedge-fund managers. The results for the RRA=1
panel were obtained by maximizing expected utility directly using a discretized distribution
for Pr (see Section 1.3.1). The results for the remaining five panels of Table 1a were obtained
by minimizing the utility-weighted mean-squared error (see Section 1.3.3).

The first row of Table 1a’s first panel corresponds to the optimal buy-and-hold portfolio
with no options (n=0)—for log-utility, the optimal portfolio is to put 100% of the investor’s
wealth into the stock.'® Not surprisingly, the certainty equivalent of such a strategy is only
20.2% of the certainty equivalent of the optimal dynamic strategy CE(W3). By not allowing
the investor to trade at all over the 20-year period, and without access to any options, the
investor’s welfare is reduced by approximately 80%. As the number of options is increased,
his welfare increases so that for n =3 options the certainty equivalent of the optimal buy-
and-hold is 92.2% of CE(W}).

For log utility, it is interesting to note that the RMSE is approximately 3,650% even for
n=3 and despite the fact that the certainty equivalent of the optimal buy-and-hold portfolio
is close to that of the optimal dynamic investment policy. This, and the very slow rate at
which the RMSE decreases as we increase n from 0 to 3, suggests that it may be possible to
obtain an excellent approximation to the optimal dynamic strategy—in terms of expected
utility—without being able to approximate Wy very well in mean-square.

Note that within each relative risk-aversion panel of Table 1a, the RMSEs decrease mono-
tonically as the number of options n increases from 0 to 3. This, of course, need not be the
case since we are maximizing expected utility, not minimizing RMSE. In fact, it is quite
possible for the RMSE to increase as we increase n. However, the fact that they do decrease
monotonically suggests that there is some correlation between smaller RMSE and a more

81n fact, in the absence of solvency constraints, the optimal portfolio weight for the stock would be much
greater than 100%, i.e., for CRRA preferences, the solvency constraints are binding.
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preferred buy-and-hold portfolio. Of course, as n becomes arbitrarily large, the RMSE must
converge to 0.

Perhaps the most interesting feature of Table la is how the results fall naturally into two
distinct groups. The first group consists of the first two panels, corresponding to investors
who are not very risk averse (relative risk-aversion coefficients of 1 and 2, respectively) and
who, in the standard dynamic asset-allocation framework, would optimally hold more than
100% of their wealth in the risky asset. In a buy-and-hold portfolio without options (n=0),
these investors are bound by the solvency constraints (1.3.10), making it difficult for them
to approximate CE(W3) very well (the certainty equivalents CE(V7) of the optimal buy-
and-hold portfolios are only 20.2% of CE(W3,) for the log-utility investor and 81.9% for the
investor with RRA =2). Options are of particular benefit to these investors, who purchase
call options so that they can increase their risk exposure.!® They do not invest in bonds at
all, but divide their wealth between stocks and options. As the number of options allowed
increases, the fraction of wealth devoted to options in the optimal buy-and-hold portfolio for
the log-utility investor also increases, from 60.4% for n=1 to 99.3% for n=3. For a relative
risk-aversion coefficient of 2, the proportion of the optimal buy-and-hold portfolio devoted
to options declines slightly as n increases, apparently stabilizing at approximately 59% for
n=3.

The second group consists of the remaining four panels, which correspond to investors
who, in the standard dynamic asset-allocation framework, would optimally hold less than
100% of their wealth in the risky asset. For these investors a buy-and-hold portfolio with no
options has a certainty equivalent that is approximately 97% of CE(W3). It is remarkable
that a well chosen buy-and-hold portfolio in the stock and the bond can do so well over a
20-year horizon.

When just 1 or 2 options are added to the buy-and-hold portfolio in these cases, the
certainty equivalents CE(V;) of the optimal portfolios increase to approximately 99.7% of
CE(W}). In contrast to the first two panels, investors with higher risk-aversion parameters
“are net sellers of call options, forgoing some of the upside gain in order to limit losses on
the downside. The value of these option positions ranges from 24% to 37% of their initial
wealth. The optimal buy-and-hold portfolios invest the option premia, together with the
initial wealth of $100,000, in stocks and bonds.

The combination of a short position in a call option and a long position in the underlying
stock is often called a “hedged position” since the gains (losses) of one security offset to
some degree the losses (gains) of the other. Figure 1-1 provides an example of such a hedged
position: a long position in one share of stock and a short position in a call option on that
stock with strike price k. The combination yields a payoff that has limited upside—beyond
k, the payoff is constant at k—which a sufficiently risk-averse investor might find attractive,
since he receives cash now in exchange for an uncertain upside.

For risk-aversion coefficients greater than or equal to 5, Table 1a shows that the optimal
buy-and-hold portfolios all include hedged positions in which part of the upside potential
in the stock is relinquished in exchange for option premia that are invested in stocks and
bonds. For a relative risk-aversion coefficient of 10, the optimal buy-and-hold portfolio with 3
options consists of a —37.6% investment in options, 90.1% in the stock, and 47.5% in bonds.

19Call options are generally more risky than the underlying stock on which they are based. See, for
example, Cox and Rubinstein (1985).
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Since this portfolio yields an excellent approximation to the optimal dynamic investment
strategy (it has a certainty equivalent CE(V}) of 99.7%), we can be fairly confident that
these rather unorthodox positions do, in fact, accurately represent the investor’s preferences.
Indeed, by graphing the payoff diagram of this optimal buy-and-hold portfolio along the lines
of Figure 1-1, we can obtain a visual representation of the investor’s dynamic risk exposures
at a single point in time.

Payoff
Long Stock
a Combination
.« Pr
0 ko
*~ Short Call

Figure 1-1: Payoff diagram of hedged position (long stock and short call).

A common characteristic in all of the panels of Table 1a is the optimal strike prices of the
options in the buy-and-hold portfolio. Despite the fact that the possible strikes range from
$69 to $14,696, the highest strike selected by the optimization algorithm is $1,731. Under
geometric Brownian motion, the expected stock price 20 years into the future is:

Eo[Pr] = Poexp(pT) = $50 x exp(0.17 x20) = $1,498.

Therefore, almost all of the options selected by the optimal buy-and-hold portfolio are in-
the-money relative to the expected terminal price Eq[Pr], which characterizes another aspect
of the investor’s risk profile.

Also, the fact that among the 45 possible strikes, only 5 are employed in the optimal buy-
and-hold portfolios over the range of relative risk-aversion coefficients from 1 to 20 suggests
the possibility of standardizing a small number of “canonical” long-dated options that will
appeal to a broad set of investors.

Mean-Square-Optimal Buy-and-Hold Portfolios

Table 1b reports the mean-square-optimal buy-and-hold portfolios for various levels of risk
aversion and, for each risk-aversion parameter, for the number options n varying from 0 to
9. We use a larger number of options in this case to illustrate the fact that even with a
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larger number of options, a mean-square- optimal portfolio need not come close in certainty
equivalence to the optimal dynamic investment policy.

The first row of Table 1b’s first panel corresponds to the optimal buy-and-hold portfolio
with no options (n=0), which is identical to the first row of Table 1a’s first panel. As the
number of options 7 is increased, the investor’s welfare increases, so that for n=5, the cer-
tainty equivalent of the optimal buy-and-hold strategy is 34.9% of CE(W7). Although this is
a considerable improvement over the n=0 case, it is still quite far below the optimal dynamic
strategy’s certainty equivalent. This is not unexpected in light of the fact that we minimizing
mean-squared-error, not maximizing expected utility. As n increases beyond 5, this approx-
imation will improve eventually, but the optimization process becomes con31derably more
challenging for larger n. For example, the n =15 case involves (‘;g) = 344,867,425,584 sub-
problems, and if each sub-problem requires 0.01 seconds to solve, the overall optimization
would take approximately 109.4 years to complete.

Unlike Table 1a, in Table 1b the certainty equivalents of the optimal buy-and-hold port-
folio, CE(V;), do not increase monotonically with the number of options n. For example, in
the case of log utility (RRA=1), CE(V}) is 20.4% of CE(W}) for n=1 option, but declines
to 10.2% for n=2 options. This underscores the fact that we are minimizing mean-squared-
error in the optimal buy-and-hold portfolios of Table 1b, not maximizing expected utility. In
fact, it is possible for a buy-and-hold portfolio to exhibit a small RMSE and a small certainty
equivalent at the same time.?’ Therefore, while RMSE must decline monotonically with n,
the certainty equivalents need not. Of course, as the number of options n increases without
bound, CE(V;) will approach CE(W7.) eventually, even if not monotonically.

The option positions in the optimal buy-and-hold portfolios provide additional insight
into the differences between maximizing expected utility and minimizing mean-squared-error
in constructing the optimal buy-and-hold portfolio. As n increases from 0 to 1 in the first
panel of Table 1b, the optimal buy-and-hold portfolio changes from 100% stocks to 99. 8%
stocks and 0.2% options, with a huge position (29.0 million) in the option with strike price
$14,696. Given a current stock price of $50, this option is obviously deeply out-of-the-money,
hence its price is extremely close to zero, so close that 29.0 million options amount to only
0.2% of the investor’s initial portfolio. Moreover, recall that these are 20-year options, hence
a strike price of $14,696 should be compared not only with the current stock price but with
the expected stock price at maturity, Pr. Recall that under geometric Brownian motion,
the expected stock price 20 years into the future is $1,498. Therefore, even taking into
account the expected appreciation in the stock over the next 20 years, the strikes are still
extraordinarily high.

The n = 2 case differs dramatically from the n =1 case. When given the opportunity
to include 2 options in the buy-and-hold portfolio, the optimal weights become 62. 9% in
options, —4.0% in the stock, and the remaining 41.1% in bonds. The optimal buy-and-hold
portfolio involves shorting $4,000 of the stock and putting the proceeds, as well as the original
$100,000, into bonds and options. The options component consists of two positions: 331,561
options with a strike of $1,398, and 28.3 million options with a strike of $14,696. The latter
position is similar to that of the n=1 case, and accounts for a relatively small part of the -
portfolio. The majority of the 69.2% allocated to options is due to the former position in

20This typically occurs when the buy-and-hold strategy results in a final wealth Vp that is close to zero
over some interval of Pr.
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options of a much lower strike price. The lower strike price implies a higher option price,
hence the cost of 331,561 of these options dwarfs the cost of 28.3 million of the higher-strike
options. While this buy-and-hold portfolio is indeed optimal from a mean-squared-error
criterion, the certainty equivalent reported in Table 1b shows that the investor’s welfare has
actually declined by half, as compared to the n=1 case. Moreover, the RMSE declines only
slightly, suggesting that we treat this case cautiously and with a certain degree of skepticism.

As the investor’s risk-aversion parameter increases, Table 1b shows that the optimal buy-
and-hold portfolio performs considerably better in terms of certainty equivalence, in most
cases attaining 90% or more of the certainty equivalent of the optimal dynamic strategy. For
risk-aversion coefficients greater than 2, the RMSE of the buy-and-hold portfolio is less than
5% with only one or two options. The intuition for this pattern follows from the fact that
investors with higher risk aversion invest a smaller proportion of their wealth in the stock
market, hence their final wealth T} has lower variance which makes it easier to approximate
Wi with a buy-and-hold strategy.

The option positions in optimal buy-and-hold portfolios are also different for higher levels
of risk aversion, consisting of fewer options and at lower strike prices. To see why, observe
that for risk-aversion coefficients of 5 and greater, the optimal buy-and-hold portfolios with
no options (n=0) consist largely of bonds (75.6% in bonds for RRA =5, 95.3% for RRA=10,
96.3% for RRA =15, and 97.5% for RRA =20). When options are allowed in the buy-and-
hold portfolios, additional risk-reduction possibilities become feasible and the optimization
algorithm takes advantage of such opportunities. In particular, for risk-aversion levels of 5
and greater, the option positions are generally negative—the optimal buy-and-hold portfolios
consist of selling options and investing the proceeds as well as the original $100,000 initial
wealth in stocks and bonds. For example, the third panel of Table 1b shows that with a
risk-aversion coefficient of 5, the optimal buy-and-hold portfolio with 5 options is 59.0% in
stocks, 43.1% in bonds, and —2.1% in options, with short positions in all 5 options, and
where the optimal strikes range from $401 to $13,698. These results correspond well with
those of Table la, in which the optimal buy-and-hold portfolios of investors with higher
risk-aversion coefficients contained hedged positions (long positions in the stock and short
positions in options).

1.5.2 The Ornstein-Uhlenbeck Process

To calibrate the parameters of the trending Ornstein-Uhlenbeck process (1.4.8), we observe
that the moments of the stationary distribution of {P;} are given by:

Ellog(P,/P,1)] = p
Var(log(P;/Fi-1] = —(1 - exp(-9))

Corrllog(F/P;-1),10g(Pi-1/P;—2)] = —=(1— exp(—9)) .

Therefore, using the parameters in (1.5.5) and setting the first-order autocorrelation coeffi-
cient equal to —0.05 uniquely calibrates the parameter vector (u, o, ). The distribution of
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log Pr implied by these parameters yields the following 45 possible strikes (in dollars) from
which we select our n options in the optimal buy-and-hold portfolio:

265 346 426 506 587 667 748 828 908
989 1,069 1,150 1,230 1,310 1,391 1,471 1,552 1,632
1,712 1,793 1,873 1,954 2,034 2,114 2195 2275 2,356
2,436 2,517 2,597 2,677 2,758 2,838 2,919 2,999 3,079
3,160 3,240 3,321 3401 3481 3562 3,642 3,723 3,803

Note that the distribution of possible strikes lies in a much narrower range in this case
than in the geometric Brownian motion case of Section 1.5.1: 265 to 3,723 for the trending
Ornstein-Uhlenbeck process versus 69 to 14,363 for geometric Brownian motion. This is
an implication of the mean-reverting nature of the trending Ornstein-Uhlenbeck process, a
stochastic process in which log-prices are stationary about a deterministic trend, in contrast
to geometric Brownian motion in which log-prices are difference-stationary. In the former
case, the variance of the log-price process is bounded as the horizon increases without bound,
whereas in the latter case, the variance is proportional to the horizon, implying a wider range
of strikes.

Recall from Section 1.4.2 that because the optimal dynamic asset-allocation strategy is
path-dependent under (1.4.8), the certainty equivalent of V will not approach the certainty
equivalent of ;. as the number of options n in the buy-and-hold portfolio increases without
bound. Indeed, there is an upper bound for CE(V}), which is the certainty equivalent of
the optimal buy-and-hold portfolio with an infinite number of options, CE(V;°), and for
path-dependent dynamic portfolio strategies, CE(V7®) is strictly less than CE(Wy). In the
case of the trending Ornstein-Uhlenbeck process (1.4.8) and CRRA preferences, we have an
explicit expression for V2° (see Section 1.4.2), hence we can construct a mean-square optimal
buy-and-hold portfolio where the benchmark is Vz°, not Wi.

Utility-Optimal Buy-and-Hold Portfolios

Table 2a summarizes the utility-optimal buy-and-hold portfolios for the same combination
of risk-aversion parameters and number of options n as in the geometric Brownian motion
case of Table 1a. The results for the panels with RRA=1,2,5 were obtained by maximizing
expected utility directly using a discretized distribution for Pr (see Section 1.3.1), and the
results for the remaining three panels of Table 2a were obtained by minimizing the utility-
weighted mean-squared error (see Section 1.3.3).

Note that for each level of risk aversion, the certainty equivalent CE(W) of the optimal
dynamic strategy is considerably larger than that of the geometric Brownian motion case.
The presence of predictability can be exploited by the investor and in doing so, his expected
utility is increased dramatically, e.g., from a certainty equivalent of $9,948,433 in the geo-
metric Brownian motion case to $13,162,500 in the Ornstein-Uhlenbeck case for log-utility.
A more direct measure of the economic value of predictability can be obtained by considering
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the difference between the certainty equivalents of the optimal dynamic strategy and those
of the optimal buy-and-hold portfolio with an infinite number of options. For a log-utility
investor, this difference is $745,150 or 5.6% of CE(W}:), a significant amount. As the level
of risk aversion increases, this difference declines in absolute terms—Iless wealth is allocated
to the risky asset, hence predictability has less of an impact—but is relatively stable as a
percentage of CE(W3), fluctuating between 4% and 6%. ,

The most interesting feature of Table 2a is that the certainty equivalents of the buy-and-
hold portfolios do not approach CE(V°) as quickly as the certainty equivalents of Table 1a.
This is most easily seen in the third panel (RRA =5) in which the certainty equivalent of
the optimal buy-and-hold portfolio with 3 options is only 83.2% of CE(V,°). However, as
we remarked earlier, the data for this panel was computed by maximizing expected utility
through a discretization of the distribution of Pr using a grid of 4,000 points. Because of
the relatively high value of RRA, any interval in the support of Pr where Wy (Pr) is close
to 0 will result in a large negative contribution to the certainty equivalent. We can address
this issue by using a finer grid, but only at the expense of computational complexity.2!

Another interesting feature of Table 2a is that there is no investment in the bond in any
of the buy-and-hold portfolios in the first four panels (RRA = 1,2,5,10). While this is not
unexpected for low levels of risk aversion—such investors seek higher expected returns by
nature of their risk preferences—it is quite surprising for investors with RRA = 10. The
intuition for this result comes from the fact that stock returns are predictable in this case,
hence there is greater value to be gained from investing in stocks for each level of risk aversion.
Alternatively, the predictability in stock returns make stocks less risky, ceteris paribus, hence
even a risk-averse investor will hold a larger fraction of his wealth in stocks in this case.

As in Tables 1a and 1b, the optimal buy-and-hold portfolios for less risk-averse investors
(RRA = 1,2,5) are net positive in options, ranging from 98.8% when RRA =1 to 18.9%
when RRA =5, for n=3. However, unlike the geometric Brownian motion case, the optimal
buy-and-hold portfolios do contain short positions in some options, even for these lower levels
of risk aversion. For example, when RRA =2 and n=3, the optimal buy-and-hold portfolio
consists of long positions in the $265-strike and $506-strike options, but a short position of
15,246 options in the $1,391-strike option. For higher levels of risk aversion, the situation
is reversed: the optimal buy-and-hold portfolios are net negative in options, but they do
contain long positions in certain options. For example, when RRA = 20 and n = 3, the
optimal buy-and-hold portfolio consists of short positions in the $265-strike and $506-strike
options, but a long position of 1,753 options in the $346-strike option.

These long and short positions underscore the complexity of an investor’s ideal risk
exposures, and may provide a useful benchmark for comparing different dynamic investment
policies at a single point in time. In particular, it may be possible to re-interpret these option
positions as classic spread trades, e.g., bull/bear and butterfly spreads, or combinations, e.g.,
strips, straps, straddles, and strangles.?* By doing so, we may be able to gain insight into
the implicit bets that a particular dynamic asset-allocation strategy contains, and develop a

21Gince these numerical results are mainly for illustrative purposes, we have not endeavored to optimize
them within each panel. Instead, to ensure comparability across risk-aversion parameters and other specifi-
cations, we have attempted to hold fixed as many aspects of the optimization process as possible.

*2For this purpose, it may be useful to convert some of the call-option positions into their put-option
equivalents using the put-call parity relation (see, for example, Cox and Rubinstein, 1985).
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standard lexicon for comparing those bets across investment policies.

Mean-Square-Optimal Buy-and-Hold Portfolios

Table 2b summarizes the mean-square-optimal buy-and-hold portfolios for the same combi-
nation of strikes, risk-aversion parameters, and number of options n as in Table 2a. Table
2b shows that the RMSE of the optimal buy-and-hold portfolio declines rapidly. With only
one or two options, the optimal buy-and-hold portfolio is typically within 5% of the upper
bound CE(V;?). For example, in the case where relative risk-aversion is 2, the RMSE of
the optimal buy-and-hold portfolio with no options is 87.5%; with 1 option, the RMSE de-
clines to 28.9%:; and with 2 options, the RMSE is 5.0%. With 5 options, the RMSE is less
than 2.0% for all but the lowest level of risk aversion (RRA =1, for which the RMSE is
2.7%). But as in Table 1b, the certainty equivalents of the optimal buy-and-hold portfolio
do not increase monotonically as the number of options increases, since we are optimizing
mean-squared-error, not expected utility. For example, in the second panel (RRA =2) the
certainty equivalent drops precipitously from 64.4% to 37.4% of the upper bound CE(VZ°)
as the number of options increases from 4 to 5. However, for higher levels of risk aversion,
the certainty equivalents do tend to increase with the number of options in the portfolio (and
are guaranteed to converge to the upper bound CE(Vy®) as n increases without bound).

As risk aversion increases, the optimal buy-and-hold portfolios behave in a similar manner
to those in Table 1b: options are used to hedge long positions in the stock. For risk-aversion
levels of 10 or greater, all options positions are negative.

1.5.3 A Bivariate Linear Diffusion Process
We calibrate the parameters (k, 0, 01, 09, p) of the bivariate linear diffusion (1.4.22)—(1.4.23)

using the following values:
Ellog(P;/P;-1)] = 0.15
Var[log(P;/Pi-1)] = 0.04
Var[y;] = .025% (1.5.6)
Corr[pt, pe—1] = 0.05

p = 0.

The first two moments are calibrated with the same values as those in the geometric Brownian
motion and trending Ornstein-Uhlenbeck cases. The value for the variance of p implies a
standard deviation of 250 basis points for the conditional mean p;, and we assume that p is
only slightly autocorrelated over time, and not correlated at all with the Brownian motion
driving prices. This calibration implies the following 45 possible strikes (in dollars) from
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which we select our n options in the optimal buy-and-hold portfolio:

68 403 737 1,071 1,405 1,739 2,073 2407 2,742
3,076 3,410 3,744 4,078 4,412 4,746 5081 15415 5,749
6,083 6,417 6,751 7,085 7420 7,754 8,088 8422 8756
9,000 9,425 9,759 10,093 10,427 10,761 11,095 11,429 11,764
12,098 12,432 12,766 13,100 13,434 13,768 14,103 14,437 14,771

Note the similarity between the range of these strikes and that of geometric Brownian motion
in Section 1.5.1. This suggests that the economic properties of the bivariate linear diffusion
process are close to those of geometric Brownian motion, which will be borne out by the
optimal buy-and-hold portfolios described below.

As in the case of the trending Ornstein-Uhlenbeck process, under (1.4.22)—(1.4.23) the
optimal dynamic asset-allocation strategy is path-dependent. Therefore, we shall again use
the upper bound V> as the benchmark in our mean-square-optimal buy-and-hold portfolio,
and compare its certainty equivalent CE(V}) to CE(V°).

Utility-Optimal Buy-and-Hold Portfolios

Table 3a reports the optimal buy-and-hold portfolios under (1.4.22)—(1.4.23) for CRRA pref-
erences with the same risk aversion levels as in Tables 1 and 2. The results of the first two
panels of Table 3a were computed by maximizing expected utility according to Section 1.3.1
and the results of the remaining panels were computed by minimizing utility-weighted mean-
squared-error according to Section 1.3.3.

Table 3a contains certain features in common with Tables 1a and 2a, but also exhibits
some important differences. As in Table 2a, the certainty equivalents of V2 are lower than
their counterparts for W, but in Table 3a the gap declines monotonically as risk aversion
increases. For log-utility, CE(V®) is 15.5% less than CE(W3), but this difference is only
7.5% when RRA =2, 3.1% when RRA =5, and 0.8% when RRA =20. In contrast, the gap
between CE(W7) and CE(V°) in Table 2a is still 4.2% when RRA =20. This underscores
the fact that the predictability of the bivariate linear diffusion is of a different form than
that of the trending Ornstein-Uhlenbeck process.

Indeed, there are striking similarities between Tables 3a and la, another indication that
the terminal stock price Pr and option prices corresponding to the two stochastic processes—
as we have calibrated them—have much in common. However, note that the certainty
equivalents in Table 1a are relative to CE(W3), not CE(V?°). Nevertheless, even the values
of CE(V7°) in Table 3a are extremely close to the values of CE(W;) in Table la. This
close correspondence suggests that for all practical purposes, the bivariate process (1.4.22)-
(1.4.23) offers the same buy-and-hold investment opportunities to the investor as geometric
Brownian motion.
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Mean-Square-Optimal Buy-and-Hold Portfolios

Table 3b reports the mean-square-optimal buy-and-hold portfolios under (1.4.22)—(1.4.23)
for CRRA preferences with the same risk aversion levels as in Table 3a. These results
match those in Table 1b quite closely. Specifically, as in Table 1b, the optimal buy-and-
hold portfolio is a particularly poor approximation to both W7 and Vz° in the log-utility
case, with RMSE’s greater than 3,500%, certainty equivalents CE(V7) no greater than 35%
of CE(Vg°), and large swings in portfolio weights as n is changed from 1 to 2 and from
2 to 3. For higher levels of risk aversion, the optimal buy-and-hold portfolios in Table 3b
are remarkably close to those in Table 1b in terms of portfolio weights, option positions,
and certainty equivalents, providing further confirmation that the bivariate linear diffusion,
calibrated according to (1.5.6), share many of the same economic properties as geometric
Brownian motion.

1.6 Discussion

For expositional purposes, we have made a number of simplifying assumptions, many of
which can be relaxed at the expense of notational and computational complexity. In Section
1.6.1, we consider some practical issues regarding the implementation of the optimal buy-
and-hold portfolio. We discuss the advantages of using more complex derivative securities
in Section 1.6.2, and in Section 1.6.3 we consider extending our analysis to other preferences
and price processes. Finally, in Section 1.6.4 we argue that the gap between CE(W3) and
CE(V;®) is a useful measure of the economic value of predictability, and discuss the role of
taxes and transactions costs in interpreting the gap.

1.6.1 Practical Considerations

An obvious prerequisite to any practical implementation of the optimal buy-and-hold port-
folio proposed in Section 1.3 is the existence of options with the appropriate maturity T and
strike prices {k;}. These two issues—time-to-maturity and the set of available strikes—are
related, since a longer time-to-maturity generally implies a greater dispersion for the optimal
strikes (to accommodate the greater dispersion in the terminal stock-price distribution). For
horizons less than one year, there are relatively liquid options on the S&P 500 and other in-
dexes, usually with a reasonable number of strikes above and below the spot price, hence the
possibility of replacing certain dynamic investment strategies with an optimal buy-and-hold
portfolio is plausible. However, for longer maturities such as the 20-year horizons proposed
in the numerical examples of Section 1.5, exchange-traded options do not exist.

This might seem to be a serious impediment to implementing the optimal buy-and-
hold strategy for realistic investment horizons. However, we think there is hope for several
reasons. First, longer-maturity index options are always available through custom OoTC
derivatives contracts, although this is admittedly a very expensive alternative. Second, the
scarcity of longer-maturity contracts is a reflection of existing demand—if optimal buy-and-
hold portfolios become popular, this will create new demand for such contracts, leading
to increased supply. Recent legislative debate regarding the privatization of the US social
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security system suggests the possibility of a huge increase in demand for such products and
services. Third, insurance companies now provide various policies that have similar features
to long-dated options, e.g., annuities with call and put features,; contingent life-insurance
policies, etc., hence they may be a natural supplier of optimal buy-and-hold portfolios. And
finally, an imperfect alternative to long-dated options is a carefully managed sequence of
shorter-term options, and it may be possible to derive a dynamic trading strategy consisting
of a sequence of overlapping options contracts that will yield the same investment profile
as the optimal buy-and-hold strategy.”® A dynamic trading strategy seems contrary to our
motivation for constructing a buy-and-hold alternative to the standard optimal dynamic
asset-allocation policy. However, the inclusion of a few well-chosen short-maturity options
from time to time in an otherwise passive buy-and-hold portfolio might be a very cost-
effective and efficient alternative to the optimal dynamic policy, and we are investigating
this possibility in our current research program.

Another issue that arises in the practical implementation of the optimal buy-and-hold
strategy is computational challenges associated with the optimization procedure. As dis-
cussed in Section 1.5, there are limits to the number of sub-problems that can be handled
in a reasonable amount of time, which imposes limits on the number of possible strikes that
can be considered, as well as the number of options n in the buy-and-hold portfolio. In
our numerical examples, we have made no attempt to optimize our algorithm for numerical
and computational efficiency, preferring instead to maintain consistency across examples to
facilitate comparisons. For example, when solving for the optimal buy-and-hold portfolio
with n =1 option, there was no need to limit ourselves to just 45 possible strikes. In fact,
this problem can be solved very efficiently even if we were to consider several thousand
possible strikes. In addition, by selecting the range of strikes as a function of the relative
risk-aversion parameter, it is possible to obtain considerably better results than those of Ta-
bles 1-3.2* Therefore, the numerical results of Section 1.5 should be taken as illustrative only,
and not necessarily indicative of the best possible performance of the optimal buy-and-hold
portfolios.

1.6.2 Other Derivative Securities

For simplicity, we have used only European call options in our buy-and-hold strategies. A
natural extension is to include more complex derivatives, perhaps with path dependencies
such as knock-out or average-rate options. This extension may be especially relevant in the
presence of predictability, since in such cases we cannot attain CE(W3) with a buy-and-hold
strategy even if we include an infinite number of European options. In fact, the specific
form of predictability may suggest a class of derivatives that are particularly suitable. For

23See Bertsimas, Kogan, and Lo (2000b) for an example of how such a strategy might be derived.

24Gpecifically, having selected the N possible strikes, we solve the (]: ) sub-problems as described in Section
1.3.1. Once this is completed, we use the strikes {E,} from the sub-problem with the largest optimum to
select another set of NV Dossible strikes. This new set of NV strikes spans a smaller interval than the original
set, but still contains {k;}. We then solve another (ZZ ) sub-problems and select the largest optimum as our
solution, and denote the corresponding strikes as {k;}. This two-stage procedure for determining the set of
possible strikes often yields significant improvements in the objective function.
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example, in the case of the trending Ornstein-Uhlenbeck process (1.4.8), it seems reasonable
to conjecture that derivatives whose payoffs depend on

/T h(IX, — Xo — pt])dt (1.6.1)

for some function h(-) would be most useful for approximating Wr. in a buy-and-hold port-
folio. This should be true more generally for other mean-reverting stock-price processes. On
the other hand, if the stock-price process displays some type of persistence or “momentum”,
a different class of derivatives might be more appropriate.

1.6.3 Other Preferences and Price Processes

Although we have confined much of our analysis in Sections 1.4 and 1.5 to the special cases
of CRRA and CARA preferences under three specific price processes, we wish to emphasize
that the optimal buy-and-hold portfolio can be derived for many other preferences and price
processes. For example, the class of hyperbolic absolute risk-aversion (HARA) preferences
can be accommodated, as well as any price process for which the conditional state-price
density can be computed. Even more general preferences and price processes are allowable
at the expense of computational complexity. For example, for price processes that do not
admit closed-form expressions for the conditional state-price densities, these can be estimated
nonparametrically as in Ait-Sahalia and Lo (1998).

1.6.4 The Predictability Gap

As we have seen in Sections 1.4.2 and 1.4.3, in the presence of predictability in the stock-
price process, buy-and-hold portfolios of stocks, bonds, and European call options cannot
approximate W3 arbitrarily well, even as the number of options increases without bound. We
use the term “predictability gap” to denote the difference between CE(W}) and CE(VZ®),
which depends on the investor’s preferences as well as the parameters of the stock-price
process.

The natural question to ask is how significant is this predictability gap? Given that
the end-of-period wealth W of the optimal dynamic asset-allocation policy is generally
unattainable due to transactions costs and other market frictions, CE(W7) can be viewed as
a theoretical upper bound on how well an investor can do. On the other hand, if V7° is well
approximated by an optimal buy-and-hold portfolio V7 with just a few options, it is more
likely to be attainable in practice given that only a few trades are required to establish the
portfolio and there are few costs to bear thereafter. Therefore, if the predictability gap is
small, the buy-and-hold portfolio may well be optimal even in the presence of predictable
stock returns. To investigate this possibility, we must consider the impact of transactions
costs on CE(W7).

Most of the studies in the transactions costs literature ignore predictability, assuming
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independently and identically distributed (IID) returns instead.?® Such studies may un-
derestimate the impact of transaction costs because the presence of predictability provides
another motive for trade, i.e., time-varying investment opportunity sets. Therefore, we might
expect transactions costs—as a percentage of initial wealth Wy—to be higher if stock returns
are predictable.

Balduzzi and Lynch (1999) do consider transactions costs in the case of predictability,
computing the impact on investor’s expected utility when transactions costs exist but are
ignored by the investor. They do not report the difference between the certainty equivalent
of the optimal asset-allocation policy in an economy without transactions costs and the
certainty equivalent of the optimal policy in an economy with transactions costs (though
their framework should allow them to do so easily). They do mention, however, that “. ..
the presence of transaction costs ... decreases the utility cost of ignoring predictability”.
This suggests that CE(WW7) might be reduced significantly, reducing the predictability gap
and providing more compelling motivation for the optimal buy-and-hold portfolio.

An even more compelling motivation for the optimal buy-and-hold portfolio is the pres-
ence of taxes. For taxable investors, CE(W7) is reduced by the present value of the sequence
of capital gains taxes that are generated by an optimal dynamic asset-allocation strategy. In
contrast, all of the capital gains taxes are deferred until date T in a buy-and-hold portfolio.
Therefore, the economic value of predictability is likely to be even lower for taxable investors,
and the optimal buy-and-hold portfolio that much more attractive.

1.7 Conclusion

In this paper, we compare optimal buy-and-hold portfolios of stocks, bonds, and options
to the standard optimal dynamic asset-allocation policies involving only stocks and bonds.
Under certain conditions, buy-and-hold portfolios are excellent approximations—in terms
of certainty equivalence and mean-squared-error of end-of-period wealth—to their dynamic
counterparts, suggesting that in those cases, dynamic trading strategies may be “automated”
by simple buy-and-hold portfolios with just a few options. Cases where the approximation
breaks down are also of interest, since such situations highlight the importance of dynamic
trading opportunities. ,

There are a number of extensions of this research that may be worth pursuing. The most
obvious is to perform similar analyses for other stochastic processes and preferences, those
that are more consistent with the empirical evidence. The main challenge in this case is, of
course, tractability and computational complexity.

A more important extension is to consider approximating other dynamic investment
strategies with buy-and-hold portfolios of derivatives. Although we focus on optimal dy-
namic asset-allocation strategies in this paper, there is no reason to confine our attention
to such a narrow class of strategies. For example, deriving optimal buy-and-hold strate-
gies to approximate dollar-cost averaging strategies or other popular dynamic investment
strategies—strategies that need not be based on expected utility maximization—might be

**For example, Magill and Constantinides (1976), Constantinides (1986), Davis and Norman (1990), Du-
mas and Luciano (1991), and Gennotte and Jung (1992) all assume IID return-generating processes.
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of considerably broader interest.

Finally, the composition of the optimal buy-and-hold portfolio provides an interesting
summary of the risk exposures of the optimal dynamic asset-allocation policy that the buy-
and-hold portfolio approximates. By examining the payoff structure of the optimal buy-and-
hold portfolio, and its sensitivities to various market factors and economic shocks, we can
develop insights into the risks of dynamic investment policies using measures computed at a
single point in time. We hope to explore these and other extensions in the near future.
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Table 1a

Utility-optimal buy-and-hold portfolios of stocks, bonds, and n European call options for CRRA
utility under geometric Brownian motion stock-price dynamics with drift 4 = 15% and volatility
0 =20%. Other calibrated parameters include: riskless rate r = 5%, initial stock price Py = $50,
initial wealth Wy = $100,000, and time period 7' = 20 years. ‘RRA’ denotes the coefficient of
relative risk aversion, ‘CE(W3})’ denotes the certainty equivalent of the optimal dynamic stock /bond
policy, and ‘CE(V}')’ denotes denotes the certainty equivalent of the optimal buy-and-hold portfolio,
reported as a percentage of CE(W7).

Option Positions in Optimal
n  Options Stock CE(V;) RMSE Portfolio with n Options

(%) (%) (%) (%) Quantity  Quantity  Quantity
Strike ($)  Strike (3)  Strike ($)

CE(Wz) =$9,948433 , RRA =1 (Log Utility)

0 0.0  100.0 202 3,659.6

1 604 39.6 68.7  3,653.4 54,653
733

2 80.0 20.0 87.7  3,642.4 13,371 143,901
401 1,398

3 993 0.7 92.2  3,642.4 786 12,518 144,890
69 401 1,398

CE(Wp) = $1,644,465 , RRA =2
0 00  100.0 81.9 206.2
63.3 36.7 94.5 188.6 2,214

69

2 591 40.9 99.2 146.2 1,647 3,040
69 401

3 593 40.7 99.4 97.4 1,661 2,795 4,120
69 401 1,398

CE(W3) = 558,453 , RRA =5

0 0.0 62.0 97.3 143.5

1 —463 1319 99.1 103.8  —1,620
69

2 —369 1204 99.8 35.9  —1,207 —602
69 401

3 —37.0 1205 99.8 148  —1,215 —573 —197
69 401 1,398
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Table 1a (continued)

Option Positions in Optimal
Portfolio with n Options

Options  Stock CE(V;) RMSE
(%) (%) (%) (%) Quantity  Quantity  Quantity
Strike (§)  Strike ($)  Strike ($)
CE(W3) =$389,619 , RRA =10
0.0 26.5 96.6 154.9
—47.1 102.0 98.9 104.5 —1,647
69
—-37.5 90.0 99.7 25.4 —1,258 —387
69 401
—37.6 90.1 99.7 5.9 —1,262 =377 —91
69 401 1,731
CE(W}) =$345,561 , RRA =15
0.0 16.2 97.2 124.0
—37.1 76.6 99.1 82.3 —1,297
69
—29.6 67.1 99.8 17.6 —1,000 —262
69 401
—29.7 67.2 99.8 4.2 —1,003 —256 —50
69 101 1,731
CE(W,I”.‘.) =$325,437 , RRA =20
0.0 11.6 97.7 101.0
—30.0 60.7 99.3 66.5 —1,048
69
—24.0 53.0 99.8 13.3 —812 —196
69 401
—24.0 53.1 99.8 3.2 —814 —192 —34
: 69 401 1,731
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Table 1b

Mean-square-optimal buy-and-hold portfolios of stocks, bonds, and n European call options for CRRA utility
under geometric Brownian motion stock-price dynamics with parameters (p,o) calibrated to match the
following moments: E[log(P;/F;—1)]=0.15, Var[log(P;/P;—1)] =0.04. Other calibrated parameters include:
riskless rate r =5%, initial stock price Py = $50, initial wealth W, =$100,000, and time period T'=20 years.
‘RRA’ denotes the coefficient of relative risk aversion, ‘CE(W})’ denotes the certainty equivalent of the
optimal dynamic stock/bond policy, and ‘CE(V})’ denotes denotes the certainty equivalent of the optimal
buy-and-hold portfolio, reported as a percentage of CE(W7y).

Option Positions in Optimal Portfolio with n Options

n  Options Stock CE(V7) RMSE
(%) (%) (%) (%) Quantity Quantity Quantity Quantity Quantity
Strike (%) Strike ($) Strike (%) Strike (8) Strike ($)

CE(W}) = $9,948,433 , RRA =1 (Log Utility)

] 0.0 100.0 20.2  3,659.6
1 0.2 99.8 204  2,889.6 29.0% 108
14,696
2 62.9 —4.0 10.2  2,886.7 331,561  28.3x10°
1,398 14,696
3 2.8 97.2 23.1  2,870.6 2,431,277 —68.2x10%  94.7x108
5,388 14,363 14,696
4 8.0 92.0 28.1  2,869.5 943,747 2,987,657 —85.9x10%  111.0x108
3,393 8,712 14,363 14,696
5 15.5 84.5 349  2,869.3 465,463 1,415,411 2,917,259  —92.0x10%  116.2x10°
2,396 6,052 10,374 14,363 14,696

CE(W3) = §1,644,465 , RRA =2

0 0.0 100.0 81.9 206.2
1 0.8 99.2 83.4 57.2 14,846
2,063
2 3.9 96.1 86.6 26.6 9,233 15,764
1,066 9,044
3 7.6 92.4 89.3 15.8 6,873 8,120 15,063
733 4,390 14,696
4 19.6 68.4 89.4 13.8 4,908 4,815 6,273 14,315
401 2,063 5,388 14,696
5 17.5 82.5 94.0 13.3 4,342 3,797 3,753 4,430 13,501
401 1,731 3,725 6,717 14,696

CE(W3) = $558,453 , RRA =35

0 0.0 24.4 84.7 28.3
1 —-0.1 42.5 94.2 7.8 —543
1,398
2 —0.6 50.8 96.6 3.6 —554 —225
733 4,058
3 —2.5 61.8 98.4 2.2 —624 —246 —159
401 1,731 6,385
4 -2.3 60.5 98.2 1.4 —569 —218 —134 —110
401 1,398 3,725 10,374
5 -2.1 59.0 98.1 1.0 —500 -191 —134 —102 -91
401 1,066 2,396 5,388 13,698
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Table 1b (continued)

Option Positions in Optimal Portfolio with i Options

n  Options Stock CE(Vz) RMSE

(%) (%) (%) (%) Quantity  Quantity  Quantity  Quantity  Quantity
Strike (§)  Strike (§)  Strike (§)  Strike (§)  Strike ()

CE(W}) = $389,619 , RRA =10

0 0.0 6.7 86.4 27.0
1 -0l 17.7 94.8 6.4 —297
1,066

2 18 30.0 98.0 3.0 —450 —107

401 2,396
3 L5 27.9 97.7 1.7 —375 —101 —52

401 1,398 4,723
4 —14 27.3 97.6 1.3 —343 —93 —54 —32

401 1,066 2,728 7,715
5 —68.0  139.6 96.5 0.9 —2,345 —236 —100 —54 -32

69 401 1,066 2,728 7,715

CE(W}) = $345,561 , RRA =15

0.0 3.7 89.6 21.5
1 -03 14.0 97.0 5.0 —248
733
2 -12 19.2 98.3 2.2 —306 -60
401 2,396
3 -1.0 18.0 98.1 1.3 —260 —60 —27
401 1,398 4,723
4 —476 96.4 98.5 1.0 —1,637 —189 —62 —27
69 401 1,398 4,723
5 —51.2  102.2 98.0 0.7 —1,767 —163 -56 —29 -19
69 401 1,066 2,396 6,385

~ CE(Wj;)=$325437 , RRA=20
0 0.0 2.5 91.7 17.5

1 —0.2 10.0 97.5 3.9 —180
733
2 —0.9 14.1 98.5 1.7 —230 —41
401 2,396
3 —08 13.2 98.4 1.1 —198 —40 —18
401 1,398 4,390
| 4 -378 75.7 98.9 0.8 —1,304 —142 —42 -18
: 69 401 11,398 4,390
‘ 5 —40.7 80.2 98.5 0.5 —1,405 —122 —40 —20 -12
| 69 401 1,066 2,396 6,385

P Sy
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Utility-optimal buy-and-hold portfolios of stocks, bonds, and n European call options for CRRA
utility under a trending Ornstein-Uhlenbeck stock-price process where the parameters (o, u, §) have
been calibrated to match the following moments: E[log(P;/P;—1)]=0.15, Var[log(P;/P;_1)]=0.04,
Corr[log(P;/P;-1),log(Pi—1/P,—2)] = —0.05. Other calibrated parameters include: riskless rate
r = 5%, initial stock price Py = $1, initial wealth Wy = $100,000, and time period 7" = 20 years.
‘RRA’ denotes the coefficient of relative risk aversion, ‘CE(W;)’ denotes the certainty equivalent of
the optimal dynamic stock/bond policy, ‘CE(V°)’ denotes the certainty equivalent of the optimal
buy-and-hold portfolio with a continuum of options, and ‘CE(V})’ denotes the certainty equivalent
of the optimal buy-and-hold portfolio with a finite number n of options, reported as a percentage

of CE(V).

Table 2a
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n

Options

Stock
(%) (%) (%)

CE(Vr)

Option Positions in Optimal

RMSE

Portfolio with n Options

(%) Quantity
Strike (3)

Quantity
Strike ($)

Quantity
Strike ()

CE(W}:) = $13,162,500 ,

CE(V) = $12,417,350

RRA =1 (Log Utility)

0 00 1000 16.2 115.7

1 9.6 3.4 89.1 42.3 24,955
426

2 98.8 1.2 96.2 40.3 6,251 30,824
346 587

3 98.8 1.2 97.8 12.6 6,047 33,494  —39,564
346 587 1,793

CE(W;) = $6,166,222 CE(V) = $5,814,196 , RRA =2

0 0.0  100.0 31.3 87.5

1 839 16.1 89.0 29.1 10,204
265

2 830 17.0 90.5 34.2 7,822 4,810
265 426

3 830 17.0 91.6 6.7 8,283 6,623  —15,246
265 506 1,391

CE(W3) = $2,011,701 CE(V®) = $1,874,790 , RRA =5

0 0.0  100.0 72.2 30.8

1 187 83.3 79.8 56.6 2,036
265

2 195 80.5 82.7 26.9 5,777 —5,062
265 346

3 189 81.1 83.2 13.9 5,304 —4,202 —2,385
265 346 989
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Table 2a (continued)

Option Positions in Optimal

n  Options Stock CE(VzZ) RMSE Portfolio with n Options

(%) (%) (%) (%) Quantity  Quantity  Quantity
Strike (8)  Strike (§)  Strike (8)

CE(W;}) = $957,797 , CE(Vf°) = $900,296 , RRA =10

0 0.0 100.0 91.9 117.3

1 —66  106.6 96.8 1.2 —1,712
426

2 -7.0 107.0 97.1 3.8  —1,047 —951
346 748

3 -68 1068 97.1 2.5 —958 —641 —525
346 587 1,150

CE(W3) = $681,834 , CE(Vg°)=$647,654 , RRA=15

0 0.0 75.8 87.9 151.9

1 —159  108.7 95.3 103 —1,937
265

2 —155  108.1 95.2 20  —1,869 —285
265 1,150

3 -169  110.2 95.7 3.9  —2,844 1,435 —689
265 346 587

CE(W3) = $560,880 , CE(Vg°)=$537,074 , RRA =20
0.0 54.1 87.9 138.6

1 -13.9 89.0 93.2 5.1 —1,686
265

2 —15.5 91.7 93.7 11.6 —2,385 740
265 346

3 -15.7 92.0 93.8 4.0 —2,868 1,753 —643
265 346 506
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Table 2b

Mean-square-optimal buy-and-hold portfolios of stocks, bonds, and n European call options for CRRA utility
under a trending Ornstein-Uhlenbeck stock-price process with parameters (o, 12, 8) calibrated to match the
following moments: E[log(F;/P;—1)] = 0.15, Var[log(P,/P;_1)] = 0.04, Corr[log(P;/P;_1),log(Pi—1/P,_s)| =
—0.05. Other calibrated parameters include: riskless rate r = 5%, initial stock price Py = $50, initial
wealth Wy =$100,000, and time period T =20 years. ‘RRA’ denotes the coefficient of relative risk aversion,
‘CE(W1)’ denotes the certainty equivalent of the optimal dynamic stock/bond policy, ‘CE(V,£°)’ denotes
the certainty equivalent of the optimal buy-and-hold portfolio with a continuum of options, and ‘CE(V})’
denotes the certainty equivalent of the optimal buy-and-hold portfolio with a finite number n of options,
reported as a percentage of CE(V°).

Option Positions in Optimal Portfolio with n Options

n  Options Stock CE(V}) RMSE
% % % % Quantity Quantity Quantity Quantit; Quantity
) ) (%) %) Strike ($)  Strike (§)  Strike (§)  Strike (g) Strike (§)

CE(W3) = $13,162,500 , CE(Vg°)=$12,417,350 , RRA =1

0 0.0  100.0 6.2 115.7
1 91.7 8.3 87.4 37.5 32,697
506
2 86.8 13.2 81.3 9.3 44,428  —44,691
587 1,712
3 87.0 13.0 81.5 6.3 44694  —55,819 10,865
587 1,793 3,803
4 887 -34 56.7 4.5 45736  —33,938 —29,561 17,831
587 1,632 2,195 3,803
5 90.2 9.8 56.7 2.7 24,169 24,603  —32,245 —33,388 16,665
506 748 1,552 2,114 3,803

CE(W;)=$6,166,222 , CE(V)=$5,814,196 , RRA =2

0 0.0 1000 31.3 87.5
87.2 12.8 88.5 28.9 10,599
265
2 75.4 24.6 79.8 5.0 14,198  —14,689
346 1,471
3 82.7  —9.0 24.3 3.6 15,686 —6,392 —9,114
346 1,150 1,632
4 798 7.4 64.4 2.3 15,136 —8,530 —9,152 2,399
346 1,230 1,873 3,803
5 82.1 -5.9 37.4 1.6 15,582 —5,087 —6,895 —6,095 3,515
346 1,150 1,552 2,195 3,803

CE(Wy)=$2,011,701 , CE(V)=9$1,874,790 , RRA =5
0.0 100.0 72.2 30.8 '

—0.2  100.2 72.4 26.8 —2,005
1,793
2 171 82.9 81.4 6.3 2,421 —3,647
265 908
3 206 79.4 81.5 2.8 3,139 —3,022 —1,705
265 667 1,391
4 264 73.6 80.5 1.8 5,151 —3,730 -1,731 —1,162
265 426 908 1,552
5 29,0 71.0 79.9 14 7,665 —5,731 —1,481 —1,063 —810
265 346 748 1,150 1,632
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Table 2b (continued)

Option Positions in Optimal Portfolio with n Options

n Options Stock CE(V;) RMSE
(%) (%) (%) (%) Quantity  Quantity  Quantity = Quantity  Quantity
Strike (§)  Strike (§)  Strike (3)  Strike (§)  Strike (5)
CE(Wy) = $957,797 , CE(Vg°)=9$900,206 , RRA =10
0 0.0 39.0 67.9 28.4
1 -1.7 74.7 86.5 4.5 —1,377
748
2 —4.0 92.4 93.0 1.8 —1,367 —464
506 1,230
3 —5.2 98.1 94.8 1.0 —1,200 —485 —277
426 828 1,471
4 —7.4 107.4 97.2 0.7 —1,166 —479 —288 —215
346 667 989 1,552
5 —-7.1 106.2 96.9 0.6 —1,061 —418 —278 —209 —158
346 587 828 1,150 1,632
CE(W;) = $681,834 , CE(V,_,?") = $647,654 , RRA =15
0 0.0 22.0 70.3 25.4
1 —2.1 53.9 87.2 3.7 —1,003
587
2 —4.0 64.4 90.7 1.4 —1,008 —259
426 1,069
3 —6.1 72.9 93.0 0.8 —1,028 —283 —146
346 748 1,301
4 —-5.9 71.8 92.8 0.5 —974 —233 —136 —93
346 667 989 1,552
5 —9.6 84.4 95.4 0.4 —1,037 —290 —168 —106 —86
265 506 748 1,069 1,552
CE(W,}‘.) = $560,880 , CE(V19°) =$537,0714 , RRA=20
0 00 15.0 73.7 22.6
1 —1.5 37.6 86.8 3.0 —T708
587
2 -3.0 46.4 89.9 1.2 —T760 —155
426 1,069
3 —4.7 53.6 91.8 0.6 —808 —177 —86
346 748 1,391
4 —8.5 66.4 94.4 0.4 —971 —191 —98 —67
265 587 908 1,471
5 —-7.8 63.9 94.1 0.3 —866 —193 —105 —64 —50
265 506 748 1,069 1,552
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Table 3a

Utility-optimal buy-and-hold portfolios of stocks, bonds, and n European call options for CRRA utility
under a bivariate linear diffusion stock-price process with parameters (01,09, p, k,6) of the steady-state
distribution calibrated to match the following moments: E[log(P;/P;—1)] = 0.15, Var[log(P;/P;_1)] = 0.04,
Var[u:] =0.0252, Corr[py, pe—1]=0.05, and p=0. Other calibrated parameters include: riskless rate r=5%,
_initial stock price Py = $50, initial wealth Wy = $100,000, and time period 7' = 20 years. ‘RRA’ denotes
the coefficient of relative risk aversion, ‘CE(W7})’ denotes the certainty equivalent of the optimal dynamic
stock/bond policy, ‘CE(V#°)’ denotes the certainty equivalent of the optimal buy-and-hold portfolio with a
continuum of options, and ‘CE(V})’ denotes the certainty equivalent of the optimal buy-and-hold portfolio
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with a finite number n of options, reported as a percentage of CE(VZ®).

Option Positions in Optimal

n  Options Stock CE(V}) RMSE

Portfolio with n Options

(%) (%) (%) (%) Quantity  Quantity
Strike ($)  Strike ($)

Quantity
Strike ($)

CE(W;) = $11,861,394 , CE(V®) = §10,142,498 , RRA=1

(Log Utility)

0 0.0  100.0 19.8  4,346.6
1 603 39.7 682 43415 56,231
737
2 799 20.1 875  4,332.2 13,577 151,007
403 1,405
3 993 0.7 91.9  4,332.2 786 12,725 152,096
68 403 1,405
CE(W}) = $1,778,906 , CE(V®)=$1,645135 , RRA =2
0 0.0 100.0 81.8 214.7
1 646 35.4 94.4 197.4 2,258
68
2 580 42.0 99.2 155.4 1,600 3,159
68 403
3 582 41.8 99.4 106.3 1,624 2,811 4,379
68 403 1,405
CE(W}) = $575,004 , CE(Vg°)=$557,315 , RRA=5
0 0.0 61.8 97.4 141.8
1 —459  131.2 99.1 103.0  —1,604
68
2 -367 1198 99.8 354 —1,201 -595
68 403
3 —36.8  120.0 99.8 148  —1,207 —568 —192
68 403 1,405
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Table 3a (continued)

Option Positions in Optimal
Portfolio with n Options

n  Options Stock CE(V}) RMSE

(%) (%) (%) (%)  Quantity Quantity  Quantity
Strike (8)  Strike (§)  Strike ($)

CE(W;) = $395,205 , CE(V,®)=$389,080 , RRA =10

0 0.0 26.5 96.7 154.7

1 —46.8 101.5 98.9 105.1 —1,635
68

2 373 89.5 99.7 25.3 —1,250 —386
68 403

3 =374 89.6 99.7 6.1 —1,254 —-376 -90
68 403 1,739

CE(W;) = $348,828 , CE(V®)=$345214 , RRA =15

0 00 16.2 97.3 124.2
1 —36.9 76.2 99.1 82.9  —1,288
68
2 205 66.8 99.8 17.6 —994 —261
68 403
3 —295 66.8 99.8 4.3 —996 —255 —49
68 403 1,739
CE(W;) =$327,732 , CE(V,®)=$325,182 , RRA =20
0 0.0 11.6 97.7 101.2
1 —298 60.3 99.3 67.1  —1,041
68
2 —238 52.8 99.8 13.3 —807 —196
68 403
3 —23.9 52.8 99.8 3.3 —809 —191 —33
68 403 1,739
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Mean-square-optimal buy-and-hold portfolios of stocks, bonds, and n European call options for CRRA utility
under a bivariate linear diffusion stock-price process with parameters (01,02, p,k,0) of the steady-state
distribution calibrated to match the following moments: Eflog(P;/P;—)] = 0.15, Var[log(P;/P,_,)] = 0.04,
Var[p;] =0.0252, Corr[us, ps—1] =0.05, and p=0. Other calibrated parameters include: riskless rate r=5%,
initial stock price Py = $50, initial wealth Wy = $100,000, and time period T = 20 years. ‘RRA’ denotes
the coefficient of relative risk aversion, ‘CE(W3)’ denotes the certainty equivalent of the optimal dynamic
stock/bond policy, ‘CE(V;)’ denotes the certainty equivalent of the optimal buy-and-hold portfolio with a
continuum of options, and ‘CE(V7)’ denotes the certainty equivalent of the optimal buy-and-hold portfolio
with a finite number 7 of options, reported as a percentage of CE(Vy°).

Option Positions in Optimal Portfolio with n Options

n  Options Stock CE(V}) RMSE
(%) (%) (%) (%) Quantity Quantity Quantity Quantity Quantity
Strike () Strike (%) Strike (§) Strike (§) Strike ($)
CE(W7) = 811,861,394 , CE(V)=$10,142,498 , RRA =1
0 0.0 100.0 19.8  4,346.6
1 0.2 99.8 20.0 3,579.8 35.36 x 108
14,771
2 100.0 0.0 0.0 3,578.5 247,608  34.8x10%
1,071 14,771
3 2.8 97.2 22.7  3,564.7 2,695,502 —75.6x10%  108.2x108
5,415 14,437 14,771
4 8.1 91.9 27.7  3,563.8 1,023,256 3,412,389  —96.3x10%  127.2x10%
3,410 8,756 14,437 14,771
5 15.6 84.4 34.5  3,563.7 497,357 1,586,801 3,353,435  —103.3x10%  133.3x108
2,407 6,083 10,427 14,437 14,771
CE(Wy;) = 81,778,906 , CE(V°)=$1,645135 , RRA =2
0 0.0 100.0 81.8 214.7
1 0.5 99.5 82.9 62.2 16,875
2,407
2 2.0 98.0 85.0 29.3 11,060 18,392
1,405 10,761
3 7.6 92.4 89.3 17.9 7,084 8,847 17,361
737 4,412 14,771
4 19.8 66.3 88.7 16.0 5,044 5,127 6,858 16,539
403 2,073 5,415 14,771
5 17.5 82.5 94.0 15.5 4,417 4,021 4,093 4,828 15,662
403 1,739 3,744 6,751 14,771
CE(Wy) = $575,004 , CE(V®)=1$557,315 , RRA=5
0 0.0 24.6 85.0 27.9
1 —0.1 42.5 94.3 7.7 —536
1,405
2 —0.6 50.6 96.6 3.5 —546 —223
737 4,078
3 —2.4 61.5 98.4 2.1 —615 —243 —158
403 1,739 6,417
4 -2.2 60.2 98.3 1.3 —561 —215 —133 —109
403 1,405 3,744 10,427
5 —2.0 58.8 98.1 1.0 —493 —189 —132 —101 -91
403 1,071 2,407 5,415 13,768
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Table 3b (continued)

Option Positions in Optimal Portfolio with n Options

Options  Stock CE(Vy) RMSE .
(%) (%) (%) (%) Quantity  Quantity  Quantity  Quantity  Quantity
Strike (§)  Strike (3)  Strike (8)  Strike (§)  Strike ()
CE(Wy) = $395,204 , CE(Vg°)=1$389,080 , RRA=10
0.0 6.7 86.5 26.9
—-0.1 17.7 94.9 6.4 —295
1,071
-1.7 29.8 98.0 3.0 —446 —107
403 2,407
—-1.5 27.8 97.7 1.7 —371 —101 —53
403 1,405 4,746
—1.4 27.2 97.6 1.3 —340 —93 —b4 —32
403 1,071 2,742 7,754
—68.4 140.1 96.4 0.9 —2,357 —235 —100 —53 -33
68 403 1,071 2,742 7,754
CE(Wp) = $348,828 , CE(V®)=$345214 , RRA=15
0.0 3.7 89.7 21.4
—0.3 13.9 97.1 5.0 —246
737
—-1.2 19.1 98.3 2.2 —304 —60
403 2,407
—1.0 17.9 98.1 1.3 —257 —59 —27
403 1,405 4,746
—47.8 96.7 98.5 1.0 —1,644 —188 —62 -27
68 403 1,405 4,746
—51.5 102.6 97.9 0.7 —1,776 —162 —56 —-29 —-19
68 403 1,071 2,407 6,417
CE(W;) = $327,732 , CE(V)=$325182 , RRA =20
0.0 2.5 91.8 17.5
—0.2 9.9 97.6 3.9 —-179
737
—-0.9 14.0 98.6 1.7 —228 —41
403 2,407
—-0.8 13.2 98.4 1.1 —197 —40 —18
403 1,405 4,412
—38.2 76.2 98.9 0.8 —1,316 —140 —44 —18
68 403 1,405 4,746
—40.9 80.5 98.5 0.5 —1,411 —121 —40 —20 —12
68 403 1,071 2,407 6,417
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Chapter 2

Pricing American Options: A Duality
Approach

Abstract

We develop a method for pricing and exercising high-dimensional American options. Our
approach is based on approximate dynamic programming using nonlinear regression to ap-
proximate the value function. Our main theoretical result is a new representation of the
American option price as a solution of a dual minimization problem. This dual problem
involves pricing a look-back European-style option with a properly chosen process for the
strike price. Based on this dual characterization of the price function, we construct upper
and lower bounds on the option price, which can be evaluated by Monte Carlo simulation
and are general enough to be used in conjunction with other approximate methods for pric-
ing American options. We characterize the theoretical worst-case performance of the pricing
bounds and discuss the implications for the design of the approximate pricing procedure. We
illustrate the performance of our procedure on a set of sample problems where we price call
options on the maximum and the geometric mean of a collection of stocks. Our numerical
results are encouraging and suggest directions for future research.

Co-author: Leonid Kogan
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2.1 Introduction

Valuation and optimal exercise of American options remains one of the most challenging
practical problems in option pricing theory. The computational cost of traditional valua-
tion methods, such as lattice and tree-based techniques, increases rapidly with the number
of underlying securities and other payoff-related variables. Due to this well-known curse
of dimensionality, practical applications of such methods are limited to problems of low
dimension.

In recent years, several methods have been proposed to address this curse of dimen-
sionality. Instead of using traditional deterministic approaches, these methods use Monte
Carlo simulation to estimate option prices. Tilley (1993) was the first to demonstrate that
American options could be priced using simulation techniques. Other important work in this
literature includes Barraquand and Martineau (1995), Carriere (1996), Raymar and Zwecher
(1997), Ibanez and Zapatero (1999) and Garcia (1999). Longstaff and Schwartz (2001) have
proposed an approximate dynamic programming approach that can compute good price es-
timates and is very fast in practice. Tsitsiklis and Van Roy (1999, 2000) provide theoretical
results that help explain the success of approximate dynamic programming methods. The
price estimates these techniques construct, however, typically only give rise to lower bounds
on the true option price. As a result, there is usually no formal method for evaluating the
accuracy of the price estimates. ,

In an important contribution to the literature, Broadie and Glasserman (1997a,b) develop
two stochastic mesh methods that allow them to generate lower and upper bounds on the
option price that converge asymptotically to the true option price. The complexity of the first
method, however, is exponential in the number of exercise periods. The second approach does
not suffer from this drawback but nonetheless appears to be computationally demanding.
In an effort to address this drawback, Boyle, Kolkiewicz and Tan (2001) generalize the
stochastic mesh method of Broadie and Glasserman (1997b) using low discrepancy sequences
to improve the efficiency of the approach.

In recent independent work, Rogers (2001) establishes a dual representation of American
option prices similar to ours and applies the new representation to compute upper bounds
on several types of American options using Monte Carlo simulation. However, he does
not provide a systematic procedure for generating tight upper bounds and does not derive
estimates of the accuracy of the bounds on the option price.

The contribution of this paper is two-fold. First, we develop a new representation of the
American option price as a solution of a properly defined minimization problem. Using initial
estimates of the option price that are generated using approximate dynamic programming
techniques, we then apply the dual representation to construct upper and lower bounds on
the option price. If the initial price estimates coincide with the true price, then the two
bounds coincide with the price as well. Numerical values of the bounds can be estimated
using simulation. We show that in the worst case the difference between the upper bound
and the true price is given by a linear function of the approximation errors of the initial
estimate of the option price. A similar result is also true of the lower bound. Our method
for estimating the bounds on the option price is general in nature and can be used to enhance
other valuation procedures proposed in the literature.

Second, we implement a fast and accurate valuation method based on approximate dy-
namic programming (see Bertsekas and Tsitsiklis 1996) where we use non-linear regression
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techniques to approximate the value function. Unlike most procedures that use Monte Carlo
simulation to estimate the continuation value of the option, our method is deterministic and
relies on low discrepancy sequences as an alternative to Monte Carlo simulation. For the ex-
amples considered in this paper, we find that low discrepancy sequences provide a significant
computational improvement over simulation. A further advantage of the dual representation
of the American option price can be found by examining the functional form of the upper
bound to which it gives rise. This functional form suggests how the approximate dynamic
programming algorithm can be adapted to reduce the computational load that is required
to obtain a given level of pricing accuracy.

The rest of the paper is organized as follows. In Section 2.2, we derive a new duality
result for American options and use it to derive an upper bound on the option price. In
Section 2.3, we describe our procedure for approximating the option price and in Section 2.4,
we report results of numerical experiments, illustrating the performance of our procedure.
We conclude in Section 2.5.

2.2 Problem Formulation

In this section we derive a new duality result for American options, which can be used
to estimate the upper bound on the American option price. This section begins with the
definition of the valuation problem in Section 2.2.1, followed by the duality result in Section
2.2.2.

2.2.1 The Model

Information Set. We consider an economy with a set of dynamically complete financial
markets, described by the underlying probability space, €2, the sigma algebra F, and the
risk-neutral valuation measure Q. It is well known (see Harrison and Kreps 1979) that if
financial markets are dynamically complete, then under mild regularity assumptions there
exists a unique risk-neutral measure, allowing one to compute prices of all state-contingent
claims as the expected value of their discounted cash flows. The information structure in this
economy is represented by the augmented filtration {F; : t € [0, T]}. More specifically, we
assume that F; is generated by Z;, a d-dimensional standard Brownian motion, and the state
of the economy is represented by an F;-adapted Markovian process {Xt eERI:0<t< T}.
Option Payoff. Let h, = h(X;) be a nonnegative adapted process representing the payoff
of the option, so that the holder of the option receives h, if the option is exercised at

time t. We also define a riskless account process B, = exp ( fot rsds), where 7, denotes the

instantaneously risk-free rate of return. We assume that the discounted payoff processes
satisfies the following integrability condition

hy
B,

Eo [t:{]r,llé}f,T ] < 00 (2.2.1)
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Exercise Dates. The American feature of the option allows its holder to exercise it at any
of the pre-specified exercise dates T ={0,1,...,T}, equally spaced between 0 and 7. This
assumption is made to simplify the notation and is not restrictive.

Option Price. The value process of the American option, V;, is the price process of the
option conditional on it not having been exercised before t. It satisfies

B:h,
w=supE?[ ‘ ] (2.2.2)
T>t BT

where 7 is any stopping time with values in the set 7N [¢, 7] and E; [-] denotes the expected
value under the risk-neutral measure (), conditional on the time t information, F;. This

is a well-known characterization of American options (see, for example, Bensoussan 1984,
Karatzas 1988 and Pliska 1997).

2.2.2 The Dual Problem

The problem of pricing an American option, the primal problem, is that of computing

h,
Vo = sup By [—] : (2.2.3)
TET B;

For an arbitrary adapted supermartingale m;, we define the dual function to be

F(0,7) = By [f‘;? (E—t - m)] + o, (2.2.4)

Then the dual problem is to minimize the dual function over all supermartingales m;. Let
Uy denote the optimal value of the dual problem, so that

h; ‘
Up =inf F(0,7) = mf Eq [sup (— —m )| + mo (2.2.5)
T teT \B

The following theorem shows that the optimal values of the dual and primal problems coin-
cide.

Theorem 1 (Duality Relation) The optimal values of the primal problem (2.2.3) and
the dual problem (2.2.5) are equal, i.e., Vo = Uy. Moreover, an optimal solution of the dual
problem is given by mf = V;/B;, where V; is the value process for the American option,

h,B
Vi= sup E; [ t] .
Te{[t,TINT} B,

58




=l o drabl sl i e

Proof. For any supermartingale m,,

Vo = sup,rEg []}5—:} = sup,7 ko []};—: — 7+ 7T7-] < sup,7 Ep [E—: — 71'7-] + o

(2.2.6)
S EO [maxteT (%i— — 7Tt):| + o

where the first inequality follows from the optional sampling theorem for supermartingales
(see Billingsley 1995) and condition (2.2.1). Taking the infimum over all supermartingales,
7, on the right hand side of (2.2.6) implies V5 < Up. On the other hand, the process V;/B;
is a supermartingale, which implies

Uy < Eqg max (hy/By — Vt/Bt)] +Ve.

Since V; > hy for all ¢, we conclude that Uy < V,. Therefore, Vy = Uy, and equality is
attained when 7 = V;/B;. = '

Theorem 1 shows that an upper bound on the price of the American option can be
constructed simply by evaluating the dual function over an arbitrary supermartingale ;. In
particular, if such a supermartingale satisfies m, > h;/B;, the option price V; is bounded
above by my. Theorem 1 therefore implies the following well-known characterization of the
American option price (see, for example, Pliska 1997).

Corollary 1 (Option Price Characterization) The discounted option price process
Vi/ By is the smallest supermartingale, 7, that satisfies w, > hy /Bx.

Dynamic Replication

The pricing problem is closely related to the problem of dynamic replication of the American
option, which is equally important in practice. While various methods for approximating
American option prices have been suggested in the literature, computing reliable replication
strategies has remained a challenging problem. The result of Theorem 1 suggests a method
for super-replicating the American option. Super-replicating trading strategies are important
for hedging the option since they almost surely dominate the payoff function of the option.

Corresponding to each supermartingale, m;, there is a super-replicating strategy with
initial cost equal to the dual function F(0,7). This is seen by extending the definition of
the dual function to all times between 0 and 7 so that

Flt.m) _ E, [ sup (E - ws)} + 7. (2.2.7)

Bt e{[t, TINT} Bs

Both terms on the right of (2.2.7) are supermartingales, implying that F(t,7)/B, is also a
supermartingale. Since financial markets in our model are dynamically complete, this implies
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(see Karatzas and Shreve 1998) that there exists a self-financing trading strategy with an
initial cost (0, 7) which almost surely dominates F'(t, 7). Since F'(¢,7) dominates the price
of the option and hence its payoff at exercise, such a trading strategy super-replicates the
payoff of the American option. Using an approximation to the option price, we can define
7, explicitly so that super-replicating the option can be a relatively straightforward task. In
particular, Boyle et al. (1997) and Garcia et al. (2000) describe Monte Carlo methods for
estimating the portfolio strategies replicating the present value process of a state contingent
claim. This claim could correspond to a derivative security or some consumption process.
Their results are therefore directly applicable to (2.2.7).

Tightness of the Upper Bound

When the supermartingale 7; happens to coincide with the discounted option value process,
V,/B;, the upper bound F(0,7) equals the true price of the American option. This suggests
that a tight upper bound can be obtained by using an accurate approximation to the true
option value process, V;, to define ;. In particular, we suggest two alternative definitions of

. Ty

m = Vo (2.2.8)
_ .‘Z+1 ‘Z i712-|-1 vt
M1 — Ty Bt+1 Bt t Bt_'_l Bt (229)
or
B,Y, B,V ’
Mo = m | =22 — B, (= (2.2.10)
Bt+1‘/t Bt+1Vt
where (z)* := max(z,0). By construction, E;[m1 —m] < 0 for either definition of m,

implying 7, is an adapted supermartingale. For the remainder of this paper, we will take
; to be defined by (2.2.8) and (2.2.9). While we cannot say a priori that the upper bound
corresponding to this supermartingale is tighter than the one determined by (2.2.8) and
(2.2.10), it is considerably easier to analyze its performance. In particular, the following
theorem relates the worst-case performance of the upperl)ound determined by (2.2.8) and

(2.2.9) to the performance of the original approximation V;.

Theorem 2 (Tighiness of the Upper Bound) Consider any approzimation to the

American option price, Vi, satisfying V; > hy, and let Vo denote the upper bound corre-
sponding to (2.2.8) and (2.2.9). Then,

Vi_V

: 2.2.11
B B, (2-2.11)

T
Vo< Vo+2) Eo

t=0
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Proof. Simplifying (2.2.8) and (2.2.9), and using Theorem 1, we obtain

L ) } (2.2.12)

as an upper bound on the price of the American option.! We then have
) +]

T
Vo=Vo+Eg [Z (Ej—l

i=1

) - .
_ - [ V, Vi Vi Via Vi Vi

< o PR SR IS R B = R
Vo < Vo+E Z ( 1B, T B + B; B - Bi1 B

T ™~ —~
~ V. V. . V.
< Vot Z(E Bt gt - gt

) T
< %+\%—%)+EOZ(EJ_1

=1

where the second inequality is due to the supermartingale property of the discounted option
price process, V;, and the last step follows from the triangle inequality. The result now
follows. m _

Theorem 2 shows that the upper bound remains tight as long as the approximation V; is
close to the true option price V;. Accuracy of V; depends on the details of the approximation
procedure. If for example, V; is constructed using the approximate dynamic programming
algorithm of Longstaff and Schwartz (2000), then Tsitsiklis and Van Roy (2000) show that,
in theory, the approximation error can be made arbitrarily small. This then suggests that the
upper bound can be made arbitrarily tight, though the computational effort required might
be prohibitive. According to (2.2.11), the worst-case estimate of the upper bound on the
option price increases linearly with the number of exercise periods, holding the maturity date
of the option fixed. This suggests that in practice the upper bound can be estimated more
accurately for problems with a small number of exercise periods. Our numerical experiments
confirm this intuition, as we shall see in Section 2.4.

2.3 Option Price Approximation

In this section we describe the approximate dynamic programming algorithm that we use
for estimating the value function, V;. Motivated by the upper bound, we will show in section
2.4.3 we will show how this algorithm might be improved.

!This bound may also be derived using the linear programming formulation of dynamic programming
problems. See Appendix 3 where we also discuss the possibility of finding upper bounds for dynamic pro-
gramming problems that are more general than optimal stopping problems.
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The problem is to compute

h,
Vo = sup Eg [—] : (2.3.13)
TET B’T

In theory this problem is easily solved using value iteration. We solve for the value functions,
V4, recursively so that

Vr = hXr), (2.3.14)

B
= ! vtﬂ(xm)]) . (2.3.15)
t+1

Vi = max (h(Xt),Et[

The price of the option is then given by Vp(Xp) where X is the initial state of the
economy. In practice, however, if d is large so that X; is high dimensional, then the ‘curse
of dimensionality’ implies that value iteration is not practical.

Because finding the exact solution is intractable, we instead attempt to find an approx-
imate solution. Before describing the approximation algorithm in detail, however, we first
describe the Q-value function. '

2.3.1 The Q-Value Function

A concept that is closely related to the value function is the Q-value function, which has a
number of desirable properties that the value function does not possess. In the context of
optimal stopping, the Q-value function is defined as

Qi(X;) = E [ il Vt+1(Xt+1):| (2.3.16)

so that the Q-value at time ¢ is simply the expected value of the option, conditional on it
not being exercised at time ¢. The value of the option is then given by .

Vi(X:) = max(h(Xy), Q:(X:)). (2.3.17)

We can also write

Qi(X) = E [B]?; max (h(X¢11), Qt+1(Xt+1))] (2.3.18)
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and equation (2.3.18) clearly gives a natural extension of value iteration to Q-value iteration.
The algorithm we use in this paper consists of performing an approximate Q-value iteration,
an approach similar to the one used by Longstaff and Schwartz (2000) and Tsitsiklis and
Van Roy (2000).

There are a number of reasons for why it is preferable to concentrate on approximating
(¢ rather than approximating V; directly. Letting Qt and V, denote our estimates of Q:
and V; respectively, we can write the defining equations for approximate Q-value and value
iteration as follows:

@t =By [ 2 max (h(Xt+1) Qt+1(Xt+1))] (2.3.19)

~

U, =max (h(Xt), E, [ﬁvtﬂ(xm)]) . (2.3.20)

First, the functional forms of (2.3.19) and (2.3.20) suggest that Q; is smoother than V;, and
therefore more easily approximated. But the most important reason for concentrating on
Q: is the following. In order to obtain a lower bound, we need to simulate sample paths
originating from X, and apply the stopping strategy, as determined by {V}} or {Qt} to
these paths. The average discounted payoffs from these paths will then be an unbiased
lower bound on the true price of the option. In order to see why it is important that we
estimate Qt and not V;, consider a sample path, P say. Suppose at time ¢ we have not yet
exercised the option and the current state is X. ~We now need to determine whether or not
the option should be exercised. If we only have V; available to us, then we need to compare
Vi(X,) with h(X,). If Vi(X:) > h(X.) then we do not exercise. However if V,(X,) is only
marginally greater than h(X;), then it may be the case that Vt(Xt) is actually attempting
to approximate h(X;). However we misinterpret V;(X,) and assume that it is optimal to
continue when in fact it is optimal to exercise. This problem can be quite severe when there
are relatively few exercise periods because in this case, there is often a significant difference
between the value of exercising now and the continuation value. When we have an estimate
of @Q;(X}) this problem does not arise because we have a direct estimate of the continuation
value, an estimate which f/V;(Xt) cannot provide.

2.3.2 Approximate Q-Value Iteration

In this section we describe the procedure we use for approximating the Q-value functions,
Q This algorithm is standard in the approximate dynamic programming literature. The

first step is to select an approzimation architecture, { Qi(; B) : Bre RN }, which is a class of

functions from which we select @t. This class is parametrized by the vector 3, € RV so that
the problem of determining @ is reduced to the problem of selecting [3; where (3, is chosen
to minimize some approximation error.

Possible architectures are the linearly parametrized archltectures of Longstaff and Schwartz
(2000) and Tsitsiklis and Van Roy (2000), or non-linearly parametrized architectures such
as neural networks or support vector machines (see Vapnik 1999). In this paper we use a
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multi-layered perceptron with a single hidden layer, a particular class of neural networks.
Multi-layered perceptrons with a single hidden layer are known to possess the universal ap-
proximation property so that they are able to approximate any continuous function over
a compact set arbitrarily well, provided that a sufficient number of neurons are used (see
Hornick, Stinchcombe and Whlte 1989). Further details may be found in Appendix B which
is available upon request from the authors.

The second step in the procedure is to select for each ¢ =1,..., K — 1, a set
Sy = {P},..., Py} (2.3.21)

of training points where P € R for n =1,..., N;. The sets S, are typically chosen in such
a way that they are representative of the probablhty distribution of X;.

Finally, we carry out an approximate Q-value iteration. Defining QT = 0, we begin with
t=K—1landforn=1,...,N, we use Q;(P!) to estimate Q;(P!) where

Q.(P!) :=E, [ BBt

t+1

max (h(xm), ém(xm))] . (2.3.22)

The operator E[ . ] in (2.3.22) is intended to approximate the expectation operator, E[.]
This is necessary as it is usually not possible to compute the expectation exactly on account
of the high dimensionality of the state space. For example, E[] could correspond to Monte
Carlo simulation where we simulate from the distribution of X, given that X; = P. In this
paper, however, we use low discrepancy sequences (see Appendix B) rather than simulation
to evaluate (2.3.22) as their use significantly improved the performance of the approximate
dynamic programming algorithm.
We then estimate @, with Qq(,; 5:) where

Ny
Bt = arg T%ltnz (Qt(Pﬁ) - ét(Prtﬁ ﬁt))Q- (2.3.23)

In practice, we usually minimize a variant of the quantity in (2.3.23) in order to avoid the
difficulties associated with overfitting. Once Qt has been found, we then iterate in the manner

of value iteration until we have found Qo Further details are summarized in Appendix B.
Once we have approximated Q; for t = 0,...,T — 1, we need to compute an estimate of
the price of the American option. We could use

Vo(Xo) = max (h(Xo), QO(XO)) (2.3.24)

but such an estimate, however, is of limited value because we can say very little about the
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estimation error. Even if we knew that this was a good estimate of the option price, it tells us
very little about how to hedge the option. We address these issues next by constructing two
price estimators whose expected values, Vo and Vo, are lower and upper bounds respectively
on the true price of the option.

2.3.3 The Lower Bound on the Option Price

We can use the @t( Vs fort = 1,...,T — 1 to construct a lower bound on the true option
price. For each sample path orlgmatmg from Xy, we find the first exercise period ¢, if it exists,
in which h(X;) > Qt(Xt) The option is then exercised at this time and the discounted payoff
of the path is given by h(X,)/B;. Since this is a feasible F; - adapted exercise policy, it is
clear that the expected discounted payoff from following this policy defines a lower bound
Vo on the true option price, V;. Formally, 7= min{t € T : Q, < h:} and

h,.
Yo=Eo |52

By replacing the expected value of discounted payoffs with an average over a large number
of paths, we obtain an unbiased estimate of the lower bound.

The estimate of the lower bound performs very well in our numerical experiments, as
reported in Section 2.4. The main reason for this is that it is only necessary that Qt be
a good approximation to @); when X; is close to the optimal exercise frontier. To see the
intuition behind this observation, consider how an error can be made on some arbitrary
sample path. The only way an error can be made is if there is a point on the path, X, such
that the option has not already been exercised before time ¢, and

QX)) < h(X) < QuXy) (2.3.25)
Qu(X:) > h(X) > Qu(Xy) (2.3.26)

If an error takes place and Q,(X,) is reasonably close to Q¢(Xy), then h(X;) =~ Q(X;) and
therefore the magnitude of the error will be small. Furthermore, in problems where there are
relatively few exercise periods, the probability that h(X;) ~ Qt(Xt) at any point X; on the
sample path is often very low. Therefore, when there are relatively few exercise periods, the
low probability of an error and the likely small magnitude of any such error that does occur,
suggest that the lower bound should be a very good approximation to the true price of the
option. This intuition is confirmed by the following theorem, characterizing the worst-case
performance of the lower bound.
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Theorem 3 (Tightness of the Lower Bound) The lower bound on the option price
satisfies

Vo> Vo — Eo [Z @T_Qtl} . (2.3.27)
t=0 b

Proof. At timet, the followmg six mutually exclusive events are possible: (1) Qt < @ < hy,

(ii) @ < Qt < hy, (iii) Q¢ < hy < Qy, (iv) Q: < he < Qt7 (v) e <@ < Qta
(vi) hy < Q; < Q;. We define 7; = min{s € [t,T|NT : Q,<h s} and

hz,
V, = B,E, [B~ ] .
Tt

For each of the six scenarios above, we establish a relation between the lower bound and the
true option price.

(i),(ii) The algorithm for estimating the lower bound correctly prescribes immediate exercise
of the option so that V; — V; = 0.
(iii) In this case the option is exercised incorrectly. V; = h; and V; = @ implying V; — V; <

Q- @

(iv) In this case the option is not exercised though it is optimal to do so. Therefore

e
while
Vi=h < Q¢+ (ét - Qt) = BilEt [Viqa] + (Qt - Qt) :
This implies
Vi-V < Qt‘ + Bt+1Et [Vt+1 - Vt+1]
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(v),(vi) In this case the option is correctly left unexercised so that

Therefore by considering the six possible scenarios, we find that

B,

+
By

v;—ﬁs)ét—@

Ec [Vir = Ve

Iterating and using the fact that V7 = V7 implies the result. m

While this theorem might suggest that the performance of the lower bound deteriorates
linearly in the number of exercise periods, in our numerical experiments we find that this is
not the case. This is not inconsistent with Theorem 3 since this theorem describes the worst
case performance of the bound. In particular, in order for the exercise strategy that defines
the lower bound to achieve the worst case performance, it is necessary that at each exercise
period the condition (2.3.25) is satisfied. For this to happen, it must be the case that at each
exercise period, the underlying state variables are close to the optimal exercise boundary.
In addition, ); must systematically overestimate the true value Q; so that the option is not
exercised while it is optimal to do so. In practice, the variability of the underlying state
variables, X;, might suggest that X; spends little time near the optimal exercise boundary.
This suggests that as long as @ is a good approximation to ; near the optimal exercise
frontier, the lower bound should be a good estimate of the true price, regardless of the
number of exercise periods.

2.3.4 The Upper Bound on the Option Price

In Section 2.2.2 we derived an expression for an upper bound on the price of the American
option. This was done by defining an appropriate supermartingale as in (2.2.8) and (2.2.9).

However, in (2.2.8) we can alternatively set 1 = V5. In this case, the upper bound is given

by
) J . (2.3.28)

Then (2.3.28) provides a natural decomposition of the upper bound V into the sum of
two components. The first component is the lower bound, Vo, while the second component

VO = % + Ey lz (Ej_l

Jj=1

measures the extent to which TZ /By does not behave as a supermartingale, a property that
is possessed by the true discounted option price process.
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We estimate V' by simulating sample paths of the state variables, evaluating

) (2.3.29)

along each path and taking the average over all paths. Evaluating (2.3.29) numerically is
time consuming since at each point, (¢, X;), on the path, we need to compute

(Et

According to Jensen’s inequality, any unbiased noisy estimate of the expectation in (2.3.30),
however, will result in an upwards biased estimate of the upper bound. It is therefore
important that accurate estimates of the expectation in (2.3.30) can be computed. To do
this we again use low discrepancy sequences.

Vi Via

B; B,

(e

J=1

Vigr Vi
Bit1 By

N
) . (2.3.30)

2.4 Numerical Results

In this section we illustrate our method by pricing call options on the maximum and geo-
metric mean of a collection of underlying stocks. The numerical results of this section were
obtained using the methodology described earlier. In addition, however, problem specific
information was also used to improve the initial estimates of the option price. For example,
it is well known that the American option price is greater than or equal to the price of the
corresponding European option. It is straightforward to incorporate such information into
the approximate dynamic programming algorithm and as a result, the initial approximation,
V,, is often significantly improved. Further details of this technique, known as policy fixing
(see Broadie and Glasserman 1997b), are given in Appendix B.
We assume that the market has N traded securities with price processes given by

dS! = St[(r — &)dt + oidz] (2.4.31)

where 2! is a standard Brownian motion and the instantaneous correlation of 2} and 2{ is pi;-
Each security pays dividends at a continuous rate of §;. We assume that the option expires
at time T and that there are n + 1 equally spaced exercise dates in the interval [0, T]. The
first date occurs at ¢ = 0 which we call the 0™ exercise period and the n'* exercise date
occurs at t = T. We use k to denote the strike price of the option and let r be the annual
continuously compounded interest rate.
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2.4.1 Call on the Maximum of 5 Assets

We assume that there are 5 assets, r = 0.05, T = 3 years and k& = 100. We let 6, = 0.1,
0; = 0.2 and p;; = 0 for 4,5 = 1,...,5. All stocks are assumed to have the same initial price
So. The “true” prices of the American options in Table 2.1 are in fact estimates of the true
prices that are taken from Broadie and Glasserman (1997b). We let the number of exercise
periods be 4, 7, and 10.

The lower bound provides a very accurate estimate of the option price and the difference
between the upper and the lower bound is small relative to the early exercise premium
of the American option under consideration. The upper bound therefore provides useful
information about the precision of our estimate of the option price. Consistent with our
discussion in Section 2.3.4, the upper bound is tighter for problems with fewer exercise
periods.

2.4.2 Call on the Geometric Mean of 5 Assets

For the American call option on the geometric mean of a collection of stocks the true price
of the option can be computed using a standard binomial tree, since the stochastic process
that describes the evolution of the geometric mean is itself a geometric Brownian motion.

Table 2.2 shows that the lower bound is very close to the true price of the option, even
when the total number of exercise periods is 101. It is a more precise estimate of the true
price than the upper bound, which is consistent with our discussion in Sections 2.3.3 and
2.4.3. When there are 101 exercise periods the upper bound is relatively tight, although it
is clearly not as good as the upper bound for the problem where there are only 11 exercise
periods.

2.4.3 Approximate Q-Value Iteration Revisited

Perhaps the obvious way to compute the lower and upper bounds is in a sequential fashion so
that after estimating the Q-value functions, we simulate a number of sample paths to compute
the lower bound, and simulate another set to compute the upper bound. One difficulty with
this strategy, however, is that the difference between Vo and Vo might be significant so that
there is a large duality gap. When this occurs, we are forced to re-estimate the @Q,’s, possibly
using more training points or a more flexible approximation architecture. This process may
need to be repeated a number of times before we obtain a sufficiently small duality gap.
Such an ad hoc approach might be very inefficient and we now propose a solution to address
this problem.

The lower bound is typically a considerably better estimate than the upper bound of
the true option price. This is borne out by our numerical experiments so that even when
the upper bound is a very good estimate, the lower bound is still better. The reason for
this is quite straightforward. We argued previously that while the worst-case performance
of the lower bound is linear in the number of exercise periods, this worst-case performance
is very rarely attained. Indeed, good performance of the lower bound depends mainly on
how well the Q-value function is approximated when the state variables are close to the
optimal exercise boundary. In contrast, the functional form of the upper bound suggests
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that its performance deteriorates linearly in the number of time periods. Furthermore, the
functional form of the upper bound also suggests that it is important for the Q-value function
to be well approximated throughout the state space, rather than just the subset of the state
space where it is close to the optimal exercise boundary.

This then suggests that when there is a large duality gap it is usually because the upper
bound is not sufficiently close to V5. The expressmn for the upper bound, as given in (2.3.28),

suggests that if E;_; [Vt /Bt — Vt_l / Bt_l] tends to be large, then the upper bound will not

be very tight. Based on this observation, we propose the following modification to the
appr0x1mate Q-value iteration.

After Qt has been computed, we do not proceed directly to computing Qt 1- Instead,
we simulate a number of points from the distribution of X; and for each point, we compute

~ ~ +
E; [Vt+1 /Biy1 — Vi/ Bt] . If the average value of these quantities is below some threshold,

€t, then believing that we have a good estimate of V;, we proceed to estimate @t_l. Otherwise
we re-estimate @y, either by increasing the number of time ¢ training points or by refining
the approximation architecture, depending on the remedy that seems more appropriate. We
then repeat the process until the average is less than ¢;. The resulting estimates of the
Q-value functions should lead to tight lower and upper bounds.

A further advantage of this proposal is that it allows us to determine how much compu-
~ tational effort is required to obtain a good solution. In particular, we can now determine
online how many training points are needed or how complex the approximation architecture
needs to be in order to obtain good estimates of the option price.

2.5 Conclusions and Further Research

In this paper we have developed a method for pricing and exercising high-dimensional Amer-
ican options. Our approach is based on approximate dynamic programming using nonlinear
regression to approximate the value function. Our main theoretical result is a new repre-
sentation of the American option price as a solution of a dual minimization problem. Based
on this dual characterization of the price function, we construct upper and lower bounds on
the option prices that can be evaluated by Monte Carlo simulation and are general enough
to be used in conjunction with other approximate methods for pricing American options.
Our procedure performs well on a set of sample problems where we price call options on the
maximum and the geometric mean of a collection of stocks.

Estimating tight upper bounds on the option price for problems with numerous exercise
periods remains a challenging and important aspect of the pricing problem. We are currently
pursuing several alternative approaches. First, we could employ an extrapolation procedure
such as Richardson extrapolation, to extend estimates of the upper bound for problems with
relatively few exercise periods to those with many exercise periods. This technique has been
used successfully in other financial applications to price American options. (See, for example,
Geske and Johnson 1984 and Broadie, Glasserman and Jain 1997).

Such an approach could be quite effective in practice, but it suffers from an important
limitation since estimates of the upper bound obtained by applying the extrapolation pro-
cedure are no longer upper bounds on the true option price.
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Another approach is to estimate the option price and a corresponding supermartingale,
7y, for an auxiliary problem with relatively few exercise periods. Then we extend the process
7 to all exercise dates of the original problem. For instance, if ¢, and ¢, are two consecutive
exercise dates for the auxiliary problem and ¢ € (t;,1,) is the exercise date of the original
problem, one would define m, = E¢[m,]. Such an approach might prove useful, particularly
for estimating prices of out-of-the-money options.

Another obvious direction for future research is to use the method to price more com-
plicated American options. Our procedure is applicable to any American option as long as
the underlying state process is Markovian. In addition, identifying the types of problems on
which our procedure works well would be of considerable value.

Another subject for future research is to compare the performance of the two possible
upper bounds as determined by the formulations in (2.2.9) and (2.2.10). If neither upper
bound dominates the other, then it would be useful to determine the circumstances under
which one bound is superior to the other.
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Table 2.1: Call on the maximum

Table 2.1 lists the estimates of the price of an American call option on the maximum of 5 assets.
We use the following set of parameter values: r = 0.05, T = 3, £k = 100, é; = 0.1, 0; = 0.2 and
pij =0 for 4,5 = 1,...,5. All stocks are assumed to have the same initial price Sp. “CI Lower Bd”
and “CI Upper Bd” denote confidence intervals for the lower and upper bounds, respectively. The
column “True Price*” contains the estimates of the true prices of the American options taken from
Broadie and Glasserman (1997b). We let the number of exercise periods be 4, 7, and 10.

So 95% CI Lower Bd 95% CI Upper Bd True Price* European Price

4 exercise periods

90  [15.990, 16.020]  [16.041, 16.049) 16.006 14.586
100 [25.260, 25.296]  [25.325, 25.338] 25.284 23.052
110 [35.666, 35.708]  [35.778, 35.791] 35.695 32.685

7 exercise periods

90  [16.449, 16.478]  [16.617, 16.642] 16.474 14.586
100 [25.902, 25.937]  [26.036, 26.054] 25.920 23.052
110  [36.467, 36.507]  [36.606, 36.627) 36.797 32.685

10 exercise periods

90  [16.627, 16.655]  [16.819, 16.845] 16.659 14.586
| 100 [26.138,26.172]  [26.261, 26.280] 26.158 93.052
110 [36.762, 36.801]  [37.041, 37.083] 36.782 32.685
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Table 2.2 lists the estimates of the price of an American call option on the geometric average of 5
assets. We use the following set of parameter values: r = 0.03, T =1, k = 100, §; = 0.05, 0; = 0.4
and p;; =0 for 4,5 = 1,...,5. All stocks are assumed to have the same initial price S;. “CI Lower
Bd” and “CI Upper Bd” denote confidence intervals for the lower and upper bounds, respectively.

il Ll b

Table 2.2: Call on the geometric average

We let the number of exercise periods be 11 and 101.

So

95% CI Lower Bd 95% CI Upper Bd True Price European Price

90
100
110

90
100
110

[1.358, 1.364]
[4.284, 4.294]
[10.204, 10.216]

[1.381, 1.401]
[4.352, 4.385]
[10.402, 10.437]

11 exercise periods

[1.388, 1.391] 1.362
[4.353, 4.358] 4.291
[10.265, 10.270] 10.211

101 exercise periods
[1.486, 1.488] 1.392

[4.5222, 4.5224] 4.371
[10.552, 10.553] 10.432
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Chapter 3

Portfolio Optimization and

Approximate Dynamic Programming

3.1 Introduction

In this chapter we explore some of the issues that arise when approximate dynamic program-
ming (ADP) techniques are used to solve high-dimensional portfolio optimization problems.
In particular, we study a five-dimensional finite horizon portfolio optimization problem where
the agent wishes to maximize the expected utility of terminal wealth. There are two traded
assets in the economy, an instantaneously risk-free bond and a risky stock. The short term
interest rate, ry, and the Sharpe ratio, s;, are both stochastic. The agent holds a non-traded
asset which is held until expiration and in each time period he receives a labor income. The
value of the non-traded asset and the labor income are also stochastic.

We use an ADP algorithm to solve this problem and this leads naturally to a lower
bound on the true value function. As is typically the case with ADP solutions, however, it is
difficult to determine how good our approximate solution is. We attempt to overcome this
problem by comparing the ADP solution to some good heuristic solutions which we describe
in Section 3.4. This stands in contrast to the problem of pricing American options where we
were able to compute upper bounds on the true value function.

Finally, we compare the work here with the recent work by Brandt et al (2001) who
also solve portfolio optimization problems using ADP techniques.! This leads to possible
suggestions for improving these algorithms and it also highlights the importance of accurately
assessing the quality of an ADP solution.

In Section 3.2 we describe the portfolio optimization problem in more detail before de-
scribing the solution approach in Section 3.3. We present our numerical results in Section

10ther work in portfolio optimization that employs reinforcement learning and approximate dynamic
programming techniques includes Neuneier (1996), Moody et al (1998) and Van Roy (1999). However, the
paper by Brandt et al (2001) is easily the most closely related to the work in this chapter.
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3.4 and conclude with suggestions for further research in Section 3.5.

3.2 Problem Formulation

We assume that the agent’s utility function over terminal wealth is given by a power utility
function, u( . ), so that

(WT + HT)I_'Y
11—

U(WT, HT) =

where v > 0 is the coefficient of relative risk aversion (CRRA). W, and H, are the values of
the agent’s liquid wealth and non-traded asset respectively, at time ¢, so that W, + H, is the
total wealth at time z. We assume that trading takes place at discrete points in time and we
use h to denote the length of the interval between trades.

The value function at time ¢, J( . ), is a function of X, where X, is the five-dimensional
state vector given by

Xt = [Wt Ht Y;g T St]. (321)

The term Y; in (3.2.1) is the flow of labour income that the agent receives at time # so that
the agent receives Y;h immediately prior to trading at time ¢ + h. As mentioned above, r,
and s; respectively denote the short-term interest rate and Sharpe ratio of the risky asset.

Letting R; = log(r;) and S; = log(s;), the evolution of the state variables is described by
the following stochastic differential equations 2

dH, = ppH;dt+opgH, dBY

dY, = pyY; dt+oyY, dBY
th = _)\R(Rt - R) dt +op ng%
dS; = —Xs(S;—S) dt+ o5 dB’

where dB; dBtj = p;j dt. The price of the risky asset, P, is described by

dP, = (ry+ opsy) P, dt + opP, dBF

2Since trading occurs at discrete intervals we could equally well use discrete versions of all the stochastic
processes.
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and the budget constraint implies that the evolution of liquid wealth is given by
th = ([Tt + 0tUP3t]Wt + Y;) dt + gtWtUP dBtP (322)

where 6 is the proportion of liquid wealth that is invested in the risky asset at time ¢. Since
power utility is not defined over negative wealth and since trading occurs only at discrete
intervals, it is necessary to impose the constraint that 6; € [0,1] for all . This constraint is
typical of the situation that many individuals face in practice.

Using It6’s Lemma, it is easily seen that

2
o
Hyn = HtGXP( po — —H)h +og(Bii,— BtH)) (3.2.3)

Yieh = Y4 eXP((MY — Dh+oy(Bliy — Bty)) (3.2.4)
_ t+h
Teyh = €Xp (R(l — e My 4 g ARRR, 4 gpe Rl / e ARY dBf) (3.2.5)

t

_ t+h
Styh = exp (S(l — e‘ASh) + e shG, 4 ggesltth) / e Asu dBf) (3.2.6)
t

2
o
P, = P exp((rt 4+ opSs — TP)h + O'p(Bg:_h — Btp)). (3.2.7)

We note that conditional on information at time ¢, the state variables at time ¢ + h are
all log-normally distributed and that their means and covariances are easily calculated.
The portfolio optimization problem is now given by

(Wr + HT)M] (3.2.8)

max Eo[ 1=~

BtE[O,l]

subject to the evolution of the state variables given by (3.2.3) to (3.2.7), and the discrete
analogue of the budget constraint in (3.2.2).

Before describing the ADP algorithm, we note a standard property of the true value
function that is commonly used in portfolio optimization problems and one that will assist
us in choosing a suitable approximation architecture for the value function. The property
states that we can scale some of the variables in the value function so as to reduce the
dimensionality of the problem by one. It relies on the fact that we are assuming power
utility and implies that we may write

th K (Ht Yi 1y St)

Jt(Wt,Ht,Y.hTt)St) 1— W W

(3.2.9)
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for some function g,( . ).? This is easily confirmed either by considering the Bellman equation
or, in continuous time, by examining the HJB partial differential equation.

3.3 Approximate Value Iteration

The ADP algorithm we use is almost identical to that used in Chapter 2. We begin by
choosing the approximation architecture that we use to approximate the true value function.
Equation (3.2.9) implies that approximating J;( . ) amounts to approximating g:( . ) so that
we need to estimate the four-dimensional function g;( . ) as opposed to the five-dimensional
value function.

We use the set of polynomial functions in V; that are of degree less than or equal to n,
where

Vv, = [% %,n, st]. (3.3.10)

We consider values of n equal to 1, 2 and 3. These give rise to linear, quadratic and cubic
approximations to g;( . ) respectively. For ease of exposition, we only describe the linear
case but the quadratic and cubic cases are analagous though somewhat more expensive from
a computational viewpoint.

If we assume a set of linear basis functions for the approximation architecture, then we
approximate J;( . ) with

=~ w7 H Y,
Jt(VVt,Ht,Y;g,Tt,St) = 1 ¢ (bo"‘blwz +b2Wt +b3rt+b45t) (3311)
t

so that selecting Jy is equivalent to selecting the b;’s.*

The next step is to determine a set of training points {X;} for each t and fori = 1,..., N,
where we recall that X; denotes a vector of state variables Wy Hy Yy 1y s4]. The training
points are obtained by simulating N paths beginning from the initial state vector, X,;. A
potential difficulty that arises is the endogeneity of the liquid wealth, W,. In order to simulate
sample values of W;, we need to use some trading strategy. If the trading strategy is not
close to optimal then our training points may not be sufficiently representative of the sample
space and result in a poor ADP solution. We overcome this by using a good heuristic trading
strategy which we describe in Section 3.4 to generate the training points. In order to ensure
that these training points are in fact ‘good’ we could also use each training point to generate
an additional training point. For example, if [W, H, Y; r, s¢| is a training point that we
obtain from following a particular heuristic trading strategy, then the additional training

3We could also have chosen to scale by H¢ or Y} in (3.2.9), but for the purpose of selecting a good strategy,
it is more convenient to scale by W;.
4The b;’s depend of course on t, but we suppress this dependence for notational simplicity.
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point might be [Wy(1 + ¢) H, Y; ¢ s;] where ¢ > 0 is some constant. We found that this
procedure for selecting training points did not produce an improvement to the results of
Section 3.4, thereby suggesting that the heuristic strategy we used was sufficiently close to
optimal for the purpose of selecting training points.

The third step in the algorithm is to perform an approximate value iteration. Beginning
with ¢t = T — h, we find the optimal strategy at each training point, X?. This is equivalent
to finding @(X}), the proportion of liquid wealth that is invested in the risky asset. This
is done by approximating the term W, ~7/(1 — ) in the approximate value function with a

second order Taylor expansion and is described in further detail in Section 3.3.1.

Once 8,(X!) has been found, we need to estimate J;(X;). This is done by simulating
successor points to X7, assuming that 8;(X}) of W has been invested at time ¢ in the risky
asset. Using the time ¢ + h approximation to the value function®, jt+h( . ), We average
Juin( . ) over all successor points and take this average as our estimate for Ji(X}). This
estimate is denoted by J,(X}).

Of course, we are not restricted to using Monte Carlo simulation for generating the
successor points. As was the case with the problem of pricing American options, we used
low discrepancy sequences to generate the successor points in the numerical results of Section
3.4.

When the estimates J;(X?) have been determined, we determine the b;’s in (3.3.11) by
regressing the Jy(X?)s (scaled by W, /(1 — 7)) on the basis functions in (3.3.10).

With J;( . ) now determined, we move to time t—h in the usual manner of value iteration,
and continue until we have found jh( . ). At this point, we could proceed to find fo( ),
and use this as an estimate of the value function. However, we can say very little about the
quality of this estimate. Instead, we simulate the strategy as determined by {Ji( . )} and
use the simulations to construct an estimate of the value function. Since this is a feasible
adapted trading strategy, the expected value from following the strategy constitutes a lower
bound on the optimal value function. The estimate that we obtain from simulating the
strategy is therefore an unbiased lower bound and this is the value that we report in the
numerical results of Section 3.4. N

We now describe the procedure for computing 6;(X}) using the estimated value function,

Teen( ).

3.3.1 Quadratic Approximations to the Value Function

The approximate dynamic programming algorithm of the previous section requires the com-
putation of 8;(X?) at each training point, X;. This is also true when we wish to simulate
the ADP solution. It is therefore desirable that we be able to compute 8,(X}) (or an ap-
proximation to it) very quickly. Unfortunately, given the functional form of j;( . ) it is not

possible to find @(XZ) explicitly. One possibility is to use a numerical procedure though this
would typically be quite slow. For the problem we are considering, we might attempt to find

5If t = T — h, then we use the true value function at time { + h =T'.
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@;(th) using an exhaustive search, for example. This would certainly be very slow, however,
and would become impractical for problems where there were several risky assets.

Instead, we use an approximation to J;( . ) that enables us to quickly obtain an explicit
estimate of @(X;) The approximation we use is obtained by replacing terms of the form
W/ in Jy( . ) with quadratic functions in W,.

This type of approximation has also been examined in Brandt et al (2001)%. They
conclude that while the quadratic approximations work well in some contexts, in general
they do not provide a sufficiently good approximation. Instead they suggest using a quartic
approximation to W¢. This gives rise to an implicit equation for @(X:) which they solve
iteratively, using the quadratic solution as a starting point for the iteration.

There are a number of reasons for why we use the quadratic approximation in this chapter.
First, the solution to the quadratic approximation can be found much more quickly than the
solution to the quartic approximation. (Later we will describe some situations where being
able to solve the problem quickly might be important.)

Second, when Brandt et al take the quadratic approximation at time t + h, say, they
expand about the point W;exp(rih). This is a somewhat naive expansion since Wy, will
typically be larger than W exp(r;h). In fact, Wi, may actually be considerably larger than
Wi exp(r:h) when h, the interval between trading, is large. Instead, better results might be
obtained by expanding about W, where W,,, is the expected wealth at time ¢+ h when a
good heuristic strategy is chosen at time ¢. This is the expansion that we use in this chapter
and we shall see in Section 3.4 that it often results in a significantly superior solution.

Of course a third reason for exploring the quadratic expansion is that we would like to
test it on a class of a problems for which it hasn’t been used before. In fact we shall see that
some of the qualitative properties of the quadratic solution that were found by Brandt et al
(2001) are reversed in Section 3.4. We now describe the quadratic expansion in more detail.

Assume that at time { the state vector is given by X, and that we would like to find
@(Xt). We do this using J;;p, which, as before, is given by’

1-7y
Jerh(Wehs Hesn, Yern, Tens s14n) = 1 t_+i’y (bo + b1

1—y

Wi Wi
= 1_~ (bo + baryqn + b43t+h) + 1=~ (bl-Ht+h + b2Yt+h)

H Y;
t+h + bz t+h

b b )
Wiin Wisn T 08Tth + Daseh

8See Brandt et al (2001) for other references to work that studies quadratic approximations to utility
functions in portfolio optimization problems.

_ 1—y
"When t + h = T then we know Jr(Wrp,Hr) = W—17'_l,y—1 (1 + %’TL) . However, in order to compute

5T_h(XT_h) explicitly, we instead use an approximation to Jy. This is done by substituting a cubic poly-

y
nomial for (1 + %%) in the expression for Jr. This cubic approximation is used regardless of whether
or not the basis function we use in estimating J; for t < T — h are linear, quadratic or cubic polynomials.
Of course, there is no particular reason to choose a cubic. Indeed, a higher order polynomial could have

been chosen and we could still compute §T_h(XT_h) explicitly since the state variables are log-normally
distributed.
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We now approximate th1+—h~y and W}, with second order Taylor expansions where we expand
about

Wy = Wt(u(Xt)e(”“P”)h +(1- ,u(Xt))e”h) +Yih. (3.3.12)

The term p(X;) in (3.3.12) is the fraction of wealth invested in the risky asset by a ‘good’
heuristic trading strategy which we describe in Section 3.4. In particular, we have

th-l-_h7 V(1 +7)—

1- e T, 71
1—~ ~ m—_’)’)th T (1 =) Wen | Wi — §Wt+h W

t+h

and

Wi Y+ + D) = 1+ - Y1+ 92
1%}; ~ 20 =) Wt+h7——(1—_T)Wt+h7 Wt+h+—(——lwt+h7

‘Simplifying our notation, we write

W
TL_J% ~ q(X) + @2(Xe) Wign + 63(Xe) Wiy,
Wiin

T 04(Xe) + a5 (Xe) Wogn + ¢6(X3) Wi

Q

so that

JerhWern, Hirn, Yeihs Ten, Strn) R Jign (Wt+h; Hin, Yiths Tith, 5t+h)

@1 (Xe) + q2(Xt) Wegn + a3(Xe) Wiy

( )
+ (Q4 (X:) + g5(Xs) Wein + ¢6(X2) Wt2+h) (blHt+h + sz't+h)

b() + b37't+h + b4'9t+h)

Estimating @(Xt) now amounts to solving the first order conditions for

GIYEI[%EE] E; [Jt+h,(Wt+h.; Hyn, Yign, Tean, 3t+h)] :
i )
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These conditions are easily solved explicitly®.

3.4 Numerical Results

In this section we describe the numerical results that were obtained using the ADP algorithm
of Section 3.3. In order to assess the quality of the ADP solutions it is necessary to have
some benchmark against which we may judge them. Ideally, we would be able to use the
{Ji}’s to construct lower and upper bounds on the true value function, as was the case in
Chapter 2. The duality gap would then constitute a useful measure of performance. At this
moment, however, we do not know how to compute upper bounds so instead we attempt to
find good heuristic strategies. The benchmark for the ADP solutions will then be whether
or not they outperform the heuristic strategies.

We consider two classes of heuristic strategies, both of which are motivated by the solution
to the standard portfolio optimization problem where the agent has power utility and where
the returns on the risky asset in each time period are independent and identically distributed.
In this case the agent invests a constant fraction of his wealth in the risky asset in each time
period. Since the Sharpe ratio for this problem is constant, we could also say the agent
invests a constant fraction of the Sharpe ratio in the risky asset in each time period. This
observation gives rise to two heuristic strategies. In the first strategy the agent invests a
constant fraction, 6., of his liquid wealth in the risky asset in each time period. In the
second strategy, the agent invests a constant fraction, Cj, of the current Sharpe ratio in the
risky asset in each time period. We refer to these two heuristic strategies as the constant
and Sharpe strategies, respectively. Of course these heuristic strategies are also subject
to the constraint that § € [0,1]. We mention that we expect the constant strategy to be
outperformed by the Sharpe strategy, which in turn should often be close to optimal®. In
the numerical results of this section, the values of 8, and C, that we report are the best
values that we could find. However, the performances of the heursitic strategies are not very
sensitive to 6, and C, so that the values we report are only estimates of the optimal values.

In the following tables, we solve the ADP problem for three different sets of parameters.
For each set, we consider T = 2 and T' = 5 years, and assume that trading takes place
on a quarterly basis. We also consider three different values of the coefficient of relative
risk aversion (CRRA = 2, 5 and 10). Each of the three parameter sets has the following

parameters in common?°.

8The second order conditions should automatically be satisfied if :7;+h is a good approximation to Jyyp
which we assume to be the case.

9We cannot prove this statement of course, so for now it is merely a conjecture.

0No effort was made to estimate these parameters from real data. They were chosen only so that they
appeared ‘reasonable’.

81




Parameter Sets 1,2,3

l ' W, = $100,000 Hy = $50,000 Y, =3$10,000 ro=.05 so= 4

| oy = .15 oy = .2 op = .2 og=5 op=.2
pg =1 py = .08 Ap = .2 Asg = .3
R = log(.05) S = log(.4)
h = .25 Years

The parameter sets only differ in the instantaneous correlations that drive each of the
Brownian motions.

Parameter Set 1
pgy =5 pgr=-—5 pgs=5 pHP = D pyr =10

pys =0 pyp =9 prs =—5 prp=—35 psp=0

Parameter Set 2

pay =5 pur =0 pHS = -O pap = —.25 pyr=.5

pys=0  pyp=—.25 pps=—.20 prp =9 psp =0

Parameter Set 3

py =.75 pur=.7  pus=.T5 pgp=.7  pyr=.7d
pys=.75 pyp=.175 prs=.75 prp=.75  psp=.75

The results for parameter sets 1, 2 and 3 are presented in Tables 3.1 to 3.4, Tables 3.5
to 3.8, and Tables 3.9 to 3.12, respectively. A number of features are worth noting that are
common to the three sets of parameters.

First, it is clear that the solutions based upon using quadratic or cubic basis functions to
approximate the value function significantly outperform the solution based upon linear basis
functions. This is in contrast to Brandt et al (2001) where linear basis function marginally
outperform quadratic basis functions!!. It is also true that the cubic basis functions generally
appear to be superior to the quadratic basis functions though the difference, as measured by
difference in certainty equivalents, is marginal.

A second observation is how the quadratic expansion based upon the ‘good’ heuristic

11This distinction is somewhat ambiguous since Brandt et al (2001) use linear basis functions to estimate
both the value function and derivatives of the value function.
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strategy is superior to the ‘naive’ expansion where W/, is expanded about W; exp(r,h).!2
In some cases the difference between the two appears to be significant. This suggests that
for some of the problems considered by Brandt et al (2001) the ‘good’ quadratic expansion
might actually lead to a solution that is effectively optimal.

As expected for each parameter set, the Sharpe heuristic strategy is always superior to
the constant strategy. The relationship between the Sharpe and ADP strategies is more
interesting, however. For parameter set 1, the best ADP strategy is usually superior to the
Sharpe strategy. However, this fails to be true for parameter set 2 where in some cases the
Sharpe strategy significantly outperforms the best ADP strategy. In addition, the difference
between the two increases as vy, the coefficient of relative risk aversion, increases. The reason
- for this may be explained as follows.

As Brandt et al (2001) point out, there are two opposing effects that occur as vy increases
when we use the quadratic expansion to approximate W}‘Zrh. The first effect is that the
quadratic approximation becomes less accurate as § increases in magnitude and becomes
more negative. On the other hand, as ¢ increases in magnitude (and becomes more negative),
the agent typically wishes to invest less in the risky asset. This has the effect of reducing
the variance of Wy, and so this tends to improve the performance of the approximation.
The net effect for the examples of Brandt et al (2001) is that the ADP solution improves as
7y increases.

For parameter set 2, however, the fraction of liquid wealth invested in the risky asset
increases with . (We can confirm this by computing the average fraction of liquid wealth
held in the risky asset for each value of . However, it may also be confirmed by observing
how the values of C; increase with + in Tables 3.5 and 3.7.) This is due to a hedging effect
that is explained by the fact that in parameter set 2, pgp and pyp are both negative. As
a result, a more risk averse investor will seek to hedge more and for parameter set 2, this
has the net effect of causing the more risk averse investor to invest more in the risky asset.
As a result, the ADP solutions for parameter set 2 deteriorate with v. Furthermore, they
do not do nearly as well as the ADP solutions of parameter set 1 when compared to the
heuristic strategies. Again, this may be explained by the negativity of pgp and pyp in
parameter set 2 which causes agents to hold more of the risky asset. We can also confirm
these observation by considering Tables 3.9 to 3.12 where parameter set 3 was used. For
these tables, pyp = pyp = .75 which is larger than their common value of .5 in parameter set
L. In this case we would expect the large positive correlation of P, with H; and Y to have the
effect of reducing the holdings in the risky asset thereby improving the performance of the
ADP solutions. This may be confirmed by observing how the ADP solutions of parameter
set 3 do considerably better than parameter sets 1 and 2 when compared to their respective
heuristic strategies.

So far we have suggested that the quadratic approximation to Wtih is responsible when
the ADP solution does not do as well as the Sharpe strategy. In addition to the explanations
provided above we also confirmed this by examining other possible sources of error. For
example when we increased the number of training points we found that there was little or
no improvement in the ADP solution. This was also the case when we increased the number

12The ‘good’ heuristic strategy that we use in this section is the best of the two heuristic strategies that
we consider. In every case, this turns out to be the Sharpe strategy.

83




of points in the low discrepancy sequence that were used for training point evaluation®®.

Another possible explanation for why the Sharpe strategy sometimes outperforms the
ADP strategy is error propagation. This refers to the phenomenon where errors in estimating
the value function are propagated back in time during the approximate value iteration.'* This
propagation would have the cumulative effect of magnifying errors so that the estimate of
Vi( . ) deteriorates in quality as ¢ decreases. However, as may be seen from the mean R?
values that are reported, it is unlikely that error propagation could be entirely responsible.
For example, even in Table 3.8 when CRRA = 2 the mean R? value was 99.998%. Since
there are 20 trading intervals, this might suggest'® that the total propagated error in any
one period is bounded by 1 — 9999820 = 04%. It seems unlikely that this could account
for the fact that the Sharpe strategy outperforms the best ADP strategy by approximately
$900.

In general, the R? values appear to be very good. It is also worth mentioning that when
the R2 values are not very good then it may be the case that the quadratic approximation
to W}, is again to blame. The reason for this is that poorer estimates of 0;(X;) will result

in poorer estimates of :ft(Xt). This in turn might result in an approximation :ft( . ) that is
not very smooth and therefore difficult to approximate with our set of basis functions.

Evidence for this conjecture is provided by the fact that for all three sets of parameters,
the mean R? values decrease as the CRRA increases. Admittedly, this relationship between
R? and v could be explained if J( . ) became less smooth, and therefore ‘harder’ to approxi-
mate as the CRRA increases. In that event we might then expect the cubic approximations
to outperform the quadratic approximations when v = 10. There is no evidence in the data,
however, to support this conclusion. It therefore appears to be the case that the quadratic
approximation is the dominant source or error in the ADP algorithm.

3.5 Conclusions and Further Research

In this chapter we have discussed some of the issues that arise when we use approximate
dynamic programming algorithms to solve portfolio optimization problems. We have seen
how identifying good heuristic strategies can significantly improve the performance of the
quadratic expansion method for finding 0,(X;). The same heuristic strategy should also
prove useful when a quartic expansion is used.

From a qualitative viewpoint, we have shown that some of the properties observed by
Brandt et al (2001) do not necessarily generalize to other classes of problems. For example,
we saw that using quadratic or cubic basis functions instead of linear basis functions for

13 A]] of the results in this section were obtained using 2500 training points at each time period and using
1500 low discrepancy points for each training point evaluation.

14We use the term ‘error propagation’ here to refer mainly to errors that are made due to a poor choice
of approximation architecture. This appears to be the type of error propagation that concerns Brandt et
al (2001) and is the reason for why their algorithm is quadratic in the number of trading periods. Of
course, errors due to poor choices of 6;(X;) will also cause errors to propagate. Such errors, however, can be
minimized if good estimates of 8;(X;) can be found.

150f course this is merely a back of the envelope type calculation and may not be possible to justify
rigorously.
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value function approximation can often result in a significantly superior solution. We also
saw that the performance of the quadratic approximation need not necessarily improve as
the coefficient of relative risk aversion increases.

An important conclusion we can therefore draw from this work is that a particular prop-
erty of an ADP solution may not hold when applied to a different portfolio optimization
problem. This merely emphasizes the importance of being able to construct lower and upper
bounds on the true value function since we cannot conclude that an algorithm will work well
on all portfolio optimization problems simply because it works well on a subset of them.
Using approximate dynamic programming solutions to construct upper bounds on the true
value function is a subject of ongoing research.

At this point we can also conjecture that an improved ADP algorithm could be found
by using the best features of this work and Brandt et al (2001). This algorithm would use
the quartic expansion and regression methods of Brandt et al (2001)'®. However, instead of
expanding VVt‘Zrh about W, exp(r:h), a good heuristic strategy should be used to determine
the particular quartic expansion that is used. ’

It would also seem wise to use quadratic or cubic polnomials in the state variables as
basis functions for approximating the value function. While Brandt et al (2001) found that
linear basis functions performed best, they were only marginally superior to quadratic basis
functions. On the other hand, in this chapter we found that quadratic and cubic basis
functions significantly outperform linear basis functions'”.

Finally, the algorithm could either use the value iteration procedure of this chapter, or
instead use the methodology of Brandt et al (2001) which aims to avoid propagation of
errors when estimating the value function. Their methodology, however, is quadratic in the
number of trading intervals. As we have pointed out, it is not at all clear that a significant
propagation of errors takes place when we carry out approximate value iteration. If this is
the case, and computational efficiency is a consideration, then approximate value iteration
may well be superior'®. This is also a possible direction for future research.

'6The regression procedure of Brandt et al (2001) effectively combines the training point evaluation and
linear regression into a single step and should be quicker than the method we describe in this chapter. We
did riot use this method here as our focus at this point is not on computational efficiency.

17Tt should be pointed out that when Brandt et al (2001) compare linear and quadratic basis function,
they do so using the quartic expansion to compute @;(Xt). It remains to be seen if their conclusion would
still hold had they instead used a quadratic expansion.

18There are a number of possible situations where computational efficiency could be important. For
example, a hedge fund using this methodology might wish to be able to react very quickly to sudden changes
in the economic environment. As a second example, a financial institution may want to solve its clients’
portfolio optimization problems and trade according to the solutions they obtain. In this scenario, the
institution would need to solve many portfolio optimization problems and so computational efficiency would
again be a factor.
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Table 3.1: Heuristic Strategies: Parameter Set 1, 7' =2 Years

Table 3.1 contains approximate 95% confidence intervals for the certainty equivalents of the two
heuristic trading strategies for each of three different power utility utility functions (CRRA =
2,5,10). The column ‘Constant’ refers to the best constant proportion (0.) trading strategy while
the column ‘Sharpe’ refers to the best strategy that invests a constant fraction (Cs) of the current
Sharpe ratio in the risky asset. The second row in each panel contains the constants f. and Cs,
respectively. The certainty equivalents are computed by simulating each strategy along 4 million
sample paths.

The other parameters are as given in parameter set 1 with T' = 2 years.

CRRA Constant Sharpe
2 [205490, 205584]  [205690, 205779]
1.00 1.23
5 [194896, 194950]  [195842, 195899]
0.44 1.12 .
10 (189971, 190005)  [190303, 190339)
0.13 0.74

Table 3.2: ADP Strategies: Parameter Set 1, T' = 2 Years

Table 3.2 contains approximate 95% confidence intervals for the certainty equivalents of the ADP
strategies for each of three different power utility utility functions (CRRA = 2,5,10). There are two
classes of ADP strategies. In the first class the optimal fraction of wealth that is invested in the
risky asset at time ¢ is computed using a quadratic expansion of the estimated value function about
W, exp(r¢h). The second class uses a quadratic expansion about W;exp(Rih) where exp(R;h) is
the expected return from the heuristic Sharpe strategy. Within each class, there are three strategies
corresponding to the linear, quadratic and cubic approximations to the value function. The second
row of each panel contains the average R? value where the average is taken over each of the
regressions that are used to estimate the value function from ¢ = h to t = T — h. The certainty
equivalents are computed by simulating each strategy along 4 million sample paths.

The other parameters are as given in parameter set 1 with T' = 2 years.

Expansion About W; eTth Expansion About W; efish
CRRA Linear Quadratic Cubic Linear Quadratic Cubic
2 [ 204978, 205066] [ 205688, 205777] [ 205688, 205776] | [ 205188, 205277] [ 205692, 205781] [ 205692, 205781]
99.669 99.996 99.999 99.723 99.996 99.999
5 [ 104711, 104767] [ 195692, 195742] [ 105809, 195861] | [ 194981, 105040] [ 195838, 195891] [ 195872, 105026]
99.267 99.971 99.998 99.293 99.970 99.998 :
10 [ 189808, 189845] [ 190319, 190351] [ 190307, 190341] | [ 189883, 189920] [ 190367, 190400] [ 190356, 190390]
97.828 99.767 99.972 97.822 99.766 99.976
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‘Table 3.3: Heuristic Strategies: Parameter Set 1, T = 5 Years

Table 3.3 contains approximate 95% confidence intervals for the certainty equivalents of the two
heuristic trading strategies for each of three different power utility utility functions (CRRA =
2,5,10). The column ‘Constant’ refers to the best constant proportion (6.) trading strategy while
the column ‘Sharpe’ refers to the best strategy that invests a constant fraction (Cs) of the current
Sharpe ratio in the risky asset. The second row in each panel contains the constants 0, and Cs,
respectively. The certainty equivalents are computed by simulating each strategy along 4 million
sample paths.

The other parameters are as given in parameter set 1 with 7' =5 years.

CRRA Constant Sharpe
2 [ 323584, 323825] [ 325138, 325362]
1.00 1.22
5 [ 281322, 281462] [ 286614, 286762)
0.45 1.14
10 [ 262822, 262914] [ 264885, 264988]
0.14 0.86

Table 3.4: ADP Strategies: Parameter Set 1, T = 5 Years

Table 3.4 contains approximate 95% confidence intervals for the certainty equivalents of the ADP
strategies for each of three different power utility utility functions (CRRA = 2,5,10). There are two
classes of ADP strategies. In the first class the optimal fraction of wealth that is invested in the
risky asset at time ¢ is computed using a quadratic expansion of the estimated value function about
Wiexp(r¢h). The second class uses a quadratic expansion about W; exp(R$h) where exp(R;h) is
the expected return from the heuristic Sharpe strategy. Within each class, there are three strategies
corresponding to the linear, quadratic and cubic approximations to the value function. The second
row of each panel contains the average R? value where the average is taken over each of the
regressions that are used to estimate the value function from ¢t = h to t = T — h. The certainty
equivalents are computed by simulating each strategy along 4 million sample paths.

The other parameters are as given in parameter set 1 with T = 5 years.

Expansion About W;e™t? Expansion About Wiefts®

CRRA Linear Cubic Linear Cubic

Quadratic

Quadratic

10

[ 315405, 315610]
99.709

[ 279611, 279747)
99.399

[ 263255, 263358]
98.566

[ 325115, 325335)
99.994

[ 285536, 285664]
99.952

[ 264840, 264933]
99.761

[ 325016, 325235]
99.999

[ 286179, 286310]
99.991

[ 264653, 264748)
99,968

[ 316886, 317095]
99.746

[ 281319, 281462
99.402

[ 263783, 263889]
98.484

[ 325149, 325371]
99.994

[ 286527, 286665]
99.950

[ 265108, 265206]
99.744

[ 3825086, 325307]
99.999

[ 286586, 286725]
99.991

[ 265057, 265155]
99.969
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Table 3.5: Heuristic Strategies: Parameter Set 2, T'= 2 Years

Table 3.5 contains approximate 95% confidence intervals for the certainty equivalents of the two
heuristic trading strategies for each of three different power utility utility functions (CRRA =
2,5,10). The column ‘Constant’ refers to the best constant proportion (0.) trading strategy while
the column ‘Sharpe’ refers to the best strategy that invests a constant fraction (Cs) of the current
Sharpe ratio in the risky asset. The second row in each panel contains the constants 0. and Cj,
respectively. The certainty equivalents are computed by simulating each strategy along 4 million
sample paths.

The other parameters are as given in parameter set 2 with 7' = 2 years.

CRRA Constant Sharpe
2 [ 209466, 209545] [ 209514, 209591
1.00 1.64
5 [ 199960, 200020] [ 200878, 200936]
0.73 1.83
10 [ 193737, 193780] [ 194255, 194297]
0.38 1.97

Table 3.6: ADP Strategies: Parameter Set 2, 7' = 2 Years

Table 3.6 contains approximate 95% confidence intervals for the certainty equivalents of the ADP
strategies for each of three different power utility utility functions (CRRA = 2,5,10). There are two
classes of ADP strategies. In the first class the optimal fraction of wealth that is invested in the
risky asset at time ¢ is computed using a quadratic expansion of the estimated value function about
Wy exp(rih). The second class uses a quadratic expansion about W;exp(R¢h) where exp(R;h) is
the expected return from the heuristic Sharpe strategy. Within each class, there are three strategies
corresponding to the linear, quadratic and cubic approximations to the value function. The second
row of each panel contains the average R? value where the average is taken over each of the
regressions that are used to estimate the value function from ¢ = h tot = T — h. The certainty
equivalents are computed by simulating each strategy along 4 million sample paths.

The other parameters are as given in parameter set 2 with 7' = 2 years.

Expansion About WieTth Expansion About WgeR’h
CRRA Linear Quadratic Cubic Linear Quadratic Cubic
2 [ 208217, 208292] [ 209498, 209573] [ 209493, 209568] [ 208446, 208521] [ 209507, 209583] [ 209502, 209578]
99.543 99.992 99.999 99.566 99.992 99.999
5 [ 198305, 108361] [ 200432, 200484] [ 200497, 200548] | [ 198630, 198688] [ 200649, 200704] [ 200721, 200775]
98,259 99.887 99.990 98.274 99.886 99.990
10 [ 191029, 191080] [ 193619, 193658] [ 193754, 193791] [ 191177, 191229] [ 193778, 193819] [ 193953, 193992]
95.840 99.448 99.873 95.671 99.438 99.842
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Table 3.7: Heuristic Strategies: Parameter Set 2, 7= 5 Years

Table 3.7 contains approximate 95% confidence intervals for the certainty equivalents of the two
heuristic trading strategies for each of three different power utility utility functions (CRRA =
2,5,10). The column ‘Constant’ refers to the best constant proportion (6) trading strategy while
the column ‘Sharpe’ refers to the best strategy that invests a constant fraction (Cs) of the current
Sharpe ratio in the risky asset. The second row in each panel contains the constants 6. and Cj,
respectively. The certainty equivalents are computed by simulating each strategy along 4 million
- sample paths.

The other parameters are as given in parameter set 2 with 7' = 2 years.

CRRA Constant Sharpe
2 [ 339161, 339383] [ 339634, 339848]
1.00 1.68
5 [ 297940, 298111] [ 302845, 303008]
0.72 1.91
10 [ 273170, 273310} [ 275877, 276017]
0.36 2.01

Table 3.8: ADP Strategies: Parameter Set 2, T = 5 Years

Table 3.8 contains approximate 95% confidence intervals for the certainty equivalents of the ADP
strategies for each of three different power utility utility functions (CRRA = 2,5,10). There are two
classes of ADP strategies. In the first class the optimal fraction of wealth that is invested in the
risky asset at time ¢ is computed using a quadratic expansion of the estimated value function about
Wi exp(rih). The second class uses a quadratic expansion about W; exp(R:h) where exp(R{h) is
the expected return from the heuristic Sharpe strategy. Within each class, there are three strategies
corresponding to the linear, quadratic and cubic approximations to the value function. The second
row of each panel contains the average R? value where the average is taken over each of the
regressions that are used to estimate the value function from t = h to t = T — h. The certainty
equivalents are computed by simulating each strategy along 4 million sample paths.

The other parameters are as given in parameter set 2 with 7' = 5 years.

Expansion About Wie™t? Expansion About WieFsh
CRRA Linear Quadratic Cubic Linear Quadratic Cubic
2 [ 826812, 327013] [ 338573, 338787] [ 338464, 338677] | [ 328227, 328430] [ 338718, 338933] [ 338577, 338790
99.580 99.978 99.998 99.598 99.978 99.998
5 [ 288046, 288181] [ 295304, 295476) [ 298259, 298400] [ 289920, 290063] [ 296454, 296634] [ 209519, 299669]
08.796 99.808 99.973 98.757 99.801 99.971
10 [ 264233, 264372] [ 262743, 2620912] [ 270234, 270362] | [ 265400, 265551] [ 263536, 263715] [ 270807, 270051]
97.392 99.235 99.807 97.174 99.159 99.782




Table 3.9: Heuristic Strategies: Parameter Set 3, T = 2 Years

Table 3.9 contains approximate 95% confidence intervals for the certainty equivalents of the two
heuristic trading strategies for each of three different power utility utility functions (CRRA =
2,5,10). The column ‘Constant’ refers to the best constant proportion (0.) trading strategy while
the column ‘Sharpe’ refers to the best strategy that invests a constant fraction (Cs) of the current
Sharpe ratio in the risky asset. The second row in each panel contains the constants #. and Cs,
respectively. The certainty equivalents are computed by simulating each strategy along 4 million
sample paths.

The other parameters are as given in parameter set 3 with 7' = 2 years.

CRRA Constant Sharpe
2 [ 202827, 202937] [ 203181, 203283]
1.00 1.09
5 [ 191937, 191986] [ 192494, 192545]
0.24 0.72
10 [ 187842, 187874] [ 187842, 187874]
0.00 0.00

Table 3.10: ADP Strategies: Parameter Set 3, 7' = 2 Years

Table 3.10 contains approximate 95% confidence intervals for the certainty equivalents of the ADP
strategies for each of three different power utility utility functions (CRRA = 2,5,10). There are two
classes of ADP strategies. In the first class the optimal fraction of wealth that is invested in the
risky asset at time ¢ is computed using a quadratic expansion of the estimated value function about
W, exp(rsh). The second class uses a quadratic expansion about W;exp(R;h) where exp(R;h) is
the expected return from the heuristic Sharpe strategy. Within each class, there are three strategies
corresponding to the linear, quadratic and cubic approximations to the value function. The second
row of each panel contains the average R? value where the average is taken over each of the
regressions that are used to estimate the value function from ¢ = h tot = T — h. The certainty
equivalents are computed by simulating each strategy along 4 million sample paths.

The other parameters are as given in parameter set 3 with T' = 2 years.

Expansion About WieTth Expansion About Wy eflsh
CRRA Linear Quadratic Cubic Linear Quadratic Cubic
2 [ 202976, 203078] [ 203174, 203273] [ 203187, 203288] [ 203047, 203148] [ 203184, 203285] [ 203190, 203291]
99.849 99.995 99.998 99.877 99.995 99.998
5 [ 191785, 101832] [ 192579, 192624] [ 192654, 192702) | [ 191871, 101019) [ 192634, 192680] [ 192672, 192720]
99.428 99,982 99.999 99.442 99.982 99.999
10 [ 186719, 186766] [ 187944, 187977] [ 187907, 187941] [ 186719, 186766] [ 187944, 187977] [ 187907, 187941}
96.551 99.629 99.944 96.551 99.629 99.944
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Table 3.11: Heuristic Strategies: Parameter Set 3, 7 = 5 Years

Table 3.11 contains approximate 95% confidence intervals for the certainty equivalents of the two
heuristic trading strategies for each of three different power utility utility functions (CRRA =
2,5,10). The column ‘Constant’ refers to the best constant proportion (.) trading strategy while
the column ‘Sharpe’ refers to the best strategy that invests a constant fraction (C;) of the current
Sharpe ratio in the risky asset. The second row in each panel contains the constants 6, and Cs,
respectively. The certainty equivalents are computed by simulating each strategy along 4 million
sample paths.

The other parameters are as given in parameter set 3 with T' = 5 years.

CRRA Constant Sharpe
2 [ 306357, 306656] [ 309271, 309534]
1.00 1.02
5 [ 264476, 264589] [ 266514, 266632]
0.16 0.56
10 [ 249238, 249330] [ 249238, 249330]
0.00 0.00

Table 3.12: ADP Strategies: Parameter Set 3, T = 5 Years

Table 3.12 contains approximate 95% confidence intervals for the certainty equivalents of the ADP
strategies for each of three different power utility utility functions (CRRA = 2,5,10). There are two
classes of ADP strategies. In the first class the optimal fraction of wealth that is invested in the
risky asset at time ¢ is computed using a quadratic expansion of the estimated value function about
Wyexp(rih). The second class uses a quadratic expansion about W; exp(R$h) where exp(R;h) is
the expected return from the heuristic Sharpe strategy. Within each class, there are three strategies
corresponding to the linear, quadratic and cubic approximations to the value function. The second
row of each panel contains the average R? value where the average is taken over each of the
regressions that are used to estimate the value function from ¢t = A to t = T — h. The certainty
equivalents are computed by simulating each strategy along 4 million sample paths.

The other parameters are as given in parameter set 3 with 7' = 5 years.

Expansion About Wie™t? Expansion About Wyefts?
CRRA Linear Quadratic Cubic Linear Quadratic Cubic
2 [ 303555, 303788] [ 309216, 300468] [ 309315, 309572) ( [ 304564, 304801] [ 309321, 309576] [ 309352, 309611]
99.792 99.995 99.998 . 99.814 99.995 99.998
5 [ 263475, 263616] [ 267233, 267338] [ 267206, 267317] | [ 263740, 263883] [ 267430, 267536] [ 267320, 267432]
99.396 99.965 99.995 99.387 99.964 99.996
10 [ 246640, 246831] [ 248434, 248544] [ 249093, 249188] | [ 246640, 246831] [ 248434, 248544] [ 240093, 249188
97.271 99.556 99.914 97.271 99.556 99.914
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Appendix A

L

Solution of HJB Equations for

Ornstein-Uhlenbeck Processes

In this Appendix, we derive the optimal value function J(-) from the Hamilton-Jacobi-
Bellman equation (1.4.10) for the trending and standard Ornstein-Uhlenbeck processes.

A.1 Trending Ornstein-Uhlenbeck Value Function

We present here the solution to the Hamilton-Jacobi-Bellman equation (1.4.10) of Section.

1.4.2. Recall that this equation is given by:

2
0 = 1\/{}33({‘]1: + Widw <T+wt[—5(Xt—,ut—X0)+p+%—7‘]) +
t

1 1
Ix (—0(Xy — pt — Xo) +p) + iwt202WtzJWW + 502JXX + U2thtJXW} (A1)

Solving for w; and substituting back into A.1 yields the following partial differential equation
(PDE): ’

2
a
0 = JiJww + [—(5(Xt—,ut—Xo) + [1,] IJxJww + ™WilwJww + 7JXXJWW —

0.2 0 0.2
—2—wa — —6(Xt—y,t—X())+‘N+?—T JWJXW —
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(—6(Xt—,ut—Xo)—|-,u+923—r

202

)2
Jiy (A.2)
subject to J(W, X,T) = U(W). We solve this PDE by cohjecturing that
JW, X,t) = UWexplr(T - t)]) exp(a(t) + ()X + ((t)X?)

where a(T) = B(T) = ((T) = 0. Therefore solving the PDE reduces to solving three
ordinary differential equations. We then solve these differential equations for a(t), B(t) and

¢(2).

CRRA Utility

For an investor with the CRRA utility function, U(W) = W?"/y, it is only possible to
solve explicitly for 4(¢) and ((¢). Solving for a(t) required evaluating a number of definite
integrals for which there did not seem to be analytic solutions. These integrals are easy to
solve numerically, however, and it is therefore possible to find a very good numerical solution
to the value function, J(W, X,t). We present here the solutions for 3(t) and ¢(t). Let

e = evI=y L b = 1-VIsy g = G H = e
= (27';1;)‘76 J = 76(22:—25_02) K - _g . ( )
o ? ooy 1=y ’ g

Then §(t) and ((¢) are given by:

_ Vi=7y B
B(t) = 5(a —bexpla(T ) [ (Ht+K~+T+J)

(Ht — K +J —1I)exp(q(T —t)) — 2(K + I)exp (q(T2— t)) J (A.4)

_ 8 [ 1—exp(q(T 1))
) = 202 [ a—bexp(q(T — 1)) ] (A-5)

CARA Utility
For the CARA utility function, U(W) = — exp(—yW) /v, a(t), B(t), ((t) are:

aft) = (t33_ LI (t22' ™ . Ty (t—T) (A.6)

Bt) = A (P =T + Ay (T —1) (A7)
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52 (t-1T)

N A8
¢(t) 5 (A.8)
where
52 ré? 52
M= T T3 T g2 (4.9)
Ay = %2-(602T—2r5T+2u+02—2r) (A.10)
622 o?
r, = F + (E—T) Aq (A].l)
_ op o? o? 52
FQ = ﬁ(ﬂ*‘?"-}‘?) - (7—T>A2 - E‘ (A12)
o oS Y (o) T
3 202 ! 2 2 2 2 '

A.2 Non-Trending Ornstein-Uhlenbeck Value Function

Recall that X; = log P, and let X; satisfy the following stochastic differential equation:

where a and § are both positive. The solution to (A.14) is given by:

Xi = a+ exp(—0t) [Xo — a] + oexp(—dt) /texp(ds) dB; (A.15)

and the corresponding Hamilton-Jacobi-Bellman equation is given by

2
0 = Max [Jt + Wiw ((l—w)r—&u(logP—a)—f—%‘—) +
o? 1o o 2
PJp 7—-7(logP—a) + EWUJWWw +

%PQO'QJPP + WPO'zu)Jpw] . (A16)
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We solve this PDE by conjecturing that the value function is of the form:

JW,X,1) = UW explr(T - £)]) explalt) + BE)X + ¢(1)X?)

where a(T) =

CRRA Utility
For U(W) = W7/, we have the following system of ODE’s:

where

Then

where

dy

dO[_ . Y 0'2 2 A3 AQ 9
@ —7_1[%“7/3*@ ¢
g 2 B gl Ay
i (20%¢ 6)7_1+ o A3§+2G2
¢ 207 e 26 ¢ 8%y
dt -1 v—1 202 (y—1)

Ay, = 215 — 0% — 2a6?

Ay = o*/4 4+ a?8 + 2 — ro? + o%a — 2réa

A3:O'2—27"+

2 (dl + dg) - dl (CS(T_t) + C_S(T_t)) — dg (aes(T"t) + be_s(T_t))

208

v

6y [1—edT1
202 [a — bea(T—)

2A36
2(y=1)o? ’

= 1_\/1—7 )

|

s (aesT=) — pe—s(T-D)

_rar
2(y—1)o02

§(a—y
(1-9)a
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1+T=7
—20
i

(A.17)

(A.18)
(A.19)

(A.20)

(A.21)
(A.22)

(A.23)

(A.24)

(A.25)

(A.26)



To define « (t), let:

h

41

and

I, =

I; =

L =

I5:

Then

alt) =

o? _  _YAs _ QZAYS
w0 2= sy o S = e
2(d1 -I-dz) _ —(d1 +ud2) _ —(d1 —H)dz)
- s P2 = — 5 5 Pz = T

[2(13 (aezs(T_t) — b)]_1

__1 ll a— be—2s(T—t) 1
95 (a2 B\ pe2sT1 ~ a(a— be2(T-1)
-1[1 aes(T—1) 1
25 [b2 (aer(T—t) - b) b (ae2s(T—1) — b)]

[ s(T—t
L il + L tan! \/——aes(T‘t)
2s | b (ae®T=D —b)  b/—ab b

i s(T—t
1 e B N \/——aes(T_t)
25 | a(aeT-H —b)  gy/—ab b

-1 [—a
t -1 - S(T—t)
5 ’———a,b an ( b €

L

1 T

a3 log (e~ — b)
__;1_ 1, —2s(T—t)
TR log (a be )

oy | L 1) _ ) — L og (@ — betTY
52 [aq log (ae b) by log (a be )

Fi[P3 + 0302 + p3ds + 2p1p204 + 2p1p3]5 + 2p2p3ls] +
f2lprid7 + pads + psly] — o’Liy + fst + G

where G is the constant defined by the condition a(T") = 0.
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(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)
(A.35)

(A.36)

(A.37)

(A.38)




CARA Utility

v v vl L |l e

The solution of (A.16) for CARA utility, U(W) = — exp(—yW)/~ is given by:

a(t) =

62
602

(";—T)z(t—T)E‘ + {% (";—r)—i—z] (T —t)* —

A,

53 (T —1)

202

52

5 (5-5) -7 - gy

where the solution is of the form:

JW, X, 1)

U (W explr(T — 1)) exp(a(t) + BE)X + ¢(£)X?) |
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Appendix B

Approximate Q-Value Iteration

In Section 2.3.2 we described the basic algorithm for carrying out the approximate Q-value
iteration. In this section we discuss some aspects of the algorithm in more detail as well
as describing some important improvements to the algorithm that we make. We begin by
discussing a tool from numerical analysis, low discrepancy sequences, and then proceed to
describe how such sequences can be used for both training point selection and evaluation.
Then, after describing the method by which we train the neural network, we proceed to
describe policy fixing and feature extraction, both of which can significantly improve the
algorithm’s performance.

B.1 Low Discrepancy Sequences

A low discrepancy sequence is a deterministic sequence of points that is evenly dispersed in
some fixed domain. Often, and without loss of generality, we take this domain to be the unit
cube [0,1]¢. Because the points in a low discrepancy sequence are evenly dispersed, they are
often used to numerically integrate some function f(.) over [0,1]? so that

‘ N
f(z)dz ~ 2zt F () (B1)
[0,1]4 N
where {y; : 1 =1,..., N}, is aset of N consecutive terms from the low discrepancy sequence.

An important property that low discrepancy sequences possess is that as new terms are
added, the sequence remains evenly dispersed. This property implies that, in contrast to
other numerical integration schemes, the term N in (B1) need not be determined in advance
and can therefore be chosen according to some termination criterion. Because these sequences
are evenly dispersed, their use in numerical integration often results in a rate of convergence
that is much faster than Monte Carlo simulation where the convergence rate is O(ﬁ) For

the technical definition of a low discrepancy sequence and a more detailed introduction to
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their properties and financial applications, see Boyle, Broadie and Glasserman (1997). See
Birge (1994), Joy, Boyle and Tan (1996) and Paskov and Traub (1995) for some of these
applications. : :

In this paper we use low discrepancy sequences for training point selection and training
point evaluation. The low discrepancy sequences are of particular value for training point
evaluation since a good estimate of

E, [Bljil max (h’(Xt+1): Qi (Xt+1))] (B2)

can usually be computed much faster by using a low discrepancy sequence in place of Monte
Carlo simulation.

Even though a low discrepancy point y € [0,1]¢ is deterministic it can be useful to
interpret it as being sampled from a uniform distribution in [0,1]%. With this in mind, it
is then straightforward to convert y into a point, z, that is representative of any random
variable X with cumulative distribution function F(.). For example, suppose X is a d-
dimensional standard normal random variable with correlation matrix equal to the identity.
We can then construct a point z € R? that is representative of X by setting

z=F"'(y) (B3)

where the operation F'~! is taken componentwise in (B3). In finance applications, random
variables are often lognormally distributed, but since transforming a normal random variable
into a lognormal random variable is easy, we can do likewise with z. Therefore, we can
easily convert a d-dimensional low discrepancy sequence into a sequence of points that is
representative of some fixed d-dimensional probability distribution. Hereafter, we will assume
whenever a low discrepancy sequence is used, that the points in the sequence have already
been transformed so that they represent some fixed probability distribution. This probability
distribution will always be a lognormal distribution whose parameters should be clear from
the context.

B.2 Training Point Selection and Evaluation

In the approximate Q-value iteration algorithm of Section 2.3.2, we need to define a set of
training points

Sy:={P},...,P4} for t=1,... K—~1 (B4)

that we use to train the neural networks. In this section we describe how these sets may
be selected. As we use {Qt(Pf), ey Qt(P}vt)'} to train the time ¢ neural network, it makes
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sense that we should choose S; so that it is in some way representative of the distribution
of X;. With this in mind, the obvious solution is to simulate points from the distribution of
X;. This is in the spirit of Longstaff and Schwartz (2000) and Tsitsiklis and Van Roy (2000)
who use simulated trajectories to estimate Q-value functions. We could also use simulated
trajectories to determine Sy, but in so doing, we would be giving up the flexibility of allowing
the number of training points to vary with the exercise period. For this reason, it might be
preferable instead to select S; by simply simulating from the distribution of X; so that S, is
independent of S, for r # ¢.

Another method for choosing the training points is to use a low discrepancy sequence.
Having chosen the number of training points, N say, we simply take N terms from a low
discrepancy sequence and use these as our training points. Our limited experience shows that
both simulation and low discrepancy sequences work very well in practice. The performace
of the low discrepancy sequences, however, appeared to be marginally superior when applied
to the problems we consider in this paper.

For each training point, P}, we need to compute

Bt
By

Qt(Pit) =B, [ max (h(Xt+1): ét+1(Xt+l))] (B5)

where, as mentioned earlier, the E[] operator is intended to approximate the expectation
operator, E[.]. An obvious way of defining E[.] is to set

. [ B ~ B ~
B | g mae (A(Xiin), G ()| = 7o D max (), Qua(a)  (B0)

where the z;’s are drawn randomly from the conditional distribution of X;,;. The problem
with this method is that the rate of convergence to the true expectation is O(\/Lﬁ) which
can be too slow for our purposes. Instead, we use a low discrepancy sequence to generate
the z;’s. We do not choose N in advance but instead use the following termination criterion
adapted from Paskov and Traub (1995).

Let E(N) denote the estimate in (B6) when N low discrepancy points are used. We then
examine F(1000:) for i =1,..., M and terminate either when

E(1000(; + 1)) — E(10004)] < € (BY)

or when ¢ = M, if the condition in (B7) is not satsified for any i < M. In the problems
we consider, € ranges from 5 to 10 cents and M is set equal to 100. We find that using
low discrepancy sequences instead of Monte Carlo simulation for training point evaluation
significantly improves the performance of the algorithm. In the results of Section 2.4 we use
a particular class of low discrepancy sequences, namely Sobol sequences, for both training
point selection and evaluation. This means that our algorithm for estimating the Q-value
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functions is in fact deterministic. Monte Carlo simulation is only employed when we use
the estimated Q-value functions to obtain upper and lower bounds on the true price of the
option. :

B.3 Training the Neural Network

In the approximate Q-value iteration algorithm of Section 2.3.2, we approximate the Q-value
function, @, with a multilayer perceptron, Q,, whose functional form is given by

Qulas ) = 3 r(j)e (b(j) 306, l)x(l») (B8)

Jj=1 =1

where the b(j)’s, 7(j)’s and 7(j, I)’s constitute the parameter vector 3;, and o(.) is the logistic
function so that

ole) = ; +le_m. (BY)

In attempting to find the 3, that minimizes the sum of squares in (2.3.23) it is important to
avoid overfitting the data. Two common methods for addressing this issue are reqularization
and cross validation. When regularization is used, the objective function to be minimized is
given by

¥ (@ - 3P ) + -5 (B10)

where 0 < v < 1, and f(3;) is a function that increases with the magnitude of 3;. The
intuition behind (B10) is that by penalizing large values of f;, the network is penalized
for overfitting. This approach can be justified theoretically but in practice it is difficult to
determine the weight -y that should be applied in (B10).

The approach that we use in this paper is cross validation. This approach requires
the training points to be divided into three sets, namely training, validation and test sets.
Initially, only the training and validation sets are used in the minimization so that the
quantity

S (Qurn - Gurt )’ (B1Y)
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is minimized where the sum in (B11) is taken over points in the training set. The mini-
mization is performed using the Levenberg Marquardt method for least squares optimization
(see Bertsekas and Tsitsiklis 1996). At each iteration of the minimization, the error in the
validation set is also computed and as long as overfitting is not taking place, then the valida-
tion error should decrease along with the training set error. However, if the validation error
starts increasing at any point then it is likely that overfitting is taking place. The algorithm
then terminates if the validation error increases for a prespecified number of iterations, and
B, is then set equal to the value of §3; in the last iteration of the minimization before the
validation error began to increase.

There is one further difficulty with the neural network architecture that needs to be
addressed. The neural network will typically have many local minima and it is often the case
that the algorithm will terminate at a local minimum that is far from the global minimum.
In this case, it is necessary to repeat the minimization again, this time using a different
starting value for G;. This may be repeated until a satisfactory local minimum has been
found. Sometimes a number of good local minima are available and when this occurs, the
test set can be used to determine the optimal 3;. The test set may also be used for other
diagnostic and model checking purposes. B

We use this training algorithm for finding Qx_1. For the remaining Q-value functions,
however, the problem is now somewhat simplified since it is usually the case that Q; ~ ét_l.
We can therefore use Bt as the initial solution for training the time ¢ — 1 neural network. In
practice, this means that the other neural networks can be trained very quickly and that we
only need to perform the minimization once. It also means that we can dispense with the
need for having a test set for all but the terminal neural network.

B.4 Policy Fixing and Feature Extraction

We can improve the Q-value approximation algorithm considerably by exploiting any useful
problem specific information that we may have. In this section we describe policy fizing,
a term defined by Broadie and Glasserman (1997b), and feature extraction, a widely used
technique in the field of artificial intelligence.

The idea underlying policy fixing is very simple: if we know that the price of the American
option is bounded by some quantity, then this information should be used throughout the
algorithm. For example, the value of the American option is always greater than or equal to
the value of the corresponding European option. It is often the case that the value of this
European option can be computed very quickly, and when this is the case, it makes sense
to use this information. It is also possible that the value of the American option may be
bounded by the value of a different, but related, European or American option. For example,
consider the price of an American option that, upon exercise, pays max(0, S — k) where S
is the maximum of N underlying securities and k is the strike price. Then the value of this
option at time t is bounded below by the value of an American option whose payoff function
is max(0, Sarar — k), where Sazqs is the stock that had the highest value at time . In order
to exploit this kind of information it is necessary to trade off the prospect of better bounds
with the computational time that is required to compute these bounds. Choosing a good
tradeoff is more of an art than a science but a good understanding of the problem should
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usually lead to a good choice.

Once a bound has been chosen, we need to incorporate it into the algorithm. This is
easily achieved. Suppose for example that Q; > b; V. Then we simply redefine (); so that
now

0,(X,) = max (bt(Xt), E, [BBt max (h(XtH),QtH(XtH))D . (B12)

t+1

Similarly, Q¢11(X41) is no longer defined to be equal to the value of the time ¢ + 1 neural
network. Instead, it is set equal to the maximum of the value of the time ¢+ 1 neural network
and bt+1 (Xt+1).

Another technique that can significantly improve performance is feature extraction. Fea-
ture extraction is the process of taking a function, f(.) say, of X, and using f(X;) as an
additional input to the time ¢ neural network. Of course, we can use multiple functions if
necessary. Because of the universal approximation property of the neural network architec-
ture, the idea that feature extraction can be useful seems counterintuitive. After all, from
an informational point of view, we are providing no new information to the neural network.
However, the universal approximation property depends on the neural network, ()¢, contain-
ing an arbitrarily large number of neurons, N say, in order for it to be a sufficiently good
approximation to @;. If we use good features for the neural network, however, the number of
neurons that are required to attain the same degree of approximation will typically be con-
siderably less than N. In practice, we find that adding good features to the neural network
can often result in a considerably more accurate estimate of the option price. For example,
when X; represents the prices of d underlying stocks, it is often a good idea to order the
stock prices before using them as inputs to the neural network. Other features that often
prove useful are the same functions that are used for policy fixing. These include European
option prices, the intrinsic value of the option, and sometimes the values of related, but low
dimensional, American options.
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Appendix C

Linear Programming and Dynamic

Programming Bounds

In this appendix we derive the upper bound of Chapter 2 using the linear programming
formulation of dynamic programming problems. We also explore whether or not this bound
for optimal stopping problems might be generalized to finite horizon dynamic programming
problems. First, we introduce some notation.

Suppose that there are T' + 1 dates, {0,1,... , T}, and without loss of generality, that
there are m possible states at each date. We also assume that there is a finite set of controls
available, U = {uy,...,uw}.

Let ¢*(i,u,j) be the immediate payoff if action u is taken in state 1, date t, and the
successor state is state j. Similarly, let p'(i,u, 7) be the probability that the successor state
is state j given action u is taken at date ¢, in state 1.

Denote by J! the value function in state i, time t. We also introduce a terminal state at
date T + 1 so that JT :=0.

Suppose the dynamic program (DP) we are trying to solve is a maximization problem so
that the Bellman equation is

= max Y (i, u, k) (g'Giyu B) + ), t=0,...,T.

k=1

Jt

2

Tt is well known that the DP can be expressed as the following linear program (LP):

T m .
minZwaJf (C1)

t=0 =1
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subject to

m

Ji o> Zpt(i,u,k)(gt(z',u,k)+J,§+1) Vu it=0,...T
k=1
JH =0,

where {w}} is any set of positive weights.! Suppose now that an estimate of the value

function {J}} is available. If we can construct {V}} from {J!} so that {V}!} is feasible for
the LP then V° constitutes an upper bound for J9.2

C.1 Optimal Stopping

In the special case of optimal stopping problems, there are only two possible controls, stop
and continue, so the LP is

T m
minZZJf

t=0 i=1
subject to
JI > g¢'() Vi, t=1,...,T (C2)
Iz Y Ptk Vi, t=1,...,.T. (C3)
k=1

Note that these constraints simply say that the value function is the smallest super-

martingale that dominates the payoff function, g. Now suppose we have {j;t} available that
by construction satisfy (C2).> We then define

Vit = o
VT — JT

VIl = B[V = B [Tt = T+ (B [JE — 1))+

1See, for example, Bertsekas and Tsitsiklis (1996).
>This is easily seen by examining the LP formulation and considering different sets of {w!}.
*Given any approximation, {J¢}, this condition is easily enforced.
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By construction, V' satisfies (C3). It also satisfies (C2) since V* > Jt for all t4 and since we
assumed that J* satisfied (C2). Therefore V° is an upper bound and it is easy to obtain

Theorem 4 An upper bound for the optimal stopping problem is given by

VO =J%+ B> (Bl J' - 7))

t=1

This is precisely the same bound that we obtained in Chapter 2 usng the Optional Sampling
Theorem for Supermartingales. The general linear programming formulation also suggests
the possibility that this bound could be generalized to finite horizon dynamic programming
problems. From a financial engineering point of view, this might be of value since many
portfolio optimization problems, for example, can be formulated as finite horizon dynamic
programming problems.

C.2 Finite Horizon Dynamic Programming

Consider the portfolio optimization problem where there is a finite horizon, 7', and where
lifetime utility is derived from intertemporal consumption and terminal wealth. We let ¢*
denote the intertemporal consumption at time ¢ and let E;* denote the conditional expected

value given time ¢ information and assuming that strategy s; is used at date ¢.
The LP then takes the form

T m
minY "3
t=0 i=1
subject to
m

Zpt(i, u, k)g'(G,u) + JETY] Vo, 4, t=0,...T (C4)
k=1

Jt

2

v

JT+1 _

Assuming that we have an approximate solution, J, available that satisfies j;-T = g7 (i,u) =

4This may be seen using induction starting at ¢t = T'.
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97 (4) = JT for all u, we proceed to construct a feasible solution, V, to (C4). We define

VT—I—] O
vio= Jt

VI = BT VI = BT 4 T - T 4 max (B (g + Tt — T (C5)

where the action bs,_; at date ¢ — 1 is the best action with respect to {p'~' (4, u, k)} and
{V*}. By construction, V satisfies (C4) so that V° is an upper bound for the true value

function.® Note that if Jt = Jt, the true value function, then V* = J* and the upper bound
is in fact tight. The expression for V0 can easily be computed to give

Theorem 5 An upper bound for the dynamic program is given by
—_~ T o~ o~
VOi=J%4 E‘;,S[Z max(E,_[¢"" + J' — J7))H).
t=1

where the strategy bs denotes the strategy that takes action bs; at each date t.

In the special case where there is no intertemporal consumption so that utility is only derived
from terminal wealth we obtain the following LP:

T m
minZZJf

=0 i=1
subject to
Tz Y PG k) It Va6, t=0,...T 1 (C6)
k=1
JE > W@ Vi (C7)
JT+1 0

where u] denotes the utility of terminal wealth in state s.

SNote that if we omit the second and third expressions in the right hand side of (C5) we would still have
a feasible solution. In this case, however, finding V' amounts to solving the dynamic program exactly which
is assumed to be very difficult. Defining V" as in (C5) may make it easy to compute an upper bound, Vj.
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Again, assuming we have available {J*} such that JT satisfies (C7), we can construct
{V*} so that they satisfy (C6) and (C7). We define

VT+1 -0

VT — JT
Vil = BPC VY - BRI - T+ max(Bp [T - ST

By construction (C6) and (C7) are satisfied for all u, i and ¢, so that V9 is an upper bound
for the true value function. As before we can write the upper bound explicitly to get

Corollary 2 An upper bound for the portfolio optimization problem without intertemoral
consumption is given by

. T
Vo= T4 B max(Beal ' = T
t=1

Discussion

Theorem 5 appears to suggest a method for constructing upper bounds for general finite
horizon dynamic programming problems. Having found an approximate solution, J*, we
simply estimate the upper bound using simulation. Unfortunately, we need to simulate with
respect to the measure as determined by bs, and this appears to be difficult since we do
not know {V*}. On the other hand, since we do know {J'} it is very easy to simulate with
respect to the probability measure that is determined by optimizing with respect to ﬁ+1~at
each date, t. We expect this measure to be close to the measure determined by bs if {J*}
is a good approximation. Nevertheless, it is not the appropriate measure and therefore does
not allow us to estimate the upper bound.

One problem where this difficulty can be overcome is when we can replace the measure
determined by bs with another measure, m, so that the expectation under m is at least as
large as the expectation under the measure determined by bs. We can do this for example
in optimal stopping problems where the measure m corresponds to the strategy of never
exercising early. We then retrieve the bound of Theorem 4. Interestingly, this implies that
a superior upper bound for the American option problem than that given in Chapter 2 is
given by Corollary 2. This bound also uses {J*} but we do not seem to be able to estimate
it as we cannot simulate with respect to the correct probability measure.
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