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ABSTRACT

The study of human mutagenesis requires methods of measuring somatic mutations in
normal human tissues and inherited mutations in human populations. Such methods
should permit measurement of rare mutations in the presence of abundant wild-type
copies and should be general to the human genome.

A sensitivity of 2 x 10-6 for point mutations was recently achieved in human cells
using a novel method of target isolation, constant denaturant capillary electrophoresis
(CDCE), and high-fidelity polymerase chain reaction (hifi-PCR) (Li-Sucholeiki and
Thilly, 2000). This method is applicable to 100-base pair (bp) DNA domains juxtaposed
with a naturally occurring domain of a higher melting temperature, or a natural clamp.
Such sequence domains represent about 9% of the human genome.

To permit analysis of rare point mutations in the human genome more generally, this
thesis developed a procedure in which a clamp can be ligated to any 100-bp sequence of
interest. This procedure was combined with the previous method to create a new method
of point mutational analysis that is not dependent on a naturally occurring clamp. To
demonstrate the new method, a sequence with a natural clamp, a part of the human
hypoxanthine-guanine phosphoribosyl transferase (HPRT) gene (cDNA-bp 223-318), was
analyzed using both the natural and ligated clamps.

A sensitivity of 2 x 10-5 in human cells was demonstrated using the ligated clamp as
opposed to 5 x 10-6 using the natural clamp. The sensitivity of the new method using the
ligated clamp was demonstrated to be limited by the fidelity of Pfu DNA polymerase
used for PCR. The sequence of the ligated clamp accounted for the differences in
sensitivity as a result of causing a decreased efficiency of mutant enrichment by CDCE.

The new method can be applied to measure somatic mutations in normal human
tissues, such as lung tissues, in which point mutations at fractions above 10-5 have been
observed. This method can also detect predominant inherited mutations even for genes
carrying recessive deleterious alleles in pooled samples derived from a large number of
individuals.

Thesis Advisor:
Title:

William G. Thilly
Professor of Toxicology
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1 INTRODUCTION

Many mutations have been found in both inherited and somatic cases of human

disease (Bos, 1989; Kogelnik et aI., 1998; Beroud et aI., 2000; Krawczak et aI., 2000).

However, causes of human mutation are yet to be determined. Possible sources of human

mutation are exogenous agents, endogenous metabolites, and DNA replication errors

(Lindahl, 1993; Greenblatt et aI., 1994; Coller and Thilly, 1998; Hussain and Harris,

1998; Krawczak et aI., 1998; Loeb and Loeb, 2000).

It has been hypothesized that if environmental agents are the primary cause of human

mutation, agent-specific distributions of mutations in a given DNA sequence are expected

in individuals exposed to these agents (Cariello and Thilly, 1986; Thilly, 1993; Coller

and Thilly, 1994). However, testing such a hypothesis is hindered by the lack of

genotype-based methods of measuring somatic mutations in normal tissues. Such

methods should permit measurement of rare mutations in the presence of their abundant

wild-type and should be general to the human genome. Methods that can fulfill these

requirements should also allow analysis of inherited mutations in pooled samples derived

from a large number of individuals.

The ability to analyze mutations based on their genotype, rather than phenotype, offers

a larger pool of target genes and tissues. Most phenotype-based methods are only

applicable to cultured cells and to certain tissue types, the cells of which can be grown in

vitro (e.g., blood). In addition, phenotype-based methods are limited to selectable genes.

Thus, genotype-based methods are the methods of choice. However, genotype-based

point mutation detection methods for rare mutational analysis offer a small target size of

1- to 6-base pairs (bp) (Aguilar et aI., 1994; Hussain et aI., 1994; Nakazawa et aI., 1994;

Ouhtit et aI., 1997; Wilson et aI., 2000).

For genotype-based mutational analysis of a larger target size of about 100-bp, our

laboratory has developed a method called constant denaturant capillary electrophoresis

(CDCE) (Khrapko et aI., 1994a). CDCE differentiates mutant from wild-type sequences

based on differences in their melting temperatures. When combined with additional

techniques, CDCE allows detection of point mutations in a variety of human samples

(Khrapko et aI., 1997a; Li-Sucholeiki and Thilly, 2000; Kim et aI., 2001). A recent
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technological development in which CDCE is combined with target isolation and high

fidelity polymerase chain reaction (hifi-PCR) allows analysis of mutations at fractions as

low as 10-6 (Li-Sucholeiki and Thilly, 2000). This development can be applied to only

those DNA sequences with a natural clamp, representing about 9% of the human genome.

For genotype-based mutational analysis of a larger target-pool size, this thesis presents

a further technological development, a combined method of clamp ligation and target

isolation/CDCE/hifi-PCR. This development opens up an additional 89% of the human

genome suitable for analysis of rare point mutations. This combined method may allow

understanding of human point mutagenesis by performing mutational analysis in a variety

of human samples, including normal tissues.
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2 LITERATURE REVIEW

2.1 Mutational spectra

Understanding of human mutagenesis requires mutational analysis in humans. Section

2.1.1 defines mutational spectra and discusses how mutational spectra can be used to

understand human mutagenesis. Sections 2.1.2 and 2.1.3 review studies on point

mutational spectra observed in a variety of human samples.

2.1.1 Definition and purpose of analysis

Benzer and Freese (1958), followed by Benzer (1961), primarily demonstrated

mutational spectra, distributions of mutations with regard to position, kind, and frequency

in a given DNA sequence. In these studies, each test mutagen was shown to induce a

nonrandom distribution of mutations in the rII region of the phage T4 genome. These

studies also showed that the induced mutations appear more frequently than expected by

chance, called hotspot mutations. Since these studies, analysis of mutational spectra has

been extended to bacteria, yeast, as well as human cells and tissues (Coulondre and

Miller, 1977; Armstrong and Kunz, 1990; Cariello et aI., 1990; Khrapko et aI., 1997a).

Mutational spectra have been suggested as a tool to understand cause-and-effect

relationships (Cariello and Thilly, 1986; Thilly, 1993; Coller and Thilly, 1994). These

studies proposed that if environmental agents are the primary cause of human mutation,

agent-specific mutational spectra are expected in individuals exposed to these agents.

Exogenous agents, endogenous metabolites, and DNA replication errors have been

hypothesized as possible sources of human mutation (Lindahl, 1993; Greenblatt et aI.,

1994; Coller and Thilly, 1998; Hussain and Harris, 1998; Krawczak et aI., 1998; Loeb

and Loeb, 2000). However, causes of human mutation are yet to be determined. Causes

of human mutation may be revealed by a sensitive and general means of measuring

mutational spectra in a variety of human samples.
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2.1.2 Point mutational spectra in human HPRT gene in vitro

For mutational analysis of a larger pool of target genes and tissues, genotype-based

methods are preferred over phenotype-based methods. Most phenotype-based methods

are only applicable to cultured cells and to certain tissue types, the cells of which can be

grown irl vitro (e.g., blood). In addition, phenotype-based methods are limited to

selectable genes. Despite these limitations, earlier mutational studies have been primarily

based on reference to phenotypic selection. This section reviews studies on point

mutational spectra observed in cultured human cells using the hypoxanthine-guanine

phosphoribosyl transferase (HPRT) gene as a selectable marker.

The human HPRT gene is comprised of 57,OOO-bp and consists of nine exons

(Edwards et aI., 1990). This gene is on the X-chromosome, present as one copy per cell

in males (Stout and Caskey, 1985). Many HPRTmutations have been found to be

associated with inherited cases of human disease, such as Lesch-Nyhan syndrome (Stout

and Caskey, 1985; Mohrenweiser and Jones, 1990; Cariello and Skopek, 1993a;

Krawczak et aI., 2000). This gene is related not only to disease but can be used as a

selectable marker. The HPRT enzyme is involved in the purine salvage pathway,

maintaining purine nucleotide pools in cells (Krenitsky et aI., 1969; Stout and Caskey,

1985). Thus, HPRT mutants that alter physiological function of the gene product can be

selected in vitro by their ability to grow in the presence of purine analogs, such as 6

thioguanine (6TG). 6TG is toxic when incorporated into a cell's DNA (Stout and

Caskey, 1985).

An en masse selection-based method has been developed for analysis of point

mutational spectra in selectable genes, such as HPRT, in vitro (Keohavong and Thilly,

1992a). Human cells are exposed to each test mutagen of a fixed condition, and mutant

cells resistant to a selecting agent (6TG) are en masse selected. After polymerase chain

reaction (PCR) amplification of a chosen target, selected and amplified mutants are

analyzed by denaturing gradient gel electrophoresis (DGGE). DGGE is a DNA

separation technique, which differentiates mutant from wild-type sequences based on

differences in their melting temperatures (Fischer and Lerman, 1983).
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This combined method of en masse selection, PCR, and DGGE allows detection of

mutations, each representing as low as 1% of selected cells (2::10-2
), with statistical

significance (±20% precision) (Keohavong and Thilly, 1992a). The advantage of this en

masse selection-based method over a clone-by-clone approach is its ability to analyze all

detectable point mutations in a chosen target simultaneously. Generating the same

outcome by a clone-by-clone approach requires DNA sequencing of numerous mutant

clones that are individually selected, thereby making the analysis rather laborious.

The combined method of en masse selection, PCR, and DGGE has been applied to

analysis of point mutational spectra in a human lymphoblastoid line, TK6. Figure 1

illustrates the distributions of hotspot point mutations with regard to position, kind, and

frequency in a part of the human HPRT gene. These distributions show that the point

mutational spectra in a cultured human cell system are characterized by test mutagens to

which the system is exposed. The test mutagens are ICR-191, N-methyl-N'-nitro-N

nitrosoguanidine (MNNG), ultraviolet light (UV), and benzo[a]pyrene 7,8-diol-9,10

epoxides (BPDE). Such mutagen-specific mutational spectra are shown to be different

from the spontaneous spectrum (see Figure 1).

More importantly, different mutagen-exposure conditions produce different point

mutational spectra. As Figure 2 shows, the AHH-l human lymphoblastoid line exposed

to benzo[a]pyrene (BP) under conditions differing in concentration and duration

produced dissimilar point mutational spectra.

These results based on phenotypic selection indicate that mutational spectra observed

in cultured human cells treated with a mutagen at high dose(s) for a short term cannot be

used to predict human in vivo mutagenesis. Thus, understanding of human in vivo

mutagenesis requires mutational analysis in human tissues. However, mutation detection

methods based on phenotypic selection are limited to selectable genes, such as HPRT,

and certain tissue types, such as blood. For these reasons, genotype-based methods are

necessary for analysis of mutational spectra in a larger pool of target genes and tissues.
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Figure 1. Mutagen-specific point mutational spectra in human cells (TK6)

Human cells, TK6, were exposed to each test mutagen of a fixed condition or left
untreated. Mutant cells resistant to 6TG were then en masse selected. After peR
amplification of a chosen target, selected and amplified mutants were analyzed by
DGGE. DGGE allows analysis of point mutations with regard to position, kind, and
frequency in a chosen DNA sequence, thereby generating point mutational spectra.

Sources: ICR-191 and MNNG (Cariello et aI., 1990); BPDE (Keohavong and Thilly, 1992b); UV
(Keohavong et aI., 1991); Spontaneous (Oller and Thilly, 1992).

22





Figure 2. BP exposure condition-specific point mutational spectra in human cells
(ARR-I)

Human cells, AHHl, were treated with BP of different concentrations for different
periods of time. Mutant cells resistant to 6TG were then en masse selected. After peR
amplification of a chosen target, selected and amplified mutants were analyzed by
DGGE. DGGE allows analysis of point mutations with regard to position, kind, and
frequency in a chosen DNA sequence, thereby generating point mutational spectra.

Source: Chen and Thilly, 1996.
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2.1.3 Point mutational spectra in human mitochondrial DNA in vitro and in vivo

Using a genotype-based mutation detection method, point mutational spectra in a part

of hllman mitochondrial DNA have been analyzed in a variety of human samples,

including normal tissues (Khrapko et aI., 1997a; Coller et aI., 1998; Marcelino et aI.,

1998). This section reviews studies related to such analysis and summarizes the analysis

results, allowing understanding of human mitochondrial mutagenesis.

The human mitochondrial genome, distinct from ~he nuclear genome, is a circular,

double-stranded DNA of 16, 569-bp, inherited from the mother (Giles et aI., 1980;

Anderson et aI., 1981; Attardi and Schatz, 1988). It encodes for 13 protein subunits that

are involved in synthesizing the respiratory chain complex (Anderson et aI., 1981; Attardi

and Schatz, 1988). It also encodes for 2 ribosomal RNAs (rRNAs) and 22 transfer RNAs

(tRNAs) essential for mitochondrial protein synthesis (Anderson et aI., 1981; Attardi and

Schatz, 1988). Many mitochondrial mutations have been found to be associated with

human aging and disease (Kogelnik et aI., 1998; Chinnery and Turnbull, 1999; Wallace,

1999; Cottrell et aI., 2000).

When analyzing mutations in human samples, two factors make mitochondrial DNA a

more attractive target than nuclear DNA. The first is its ffiulticopy nature: it is present as

a few hundred to a thousand copies per cell (Robin and Wong, 1988; Marcelino et aI.,

1998; Khrapko et aI., 1999). This multicopy nature allows detection of mitochondrial

mutations using a smaller sample size than that necessary for single copy nuclear

mutations. Assuming a thousand mitochondrial DNA copies per cell, a thousand times

smaller sample size is expected to be necessary for detection of mitochondrial mutations

compared to that required for nuclear mutations of the same fraction. The second factor

is the higher mutation rate observed for mitochondrial DNA compared to that for nuclear

DNA (Khrapko et aI., 1997a). This factor is expected to generate higher mitochondrial

mutant fractions in organ tissues. This expectation suggests that a means of analyzing

mitochondrial mutations does not have to be as sensitive as is necessary for nuclear

mutations.

A genotype-based method has been developed for analysis of point mutations in 100

bp multicopy sequences (e.g., ~1000 copies per cell) (Khrapko et al., 1997b). The
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sensitivity of this method is 10-6
, detecting at least 102 copies of each mutant in the

presence of 108 copies of the wild-type. This method is based on constant denaturant gel

electrophoresis (eDGE), hifi-PCR, and CDCE. CDGE (Hovig et aI., 1991) and CDCE

(Khrapko et aI., 1994a), both derived from DGGE, separate mutant from wild-type

sequences based on differences in their melting temperatures.

For mutational analysis by this genotype-based method, human genomic DNA is

restriction digested to liberate a chosen target. Mutations in a chosen target from the

wild-type are then separated by eDGE, followed by elution of these separated mutations.

These separation and elution procedures allow genotype-based enrichment of mutant

sequences relative to the wild-type. Mutant-enriched samples are PCR amplified and are

separated by CDCE for further mutant enrichment. PCR is then performed prior to

mutational analysis by CDCE.

This combined method of CDGE, peR, and CDCE has been applied to measure

mitochondrial point mutational spectra in a variety of human samples (Khrapko et al.,

1997a; Coller et aI., 1998; Marcelino et aI., 1998). In the study of Khrapko et a1. (1997a),

normal human tissues, their derived tumors, and human cells grown under pristine

conditions were analyzed. In all of these samples, the same set of 17 point mutations

with regard to position and kind was observed in a 100-bp mitochondrial sequence. Most

of these mutations are G to A and A to G transitions, with the average mutant fractions

ranging from 10-6 to 4 X 10-4
. When the same mitochondrial sequence was analyzed in

human bronchial epithelial cells of smoking and nonsmoking twins, the same set of 17

point mutations as in Khrapko et a1. (1997a) was observed (Coller et aI., 1998). In

addition, Coller et a1. (1998) observed no increase in the overall mutant fractions in the

smokers' samples compared to those in the nonsmokers'. These studies suggest the

spontaneous origin of the observed human mitochondrial point mutations.

DNA replication errors and endogenous damage have been hypothesized as probable

spontaneous sources of the set of mitochondrial point mutations observed in Khrapko et

a1. (1997a), as well as in Coller et a1. (1998) (Khrapko et aI., 1997a; Marcelino and

Thilly, 1999). To date, one of the hypotheses has been tested using human DNA

polymerase y and using the same mitochondrial sequence studied in Khrapko et al.

(1997a) and Coller et a1. (1998) (Zhang, unpublished results). In this study, about 60% of
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polymerase y-generated hotspot point mutations was determined to be the same as those

observed in Khrapko et a1. (1997a) and Coller et a1. (1998). DNA polymerase y is the

only known polymerase responsible for replicating human mitochondrial DNA (Shadel

and Clayton, 1997).

These mutational studies suggest the spontaneous origin of human mitochondrial

mutation. While the same type of studies remains to be completed for nuclear sequences,

such studies are hindered by the lack of a general and sensitive means of measuring

mutations in normal tissues. A desired means should permit measurement of rare nuclear

mutations in the presence of their abundant wild-type and should be general to the human

genome.

2.2 Nuclear genes associated with human cancer

Mutational analysis of nuclear genes in human tissues is necessary to understand

human nuclear mutagenesis. Proto-oncogenes and tumor suppressor genes are the

primary nuclear genes of interest since many mutations in these genes have been found to

be associated with human cancer (Bos, 1989; Beroud et aI., 2000; Krawczak et aI., 2000).

Cancer is the one of the leading causes of death in the United States (Vital statistics of the

United States). This section reviews studies on these primary nuclear genes of interest.

Oncogenes are mutant forms of their normal genes, proto-oncogenes (Diamandis,

1997). The normal gene products are mainly involved in signaling pathways, positively

regulating cell division (Wynford-Thomas, 1991; Yarbo, 1992; Baserga et aI., 1993).

Mutations in proto-oncogenes can deregulate cell growth by expressing an increased

level of the gene products, leading to malignant transformation (Wynford-Thomas, 1991;

Diarnandis, 1997). Such mutations are called gain-of-function, or activating, mutations

(Haber and Fearon, 1998). Oncogenes are thought to be 'dominant' genes since one

mutated allele is capable of transforming cells (Diamandis, 1997).

Unlike oncogenes, tumor suppressor genes are thought to be 'recessive' genes since

mutations in both alleles are necessary for malignant transformation (Brown, 1997;

Diamandis, 1997). Most tumor suppressor genes are negative regulators of cell growth

and development. Mutations in these genes can free cells from negative growth signals
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and lead to malignant transformation (Weinberg, 1991; Wynford-Thomas, 1991; Yarbro,

1992; Brown, 1997). Such mutations are called loss-af-function, or inactivating,

mutations (Brown, 1997; Haber and Fearon, 1998).

Tables 1 and 2 summarize the characteristics of selected human proto-oncogenes and

tumor suppressor genes, respectively. The major mutation type(s) found in cancer is

specific to each gene. In addition, each gene is associated with one, or multiple cancer

types or multiple genes are associated with one cancer type. Thus, gene, mutation type,

and tissue type of interest should be considered together when planning mutational

analysis in human tissues.

2.3 Nuclear mutations associated with human disease

Many mutations in nuclear genes have been found to be associated with a variety of

human diseases (Beroud et aI., 2000; Krawczak et aI., 2000). Studies on mutations

associated with human disease can be used as a guide when planning mutational analysis

of a variety of human samples, including normal tissues. This section reviews studies on

nuclear mutations found in either inherited or somatic cases of human disease.

2.3.1 Irlherited mutations

A comprehensive core collection of published germline mutations associated with

human disease has been compiled as a database, the Human Gene Mutation Database

(HGMD) (Cooper et aI., 1998; Krawczak et aI., 2000). Somatic gene mutations and

mitochondrial genome mutations are not included in this database. To date, the database

comprises over 20, 000 different mutations, each found in coding, regulatory, or splicing

relevant regions of about 1,000 different nuclear genes.

When the HGMD entries were sorted by mutation type, a hierarchy was found, as

Table 3 summarizes (Cooper et aI., 1998; Krawczak et aI., 2000). Point mutations are the

major mutation type observed. Point mutations include single base-pair substitutions

(70.10/0), as well as small (~20-bp) insertions and deletions (22.50/0). A hierarchy was

also found when the single base-pair substitutions found in gene-coding regions were
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Table 1. Characteristics of selected human proto-oncogenes

Gene Function

K-ras p21 guanine trinucleotide
phosphatase

N-ras p21 guanine trinucleotide
phosphatase

H-ras p21 guanine trinucleotide
phosphatase

EGFR Growth-factor receptor
(ERB-B)

NEU Growth-factor receptor
(ERB-B2)

C-lnyc Transcription factor

N-lnyc Transcription factor

L-lnyc Transcription factor

BCL-2 Antiapotosis protein

eyeD} Cyclin-D, cell-cycle control

BCR-ABL

RET

CDK4

SMO

{3-CAT

HST
PML-RAR

W2A-PBXl

MDM-2
GLI
TTG

Chimaeric non-receptor
tyrosine kinase

Glial-derived neutropic
facotr-receptor tyrosine

kinase
Cyclin-dependent kinase

Transmembrane signaling
molecule in sonic hedgehog

pathway
Transcriptional co-

activator, links E-cadherin
to cytoskeleton
Growth factor

Chimaeric transcription
factor

Chimaeric transcription
factor

P53-binding protein
Transcription factor
Transcription factor

Major mutation
type(s)

Point mutation

Point mutation

Point mutation

Amplification

Amplification

Chromosome
translocation,
amplification
Amplification

Amplification

Chromosome
translocation

Amplification,
chromosome
translocation
Chromosome
translocation

Chromosome
translocation,
point mutation
Amplification,
point mutation
Point mutation

Point mutation,
in-frame
deletion

Amplification
Chromosome
translocation
Chromosome
transIocation

Amplification
Amplification
Chromosome
translocation

Cancer type(s)

Pancreatic, colorectal, lung,
endometrial, other carcinomas

Myeloid leukemia

Bladder

Gliomas, squamous and other
carCInomas

Breast, ovarian, gastric, other
carCInomas

Burkitts' lymphoma, small
cell carcinoma of the lung,

other carcinomas
Neuroblastolna, small-cell

carcinoma of the lung
small-cell carcinoma of the

lung
B-celllymphoma

Breast and other carcinomas,
B-celllymphoma, parathyroid

adenomas
Chronic myelogenous

leukemia, acute lymphocytic
leukemia
Thyroid

Sarcoma

Basal-cell skin

Melanoma, colorectal

Gastric
Acute promyelocytic leukemia

Pre-B acute lymphocytic
leukemia
Sarcoma

Sarcoma, glioma
T-cell acute lymphocytic

leukemia
Adapted from Haber and Fearon, 1998; Verma and Triantafillou, 1998.
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Table 2. Characteristics of selected human tumor suppressor genes

Gene

RBi

p53
APe

WTi
NFl

NF2

pi6

VHL

BRCAl

BRCA2

Function

Transcriptional regulator

Transcription factor
Regulator of ~-catenin

function
Transcription factor

Regulator of G protein
mediated signal

transduction
Juxta-membrane link to

cytoskeleton

Cyelin-dependent kinase
inhibitor

Modulator of RNA
polymerase II
DNA repair

DNA repair

Major mutation
type(s)

Deletion

Point mutation
Truncating
mutation

Point mutation
Truncating
mutation

Truncating
mutation

Truncating
mutation

Truncating and
point mutations

Truncating
mutation

Truncating
mutation

Cancer type(s)

Retinoblastoma,
osteosarcoma, small-cell

lung carcinoma of the
lung, breast, and bladder

50% of all cancers
Colorectal

Wilms' tumor, renal
Melanoma,

neuroblastoma

Schwannomas,
menIngIomas,
ependymomas

Renal, central nervous
system

Breast, ovary

Breast

Adapted from Brown, 1997; Haber and Fearon, 1998; Bennett et aI., 1999; Robertson et aI., 1999.
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Table 3. Number of HGMD entries by mutation type

Mutation type Number of entries (% total)

Single base-pair substitutions 16359 (70.1 %)

Small deletions (~20-bp) 3849 (16.5%)

Small insertions (::=; 20-bp) 1407 (6.0%)

Small indels (~20-bp) 153 (0.70/0)

Repeat variations 30 (0.1 %)

Gross insertions and duplications (~20-bp) 137 (0.6%)

Complex rearrangements (including inversions) 244 (1.0%)

Gross deletions (~ 20-bp) 1166 (5.0%)

Total 23345 (100.0%)

Adapted from Krawczak et aI., 2000 (date of update: Oct., 2001).
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sorted by nucleotides with respect to their propensity to undergo substitution. Table 4

summarizes this hierarchy: G (38.4%) > C (32.2%) > T (17.0%) > A (12.4%) (Krawczak

et aI., 1998). Among these substitutions, transitions (62.5%) are dominant over

transversions (37.50/0) (Krawczak et aI., 1998).

Based on analysis of the HGMD entries, it has been hypothesized that these mutations

are mainly the result of endogenous mutagenic processes (Krawczak et aI., 1998). Such

processes include spontaneous deamination of 5-methylcytosine (5-mC) and

misalignment mutagenesis during DNA synthesis. These processes can potentially

generate point mutations.

Spontaneous deamination of 5-mC has been hypothesized to be a cause of C to T and

G to A transitions at CpG dinucleotides (Krawczak et aI., 1998). These mutations

account for 23% of all HGMD single base-pair substitutions and for 36.90/0 of HGMD

transitions found in gene-coding regions (Krawczak et aI., 1998). In vertebrate genomes,

about 3 to 4% of all cytosines are methylated (5-mC), with 90 to 100% of these 5-mC

occurring in the sequence CpG (Riggs and Jones, 1983; Antequera and Bird, 1993). It

has been shown that 5-mC undergoes spontaneous deamination, forming thymine, at a

rate much higher than the deamination of cytosine, forming uracil (Shen et aI., 1994).

The formed uracil can be removed by uracil-glycosylase (Lindahl, 1982). However, the

formed thymine, when left unrepaired, basepairs with adenine, converting a methyl CpG

sequence into TpG (Antequera and Bird, 1993; Gonzalgo and Jones, 1997). Base

excision repair of U:G mismatches has been shown to be up to 6000-fold more efficient

than that of T:G mismatches when tested with extracts from human tissues (Schmutte et

aI., 1995). In brief, the hypermutability of CpG dinucleotides is likely caused by

spontaneous deamination of 5-mC combined with inefficient repair of the resulting

premutagenic DNA mismatches.

In addition to spontaneous deamination of 5-mC, misalignment mutagenesis during

DNA synthesis has been also hypothesized as a cause of point mutations (Krawczak et

aI., 1998). Eukaryotic DNA polymerases have been shown to generate point mutations in

vitro, presumably as a result of template-primer misalignments in addition to

misincorporation of non-complementary nucleotides (Kunkel, 1990; Kunkel, 1992).

Hotspot mutations have been shown to occur in a given DNA sequence, with mutation
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Table 4. Spectrum of HGMD single base-pair substitutions in gene-coding regionsa

Number of substitutions by

Original T C A G Total (% total)

nucleotide

T 654 271 312 1,237 (17.0%)

C 1,632 (940)b 371 340 2,343 (32.2%)

A 201 163 538 902 (12.40/0)

G 619 453 1,717 (735)C 2,789 (38.40/0)

Total 2,452 1,270 2,359 1,190 7,271 (100.0%)

a Adapted from Krawczak et aI., 1998.
b Number in parentheses is C to T transitions at CpG dinucleotides.
C Number in parenthesis is G to A transitions at CpG dinucleotides.
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rates depending on polymerases and neighboring nucleotides (Kunkel, 1985; Kunkel,

1990; Kunkel, 1992).

Point mutations have also been found to be the major mutation type when germline

mutations associated with human cancer were sorted by type in individual tumor

suppressor genes (Beroud et aI., 2000). Among these point mutations, the predominant

mutations are small deletions in the adenomatous polyposis coli (APC) gene (Laurent

Puig et aI., 1998; Muniappan, unpublished results) and single base-pair substitutions in

the p53 gene (Beroud and Soussi, 1998), as well as in the von Rippel-Lindau (VHL) gene

(Beroud et al., 1998). These predominant point mutations are distributed throughout each

gene-coding region, as Figure 3 illustrates.

While point mutations are not the only mutation type associated with human disease,

analysis of HGMD entries suggests point mutations as the primary mutation type to be

studied. Thus, methods of measuring point mutations are the methods of choice when

planning analysis of inherited mutations in a variety of human samples.

2.3.2 Somatic mutations

Studied on gene-specific mutations associated with human disease can be used as a

guide when choosing a target gene sequence, in addition to the primary mutation type to

be analyzed. This section reviews studies on nuclear gene-specific mutations found in

somatic cases of human cancer.

2.3.2.1 Gene-specific mutations

Published somatic mutations associated with human disease have been compiled as a

database, the Universal Mutation Database (UMD) (Beroud et aI., 2000). This database

allows creating and analyzing gene-specific mutation databases. The UMD has been

adapted to 13 different nuclear genes, most of which are tumor suppressor genes.

When the UMD somatic mutations in tumor suppressor genes in cancer were analyzed

by mutation type, point mutations were observed to be the major type (Beroud et aI.,

2000). However, differences in gene-specific point mutatiol1s have been found when the
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UMD somatic entries were sorted by the following two categories: mutations leading to

truncated proteins (MLTP) and missense mutations (Beroud et aI., 2000) (MLTP includes

nonsense mutations, as well as out of frame deletions and insertions). For example,

MLTP accounts for 95% of the APC mutations, 71 % of the VHL mutations, and 77% of

the WT] mutations (Beroud et aI., 1998; Jeanpierre et aI., 1998; Laurent-Puig et aI., 1998;

Gallou et aI., 1999; Beroud et aI., 2000). Missense mutations account for 80% of the p53

mutations (Beroud and Soussi, 1998; Beroud et aI., 2000). These results suggest that

differential gene-inactivating mechanisms playa role in tumor formation.

In addition to gene-specific mutations, differential gene-mutation distribution is also

observed. For example, the majority of ras mutations found in human cancer are

clustered in a small number of codons (Bas, 1989). On the other hand, other cancer

related gene mutations, such as APC, p53 and VHL, are scattered throughout a larger

number of codons (Beroud et aI., 1998; Laurent-Puig et al., 1998; Hernandez-Boussard et

aI., 1999b). Figure 4 illustrates the distribution of somatic mutations in the APe, p53,

and VHL genes in human cancer.

Analysis of somatic mutations associated with human cancer suggests point mutations

as the primary mutation type to be studied when planning analysis of somatic mutations

in a variety of human samples. In addition, a careful selection of target-gene sequences is

suggested. For certain genes like APe, p53, and VHL, the entire gene-coding regions can

be selected as a target since the observed mutations are scattered throughout each gene

coding region. On the other hand, analysis should be limited to certain parts of gene

coding regions for other genes like ras (the observed ras mutations are clustered in a

small number of codons).

2.3.2.2 p53 mutations

The p53 gene has the highest number of mutations among the gene mutations in the

UMD (Beroud et aI., 2000). For this reason, this section reviews studies related to p53

somatic mutations associated with human cancer. This section focuses on hypotheses

made regarding causes of the p53 mutations and discusses limitations of these studies in

understanding human mutagenesis.
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The human tumor suppressor gene p53 lies on chromosome 17p13 (Levine et al.,

1991; Akashi and Koeffler, 1998). This gene is 20-kb in length and consists of 11 exons,

with the gene product being mainly a negative regulator of the cell cycle (Levine et aI.,

1991; Akashi and Koeffler, 1998). Many p53 mutations have been found to be associated

with various cancer types (Hainaut et aI., 1998; Hernandez-Boussard et aI., 1999b). For

most cancer types, 20 to 50% of cases have been shown to carry ap53 mutation(s)

(Greenblatt et aI., 1994).

One of the databases comprising published p53 mutations associated with human

cancer is maintained at the International Agency for Research on Cancer (IARe), the

IARC p53 mutation database (Hainaut et aI., 1998; Hernandez-Boussard et aI., 1999b).

To date, more than 10,000 somatic p53 mutations have been entered into this database.

Most of these mutations are in the gene-coding region. Among IARe mutations 87.2%

are single base-pair substitutions, and the remaining 12.8% are small insertions and

deletions, as well as complex mutations (Hernandez-Bolissard et aI., 1999b). Over 900/0

of all IARe mutations are clustered within the central portion of the p53 gene-coding

region (Soussi et aI., 1990; Hernandez-Boussard et aI., 1999b). This portion is domains

of highly conserved sequences through evolution and consists of the DNA binding

domain of the protein, essential to p53 functional activity (Cho et aI., 1994).

Analysis of published p53 point mutations in all human cancer types has shown that

about 50% of the mutations are G to A transitions, with over 500/0 residing within CpG

dinucleotides (Soussi et al., 2000). Spontaneous deamination of 5-mC has been

hypothesized to be a cause of such transition mutations in epG sequences (Greenblatt et

aI., 1994) (Section 2.3.1 discusses hypermutability of epG dinucleotides). It has been

demonstrated that all of the CpG sites in the human p53 coding sequence investigated are

methylated in all tissue types studied (Tornaletti and Pfeifer, 1995). This demonstration

supports the hypermutability of the epG-dinucleotide hypothesis.

However, analysis by cancer type of these published p53 point mutations has

suggested a link between carcinogen exposure and human cancer (Hussain and Harris,

1998; Soussi et aI., 2000). In these studies, tissue-specific p53 mutations were observed,

suggesting the following three hypotheses: codon 249 mutation (AGG -> AGT) and

dietary aflatoxin B 1 CAF B 1) exposure in liver cancer, G to T transversions and cigarette
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smoke in lung cancer, and CC to TT dipyrimidine mutations and sunlight exposure in

skin cancer.

A G to T transversion at the third position of p53 codon 249 (AGG -> AGT) is the

dominant p53 mutation observed in human liver cancer and has been linked to dietary

AFB 1 (Hussain and Harris, 1998; Hernandez-Boussard et aI., 1999b; Soussi et aI., 2000).

This link has been supported by an observation in which a positive dose-response

correlation was found between estimated dietary AFB} exposure and the frequency of this

mutation in normal-appearing liver samples from hepatocellular carcinoma patients with

different AFB}-exposure levels (Aguilar et al., 1994). AFB} exposure to human cells in

vitro has shown to induce p53 mutations at positions other than the third of codon 249

(Aguilar et aI., 1993; Mace et aI., 1997). In addition, analysis of formed AFB} adducts in

the p53 gene has shown major adduct sites at positions other than codon 249 (Denissenko

et aI., 1998). These studies suggest that additional mechanisms, such as infection with

hepatitis B virus, may be required for selection of the G to T transversion at the third

position of p53 codon 249 in human liver cancer (Denissenko et aI., 1998).

The predominant p53 mutations observed in human lung cancer are G to T

transversions (Hernandez-Boussard et aI., 1999b). This observation is compatible with

the role of exogenous carcinogens present in cigarette smoke, such as BP. The three

most frequently reported p53 mutations of this kind in human lung cancer are at codons

157,248, and 273 (Hernandez-Boussard et aI., 1999b). A G to T transversion at one of

these codons, codon 248 (CGG -> CTG), has been shown to be generated as a result of

BP exposure to human cells in vitro (Cherpillod et aI., 1995). In addition to cigarette

smoke exposure, formation of many BPDE-DNA adducts has been shown to be strongly

enhanced by methylation of CpG sites in the p53 gene (Denissenko et aI., 1996;

Denissenko et aI., 1997; Chen et aI., 1998). When HeLa cells and human bronchial

epithelial cells were treated with BPDE, this agent selectively induced guanine adduct

formation at CpG sites inp53 codons 157,248, and 273, in accordance with the p53

mutational hotspot codons observed in human lung cancer (Denissenko et aI., 1996).

Thus, two different 5-mC pathways appear to playa role in p53 mutagenesis associated

with human cancer: increased affinity of methylated CpG sites for DNA-reactive

molecules in addition to spontaneous deamination of 5-mC (Pfeifer et aI., 2000).

40



Analysis of p53 mutations observed in human lung cancer based on smoking status has

supported the hypothesis that cigarette smoking as a direct cause of these mutations in

Hernandez-Boussard and Hainaut (1998), as well as in Hainaut and Pfeifer (2001).

Another study has supported cigarette smoking as a source of selecting pre-existing

mutations (Rodin and Rodin, 2000).

The commonality of tandem dipyrimidine CC to TT mutations in human squamous

and basal cell skin carcinoma has been observed (Brash et aI., 1991; Ziegler et aI., 1993).

A particular p53 mutation of this kind observed in human skin cancer has been analyzed

in normal-appearing skin samples from skin cancer patients with different sunlight

exposure levels (Nakazawa et aI., 1994; Ouhtit et aI., 1997). In these studies, a positive

dose-response correlation between the sunlight-exposure level and the frequency of this

mutation was observed. In addition to the indicative role of sunlight exposure,

preferential DNA-adduct formation and differential DNA repair rates appear to playa

role in human skin cancer. Sites where preferential UV-adducts were formed in the p53

gene in human cells have been shown to correlate with the p53 mutational hotspot codons

observed in human skin cancer (Tornaletti et aI., 1993; Tommasi et aI., 1997). The

majority of these hotspots also have been shown to suffer from slow DNA repair of UV

induced damage in human cells (Tornaletti and Pfeifer, 1994). These studies suggest that

preferential DNA-adduct formation and repair rate have contributed to the p53 mutational

hotspots observed in human skin cancer.

However, hypotheses made based on p53 mutations observed in human cancer should

be evaluated carefully. More than 70% of the molecular studies focus on the central

region of the p53 gene, exons 5 though 8 (Hemandez-Boussard et aI., 1999b; Soussi et

aI., 2000). In addition, many factors may influence detection and reporting of mutations,

including selection of tumor samples, study design, and choice of methods (Hernandez

Boussard et aI., 1999a; Soussi et aI., 2000). Inter-individual variability in susceptibility

to carcinogens also suggests that a single pathway is highly unlikely (Vineis et aI., 1999).

For example, carcinogens form adducts with DNA, followed by DNA repair and

replication, rather than directly inducing specific point mutations (Vineis et aI., 1999).

Moreover, mutations found in advanced tumors may not be representative of the type of

damage created by an agent in the DNA of the original target cell (Vineis et aI., 1999). In
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addition, these mutations may not play any role in developing tumors (Strauss, 2000).

Thus, mutational analysis in normal tissues must be performed to understand cause-and

effect relationships between environmental agents and human mutation. For such

analysis, genotype-based methods of measuring mutations in nonnal tissues are

necessary. Such methods should pennit measurement of rare mutations in the presence

of their abundant wild-type and should be general to the human genome.

2.4 Somatic nuclear mutations and mutant fractions in normal human tissues

Studies on mutations and mutant fractions observed in normal human tissues can be

used as a guide when planning further mutational analysis of normal tissues. This section

reviews studies on somatic nuclear mutations, as well as mutant fractions, observed in

normal human tissues. The review focuses on point mutations since these mutations are

the major mutation type observed in both inherited and somatic cases of human disease.

2.4.1 Phenotype-based analysis ofHLA and HPRT mutations

For selectable genes, such as HLA and HPRT, mutation assays based on phenotypic

selection have been developed for analysis of human blood (Albertini et aI., 1982;

Morley et aI., 1983; Albertini et aI., 1985; Janatipour et aI., 1988). Using such assays, a

mutant fraction of about 10-5 has been measured in both the HLA and HPRT genes in T

lymphocytes of middle-aged healthy individuals (Grist et aI., 1992; Robinson et aI., 1994;

Akiyama et aI., 1995; Podlutsky et aI., 1998). These mutant fractions have been shown to

increase linearly with age (Trainor et aI., 1984; Vijayalaxmi and Evans, 1984; Davis et

aI., 1992; Grist et aI., 1992; Akiyama et aI., 1995; Green et aI., 1995). Figure 5 illustrates

this increase in the HPRT gene.

Assuming a target size of about 1000-bp for both the HLA and HPRT genes, the

expected average mutant fraction per bp in T-lymphocytes of middle-aged healthy

individuals is about 10-8
. Any hotspot mutations occurring 10 to 100 times more

frequently than expected by chance would then appear in these genes at fractions between

10-7 and 10-6
. Such hotspot mutations in the HPRT gene in cultured human cells have
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Figure 5. HPRT mutant fraction vs. age in T-lymphocytes of healthy individuals

Collection of published HPRT mutant fractions (Tomita-Mitchell, unpublished results); based on
6TG selection and clone-by-clone analysis.



been shown to represent between 10 and 50% of the point mutations that affect the

physiological function of the gene product (Kat, 1992; Tomita-Mitchell, 1999; Tomita

Mitchell et aI., 2000).

Clone-by-clone analysis of 6TG-resistant HPRT mutants in T-lymphocytes of healthy

individuals has shown that, at birth, the predominant mutation type is large structural

alterations (85%), mostly deletions (McGinniss et aI., 1989). These deletion mutations

are thought to be mediated by V(D)J recombinase acting on sequences within the HPRT

gene that resemble the V(D)J recombinase signal sequences (Fuscoe et aI., 1991; Finette

et aI., 1996~ Fuscoe et aI., 1997). As people age, the predominant mutation type changes

to point mutations (85%), with the remaining 150/0 being large structural alterations

(Albertini et aI., 1990; Lippert et aI., 1990; Albertini et aI., 1993; Cariello and Skopek,

1993a; Albertini and Hayes, 1997). These observations indicate that factors other than

V(D)J recombinase playa role in causing mutations in people as they age.

Published 6TG-resistant HPRT mutations observed in T-lymphocytes of healthy

individuals have been compiled as a database (Cariello et aI., 1998). Table 5 summarizes

these mutations by mutation type and corresponding number. Figure 6 illustrates the

distribution of these mutations. Single base-pair substitutions account for 76% of all

mutations, with the remaining 24% being deletions and insertions. Among single base

pair substitutions, transversions (41 %) are slightly more common than transitions (36%).

In addition, mutations at GC base pairs (48%) are more common than mutations at AT

base pairs (29%). G to A transitions are the most common type of mutation, accounting

for 27% of all mutations.

The HPRT database does not seem to pinpoint any particular kind of exogenous agent

as the cause for these mutations. For example, when kinds and positions of HPRT

mutations observed in smokers were compared to those of nonsmokers, no significant

differences were observed between the two sub-populations (Vrieling et aI., 1992;

Burkhart-Schultz et aI., 1996; Curry et aI., 1999; Podlutsky et aI., 1999). Thus, these

studies imply that HPRT mutations in healthy populations are endogenous in origin or

induced by ubiquitous environmental exposures (Podlutsky et aI., 1998; Podlutsky et aI.,

1999).

These mutational studies based on phenotypic selection performed on the blood of
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Table 5. Summary of somatic mutations in HPRT gene in T-Iymphocytes of healthy
individuals

Mutation type Number of entries (% total)

G->A 101 (27%)

A->G 34 (9%)

G->C 44 (12%)

G->T 34 (9%)

A->C 36 (10%)

A->T 36 (10%)

Insertion/deletion, 1-bp 53 (14%)

Insertion/deletion, >1-bp 36 (10%)

Total 374 (100%)

Source: Cariello et aI., 1998; courtesy of Dr. A. Tomita-Mitchell; based on 6TG selection and
clone-by-clone analysis.
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healthy individuals suggest the spontaneous origin of human HPRT mutation. While

mutational studies of other nuclear genes in normal human tissues remain to be

completed, such studies are hindered by the lack of general and sensitive methods of

measuring mutations based on their genotype. Mutation detection methods based on

phenotypic selection are limited to selectable genes, such as HPRT, and certain tissue

types, such as blood. For these reasons, genotype-based methods are the methods of

choice.

2.4.2 Phenotype-based analysis ofp53 mutations

Mutant forms of the p53 protein have been detected in skin tissues of healthy

individuals (Ponten et aI., 1995; Jonason et aI., 1996; Tabata et aI., 1999). By using

antibodies specific to p53, the mutant forms can be stained as individual patches (Gannon

et aI., 1990; Iggo et aI., 1990; Baas et aI., 1994). In this assay,p53 mutants are

distinguished from the wild-type by their longer half life (Finlay et aI., 1988; Harris and

Hollstein, 1993). Each compact pattern of the stained patches, a contiguous area of

homogeneously stained cells, represents clones derived from a single cell with a p53

mutation (Jonason et aI., 1996; Ren et aI., 1996; Ren et aI., 1997). Between 50 and 70%

of the patches have been shown to contain such clones (Jonason et aI., 1996; Ponten et

aI., 1997; Ren et aI., 1997).

Using such a phenotype-based assay, p53 mutant fractions in skin tissues of healthy

individuals can be estimated. Table 6 summarizes the estimated mutant fractions. On

average, 33 and 3 p53-immunopositive patches per cm2 of human skin have been

observed in sun-exposed and sun-shielded areas, respectively (Jonason et aI., 1996). By

dividing these observed values by the stem cell number per cm2 of skin, the p53 stem cell

mutant fractions can be estimated. About 4.5 x 106 keratinocytes have been estimated per

cm2 of normal human skin (Pinkus, 1952; Bergstresser et aI., 1978; Weinstein et al.,

1984). And among these keratinocytes, between 2 and 10% have been found to be stem

cells (Pinkus, 1952; Potten and Hendry, 1973; Potten, 1981; Potten and Morris, 1988).

Using the stem cell number of 2.7 x 105 per cm2 of human skin (median value: (4.5 x 106
)

X 0.06), the p53 stem cell mutant fractions can be estimated to be about 1.2 x 10-4 (33 +
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Table 6. Summary of p53 mutant fractions in skin tissues of healthy individuals

Level of sun
exposure

Low/sun-shielded

Stem cell mutant
fractiona

1.1 X 10-5

Total mutant
fractionb

Average mutant
fractionlbpC

High/sun-exposed 1.2 x 10-4 10-3 to 4 X 10-2 10-6 to 4 X 10-5

a On average, 33 and 3 p53-immunopositive patches per cm2 of human skin have been observed
in sun-exposed and sun-shielded areas, respectively (Jonason et aI., 1996). The stem cell mutant
fractions were estimated by dividing these observed values by the stem cell number per cm2 of
human skin, 2.7 x 105

.

b Jonason et aI., 1996.
C Assuming a target size of about 1000-bp for the p53 gene, the average mutant fractions per bp
were estimated by dividing the total mutant fractions by 1000.
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(2.7 X 105
)) and 1.1 x 10-5 (3 + (2.7 x 105

)) for sun-exposed and sun-shielded areas,

respectively. In this estimation, all irnrnunopositive patches are assumed to be clones,

each representing an individual mutant.

The total p53 mutant fractions are expected to be higher than the stem cell mutant

fractions because of the clonally-derived nature of the immuopositive p53 mutant patches

(Jonason et aI., 1996~ Ren et aI., 1996~ Ren et aI., 1997). The total mutant fractions in

skin tissues of healthy individuals have been estimated to be 10-3 to 4 X 10-2 and 10-4 to

10-3 in sun-exposed and sun-shielded areas, respectively (Jonason et al., 1996) (see Table

6). In this estimation, the total mutant fraction was estimated by averaging the measured

area of clones and then multiplying by the number of clones per cm2
.

Assuming a target size of about 1000-bp for the p53 gene, the average mutant

fractions per bp in skin tissues of healthy individuals are expected to be 10-6 to 4 X 10-5 in

sun-exposed areas and 10-7 to 10-6 in sun-shielded areas (see Table 6). Any hotspot

mutations occurring 10 times more frequently than expected by chance would then

appear in this gene at fractions 10 times higher than the expected average mutant

fractions for both sun-shielded and sun-exposed areas.

When the average p53 mutant fractions per bp were compared, up to a 400-fold higher

mutant fraction has been observed in sun-exposed relative to sun-shielded skin (Jonason

et aI., 1996). On the other hand, another study showed no such difference (Guhtit et aI.,

1998). This discrepancy is perhaps because one study was based on a particular p53

mutant (Ouhtit et aI., 1998), while the other was based on mutations in the entire p53

gene (Jonason et aI., 1996). Further mutational analysis in normal human skin is

necessary to validate either study.

2.4.3 Genotype-based analysis of ras and p53 mutations

Several nuclear point mutations have been observed in tissues of healthy individuals

without reference to phenotypic selection (Wilson et aI., 1999~ Ouhtit et aI., 1999; Wilson

et aI., 2000; Li-Sucholeiki et aI., unpublished results). Either allele-specific PCR or

restriction fragment length polymorphism (RFLP)/PCR (see Section 2.5.3.2) was used as

the genotype-based means for such observation. All of these mutations had been
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previously observed in human tumors (Bas, 1989; Hainaut et aI., 1998; Hernandez

Boussard et al., 1999b).

Table 7 summarizes the position, kind, mutant fraction, and observed number of cases

for each mutation detected in normal human tissues. Among these mutations, about a 50

fold higher average mutant fraction was found in lungs compared to that in either blood

or skin (5 x 10-5 vs. 10-6
). However, this comparison is based on mutations in different

genes, as well as mutations in the same gene but at different base-pair positions. When a

particular p53 mutation in normal human skin tissues of different sun-exposure levels

was compared, no statistically significant relationship was found between levels of sun

exposure and mutant fractions (Ouhtit et aI., 1998). In addition, no significant

differences were observed in the level of this mutation among people of different ages or

genders (Ouhtit et aI., 1998).

A similar level of mutant fractions has also been observed in normal-appearing

smokers' lungs compared to those of non-smokers' (Li-Sucholeiki et aI., unpublished

results). In this study, two G to T transversions in the p53 gene were detected in two

smokers' and two nonsmokers' lungs, with an average mutant fraction of 5 x 10-5 for

each, in smokers' and nonsmokers' lungs. These results indicate that cigarette smoking

does not affect the kind or number of nuclear point mutations in human bronchial

epithelial cells. These results confirm a previous observation made in human

mitochondrial DNA (Coller et aI., 1998).

These genotype-based mutational studies performed on normal human tissues do not

pinpoint any particular exogenous agent as a cause for these mutations. However, these

studies are few. Therefore, additional studies analyzing more genes, tissue types, and

individuals are necessary to validate any observations made in these previous studies.

2.5 Criteria for measuring point mutational spectra in normal human tissues

Analysis of somatic point mutational spectra in nonnal human tissues allows direct

testing of the hypothesis that environmental agents are the primary cause of human

mutation. Comparison of mutational spectra in smokers' and non-smokers' lungs reveals

effects of cigarette smoke on human mutation. The same type of comparison can be
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Table 7. Summary of nuclear point mutations in normal human tissues*

Tissue Gene Position and kind Mutant fraction (mf) Number of
type cases

Codon 12.2,
H-ras G->T ~ 10-6 3

Codon 12.1,
G->T ~ 10-6 3

Bloodu&b Codon 12.2,
N-ras G->T ~ 10-6 6

Codon 13.1,
G->A ~ 10-6 1

Codon 248.1,
C->A ~ 10-6 1

Codon 248.1
p53 (eDNA bp 742), ~ 10-6 6

C->T
Codon 249.2

p53 (eDNA bp 746) :::::5 x 10-5d ~200e

Lunge G->T
Codon 249.3

p53 (eDNA bp 747) :::::5 x 10-5d ~200e

G->T

< 0.5 x 10-6 58

0.5 ::; mf ~ 0.99 x 10-6 8
Skinf p53 Codon 247.3&248.1

(eDNA bp 741&742), 1.0~mf::; 1.49x 10~6 4
CC ->TT

1.5 ::; mf ::; 2.49 x 10-6 2

2:: 2.5 x 10-6 3
* Genotype-based mutational analysis.
a Wilson et aI., 1999.
b Wilson et aI., 2000.
e Li-Sucholeiki et aI., unpublished results: tracheal bronchial epithelial cells of deceased middle-
aged individuals, considered as healthy individuals, were analyzed. These individuals died of
either stroke or subarachnoid hemorrhage cerebrovascular disease.
d Average mutant fraction.
e Two smokers' and two nonmokers' lungs were microdissected into about 200 sectors.
f Ouhtit et aI., 1998.
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performed in sun-exposed and un-exposed human skin. However, detection of mutations

in normal tissues with statistical significance requires a careful planning since these

mutations are present as a much smaller copy number compared to the wild-type copy

number (mutations in normal tissues are rare mutations). This section reviews studies on

criteria for measuring rare mutations with statistical significance. This review includes

stem cell turnover unit size, sample size, and method of analysis.

2.5.1 Turnover unit size

A stem cell gives rise to descendent transition and terminal cells (Potten, 1981; Patten

and Morris, 1988; Potten and Loeffler, 1990), generating a stem cell compartment, or a

turnover unit. Thus, a mutation in a stem cell leads to a clonally-derived mutant turnover

unit. Existence of such mutant turnover units in normal human tissues has been

suggested and demonstrated (Jonason et aI., 1996; Khrapko et aI., 1997a; Coller et aI.,

1998; Li-Sucholeiki et aI., unpublished results).

DNA sequencing analysis of immunopositive p53 mutant patches has shown that these

patches are clonally-derived, each patch representing a particular p53 mutation, in skin

tissues of healthy individuals (Ponten et al., 1995; Jonason et al., 1996; Tabata et al.,

1999). The turnover unit size for these p53 mutations was observed to be between 60 and

3000 cells, with different average unit sizes in tissues of different sun exposure levels:

0.014 mrn2 in sun-shielded tissues and 0.040 mm2 in sun-exposed tissues (Jonason et aI.,

1996). These unit sizes are equivalent to 630 cells (0.014 mm2 x (4.5 x 106/cm2
)) and

1800 cells (0.040 mm2 x (4.5 x 106/cm2
)) using the cell number of 4.5 x 106 per cm2 of

normal human epidermis (Pinkus, 1952; Bergstresser et aI., 1978; Weinstein et aI., 1984).

Using allele-specific peR, particular p53 mutations have been detected as mutant-rich

clusters in normal-appearing human bronchial epithelial cells (Li-Sucholeiki et aI.,

unpublished results). These clusters are thought to be clonally derived. In this study, no

difference in mutant turnover unit size was observed, determined to be about 32 cells in

both smokers' and non-smokers' lungs. These results contradict the study of Jonason et

ai. (1996) in which, on average, about a 3-fold higher mutant turnover unit size was

observed in mutagen-exposed (sun-exposed) relative to un-exposed (sun-shielded) areas
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of normal human skin. This study suggests sunlight as the cause for this increase. This

contradiction is probably because two different tissue types, lung vs. skin, and two

different mutagens, cigarette vs. sunlight, were compared.

While turnover unit size has not been detennined for all tissue types, this factor should

guide planning somatic mutational analysis in nonnal human tissues. For example, in a

sample containing 108 cells with a turnover unit size of 32 cells, the expected number of

turnover units is about 3 x 106 (108 + 32). Using the observed HPRT and HLA mutant

fractions, 10-5 (see section 2.4.1),30 stem cell mutations (10-5 x (3 X 106
) =30) would

appear in each gene. Thus, the expected number of mutations per 100-bp sequence is 3,

assuming a target size of 1000-bp for these genes. This expectation predicts that to

observe 30 mutations, either a 100-bp sequence in 10 tissue samples, each containing 108

cells, or 10 sequences, each containing 100-bp in the same sample of 108 cells, must be

analyzed.

2.5.2 Sample size

When planning detection of somatic mutations in normal tissues, sample size must be

examined. Sample size can be limited by choice of mutation detection method, thereby

limiting the copy number of any particular mutant to be analyzed. For example, for a

sample size of 105 diploid human cells containing a mutation at a fraction of 5 x 10-6 in a

single copy sequence, one mutant copy (105 X 2 x (5 X 10.6
)) would be available for

analysis. Based on the Poisson distribution, the probability of not detecting this mutation

is 0.37 (e- l
). Thus, this sample would generate false negatives 37% of the time,

confounding mutational analysis.

Mutation detection with sufficient precision, such as ±20%, requires a statistically

significant copy number of any particular mutant, at least 100 copies (Leong et aI., 1985;

Keohavong and Thilly, 1992a; Chen and Thilly, 1994). Thus, for example, a sample size

of at least 107 cells ((~107) x 2 x (5 x 10-6
) =(2100)) is required for a mutation occurring

at a fraction of 5 x 10-6 in a single copy sequence. To sum up, reproducible outcomes

have been demonstrated in which at least 100 copies of any particular mutant were
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detected in various human cell and tissue samples (Keohavong and Thilly, 1992b;

Khrapko et aI., 1997a; Coller et al., 1998; Li-Sucholeiki and Thilly, 2000).

2.5.3 Methods

Detection of mutations present as abundant copies, representing mutations in diseased

tissues, can be as simple as DNA sequencing (Cooper and Krawczak, 1993). However,

somatic mutations in normal tissues are rare mutations, and analysis of these mutations

requires more sophisticated methods. This section reviews available methods of

analyzing rare mutations in human genomic DNA.

2.5.3.1 Hifi-PCR

Introduction of thermostable DNA polymerases to irl vitro DNA amplification, PCR,

has simplified the amplification by allowing it to be automated (Saiki et aI., 1988).

However, careful selection of a polymerase is necessary for analysis of amplified

products since different polymerases generate mutations in a chosen target at various

rates during PCR (Keohavong and Thilly, 1989; Cariello et al., 1991; Mattila et al., 1991;

Ling et aI., 1991; Flarnan et aI., 1994; Cline et aI., 1996). Table 8 summarizes the

fidelities of, as well as predominant mutations generated by, three thermostable DNA

polymerases commercially available, Thermus aquaticus (Taq), Thermococcus litoralis

(Vent), and Pyrococcus furiosus (Pfu).

While for certain applications of PCR products, such as DNA sequencing, the levels

and kinds of mutations generated by a polymerase are not a concern, application to

analysis of rare mutations requires a polymerase with high fidelity. To date, Pfu offers

the highest fidelity among the thermostable DNA polymerases available commercially

(Flaman et aI., 1994; Cline et aI., 1996; Andre et aI., 1997). Thus, it is the enzyme of

choice for rare event analysis. The fidelity of Pfu has been determined to be about

10-6/bp/doubling (see Table 8), a factor which can guide planning of mutational analysis.

A typical template target copy number for PCR is about 105 to 106 (:=::; 1 to 10 ~g) and a

chosen target can be amplified up to about 10]2 copies (106
- to 107-fold amplification or
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Table 8. Characteristics of thermostable DNA polymerases

DNA polymerase

Taq

Vent

Fidelitylbp/doubling*

0.72 - 2.4 x 10-4 (8/13)a

2.4 - 4.5 x 10-5 (5/7)b

Predomina~t mutation type**

A -> G (84/157)d

A -> G (16/18)e

Pfu 0.65 - 2 x 10~6 (8/10)C G -> T (15/19)f
* Reported fidelities were gathered and each was counted as one. The range indicated is based on
the reported fidelities in close agreement. For example, 8 out of 13 were in the range indicated
for Taq.
**·Reported mutations were gathered and each was counted as one. For example, 84 out of 157
were A -> G transitions for Taq.
a Saiki et aI., 1988; Tindall and Kunkel, 1988; Keohavong and Thilly, 1989; Eckert and Kunkel,
1990; Cariello et aI., 1991; Chen et aI., 1991; Ling et a1., 1991; Lundberg et a1., 1991; Keohavong
et aI., 1993; Flaman et aI., 1994; Cline et aI., 1996; Huang and Keohavong, 1996; Smith and
Modrich, 1996.
b Cariello et aI., 1991; Ling et aI., 1991; Mattila et aI., 1991; Keohavong et aI., 1993; Cline et aI.,
1996; Smith and Modrich, 1996.
C Lundberg et aI., 1991; Brail et aI., 1993; Cariello and Skopek, 1993b; Barnes, 1994; Flaman et
aI., 1994; Cline et aI., 1996; Smith and Modrich, 1996; Andre et aI., 1997; Parsons and Heflich,
1998; Li-Sucholeiki and Thilly, 2000.
d Dunning et aI., 1988; Saiki et aI., 1988; Keohavong and Thilly, 1989; Ennis et aI., 1990; Chen et
aI., 1991.
e Keohavong et aI., 1993.
f Andre et aI., 1997~ Li-Sucholeiki and Thilly, 2000.
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20 to 23 doublings) (Saiki et aI., 1988; Cha and Thilly, 1993). For this reason, Pfu

generated mutations in a chosen target after 20 doublings are discussed in this section.

After 20 doublings are performed with a sample using Pfu, any hotspot mutations of Pfu

origin occurring 10 times more frequently than expected by chance would appear in the

amplified target at a fraction of 2 x 10-4 (10-6/bp/doubling x 20 doublings x 10). If, for

example, the initial sample contained mutations at a fraction of about 2 x 10-4
, the level of

these mutations would be indistinguishable from the Pfu-hotspot mutations, which would

interfere with the sample analysis. Especially if this sample contained mostly G to T

transversions, the analysis would be even more confounded since the predominant

mutation generated by Pfu is a G to T transversion (see Table 8). Thus, either mutations

at initial fractions of above 2 x 10-4 should be analyzed or pre-PCR mutant enrichment

must be performed when analyzing mutations at initial fractions at or below 2 x 10-4
•

2.5.3.2 Genotype-based point mutation detection

This section reviews studies on genotype-based methods of analyzing rare point

mutations, representing somatic point mutations in normal tissues. Unlike phenotype

based methods, which can be applied to selectable genes and certain tissue types,

genotype-based methods offer analysis of any gene and tissue type of interest. However,

detection of rare mutations requires enrichment of mutant sequences relative to the

abundant wild-type sequence. Mutant enrichment can be achieved by selectively

amplifying a particular mutant sequence (allele-specific PCR), selectively destroying the

wild-type sequence (RFLPIPCR), or spatially separating mutant from wild-type

sequences (target isolation/CDCE/hifi-PCR) (Parsons and Heflich, 1997b). Table 9

summarizes sensitivities, target sizes, and analysis limitations of these genotype-based

methods of analyzing point mutations at fractions at or below 5 x 10-5 in human genomic

DNA. All of these assays use an internal standard to determine the level of mutations in

initial samples.
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Table 9. Characteristics of genotype-based methods of rare point mutational analysis

Method*

Allele-specific PCRa

RFLPIPCRb

Sensitivity** Target size
(bp)

1

~4-6

Analysis limitation

Small target size

Mutations in restriction
recognition sequences

Target isolation Mutations in sequences with
/CDCE/hifi-PCRc 10-6 ~ 100 neighboring natural clamp

* Two point mutation detection methods, MutEx/ACB-PCR (Parsons and Heflich, 1998) and
MutEx/PCR/SNuPE (Parsons and Heflich, 1997b), with sensitivities of 10-7 and 2 x 10-5/bp,
respectively, are not included in this table since these sensitivities have not been demonstrated in
human genomic DNA.
** Sensitivities in human genomic DNA are based on the mutant copy number detected, x, in the
presence of the wild-type copy number, y: x 7 y ("Chen and Zarbl, 1997; bChiocca et aI., 1992;
cLi-Sucholeiki and Thilly, 2000).
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2.5.3.2.1 Allele-specific peR

Detection of a point mutant by allele-specific PCR is based on preferential

amplification of a known mutant sequence using mismatched primers. Primers that

contain one mismatch to a mutant at the 3'end but two mismatches to the wild-type can

preferentially amplify the mutant relative to the wild-type in a PCR reaction mixture (Cha

et aI., 1992). The amplified mutant in a polyacrylamide gel can then be quantified by

comparing its signal intensity to the control PCR samples in which initial mutant

fractions are varied. Recently, such analysis has been performed by capillary

electrophoresis coupled with laser-induced fluorescence detection, and the initial mutant

copy number was measured using an internal standard (Li-Sucholeiki et aI., unpublished

results).

The sensitivity of allele-specific peR, 10-6
, has been demonstrated in human genomic

DNA (~10 J-lg) in which 5 copies of a mutant were detected in the presence of 3 x 106

copies of the wild-type (Chen and Zarbl, 1997). This method has been applied to

analysis of nuclear point mutations in normal human skin and lung tissues (Nakazawa et

aI., 1994~ Guhtit et aI., 1997; Ouhtit et aI., 1998; Li-Sucholeiki et aI., unpublished

results).

The advantages of allele-specific PCR over RFLP/PCR and target

isolation/CDCE/hifi-PCR are its rapidity and simplicity. However, this method offers the

smallest target size, 1-bp, and detection of a single mutant at a time. Thus, analysis of

various point mutations in the same target of I-bp requires multiple assays to be

optimized and performed, thereby eliminating its advantages especially when a larger

target, such as 100-bp, needs to be analyzed.

2.5.3.2.2 RFLP/PCR

RFLP, when coupled with peR, allows detection of point mutations in restriction

recognition sequences (Parry et aI., 1990; Zijlstra et aI., 1990; Felley-Bosco et aI., 1991).

Genomic DNA is restriction digested during which mutant sequences in the recognition

site of the chosen restriction endonuclease are not cleaved, while the wild-type is cleaved,
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enriching for mutants. The uncleaved sequences are then PCR amplified. To generate

the majority of the amplified products belonging to the mutants, as opposed to the un

cleaved wild-type, restriction digestion and PCR are repeated 2 to 3 times prior to

analysis. The amplified mutants are identified by DNA sequencing or are quantified by

oligonucleotide plaque hybridization using sequence-specific probes.

The sensitivity of RFLP/PCR, 4 x 10-7
, has been demonstrated in human cells in which

4 copies of each mutant were detected in the presence of 107 copies of the wild-type

(Chiocca et al., 1992). This method has been applied to analysis of nuclear point

mutations in mutagen-treated human cells (Chiocca et aI., 1992; Palombo et aI., 1992;

Pourzand and Cerutti, 1993a, b; Hussain et aI., 1994) and normal human tissues (Aguilar

et al., 1994; Hussain et al., 1994). The sensitivity of the combined method of RFLP/PCR

and ligation chain reaction (LCR) has also been demonstrated in human cells in which 1

copy of each mutant was detected in the presence of 107 copies of the wild-type (10-7
)

(Wilson et aI., 1999). RFLPIPCR/LCR has been applied to point mutational analysis in

peripheral blood of healthy individuals (Wilson et aI., 1999; Wilson et aI., 2000).

To date, RFLP/PCR and RFLPIPCR/LCR offer the highest sensitivity among the point

mutation detection methods available for analysis of human cells and tissues without

phenotypic selection. However, these methods not only have a small target size of about

4 to 6-bp but are prone to generating polymerase-created false positives. Assuming that

the efficiency of the first restriction digestion is 100%, the target copy numbers in the

initial sample, 1 and 107 of each mutant and of the wild-type (initial mutant fraction =
10-7

), respectively, change to 1 and 105 (enriched mutant fraction =10-5) after digestion.

If, for example, a 106-fold amplification (20 doublings) is performed with this sample

using Pfu DNA polymerase, any Pfu-hotspot mutations occurring 10 times more

frequently than expected by chance would appear in the anlplified target at a fraction of

about 2 x 10-4 (see Section 2.5.3.1). This mutant fraction is about 10 times higher than

the level of mutations in the restriction digested target (2 x 10-4 vs. 10-5
), which would

interfere with the sample analysis. Since such Pfu-generated hotspot mutations would

not appear in every restriction recognition sequence of about 4- to 6-bp, the sensitivity of

RFLP/PCR or RFLP/PCR/LCR would vary for different restriction recognition

sequences. Indeed, a 1000-fold difference in sensitivity has been reported using two
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different sequences (Pelley-Bosco et at, 1991). Thus, the demonstrated sensitivity of

about 10-7 (Chiocca et aI., 1992; Wildson et aI., 1999) is valid for certain, but not all,

sequences.

2.5.3.2.3 Target isolation/CDCE/hifi-PCR

CDCE is a DNA separation technique by which point mutations in a chosen target can

be differentiated from the wild-type based on differences in their melting temperatures.

CDCE is in a capillary gel format (Khrapko et aI., 1994a), derived from slab gel formats

using the same separation principle: DGGE (Fischer and Lerman, 1983) and CDGE

(Hovig et aI., 1991). The advantages of CDCE over DGGE or eDGE are rapidity (min

vs. hr, Khrapko et aI., 1994a, b) and higher sensitivity (3 x 10-4 (Khrapko et aI., 1994a)

vs. 1 to 10 X 10-3 (Cariello et aI., 1990; Keohavonget aI., 1992b) without prior mutant

enrichment). In addition, CDCE offers DNA separation with high resolution (Khrapko et

aI., 1994b). Especially for the purpose of analyzing rare mutations, CDCE is the method

of choice since it avoids interfering factors associated with the slab gel techniques, such

as heat-induced DNA damage due to extensive incubation at high temperature and DNA

radiolysis caused by radioactive labels used for detection (Hanekamp, 1993).

Figure 7 depicts the CDCE separation principle with a hypothetical melting profile of

a DNA fragment suitable for CDCE separation. A melting profile is defined as a plot

which shows the calculated temperature at which each base pair has an equal chance of

being in a helix (un-melted) or random (melted) form (Fischer and Lerman, 1983).

CDCE, when combined with target isolation and hifi-PCR, allows detection of point

mutations at fractions as low as 10-6 (Li-Sucholeiki and Thilly, 2000). Figure 8 illustrates

a flow diagram of this combined method. This method has been applied to analysis of

point mutations in a 121-bp nuclear single copy sequence in mutagen-treated human cells

(Li-Sucholeiki and Thilly, 2000). In this application, a sensitivity of 10-6 was

demonstrated in which at least 102 copies of each mutant were detected in the presence of

108 copies of the wild-type. This sensitivity is limited by the fidelity of Pfu DNA

polymerase used for PCR.
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Figure 7. DNA separation by CDCE

A. A fragment suitable for CDCE separation contains a low-melting, or target, domain of
about lOO-bp juxtaposed with a domain of a higher melting temperature, or a clamp.

B. Since the melting temperature of the clamp is higher than that of the target, a
partially-melted intermediate can be formed under a certain range of denaturant
concentrations or temperatures. Introducing point mutations to the target generates
differential equilibria between partially-melted and un-melted forms, resulting in
different electrophoretic mobilities from that of the wild-type. Thus, these point
mutations can be CDCE separated from the wild-type under optimal denaturing
conditions.
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Restriction-digested human genomic DNA
Initial sample size: 108 cells (~600 J-lg gDNA)

Initial target DNA copy number: 2 x 108

Initial mutant fraction: 10-6

Target isolation by probes
(Efficiency: 104-fold)

Sample size: ~ 60 fig gDNA
Target DNA copy number: ~2 x 108

Mutant fraction: 10-6

+
Pre-PCR mutant enrichment by CDCE and CE

(Efficiency: ~ 10G-200-fold)
Mutant fraction: ~1-2 x 10-4,

Hifi-PCR followed by post-peR mutant enrichment by CDCE
(Two rounds, total efficiency::::; 10O-fold)

Final mutant fraction: ~ 1-2 x 10-2,
Mutational analysis by CDCE

Individual mutant purification by CDCE for sequencing

Figure 8. Flow diagram of target isolation/CDCE/hifi-PCR

A chosen target is isolated from a genomic DNA digest using biotin-labeled probes.
For this procedure, sequence-specific hybridization is coupled with a biotin-streptavidin
capture system. This procedure is followed by pre-peR mutant enrichment, performed
first by separating mutant from wild-type sequences by CDCE and then by eluting these
separated mutants. Capillary electrophoresis (CE) is then performed as an additional
means to enrich for mutants; CE differentiates mutants from wild-type containing
species, such as single strands, in CDCE mutant-enriched samples. Post-PCR mutant
enrichment is also performed by CDCE separation and elution. Hifi-PCR and post-peR
mutant enrichment, repeated in two rounds, are performed prior to mutational analysis by
CDCE. At this stage, each individual mutant is CDCE purified for sequencing.

Source: Li-Sucholeiki and Thilly, 2000.
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To date, target isolation/CDCE/hifi-PCR offers the largest target size over allele

specific PCR and RFLPIPCR. In addition, this method allows detection of point

mutations at fractions as low as 10-6 with a statistical significance, such as ±20%

precision, through its ability to handle large sample sizes of up to about 108 human cells

(~600 Ilg genomic DNA). Analysis of such a large sample size is permitted by target

isolation by which an initial sample size of 600 Ilg of human genomic DNA can be

reduced to 60 ng, while retaining the same copy number of a chosen target.

One major drawback of target isolation/CDCE/hifi-PCR is that it can be applied only

to DNA sequences with a neighboring natural clamp. To increase the pool of target

sequences in the human genome, a means of attaching a clamp to any sequence of interest

needs to be included in this method. Available methods of clamp attachment are

reviewed in the following section.

2.5.3.3 Clamp attachment

Point mutational analysis by DGGE, eDGE, or CDCE requires DNA sequences with

a clamp. While sequences with a natural clamp can be directly analyzed by these

methods, clamp attachment is necessary for those sequences without a natural clamp.

Three methods are available for attaching a clamp to a DNA sequence of interest (Myers

et aI., 1985b; Sheffield et aI., 1989; Abrams et aI., 1990). The principle of each method

with limitations is reviewed in this section.

2.5.3.3.1 Cloning-based method

Myers et aI. (1985a) first predicted and demonstrated that the melting property of a

DNA sequence can be changed by clamp attachment. A clamp, rich in GC bases, is

attached to a target sequence of interest by inserting the target into a plasmid vector

containing the clamp. For this insertion, linkers of restriction ends are ligated to both

ends of the target and the clamp: BamH I (5'GATC3') and Bgl II (5'GATC3') to the

target, and BamH I and Hind III (5'AGCT3') to the clamp. Thus, the clamp can be

ligated to the plasmid after digesting the plasmid with BanlH I and Hind III, and either

64



end of the target can be ligated to the BamH I end of the clamp after digesting the clamp

ligated plasmid with BamH I.

While point mutations in a chosen target with the attached clamp have been shown to

be separated by DGGE, the same demonstration could not be performed using the same

target without a clamp (Myers et aI., 1985b). This demonstration shows that clamp

attachment can make DNA sequences without a natural clamp suitable for point

mutational analysis by DGGE, CDGE, or CDCE. However, this cloning-based method

of clamp attachment has not been demonstrated with genomic DNA. Thus, this method

as it is cannot be applied to mutational analysis in human cells and tissues.

2.5.3.3.2 PCR-based method

Two PeR-based methods of clamp attachment have been developed. The primary

method has been demonstrated using genomic DNA as a template and using primers to

which an additionaI40-45-bp sequence is added at the 5' end (Sheffield et aI., 1989).

This added sequence is non-complementary to the target and rich in GC bases. A clamp

is attached to one end of the amplified sequence by the GC-rich primers during PCR.

The second method is rather an alternative to clamp attachment, called chemiclamping

(Girodon et aI., 1993; Gille et aI., 1998). This method uses PCR primers with a psoralen

derivative at the 5' end, combined with UV irradiation of the PCR products. As a result,

cross-linking is induced, forming the covalent bond between the two target strands of the

peR products. Depending on whether the cross-linking is desired at one or both ends of

a target, the 5' modified primers can be designed for one (Girodon et aI., 1993) or both

ends (Gille et aI., 1998). Although a GC-rich sequence is not added to the primers, point

mutations in a cross-linked target have been demonstrated to be suitable for DGGE

separation (Girodon et aI., 1993; Gille et aI., 1998).

The major advantage of the PeR-based methods of clamp attachment over cloning

and probe-based methods is their simplicity. However, these methods cannot be applied

to analysis of point mutations at fractions below 2 x 10-4. Detection of mutations at such

low fractions requires pre-PeR mutant enrichment, as Section 2.5.3.1 discusses and
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Figure 8 in Section 2.5.3.2.3 illustrates. Therefore, clamp attachment must be performed

without peR.

2.5.3.3.3 Probe-based method

Figure 9 illustrates the probe-based method of clamp attachment (Abrams et aI.,

1990). This method is the only available method of clamp attachment, which can

potentially be applied to target isolation/CDCE/hifi-PCR. Such an application would

allow analysis of point mutations at fractions below 2 x 10-4 in any DNA sequence of

interest in the human genome.

However, two factors regarding this probe-based method should be noted. The first is

the preparation procedllre of the probes. The probes are prepared by constructing single

stranded plasmid vectors containing a clamp and inserting a chosen target sequence into

the vectors. These vectors are used as a template for generating biotin-labeled probes by

primer extension using biotin-labeled primers. These primer-extended vectors are then

restriction digested and denatured with NaOH. The strand with the biotin-label is

purified by aVidin-agarose chromatography, which distinguishes biotin-labeled from

unlabeled fragments. This procedure is followed by alkaline-agarose gel electrophoresis,

which differentiates single-stranded DNA fragments based on their length (McDonell et

aI., 1977).

This probe preparation procedure is not only labariolls but introduces mutations to the

probes at the same time. Klenow DNA polymerase, used for primer extension, has been

shown to create small deletions and single base-pair substitutions (Scharf et aI., 1986; de

Boer and Ripley, 1988; Keohavong et aI., 1989; Bell et aI., 1997) at a rate of about

10-4/bp/doubling (Scharf et aI., 1986; Keohavong et aI., 1989). Thus, any Klenow hotspot

mutations occurring 10 times more frequently than expected by chance (1 % hotspots)

would be generated at a rate of about 10-3/doubling. These 1% hotspot mutations are

expected in the probes at a fraction of 10-3 after primer extension. Thus, unless the

probes are purified for the wild-type, the probes cannot be applied to analysis of point

mutations at fractions below 10-3
, assuming Klenow hotspot mutations are not generated

any higher than 1%.
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Figure 9. Probe-based method of clamp attachment

Human genomic DNA is restriction digested to liberate a chosen target. This DNA is
then denatured, mixed with probes, and allowed to form probe-target hybrids. The
probes contain the sequence complementary to the entire target of choice with an
additional sequence belonging to a clamp, rich in GC bases, at the 5'end. These hybrids
of partial double strands are treated with DNA polymerase and four dNTPs to generate
fully double-stranded fragments.

Source: Abrams et aL, 1990.
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The second factor that should be noted regarding the probe-based method is the

efficiency of clamp attachment to a chosen target. Assuming 100% of a chosen target in

a genomic DNA digest forms hybrids with the probes, the clamp attachment efficiency

would be equal to the efficiency of the probe-target hybrids converting to fully base

paired fragments (see Figure 9). It is desirable to have a clamp sequence rich in GC

bases, but increase in the GC content of a template DNA has been shown to reduce the

template amplification efficiency (McDowell et aI., 1998). Thus, the efficiency of the

hybrids converting to fully base-paired fragments may be low. This efficiency can be

increased to some degree by introducing additives such as formamide (Sarkar et aI.,

1990; Varadaraj and Skinner, 1994), DMSO (Winship, 1989; Bookstein et aI., 1990; Sun

et aI., 1993), and betaine (Henke et aI., 1997). However, the clamp attachment efficiency

of the probe-based method has not been determined. Especially when DNA sample size

is a limiting factor for analysis of point mutations at low fractions, achieving high

efficiency clamp attachment is critical.

The clamp attachment method developed in this thesis generates a clamp attachment

efficiency of greater than 95%. This method is based on enzymatic ligation coupled with

mass action. Since clamp attachment is performed without peR, this method can be

combined with target isolation/CDCElhifi-PCR for analysis of point mutations at

fractions below 2 x 10-4
. This combination increases the scanning range for the human

genome. Target isolation/CDCE/hifi-PCR alone can be applied to only those DNA

sequences with a natural clamp, representing about 9% of the human genome. In

addition, none of gene-coding regions for certain genes like p53 and BRCA 1 can be

studied by this method. However, the combined method of clamp ligation and target

isolation/CDCE/hifi-PCR allows analysis of the majority, if not all, of gene-coding

regions.

2.6 Criteria for measuring inherited point mutational spectra in human populations

Studies of inherited point mutational spectra in human populations allow testing of the

relationship of genes to diseases and the discovery of causative alleles over the entire

gene, as Figure 10 summarizes. However, such studies require analysis of a large
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Figure 10. Analysis of inherited point mutational spectra in human populations

A. Age-specific decline ~n sum of alleles coding for risk of disease is expected in human
populations since carriers would die earlier in life than non-carriers.

B. If the hypothesis illustrated in Figure lOA is true, analysis of the entire set of a
gene's alleles (inherited point mutational spectra) in human popll1atio~s as a function
of age can be used as a means to identify causative alleles. Allele-specific decline is
expected for causative alleles as people age, while non-causative allele fractions are
expected to stay the same.

S9urce: TOlnita-Mitchell et aI., 1998.



number of individuals to generate observed mutations with statistical significance.

Fulfilling such a requirement demands sensitive and general methods to detect mutations

in a large number of individuals.

To analyze alleles at fractions as low as 1% hotspots belonging to non-deleterious

genes, methods of detecting mutations at a fraction of 5 x 10-5 in human populations are

necessary. For example, in a sample size of 107ceils (2 x 107 allele copies), derived from

105 persons, each person is represented by 100 cells. Alleles at a fraction of 5 x 10-5 in

this sample are present as 103 copies ((2 x 107
) + (5 x 10-5

)), which can be detected with

statistical significance using mutation detection methods with a sensitivity of 5 x

10-5
• A total gene-inactivating allele fraction of 3 x 10-1 for non-deleterious genes is

expected in human populations, and a fraction of 5 x 10-3 for recessive deleterious genes

(William G. Thilly, personal communication). 1% hotspot alleles in non-deleterious

genes is then expected to appear at a fraction of 5 x 10-5
.

To sum up, sensitive and general methods of measuring mutations based on their

genotype can be applied to analysis of inherited mutations in human populations, in

addition to analysis of somatic mutations in normal human tissues. These analyses may

allow an understanding of human mutagenesis.
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3 MATERIALS AND METHODS

3.1 Construction of melting profiles

Sequence-specific melting profiles were constructed using WinMelt™ 2.0 (Medprobe,

Norway), software based on a previous work (Lerman and Silverstein, 1987). WinMelt™

2.0 constructs melting profiles of known sequences as a function of sequence and

temperature. This software uses an algorithm for calculating the equilibrium melting

transition probability (Fixman and Freire, 1977), combined with the neighbor base-pair

doublet parameters (Gotoh and Tagashira, 1981). A close correlation between calculated

and experimental measurements has been demonstrated (Myers et al., 1985a, b), ensuring

that the algorithm is accurate.

3.2 Proposed method of clamp attachment

3.2.1 Ligation-based methodology

Figure 11 illustrates the proposed method of attaching a clamp to any 100-bp sequence

in the human genome. High efficiency clamp ligation to the restriction ends of a chosen

target by mass action is expected in a ligation reaction mixture containing at least a 10

fold molar excess of the clamp.

About 3000 restriction enzymes have been found, exhibiting over 200 different

specificities (New England BioLabs, 2000-2001; Roberts and Macelis, 2001). Each

enzyme recognizes a specific DNA sequence of 4-6-bp (recognition site), cleaves within

or next to the recognition site, and generates either blunt or cohesive ends (reviewed in

Pingoud and Ieltsch, 1997).

DNA ligase joins DNA by catalyzing the formation of phosphodiester bonds between

juxtaposed 5'-phosphoryl and 3'-hydroxyl termini (Kellenberger et aI., 1961; Gellert,

1966; Cozzarelli et aI., 1967; Gefter et aI., 1967; Gellert, 1967; Olivera and Lehman,

1967; Weiss and Richardson, 1967; Zimmerman et al., 1967) (DNA ligase is reviewed in

Lehman, 1974; Higgins and Cossarelli, 1979; Engler and Richardson, 1982). Thus,

71



5'P

Clamp (lOx)

I 3'OH

IIJ-

A

Complementary to
restriction end Y

A

> Target restriction fragment (Ix)

\
B

Restriction end Y

DNA ligase

B

Figure 11. Proposed method of clamp attachment

One end of a desired target is liberated from genomic DNA using a restriction enzyme
of choice. For each restriction enzyme chosen, a clamp, with an end complementary to
the one generated by the chosen enzyme, is prepared. This clamp is then covalently
joined to the target restriction end by DNA ligase. High efficiency clamp ligation by
mass action is expected in a ligation reaction mixture containing at least a 10-fold molar
excess of the clamp.

Source: Kim et aI., 2001.
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restriction enzymes produce suitable substrates for ligation since they cleave DNA in

both strands by hydrolyzing phosphodiester bonds (Connolly et aI., 1984; Grasby and

Connolly, 1992; leltsch et aI., 1992). Ligation of restriction-generated ends was first

demonstrated with cohesive ends of 4 and 6 nucleotides (Mertz and Davis, 1972). Since

then, ligation of ends as short as one nucleotide (Hung and Wensick, 1984), as well as

fully base-paired, or blunt ends (Ehrlich et aI., 1977; Mottes et aI., 1977; Sgaramella and

Ehrlich, 1978), has been demonstrated.

3.2.2 Method of estimating number of chosen restriction ends per human cell

The theoretical number of chosen restriction ends per diploid human cell was

estimated based on three factors. First, a haploid human genome contains about 3 x 109


bp (Current protocols in molecular biology, 1987; Lander et aI., 2001; Venter et aI.,

2001). Second, two ends are generated each time a restriction endonuclease cleaves its

recognition site. Third, depending on the size of the recognition site, the frequency with

which an enzyme cleaves would vary, producing fragments with different expected

average lengths. For example, an enzyme with a 4-base recognition site would cleave

every 256 bases, assuming the human genome is comprised of 50% GC bases. Although

the GC content determined for humans is 41 % (Marmur and Doty, 1962; Lander et al.,

2001), 50% was used instead to simplify the estimation. Thus, the cleavage frequency in

bases was estimated as follows: 4x.

3.2.3 Preparation of clamp for Apo I restriction end

Figure 12 illustrates the characteristics of the clamp prepared for the restriction end

generated by Apo I restriction endonuclease. Apo I has a 6-base recognition sequence

and cleaves after the first base pair, generating a 5' -AATT-3' cohesive end (Polisson and

Robinson, 1992), as Figure 13 shows.
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cgcccgccgc gccccgcgcc cgtcccgccg cccccgcccg ataataa(c)*
gcgggcggcg cggggcgcgg gcagggcggc gggggcgggc tattatt(g)*ttaa

J t '-S'P

Complementary to Apo I restriction end

Figure 12. Characteristics of clamp for Apo I restriction end

The first 40-bp sequence of the clamp is from a previous study (Sheffield et aI., 1989).
This clamp has an end that is complementary to, or the same as, the Apo I. This end
contains 5'-phosphoryl and 3'-hydroxyl residues, allowing clamp self-ligation, as well as
clamp ligation to the restriction end generated by Apo II

* The base pair in parentheses was omitted when preparing the clamp using the second approach
(see Section 3.2.3.2). This omission was necessary to generate Apo I restriction recognition site,
where the clamp was ligated to the chosen HPRTtarget.
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Figure 13. Recognition sequence of Apo I restriction endonuclease

..
5'-Pu AATT Py-3'

3'-Py TTAA,fu-5'

3.2.3.1 First approach: direct hybridization

As a first means of preparing the clamp, a pair of complementary oligonucleotides

were synthesized (Synthetic Genetics, San Diego, CA), polyacrylamide gel

electrophoresis (PAGE)-purified (Synthetic Genetics), and hybridized to each other.

During the synthesis, one strand of the clamp was fluorescein labeled at the 5' end

(5'FITC), and a phosphate group was attached at the 5' end (5P') of the other strand, as

Figure 12 illustrates. Clamp hybridization was performed at 75°C for 15 min in a buffer

containing 0.2 M NaCI, 10 mM Tris-HCI (pH. 7.6), and 2 mM EDTA.

3.2.3.2 Second approach: purification by CDCE

As a second means of preparing the clamp, the chosen HPRT target with the ligated

clamp was PCR amplified using the GCl/Pl primer pair. This procedure was followed

by CDCE purification of the wild-type DNA. This DNA was then restriction digested by

Apo I prior to CE purification of the target-cleaved clamp.

3.3 Overview of proposed point mutation detection method

Figure 14 shows a flow diagram of the proposed method, which allows analysis of

rare point mutations at fractions below 2 x 10-4 in almost the entire human genome.
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Figure 14. Flow diagram of proposed point mutation detection method:
natural vs. ligated clamp

Natural clamp: For analysis of DNA sequences with a natural clamp, a chosen target is
isolated from a genomic DNA digest using biotin-labeled probes. For this procedure,
sequence-specific hybridization is coupled with a biotin-streptavidin capture system.
This procedure is followed by pre-PeR mutant enrichment, performed first by separating
mutant from wild-type sequences by CDCE and then by eluting these separated mutants.
CE is performed as an additional means to enrich for mutants; CE differentiates mutants
from wild-type containing species, such as single strands, in CDCE mutant-enriched
samples. After hifi-PCR, CDCE is performed for further mutant enrichment. Final
mutant-enriched samples are then peR amplified prior to mutational analysis by CDCE.
At this stage, each individual mutant is CDCE purified for sequencing.

Ligated clamp: For analysis of DNA sequences without a natural clamp, restriction
digestion and clamp ligation are performed prior to pre-peR mutant enrichment by
CDCE.

Source: Kim et a!., 2001.
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3.4 Test target sequence: HPRT exon 3

A part of the human HPRT gene (eDNA bp 223-318) was chosen as a test target to

discover if the proposed point mutation detection method is as sensitive as the one

established for DNA sequences with a natural clamp. This target is comprised of 52% of

the HPRT exon 3 (cDNA bp 135-318) and is juxtaposed with a domain of a higher

melting temperature, a natural clamp (eDNA bp 141-216). Thus, the chosen target allows

a direct sensitivity comparison of the proposed mutation detection method using the

ligated clamp to that of the established method using the natural clamp.

Figure 15 illustrates the melting profiles of the chosen target. These melting profiles

suggest that the chosen target with either the natural or ligated clamp is suitable for

CDCE separation.

3.5 Preparation of internal standards

3.5.1 Homoduplex mutant of genomic DNA

A homoduplex mutant of genomic DNA carrying a G -> T transversion at HPRT

cDNA bp 312 was isolated from HPRTMunich cells. HPRTMunich cells are a lymphoblast

line, isolated from a male patient with gout (Wilson and Kelley, 1984). Separation of this

mutation in the chosen HPRT target from the wild-type has been demonstrated by DGGE

(Cariello et al., 1988).

3.5.2 Homoduplex mutant of peR products (438-bp)

A 438-bp homoduplex mutant carrying a G -> A transition at HPRT cDNA bp 309

was constructed by peR. This mutant is compatible with the chosen HPRTtarget

embedded fragment liberated from genomic DNA by BstN I and Dra I restriction

endonucleases.

To construct this mutant, three sets of PCR were performed. The first was performed

using the lSI/PI-unstable primer pair and using human wild-type genomic DNA as a
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template to generate a 295-bp mutant fragment. The amplified fragment was then used as

a primer, together with 182, for the second set of PCR; human wild-type genomic DNA

was used as a template, and the 438-bp mutant fragment was generated. This fragment

was purified by CE, performed using a 75-~m id capillary at a constant current of 9 JlA.

The purified fragment was then used as a template for the third set of peR; the IS 1/152

primer pair was used, and enough cycles were applied to convert all the primers into

products. Upon this conversion, the expected concentration of the amplified mutant was

about lOll copies/~l, equivalent to the initial primer copy number. The known

concentrations of the mutant to be used as stock were then made by subsequently diluting

the peR products with dH20, 10-fold each time.

3.5.3 Homoduplex mutant ofpeR products (198-bp/169-bp)

A 198-bp or l69-bp homoduplex mutant carrying a G -> A transition at HPRT cDNA

bp 309 was constructed by peR. This mutant is compatible with the chosen HPRTtarget

with the natural clamp (198-bp) after Ahd I and HinfI restriction digestion or with the

ligated clamp (169-bp) after clamp ligation.

The mutant with the natural clamp was amplified using the P3/Pl-unstable primer pair

and using human wild-type genomic DNA as a template. The same mutant with the

ligated clamp was amplified using the GC l/Pl-unstable primer pair and using the clamp

ligated wild-type DNA of the chosen HPRT target as a template. The known

concentrations of the mutant to be used as stock were prepared as described in Section

3.5.2.

3.5.4 Heteroduplex mutant ofpeR products (198-bp)

To create a mutant in mutant/wild-type heteroduplexes, first, a homoduplex mutant

with the natural clamp (G -> A at HPRT cDNA bp 309) was prepared as described in

Section 3.5.3. Second, the wild-type and the mutant, each in a homoduplex form at a

molar ratio of 100 to 1 were co-amplified using the P3IPI primer pair. Enough cycles

were applied to this peR in which the homoduplex mutant formed heteroduplexes with
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the wild-type by mass action. The known concentrations of the mlltant in heteroduplexes

to be used as stock were prepared as described in Section 3.5.2.

3.6 peR

3.6.1 Primers

Figure 16 and Table 10 summarize the sequences and sites of the primers used in this

study analyzing the chosen HPRT target.

The names and sequences of the primers used in this study analyzing the chosen p53

target are as follows:

Ge2: 5'FITC-GCCGC CTGCA GCCCG CGCCC CCCGT GCCCC CGCCC CGCCG

CCGGC CCGGG CGCCT T-3'

BS: 5'-TGACC TGGAG TCTTC C-3'

BS-stable: 5'-TGACC TGGAG TCTTC CAGTG TGACGATG-3', underlined is an AT

-> GC transition at cDNA bp 763

HH: 5'FITC-CTTGC CACAG GTCTC CCCAA-3'

AP: 5'-TATGG AAGAA ATCGG TAAGA-3'

Each primer was synthesized and PAGE-purified by Synthetic Genetics (San Diego,

CA).

3.6.2 Reaction conditions

peR was performed inside closed glass capillaries using an Air Thermo Cycler (Idaho

Technologies, Idaho Falls, ID). Each reaction mixture of 10 to 50 ~l contained 20 mM

Tris-HCI (pH 8.0), 2 mM MgCI2, 10 mM KCI, 6mM (NH4)2S04,0.1 % Triton X-100, 100

~g/ml nuclease-free BSA, 0.2 ~M each primer, 0.1 mM dNTPs (Pharmacia, Piscataway,

NJ), and 0.1 U/~l Pfu Turbo™ DNA polymerase (Stratagene, La Jolla, CA). Each PCR

cycle consisted of 7 s of template denaturation at 94°C, 30 s of template-primer annealing
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5' - bGGTTGGTGTG GAAGTTTAAT GACTAAGAGG Ctgtttgttat

1

aaagtttaat gtatgaaact TTCTATTAAA TTdcctgattt

tatttctgta ggactgaeRcg tcTTGCTCGA GATGTGATGA
2

AGGAGATGGG AGGCCATCAC ATTGTAGCCC TCTGTGTGCT

CAAGGGGGGC TATA~ATTCT TTGCTGACCT GCTGGATTAC

ATCAAAGCAC TGAATAGAAA TAGTGATAGA TCCATTCCTA

TGACTGTAGA TTTTATCAGA CTGAAGAGCT ATTGTGTGAG

TATATTT AAT ATATGgATTCT TTTTAGTGGC AACAGTAGGT

3

TTTCTTATAT TTTCTTTGAA TCTCTGCAAA CCATACTTGC

TTTCATTTCA CTTGGTTACA GTGAGATTTT TCTAACATAT

TCACTAGTAC TTTACATCAA AGCCAATACT GTTTTTTIh -3'

4

Figure 16. Primer sites for chosen HPRT targeta

a For each primer, the position of the first base is underlined with a number below (see Table 10
for the name and sequence infonnation).

b BstN I restriction end.
c&d Two groups of bases in lowercase letters represent sites for Probe 1C and Probe 2d

. These
probes were used for target isolation.
e Ahd I restriction end.
f Apo I restriction end.
g HinfI restriction end.
h Dra I restriction end.
* The group of bases in bold represents the entire sequence of HPRTexon 3 (eDNA bp 135-318).
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Name

Table 10. Sequences of primers for chosen HPRT target

Sequence

GCIb,c

PI

PI-stable

PI-unstable

1

2

3

3

3

5'-GGTTG GTGTG GAAGT TTAAT GAC-3'

5'-ACGTC TTGCT CGAGA TGTGA-3'

5'-CGCCC GCCGC GCCCC GCGCC CGTCC
CGCCG CCCCC GCCCG ATAAT AA-3'

5'-CATAT ATTAA ATATA CTCAC-3'

5'-CATAT ATTAA ATATA CTCAC ACGAT
AGCTC TTCAG-3' (underlined is an AT -> GC transition

at cDNA bp 316)

5'-CATAT ATTAA ATATA CTCAC ACAAT AGCTT
TTC AG-3' (underlined is a GC -> AT transition at cDNA

bp 309)

IS2 4 5'-AAAAA AACAG TATTG GCTTT-3'
a See Figure 16.
b 5'end fluorescein-labeled primers.
C This primer, together with PI, was used to amplify the chosen HPRT target with the ligated
clamp.
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at 45°C, and 10 s of primer extension at 72°C. After a desired number of cycles,

incubation followed, at 72°C for 2 min and at 45°C for 15 min. Under the reaction

conditions specified, about 60% PCR efficiency was observed for the chosen HPRT

target with either the natural (the P3fPl primer pair) or ligated (the GCIIPI primer pair)

clamp.

When amplifying the chosen HPRT target with the ligated clamp, byproducts,

representing between 5 and 20% of the total amplified products, were formed. This is

thought to be the result of using the high GC-content primer, GC 1 (83%). These

byproducts, discovered to be a form of the wild-type, had slower electrophoretic

mobilities that that of the wild-type under optimal CDCE-separating conditions, which

separated mutant from wild-type sequences. This confounded quantitative analysis of the

amplified products by CDCE. However, this problem was nlinimized by incubating the

PCR sample with 0.05 D/1l1 Exo· Pfu DNA polymerase (Stratagene, La Jolla, CA) for 5

min at 72°C prior to CDCE analysis.

3.7 CDCE and CE

3.7.1 Instrumentation and operating conditions

Figure 17 depicts a CDCE apparatus. CDCE uses elevated temperatures to permit

separation of mutant from wild-type sequences (Khrapko et aI., 1994a). A portion of the

capillary is inserted into a water jacket, a regulated-temperature zone where the

separation takes place; the temperature of the water jacket is controlled by a constant

temperature water circulator. CE is performed at room tenlperature to separate DNA

molecules based on their length and to separate double- from single-stranded DNA of the

same length.

Depending on DNA separation efficiency or loading capacity desired, CDCE or CE

was performed differently: using a capillary of different inner diameter (id) (e.g., 75 to

540 ~m), a capillary of various lengths (e.g., 15 to 30 em), or a water jacket of various

lengths (e.g., 6 to 20 em). DNA loading capacity has been shown to be increased up to

about 100-fold (100 ng vs. 10 Ilg) as the id of a capillary is increased from 75 to 540 ~m
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Figure 17. Diagram of CDCE apparatus

CDCE apparatus consists of a CE apparatus (Cohen et aI., 1990), a heated zone of
constant temperature, and a detector (Khrapko et aI., 1994a). Fluorescently-Iabeled
molecules are detected as they pass through a single point of a capillary where an argon
laser beam is focused. The emitted fluorescence signal is collected by a microscope
objective and directed through filters into a photomultiplier. The signal is then amplified
by a current preamplifier and recorded by a computerized data acquisition system. Both
ends of the capillary are bathed in buffer reservoirs filled with 1 x TBE (89 mM Tris
borate (pH. 8.0),1 mM EDTA).

Adapted from Khrapko et aI., 1994a; Muniappan and ThiIly, 1999; Li-Sucholeiki et aI., 1999.
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(Li and Thilly, 1996). Using a longer water jacket increases separation efficiency of

different mutant sequences, as well as of mutant from wild-type sequences. Experiments

performed in this study showed that when DNA separation was performed at room

temperature, increase in the length of a capillary increased· separation efficiency of DNA

molecules of different lengths.

Desired CDCE and CE separation conditions were determined by performing test runs

with DNA molecules, labeled with fluorescein. For example, desired CDCE separation

conditions were determined using PCR products containing both mutant and wild-type

sequences.

For purification of desired DNA molecules, electro-elution was performed in 0.1 x to

0.8 x TBEB (0.1 x TBEB: 0.1 x TBE, 0.03 mg/ml BSA) as they reached the anodic end

of the capillary after CDCE or CE separation.

3.7.2 Coating of capillaries

The inner surface of capillaries was coated with linear polyacrylamide prior to use.

This procedure was necessary to prevent electro-osmotic flow, which otherwise limits

separation efficiency of desired molecules (Hjerten 1985). The capillaries were coated as

described in previous studies (Hanekamp et aI., 1996; Khrapko et aI., 1997b; Khrapko et

aI., 2001) (adapted from Hjerten (1985)):

For each procedure, a fused-silica capillary (~12 m) of a desired id (Polymicro

Technologies, Phoenix, AZ) was filled with 1 M NaOH (using a high-pressure syringe

with the needle end inserted into a piece of Teflon tubing). This capillary was incubated

at room temperature for 1 hr. The capillary was then washed with dH20, filled with 1 M

Hel, and incubated at room temperature for 10 min. After another washing with dH20,

the capillary was washed again with 100% methanol. The washed capillary was filled

with y-methacryloyloxypropyltrimethoxysilane (Sigma, St Louis, MO) and was incubated

at room temperature overnight. Washing with 100% methanol was repeated, and the

capillary was filled with 6% acrylamide solution in 1 x TEE containing 0.1 % N, N, N',

N'-tetramethylethylenediamine (TEMED) and 0.025% ammonium persulfate (APS). The

capillary was incubated at room temperature overnight before using.
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3.7.3 Preparation of separation matrix

For improved resolution and reproducible DNA separation by CDCE and CE, a

replaceable linear polyacrylamide matrix was prepared as described in previous studies

(Ruiz-Martinez et aI., 1993; Hanekamp et aI., 1996; Khrapko et aI., 1997b; Khrapko et

aI., 2001). Preparation of such a sieving matrix was permitted by low concentrations of

oxygen, radical initiator CAPS), and catalyst (TEMED) in a monomer solution with

polymerization allowed at low temperatures (Ruiz-Martinez et aI., 1993). This procedure

was performed as follows:

5% acrylamide solution in 1 x TBE containing 0.030/0 TEMED was prepared in a flask

with the top sealed with multiple layers of Parafilm. Throughout the procedure, the flask

was kept in an ice bath, and a stir bar placed in the flask was left in motion. A stainless

steel needle, connected to an argon cylinder by silicone tubing, was dipped into the

solution through the Parafilm. This solution was deoxygenated by argon bubbling for 1

hr. The tip of the needle was then taken out of the solution but was kept within the flask

during the rest of the procedure. 0.003% of APS was added to the solution using a 100

fll high-pressure syringe through the Parafilm. After a brief mixing, needles were

inserted into pre-chilled 10- to 50-ml glass syringes. Each needle was put in the flask

through Parafilm but was kept out of the solution. The syringe was then filled with argon

gas, which was flushed out into the air. Similarity, the syringe was rinsed with a small

volume of the solution. The rinsed syringe was filled with the solution, and the syringe

needle was replaced with a 200-1l1 pipet tip with a sealed end. The filled syringe was

placed in vertical position and was kept at 4°C to allow the acrylamide to polymerize and

also for storing.

The polymerized matrix was dispensed into IOO-lll high-pressure syringes. A piece of

Teflon tubing was inserted into each syringe needle end to replace the matrix in a

capillary before each CDCE and CE separation. Such a replacement procedure has been

shown to be critical in generating reproducibility in DNA separation (Khrapko et aI.,

1994a).
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3.7.4 Sample loading

3.7.4.1 Diluted sample

Each PCR-amplified sample was diluted 10-fold with dH20 prior to loading into a

capillary for CDCE or CE separation. Dilution was necessary since sample injection into

a capillary is inhibited by the high salt concentration in the peR sample. A piece of

platinum wire and the cathodic end of the capillary were dipped into the diluted sample

solution tube, and the sample was electro-kinetically injected by applying a constant

current of 21lA for 30 s. Typically, about 108 copies of a PCR sample are loaded into a

75-llm id capillary by this procedure (Hanekamp et al., 1996; Khrapko et aI., 2001).

3.7.4.2 Dialyzed sample

To load the entire DNA sample into a capillary, each desired sample was dialyzed by

drop dialysis. Drop dialysis is a simple and rapid method of dialyzing small-volumn

samples, smaller than 100 fll (Marusyk and Sergeant, 1980). For this procedure, a 0.025

11m membrane filter (Millipore, Bedford, MA) was floated on the surface of 0.001 to

0.01 x TBE poured into a container (e.g., plastic Petri dish). A desired sample was then

transferred to the surface of the floating membrane filter by pipeting and was dialyzed

against the buffer by leaving a stir bar in motion for 2 hr. The dialyzed sample was then

transferred to a tube by pipeting, and its volume was condensed to about 2 to 4 III by

lyophilizer.

The yield of drop dialysis was determined by comparing the copy number of a chosen

sequence before and after the procedure; the copy number was measured by quantitative

PCR, followed by CDCE. The range of the yields was between 80 and close to 100% as

long as the samples contained 50 mM salt (e.g., NaCI).

The use of TBE at low concentrations as a dialysis buffer is to prevent the ionic

strength of the condensed sample solution from being higher than that of 1 x TBE. Such

consideration was necessary for electro-kinetic injection of the entire DNA sample into a

capillary since ions are preferentially loaded before DNA. For sample injection, the
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dialyzed and condensed sample was transferred to a piece of Teflon tubing. One end of

the tubing was mounted onto the cathodic end of the capillary, and the other end of the

tubing was inserted into a buffer reservoir. By applying a desired current (50 JlA for a

320-Jlm id capillary and 80 JlA for a 540-Jlm id capillary) for 2 min, the sample was

injected into the capillary. This injection procedure has been demonstrated to be suitable

for loading between 85 and close to 100% of sample DNA into a capillary (Khrapko et

aI., 1994a; Li-Sucholeiki, 1999); close to 100% sample loading was observed in

experiments performed in this study.

3.7.5 Methods of quantitative analysis

Quantitative analyses of fluorescently-Iabeled DNA molecules were performed by

CDCEandCE:

To estimate the copy number of a chosen DNA sequence at any stage throughout the

procedure outlined in Section 3.3, quantitative PCR was performed as described in

previous studies: a known copy number of an internal standard was co-amplified with an

aliquot of each sample desired (Khrapko et aI., 1997b; Marcelino et aI., 1998; Kim et aI.,

2001; Lim et aI., 2001). This peR sample was then separated by CDCE. The areas

under the separated peaks, which represented the wild-type homoduplex CAw), mutant

homoduplex (AM)' and wild-type/mutant heteroduplexes (AH), were measured, and the

chosen sequence copy number was estimated as follows:

([Aw + (AH -7- 2)] -7- [AM + (AH + 2)] XCIS) =# of chosen sequence copies/JlI (1)

where CIS is the concentration of the mutant internal standard used for the quantitative

PCR.

Similarly, enumeration of individual mutant sequences in initial samples (initial

mutant fractions) were measured by CDCE. The areas under the CDCE-separated peaks,

which represented individual mutants in an initial sample (AMs) and an added mutant

internal standard (AMI) at a known fraction (IMF), were measured. These areas were then

compared to measure the initial mutant fractions: (AMS + AMI) X IMFo
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The fidelity of Pfu DNA polymerase was estimated as follows:

fidelitylbp/doubling =([(AMs + AMI) x IMF] + T) + D (2)

where T is the target size in bases and D is the applied number of doublings used for

target amplification.

The areas under the CE-separated peaks, which represented DNA molecules differing

in length, were measured for different purposes, such as estimating efficiency of clamp

ligation and of restriction digestion.

3.8 Mutational analysis: ligated vs. natural clamp

3.8.1 Procedure of genomic DNA isolation

Genomic DNA from human cells was isolated as described in previous studies

(Khrapko et aI., 1997b; Kim et aI., 2001):

Cells were thawed, centrifuged at 1500 g for 10 min, and washed twice with

phosphate-buffered saline (PBS) at a concentration of 107 celis/illl. These cells were

resuspended in 1 x TE buffer (50 mM Tris-HCI (pH 8.0), 10 mM EDTA) at a

concentration of 107 cells/mI. 20 mg/ml of Proteinase K (Roche Molecular

Biochemicals, Indianapolis, IN) and 10% SDS were then added to the final

concentrations of 1 mg/ml and 0.5%, respectively. This sample mixture was incubated in

a water-bath shaker (100-200 rpm) at SO°C for 3 hr. 30 mg/ml RNase A (Sigma-Aldrich,

Inc. Saint Louis, MO) was then added to a final concentration of 20 flg/ml, followed by

incubation in a water-bath shaker (100-200 rpm) at 37°C for 1 hr.

This sample was centrifuged at 10,000 g at 4°C for 15 min, followed by the transfer of

the central portion of the supernatant into a new tube by pipeting. This step was repeated

two to three times to get as much of the supernatant as possible. To the transferred

supernatant, 2.5 M NaCI was added to a final concentration of 250 mM, followed by

addition of two volumes of chilled 100% ethanol. A DNA spool was then formed upon

mixing of the sample solution and was washed twice with chilled 70% ethanol. After
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discarding as much of the 70% ethanol as possible, the spool was air-dried for

approximately 30 min. 0.1 x TE buffer was then added to a DNA concentration of 1 to 4

mg/ml, and the spool was dissolved by gently rotating the sample tube.

Absorbencies by a UV spectrophotometer at wavelengths of 260 and 280 nm were

measured to estimate the quantity and quality of the isolated DNA. As an additional

means to quantify the isolated DNA, the copy number of the chosen HPRTtarget was

measured by quantitative PCR, followed by CDCE. For this measurement, an aliquot of

each genomic DNA sample, together with a known copy number of the 438-bp mutant

internal standard, was restriction digested with BstN I and Dra I. An aliquot of this

digested sample was then amplified using the P31P1 primer pair, followed by CDCE

separation.

Based on these quantitative analyses, the HPRTMunich genomic DNA (see Section 3.5.1)

was added to the HPRTwild-type genomic DNA at a desired fraction prior to restriction

digestion by BstN I and Dra I.

3.8.2 First restriction digestion: BstN I and Dra I

The reaction mixture of BstN I and Dra I restriction enzymes (New England Biolabs,

Beverly, MA) contained 10 mM Tris-HCl, 10 mM MgClz, 50 mM NaCI, and 1 mM

dithiothreitol (pH 7.9 at 25°C). 10 mg/ml of BSA was added to a final concentration of

0.1 mg/ml, which was incubated at 37°C for 4 hr with an enzyme/DNA ratio of 1 U/llg.

The efficiency of BstN I and Dra I restriction digestion was assessed by 2% agarose

gel electrophoresis; human genomic DNA digested with BstN I and Dra I multiple times

under the specified reaction conditions was used as a reference to indicate complete

digestion.

To each restriction-digested sample, the 438-bpmutant internal standard was added at

a desired fraction prior to target isolation.
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3.8.3 Target isolation

3.8.3.1 Procedure

Isolation of the chosen HPRT target was performed with each BstN I and Dra I

restriction-digested sample. This procedure is based on probe-target hybridization

coupled with a biotin-streptavidin capture system, as Figure 18 illustrates. The procedure

was performed as described in previous studies with modifications (Li-Sucholeiki and

Thilly, 2000; Kim et aI., 2001). These modifications made the procedure optimal for the

chosen target and minimized sample exposure to heat during the procedure:

To each BstN I/Dra I restriction-digested sample, Probe 1 (5' TGTGG AAGTT

TAATG ACTAA GAGGT GTTTG 3') and Probe 2 (5' GACGT TCAGT CCTAC

AGAAA TAAAA TCAGG 3') (Synthetic Genetics, San Diego, CA) were added at a

probe/target molar ratio of 5 x 104 each (the probes were biotinylated at the 5' end by an

IS-carbon spacer arm with a 6-carbon linker and were PAGE-purified prior to use)

(Figure 15 in Section 3.6.1 indicates the probe sites in the target-embeded BstN I and Dra

I restriction fragment). This mixture was boiled for 1 min for target denaturation and

immediately chilled in an ice bath for 10 min. The chilled sample was incubated at 60°C

for 2 hr in 6 x SSPE (0.894 M NaCl, 60 mM sodium phosphate (pH 7.4),6 mM EDTA)

for probe-target hybridization.

Streptavidin-coated glass paramagnetic beads (CPG, Lincoln Park, NJ) were pre

washed twice with 3 x SSPE at a concentration of 10 mg/mL. The washing was

performed first by magnetically separating the beads from the supernatant and second by

removing the supernatant. The pre-washed beads were added to the probe-target

hybridized sample at 0.4 mg of beads/108 copies of the target. This mixture was

incubated at 50°C for 30 min to allow the binding of the beads to the probe-target

hybrids. The beads were then washed with 6 xSSPE at a concentration of 5 mg/mL at

room temperature to remove non-specific bead-DNA bindings. This washing step was

repeated three times, once with 6 x SSPE and twice with 3 x SSPE. The final washing

was performed with a buffer containing 50 mM NaCI, and 1 mM Tris-HCI (pH 7.4) to
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Figure 18. Procedure of target isolation

Human genomic DNA is restriction digested to liberate a chosen target. This DNA is
then denatured, mixed with biotin-labeled probes, and allowed to form probe-target
hybrids. Streptavidin-coated beads are added to this mixture of hybrids, followed by
incubation, to allow the binding of the beads to the probe-target hybrids. After washing,
the target is eluted in single strands. Target isolation is followed by target renaturation
during which mutant sequences formed heteroduplexes with the wild-type by mass
action.

Source: Li-Sucholeiki and Thilly, 2000.
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minimize the salt, which could have been carried over by the beads. ··All the supernatant

transferred up to this point was combined for estimating the target DNA yield.

The target was released from the probe-bound beads twice in dH20 at 20 mg

beads/mL at 70°C for 2 min. The released target was magnetically separated from the

beads and transferred to a new tube, and its volume was condensed to about 10 III by

lyophilizer prior to target renaturation.

3.8.3.2 Methods of estimating yield and isolation efficiency

The yield and efficiency of target isolation were estimated by quantitative peR,

followed by CDCE. To estimate the target DNA yield, the wild-type copy number of the

chosen HPRT target in both samples of the final target-isolated (CE) and combined

supernatant (Cs) was measured using the 438-bp mutant internal standard and the P31P1

primer pair. The ratio of CE to CE+ Cs was then estimated to determine the target DNA

yield ([CE + (CE+ Cs)] x 100).

The isolation efficiency of the chosen HPRT target relative to non-target sequences in

the pool of genomic DNA digest (BstN I/Dra I) was estimated using a part of human

mitochondrial DNA (DNA bp 10011-10215) as a non-target reference. CDCE separation

of mutations in the chosen mitochondrial target from the wild-type has been

demonstrated (Khrapko et aI., 1994a; Khrapko et aI., 1997a, b Coller et aI., 1998;

Marcelino et aI., 1998). Thus, this sequence allows measurement of the sequence copy

number by quantitative PCR, followed by CDCE. For this quantitative PCR, an internal

standard containing a mutation in the chosen mitochondrial target (A -> G transition at bp

10072) was obtained from a previous study (Khrapko et aI., 1997b); CW7 (5' ACCGT

TAACT TCCAA TTAAC 3', bp 10,011-10031) and J3 (5'FITC GCOGG CGCAG

GGAAA GAGGT 3', complementary to bp 10196-10215) primers (Synthetic Genetic, La

Jolla, CA) were used. To estimate the isolation efficiency of the chosen HPRT target, the

measured wild-type molar ratio of the chosen mitochondrial (M) to HPRT (T) targets in

the initial sample (Mr + T1 = IR) was compared to that of in the final target-isolated

sample (Mp + Tp =FR) (isolation efficiency =IR + FR).
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As a second means to estimate the isolation efficiency of the chosen HPRT target,

absorbencies of desired samples were measured by a UV spectrophotometer at a

wavelength of 260 nm. Sample DNA concentrations per a given HPRT target copy

number before (AI) and after (AF) the procedure were then compared to estimate the

isolation efficiency (AI -:- AF).

3.8.4 Target renaturation

To allow renaturation of the chosen HPRT target, isolated in single strands from the

pool of genomic DNA digest, incubation was perfonned either at 55°C in a renaturation

buffer (0.2 M NaCI, 10 mM Tris-HCl (pH 7.6),2 mM EDTA) or at28°C in the presence

of 40% dimethyl sulfoxide (DMSO) in the renaturation buffer. Incubation was

performed for 16 hr during which mutant sequences formed heteroduplexes with the

wild-type by mass action. Each renatured sample was desalted by drop dialysis (see

Section 3.7.4.2) prior to second restriction digestion.

3.8.5 Second restriction digestion

3.8.5.1 Ahd IJHinjI: natural clamp

To liberate the chosen HPRTtarget with the natural clamp (eDNA bp 141-318) from

the 438-bp restriction fragment of BstN I and Dra I, each target-renatured sample was

restriction digested with Ahd I and Hin!I (New England Biolabs, Beverly, MA). The

reaction mixture of Ahd I and HinjI contained 50 mM potassium acetate, 20 mM Tris

acetate, 10 mM magnesium acetate, and 1 mM dithiothreitol (pH 7.9 at 25°C). 10 mg/ml

BSA was added to a final concentration of 0.1 mg/ml, which was incubated at 37°C for 2

hr with 10 U of each restriction enzyme. The efficiency of Ahd I/HinjI restriction

digestion was estimated as Figure 19 illustrates.
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lSI P3

Chosen HPRT target-embeded BstN I and Dra I restriction fragment

AhdI

PI

Hin!1

IS2

1st peR set
(before digestion)

IS I/IS2

P3IPI 1
Total copy number of

chosen HPRT target (CT)

438-bp Mutant internal standard of
BstN I and Dra I restriction fragment

2nd PCR set
(after digestion)

ISl/IS2

P3IPI

Copy number of chosen HPRT target
not cleaved by Ahd I and Binfl (Cu)

Ahd IIHinjI restriction digestion efficiency =100 - [(Cu + Cr) x 100]

Figure 19. Method of estimating Ahd IIHinfl restriction digestion efficiency

The restriction digestion efficiency of Ahd I and Hinfl is determined by two sets of
quantitative peR, each followed by CDCE. The first set ofPCR is performed before the
digestion using the IS l/1S2 primer pair and using the 438-bp mutant internal standard.
An aliquot of the IS I/IS2-amplified sample is amplified once again using the P3/Pl
primer pair to generate an amplified sample suitable for CDCE separation, measuring the
total copy number of the chosen HPRT target (CT). These procedures are repeated for the
second set of peR after the digestion to measure the copy nllmber of the chosen target
not cleaved by Ahd I and Hin!1 (Cu). The measured copy numbers, CT and Cu, are then
used to determine the digestion efficiency ([1 - (Cu + C t)] x 100).
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3.8.5.2 Apo I: ligated clamp

To generate the chosen HPRT target with the ligated clamp, Apo I restriction digestion

was performed, followed by clamp ligation. The reaction mixture of Apo I contained 50

mM Tris-HCI (pH 7.9 at 25°C), 10 mM MgCI2 , 100 mM NaCI, and 1 mM dithiothreitol.

10 mg/ml BSA was added to a final concentration of 0.1 mg/ml, which was incubated

with 4 to 10 U of Apo I (New England BioLabs, Beverly, MA) at 36°C for 2 hr.

The digestion efficiency of Apo I was estimated by measuring the copy number of the

chosen target with the natural clamp before (CB) and after the digestion (CF). To measure

the target copy number, quantitative PCR, followed by CDCE, was performed. For this

PCR, the P3/Pl primer pair and the 198-bp mutant internal standard were used. CF

represents the target copy number left uncleaved, while CB represents the total target copy

number. The digestion efficiency was estimated as: 100 - r(eF +- CB) x 100].

3.8.6 Clamp ligation

To generate the chosen HPRT target with the ligated clamp, each Apo I restriction

digestion was followed by clamp ligation. A desired clamp copy number was added to

each ligation reaction mixture containing 66 mM Tris-HCI (pH 7.5 at 20°C), 5 mM

MgCI2 , 1 mM dithioerythritol, and 1 mM ATP. This mixture was incubated at 16°C for

16 hr with 1 U of T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN).

Additional incubation at 37°C for 2 hr with 10 U of RinfI restriction endonuclease

was performed with each sample containing the chosen HPRT target that was isolated

from the pool of genomic DNA digest (BstN IJDra I). The reaction mixture of HinfI

contained 10 mM Tris-HCI, 10 mM MgCI2, 50 mM NaCI, and 1 mM dithiothreitol (pH

7.9 at 25°C).

To measure the copy number of the chosen target with the ligated clamp in each

ligation sample, quantitative PCR, followed by CDCE, was performed. For this PCR, the

GCl/PI primer pair and the 169-bp mutant internal standard were used.
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3.8.7 Pre-PCR mutant enrichment by CDCE

For pre-PCR mutant enrichment by CDCE, each desired sample of Ahd I1HinfI

restriction digestion or clamp ligation was dialyzed, condensed to about 2 to 4 JlI, and

loaded into a capillary. Either 320- or 540-Jlm id capillaries were used for those samples

containing the purified wild-type DNA of peR products; 540-Jlffi id capillaries were used

for those samples containing the wild-type DNA of human cells.

The CDCE conditions were optimized to enrich mutants in mutant/wild-type

heteroduplexes since homoduplex mutant sequences in the original sample formed

heteroduplexes with the wild-type by mass action after the sample, isolated for the chosen

target in single strands, was allowed to renature. At an optimal CDCE separation

temperature, determined using a 15 em-long temperature-regulated zone, the wild-type

homoduplex was well separated from mutant/wild-type heteroduplexes, with the different

mutant/wild-type heteroduplexes having similar separation degrees. At this temperature,

co-elution of the majority, if not all, of these mutant/wild-type heteroduplexes was

allowed. Elution was performed in 20 III of 4 x TBEB for 10 min at a constant current of

50 fJA when using a 320-f.lm id capillary and in 20 fJI of 8 x TBEB for 20 min at a

constant current of 80 JlA when using a 540-f.llTI id capillary.

The efficiency of mutant enrichment by CDCE was estimated based on the ratio of the

target wild-type copy number loaded into a capillary (CT) to the wild-type copy number

co-eluted with the mutant/wild-type heteroduplexes (CHE): CT + CHE ; each wild-type copy

number was measured by quantitative PCR, followed by CDCE. For this quantitative

peR, either the P31P1 or Gel/PI primer pair was used, depending on the clamp type

desired, natural or ligated; either the 198- or 169-bp mutant internal standard was used.

As a second means to estimate the mutant enrichment efficiency, the level of a mutant

internal standard in test samples before and after the procedure was compared. The test

samples, each containing CDCE-purified target wild-type and a mutant internal standard

at a fraction of 5 x 10-4
, were prepared. Mutant enrichment by CDCE was performed

with these samples, and each eluted sample of mutant/wild-type heteroduplexes was peR

amplified, followed by CDCE. The ratio of the areas under the mutant (AM) to wild-type

(Aw) peaks was then estimated (FMF = AM + Aw), with the ratio representing the mutant
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fraction after the procedure. This ratio was divided by the initial mutant fraction (IMF), 5

x 10-4
, to determine the mutant enrichment efficiency: FMF + IMF.

3.8.8 Pre-PCR mutant enrichment by CE

Each desired CDCE-eluted sample of mutant/wild-type heteroduplexes was dialyzed,

condensed to about 4 Ill, and loaded into a capillary for further mutant enrichment by CEo

This procedure, performed at room temperature, used 540-l1m id capillaries at a constant

current of 80 flA; the chosen HPRT target was eluted in 5 fll of 2 x TBEB for 2 min. The

eluted DNA represented both wild-type and mutant sequences in double strands, which

were separated from the wild-type in single strands, as well as from other wild-type

containing species in CDCE-eluted samples. The efficiency of mutant enrichment by CE

was estimated as described in Section 3.8.7.

3.8.9 Hifi-PCR and post-PCR mutant enrichment by CDCE

Each pre-PCR mutant-enriched sample was PCR amplified using either the P3/Pl or

Gel/PI primer pair, depending on the clamp type desired, natural or ligated. All the

primers were converted into products by applying enough PCR cycles during which

mutant sequences formed heteroduplexes with the wild-type by mass action.

Each peR-amplified sample was then loaded into a capillary for further mutant

enrichment by CDCE (post-PCR mutant enrichment), performed using a 75-flm id

capillary at a constant current of 9 flA. CDCE-separated mutants were eluted in 10 fll of

1 x TBEB for 4 min. The efficiency of mutant enrichment was estimated as described in

Section 3.8.7.

3.8.10 Mutational analysis by eDCE

peR was performed with 1 to 2 ~l of each post-peR mutant-enriched sample. For

this peR, either the P3/Pl or GCIIPI primer pair was used, depending on the clamp type

desired, natural or ligated. All the primers were converted into products by applying
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enough PCR cycles during which mutant sequences formed heteroduplexes with the

wild-type by mass action.

The amplified sample was then separated by CDCE using a 75-llm id capillary at a

constant current of 9 fJA and using a 15 to 20 em-long temperature-regulated zone. At an

optimal separation temperature, mutant and wild-type sequences were separated from one

another, allowing for quantitative analysis of these separated mutants. At this stage,

individual mutants were purified by CDCE for sequence identification.

3.8.11 Purification of individual mutants by CDCE

To purify individual mutant sequences, CDCE separation was performed as described

in Section 3.8.10. This procedure was followed by electro-elution of each separated

mutant in 10 1-11 of 1 x TBEB. An aliquot of this eluted sample (1 to 2 Ill) was then PCR

amplified for another round of CDCE separation and elution. PCR, followed by CDCE

separation and elution, was repeated until a final-eluted sample had close to 100%

homogeneity in sequence. An aliquot of the final-eluted sample was PCR amplified to be

used as a template for DNA sequencing (MIT, Cambridge, MA).

3.9 Second target sequence: p53 exon 7

A part of the humanp53 gene (eDNA bp 673-782) was chosen as a second target

sequence to demonstrate clamp ligation and CDCE· separation. Figure 20 illustrates the

melting profile of the chosen target with the ligated clamp.

Figure 21 illustrates the characteristics of the clamp prepared for the restriction end

generated by Avr II restriction endonuclease. Avr II has a 6-base recognition sequence

and cleaves after the first base pair, generating a 5' -CTAG-3' cohesive end, as Figure 22

illustrates.
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Figure 20. Melting profile of human p53 exon 7 with ligated clamp

Restriction digestion by Avr II and Bsg I liberates the chosen p53 target from genomic
DNA. The prepared clamp for the Avr II restriction end can be ligated to the Avr II target
restriction end, making the digested target suitable for CDCE separation.



5'FITC 3'OH

gccgcctgca gcccgcgccc cccgtgcccc cgccccgccg ccggcccggg cgcctt
cggcggacgt cgggcgcggg gggcacgggg gcggggcggc ggccgggccc gcggaagatc

3'OH

Complementary to Avr II restriction end

Figure 21. Characteristics of clamp for Avr II restriction end

5'P

The sequence of the clamp is from a previous study (Cariello et aI., 1990). This clamp
has an end that is complementary to the Avr II restriction end. This end contains 5'
phosphoryl and 3' -hydroxyl residues, allowing clamp ligation to the Avr II-generated
restriction end.
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Figure 22. Recognition sequence of Avr II restriction endonuclease

+
5'-C CTAG G-3'

3'-G GATe C-5'

t

To prepare a substrate containing the chosen p53 target for Avr II restriction digestion,

a 266-bp DNA fragment was peR amplified from wild-type genomic DNA using the HH

and AP primer pair. The amplified sequence consisted of exon 7 of the human p53 gene

(eDNA bp 673-782), an Avr II restriction recognition site, and flanking intron sequences.

The amplified sample was ethanol precipitated and restriction digested with Avr II in a

reaction mixture containing 10 mM Tris-HCl, 10 mM MgCI2 , 50 mM NaCl, and 1 mM

dithiothreitol (pH 7.9 at 25°C). This sample mixture was incubated at 36°C for 2 hr prior

to clamp ligation.
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4 RESULTS AND DISCUSSION

4.1 Melting profile results of human gene sequences

Pre-PCR mutant enrichment is a key procedure in target isolation/CDCE/hifi-PCR,

suitable for analysis of rare point mutations at fractions as low as 10-6
. Pre-PeR mutant

enrichment is based on separation of mutant from wild-type sequences by CDCE and

requires that a target sequence have a neighboring natural clamp. This requirement limits

the application of the established method to DNA sequences with a natural clamp,

represented by X.

To estimate the percentage of X in the human genome, the melting profiles of several

human gene sequences were constructed and analyzed. These sequences, totaling 500

kb, belong to five tumor suppressor and two disease-related genes. Figure 23 shows an

example of the constructed melting profile belonging to the first 3000-bp of the human

p53 gene. As Table 11 summarizes, 9% of the sequences scanned are X, suitable for

target isolation/CDCE/hifi-PCR.

For rare point mutational analysis of a larger target-pool size, a means of attaching a

clamp to any 100-bp DNA sequence of interest was devised, as Section 3.2.1 describes.

In theory, this clamp attachment technique, when combined with target

isolation/CDCE/hifi-PCR, allows analysis of point mutations at fractions as low as 10-6 in

those sequences without a natural clamp, represented by Y. Such sequences represent

890/0 of the total gene sequences scanned (see Table 11).

Two percent of the sequences scanned, represented by Z (see Table 11), cannot be

studied since separation of point mutations in sequences with melting temperatures

greater than 80°C is not yet well established. The use of DGGE, combined·with eDGE

(Wu et aI., 1999), sodium bisulphite-treated DNA (Guldberg et aI., 1998), and bipolar

clamping (Gille et aI., 1998) have been shown to improve DNA separation in such high

melting temperature sequences. However, these approaches have not been demonstrated

with CDCE. In addition, the latter two require peR prior to DNA separation, which is

not suitable for detection of rare mutations at fractions below 2 x 10-4 (see Section

2.5.3.1).
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Figure 23. Melting profile of human p53 gene (first 3000-bp)

Each X represents a DNA domain (~100-bp) juxtaposed with a domain (~100-bp) of a
higher melting temperature, or a natural clamp. The melting temperatures of these two
domains differ by at least SoC. Each Y represents a domain of any length without a
natural clamp. The melting temperature of each X or Y is below 80°C. Domains of any
length with melting temperatures greater than 80°C are marked as Z.
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Table 11. Melting profile results: entire DNA sequences of selected human genes

Gene (accession numbera
)

BRCAl (L78833)

NF2 (YI8000)

p53 (X54156)

RB (LI1910)

VHL (AF010238)

HPRT (M26434)

Mitochondrial DNA (V00662)

% Total

Total number of bases

Size

85-kb

126-kb

20-kb

180-kb

15-kb

57-kb

16-kb

500-kb

xb yc Zd

11% 88% 1%

7% 90% 3%

10% 90% <1%

7% 92% 1%

11% 84% 5%

11% 880/0 1%

8% 92% <1%

9% 890/0 2%

45-kb 445-kb 10-kb

a Each accession number is from Benson et aI., 2000.
b Percentage of each gene sequence with a natural clamp, suitable for target isolation/CDCElhifi
PCR.
C Percentage of each gene sequence without a natural clamp, suitable for combined method of
clamp ligation and target isolation/CDCE/hifi-PCR.
d Percentage of each gene sequence not suitable for CDCE-based mutation detection methods due
to its high melting temperature greater than 80aC.
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Table 12 summarizes the melting profile results of only the coding regions of six tumor

suppressor genes in which many mutations have been found in human cancer. These

results show that clamp ligation, coupled with target isolation/CDCElhifi-PCR, is

applicable to the majority, if not all, of each gene sequence scanned. Without clamp

ligation, target isolation/CDCE/hifi-PCR alone can be applied to between 0 and 6% of the

sequences scanned.

4.2 Clamp attachmentlligation

4.2.1 Estimated number ofchosen restriction ends per human cell

The proposed method of clamp attachment ligates a clamp to the restriction ends of a

chosen target in a genomic DNA digest by mass action. Thus, the number of chosen

restriction ends per diploid human cell was theoretically estimated to determine the clamp

copy number necessary for this mass action. Table 13 summarizes the estimated number

of ends per cell generated by a chosen restriction endonuclease with a 4-, 5-, or 6-base

recognition site.

Isolation of a desired target from a pool of genomic DNA digest precedes clamp

ligation in the proposed point mutation detection method (see Section 3.3). Thus, the

number of chosen restriction ends per cell after target isolation was estimated. Using the

reported efficiency of target isolation, l04-fold (Li-Sucholeiki and Thilly, 2000), Table 14

summarizes the estimated number of ends generated by a chosen restriction endonuclease

with a 4-, 5-, or 6-base recognition site. This number is per diploid human cellar per 108

diploid human cells. 108 cells is the sample size necessary for detecting mutations at

fractions as low as 10-6 with statistical significance. If, for example, a 10-fold higher

clamp copy number is necessary for ligating every restriction end of genomic DNA by

mass action, this number can be estimated by multiplying each estimated number of ends

per 108 diploid human cells in Table 14 by 10.

Clamp ligation is not specific to target restriction ends. Out of the estimated number

of chosen restriction ends per cell, only two belong to a desired target of a single-copy

nuclear gene. Table 14 summarizes the ratio of target to non-target ends generated by a
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Table 12. Melting profile results: coding regions of selected human tumor suppressor
genes

Gene Size Xc yd ze
(accession numbera

)

APe (M74088)b 6578-bp 6% 94% 0%

BRCA1 (L78833) 5572-bp 0% 1000/0 0%

NF2 (Y18000) 2069-bb 4% 82% 140/0

p53 (X54156) 1182-bp 0% 100% 0%

RB (Ll1910) 2787-bp 20/0 93% 5%

VHL (AF010238) 642-bp 0% 47% 53%

a Each accession number is from Benson et aI., 2000.
b To determine X for coding regions, flanking intron sequences are necessary. Because these
sequences had not been discovered for the APe gene at the time of the melting profile
construction, X was determined for exon 15 only. Exon 15 is comprised of about 6500-bp,
representing 77% of the coding region.
C Percentage of each gene sequence with a natural clamp, suitable for target isolation/CDCE/hifi
PCR.
d Percentage of each gene sequence without a natural clamp, suitable for combined method of
clamp ligation and target isolation/CDCE/hifi-PCR.
e Percentage of each gene sequence not suitable for CDCE-based mutation detection methods due
to its high melting temperature greater than 80°C.

111



Table 13. Estimated numbers of chosen restriction ends

Size of restriction recognition site
(number of bases)

4

5

Number of chosen restriction ends per
diploid human cell*

4.69 X 107

1.17x107

6 2.93 X 106

* Estimated using Equation 3: [(6 x 109
) -:- 4x ] x 2, where 6 x 109 is the number of bases per

diploid human genome, 4x is the cleavage frequency of a chosen restriction enzyme in bases (X
represents the size of the restriction recognition site), and 2 is the number of restriction ends
generated per cleavage.

Table 14. Estimated numbers of chosen restriction ends and ratios of target to non-target
restriction ends after target isolation

Size of restriction
recognition site

(number of bases)

4

5

Number of chosen
restriction ends per
diploid human cell

(#/dhc)a

4.69 X 103

1.17 X 103

Number of chosen
restriction ends per
108 diploid human

cellsb

4.69 X lOll

1.17 X lOll

Ratio of target to
non-target restriction

endsc

1 : 2.3 x 103

1 : 5.9 x 102

6 2.93 X 102 2.93 X 1010 1 : 1.5 x 102

a Estimated by dividing Equation 3 by a target isolation efficiency of 104-fold. Equation 3: [(6 x
109

) -7- 4x] x 2, where 6 x 109 is the number of bases per diploid human genome, 4x is the
cleavage frequency of a chosen restriction enzyme in bases (X represents the size of the
restriction recognition site), and 2 is the number of restriction ends generated per cleavage.
b Estimated by multiplying #/dhc by 108

.

C Estimated by dividing #/dhc by 2, which represents the number of target restriction ends per cell
after target isolation.
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chosen restriction endonuclease with a 4-, 5-, or 6-base recognition site after target

isolation. Target from non-target restriction fragments with the same ligated clamp is

expected to be distinguished by the procedures following clamp ligation, pre-peR mutant

enrichment and peR, in the proposed point mutation detection method. Thus, the

presence of a l02-103-fold higher copy number of non-target restriction ends in a ligation

mixture is not expected to interfere with mutational analysis by the proposed method.

4.2.2 Optimal ligation reaction conditions

Table 15 summarizes the optimal ligation reaction conditions empirically determined,

as well as the conditions suggested by the manufacturer of T4 DNA ligase, Boehringer

Mannheim (Indianapolis, IN). When comparing these two sets of conditions, two

variables should be noted.

The first variable is incubation temperature. The temperature suggested by the

manufacturer is 4°C. However, rather a big range, 4 to 22°C, was empirically determined

to generate the maximum ligation efficiency of the substrate, the Apo I cohesive end.

When the temperature was increased to 36°C, the efficiency was reduced by 100/0 of the

maximum efficiency observed.

A big range of optimal incubation temperatures have been reported using as a

substrate the EcoR I cohesive end (5' AATT3'). This restriction end is the same as the

Apo I. These temperatures are 4 °C (Ferretti and Sgaramella, 1981), 10 to l5°C

(Dugaiczyk et aI., 1975), 15 to 25°C (Ehrlich et aI., 1977), and 25°C (Sgaramella and

Ehrlich, 1978). The melting temperature determined for the EcoR I cohesive end is 6°C

(Mertz and Davis, 1972).

Substrate concentration is the second variable of ligation reaction conditions to be

noted. While the concentration suggested by the manufacturer is 0.015 J.lM, a higher

concentration range, 0.17 to 0.55 J.lM, was shown to be necessary to generate the

maximum ligation efficiency of the substrate. When the concentration was lowered by

lO-fold (17 nM), the ligation efficiency was reduced by 10% of the maximum efficiency

observed. When lowered by another 10-fold (1.7 nM), the efficiency was further reduced

to 50%. Therefore, using a substrate concentration of 0.17 J-lM or higher was determined
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Table 15. Optimal ligation reaction conditions

The optimal ligation reaction conditions were determined empirically by varying
incubation temperatures from 4 to 36°C, incubation duration from 1 to 16 hr, units of T4
DNA ligase from 1 to 10, and substrate concentrations from 108 to 3.3 x 1011 /fll. The
prepared clamp for the Apo I restriction end was used as a substrate. The criterion used
for determining the optimal ligation reaction conditions was the conditions that generated
the maximum efficiency of clamp self-ligation. The efficiency of clamp self-ligation for
each reaction variable tested was estimated by CE, which separated the self-ligated clamp
(eL , 100-bp) from the un-ligated clamp (Cu, 48-bp): [CL + (eL + Cu)] x 100.

Reaction condition variable

Incubation temperature

Incubation duration

Unit of T4 DNA ligase
(1 U = 3.5 X 1012 molecules)

Substrate concentration

Determined empirically

16 hr

IV

1-3.3 X lOll molecules/~l

(0.17-0.55 JlM)
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Suggested by Boehringer
Mannheim

(Indianapolis, IN)

16 hr

IV

9 x 109 molecules/fll
(0.015 J1-M)



as an important factor in achieving the maximum ligation efficiency.

4.2.3 Optimal restriction digestion reaction conditions

Certain reaction conditions of restriction digestion limited clamp ligation efficiency,

clamp ligating to the digested DNA. The different Apo I restriction digestion reaction

conditions tested resulted in a similar digestion efficiency of about 95%. However, these

test conditions resulted in various clamp ligation efficiencies ranging from 21.5 to 990/0.

Table 16 summarizes these results. The restriction digestion incubation temperature

recommended by the manufacturer of Apo I, New England Biolabs (Beverly, MA), is

50°C. However, the use of such a high temperature should be avoided when planning

high efficiency clamp ligation. Lowering the temperature to 37°C resulted in clamp

ligation efficiencies higher than those observed at 50°C. In addition, shortening

restriction digestion incubation duration from 16 to 4 hr increased the ligation efficiency

at both incubation temperatures. Thus, to achieve the maximum clamp ligation

efficiency, restriction digestion must be performed at 37°C for a short period of time,

such as 4 hr.

A reason behind the inefficiency in clamp ligation with those samples restrict digested

at 50°C is yet to be determined. One possible explanation is that such a high temperature

degrades the generated restriction ends, lowering the clamp ligation efficiency.

4.2.4 Demonstration of high efficiency clamp ligation

Figure 24 illustrates high efficiency clamp ligation to Apo I restriction ends by mass

action. In this illustration, the prepared clamp is ligated to a restriction fragment copy

number of 1010
, lOll, or 1012

• This copy number was selected based on the number

estimated for a chosen restriction endonuclease with a 4-, 5-, or 6-base recognition site,

as Table 14 in Section 4.2.1 summarizes. This selection represents a sample size of 108

diploid human cells after target isolation with an efficiency of 104-fold.

By using a la-fold higher clamp copy number, a clamp ligation efficiency of above

950/0 was estimated for each selected copy number of the restriction ends. This efficiency
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Table 16. Reaction conditions of Apo I restriction digestion vs. efficiency of clamp
ligation

A chosen target was PCR amplified using the P3IIS2 primer pair, ethanol precipitated,
and restriction digested under different test reaction condition variables. Using a 1012

clamp copy number, clamp ligation was performed with each test sample of lOll copies
of the digested DNA. The clamp ligation efficiency was estimated by CE, which
differentiated the clamp-ligated (L) from un-ligated (UL) restriction fragments: [L + (L +
UL)] x 100.

Incubation
temperature

Test reaction condition variable

Enzyme/substrate ratio
(D of Apo I per Jlg of Incubation duration

substrate, D/Jlg)

Clamp ligation
efficiency (%)

(mean ± SD, n=2)

1 (1U /J-lg)

4 hr

16 hr

4 hr

99.0 ± 0

94.0 ± 1.4

68.5 ± 7.8

16 hr 21.5 ± 9.2
a This enzyme/DNA ratio is equivalent to 1 U/f.lg since ApoI results in 50% activity at 37°C
(New England BioLabs, 2000-2001).
b Optimal temperature for Apo I, recommended by the manufacturer, New England Biolabs
(Beverly, MA).
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B: Clamp-ligated Apo I
restriction fragments
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C: Un-ligated Apo I
restriction fragments
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Figure 24. High efficiency clamp ligation*

A chosen target was peR amplified using the P3IIS2 primer pair, ethanol precipitated,
and restriction digested by Apo I. Using a 10-fold higher clamp copy number, clamp
ligation was performed with the digested sample containing a known copy number of the
digested DNA. The clamp ligation efficiency was estimated by CE, which differentiated
the clamp-ligated (L) from un-ligated (UL) restriction fragments: [L + (L + UL)] x 100.

* Above 95% clamp ligation efficiency was estimated for each sample.



is thought to be the maximum since increasing the clamp copy number by 10-fold did not

increase the ligation efficiency. When the same clamp copy number as the restriction end

copy number was used, the ligation efficiency was reduced to 85%. An efficiency of

300/0 was observed when a la-fold lower clamp copy number was used.

Section 4.2.2 discusses substrate concentration as an important factor in achieving the

maximum ligation efficiency. However, when mass action was coupled with ligation, the

substrate concentrations used (3.3 x 109 to 3.3 X lOll molecules/ill for clamp and 3.3 x 108

to 3.3 X 1010 molecules/ill for Apo I restriction end) did not affect the clamp ligation

efficiency.

In brief, a clamp ligation efficiency of above 95% by mass action was demonstrated.

For this demonstration, a IO-fold higher clamp copy number was used in a ligation

reaction mixture containing different restriction end numbers, ranging from 1010 to 1012
.

4.3 Test target sequence: HPRT exon3

4.3.1 Demonstration of CDCE separation: ligated vs. natural clamp

Figures 25 and 26 illustrate CDCE separation of the low Tm mutation in the chosen

HPRT target from the wild-type. Figure 25 illustrates the separation using the natural

clamp, and Figure 26, using the ligated clamp.

These clamps generated a similar separation degree of the mutant from wild-type

sequences by CDCE at different temperatures below 71.5°C. The same was true for the

high Tm mutant (A -> G transition at HPRT cDNA bp 316). However, the target with the

natural clamp completely converted to single strands (58) at temperatures at or above

71.5°C. This conversion happened because the natural clamp lost its ability to hold the

two DNA strands together. On the other hand, the ligated clamp was able to separate the

mutant from wild-type sequences at temperatures below 85°C. At or above 85°C, the

ligated clamp also lost its ability to hold the two strands together. Complete strand

dissociation of the same target with the ligated clamp started to appear at a higher

temperature than with the natural clamp, as the melting profiles predict (see Figure 15 in

Section 3.4).
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Figure 25. CDCE separation of low Till mutant from wild-type sequences:
HPRT exon 3 with natural clamp

Using the P3/Pl primer pair, peR was performed with a mixture containing the wild
type and the mutant internal standard (low Tm mutant, G -> A transition at HPRT eDNA
bp 309) at an equal molar ratio. During this peR, mutanUwild-type heteroduplexes, in
addition to the homoduplex of each kind, were formed. The peR-amplified sample was
separated by CDCE, performed using a 6 em-long temperature-regulated zone of desired
temperatures.
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Figure 26. CDCE separation of low Tm mutant from wild-type sequences:
HPRT exon 3 with ligated clamp

Using the GCIIPI primer pair, peR was performed with a mixture containing the
wild-type and the mutant internal standard (low Tm mutant, G -> A transition at HPRT
eDNA bp 309) at an equal molar ratio. During this peR, mutant/wild-type
heteroduplexes, in addition to the homoduplex of eaeh kind, were formed. The PCR
amplified sample was separated by CDCE, performed using a 6 em-long temperature
regulated zone of desired temperatures.
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CDCE separation results demonstrate the ability of the ligated clamp to separate point

mutations in the chosen target from the wild-type. These results also demonstrate that a

similar degree of CDCE separation is achievable at temperatures below 71.5°C for the

chosen target with either the natural or ligated clamp.

4.3.2 Fidelity ofPlu DNA polymerase

As Section 2.5.3.1 discusses, analysis of rare mutations requires a polymerase with

high fidelity. For this reason, Plu DNA polymerase was chosen for PCR performed in

this study.

The reported fidelity of Pfu is about 10-6/bp/doubling (Lundberg et aI., 1991; Barnes,

1994; Flaman et aI., 1994; Cline et aI., 1996; Smith and Modrich, 1996; Andre et aI.,

1997; Parsons and Heflich, 1998; Li-Sucholeiki and Thilly, 2000). When the fidelity was

estimated using the chosen HPRT sequence as a target, about 2 x 10-6/bp/doubling was

observed.

4.3.3 HPRT pseudogenes

Once a human target gene sequence is chosen for mutational analysis, target gene-like

sequences, pseudogenes, must be examined. Pseudogenes are linked sequences, which

consist of considerable sequence homology with functional genes. However, these

pseudogenes are not functional since they contain mutations that inactivate their

transcription and translation (Wilde, 1986; Venter et aI., 2001). Thus, a mutation assay

must be planned carefully so that pseudogenes do not confound analysis of the chosen

gene sequence.

Pseudogenes are divided into two groups. The pseudogenes in the first group are

linked to parent genes and therefore are thought to be the result of gene duplication

(Wilde, 1986; Mighell et aI., 2000). The pseudogenes in the second group are dispersed

to different chromosomes in the genome (Wilde, 1986; Mighell et aI., 2000). The major

characteristic of the pseudogenes in the second group is that they are "intron-Iess," or

"processed," and therefore are thought to arise through retrotransposition of processed
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mRNA transcripts into the genome (Vanin, 1985; Wilde, 1986; Mighell et aI., 2000).

The second group of pseudogenes appears to outnumber the first (Vanin, 1985 ~ Wilde,

1986).

One study estimates 2909 processed pseudogenes in the human genome (Venter et al.,

2001) while another estimates about a IO-fold higher number, 23,000 to 33, 000

(Goncalves et aI., 2000). The first study is based on sequence analysis of the entire

human genome, and the second, of human chromosome 22 (Dunham et aI., 1999),

suggesting that the estimate in the first study is more accurate than that in the second.

The number of pseudogenes per gene varies from one to multiple for those genes with a

pseudogene(s) (Venter et aI., 2001).

Analysis of transcripts that give rise to processed pseudogenes has shown that these

transcripts have shorter average lengths compared to those with no pseudogene (Venter et

aI., 2001). While no significant difference was observed in the overall GC content in one

study (Venter et aI., 2001), another study observed low GC content for those genes with a

processed pseudogene(s) (Goncalves et aI., 2000). Additional characteristics of these

genes are that they are widely expressed and highly conserved (Goncalves et al., 2000).

The human HPRT gene was chosen as a test target gene in this study. This gene has

been demonstrated to have HPRT-like sequences, thought to be processed pseudogenes

(Patel et aI., 1983; Gennett and Thilly, 1988). HPRT exon-like sequences were also

found using the Basic Local Alignment Search Tool (BLAST). Figure 27 illustrates these

HPRT-like sequences in the human genome. Two additional findings were performed

using GenBank: accession numbers U10112 (Sellner and Turbett, 1996) (493-bp

comprised of human HPRT exon 2- and 3-like sequences) and U43684 (276-bp

comprised of human HPRT exon 3- and 4-like sequences).

To prevent the HPRT pseudogenes in the human genome from confounding

mutational analysis of the chosen gene sequence, this analysis was planned carefully. As

part of this planning, the primers and probes that do not share the sequence with these

pseudogenes were selected.
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Figure 27. HPRTpseudogenes in the human genome

a Adapted from Gennett, 1988. Southern blotting and HPRT exon-specific probes were
used in this study.
b Based on the BLAST search of the human genome: > 85% sequence homology for 75%
of each exon length was used as a search criterion. BLAST is a tool for searching protein
and DNA databases for sequence similarities (Altschul et aI., 1990; Altschul et aI., 1997).
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4.4 Use of internal standards

The internal standards described in Section 3.5 were used for two quantitative

analyses in this study. These standards allowed quantitative peR, measuring the copy

number of a chosen sequence in desired samples. They also permitted enumeration of

individual mutant sequences in initial samples upon mutational analysis by CDCE.

Quantitative peR is based on co-amplification of a desired sequence with an internal

standard at known concentrations using one set of primers (Reischl and Kochanowski,

1995; Zimmermann and Mannhalter, 1996; Schnell and Mendoza, 1997; Raeymaekers,

2000). When these amplified species are differentiated, by CDCE for example, one can

estimate the unknown initial copy number from the known quantities.

Use of an internal standard for quantitative analysis generates more accurate

estimation compared to other PCR-based methods that rely on an external standard.

These methods measure the quantity of a chosen sequence in the exponential phase using

the dilution series of the external standard as a reference (Reischl and Kochanowski,

1995; Zimmermann and Mannhalter, 1996; Schnell and Mendoza, 1997; Raeymaekers,

2000). The advantage of using an internal standard for quantitative analysis is that the

analysis is not affected by tube-ta-tube variations in amplification efficiency

(Raeymaekers,2000). Moreover, measurement of a chosen sequence copy number is not

restricted to the exponential phase (Raeymaekers, 2000).

However, it is a prerequisite that an internal standard has the same PCR-amplification

efficiency as the sequence to be quantified. Internal standards of different sequence

lengths and compositions have been shown to generate differential peR-amplification

efficiencies (McDowell et aI., 1998). In addition, quantitative analysis of co-amplified

peR products being affected by allelic preference in DNA amplification has been

suggested (Keohavong et aI., 1991). Allelic preference in DNA amplification refers to

preferential amplification of mutant sequences relative to the wild-type, or vice versa.

The internal standards used in this study are the same length and sequence as the

corresponding sequence to be measured but they differ by one base pair. Such standards

can be differentiated from the corresponding sequence by CDCE, allowing quantitative

analysis. When the PCR-amplification efficiency of each internal standard was compared
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to that of the corresponding sequence, no significant difference was observed. Figure 28

illustrates this comparison. Typically, experiments performed in this study applied about

20 doublings for quantitative PCR and about 40 doublings prior to mutational analysis by

CDCE.

These internal standards, when added to the initial samples, allowed enumerating

individual mutant sequences upon mutational analysis by CDCE. Analysis of rare

mutations requires numerous procedures prior to mutation detection (see Section 3.3).

Thus, use of an internal standard is crucial to accurately enumerate individual mutant

sequences in the initial samples.

4.5 Mutational analysis: ligated vs. natural clamp

4.5.1 With CDCE-purified wild-type DNA ofpeR products

4.5.1.1 Initial DNA samples

To discover the mutation detection sensitivity of the ligated clamp procedure in

comparison to the natural clamp procedure, the wild-type DNA of the chosen HPRT

target was prepared. As an initial study, the wild-type DNA of human cells was replaced

with that of PCR products (Section 4.5.2 discusses the sensitivity comparison in human

cells). This replacement allowed skipping the first three steps summarized in Section 3.3.

However, the use of peR products required purification of the wild-type. Otherwise,

polymerase-generated mutations in the amplified target would have interfered with

determining the true mutation detection sensitivity.

To be used as initial samples, the following three components were mixed: the CDCE

purified wild-type DNA, the 198-bp mutant internal standard in heteroduplexes at a

known fraction, 5 x 10-6,5 X 10-5
, or 5 x 10-4

, and 60 to 600 ng of human genomic DNA

per 2 x 108 copies of the target wild-type. This mixture mimicked the stage after target

isolation. It was necessary to use a mutant internal standard in heteroduplexes since

homoduplex mutant sequences form heteroduplexes with the wild-type by mass action

after a sample isolated for a chosen target in single strands is allowed to renature. When
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Figure 28. PCR-amplification efficiencies: wild-type vs. internal standards

A mixture containing the wild-type of the chosen HPRT target and each internal
standard at an equal molar ratio was PCR amplified using the P3IPI primer pair.
After a desired number of doublings, the amplified sample was separated by CDCE
to estimate the molar ratio of the amplified species. This ratio served as a reference
to compare the peR-amplification efficiencies of these species.

a 10 doublings are equivalent to a 103-fold target amplification, 20 doublings, a 106


fold, and so forth.



planning this mixture, a target isolation efficiency of 103
- to 104-fold was chosen using

600 flg of human genomic DNA (::::: 108 cells) as an initial sample size. 108 cells is the

sample size necessary for detecting mutations at fractions as low as 10-6 with statistical

significance (±20% precision). 104-fold is the isolation efficiency observed in a previous

study (Li-Sucholeiki and Thilly, 2000).

4.5.1.2 Restriction digestion and clamp ligation

Apo I restriction digestion was performed with the initial samples of CDCE-purified

wild-type DNA, and the digestion efficiency was estimated to be above 95%. In these

digested samples containing the added 60 to 600 ng of human genomic DNA (equivalent

to :::::104-105 cells), between 1.2 x 101] and 1.2 x 10]2 Apo I-generated restriction ends were

expected (see Section 4.2.1: Apo I is equivalent to a restriction endonuclease with a 5-bp

recognition site). Thus, to achieve high efficiency clamp ligation to the expected range of

Apo I restriction end numbers, either a 1013 or 10]2 clamp copy number was used for each

ligation reaction. This number represents a 10-fold higher clamp copy number compared

to each expected number of Apo I restriction ends. Under such a condition, a clamp

ligation efficiency of above 95% was achieved in Section 4.2.4.

To ensure that the added clamp copy number in each ligation reaction did generate the

maximum clamp ligation efficiency, clamp dilution experiments were performed, as

Table 17 summarizes. A similar clamp-ligated target copy number is observed in all

negative control samples of different test clamp copy numbers. On the other hand, the

samples of 60 or 600 ng of human genomic DNA show a decrease in the measured target

copy number as the clamp copy number decreases. This decrease starts from the 10]]

clamp copy number for those samples with 60 ng of genomic DNA and from the 10]2

clamp copy number for those with 600 ng.

The clamp dilution experiments demonstrate that the clamp copy number limits the

clamp ligation efficiency. This demonstration confirms an observation made in Section

4.2.4. The clamp dilution experiments also demonstrate that the 10]3 clamp copy number

is large enough to generate the maximum clamp ligation efficiency for a sample size of

up to 600 ng of human genomic DNA. In addition, the theoretically estimated number of
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Table 17. Summary of clamp dilution experiments

A 2 X 108 copy number of the chosen HPRT target with the natural clamp was added
to each test sample, and those samples without added genomic DNA were used as
negative controls. After Apo I restriction digestion, followed by clamp ligation, the copy
number of the clamp-ligated target in each test sample was measured by PCR and CDCE.
For this PCR, the GCIIPI primer pair was used. The measured copy number served as a
reference to compare the clamp ligation efficiencies among different test samples.

Copy number of
clamp

Copy number of clamp-ligated HPRT target
(HPRT cDNA bp 223-318) (mean ± SD, n=2)

7.5 ± 0.6 x 107

6.0 ± 0 x 107

7.1 ± 0.5 x 107

7.7 ± 1.1 x 107 8.6 ± 0.9 x 107

5.2 ± 0.4 x 106

1010 6.6 ± 0.2 x 107 5.2 ± 0.1 x 106 6.1 ± 1.1 x 105

a Theoretically estimated numbers, estimated by multiplying Equation 3 by 104 for 60 ng and by
105 for 600 ng. Equation 3: [(6 x 109

) -7- 4x] x 2, where 6 x 109 is the number of bases per
diploid human genome, 4x is the cleavage frequency of a chosen restriction enzyme in bases (X =
5 for Apo I restriction enzyme), and 2 is the number of restriction ends generated per cleavage.
60 ng (104 cells) and 600 ng (105 cells) of human genomic DNA are the sample sizes after target
isolation with efficiencies of 104

- and 103-fold, respectively, using an initial sample size of 108

cells.

128



Apo I restriction ends per given cell number is shown to be in close agreement with those

determined empirically.

4.5.1.3 Pre-PCR mutant enrichment

4.5.1.3.1 Necessity

Analysis of rare mutations requires enrichment of mutant sequences relative to their

abundant wild-type. This procedure reduces the wild-type copy number while retaining

the same mutant copy numbers. As a result, mutant fractions are increased in mutant

enriched samples compared to those in initial samples. CDCE, for example, spatially

separates mutant from wild-type sequences, and elution of these separated mutants allows

mutant enrichment. Such a procedure can be performed before or after PCR, depending

on the mutant copy numbers in desired samples (Kim et aI., 2001).

When analyzing mutations at fractions below about 2 x 10-4, pre-PCR mutant

enrichment is an absolute requirement. This necessity is based on the fidelity of Pfu

DNA polymerase with the applied peR cycles representing 20 target doublings (see

Section 2.5.3.1). Figure 29 illustrates the levels of background noise generated by Pfu

using the CDCE-purified wild-type DNA of the chosen HPRT target as a template. After

20 doublings of target amplification, the level of Pfu-generated background noise is about

5 to 2 times lower than the mutant internal standard added at an initial fraction of 10-3

(see Figure 29B). This background noise level does not increase as a function of

template denaturation time (see Figure 29B vs. C: a 3-fold increase from 14 to 42 s at

94°C per doubling). This observation rules out the possibility of DNA lesions, generated

by heat during PCR, contributing as background noise. On the other hand, the level of

background noise increases as the number of doublings is increased (see Figure 29B vs.

D). These results indicate that the fidelity of Pfu determines the level of background

nOIse.

Given the fidelity of Pfu and assuming that 20 doublings must be performed prior to

mutational analysis by CDCE, only those mutations at fractions above 2 x 10-4 can be

directly analyzed. Thus, for analysis of mutations at fractions below 2 x 10-4
, pre-PCR
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Figure 29. Levels of mutations generated by Pfu DNA polymerase during peR

The chosen HPRTtarget was PCR amplified using the P3IPI primer pair, followed by
CDCE purification of the wild-type DNA (A). An additional peR was performed using
the purified wild-type DNA as a template. For this peR, Bused 20·doublings and a
template denaturation time of 14 s at 94°C per doubling (Ix heat), C used 20 doublings
and a template denaturation time of 42 s at 94°C per doubling (3x heat), and D used 60
doublings and a template denaturation time of 14 s at 94°C per doubling (Ix heat). Post
peR mutant enrichment, followed by peR, was performed prior to mutational analysis
by CDCE.
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I represents the wild-type in homoduplex; II represents the mutant internal standard (IS:
G to A transition at HPRT eDNA bp 309) added at an initial fraction of 10-3

; III
represents a region where the majority of Pfu-generated mutations in the chosen target
migrate; the CDCE-separated mutants are in mutant/wild-type heteroduplexes.



mutant enrichment must be performed. This procedure increases these mutant fractions

prior to peR, allowing mutation detection above the level of background noise generated

by Pfu.

4.5.1.3.2 Efficiency

Pre-PCR mutant enrichment allows analysis of rare mutations at fractions below 2 x

10-4
. However, the sensitivity of a mutation detection method is expected to vary

depending on the efficiency of pre-peR mutant enrichment. This prediction is based on a

previous study (Li-Sucholeiki and Thilly, 2000). In this study, the sensitivity of the

natural clamp procedure was demonstrated to be limited by the fidelity of Pfu DNA

polymerase, or equivalently, by the efficiency of pre-peR mutant enrichment. Thus, the

sensitivity of the proposed point mutation detection method can be predicted based on the

efficiency of pre-PCR mutant enrichment.

On average, the efficiency of pre-peR mutant enrichment was estimated to be 32 ± 4

fold for the chosen HPRT target with the ligated clamp. This efficiency represents a 32

fold decreased copy number of the wild-type or a 32-fold increased mutant fraction in

pre-PCR mutant-enriched samples compared to that in initial samples. An average

efficiency of 125 ± 28-fold was estimated for the same target with the natural clamp.

These estimations represent the total mutant enrichment efficiencies after CDCE

followed by CEo

CE was performed as a means to reduce the copy number of the wild-type in single

strands in the CDCE-eluted samples of mutant/wild-type heteroduplexes. As much as

3% target DNA in double strands converted to single strands during sample loading into a

capillary. The single-stranded target, regardless of whether mutant or wild-type, co

migrated with mutant/wild-type heteroduplexes under optimal CDCE-separation

conditions. To reduce the copy number of single-stranded wild-type in the CDCE-eluted

samples, the double-stranded target was separated from the single-stranded target by CEo

This procedure was followed by elution of the double-stranded target.

The average efficiency of pre-PCR mutant enrichment estimated for the·ligated clamp

procedure is about 4-fold lower than that for the natural clamp procedure. This
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estimation predicts about a 4-fold lower mutation detection sensitivity for the ligated

clamp procedure. The following section discusses the cause of this decrease.

4.5.1.3.3 Cause of decreased efficiency

The efficiency of pre-PCR mutant enrichment is about 4-fold lower for the ligated

clamp procedure compared to that for the natural clamp procedure. To determine the

cause of this decreased efficiency, the effects of variables introduced by clamp ligation

on the mutant enrichment efficiency were investigated. The three variables investigated

were: (1) non-target Apo I restriction fragments in ligation reaction mixtures, (2) the

preparation procedure of the ligated clamp, and (3) the sequence context of the ligated

clamp.

(1) Non-target Ava I restriction fragments in ligation reaction mixtures: Section 4.2.1

discusses the ratio of target to non-target restriction ends in ligation reaction mixtures. In

Section 4.2.1, a 102
- to 103-fold higher copy number of non-target restriction ends was

estimated after target isolation. These non-target restriction ends with the ligated clamp

may interfere with target amplification and CDCE separation when estimating the mutant

enrichment efficiency. As a result, an inaccurate estimation may be generated.

To test this possibility, control samples, each containing 0, 60, or 600 ng of human

genomic DNA, were prepared. When the mutant enrichment efficiencies were compared

among these samples, no statistically significant difference was observed. Therefore,

non-target Apo I restriction fragments in ligation reaction mixtures were determined not

to be the cause of the decreased efficiency of pre-PeR mutant enrichment.

(2) The preparation procedure of the ligated clamp: As a first means of preparing the

clamp for ligation, two complementary oligonucleotides were synthesized, purified by

PAGE, and hybridized to each other (see Section 3.2.3.1). The PAGE-purified

oligonucleotides were supplied by Synthetic Genetics with a claimed purification

efficiency of 95%. Purification of the oligonucleotides was necessary since impure

intermediates were expected in the crude synthesis mixtures (Caruthers et aI., 1983;

Itakura et aI., 1984; Warren and Vella, 1995).
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High-performance liquid chromatography (HPLC) is effective in purifying synthetic

oligonucleotides shorter than about 30 bases in length (Itakura et aI., 1984; Warren and

Vella, 1995). For oligonucleotides up to 100 bases in length, a number of purification

methods have been reported (Johnson et aI., 1990; Frenz and Hancock, 1991; Warren and

Vella, 1993). Among them, PAGE is the most widely used (Efcavitch, 1990).

Regardless of a purification method of choice, some degree of impurity is expected in the

purified mixture (e.g., a 5% impurity with a 950/0 purification efficiency).

An impure clamp, resulting from the impurities of the clamp oligonucleotides,

possibly caused the decreased efficiency of pre-PCR mutant enrichment. This clamp,

when ligated to the chosen target, may have generated slower electrophoretic mobilities

than the pure clamp generated under optimal CDCE-separation conditions. If this is true,

the target wild-type with the impure clamp co-migrated with mutant/wild-type

heteroduplexes. As a result, the decreased mutant enrichment efficiency was generated.

To test this possibility, a second means of preparing the clamp was devised (see

Section 3.2.3.2). This procedure is thought to generate the pureist form of the clamp

using current technologies. The mutant enrichment efficiency of the control sample of

the first clamp preparation procedure was compared to that of the second; no statistically

significant difference was observed. Therefore, the impurities of the clamp

oligonucleotides were determined not to be the cause of the decreased efficiency of pre

PCR mutant enrichment.

(3) The sequence context of the ligated clamp: This variable was detennined to be the

cause of the decreased efficiency of pre-PCR mutant enrichment. The ligated and natural

clamps have differences in their sequence contexts, such as 83 and 53% GC contents,

respectively. Thus, the effect of this variable on the mutant enrichment efficiency was

investigated.

For this investigation, a control clamp comprising the sequence of the natural clamp

was prepared using the second means of preparing the clamp. The chosen target with the

ligated control clamp is the same as that with the ligated clamp, except that the sequence

of the ligated clamp is replaced with that of the natural clamp. On average, the efficiency

of mutant enrichment for the sample of control clamp was estimated to be 4 times higher

than that for the sample of the ligated clamp. Therefore, the sequence context of the
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ligated clamp was determined to be the cause of the decreased efficiency of pre-PeR

mutant enrichment.

The ligated clamp with a high GC content is a crucial factor in the proposed point

mutation detection method. Such a clamp allows analysis of DNA sequences with

melting temperatures below 80°C. However, the sequence of the ligated clamp causes

the decreased efficiency of pre-PCR mutant enrichment. Section 4.5.1.3.2 discusses the

efficiency of pre-PCR mutant enrichment as being directly related to the sensitivity of a

mutation detection method. In brief, the sensitivity of ligated clamp procedure has to be

sacrificed to keep the procedure general to the human genome.

4.5.1.4 Hifi-PCR and post-PCR mutant enrichment

The CDCE-mutation detection limit was determined to be about 10-3 without prior

mutant enrichment. This determination is slightly different from that observed in a

previous study, 3 x 10-4 (Khrapko et aI., 1994a). This limit of 10-3 requires post-PCR

mutant enrichment for those PCR-amplified samples containing mutations at fractions at

or below 10-3
•

Figure 30 illustrates CDCE-mutation detection before and after post-PCR mutant

enrichment. The mutant internal standard added at an initial fraction of 10-3 is right at the

detection limit before the procedure (Figure 30A). After the procedure, the same mutant

is detected above the detection limit (Figure 30B). Mutations in a chosen target, created

by Pfu DNA polymerase during PCR, are expected in post-PCR mutant-enriched

samples. Figure 30B illustrates these Pfu-generated mutations appearing as background

nOIse.

On average, the efficiency of post-PCR mutant enrichment by CDCE was estimated to

be IS-fold for the ligated and natural clamp procedures. This efficiency represents a 15

fold increased mutant fraction in post-PCR mutant-enriched samples compared to that in

original PCR-amplified samples. For example, a mutant fraction of 1.5 x 10-2 is

generated in post-PCR mutant-enriched samples using a mutant fraction of 10-3 in

original PCR-amplified samples. As a result, mutations are detected 15 times above the

CDCE detection limit of 10-3
•

135



B. After

A. Before

PCR by-products

Wild-type

10.00 12.00

Wild-type

14.00 16.00

Minutes
IVllnutes

I ,...
18.00 20.00

Figure 30. Mutation detection by CDCE: before vs. after post-PCR mutant enrichment*

A. The chosen HPRT target with the natural clamp was PCR amplified using the P31P1
primer pair prior to mutational analysis by CDCE.

B. post-peR mutant enrichment by CDCE was perfonned with the peR-amplified
sample from Figure 30 A. An additional peR was performed prior to mutational
analysis by CDCE.

* IS represents the mutant internal standard (G to A transition at HPRT eDNA bp 309) added at
an initial fraction of 10-3

; I represents a region where the majority of Pfu-generated mutations in
the chosen target migrate; the CDCE-separated mutants are in mutant/wild-type heteroduplexes;
the wild-type peak is shown at 1/20 of its full height.



4.5.1.5 Sensitivity

Table 18 summarizes the efficiencies of pre- and post-PCR mutant enrichment. The

combination of these two procedures results in the total mutant enrichment efficiency of

480-fold for the ligated clamp procedure and 1875-fold for the natural clamp procedure.

This total efficiency predicts an increased mutant fraction of 2.4 x 10-2 in final mutant

enriched samples using an initial fraction of 5 x 10-5
. An increased fraction of 9.4 x 10-2

is predicted for the natural clamp procedure. Figures 31 and 32 illustrate CDCE

detection of the mutant internal standard added at an initial fraction of 5 x 10-4,5 X 10-5
,

or 5 x 10-6
.

Given that mutations in final mutant-enriched samples are detected above the

detection limit of CDCE, analysis of mutations in original samples is limited by the level

of background noise. Equivalently, the mutation detection sensitivity of the ligated or

natural clamp procedure is limited by this level. Background noise results from DNA

modifications generated prior to peR and mutations generated by DNA polymerase

during peR. Sections 4.5.1.6 and 4.5.2.10 discuss the source of background noise.

The average level of background mutants (ME) was compared to that of the mutant

internal standard (Mr) added at the known initial fraction (F) to estimate the sensitivity:

[(ME + Mr)] x F. The background mutants compared are six predominant mutations

generated by Pfu DNA polymerase used for amplifying pre-PCR mutant-enriched

samples (see Section 4.5.2.10). A sensitivity of 10-5 was estimated for the ligated clamp

procedure, and 3 x 10-6 for the natural clamp procedure. This decreased sensitivity was

predicted in Section 4.5.1.3.2.

4.5.1.6 Source of background noise

In Section 4.5.1.5, CDCE-purified wild-type DNA was used as initial DNA samples to

estimate the mutation detection sensitivities. With these samples Apo I restriction

digestion was performed at 37°C for 2 hr, and pre-PCR mutant enrichment was

performed at ::::: 66°C for 1 to 2 hr. These samples were not exposed to additional heat

prior to PCR. These preparation procedures suggest Pfu, a DNA polymerase used for
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Table 18. Summary of mutant enrichment efficiencies

Average efficiency
Mode of mutant enrichment

Pre-PCR

Post-PCR

Total

Ligated clamp

32-fold

I5-fold

480-fold
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Natural clamp

I25-fold

I5-fold

I875-fold
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Figure 31. Mutation detection by CDCE: natural clamp
(initial samples of CDCE-purified wild-type DNA)*

Pre-PeR mutant enrichment by CDCE, followed by CE, was performed with each
initial sample of CDCE-purified wild-type DNA. This procedure was followed by PCR
using the P31P1 primer pair to amplify the chosen HPRT target with the natural clamp.
Post-PCR mutant enrichment by CDCE, followed by peR, was performed prior to
mutational analysis by CDCE.

*1 represents the wild-type in homoduplex; II represents the mutant internal standard (IS: G to A
transition at HPRTcDNA bp 309) added at an initial fraction ofS x 10-4,5 X 10-5

, or 5 x 10-6
; III

represents a region where the majority of the background mutants migrate; the CDCE-separated
mutants are in mutant/wild-type heteroduplexes.
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Figure 32. Mutation detection by CDCE: ligated clamp
(initial samples of CDCE-purified wild-type DNA)*

Apo I restriction digestion and clamp ligation were performed with each initial sample
of CDCE-purified wild-type DNA. These procedures were followed by pre-PCR mutant
enrichment by CDCE and CEo Using the GCIIPI primer pair, the chosen HPRTtarget
with the ligated clamp was peR amplified, followed by post-PCR mutant enrichment by
CDCE. Final mutant-enriched samples were peR amplified prior to mutational analysis
by CDCE.

*1 represents the wild-type in homoduplex; IT represents peR by-products; ill represents the
mutant internal standard (IS: G to A transition at HPRT cDNA bp 309) added at an initial fraction
of 5 x 10-4,5 X 10-5

, or 5 x 10-6
; IV represents a region where the majority of the background

mutants migrate; the CDCE-separated mutants are in mutant/wild-type heteroduplexes.



PCR, as the source of background noise.

Using an initial sample size of 2 x 108 wild-type copy number, a sample size of 6 x 106

((2 X 108
) + 32) was estimated for the ligated clamp procedure, and 2 x 106 ((2 X 108

) +

125) for the natural clamp procedure in pre-PeR mutant-enriched samples. These sample

sizes were estimated by directly measuring the wild-type copy number in the mutant

enriched samples. These estimations are equivalent to those calculated using the

efficiencies of pre-PCR mutant enrichment. About 20 doublings were applied to each

pre-PCR mutant-enriched sample to convert all the primers into products. 20 doublings

are equivalent to a 106
- fold target amplification.

An increased mutant fraction of 1.6 x 10-3 in pre-PCR mutant-enriched samples is

expected using an initial mutant fraction of 5 x 10-5
. This expectation is based on the

efficiency of pre-PCR mutant enrichment observed for the ligated clamp procedure.

After 20 doublings of target amplification, this increased mutant fraction is expected to

be 4 times greater than the mutant fraction that belongs to predominant mutations

generated by Pfu during PCR amplification of pre-PCR mutant-enriched samples ((2 x

10-6/bp/doubling) x 20 doublings x 10 =4 x 10-4
). The expected Pfu-mutant fraction is

based on the fidelity of Pfu observed for the chosen HPRT target. In addition, this mutant

fraction is based on the predominant Pfu mutations occurring 10 times more frequently

than expected by chance after 20 doublings. The expected level of Pfu-mutant fraction is

in close agreement with the sensitivity observed for the ligated clamp procedure (1.3 x

10-5
: [(4 x 10-5

) + (1.6 x 10-3
)] x 5 x 10-5

). This agreement is true for the natural clamp

procedure.

These agreements indicate that the fidelity of Pfu determines the level of background

noise upon mutational analysis by CDCE. To verify this indication, the level of

background noise as a function of doublings was investigated. As Figure 33 illustrates,

the level of background noise increases as a function of doublings. Figure 33A

represents a pre-PCR mutant-enriched sample after 20 doublings. Figures 33B and C

represent the same sample with an additional 20 doublings.

These results demonstrate that the level of background noise is determined by the

fidelity of Pfu. Equivalently, this fidelity determines the mutation detection sensitivity of

either the ligated or natural clamp procedure. Section 4.5.2.10 discusses the positions
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Figure 33. Background mutants vs. doublings*

Apo I restriction digestion and clamp ligation were performed with each initial sample
of CDCE-purified wild-type DNA. These procedures were followed by pre-peR mutant
enrichment by CDCE and CEo Using the GCIIPI primer pair, the chosen HPRTtarget
with the ligated clamp was peR amplified using either 20 (A) or 40 (B and C) doublings.
After post-PCR mutant enrichment by CDCE, final mutant-enriched samples were peR
amplified and analyzed by CDCE.

*1 represents the wild-type in homoduplex; II represents peR by-products; III represents the
mutant internal standard (IS: G to A transition at HPRT eDNA bp 309) added at an initial fraction
of 5 x 10-5

; IV represents a region where the majority of the background mutants migrate; the
CDCE-separated mutants are in mutant/wild-type heteroduplexes; 20 doublings are equivalent to
a 106-fold target amplification, and 40 doublings, a l012-fold.



and kinds of Pfu mutations in the chosen HPRT target.

4.5.2 With wild-type DNA of human cells

4.5.2.1 Initial DNA samples

To discover the mutation detection sensitivity of the ligated clamp procedure in

comparison to the natural clamp procedure in human cells, TK6 was chosen as a target

cell line. TK6, an approximately diploid human B cell line, was originally established

from a male patient with hereditary spherocytosis (Levy et aI., 1968) and was isolated

after treatment with ICR-191 (Skopek et aI., 1987). TK6 is hemizygous at HPRTlocus

and is heterozygous at tk locus. Thus, selection of mutations in these loci can be

performed using selecting agents, such as 6TG.

TK6 cells were obtained from a previous study (Tomita-Mitchell, 1999). These cells

had been left untreated, maintained in exponential growth by daily dilution, and frozen

after 15.5 generations. The expected total HPRTmutant fraction in these cells is about

4.2 x 10-6 (2.7 X 10-7
X 15.5). This expectation is based on the spontaneous mutation rate

per doubling, 2.7 x 10-7
, observed for the HPRT gene (Tomita-Mitchell, 1999).

Assuming a target size of about 1000-bp for this gene, HPRT hotspot mutations that had

occurred 10 to 100 times more frequently than expected by chance, would appear at

fractions of 4.2 x 10-8 ([(4.2 x 10-6
) -7- 1000] x 10) to 4.2 X 10-7 ([(4.2 x 10-6

) -7- 1000] x

100) in these cells. Such HPRT hotspot mutations in human cells have been shown to

represent about 50% of the point mutations that alter the physiological function of the

gene product (Kat, 1992; Tomita-Mitchell et aI., 2000). These expected mutant fractions

are lower than the mutation detection sensitivities determined for the ligated and natural

clamp procedures using the initial samples of CDCE-purified wild-type DNA. To

compare the sensitivity of the ligated clamp procedure in human cells to that of the

natural clamp procedure, genomic DNA isolated from the TK6 cells of Tomita-Mitchell

(1999) was used as initial samples.
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4.5.2.2 Genomic DNA isolation

A procedure described in a previous study allows DNA isolation with minimal

exposure to potential mutagenic agents, such as phenol (Khrapko et aI., 1997b). In this

procedure, genomic DNA is isolated from cells by digestion with proteinase K, SDS, and

RNase A, followed by ethanol precipitation of the DNA. The DNA isolated by this

procedure has been demonstrated to be suitable for analysis of point mutations at

fractions as low as 10-6 (Khrapko et aI., 1997a,b; Coller et aI., 1998; Marcelino et aI.,

1998; Li-Sucholeiki and Thilly, 2000).

The quantity and quality of genomic DNA isolated from human cells was assessed by

a UV spectrophotometer. The typical DNA yield was over 90% with the ratio of A260 to

A2so in the range of 1.6 to 2.0.

4.5.2.3 Sequential restriction digestion

Figure 34 illustrates two sequential restriction digestion procedures, with target

isolation in between. The order of these procedures is necessary to generate the chosen

HPRT target suitable for CDCE separation with a minimum cost. Monetary cost has to

be considered since liberating the chosen target from a large quantity of genomic DNA,

such as 60 Jlg (::::::107 cells), in many samples can be expensive. 60 flg is the sample size

necessary for detecting mutations at fractions as low as 10-5 with statistical significance

(±20% precision).

For the first restriction digestion, BstN I and Dra I were selected. These enzymes

liberate the 438-bp HPRTtarget-embedded fragment from human genomic DNA at a

minimum cost. After this target-embedded fragment was isolated from the BstN I and

Dra I digest, the second restriction digestion followed. This second digestion generated

the chosen target suitable for CDCE separation. The cost of restriction endonucleases for

the second digestion is no longer a limiting factor since an initial sample size is reduced

after target isolation. For example, an initial sample size of 60 Jlg is reduced to 6 ng

using an isolation efficiency of 104-fold. For the second restriction digestion, Ahd I and
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Figure 34. Restriction digestion by BstN I, Dra I, Ahd I, HinfI, and Apo I

The first restriction digestion by BstN I and Dra I liberates the 438-bp HPRT target
embedded fragment from human genomic DNA. After this target-embedded fragment is
isolated from the BstN I and Dra I digest, the second restriction digestion followed. This
digestion generates the chosen target suitable for CDCE separation. Restriction digestion
with Ahd I and Hin!I is performed for the natural clamp procedure, and with Apo I for
the ligated clamp procedure.
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HinfI were selected for the natural clamp procedure. For the ligated clamp procedure,

Apo I was chosen.

4.5.2.4 Target isolation

Figure 18 in Section 3.8.3.1 illustrates isolation of a chosen target from a pool of

genomic DNA digest. Using the chosen HPRT sequence as a target, this procedure

generated a 72 ± 2 % target yield. This target yield closely agrees with that observed in a

previous study (74%, Li-Sucholeiki and Thilly, 2000).

As a first means of estimating the isolation efficiency of the chosen HPRT target

relative to non-target sequences in the pool of genomic DNA digest, a part of human

mitochondrial DNA (DNA bp 10011-10215) was selected as a non-target reference.

About a few hundred to a thousand mitochondrial sequence copies per human cell have

been estimated (Robin and Wong, 1988; Marcelino et aI., 1998; Khrapko et aI., 1999).

One HPRT sequence copy (X-linked) is expected per male-derived cell, TK6. The molar

ratio of the mitochondrial to target sequences in initial samples was estimated to be about

2000/1 (R1). This ratio was compared to that in target-isolated samples, 1/0.55 ± 0.23

(RF), to estimate the isolation efficiency: R1 +- RF, 3.6 x 103-fold.

As a second means of estimating the efficiency of target isolation, the absorbencies of

initial and target-isolated samples were measured by a UV spectrophotometer at a

wavelength of 260 nrn, and the sample DNA concentrations per a given target copy

number were compared. By this method, an efficiency of 700 ± 210-fold was estimated.

On average, this efficiency is about 5-fold lower than that estimated by the first method.

The second method is thought to be more accurate since the measurement refers to all

non-target sequences a sample may have, while the measurement in the first method

relies on one non-target sequence.

Using the first means of estimating the target isolation efficiency, one study has

reported a 3-fold greater efficiency (Li-Sucholeiki and Thilly, 2000) compared to that

observed in this study. Two possible causes of this difference are the use of two different

target sequences and a 2-fold difference in the initial ratio of target to non-target
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sequences. The HPRT target used in this study is expected to be present as one copy per

cell. A part of the human APe gene, used as a target in the previous study, is expected to

be present as two copies per cell.

Based on the target yield and the isolation efficiency observed for the chosen HPRT

target, a sample size of 86 ng (107 cells + 700 =1.4 X 104 cells) is expected in target

isolated samples using an initial sample size of 60 Ilg human genomic DNA (107 target

copy number in 107 cells). In these target-isolated samples, a target copy number of 7 x

106 is expected (107 x 0.7 =7 x 106
).

4.5.2.5 Target renaturation

4.5.2.5.1 Potential source of background noise

The established protocol for target isolation isolates a chosen target in single strands.

Thus, target renaturation is necessary prior to pre-PCR mutant enrichment by CDCE.

Substrate concentration, incubation temperature, and buffer composition have been

identified as important factors in DNA renaturation (Doty et aI., 1960; Marmur and Lane,

1960~ Marmur and Doty, 1961; Thrower and Peacocke, 1966~ Thrower and Peacocke,

1968). In a previous study, incubation at 55°C for 16 hr in 0.2 M NaCl was performed

with each target-isolated sample (Li-Sucholeiki and Thilly, 2000). The substrate

concentration used in the study of Li-Sucholeiki and Thilly (2000) was 108/111 (personal

communication) .

The established protocol for target renaturation was investigated since it requires

sample exposure to heat, at 55°C, for a long period of time, 16 hr. Heat induces DNA

modifications at different rates, with the rates depending on temperature, DNA

conformation, pH, and buffer composition (Greer and Zamenhof, 1962; Lindahl and

Nyberg, 1972; Lindahl and Karlstrom, 1973; Lindahl and Nyberg, 1974; Ehrlich et aI.,

1986). Table 19 summarizes the published rates of heat-induced DNA modifications at

various temperatures.

Single-stranded target DNA with modifications, when renatured with the wild-type, is

expected to change thermal stability from that without modifications. Indeed,
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Table 19. Rates of heat-induced DNA modifications vs. temperatures

Type of modification Temperature Rate*

95°C 2.0 x 10-7/sec

Deamination of
cytosine 70°C 1.2 x lO-8/sec

sooe 1.0 x 10-9/sec

Deamination of adenine liOoe 4.0 x 10-8/sec

Depyrimidination 95°C 2.0 x lO-8/sec

Depurination 95°C 1.5 x 10-7/sec
* Each is a published rate for single-stranded DNA.
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Reference(s)

Lindahl and Nyberg, 1974;
Ehrlich et aI., 1986

Ehrlich et aI., 1986;
Frederico et aI., 1990

Frederico et al., 1990

Karran and Lindahl, 1980

Lindahl and Karlstrom,
1973

Wang et aI., 1982



deamination of cytosine, resulting in G:U pairs, has been shown to reduce the thermal

stability by about 2.2°C (Ullman and McCarthy, 1973a). Reduction in the thermal

stabiltiy has also been observed with depurination (Ullman and McCarthy, 1973b).

These studies suggest heat-induced modifications in a chosen target in the eluted samples

of mutant/wild-type heteroduplexes after pre-PCR mutant enrichment by CDCE. These

modified species can appear as background noise upon mutational analysis by CDCE, as

Section 4.5.2.10 discusses.

DNA modification fractions introduced by each procedure in the proposed point

mutation detection method were estimated. Those procedures prior to pre-PCR mutant

enrichment were investigated. Those procedures that require incubation at temperatures

at or below 37°C were excluded from this investigation. For example, deamination of

cytosine has been shown to be negligible in those samples incubated at 37°C for up to 5

days (Wang et aI., 1982). The same has been observed for depurination after incubation

at 37°C for 2 months (Lindahl and Nyberg, 1972).

As Table 20 summarizes, target renaturation is the procedure that generates

deaminated cytosine at the highest fraction. This observation is expected to be true for

the other modified species due to the nature of target renaturation requiring sample

exposure to heat for 16 hr (see 4.5.2.5.2 for the renaturation efficiencies over different

incubation time periods). Thus, available renaturation methods that require incubation at

temperatures below 55°C were sought, and three were found.

The first method uses denaturants, such as formamide and urea. Addition of

denaturants to renaturation mixtures has been shown to decrease the Till of the substrate

DNA (McConaughy et aI., 1969; Bltithmann et aI., 1973; Hutton, 1977). However, no

simple linear relationship has been established between mean thermal stabilities of

substrates and denaturant concentrations (Schmeckpeper and Smith, 1972). In addition, a

reduced renaturation rate is expected in mixtures with denaturants compared to those

without. This reduction has been explained by the increased solution viscosities as a

result of adding denaturants to reaction mixtures (Thrower and Peacocke, 1968;

Schmeckpeper and Smith, 1972; Hutton, 1977). Based on this reduced rate, longer

sample exposure to heat is expected for those samples with denaturants compared to

those without. For this reason, this method was rejected.
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Table 20. Expected fractions of heat-induced DNA modifications

Procedure Temperature/ Expected fractions C & d

(ss or ds) duration
a&b

Deamination Deamination De- De-
of cytosine of adenine pyrirnidination purination

Genomic
DNA 50°C/3 hr

isolation
Cds)

IOOoe/1 min >1.2 x 10-5 <2.4 X 10-6 >1.2 X 10-6 >9 X 10-6

Target 70°C/4 min 2.9 x 10-6

isolation
(ss)

60°C/2 hr >7.2 x 10-6

50°C/30 min 1.8 x 10-6

Target 55°C/16 hr >5.8 x 10-5

renaturation
(ss)

a Listed are those procedures that require incubation at temperatures above 37°C prior to pre-PCR
mutant enrichment in the proposed point mutation detection method.
b Single- (ss) or double-stranded (ds) DNA confonnation in each procedure.
C Based on the published rates at each temperature (see Table] 9).
d Those fractions left blank are due to the lack of published rates at desired temperatures.
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The second method, phenol emulsion reassociation technique, allows renaturation at

or below room temperature in sample mixtures containing phenol (Kohne et a1., 1977).

Since phenol is thought to be a potential mutagenic agent, this method was rejected.

The third method uses DMSO and this method was chosen as an alternative to the

established method that uses the incubation temperature of 55°C. Addition of 40%

DMSO to renaturation mixtures has been shown to decrease the Tm of the substrate DNA

by 27°C (Escara and Hutton, 1980). This addition is expected to increase the solution

viscosities, lowering the renaturation rate. However, the rate has been shown to increase

as the concentration of DMSO is increased (Escara and Hutton, 1980). The effect of

DMSO on the solution dielectric constant has been suggested as a cause of this

observation contradictory to the expectation (Escara and Hutton, 1980).

DMSO has been used as a cryoprotective agent (Ashwood-Smith, 1979; Greene et aI.,

1970). A number of studies have been performed to characterize this agent. No toxic

effects have been observed on HeLa cells exposed to 5% DMSO for 24 hr at 37°C

(Greene et aI., 1970). No genetic changes have been observed over extended periods of

storage using 10% DMSO (Ashwood-Smith, 1979; Ashwood-Smith, 1985). In addition,

it has been shown that DNA cleavage is about 120-fold more frequent in 0% DMSO at

Tm+10°C than in 40% DMSO at Tm+10°C (Escara and Hutton, 1980). Depurination has

been shown to be about the same in these two variables (Escara and Hutton, 1980).

These studies suggest that the renaturation method using DMSO can potentially reduce

formation of heat-induced DNA modifications during target renaturation.

As a second means of target renaturation, incubation was performed at 28°C in

mixtures containing 40% DMSO. The efficiency of this method over different incubation

time periods is discussed in the following section.

4.5.2.5.2 Efficiency

Figure 35 summarizes efficiencies of two renaturation methods over different

incubation time periods. These results demonstrate that a renaturation efficiency of about

90% can be achieved after 16 hr-Iong incubation using either method. The other 10% is

thought to represent the target that never renatured. Some of the substrate DNA has been
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Figure 35. Renaturation efficiencies vs. incubation duration*

A chosen target was PCR was amplified using the IS 1IIS2 primer pair, and this
amplified target at a concentration of 108/Jll was denatured. Using different test
incubation time periods, renaturation was performed at 55°C (A) or at 28°C in the
presence of 40% DMSO in the renaturation reaction mixture (B). Each renatured sample
was restriction digested by Apo I, and the digestion efficiency served as a reference to
measure the renaturation efficiencies over different incubation time periods.

* The substrate without denaturation was used as a positive control CApo I digestion efficiency:
>95%). The substrate with denaturation and with 0 hr incubation duration was used as a negative
control (Apo I digestion efficiency: 0%).
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shown never to renature (Thrower and Peacocke, 1968). The inability to achieve

complete renaturation has also been explained by phosphate-ester backbone breakage of

substrate DNA during denaturation and renaturation (Marmur and Doty, 1961).

4.5.2.6 Restriction digestion and clamp ligation

The restriction digestion efficiency of Apo I was estimated to be about 80% (ligated

clamp). The same digestion efficiency was estimated for Ahd I and Hinfl (natural

clamp). These efficiencies are about 10% lower than those observed in another study

using the samples of target isolation, followed by target renaturation (Li-Sucholeiki, X.

C., personal communication).

Target isolation is thought to be a cause of this decrease. If this procedure isolates the

Watson and Crick strands of a target with unequal efficiencies, a decrease in restriction

digestion efficiency is expected. For example, digestion efficiencies of up to 81 % (up to

90% of the 0.9 Crick strand) are expected in target-isolated samples containing the

Watson and Crick strands of a target at a molar ratio of 1 to 0.9. This expectation is

based a previous observation in which up to about 90% renaturation efficiencies were

achieved in samples containing the Watson and Crick strands of a target at an equal

molar ratio (see Section 4.5.2.5.2).

Clamp ligation was performed with each sample of Apo I restriction digestion. A

clamp copy number of lOll per 107 target copy number was determined to be necessary to

generate the maximum clamp ligation efficiency by mass action. This clamp copy

number was determined by clamp dilution experiments, as Section 4.5.1.2 discusses.

4.5.2.7 Pre-peR mutant enrichment

The efficiency of pre-PCR mutant enrichment was estimated after CDCE, followed by

CEo In addition to the wild-type in single strands (see Section 4.5.1.3.2), two more

potential wild-type-containing species are expected in the CDCE-eluted samples of

mutant/wild-type heteroduplexes using the initial samples of human cells. The first is the

wild-type that may be renatured with non-target residual cellular DNA in target-isolated
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samples. The second is the wild type-embedded BstN I/Dra I fragment left uncleaved

after the second restriction digestion. These wild-type-containing species may co

migrate with mutant/wild-type heteroduplexes under optimal CDCE-separation

conditions. As a means to reduce the copy number of the wild-type-containing species in

the CDCE-eluted samples, CE was performed. CE differentiated the targets of different

lengths, allowing this reduction.

Initially, a capillary bore size of 320-flill id was used for pre-PCR mutant enrichment.

Based on the loading capacity determined for this bore size (2.5 flg) (Li and Thilly,

1996), a 107 target copy number was estimated to be a suitable sample size. This target

copy number was estimated to be equivalent to about 86 ng DNA, calculated using the

efficiency of target isolation. Using the bore size of 320-Jlffi id, the average efficiency of

mutant enrichment was estimated to be la-fold for the natural clamp procedure. This is

about 12-fold lower than that observed in the initial samples of CDCE-purified wild-type

DNA. These initial samples contain up to about 600 ng of human genomic DNA.

One possible cause of this decrease is that the bore size of 320-Jlffi id is not able to

handle impurities in samples accumulated prior to pre-PCR mutant enrichment. Such

impurities, when loaded into a capillary, may cause a "peak-broadening effect," resulting

in more of the wild-type co-migrating with mutant/wild-type heteroduplexes under

optimal CDCE-separation conditions. When a capillary bore size of 540-flm id (loading

capacity: 10 flg (Li and Thilly, 1996)) was used instead, the average mutant enrichment

efficiency increased to 60 ± 8.3-fold. An average efficiency of 19 ± 4-fold was estimated

for the ligated clamp procedure using the capillary bore size of 540-flm id.

These measured efficiencies using the bore size of 540-flm id are about 2-fold lower

compared to those in the initial samples of CDCE-purified wild-type DNA. A similar

observation has been reported (between >1- and >2-fold lower efficiencies) (Li

Sucholeiki and Thilly, 2000). These lower efficiencies observed for the ligated and

natural clamp procedures predict a 2-fold lower mutation detection sensitivity, as Section

4.5.1.3.2 discusses. This decrease in efficiency is possibly caused by variables

introduced by the different initial samples: CDCE-purified wild-type vs. wild-type in

human cells.
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Using the capillary bore size of 540-)lffi id and using the initial samples of human

cells, the average efficiency of pre-PCR mutant enrichment observed for the natural

clamp procedure is 2- to 3-fold lower than that in a previous study (Li-Sucholeiki and

Thilly, 2000). This decrease is possibly caused by the use of two different target

sequences. Some sequences possibly generate higher efficiencies than other sequences.

However, more sequences need to be investigated to validate this assumption.

4.5.2.8 Hifi-PCR and post-PCR mutant enrichment

The average efficiency of post-peR mutant enrichment by CDCE was estimated to be

I5-fold for the ligated and natural clamp procedures. This efficiency agrees with that

observed in the initial samples of CDCE-purified wild-type DNA.

4.5.2.9 Sensitivity and accuracy

Figure 36 illustrates mutation detection by CDCE. A mutation detection sensitivity of

5 x 10-6 was estimated for the natural clamp procedure, and 2 x 10-5 for the ligated clamp

procedure. The sensitivity of the ligated clamp procedure represents detection of as few

as 200 copies of each mutant in the presence of 107 copies of the wild-type. These

sensitivities are slightly lower compared to those in the initial samples of CDCE-purified

wild-type DNA. Section 4.5.2.7 predicts this decrease.

Using the initial samples of human cells, the sensitivity estimated for the natural

clamp procedure is 5-fold lower that that in a previous study (5 x 10-6 vs. IO-6/bp) (Li

Sucholeiki and Thilly, 2000). However, a direct comparison cannot be made since

different target sequences were used. Sensitivity is related to the efficiency of pre-PeR

mutant enrichment and to the fidelity of Pfu DNA polymerase, as Sections 4.5.1.3.2 and

4.5.1.6 discuss. These relationships can generate various sensitivities using different

target sequences. However, more sequences need to be investigated to understand the

relationship between the sensitivity and the use of different target sequences.

Figure 37 illustrates CDCE-mutation detection of mutant internal standards added at

different initial fractions ranging from 3 to 27 X 10-5 using the ligated clamp procedure.
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Figure 36. Mutation detection by CDCE: ligated vs. natural clamp
(initial samples of human cells)

Genomic DNA isolation, restriction digestion with BstN I and Dra I, and target
isolation were performed with each initial sample of human cells. For the natural clamp
procedure (A and B), pre-PCR mutant enrichment by CDCE, followed by CE, was
performed. For the ligated clamp procedure (C), Apo I restriction digestion and clamp
ligation were performed prior to pre-PCR mutant enrichment. PCR was performed with
each mutant-enriched sample using either the P3IPI or GCIIPI primer pair, depending on
the clamp type desired. This procedure was followed by post-PCR mutant enrichment by
CDCE. Final-mutant enriched samples were peR amplified prior to mutational analysis
by CDCE.
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I represents the wild-type in hornoduplex; II represents PCR by-products; III represents
the mutant internal standard (IS: G to A transition at HPRT cDNA bp 309) added at an
initial fraction of 5 x 10-5

; IV represents a region where the majority of the background
mutants migrate; the CDCE-separated mutants are in mutant/wild-type heteroduplexes; A
and B are independently performed experimental results.



Figure 37. CDCE-mutation detection vs. mutant fractions: ligated clamp
(initial samples of human cells)

Genomic DNA isolation, restriction digestion with BstN I and Dra I, and target
isolation were performed with each initial sample of human cells. Apo I restriction
digestion and clamp ligation were then performed prior to pre-PCR mutant enrichment by
CDCE and CEo PCR was performed with each mutant-enriched sample using the
GCI/PI primer pair, followed by post-PCR mutant enrichment by CDCE. Final-mutant
enriched samples were peR amplified and analyzed by CDCE.
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Figure 38 illustrates the quantitative analysis of Figure 37. These results demonstrate the

accuracy of the ligated clamp procedure.

4.5.2.10 Source of background noise

Section 4.5.1.6 discusses Pfu DNA polymerase as the source of background noise

using the initial samples of CDCE-purified wild-type DNA. Using the initial samples of

human cells, additional sources of background noise are expected. Section 4.5.2.5.1

discusses heat-induced DNA modifications. In addition, ethanol and UV light have been

identified as causes of DNA modifications (Hanekamp, 1993). These modifications in

pre-PCR mutant-enriched samples can be peR-amplified and, as a result, appear as

background noise upon mutational analysis by CDCE.

For example, deamination of cytosine, forming uracil, can result in C to T transition.

When adenine is converted to hypoxanthine as a result of deamination, this lesion forms a

more stable base pair with cytosine than with thymine, resulting in A to G transition

(Lindahl, 1979; Lindahl, 1993). Although apurinic/apyrimidinic (AP, abasic) sites can

block DNA synthesis (Sagher and Strauss, 1985; Lindahl, 1993), bypassing of these sites

during DNA synthesis can be mutagenic (Shearman and Loeb, 1979; Schaaper et aI.,

1983; Kunkel, 1984; Loeb, 1985; Loeb and Preston, 1986).

Section 4.5.2.5.1 identifies target renaturation as the procedure that generates heat

induced DNA modifications at the highest fractions in the proposed point mutation

detection method. For this reason, the level of background noise using the established

target renaturation method was compared to that of the alternative method. The

established method uses an incubation temperature of 55°C, and the alternative method

uses a temperature of 28°C with 40% DMSO in reaction mixtures (see Section 4.5.2.5).

These two methods generated no difference in the level of background noise. This

observation suggests that the established target renaturation method, requiring incubation

at 55°C for 16 hr, is not the source of background noise.

Using the initial samples of human cells, Pfu DNA polynlerase has been identified as

the source of background noise (Li-Sucholeiki and Thilly, 2000). In this present study,

three observations were made to confirm the previous study.
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Figure 38. Accuracy of mutation detection by CDCE: ligated clamp

Genomic DNA isolation, restriction digestion with BstN I and Dra I, and target
isolation were performed with each initial sample of human cells. Apo I restriction
digestion and clamp ligation were then performed prior to pre-PCR mutant enrichment by
CDCE and CEo PCR was performed with each mutant-enriched sample using the
GCI/Pl primer pair, followed by post-peR mutant enrichment by CDCE. Final-mutant
enriched samples were PCR amplified and analyzed by CDCE. Each output was
estimated by comparing the area oflSl (0 -> T transversion at HPRTcDNA bp 312)
added at an initial fraction of 3 x 10-5

, 9 x 10-5
, or 2.7 x 10-4 to that of IS2 added at an

initial fraction of 5 x 10-5 (I): (IS 1 + IS2) x I; the average area of the background mutants
(B) was compared to the area of IS2 to estimate the average background mutant fraction
in each sample: (B + 152) x I.
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First, the efficiencies of pre-PeR mutant enrichment and the sensitivities were

observed to correlate. Section 4.5.1.6 discusses this correlation as being an indication

that the fidelity of Pfu determines the level of background noise.

Second, the level of background noise in the initial samples of human cells was

observed to increase as the number of doublings increased. This observation was

previously demonstrated using the initial samples of CDCE-purified wild-type DNA in

Section 4.5.1.6.

Third, the background mutants in a PCR-noise control sample were observed to co

migrate with those in the initial samples of human cells under optimal CDCE-separation

conditions. Figure 39A represents CDCE-purified wild-type DNA used as a template to

prepare the PCR-noise control. Figure 39B represents the PeR-noise control, prepared

by amplifying the chosen target using Pfu. Figure 39C represents the initial samples of

human cells using the ligated clamp procedure. A set of co-migrating mutants was

purified and sequenced. Sequencing analysis showed that each of the co-migrating

mutants is the same with regard to position and kind. Figure 40 and Table 21 summarize

the sequencing results.

The predominant Pfu-mutations in the chosen HPRT target were identified to be 4 G

to T tranversions, 1 G to A transition, and 1 A to G transition. As Section 2.5.3.1

discusses, G to T transversion has been determined as the predominant mutation type of

Plu. The mutations identified in the chosen HPRT target represent about 60% of the total

Pfu-mutations. These mutations appeared at an average fraction equivalent to about 2 x

10-5 in original samples. This average mutant fraction limited the sensitivity of the

ligated clamp procedure.

As this section has discussed, heat-induced DNA modifications can appear as

background noise. For example, deaminated cytosine is expected to appear in the chosen

target at a fraction greater than 5.8 x 10-5 in pre-PeR mutant-enriched samples (see Table

20 in Section 4.5.2.5.1). This expectation is greater than the average mutant fraction

observed for the predominant Pfu mutations.

To date, a limited number of studies are available to explain why Plu, not target

renaturation, is the source of background noise. Plu has been shown to specifically

recognize the presence of uracil in single-stranded DNA and stall DNA synthesis (Lasken
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Figure 39. Source of background noise: Pfu DNA polymerase*

A. peR was performed using the GCIIPI primer pair to amplify the chosen HPRTtarget
with the ligated clamp, followed by CDCE purification of the wild-type DNA.

B. A mixture containing the CDCE-purified wild-type DNA (Figure 39A) and the
mutant internal standard (G to A transition at HPRT eDNA bp 309) at a fraction of
10-3 was peR amplified using the GCIIPI primer pair. post-peR mutant enrichment,
followed by peR, was performed prior to mutational analysis by CDCE.

C. Genomic DNA isolation, restriction digestion with BstN I andDra I, and target
isolation were performed with the initial sample of human cells. Apo I restriction
digestion and clamp ligation were performed with the target-isolated sample
containing the mutant internal standard (G to A transition at HPRT cDNA bp 309)
added at an initial fraction of 5 x 10-5

. These procedures were followed by pre-PeR
mutant enrichment by CDCE and CEo peR was performed with the mutant-enriched
sample using the Gel/PI primer pair, followed by post-PCR mutant enrichment by
CDCE. The final-mutant enriched sample was peR amplified and analyzed by
CDCE.

* I represents the wild-type in homoduplex; II represents PCRby-products; the CDCE
separated mutants in mutant/wild-type heteroduplexes; Figure 40 and Table 21
summarize the positions and kinds of mutants.
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Figure 40. Positions and kinds of mutations in chosen HPRT target

5'- cAATTC TTTGC TGACC TGCTG GATTA CATCA AAGCA CTGAA

A (c)

T (b)
T (d)

A (e)

i
A(t)

t
TAGAA ATAGT GATAG ATCCA TTCCT ATGAC TGTAG ATTTT

A (g)

G (a)

i
A (h)

t
ATCAG ACTGA AGAGC TATTG T -3'

* cDNA bp 218-318; the group of bases in bold represents Apo I restriction end to which
the clamp was ligated; see·Table 21 for the source of each mutation.
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Table 21. Summary of mutations in chosen HPRT target

Mutant Position Kind Source

c 275 G->T Pfu

f 276 G->T Pfu

b 280 G->A Pfu

e 287 G->T Pfu

d 289 G->T Pfu

a 301 A->G Pfu

g 309 G->A Internal standard of peR products

h 312 G->T Internal standard of genomic DNA
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et aI., 1996; Greagg et aI., 1999). As a result, the major primer-extension product was

observed to be significantly shorter than an expected full-length product (Greagg et aI.,

1999). This observation was made for both the 3' to 5' proofreading exonuclease

proficient and deficient versions of Pfu (Greagg et aI., 1999). On the other hand, the

prinler extension to a full-length product was observed when tested with Taq DNA

polymerase (Greagg et aI., 1999). These results suggest that the shorter primer extension

is specific to Pfu. More studies investigating the effects of Pfu on other heat-induced

DNA modifications are necessary. These studies may answer why Pfu is the source of

background noise for the ligated and natural clamp procedures.

4.6 Demonstration of CDCE separation: p53 exon 7

Many mutations in the p53 gene have been found in various types of human cancer

(Hainaut et aI., 1998; Hernandez-Boussard et al., 1999b). For this reason, a part of the

human p53 gene (cDNA bp 673-782), representing the entire exon 7, was chosen as a

second target. Since this target does not have a neighboring natural clamp, clamp ligation

is necessary for mutational analysis by CDCE.

Figure 41 illustrates CDCE separation results using the ligated clamp at different

temperatures. These results demonstrate the ability of the ligated clamp to separate point

mutations in the chosen p53 target from the wild-type.
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Figure 41. CDCE separation of high Tm mutant from wild-type sequences:
p53 exon 7 with ligated clamp

A mutant with a higher melting temperature (high Tm mutant, A -> G transition atp53
cDNA bp 763) than that of the wild-type was peR amplified using the GC2lBS-stable
primer pair. An additional peR was performed with a mixture containing the wild-type
and the PeR-amplified mutant at an equal molar ratio. The GC2IBS primer pair (pS3
eDNA bp 673-782) was used for this peR in whieh mutant/wild-type heteroduplexes, in
addition to the homoduplex of each kind, were formed. This PCR sample was separated
by CDCE, performed using a 15 em-long temperature-regulated zone of desired
temperatures.
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5 CONCLUSIONS

For mutational analysis of a larger pool of target genes and tissues, genotype-based

methods are preferred over phenotype-based methods. This preference, combined with

the ability to measure mutations at low fractions, allows analysis of a variety of human

samples, including normal tissues.

For such analysis, a mutation assay was developed. The key development was high

efficiency DNA ligation in which a clamp is ligated to any 100-bp sequence of interest by

mass action. Clamp ligation was combined with the established CDCE-based mutation

detection method developed for DNA sequences with a natural clamp. The established

method alone allows analysis of rare point mutations in only about 9% of the human

genome. An additional 89% of the human genome can be analyzed by the combined

method.

The sensitivity of the combined method was demonstrated to be 2 x 10-5 in human

cells. This demonstration represents detection of at least 200 copies of each mutant in the

presence of 107 copies of the wild-type. This sensitivity was observed to be 4-fold lower

than that of the established method, when sensitivities were compared using the same

target, a part of the human HPRT gene (cDNA-bp 223-318). The GC-rich sequence of

the ligated clamp was determined to be the cause of this decrease.

The sensitivity of the combined method was limited by the fidelity of Pfu DNA

polymerase used for peR. The polymerase generated 4 G -> T transversions, 1 A -> G

transition, and 1 G -> A transition in the chosen HPRT target. These mutations appeared

at an average fraction equivalent to about 2 x 10-5 in the original samples. This average

mutant fraction limited the sensitivity of the combined method.

Future applications of the combined method to analysis of a variety of human samples

may allow understanding of human point mutagenesis.
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6 SUGGESTED FUTURE STUDIES

6.1. Increase in mutation detection sensitivity

The fidelity of Pfu DNA polymerase limits the sensitivity of mutation detection

methods. With increased fidelity, the sensitivity can be increased. Studies on

mechanisms by which Pfu generates mutations in an amplified target may suggest a

means to increase the fidelity.

Conventional Pfu is the 3' to 5' proofreading exonuclease-proficient version of Pfu

(exo+ version) (Lundberg et aI., 1991). Potentially, a small amount of the exonuclease

deficient version of Pfu (exo- version) is present in batches of conventional Pfu (Thilly,

W. G., personal communication). This mixed version may be caused by mutations

occurring during transcription and translation of the exo+ version of the enzyme.

A previous observation supports the mixed-version possibility (Kim, unpublished

results). In this observation, mutations in a chosen target created by conventional Pfu

were shown to co-migrate with those created by the exo- version under optimal CDCE

separation conditions. These co-migrating mutations are thought to be the same

mutations; however, sequencing analysis needs to be performed for verification.

This observation supports the hypothesis that a small amount of the exo- version

present in the mixed version causes all the mutations, determining the fidelity of the

mixed version. If this is true, purification of the exo+ version in the mixed version may

increase fidelity (Thilly, W. G., personal communication).

6.2. Applications

6.2.1 Inherited mutations

As Section 2.6 describes, the ability to measure mutations at fractions down to 5 x 10-5

allows analysis of inherited mutations with statistical significance in a sample size of 107

cells, derived from 105 persons. Such analysis can be performed with the mutation assay
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developed in this thesis. As a result, the relationships of genes to diseases can be tested

and causative alleles over the entire genes can be discovered.

6.2.2 Somatic mutations

As Section 2.4 summarizes, a limited number of somatic mutational studies have been

performed on the tissues of healthy individuals. Based on these studies, the mutation

assay developed in this thesis is suggested for analysis of p53 somatic point mutations in

the lungs of healthy individuals. Two p53 point mutations in the gene-coding region at

an average fraction of about 5 x 10-5 have been observed in healthy human lungs (Li

Sucholeiki et aI., Unpublished results).

The hypothesis that cigarette smoke induces mutations or/and mutant fractions can be

directly tested by comparing mutational spectra in lOO-bp p53 sequences in smokers' and

non-smokers' lungs. Since none of the human p53 exons has a natural clamp, clamp

ligation is necessary to test such a hypothesis.
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