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Abstract. It has long been thought that macroscopic phase coherence breaks
down in effectively lower-dimensional superconducting systems even at zero
temperature due to enhanced topological quantum phase fluctuations. In quasi-
one-dimensional wires, these fluctuations are described in terms of ‘quantum
phase-slip’ (QPS): tunneling of the superconducting order parameter for the
wire between states differing by ±2π in their relative phase between the wire’s
ends. Over the last several decades, many deviations from conventional bulk
superconducting behavior have been observed in ultra-narrow superconducting
nanowires, some of which have been identified with QPS. While at least some of
the observations are consistent with existing theories for QPS, other observations
in many cases point to contradictory conclusions or cannot be explained by these
theories. Hence, our understanding of the nature of QPS, and its relationship to
the various observations, has remained imcomplete. In this paper we present
a new model for QPS which takes as its starting point an idea originally
postulated by Mooij and Nazarov (2006 Nature Phys. 2 169): that flux–charge
duality, a classical symmetry of Maxwell’s equations, can be used to relate QPS
to the well-known Josephson tunneling of Cooper pairs. Our model provides
an alternative, and qualitatively different, conceptual basis for QPS and the
phenomena which arise from it in experiments, and it appears to permit for the
first time a unified understanding of observations across several different types
of experiments and materials systems.
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1. Introduction

Topologically charged fluctuations in field theories appear in many areas of physics,
such as structure formation in the early universe [1, 2], magnetic ordering in Ising [3]
and Heisenberg [4] systems, liquid crystals [5], superfluid helium [6–13], dilute atomic
Bose–Einstein condensates [14–16] and superconductors [1, 17–21]. In systems described by
classical fields, thermal fluctuations of this type are often used to describe a corresponding
thermodynamic phase transition where the field becomes ordered (or disordered), such as
the Berezinskii–Kosterlitz–Thouless (BKT) vortex unbinding transition [6–9], the Lambda
transition in liquid 4He [10, 11] and the interfacial roughening transition [3].

The importance of topologically charged fluctuations is dramatically increased in systems
which are effectively lower-dimensional, often realized experimentally using superfluids or
superconductors, where the phase of their macroscopic order parameter functions as the field
in which topological defects are embedded. Examples include superconducting thin films [17,
21–23] and narrow wires [18], lattice planes in high-TC superconductors [19, 20] and superfluid
helium or dilute atomic Bose–Einstein condensates in confining potentials with quasi-two-
dimensional (2D) [6–8, 15, 16] or quasi-one-dimensional (1D) [12–14] character. In quasi-
1D systems, whose transverse dimension is .ξ , the relevant coherence length, topological
fluctuations are known as ‘phase slips’, and can be viewed conceptually as the passage of
a quantized vortex line through the 1D system. They were first discussed by Anderson [24]
in the context of neutral superfluid helium flow through narrow channels, and by Little [25]
for persistent charged supercurrents in closed superconducting loops. During the course of
such an excitation, the amplitude of the order parameter fluctuates to zero in a short segment
of the channel of length ∼ξ , allowing the phase difference between the wire’s ends 1φ to
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change by ±2π , in some cases accompanied by a quantized change in the supercurrent flow.
In the presence of an external force F , this process (averaged over many phase-slip events)
results in Ohm’s-law behavior with a particle current proportional to F , rather than the ballistic
acceleration expected for the superfluid state. For a charged superfluid this corresponds to
finite electrical resistance, as was discussed in detail by Langer, Ambegaokar, McCumber and
Halperin (LAMH) [26, 27] and others [28], for quasi-1D superconductors near their critical
temperature TC where the order parameter is close to zero. In subsequent experiments [29, 30] on
∼0.2–0.5 µm-diameter crystalline Sn ‘whiskers’ which validated these ideas, finite resistances
were observed to persist over a measurable temperature interval below the mean-field TC.1

These early works on quasi-1D systems considered only classical processes, in which
thermal fluctuations provide the free energy required to suppress the order parameter locally.
However, in 1986 Mooij and co-workers suggested that an analogous quantum phase slip (QPS)
process might exist, similar to macroscopic quantum tunneling (MQT) in Josephson junctions
(JJs) [33–35], by which the macroscopic system tunnels coherently between states whose 1φ

differ by ±2π [36]. Just like the thermal phase slips discussed by Little [25] and LAMH
[26, 27], such a process would depend exponentially on the wire’s cross-sectional area, via
the free energy required to suppress the order parameter over a length ξ . However, it would
rely not on thermal energy but rather on some as yet unspecified (and presumably weak)
source of quantum phase fluctuations, and thus it was presumed that extremely narrow wires
would be required to observe it. Shortly thereafter, using lithographically defined, ∼50 nm-
wide superconducting indium wires, Giordano measured finite resistance R that persisted much
farther below TC than for wider wires [37], in the form of a crossover from the temperature
scaling predicted by LAMH near TC to a much slower temperature dependence farther from it.
Using a heuristic argument in which the thermal energy scale in LAMH theory was replaced
with a hypothesized quantum energy scale, Giordano interpreted this observation as a crossover
from thermal to quantum phase fluctuations, and was able to obtain a reasonable fit to his data.
Many other experiments have since been carried out using different materials systems, which
also exhibited some form of anomalous non-LAMH resistance below TC [18, 38–43] (though
rarely in the form of a clearly evident crossover), and many authors have used Giordano’s basic
intuition as the basis for interpreting R versus T data [18, 40–44]. In addition, a pioneering
microscopic theory for QPS was later developed by Golubev, Zaikin and co-workers [45, 46]
(GZ) which appeared to validate Giordano’s general idea, identifying his hypothesized quantum
energy scale for QPS as the superconducting gap 1.

However, in other recent experiments using extremely narrow Pb [47, 48], Nb [49]
and MoGe [18, 44, 50] nanowires .10 nm wide, the anomalous low-T resistance previously
identified directly with QPS was often completely absent. This is difficult to explain within
Giordano’s hypothesis, given that the strength of QPS should increase exponentially as the wire
cross-section is decreased. In response to these remarkable observations, it was then suggested
that the observed deviations from LAMH temperature scaling may be explained purely in terms
of a combination of LAMH phase slips and granularity [47, 51] and/or inhomogeneity [52] of
the wires, rather than by QPS. On the other hand, the same MoGe nanowires which showed
no evidence for QPS in R versus T measurements did exhibit low-T anomalous resistance
near their apparent critical current. These observations were made with techniques identical to

1 Note that these phenomena are qualitatively distinct from what is known as a ‘phase-slip center’, which occurs
when a wire is biased above its critical current. See, for example, [31, 32].
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those used to identify QPS phenomena in JJs [33–35], and were consistent with a quantum
energy scale for the phase fluctuations [44, 54] just as Giordano had suggested, even though
no evidence for this was seen in the R versus T data for the same wires. Also striking was
an apparent complete destruction of superconductivity as T → 0 in other nanowires having a
normal-state resistance Rn & RQ, where RQ ≡ h/4e2 is known as the superconducting quantum
of resistance [18, 48, 50, 55]. Although theories exist which predict insulating [56–58] or
metallic [45, 46, 59, 60] states in 1D as T → 0, it is unclear whether any can explain a
T = 0 critical point at Rn ∼ RQ. Overall then, although some promising agreement between
experimental and theoretical results has been obtained, there is still no consensus on how to
self-consistently explain all of the observations, or on the precise role and nature of QPS in the
phenomena observed.

In 2006, Mooij and Nazarov (MN) [61] made what may turn out to be a conceptual leap
forward: they postulated that a classical symmetry known as flux–charge duality [62–70] can be
used to connect QPS with Josephson tunneling (JT), the well-known process in which Cooper
pairs penetrate through a thin insulating barrier separating two superconducting electrodes,
and establish macroscopic phase coherence between them. Based on this idea, MN posited
the existence of a QPS potential energy Ups(q) = −ES cos q , dual to the Josephson potential
UJ(φ) = −EJ cos φ. Here, φ and q are known in the JJ literature as the phase and quasicharge,
EJ is the well-known Josephson energy and ES is a new energy scale for QPS, which MN left
as an input parameter. This mirrors the duality between the characteristic inductive energy of a
wire EL ≡ 82

0/2Lw (where Lw is the wire’s inductance) and the charging energy of a JJ given by
e2/2CJ (where CJ is the junction capacitance). From their elegant hypothesis, MN generated a
phenomenology of QPS dual to that of JJs, including a dual set of classical nonlinear equations
for q, and a dual class of circuits involving 1D superconducting nanowires, what they called
‘phase-slip junctions’ (PSJs) [61, 71, 72]. Based on these ideas, several groups have recently
performed new types of experiments [73–77], in some cases directly realizing these dual cir-
cuits [73–75, 77], and providing the most direct evidence yet seen for QPS in continuous wires2.

In this work, we describe a new and alternative theory for QPS which takes MN’s intuition
as a starting point, and which may be able to shed light on a number of the outstanding questions
related to QPS. We begin in section 2 with an introduction to the original intuition of Mooij and
co-workers [36] for QPS, and its relation to equivalent phenomena in JJs. Section 3 describes
flux–charge duality, in preparation for section 4 where we build on this to construct a model
for the origin of the basic QPS phenomenon, and use it to calculate the phase-slip energy ES.
Our result for this quantity is qualitatively different from previous theories, in that it centrally
involves the dielectric permittivity due to bound, polarizable charges in and around the super-
conductor, a quantity which does not appear in this way in previous theories for QPS. In our
model this permittivity plays the role of an effective mass for ‘fluxons’, fictitious dynamical par-
ticles dual to Cooper pairs whose motion ‘through’ a 1D wire corresponds to a quantum phase
slip event, just as Cooper pair motion through an insulating barrier corresponds to a JT event.

In section 5, we build on these results to construct a distributed, nonlinear transmission
line model of a quasi-1D superconducting nanowire. We show that in the presence of QPS, its
dynamical equations for quasi-classical phase evolution in one spatial and one time dimension
(1 + 1D) can be cast into a form identical to the static Maxwell–London equations in two spatial

2 Note that granular wires, which consist of superconducting islands separated by insulating barriers, are
effectively 1D JJ arrays, whose phase-slip processes are well-understood [78–82].
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dimensions (2D), and from this we establish a direct analogy between the dynamics of electric
flux penetration into a superconductor in 1 + 1D and the classical statistical mechanics governing
magnetic flux penetration in 2D. We then use this analogy to predict macroscopic topological
phase excitations in 1 + 1D we call type II phase slips, which are the electric analogue of
magnetic vortices in a type II superconductor, and which have a characteristic length scale
λE we call the electric penetration depth. These II phase slips are ‘secondary’ macroscopic
quantum processes [65], in the sense that they arise as a collective effect out of the ‘primary’,
microscopic QPS process, just as Bloch oscillations arise as a collective effect out of JT in
lumped JJs [65–69, 83].

In section 6, we introduce a simple model for the interaction of these type II phase slips
with the nanowire’s electromagnetic environment, as well as a lumped circuit model for that
environment similar to that used previously for JJs [84]. We use this in conjunction with our
transmission line model to calculate R versus T for four experimental cases from different
research groups, using different superconducting materials, chosen in particular because they
cannot simultaneously be described by models that attribute anomalous resistance above that
predicted by LAMH directly to a QPS ‘rate’ at finite temperature [18, 37, 40, 42–44]. By
contrast, our model can approximately reproduce all four experimental curves, with input
parameters either fixed at accepted or measured values, or (for parameters that are not known)
chosen with eminently reasonable values. The key additional ingredient in our model which
allows it to explain a wider range of phenomena in R versus T curves is the additional length
scale λE, which itself has a temperature dependence. Next, we show how our model provides
also a new interpretation of the apparent quantum phase fluctuation energy scale observed
in MoGe nanowires by Bezryadin and co-workers [44, 54], giving for the first time (to our
knowledge) a quantitative potential explanation of the measured values. An important element
of our explanation is the effect of a low environmental impedance at high frequencies, which
provides damping for quantum phase fluctuations, and makes a description in terms of a quasi-
classical phase appropriate. Related ideas were discussed previously by MN [61], and also in
the context of JJs [65–69, 83]. Lastly, in this section we show that our model is consistent with
all four of the very recent, direct measurements of QPS, made by several different groups and
using different materials [73, 74, 77, 85]. The electric penetration length λE also plays a crucial
role in this agreement, since for two of these cases [77, 85] we find that λE is much shorter
than the wire length. In this regime, the resulting behavior is not that of a lumped element,
and our theory predicts that the Coulomb-blockade voltage VC (the quantity observed in these
two experiments) is independent of the wire length, in contrast to ES which is by definition
proportional to it.

Finally, in section 7, we suggest an alternative explanation for the observed destruction
of superconductivity when Rn & RQ [50]. Whereas most previous attempts to understand this
apparent insulating behavior as T → 0 have been built on the idea of a dissipative phase
transition [56–59], we hypothesize instead a disorder-driven transition, with virtual type II
phase slip–antiphase slip pairs as the fundamental quantum excitation. This picture is analogous
to the so-called ‘dirty Boson’ model for quantum vortex–antivortex pair unbinding in quasi-
2D superconductors [21], which has been used to explain an apparent superconductor-to-
insulator transition (SIT) in highly disordered thin films [22, 23, 86]. In this context, we
discuss the interesting case of a SIT observed in microstructured 2D superconductors which
essentially consist of a network of quasi-1D nanowires [144], and describe how this may be
an intermediate case between the observed transitions in uniform 2D films and 1D wires.
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In section 8 we summarize, and make some concluding remarks on the implications of our
model for applications of QPS to future devices. Appendix A contains tables of selected
variables and abbreviations used in the paper. Appendix B contains some details about electric
flux penetration into finite-length, quasi-1D wires. Appendices C–E provide details on the
microscopic parameter values used to obtain the results in figures 10 and 11, and table 1.
Lastly, appendix F provides some details on PSJ circuits which are dual to well-known JJ-based
superconducting devices.

2. The nature of quantum phase slip

The qualitative picture of QPS originally put forth by Mooij and co-workers [36] is illustrated
in figure 1, built on an analogy to MQT in JJs. For the JJ case, the quantum Hamiltonian is
[67, 83]

ĤJJ =
Q̂2

2CJ
+ EJ

[
1 − cos

(
2π

8̂

80

)]
− Ib8̂, (1)

where Ib is an external bias current, and [8̂, Q̂] = ih̄. The operators Q̂ and 8̂ have units of
charge and flux, and will be defined precisely below. We will refer to them as the quasicharge
and quasiflux, respectively, and they are generalizations of the charge that has passed through
the junction barrier and the gauge-invariant phase difference across the barrier. The quasiflux
8̂ can be viewed as the coordinate of a fictitious particle whose ‘mass’ is CJ, and which moves
in a so-called ‘tilted washboard’ potential given by the last two terms in equation (1), and
illustrated in figure 1(a). The corresponding Heisenberg equations of motion for 8̂ give the
well-known classical, nonlinear behavior of the JJ in the limit where quantum fluctuations of
8̂ about its expectation value can be neglected (EJ � e2/2CJ, or equivalently ZJ � RQ where
ZJ ≡

√
L J/CJ is the junction impedance). In this classical limit, the dominant way for the JJ to

exhibit a phase-slip (i.e. for the particle to move from one well to the next) is for a thermal or
other classical fluctuation to drive the system to an energy above the top of the Josephson barrier,
as shown in figure 1; in the presence of damping (typically due to a shunt resistor), the particle
is then ‘re-trapped’ in the adjacent (or other nearby) potential well, and this process then repeats
stochastically, resulting in a phenomenon known as phase diffusion [84]. A similar qualitative
picture can be used to understand thermal LAMH phase slips in a quasi-1D superconductor3,
shown in figure 1(b). In this case, however, the classical potential energy as a function of 8

contains within it the physics originally described by Little [25] and LAMH [26, 27], such that
each point on the horizontal axis represents a quasistationary solution of the Ginsburg–Landau
(GL) equations for a wire with fixed 8 across it, and the point of maximum energy where
8 ≈ 80/2 is the so-called saddle-point solution also discussed in the context of superconducting
weak links [87].

In both the JJ and quasi-1D wires, for purely classical fluctuations, the phase-slip rate can
be written [88–90]:

0ps = �ps exp

[
−

δEps

kBT

]
, (2)

3 Note that in the superconducting case, the condition for quasi-1D refers only to the macroscopic order parameter,
and not to the bare energy levels of the conduction electrons, whose density of states is still fully 3D in the regime
of interest here (equivalently, the Fermi wavelength 2π/kF is much smaller than the wire’s transverse dimensions,
so that there are many single-electron conduction channels near the Fermi energy in the metal).
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Figure 1. Early intuition for QPS based on MQT in JJs. (a) Schematic
diagram of the effective potential for the quasiflux 8 (equivalently, the gauge-
invariant phase difference across the junction) of a JJ with an applied bias
current Ib. The barrier is due to the Josephson potential energy, and the ‘tilt’
comes from the free energy contribution US(8) = −Ib8 associated with a
current source. In the superconducting state, the so-called ‘phase particle’, with
‘position’ 8, is localized in a given potential well. Thermal activation of the
phase particle over the barrier (solid red arrow) followed by retrapping in
the adjacent (or a nearby) potential well due to electrical damping (red wavy
arrow) is known as phase diffusion [84], and produces a finite voltage and
corresponding effective resistance even in the superconducting state. In the
presence of zero-point fluctuations of the JJ’s plasma oscillation (associated with
its Josephson inductance and the junction’s capacitance), the system can also
tunnel through the potential barrier into the adjacent well, a phenomenon known
as MQT [33–35]. Although this is in principle a coherent, reversible process, in
conjunction with nonzero damping (short, wavy red arrow) it can also result in
an average escape rate for the phase particle and a corresponding voltage. (b)
Abstract potential envisioned for a quasi-1D superconducting wire as a function
of its quasiflux 8 (gauge-invariant phase difference between the wire’s ends),
where the potential barrier is taken to be the condensation energy of a length ξ of
the wire, the minimum energy required to establish a localized null in the order
parameter. Little or LAMH phase slips correspond to the system surmounting
this barrier due to a thermal fluctuation and then being retrapped (presumably
also by damping). The original intuition of Mooij and co-workers [36] was that
a phenomenon equivalent to MQT could also occur in a continuous wire, in the
presence of a source of quantum phase fluctuations.

where δEps is a classical energy barrier, which for JJs is simply 2EJ. For LAMH phase slips,
the energy barrier is given by the total condensation energy of a length ξ of the wire with cross-
sectional area Acs [18, 26–28, 37, 40, 44], up to a numerical factor:

δELAMH ∼ UC Acsξ

∼
1

Lξ

(
80

2π

)2

, (3)

where UC is the superconductor’s condensation energy density, which goes to zero as T → TC.
In the second line Lξ is the kinetic inductance of a length ξ of wire, such that the barrier can also
be viewed as the energy cost to put 80/2π across that length. The quantity �ps in equation (2) is

New Journal of Physics 15 (2013) 105017 (http://www.njp.org/)

http://www.njp.org/


8

known as the attempt frequency [88–90], a term derived from the idea of an effective classical
particle making multiple ‘attempts’ to surmount the energy barrier, used in treatments of
Brownian motion and chemical reactions [88]. In the JJ case, the attempt frequency is derived
from the Josephson inductance and the effective capacitance and resistance shunting the junc-
tion; for example, for an undamped junction it is simply the oscillation frequency associated
with its Josephson inductance and shunt capacitance (known as the junction plasma frequency).
In LAMH’s treatment of quasi-1D wires, the attempt frequency is derived from time-dependent
GL theory [26, 27]; however, the exponential dependence of the phase-slip rate on the energy
barrier and TC makes it difficult to quantitatively compare this theory with experiment.

Just as with an actual massive particle in a confining potential like that shown in figure 1,
at low enough temperature zero-point fluctuations become important; for the JJ this appears in
the form of MQT, in which these quantum fluctuations allow the system to tunnel through the
barrier [33–35]. In the absence of damping and in the limit of low bias current, this tunneling
is completely coherent and reversible, and can be described purely in terms of superpositions
of the stationary energy eigenstates of the system (known as the Wannier–Stark ladder [91]);
if the current is turned on suddenly, the resulting coherent dynamics are known as Bloch
oscillations [67]. If the system is damped, on the other hand, it can relax irreversibly to the
ground state of the adjacent well after tunneling (indicated by the short, wavy red line in
figure 1), giving up its energy to the reservoir associated with the damping, and the process
can then be repeated. Since in these dynamics CJ plays the role of a mass, Q̂ a momentum,
and Q̂2/2CJ the resulting kinetic energy, one can easily identify the source of quantum phase
fluctuations in the JJ system: the finite junction capacitance CJ results in an energy cost to
localize the position 8̂, due to the corresponding fluctuations in its conjugate momentum Q̂.

Figure 1(b) shows the analogous picture suggested by Mooij and co-workers [36] to
motivate QPS: in the presence of quantum zero-point phase fluctuations, even a continuous
superconducting wire (if it is narrow enough, so that the energy barrier is low enough) can
undergo a form of MQT. The question is, what is the source of these quantum phase fluctuations
in a continuous superconducting wire? Giordano’s identification of a crossover in R versus
T curves for very thin wires prompted him to suggest a QPS ‘rate’ analogous to the thermal
phase slip rate that produces LAMH-type resistance, but with the thermal energy kBT replaced
by this other, manifestly quantum energy scale for zero-point phase fluctuations (or ‘quantum
temperature’ TQ as it would be described in the language of JJs [33–35, 44, 54, 90])4. In his
original work [37], and subsequent treatments based on it [18, 40, 51, 92, 93], this quantum
phase fluctuation energy scale was taken to be ∼h̄/τGL, where τGL ≡ π h̄/[8kB(TC − T )] is
the GL relaxation time. The microscopic theory of GZ [45, 46], although it did not posit the
existence of a linear phase-slip resistance at T = 0, did in fact give an energy scale ∼1 ∼ h̄/τGL

for the quantum phase fluctuations, in qualitative agreement with Giordano’s original intuition.

4 The idea of a ‘rate’ implies irreversibility and therefore a continuum of states that functions as a dissipative
reservoir. In a JJ, this dissipation comes from the shunt resistance. However, in cases where an equivalent QPS ‘rate’
is used to explain a linear resistance of continuous wires in the Ib → 0 limit [37, 40–44], no source of dissipation is
explicitly mentioned, which in our view is problematic. In the absence of dissipation as Ib → 0, the tilted washboard
potential would exhibit no QPS ‘rate’ or measurable resistance, but simply the set of stationary energy eigenstates
known as the Wannier–Stark ladder [91]. Subsequent theories have predicted nonlinear resistances due to QPS
even at T = 0 [45, 56], but these necessarily go to zero as Ib → 0, in contrast to the linear resistances observed
in experiments. In our model, as we will see in section 6, linear, phase-slip-induced resistances arise only due to
thermal processes in the presence of an explicitly dissipative electromagnetic environment.
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In this paper, using MN’s hypothesis of flux–charge duality between QPS and Josephson
tunneling as a starting point, we construct an alternative model for QPS in which the energy
scale for quantum phase fluctuations is capacitive in nature, just like the charging energy for JJs,
but with the capacitance here arising from the polarizable, bound electrons both inside and near
the wire; the effective permittivity of this polarizable environment is then the background upon
which the fluctuating electric fields associated with QPS occur. In preparation for describing
this model, we first give some background on flux–charge duality, the principle on which it is
based.

3. Flux–charge duality

Flux–charge duality is a classical symmetry of Maxwell’s equations5 which is best known in the
context of planar lumped-element circuits [62–70], where it manifests itself in the invariance of
the equations of motion under the transformation shown in figure 2(a), and is also connected to
the relationship between right-handed and left-handed metamaterials made from lumped circuit
elements [95]. In the more general continuous case, it can be made apparent by defining the
classical quantities:

Q(6) ≡

∮
σ

dt (H · dσ ) =

∫
6

dt (JQ · d6), JQ = J +
dD
dt

, (4)

8(0) ≡

∮
0

dt (E · d0), E = −∇V −
dA
dt

, (5)

where Q(6) is associated with a surface 6 (bounded by a closed curve σ ) and 8(0) with a
curve 0, as illustrated in figure 2(b). These quantities reduce to the so-called ‘branch variables’
in the Lagrangian description of electric circuits described in [96, 97] if 0 in figure 2(b) connects
the two ends of the branch. Figures 2(c) and (d) illustrate the duality between these quantities,
such that equations (4) and (5) can both be interpreted as arising from a sum of ‘free’ and
‘bound’ current densities:

JQ = ρQvQ︸ ︷︷ ︸
free charge

+
dD
dt

,︸ ︷︷ ︸
bound charge

(6)

J8 ≡ E = v8 × Bf︸ ︷︷ ︸
‘free’ flux

−
dA
dt

.︸ ︷︷ ︸
‘bound’ flux

(7)

Here, ρQ is an ordinary density of free charge moving at velocity vQ, and Bf is a magnetic flux
density moving at velocity v8. Using the London gauge A = −3ρQvQ for a superconductor
(where the London coefficient is 3 = µ0λ

2 with λ the magnetic penetration depth) and D = ε E
for an insulator, yields

superconductor: 3
d J
dt

= E → Lk
d2 Q(6)

dt2
= V0, (8)

insulator: ε
dE
dt

= J → C
d28(0)

dt2
= I6, (9)

5 See, for example, [94].
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Figure 2. Flux–charge duality. (a) Tabulates the duality transformation for
planar, lumped-element circuits, while (b)–(d) illustrate the continuous case. (b)
Illustration of the vector quantities used in the definitions of Q(6) and 8(0)

(cf equations (4) and (5)). (c) The free current density ρQvQ is the motion of
free charge density ρQ at a velocity vQ, through a surface area element dΣ. The
bound current density dD/dt is the displacement current density on Σ. (d) An
example of ‘free’ flux density, using a permanent magnet moving at velocity
v8 relative to the stationary curve 0, such that the associated free flux ‘current’
density is: E = v8 × Bf. In this construction, E · dΓ is precisely the flux per unit
time passing through a segment dΓ. The bound flux ‘current’ density −dA/dt
is associated with time-varying currents flowing along 0, and the associated
induced emfs from Faraday’s law. Although the case of a moving magnet is
somewhat artificial, any electric field in a medium can be broken into these two
components: one associated with bound charges, and the other with induced emfs
from time varying currents (free charges).

where on the right side V0 is the voltage difference between the two ends of 0 and I6 is the
current flowing through 6. Equation (8) for the superconductor is none other than London’s
first equation, according to which Q moves ballistically under the action of a force V , and
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with an effective mass given by the kinetic inductance Lk; correspondingly, equation (9) is
Maxwell’s equation for the displacement current in an insulator, which can be viewed as ballistic
acceleration of 8 under the action of a ‘force’ I , with an effective mass given by the capacitance
C . Therefore, at the classical level of the Maxwell–London equations, superconductors and
insulators are dual to each other.

We now arrive at the proposed duality between a JJ and a PSJ, first suggested by MN
(though here we have arrived at it in a different way). We start by considering only the lumped-
element case, as was done by MN. This will be generalized to the fully distributed case starting
with section 5 below. As shown in figure 3, a JJ consists of two superconducting islands
of Cooper pairs separated by an insulating potential barrier, while a PSJ can be viewed as
two insulating ‘islands’ of flux quanta (henceforth referred to as ‘fluxons’) separated by a
superconducting potential barrier. If we place the surface 6 inside the insulating barrier of a JJ
(figure 3(a)) with junction capacitance CJ, and the curve 0 inside a superconducting nanowire
(figure 3(b)) of kinetic inductance Lk (neglecting its geometric inductance), we have

JJ : Q = n2e︸ ︷︷ ︸
free

+ CJV,︸ ︷︷ ︸
bound

8 =
80

2π
θ +

∮
0

A · d0 = m80 + L J I, (10)

PSJ : 8 = m80︸ ︷︷ ︸
free

+ Lk I,︸ ︷︷ ︸
bound

Q = Qf +
∫

6

D · d6 = n2e + CkV, (11)

where we have omitted any operator notation for the moment, treating these as classical
quantities. For the JJ, CJV is the (continuous) charge on the capacitance CJ of the junction
barrier induced by a voltage difference V across it, and n is the (discrete) number of Cooper
pairs that have passed through it. The quantity Q appearing in equations (1) and (10) is
then a dimensional version of the so-called junction quasicharge [66–69, 83]. The quantity 8

appearing in equations (1) and (10) for the JJ also consists of two terms, the first of which
is due to the phase difference θ between the order parameters of the two superconducting
electrodes, plus a second term due to magnetic fields inside the junction. As shown on the
far right of equation (10), it can also be written as the sum of the contributions from the kinetic
flux induced by a current I flowing through the Josephson inductance L J, and the passage of
m (discrete) fluxons through the junction. This quantity is then a dimensional version of the
gauge-invariant phase difference across the junction [99] (also referred to as the ‘quasiphase’
in [72]). Henceforth, we will refer to 8 as the ‘quasiflux’. For the PSJ in equation (11), dual
statements to those for the JJ apply: the quantity Lk I is the total ‘bound’ flux of a nanowire
having kinetic inductance Lk associated with a current I , and m is the discrete number of fluxons
that have passed through the wire. The wire’s quasicharge Q is a sum of the total free charge
Qf that has passed through the wire, plus a term associated with electric fields on the wire’s
so-called ‘kinetic capacitance’ Ck (the dual of Josephson inductance) [61]. Kinetic capacitance
was suggested by MN as a formal consequence of the assumed flux–charge duality between
the JJ and PSJ, and we discuss in section 4 below how our model for QPS gives an intuitive
interpretation of its origin.

For thick enough superconducting wires, the only way for m to be nonzero is if some part of
the wire was in the normal state at some time, as occurs in an LAMH phase slip over a length of
wire ∼ξ , the GL coherence length. These events are dissipative, produce a measurable voltage
pulse, and can be associated with passage of a fluxon through the null in the superconducting
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Figure 3. Flux–charge duality, JT, and QPS. Superconductor is shown in blue,
and insulator in red. Panels (a) and (b) illustrate the geometry of the surface
6 and curve 0 which are used to define the quasicharge Q and quasiflux
8 in the text. (c) Schematic diagram of a JJ, consisting of an insulating
tunnel barrier between a superconducting island and ‘ground’ (this is also
known as a charge qubit). (d) Schematic diagram of a PSJ, consisting of
a superconducting nanowire tunnel barrier between an insulating island and
‘ground’ (which for fluxons is an insulator). Note the closed superconducting
loop around the insulating island in this case, which is known as a phase-slip
qubit [98]. In (e) and (f) we add an electromagnetic environment, in terms of an
admittance Yenv for the JJ or an impedance Zenv for the PSJ, such that the tunnel
barrier between the island and ground in each case is shunted by a dissipative
element.

order parameter at a localized, measurable position and time. By contrast, the dual to JT,
which we want to identify with QPS, would necessarily be coherent, delocalized fluxon
tunneling through the entire length of wire, such that no information about where the phase-
slip occurred exists. Just as in a JJ, where localizing a Cooper pair tunneling event would cost
electrostatic energy, localizing a fluxon tunneling event in a PSJ would cost kinetic-inductive
energy.
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4. Quantum phase slip

We now describe our model for QPS, whose basic intuition is contained in figure 2(d):
fluctuations of the phase difference between the ends of a wire correspond to fluxon ‘currents’
passing ‘through’ the wire, which are none other than electric fields along it. The effective mass
associated with this fluxon motion is then an electric permittivity, which determines a ‘kinetic’
(electrodynamic) energy cost for phase fluctuations. This is the new energy scale which allows
us to define QPS in our model, in conjunction with the appropriate ‘confining’ potential energy
U (8) for 8 (the ‘phase particle’) whose classical minima define the mean-field superconducting
state (cf figure 1(b)). If the zero-point quantum fluctuations about this state are sufficiently
strong, they can produce (macroscopic) quantum tunneling between adjacent minima of the
potential, which in the absence of damping, at zero bias current, gives exactly the behavior
postulated by MN [61].

Before exploring the implications of this idea, however, we must first define more precisely
what we mean by the electric permittivity inside the wire relevant for quantum phase fluctuations
along it. We do this in the context of the Lorentz–Drude model of a metal [100, 101], consisting
of a gas of nearly free conduction electrons of mass me and density ne, superimposed on a
background of fixed, polarizable ions of density ni ; the permittivity inside the metal at frequency
ω in this model is

ε(ω) = εb(ω) +
iσ(ω)

ω
, (12)

where the complex conductivity σ(ω) and background permittivity εb(ω) are:

σ(ω) ≡
σ0

1 − iωτs
, (13)

εb(ω) ≡ ε0 + niα(ω). (14)

Here, σ0 ≡ nee2τs/me is the dc conductivity for a scattering time τs of conduction electrons,
and α(ω) is the polarizability of each ion. The contribution of this ionic background to the
permittivity, sometimes known as ‘core polarization’ [102, 103], can be viewed as arising from
interband transitions, and can be as large as ∼10ε0 in simple noble metals [100], and even
much higher in materials with polarizable, low-lying electronic excited states [104] like the
highly disordered materials typically used for QPS studies6. It can be difficult to measure at
high frequencies (ωτs � 1), however, since it is superposed with the large, negative contribution
from the metal’s inductive (free carrier) response in this regime (cf equation (13)).

Taking this limit ωτs � 1, and making the replacements me → 2me, e → 2e, ne → ns we
arrive at the simplest possible model for a superconductor, in which Cooper pairs of mass 2me,
charge 2e and density ns move without resistance; the permittivity is then

ε(ω) ≈ εb

[
1 −

�2
p

ω2

]
, (15)

6 This may seem reminiscent of [73], in which the proximity of the host material to a metal–insulator transition
(presumably accompanied by a large polarizability) was emphasized as important for achieving strong QPS.
An interesting consequence of our model, by contrast, will turn out to be that a large permittivity suppresses
QPS.
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Figure 4. Dual models of PSJs and JJs I: schematic diagram. (a) Quasi-1D
GL superconductor with order parameter 9GL ≡ 90 eiθ(x) and corresponding
nonlinear series inductance, electric permittivity due to bound charges εin and
distributed shunt capacitance of the surrounding dielectric εout. Dotted lines to
ground indicate the fact that while at low frequencies the electric field lines
of propagating modes along the wire (Mooij–Schön (MS) modes [105]) would
typically terminate at a distant, physical ground plane, at high frequencies
the fields are confined closer to the wire (cf equation (20)). (b) Dual model
for a JJ, where the insulating barrier has both a shunt capacitance and series
geometric inductance (associated with magnetic fields inside the barrier). The
shunt inductors indicate the kinetic inductivity of the superconducting electrodes,
and the dotted lines indicate a frequency dependence of the field penetration into
the electrodes for propagating modes along the junction (Fiske modes [106]).
Throughout this work, to facilitate comparison between these two cases, we take
one dimension of the junction barrier as fixed, and consider only changes in the
length of the junction in the other dimension.

where we have defined the quantity

�p ≡

√
1

3εin
(16)

known as the Cooper pair plasma frequency [99, 105], with 3 ≡ me/(2nse2) the London
coefficient [99]. Formally, this is the oscillation frequency of the Cooper-paired electrons
relative to the ion cores, with an effective (kinetic) inductance due to their mass, and an effective
capacitance due to εb. Now, in real superconductors this frequency is essentially always larger
than the superconducting gap, such that real excitation of this mode would break Cooper pairs
and thus be strongly damped; however, in our model it is rather the zero-point fluctuations of
this plasma oscillation with which we are concerned, and which will result in QPS.

Our model for a quasi-1D, uniform superconducting wire is shown schematically in
figure 4(a), and for comparison the dual model for a JJ is shown in figure 4(b)7. We discretize

7 Note that we will neglect any spatial inhomogeneities in the wire’s cross-sectional area or its material properties.
Potential consequences of such variations were considered in [52, 53], and could readily be included in our model
as needed.
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the system along one dimension, at a length scale lφ to be discussed below. The shaded blue
kinetic inductors indicate the usual mean-field GL theory8 with order parameter 9GL = 90 eiθ .
The capacitors C‖ and C⊥ indicate schematically the distributed permittivities εin and εout for
electric fields inside and outside the superconductor, respectively. Note that here εin describes
only the bound-electron response, corresponding to the first term in equation (15), which
then appears in parallel with the free (superconducting) component with kinetic inductivity
3 = µ0λ

2, corresponding to the second term in equation (15). The semiclassical plasma modes
of such a quasi-1D system were discussed in the seminal work of Mooij and Schön (MS) [105]
for a wire of circular cross-section embedded in an insulating medium of permittivity εout. The
dispersion relation for these modes can be written in the form

ω(k) = �p

√
1 +

(
1

k31D

)2

, (17)

where k is the wavenumber and 31D is a quasi-1D Coulomb screening length which can be
expressed in our discretized model in terms of the discrete capacitors shown in figure 4(a)
thus:

31D

lφ
=

√
C‖

C⊥

, (18)

C‖ =
εin Acs

lφ
(klφ)

2 (19)

C⊥ = 2πr0εout
K1(kr0)

K0(kr0)
(klφ), (20)

where Kn(y) are the modified Bessel functions of order n and argument y, r0 is the wire
radius, and in the continuum limit (klφ � 1) these results in conjunction with figure 4(a)
agree with MS9 ([105]). Equation (18) is familiar from the physics of 1D JJ arrays, defining
the length scale over which the Coulomb interaction between charges is screened out by
the shunt capacitances C⊥. On short length scales where k31D � 1 this shunt capacitance
has a negligible effect, and equation (17) reduces to the bulk plasma frequency �p

(cf equation (16)). In the opposite limit where k31D, kr0 � 1, C⊥ dominates and equation (20)
reduces to an approximately wavelength-independent capacitance per length: C⊥ = C⊥/ lφ ≈

2πεout/ ln[1/kr0]. Correspondingly, equation (17) reduces to an approximately linear dispersion
relation with a fixed wave propagation velocity known as the MS velocity vs = 1/

√
LkC⊥ and a

linear impedance ZL =
√
Lk/C⊥, where Lk = 3/Acs is the kinetic inductance per length.

We assume that for an individual QPS event occurring far from the ends of the wire, all of
its dynamics are contained within a length lφ . We further assume that QPS is sufficiently ‘weak’
(in a manner to be defined more precisely below) that we can neglect the interactions between
multiple QPS events which would otherwise result from the shunt capacitances C⊥. Note that
in making this assumption we are only neglecting the possibility that two QPS events occur

8 Although GL theory is in general valid only very close to TC, the materials currently used for QPS experiments
are all in the dirty, local, type-II limit where it is a good approximation all the way to T = 0 (see e.g. [107]).
9 With the exception that MS took εin = ε0 in [105].
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within 31D of each other, since at distances beyond this their Coulomb interaction (associated
with nonzero C⊥), will already be screened out. This assumption about the short-length-scale
physics of QPS allows us to associate with each segment a single effective parallel capacitor Cl ,
as shown in figure 5(a), which contains contributions from electric fields both inside and outside
the wire:

Cl ≡

[
C‖ +

C⊥

2

]
klφ→1

. (21)

This definition is based on the requirement that in the lφ � r0 limit we should require that
Cl → εin Acs/ lφ , the simple parallel-plate capacitance for a length lφ. In this limit, the electric
field is almost completely confined within the wire, whereas in the opposite limit lφ � r0 most
of the field is outside the wire. Note that the relative participation of these two regions is
also affected by the relative size of εin and εout, since the higher permittivity material will
tend to ‘attract’ the electric flux associated with QPS. In neglecting the shunt capacitance
to the environment on short length scales ∼lφ , we are also by construction neglecting the
spatial variation of the wire’s quasicharge Q(x) on these length scales, since −∂x Q ≡ ρ⊥, the
polarization charge per length stored on C⊥. This is dual to the usual lumped-element treatments
of JT [99, 108], where in calculating the microscopic Josephson coupling the gauge-invariant
phase difference across the junction is assumed not to vary spatially across the junction area.
This corresponds to neglecting the geometrical inductance inside the Josephson barrier and
therefore the magnetic fields generated in it by currents, which is valid for JJs much smaller
than the Josephson penetration depth λJ [99].

As indicated in figure 5(a), we also associate with each segment of the wire a nonlinear
kinetic inductor (indicated by a JJ symbol). For the j th segment this inductor has a quasiflux
variable 18 j defined by 18 j =

∮ jlφ
( j−1)lφ

∇8(x)dx , such that the quasiflux at the end of the

j th segment defined relative to the end of the wire is 8 j ≡
∑ j

k=1 18k . We take the boundary
conditions for a single, isolated QPS event in the j th segment to be 18k = 0, ∀k 6= j , such that
8(x) during the event is spatially uniform everywhere along the wire but inside that segment10.
We can then treat the kinetic inductor of each segment in terms of a local potential energy
U (18 j) (i.e. the kinetic-inductive energy evaluated as a function of fixed 18 j ). This function
is 80-periodic, with a minimum whenever 18 j is an integer multiple of 80, very similar to a JJ
(cf equation (1)) (although U (18 j) becomes less and less like a simple cosine as lφ increases
beyond ξ [87]).

The model of figure 5(a) is similar to a 1D JJ array, in the so-called ‘nearest-neighbor’
limit [78, 109] which applies on length scales much longer than the Coulomb screening length
(cf equation (18)). In this case it is advantageous to use a loop variable representation, rather
than a node variable representation [96, 97], since in the latter case the interactions between
node charges are highly nonlocal. We define the loop charges 3̂ j as shown in the figure, which
are the canonical momenta for the position variables 18̂ j such that [18̂ j , 3̂k] = ih̄δ j,k . In this

10 Note that this is a different boundary condition than used for the calculation of the thermal phase-slip energy
barrier by LAMH [26, 27], where a fixed phase difference across the wire was assumed (more precisely, a fixed
V = 0). Here, we allow the phase across a segment in which an isolated QPS event occurs (and therefore across
the wire’s ends) to vary freely, which essentially corresponds to the absence of any phase damping (the effects of
damping due to the electromagnetic environment will be considered in sections 5 and 6 below). This is dual to the
implicit assumption used in the calculation of the Josephson coupling for a JJ that there is no charge damping.
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Figure 5. Dual models of PSJs and JJs II: nonlinear transmission lines. (a)
Discrete model of weak QPS on short length scales, where each ‘link’ of
characteristic length lφ ∼ ξ is treated as a parallel plasma oscillator composed
of a nonlinear inductor with a single-valued, 80-periodic potential U (18 j)

(the ordinary GL superconductor), and the capacitance Cl (equation (21))
associated with potential differences along the wire. Zero-point fluctuations
of this oscillator (occurring independently for each length lφ) generate QPS
via tunneling between wells of the periodic effective potential U (18 j). The
quantum variables associated with QPS in the j th link are its loop charge 3 j

and quasiflux 18 j , with [18J, 3k] = ih̄δ jk . At these short length scales, the
quasicharge Q(x) is assumed to be uniform along x . (b) The dual short-length-
scale model of a JJ, in which each length lq ∼ ξ of the barrier becomes an
independent series plasma oscillator (note that we consider the junction to be
short in one of its two areal dimensions, so that it can be viewed as a 1D system).
This oscillator is composed of a nonlinear capacitance (the barrier capacitance,
modified by Cooper pair tunneling, to produce a 2e-periodic effective potential
energy U (3 j) for the loop charges), and an effective kinetic inductance L l

of the nearby region inside the electrodes. JT can then be viewed as arising
from zero-point fluctuations (occurring independently for each length lq ∼ ξ ) of
these oscillators. At short length scales 8(x) is assumed to be x-independent
(magnetic fields in the Lg are neglected). In (c), the distributed shunt capacitance
C⊥ now allows Q to be a function of position along the wire, and in (d)
the distributed series inductance Lg similarly allows 8 to vary spatially. To
describe the physics at longer length scales (and lower energy scales) the ground
state energy densities EQPS(Q) and EJJ(8) of the discrete models (a) and (b)
are incorporated into the nonlinear transmission lines shown in (c) and (d),
respectively, as classical potential energies for the long-wavelength dynamics
of Q(x, t) and 8(x, t). Both of these models are described by the sine-Gordon
equation in an appropriate semi-classical limit, which for the PSJ is when
ZL =

√
Lk/C⊥ � RQ, and for the JJ when ZJ =

√
Lg/CJ � RQ.
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representation, the classical Euclidean action of the system is

S =

∑
j

∫ h̄β

0
dτ

[
[3 j − Q(x)]2

2Cl
+ U (18 j)

]
, (22)

where τ ≡ it , β ≡ 1/kBT , and we are primarily interested in the β → ∞ limit. Equation (22)
describes the motion of independent fictitious particles with positions 18 j and mass Cl , each
under the influence of the periodic kinetic-inductive potential U (18 j):

U (18 j) ≡

∫ 18 j

0
I (18′)d(18′)

≈ V1D

[
1 − cos φ j +

l2
φ

15ξ 2

(
3

4
− cos φ j +

cos 2φ j

4

)]
, (23)

where I (18) is the current-phase relation for each segment, which we take from the theory
of Aslamazov and Larkin [110] to yield the result on the second line, in which the quantity
V1D ≡ Acs8

2
0/2π3lφ can be viewed as a 1D superfluid stiffness [19], and φ j ≡ 2π18 j/80.

Equation (23) holds approximately for short lengths up to lφ ∼ ξ . For longer lengths, U (18 j)

can be evaluated numerically using the results of [87]. The QPS contribution to the ground
state can be evaluated in this simplified model by seeking stationary, topologically nontrivial
paths connecting the endpoints: {18 j(τ ), τ } = {m80, 0} and {(m ± 1)80, h̄β}, where m is an
integer. In the β → ∞ limit, these are known as vacuum instantons [111], and the corresponding
solution is well known in the semiclassical approximation (where S0 � 1) in the case of a simple
cosine potential11, having total action:

S0 ≈ 8
V1D

h̄�̃p

, �̃p ≡ �p

√
C‖

Cl
, (24)

where �p is the bulk Cooper pair plasma frequency [99, 105] defined above (cf equation (16))
and �̃p is the corresponding plasma frequency for the length scale lφ, including the effect of
fields outside of the wire. The Euclidean time dynamics of the order parameter corresponding
to this solution are illustrated in figure 6.

The frequency �̃p is in general greater than the gap frequency, so that any classical
oscillations at �̃p would be essentially those of a normal metal; however, such classical
dynamics would occur only at very high energy. Here, we are concerned instead with
zero-temperature, quantum fluctuation corrections to the ground state of the superconductor,
such that the characteristic time over which the system can virtually occupy energy states
near the top of the barrier (∼h̄/V1D) is much shorter than the characteristic decay time
for the order parameter (∼τGL, the GL relaxation time). In this limit, we can neglect the
dissipation (corresponding to breaking of Cooper pairs) that would inevitably occur on
longer timescales. This situation is analogous, for example, to the perturbative treatment of

11 We have numerically evaluated the correction to this (and subsequent results) due to a nonsinusoidal I (18) for
segment lengths up to lφ ≈ 3.48ξ , where the current-phase relation becomes multivalued and there is no longer
a classical Euclidean path connecting the relevant endpoints [87]; we find only corrections at the ∼10% level,
irrelevant at the crude level of approximation being used here.
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Figure 6. Schematic picture of QPS in our model. Panels (a)–(c) show the wire’s
order parameter along the j th link of length lφ at three different times. Panels
(d)–(f) plot the (lumped) link quantities as a function of time, with the times
corresponding to (a)–(c) marked by the vertical dashed lines. (a) Over a length
lφ , a transient current flows, charging up Cl (the corresponding displacement
current makes the total current zero, and no net quasicharge moves along the
wire), such that 18 j winds up. This can be viewed as a fluxon beginning to pass
through the wire. (b) At the ‘core’ of the QPS, the current is zero, the charge on
Cl has reached a maximum, and a gauge-invariant phase difference of π appears
between the wire’s ends; this can be viewed as a fluxon (virtually) inside the
wire. (c) The current reverses, discharging Cl . The wire returns to its initial state,
with a net quasiflux evolution between the wire’s ends of 80, corresponding to
passage (tunneling) of a fluxon through the wire.

JT within the Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity, which can be
understood as arising through virtual excitation of quasiparticles, which are also dissipative
degrees of freedom [112]. Another example is the case of Raman transitions between discrete
ground states in an atomic system via an electronic excited state (or even multiple excited
states) with a short lifetime 0−1

e ; the excited state is occupied only virtually for a time:
1−1

e � 0−1
e where 1e is the detuning of a driving field from resonance with the optical

transition between ground and excited states, such that spontaneous scattering into the radiation
continuum via the excited state (the equivalent of electrical dissipation in our case) can
be neglected. In both examples the decay of excited states can be approximately neglected
when compared to the coherent, low-energy process of interest, and the excited state can
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be ‘adiabatically eliminated’ [113] to produce an effective potential energy for the ground
state12.

The resulting approximate expression (when S0 � 1) for the ground-state energy per unit
length13 can be written in terms of the action S0 [83, 111, 114]:

EQPS(Q) ≈
h̄�̃p

lφ

[
1

2
−

√
2S0

π
e−S0 cos

(
2π

Q

2e

)]
≡ E0 − ES cos q, (25)

where q ≡ π Q/e is the dimensionless quasicharge. Using equations (24) and (25), we can then
write the phase-slip energy per unit length as

ES ≡
ES

l
=

2

lφ

√
h̄�̃pV1D

π
exp

[
−

8V1D

h̄�̃p

]
. (26)

This quantity is arguably the central parameter for QPS. It has been identified [61, 98] with
the‘rate’ of QPS estimated by Giordano [37], and later calculated by several authors using
time-dependent GL theory [51, 92, 93], and by GZ using microscopic theory [45, 46]. In one
form or another, it is the essential input parameter to all subsequent theoretical work aimed at
deducing the effects of QPS, appearing as the dual of the Josephson energy in lumped-element
treatments [55, 61, 98, 115], and in more recent theories in terms of the so-called ‘QPS fugacity’
f ≡ e−S0 [56–59]. In all of these cases it is either left as an unknown input parameter, or taken
from the results of GZ or earlier authors.

Previous results have been based on an action of the form (up to numerical factors):
S0 ∼ δELAMH/1 [37, 45, 46, 55, 73, 92, 93] where δELAMH ∼ UC Acsξ is the free energy barrier
originally used by LAMH [26, 27] for thermal phase slips, and 1 is the superconducting gap.
Since the QPS action S0 can be viewed as the ratio of the potential energy barrier for phase-slips
to the energy scale of the quantum phase fluctuations which produce tunneling through that
barrier (S0 ∼ barrier height × characteristic quantum fluctuation time), this form is essentially
consistent with Giordano’s original hypothesis: that the relevant ‘kinetic’ energy scale for
QPS is ∼1 ∝ h̄/τGL. By contrast, in our model the quantum phase fluctuations arise from a
qualitatively different source, being associated with a virtual plasma oscillation involving the
Cooper pairs and the electric permittivity of the environment in which they are embedded.

This picture of QPS has an appealing symmetry with JT, as illustrated by our model of
figure 5(c) and the dual model of figure 5(d) for JT: in both cases, the source of quantum

12 An exception to this is when degrees of freedom external to the quantum system of interest have excited
states which are populated, and whose stored energy can be exchanged with the system. In the present context
of quantum circuits, this corresponds to a resistive electromagnetic environment. For the purposes of QPS in our
model, there are three possible sources of such dissipation: (i) the intrinsic resistance of the metal at �̃p, whose
effect we can neglect compared to its inductive response as long as �̃pτs � 1 (cf equation (13)); (ii) the transverse
radiation continuum in the medium surrounding the wire with impedance .377 �, which has negligible coupling
to QPS since lφ is orders of magnitude smaller than the wavelength corresponding to �̃p in this medium; and
(iii) the propagating plasma oscillation modes on the wire, which are excluded by construction from the model
of figure 5(a) since the loop charges 3i do not interact. We will add back in the effect of these modes when we
consider distributed systems in section 5.
13 There will, of course, be higher energy bands in this potential as well, corresponding to excited states of the
Cooper pair plasma oscillation; however, these will be extremely short-lived, since at such high energies the Cooper
pairs will no longer be bound.
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tunneling can be traced back to the finite mass of the superconducting electrons. For the PSJ
(JJ), when these electrons are confined inside a sufficiently narrow region around the quasi-
1D wire (the slotline formed by the JJ barrier), the corresponding short-wavelength zero-point
fluctuations of their plasma modes allow the phase (charge) to undergo tunneling between
adjacent potential minima, producing QPS (JT). A crucial point about this confinement for
QPS is that the phase-slip energy can become appreciable already at wire diameters still much
too large for the zero-point phase fluctuations to have any impact on the Cooper pairing
itself, resulting in the coexistence of a pairing (superconducting) energy gap with insulating
behavior (i.e. Q is completely localized). This is similar to the case of a Coulomb-blockaded JJ
[69, 116], and may also be related (albeit more indirectly) to the observation of a local pairing
gap in highly disordered, thin superconducting films on the insulating side of a SIT [86]. We
discuss the latter point further in section 7.

Our model for lumped-element QPS also provides a natural intuition for the origin of
the kinetic capacitance (dual to the Josephson inductance) suggested by MN. Written as a
distributed quantity (in units of Farads×length) it is

Ck =

[
d2

dQ2
EQPS(Q)

]−1

≡
Ck0

cos q
, (27)

where q ≡ π Q/e and

Ck0 ≡

(
2e

2π

)2 1

ES
(28)

≈ (Cllφ) ×

√
2

π

eS0

S3/2
0

, S0 � 1. (29)

The form of equation (29) suggests that the kinetic capacitance is simply a remnant of the
‘bare’, purely geometric series capacitance Cl , renormalized by QPS. That is, in the limit of
very strong QPS (V1D, S0 → 0) the wire acts simply like a dielectric rod whose behavior is
governed only by the bound charges associated with the capacitance Cl of each segment; as
the superfluid stiffness is increased from zero, the kinetic capacitance increases smoothly from
the bare value, eventually increasing exponentially as superconductivity is further strengthened,
such that the corresponding QPS energy goes to zero. This is the exact dual of the JT case,
where the Josephson inductance of the junction can be viewed as a renormalized ‘remnant’ of
the bare (bulk) kinetic inductivity of the superconducting electrodes.

Another interesting result of the model presented so far is that at a given point in the
wire, the QPS amplitude depends not just on the properties of the wire itself, but also on the
permittivity of the dielectric medium immediately outside it, according to equation (21). The
narrower the wire, and the smaller the ratio εin/εout, the greater the penetration of QPS electric
fields into the region outside the wire14. This kind of nonlocality is exactly dual to what occurs
in a JJ, where the tunneling energy EJ depends not just on the properties of the barrier itself, but
also on the kinetic inductivity of the ‘surrounding’ superconductor of the adjacent electrodes.

14 Of course, this is the case in our model in a sense by construction, since we have fixed the length scale for
QPS at lφ ; however, in a truly continuous theory for QPS at short length scales we would not expect this to
change qualitatively, since it will never be energetically favorable for QPS to occur with appreciable amplitude
over arbitrarily short length scales � ξ (equivalently, the potential energy barrier for a fluxon to tunnel through the
continuous wire entirely in between two points separated by a distance � ξ will be very high).

New Journal of Physics 15 (2013) 105017 (http://www.njp.org/)

http://www.njp.org/


22

Thus, in the JT (QPS) case, stronger quantum tunneling occurs when the superconducting
(insulating) gap of the surrounding medium is large, and the insulating (superconducting) gap
of the tunnel barrier is small15.

Before proceeding to the next section, we discuss briefly the ‘weak’ QPS assumption which
underlies the model of figure 5(a). In our derivation of equation (26) above, the assumption that
QPS is ‘weak’ took the form of a semiclassical approximation to the full 1 + 1D quantum field
theory, in which the QPS action S0 was taken to be large. In the usual mapping from 1 + 1D
Euclidean space at T = 0 to the equivalent 2D classical statistical mechanics problem [114,
117, 118], this corresponds to a small fugacity f = e−S0 for the 2D statistical fluctuations
corresponding to QPS events in 1 + 1D. Therefore, these events are rare, their density very low.
It is for this reason that the model of figure 5(a) is justified, in which simultaneous QPS events
in adjacent segments do not interact with each other by construction: such occurrences are ‘rare
enough’ (in Euclidean time) that they contribute negligibly to the partition function. This is a
dual statement to the usual perturbative assumption made in the context of JT, which produces
the well-known, simple proportionality between the junction’s normal state tunneling resistance
and its critical current [108].

5. Distributed quantum phase slip junctions

In the previous section, we described our model for QPS on short length scales lφ ∼ ξ , over
which electric fields outside of the wire (the wire’s shunt capacitance to the environment) were
included using a renormalized series capacitance Cl for each discrete segment. We saw that the
characteristic (Euclidean) frequency associated with the length scale lφ was the renormalized
Cooper pair plasma frequency �̃p. However, we left unspecified the length scale at which lower-
energy dynamics would become important, effectively treating the wire as a lumped element.
As we will now see, at lower energy scales and longer length scales additional physics will need
to be included to treat the fully distributed case.

We make the assumption that a large separation of energy scales exists between that
governing QPS at lengths ∼lφ and the low-energy dynamics of Q(x, t) we now seek to
investigate (we will see below the conditions under which this is justified). Based on this
assumption, we treat the phase-slip potential EQPS(Q) as a purely classical energy which
depends only on Q(t) (and not, e.g., on ∂t Q). This is analogous to the Born–Oppenheimer
approximation often used to treat interatomic interactions, where the microscopic QPS at
length scale ∼lφ plays the role analogous to electronic motion, and the slower, lower-energy
dynamics of Q(x, t) is analogous to the nuclear motion. It is also the same approximation used
in the treatment of classical quasicharge dynamics of lumped JJs [66–69, 83]. The resulting
distributed model for a nanowire is shown in figure 5(c), in which EQPS(Q) is associated with a
‘bare’ phase slip element in the same way that the Josephson potential EJJ(8) is associated
with a bare Josephson element, as shown in figure 5(d). The long-wavelength behavior of
the superconducting response is described by the kinetic inductance per length Lk, and the
distributed shunt capacitance per length C⊥, where we now assume that the frequencies of
interest are low enough that this becomes the wavelength-independent capacitance per length to

15 In this description, a large insulating gap of the dielectric surrounding a quasi-1D wire would be associated with
a small polarizability and therefore a small εout, just as a large superconducting gap for the electrodes of a JJ is
associated with a small kinetic inductivity.
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a nearby ground plane. When QPS is weak (EQPS(Q) → 0), the wire reduces to a simple, linear
transmission line, on which waves propagate at the MS velocity vs. In figure 5(d) we show the
dual to our model, which is simply the nonlinear transmission line (a superconducting slotline)
used to describe a long JJ. In the limit of weak Josephson coupling (EJJ(8) → 0), this becomes a
linear transmission line on which waves propagate at the so-called Swihart velocity [119] (dual
to vs).

We now describe the system of figure 5(c) in the continuum limit (with the proviso that we
only consider length scales � lφ), again using a Euclidean path-integral approach, with partition
function [45, 46, 56, 114, 118]

Z =

∫
D9 exp[−S(9)], (30)

where D9 indicates a functional integration over paths in x, τ -space, and the dimensionless
Euclidean action is (β ≡ 1/kBT → ∞)

S =
1

h̄

∫ h̄β

0
dτ

∫
dx

{
ρ2

⊥

2C⊥
+
Lk I 2

2
+ EQPS(Q)

}
=

1

2πK

∫
du dv

{
(∂uq)2 + (∂vq)2

− cos q
}
. (31)

In the first line, I = ∂t Q and ρ⊥ = −∂x Q are the current flowing through Lk and linear charge
density stored on C⊥ at the spacetime point x , τ , and for the second line we have defined:

K ≡
RQ

ZL
, (32)

u ≡
x

λE
, v ≡ ωpτ, (33)

λ2
E ≡
Ck0

C⊥
= l2

φ ×

( π

4K

)2
√

2S0

π
eS0 � l2

φ, 3
2
1D, (34)

ω2
p ≡

1

LkCk0
= �̃2

p ×

√
π

2
S3/2

0 e−S0 � �̃2
p. (35)

The quantities λE and ωp are dual to the Josephson penetration depth and Josephson plasma
frequency in a long JJ, respectively; we hereafter refer to them as the electric penetration depth
and phase-slip plasma frequency. Note that λE is defined as a ratio of the effective series kinetic
capacitance to the parallel shunt capacitance, and is therefore a kind of Coulomb screening
length similar to 31D (cf equation (18)); however, as indicated on the right side of the equation,
it is exponentially large (for S0 � 1) compared to microscopic quantities. A corresponding
relationship exists between the plasma frequencies: ωp � �̃p. These are precisely the separation
of length and energy scales that justify the Born–Oppenheimer approximation underlying the
model of figure 5(c).

Returning to action of equation (31), the corresponding Euclidean equation of motion is
the sine-Gordon equation [114]

∇
2
uvq + sin q = 0, (36)

where ∇uv ≡ û∂u + v̂∂v (û and v̂ are unit vectors) and the dimensionless coordinates u and v

were defined in equation (33). Equation (36) is the exact dual of the usual semiclassical result
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for a long JJ [99] (which is simply equation (36) with q replaced by φ, the gauge-invariant
phase difference across the junction (cf figure 5(d))), and is also similar to results for long
1D JJ arrays in the charging limit [120–124]. We can therefore infer several things: first, we
have the usual propagating modes with dispersion relation: ω2

= ω2
p + (kvs)

2 [99], which are
the dual of Fiske modes in long JJs [106], and are also analogous to spin-wave excitations in
the corresponding classical 2D XY model [6–9]. We make the usual assumption [56] that these
Gaussian fluctuations can be factorized out in equation (30) such that they simply renormalize
the bare parameter values in S, leaving only topologically nontrivial paths to be evaluated. Next,
we can infer the existence of a charged soliton [120–124], or so-called ‘kink’ excitation [114]
in the field q(x) of size ∼λE, with total charge 2e (residing on C⊥), and which can propagate
freely without deformation. This is the dual of a Josephson vortex in a long JJ [99], which is a
kink in the field φ(x) of spatial extent ∼λJ (the Josephson penetration depth), that carries a total
flux 80.

For large enough systems where λE can be used as the ultraviolet cutoff, this 1 + 1D
quantum sine-Gordon model can be mapped to the well-known classical statistical mechanics of
2D magnetic domain interfaces in the three-dimensional (3D) Ising model [3]. Our q maps to the
height (in the z-direction) of a domain boundary surface between two spin orientations, while
the cosine potential ‘enforces’ the lattice periodicity. The Ising interactions between nearest
neighbors in the x and y directions map to the (∂u)

2 and (∂v)
2 terms in equation (31). The 3D

Ising system undergoes an interfacial roughening transition with increasing temperature T at a
critical value TC ∼ J/kB (with J the Ising coupling) which has identical universal behavior to
the BKT transition in the classical 2D XY model [6–9]. The transition occurs when statistical
fluctuations corresponding to localized regions where a step upward or downward occurs in the
interface grow to large sizes and proliferate. For our system, this maps to a T = 0 quantum
phase transition at K ∼ 1 in which virtual soliton–antisoliton pairs unbind, producing charge
fluctuations that destroy the insulating state associated with a well-defined q [122].

Our description so far has been well suited to the insulating side of this transition (K < 1),
where q becomes increasingly well-defined as K→ 0. However, most experiments aiming to
observe evidence for QPS have used wires nominally in the superconducting state, about which
phase fluctuations can be viewed as a perturbation. Therefore, it makes sense also to examine
our system on the superconducting side of the transition (K > 1), where φ becomes increasingly
well-defined as K→ ∞. To do this, it is illustrative to rewrite equation (36) in the following
form:

∇uv × q = j , (37)

∇uv × j = −e, (38)

∇uv · j = 0 (39)

with the definitions:

j ≡ K∇uvφ,

=
π

e

[
I

ωp
û + ρ⊥λEv̂

]
, (40)

e ≡ (E/EC) ẑ,
q ≡ q ẑ,

}
e = Ck0

∫ q

0

dq ′

Ck(q ′)
, (41)
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where E is the electric field, EC ≡ eES/π is the critical electric field such that E/EC = sin q
and equation (39) follows from continuity. Equations (37) and (38) have an identical form to
Ampère’s law and London’s second equation in 2D which govern the equilibrium penetration
of a perpendicular magnetic field into a thin, type II superconducting film [99], with the
correspondence: q ↔ H , e ↔ B, j ↔ J and where the right side of equation (41) plays the role
of the constitutive relation between H and B. These equations, however, describe the dynamical
penetration in 1 + 1D of longitudinal electric field into a superconducting wire16. The analogue
to the GL κ parameter for our 1 + 1D system is

κE ≡
λE

lφ
(42)

and the type II limit κE � 1 is automatically satisfied when S0 � 1 (cf equation (34)), a
precondition of our analysis.

Interestingly, it turns out that there are 1 + 1D electric analogues for many well-known
features of type II magnetic flux penetration, starting with the magnetic vortex. We call this
1 + 1D dynamical process, illustrated in figure 7, a ‘type II phase slip’. It is a topologically
nontrivial solution to equations (37)–(40), in which a normal core of size ∼κ−1

E in u, v is
surrounded by circulating screening ‘currents’ j (cf equation (40)) extending out to ρ ≡
√

u2 + v2 ∼ 1. In order to include only closed paths in equations (30) and (31), we must impose
the condition (analogous to fluxoid quantization in the 2D magnetic case [99]):∮

σ

j · ds +
∫

α

e · da = ±2π, (43)

where σ is a closed curve in the uv plane which contains the core and bounds the surface α

(figure 7(a)). This condition means that the quasiflux 8ab between spatial points ua and ub

on either side of the vortex evolves by ±80 during the event. Using equations (37)–(43), and
assuming that far from the core of the phase slip we can write Ck(q) ≈ Ck0 and Lk(I ) ≈ Lk(0)

(our 1 + 1D analogue to the usual approximation that far from the core of a magnetic vortex
3(J ) ≈ 3(0) [99]), we obtain (figure 7)

j(ρ) = ±KK1 (ρ) φ̂, ρκE � 1, (44)

where we have also assumed h̄β � ω−1
p . The resulting Euclidean action for the type II phase

slip is then

SII ≈
K
2

K0

(
1

κE

)
(45)

and the action associated with the interaction between type II phase slips separated by δρ ≡

|Eρ1 − Eρ2| is

Sint(δρ) = ±KK0 (δρ) , δρκE � 1 (46)

≈ ∓K ln (δρ) , δρ < 1, (47)

16 Note that the ẑ direction is purely fictitious here, and defined only to permit the aforementioned analogy.
Similarly, the quantity j is not to be confused with an actual current density, although it plays the analogous role in
equations (37) and (38) to the current density in the Maxwell–London equations; its u component is proportional
to the total current flowing in the wire at a given spacetime point, and its v component is proportional to the linear
charge density ρ⊥ at that point. Formally similar methods for describing electric fields in superconductors in 1 + 1D
were also used in [92, 125].
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Figure 7. Type II phase slip in a 1D superconductor. In 1 + 1D, a normal core of
size ∼lφ is surrounded by circulating ‘currents’ j (equations (40), (44)) plotted
in (a). Over the course of the event, the quasiflux between the positions ua and
ub evolves by ±80. A possible curve σ for the line integral of equation (43)
is shown as a dashed black line. Panels (b)–(f) show, for the five fixed times
(v values) marked by red lines in (a), the corresponding magnitude of the order
parameter |9|, the local electric field E , the local current I , the polarization
charge per length ρ⊥ on C⊥, and finally 9 as a phasor, all as a function of position
u along the wire. (b)–(c) On the leading edge of the vortex, current begins to flow
over a length ∼λE in the +û direction; this begins to charge up Ck, producing a
gradient in ρ⊥ (the v̂ component of j ). (d) Once the total quasiflux across the
wire comes close to 80/2, the order parameter can evolve continuously to a state
in which the current is zero and there is a null at the center of the vortex of
spatial length ∼lφ and duration lφ/vs. At this point the order parameter ‘passes
through’ the u-axis, and the supercurrent reverses. (e)–(f) The current in the −û
direction then discharges the kinetic capacitance as it ramps down to zero. The
null in the order parameter as a function of u at v = 0 shown in (d), top panel,
is effectively a saddle point for the system, closely related to those encountered
in long weak links [87] and in LAMH phase slips [25–27]. Our 1 + 1D solution
in u, v for the screening ‘currents’ j surrounding the vortex core corresponds to
an instanton [45, 46, 56, 78] in x, τ , and describes the dynamics by which the
system tunnels through this energy barrier and passes through the saddle point.
This is a macroscopic quantum process that arises out of (microscopic) QPS,
whose lumped-element limit is dual to Bloch oscillation in a JJ (which arises in
an analogous manner from the microscopic process of JT) [66–69, 83].

where the sign is negative for a phase slip-anti phase slip pair. The direct analogy between
these 1 + 1D electric results and their 2D magnetic counterparts [99] can now be exploited to
understand their implications17.

17 This analogy should not be confused with flux–charge duality, in spite of any apparent similarity. In our
description, electric fields in 1 + 1D and magnetic fields in 2D are related by a Wick rotation (analytic continuation
to imaginary time); a similar relationship exists, for example, between the least-action trajectory of a projectile in
1 + 1D and the lowest-energy, static solution in 2D for a string suspended at two points.
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First of all, the quantum mechanics of these vortex objects can be mapped directly to the
statistical mechanics of the classical 2D XY model [6–9] (which describes thermodynamic
vortex fluctuations in thin superconducting films [17], among other things) with effective
vortex fugacity: f = exp(−SII) (cf equation (45)) and interaction energy: Uint = h̄ωpSint(δρ) (cf
equation (47)). Thus, we expect a BKT vortex-unbinding transition as K (which corresponds
to the temperature of the analogous 2D classical system) is decreased from large values,
at K ∼ 1. The fact that this is the same critical point discussed above in the context of a
charged soliton–antisoliton unbinding transition as K ∼ 1 was approached from below is not
an accident; in fact, these are two descriptions of the same transition, as discussed in [3]. It
simply makes more sense to use a vortex representation whenK > 1 and a charge representation
when K < 1. The remarkable conceptual similarity between these two representations is an
example of Kramers–Wannier duality, originally used in the context of the statistical physics
of Ising spin models [126], and later applied to quantum field theories [127] (a particular
example of which is the ‘dirty boson’ model [21] of the 2 + 1D quantum phase transition in
highly disordered superconducting films). In fact, the well-known approximate self-duality for
lumped JJs (between the case of high environmental impedance where q is well-defined and low
environmental impedance where φ is well-defined [83, 90, 128]) is a limiting 0 + 1D example
of this same concept.

Before discussing finite wires and comparing our model to experimental observations, we
conclude this section with a brief comparison of the established theory of GZ [45, 46] to what
we have presented here so far. The GZ theory is fundamentally a variational calculation, using
a microscopic expression for the Euclidean action of the wire (derived from BCS theory). This
calculation is also built on a particular ansatz for the form of a QPS event, consisting of two
parts: at large distances from the core, the QPS event is simply taken to be the electromagnetic
response of the linear plasma modes of the wire (MS modes) to a topological point defect in
1 + 1D (i.e. an instanton solution to the linear wave equation for a transmission line, but with
an additional delta-like source term in x and t); the core is treated separately, and taken to have
length and time scales x0 and τ0 (which are the variational parameters) over which the gap is
zero and dissipation is assumed to occur. The result of this calculation, up to numerical factors,
is x0 ∼ ξ and τ0 ∼ h̄/1, so that

SGZ = A
δELAMH

1
∝

RQ

Rξ

, (48)

where A is a material-independent, numerical constant of order unity, and the proportionality on
the right side follows from standard BCS relations, with Rξ the resistance for a length ξ of the
wire. Thus, the QPS fluctuation can be interpreted as virtual excitation of the energy δELAMH

for a time h̄/1.18

As discussed by GZ and subsequent authors, with a characteristic timescale for QPS of
τ0 ∼ h̄/1, the wavelength of MS modes near the corresponding frequency τ−1

0 is much greater
than the QPS size, and long enough that these modes are in the region of approximately linear
dispersion where there is an approximately wavelength-independent capacitance per unit length
C⊥. Just as is the case with 1D JJ arrays, this shunt capacitance is the source of interactions

18 Note that in the GZ theory of [46], equation (48) holds when: l/ξ � e2 N0 Acs/C⊥, where N0 is the density of
states at the Fermi level. This limit is well-satisfied for all wires in the experiments discussed here.
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between QPS events (the currents from two interacting events both charge or discharge the
distributed shunt capacitance of the length of wire which separates them). Now, because the
distributed shunt capacitance only enters this treatment in the context of the linear MS modes,
the long-range QPS interaction is then determined purely by the form of the instanton of the
corresponding linear wave equation. This results in a QPS interaction with no natural length
scale, falling off purely logarithmically with increasing spacetime separation. This interaction
is analogous to that encountered in classical 2D systems of magnetic vortices (in a neutral
superfluid) [6–8] or electric charges [9], and this brings about an analogy to the BKT transition
of the classical 2D XY model19 [45, 56]. Another consequence of a QPS frequency scale
τ−1

0 ∼ 1/h̄ is the importance of dissipation, and this features prominently in the theory of GZ.
In our model as presented so far, instead of the MS plasma mode dynamics being a

linear response to a pointlike defect ‘source’ in 1 + 1D at the frequency τ−1
0 , we describe QPS

directly in terms of the zero-point motion of the MS plasma oscillation itself, at a wavelength
lφ ∼ ξ and frequency �̃p. As described by equations (20) and (21), at these wavelengths
charged fluctuations are screened out on the length scale 31D (analogous to the well-known
Coulomb screening length in 1D JJ arrays [120, 122–124]), such that QPS interactions are
cut off at distances larger than this. This, in conjunction with the semiclassical approximation
S0 � 1, is what allowed us to use the lumped-element model of figure 5(c) which neglects
interactions between QPS events entirely. These interactions came back in to our problem when
we considered the fully distributed case, involving longer length scales λE � ξ ∼ lφ and lower
energy scales ωp � �̃p.

6. Finite wires and experimental systems

In order to discuss the implications of our work for past and ongoing experiments aimed
at observing evidence for QPS, we must first consider boundary conditions appropriate
for the electrical connections to nanowires used in actual measurements. We consider the
limit where the radiation wavelength corresponding to the characteristic frequency ωp in the
medium surrounding the wire is much larger than the wire length, so that the electromagnetic
environment can be treated as a simple, lumped-element boundary condition at the wire’s
ends. The typical experimental configuration is shown in figure 8(a): a four-wire resistance
measurement, in which the leads are usually designed to have high resistance at the
low frequencies associated with quasistatic IV measurements20. Our circuit model for this
configuration is similar to that used for JJs [84], and is shown in figure 8(b). As pointed out
in [84], unless special techniques are used (such as in [75, 77, 85, 116]), the lead impedance
Z(ω) is certain to become relatively low (< Z0, the impedance of free space) at high enough
frequency, even if Z(ω) � Z0 as ω → 0. Given that the important frequency for our model
is ωp, which will turn out to be relatively high, a crucial feature of the environment model of
figure 8(b) is a low, resistive impedance at high frequency such that: Zenv(ωp) ≈ Renv � ZL, RQ.
In this limit, the classical boundary condition at the wire’s ends is effectively a short, such that

19 One important difference is that the QPS fugacity here y = e−S0 is an independent physical parameter from the
dimensionless admittance K, whereas in the 2D XY model the two analogous quantities (the vortex fugacity and
the temperature) are not independent.
20 Two notable exceptions are the very recent experiments of [73, 74, 76], which use qualitatively different
measurement techniques.
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Figure 8. Experimental configuration for typical QPS measurements. (a) Four-
wire configuration used in typical R versus T measurements. (b) Lumped circuit
model of the electromagnetic environment, following [84]. At low frequencies,
the wire effectively sees a current source with large dc compliance RDC, but
at high frequencies lumped parasitics and the characteristic impedance of the
measurement connections reduce the effective impedance. This is modeled by a
lumped shunt capacitance Csh in parallel with a high-frequency resistance Renv,
which becomes important above the high-pass corner frequency (RenvChf)

−1.
(c) In nearly all experiments where specialized techniques are not used to
control the high-frequency EM environment, the dominant contribution to this
environment is Renv, which is likely to be �ZL, the linear impedance of the
nanowire. In this limit, the interaction of a type II phase slip with the wire
edges can be described in terms of image phase-slips of the same sign, resulting
in a repulsion from the wire’s ends, and a potential minimum at the center
of the wire. The corresponding 2D magnetic case analogous to this is a weak
superconducting link between two thick superconducting banks (a Josephson
weak-link junction [87]) where a magnetic vortex attempting to pass across the
junction encounters a potential minimum (a saddle point) at the center of the
bridge. (d) If, on the other hand, Renv � ZL, the image phase slips have opposite
sign such that the real phase slip is attracted to the wire’s ends and a potential
maximum occurs in the center of the wire. The analogous 2D magnetic case is
that of an isolated superconducting strip [129].
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interaction of a type II phase slip with the wire’s ends can be described using image phase slips
of the same sign [56]; this results in a repulsion from the ends and an activation energy barrier for
phase slip events δEII(x) as a function of the phase slip position x like that shown in figure 8(c).
It is important to note that this is not analogous to the 2D magnetic case of an isolated, finite-
width superconducting strip as in [129]. Rather, our situation is analogous to a very short
superconducting weak link between two large banks, where the link length l is analogous to
our wire’s length, and the link width w � l maps to Euclidean time in 1 + 1D (figure 8(c)). In
both of these cases the vortex (type II phase slip) sees a free-energy (Euclidean action) minimum
at the link (wire) center. In the opposite case where Zenv � ZL, the image vortices have opposite
sign, such that phase slips are attracted to the edges as shown in figure 8(d); this is in fact the
1 + 1D analogue to the finite-width superconducting strip of [129].

For very long wires with l � λE, the contribution of the environment can naturally be
neglected, since even in the high-Z case where the action is lower for phase slips to occur
within a distance λE of the two ends (cf figure 8(d)) which then interact predominantly
with their images, the statistical weight of such paths in the partition function becomes
negligible for long enough wires. However, when l becomes sufficiently smaller than λE, the
interaction with image phase slips eventually dominates the partition function, such that the
environmental impedance alone determines the ground state (as opposed to ZL)21. This is how
the crossover occurs in our model to the lumped-element regime (discussed by MN [61] as
the dual of the extensively studied case of lumped JJs [63, 66, 83, 128]). By contrast, the
length scale which arises in the theories of GZ [45] and [56] for finite wires is h̄vs/kBT ,
such that within the approximations used in these works the behavior is always lumped at zero
temperature.

These considerations regarding electric field penetration into finite wires in 1 + 1D have
direct analogues in the physics of magnetic vortex penetration in 2D. In fact, as discussed in
appendix B, the equilibrium thermodynamics governing type II magnetic flux penetration (in
terms of a Gibbs free energy which includes the magnetic work done by or on the field source),
has an exact analogue in our 1D case (in terms of a Euclidean action which includes the work
done by or on the circuit environment). Thus, under appropriate conditions, all of the well-
known results concerning type II flux penetration in 2D can be appropriated for our purposes
here, in particular the existence of type II phase slip ‘lattices’ corresponding to spatially and
temporally periodic electric field penetration. An example of the current distributions for the
two lowest-action type II phase slip lattices, for a wire with l � λE in a low-impedance
environment (Renv � RQ, ZL) corresponding to an effective voltage bias, is shown schematically
in figure 9(a). These two lattices can be identified directly with the two lowest energy bands of an
approximately lumped PSJ, as shown in figure 9(b), and discussed by MN [61]. To see this, first

21 The method of images was also used in [56] to discuss boundary effects; however, in that work it was applied
directly to GZ-type microscopic QPS events. By contrast, we have applied this method to our type II phase slips,
macroscopic quantum processes [65] which arise as a consequence of treating microscopic QPS events as dual to
Cooper pair tunneling events in lumped JJs. This distinction can be clarified by considering the duals of these two
cases: our theory is dual to the usual JJ treatment, where the ‘bare’ Josephson energy per length is calculated in the
lumped limit, neglecting the geometric inductance Lg of the junction. This result is then plugged in to a distributed
theory for the ‘long’ junction, out of which arises the Josephson penetration depth λJ [99], to which our λE is dual.
The premise of the QPS theory of [56], on the other hand, is dual to treating a long JJ by directly considering from
the beginning the full quantum mechanics of Cooper pair tunneling events in the distributed system (cf figure 5(d)).
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Figure 9. Type II phase-slips when Renv � RQ, ZL. (a) The two lowest-energy
lattices for a constant voltage V = 8̇ across a short wire (l � λE), where the
lines/arrows represent j (cf equation (40)), and solid circles the phase-slip
cores; dashed lines and shaded circles indicate image phase slips. (b) The two
lowest bands U0(8) and U1(8), dual to the quasicharge bands of a JJ in a high-
Z environment [66–69, 83]. Inductive parabolae with E = EL(8/80 − m)2 are
degenerate at half-integer values of 8/80, where an avoided crossing of width
ES (for ES � EL) occurs between states with m differing by ±1 [61, 79, 98].
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Figure 9. (Continued) A higher-order interaction also couples states with
m differing by ±2 at integer values of 8/80 (the upper level of these
crossings is not shown). If ES → 0, the wire is simply an inductance Lk with
E = EL(8/80)

2 (dashed black line). The current distributions shown in (a)
correspond to adiabatic evolution along the bands in (b), indicated by the dashed
arrow. (c) I (8) for the wire, in which QPS-induced avoided crossings result in
a switching current Isw < IC into a voltage state. A constant V = 8̇ produces an
oscillatory current, as shown by the red line in (c).

consider the total Euclidean action S tot
II (x) of a type II phase slip at position x in the Renv � ZL,

RQ limit, and the corresponding classical energy barrier δEII(x) (x = 0 is taken to be the middle
of the wire):

δEII(x) ∼ h̄ωpS tot
II (x)

= h̄ωp

{
SII +

1

2

∞∑
k=1

[
Sint[2kl] +

1

2
Sint[(2k − 1)l − 2x]

+
1

2
Sint[(2k − 1)l + 2x]

]}
. (49)

Here, the first line is valid as long as β−1
= kBT � h̄ωp, and in the second line the summations

are over image phase slips. In the λE � l limit we can neglect the x-dependence as well as the
first (self-energy) term, and replace the sums with an integral, to obtain

δEII(λE � l) ≈
EL

4

[
1 +

l

λE

2

π

(
ln

l

λE
− 1

)]
, (50)

where EL ≡ 82
0/(2Lk) is the inductive energy of the wire with total kinetic inductance Lk.

Thus, the first term in equation (50) is precisely the kinetic-inductive energy EL/4 that would
be approximately expected at 8 = 80/2 from figure 9(b) in the S0 � 1 limit, as well as from
the lumped-element description of MN [61], and the second term is the leading-order correction
to this result in the small quantity l/λE. Since a constant voltage across the wire implies that 8

evolves at a constant rate, corresponding to motion at constant ‘velocity’ along the horizontal
axis (d8/dt ≡ V ) of figures 9(b) and (c), the type II phase-slip cores can be identified with
the avoided crossings that define the energy bands U0(8) and U1(8). The crossings shown at
half-integer values of 8/80 occur where two states with m differing by 1 are coupled, and
correspond to a single phase-slip core in the wire. The crossings at integer values of 8/80 (the
upper state of which is U2(8), not shown in the figure) occur where states with m differing by
2 are coupled, and therefore correspond to the simultaneous presence of two phase slip cores in
the wire, as shown in the upper half of (a) at these points. Figure 9(c) shows the corresponding
current in the wire I = dU (8)/d8 for these same two lowest energy bands. The maximum
current value in the lowest band, which occurs near the avoided crossings in (b), is what we
will refer to as the ‘switching current’ Isw. Note that this is physically and entirely distinct from
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the depairing current of the wire IC, and the relative size of the two shown in the figure is
chosen only for definiteness. At a fixed voltage, 8 evolves at a constant rate, with the current
then exhibiting the oscillatory behavior shown by the red line. These current oscillations are the
exact dual of Bloch oscillations in a lumped JJ [66–69, 83].

Beginning with the seminal work of Giordano [37], nearly all the experimental efforts to
observe evidence for QPS have focused on the region near TC where the stiffness V1D goes
to zero, so we begin our discussion of experiments with this regime. The motivation behind
such experiments is the idea that QPS should become exponentially more frequent as the
energy barrier is lowered. Of course, thermally activated phase slips also become exponentially
more frequent, so that the objective in such measurements can only be to observe qualitative
deviations from simple LAMH thermal activation as the temperature is lowered, in the hope
that such deviations can be identified with QPS. A wealth of experimental data now exists in
which resistance versus (TC − T ) measurements of superconducting nanowires are compared to
LAMH theory, for a range of materials including In [37], Pb [39], PbIn [38], Al [36, 41, 42, 52],
Ti [43], MoGe [18, 40, 55, 130], Nb [49] and NbN [131]. In many cases deviations are indeed
observed, usually in the form of a significantly weaker slope on a plot of logR versus T
(as opposed to the clear crossover in behavior seen in Giordano’s original measurements)22.
This departure from LAMH behavior has been attributed to QPS either using Giordano’s model
[18, 37, 40, 42, 44] or a variant of it in which the purely heuristic energy scale h̄/τGL in
Giordano’s QPS-induced resistance is replaced by the GZ result [45, 46]. Although some
reasonable agreement can often be obtained for individual experiments, when all of the available
data are considered together, one encounters a problem: the ostensibly QPS-induced deviation
from LAMH theory does not seem to scale as expected with the predicted QPS action. For
example, based on the GZ model, the T = 0 phase-slip action for Giordano’s original 41 nm
wide In wire (which exhibited a dramatic departure from LAMH behavior) is SGZ ≈ 100,
whereas SGZ ≈ 13 for Bezryadin’s 7 nm MoGe wires which showed no anomalous departure
from LAMH at all. As we will now show, our model provides a possible explanation for
this counterintuitive trend, in terms of thermal fluctuations over the type II phase slip energy
barrier.

We cast our problem in a form analogous to the original work of LAMH [26, 27],
using equation (2) to obtain the general expression for a thermal phase-slip-induced effective
resistance [18, 27, 37, 40] (also used to describe thermal phase slips in JJs [84, 89, 90]):

Rps =
〈V 〉

I
= RQ

h̄�ps

kBT
exp

(
−

δEps

kBT

)
, (51)

where δEps is the classical energy barrier, and �ps is the attempt frequency [89, 90]. We consider
three distinct, simplified regimes: (i) where λE � l, for which the energy barrier is given by
equation (50) and illustrated in figure 9(c); (ii) where λE � l, so we can neglect entirely the
statistical weight of paths that interact with the ends, and

δEII(λE � l) ≈ h̄ωpSII =
1

2Lλ

(
80

2

)2

K0

(
1

κE

)
, (52)

22 Note that in addition to the superconducting wires discussed in this section, some wires remain resistive all the
way to the lowest measurable temperatures, or even appear to become insulating. The latter phenomenon is the
subject of section 7.
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where we have defined the effective total inductance for a type II phase slip: Lλ ≡ πLkλE/4
(by analogy to equation (50)); and finally (iii), an intermediate regime where λE . l, so that the
energy barrier is a saddle point at the wire’s center like that shown in figure 8(c), and we can
make the approximation that all phase slips occur at that point:

δEII(λE . l) ≈
1

2Lλ

(
80

2

)2
[

K0

(
1

κE

)
+

1

2

N∑
k=1

K0

(
k

κE

)]
, (53)

truncating the sum at some small N beyond which the additional terms can be neglected.
We model �ps in a simple manner based on well-known results for lumped JJs, where we

treat the thermal fluctuations for each length λE of wire as independent if λE � l, 23 or the whole
wire as a single fluctuating region if l . λE. We describe each fluctuating region in terms of an
effective Josephson inductor L f in parallel with an effective damping resistance Rf and shunt
capacitance Cf. For case (i) (λE � l), these quantities are simply Lk, Renv and Csh; for cases (ii)
and (iii) (λE < l) we take instead: Lλ, ZL (the effective resistance looking out of the fluctuation
region into the plasma modes of the wire), and Cl(kλE = 1) (cf equation (21)). Strictly speaking
this is only correct in case (ii), of course, but we use it here as an estimate also for case (iii). The
attempt frequency is given approximately by [90]

�ps ≈ Nλωf

[√
1 +

1

4Q2
f

−
1

2Qf

]
, (54)

where Nλ ≡ l/λE for l � λE and Nλ = 1 otherwise, ωf ≡ 1/
√

L fCf and Qf ≡ ωf RfCf, and this
expression holds in the limit where kBT � h̄�ps. In the overdamped regime (Qf � 1) which is
relevant in all experimental cases of interest here, �ps ≈ Rf/L f.

Figure 10 shows, for the parameters of four experimental cases (tabulated in appendix C),
the resulting R versus T obtained from our model, all of which compare favorably with the
corresponding experimental observations24. In addition, for each case the corresponding LAMH
prediction is shown by a red dashed line. Notice that while QPS gets stronger from (a)–(d), the
deviation from LAMH temperature scaling gets weaker, just as observed in the experiments.
As we will now explain, the reason in our model for this seemingly paradoxical behavior is the
crucial role played by the temperature dependence of λE (which has no analogue in previous
theories for QPS), shown in the bottom graph of each panel in figure 10, relative to lφ and the
wire length l.

First of all, as T → TC, notice that in all cases we have l > λE & lφ, such that the
corresponding energy barrier (cf equation (49)) has a similar magnitude and temperature scaling
to δELAMH (cf equation (3)) (in this regime the Bessel function K0 varies only logarithmically).
In this limit, then, all of our predictions for the four cases either approximately coincide with or

23 This is approximately valid for thermal type II phase slip rates which are low enough that we can neglect the
statistical weight of paths in which phase-slips interact with each other substantively.
24 In fact, for panel (a) the agreement with experiment in the LAMH region of the curve is obtained without the ad
hoc 4x reduction in the energy barrier used by Giordano [37] in order to fit LAMH theory to his observations in
this region.
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Figure 10. Resistance versus temperature near TC in our model for four
experimental cases. Solid black lines are derived from our model, for parameters
relevant to four experimental wires (described in appendix C), in order
of increasing strength of QPS: (a) 40 nm In wire from [37] (S0 = 100
(cf equation (22)), SGZ = 850 (cf equation (48))); (b) 15 nm Al wire from [42]
(S0 = 25, SGZ = 55); (c) 53 nm Ti wire from [43] (S0 = 9.0, SGZ = 16); (d)
7.5 nm MoGe wire (S1) from [44] (S0 = 5.6, SGZ = 13). These curves compare
favorably with the experimental results. Dashed black lines are shown in the
cases where our model predicts a crossover between two regimes considered in
the text, and the solid black line is then a guide to the eye in connecting these
smoothly. Predictions of LAMH theory [26, 27] are shown by red dashed lines.
The bottom half of each panel shows the predicted temperature dependence of
λE (blue curve) and lφ = 1.8ξ (red curve). For the In case in (a), with weakest
QPS, λE increases sufficiently quickly as T is lowered that a clear crossover is
observed when it becomes much larger than the wire length l. In the Al (b) and
Ti (c) cases which have progressively stronger QPS, λE becomes shorter and
the crossover is obscured, such that the qualitative signature is only a reduced
slope and change of curvature on the log plot, which in both cases was fit to a
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Figure 10. (Continued) Giordano-like model in the experimental references [42,
43]. Finally in the case of MoGe (d), QPS is sufficiently strong that λE does
not vary appreciably over the relevant temperature range, and the temperature
scaling of the energy barrier becomes very similar to that predicted by LAMH.

approach that of LAMH25. Now, starting with the case of Giordano’s In wire where QPS is the
weakest, as T is lowered λE increases very quickly, becoming much larger than the wire length
already by around T = 4 K. In this limit, equation (50) for the barrier applies, which has the
∼1/(TC − T ) dependence of Lk, the total inductance of the wire. This scaling is significantly
slower than in LAMH theory, resulting in the clear crossover shown in the figure. Thus, in our
model the crossover which was previously attributed to a transition from thermal phase slips to
quantum phase slips is explained instead by a change in the T -dependence of the energy barrier
for purely thermal phase slips (when λE becomes larger than the total wire length l). Extending
this interpretation to the different behaviors in panels (b)–(d), we find that our model indeed
predicts more and more LAMH-like behavior as the strength of QPS in increased, due to the
reduced temperature dependence of λE. In the intermediate case of Al [42] (b), the crossover
is still present but is sufficiently smoothed out that it is also qualitatively consistent with a
Giordano-like model, which was used to fit the corresponding data in [42]. For the Ti wire
of panel (c), QPS has become sufficiently strong that there is no longer any crossover, as λE

remains well below l over the entire temperature range. For this case the deviation from LAMH
scaling that is still present is simply a residual effect of the temperature dependence of λE, which
although smaller than (a) and (b) is still non-negligible, and causes the barrier height to go up
more slowly as temperature is decreased than δELAMH. This modified dependence can also be fit
with a Giordano-like model, as in [43]. Finally, the MoGe wire shown in (d) [44] has sufficiently
strong QPS that λE varies little over the entire relevant temperature range, and there is almost
no deviation from LAMH scaling, as shown in the figure. Thus, in a low-Z environment, our
model predicts that QPS appears in R versus T measurements only indirectly, via the phase
diffusion [84] and associated resistance arising from thermal hopping over the type II phase slip
energy barrier.

Similar conclusions arise from our model regarding the more recent experiments of
Bezryadin [44, 54], in which the bias current was increased, with the temperature held fixed,
and far below TC. These experiments were modeled after the seminal measurements of MQT
in JJs [33–35], in which effective ‘escape rates’ out of the Josephson potential well were
observed as a function of current (cf figure 1(a)), from which an effective temperature of the
phase fluctuations Teff could be inferred. At higher bath temperatures T (still much less than
TC) it was found that Teff ≈ T ; however, as T was lowered, Teff saturated at a minimum value
known as the quantum temperature TQ, which could be explained quantitatively in terms of the

25 Note that our treatment of δEII is strictly valid only when κE � 1, since we have neglected the action associated
with the phase slip core in comparison to the screening ‘currents’ j in equation (45). This argument is entirely
analogous to that made in the context of magnetic vortices in 2D in the type II limit [99]. Very close to TC where
typically κE � 1, the core contribution becomes dominant, our result δEII is no longer applicable, and we expect
the resulting energy barrier to cross over to δELAMH. One might in fact view the LAMH phase slip as the type
I analogue of our type II phase slips, where the corresponding 2D situation would be a mixed state of a type I
superconductor in which a single flux quantum penetrates in a 2D region of linear dimension ∼ξ inside which the
gap is suppressed to zero.
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expected quantum phase fluctuations of the circuit. Similar results were obtained for continuous
MoGe nanowires in [44, 54], and this was taken as a signature of quantum phase fluctuations
associated with QPS [44, 54]. However, neither the quantitative values of TQ extracted from
these measurements, nor its dependence on wire parameters, was explained. Furthermore, it
remained a mystery why the wires which exhibited nonzero apparent TQ also showed no sign
of the deviations from LAMH-type temperature scaling of resistance near TC which were
previously attributed to QPS.

We now show how these phenomena can also be described by our model. We consider the
lumped-element case corresponding to the energy band U0(8) shown in figure 9(b) (since for
the parameters of these wires we have λE > l at T = 0), treating it as a classical potential energy
and neglecting transitions to higher bands (in the same manner that the lowest quasicharge band
of a lumped JJ in a high-Z environment is often treated [66–69, 83]). The effect of an external
bias current Ib can be described, just as for a JJ, by the additional potential energy:

Un(Ib, 8) = Un(8) − Ib8, (55)

which lowers the energy barrier for phase slips in one direction while raising it in the other
[18, 26, 27, 84, 99] (figures 11(a) and (b)). As the barrier is lowered by increasing Ib, the phase
particle has an increasing chance to surmount it per unit time due to a phase fluctuation. If this
occurs, it can either be re-trapped in the adjacent potential well by the damping due to Renv, or it
can ‘escape’ into the voltage state corresponding to a terminal ‘velocity’ V = 8̇ (determined by
its effective mass and the damping)26. The current at which this occurs then corresponds to the
switching current Isw measured in [44]. Based on our discussion of case (i) above (l < λE), we
can adapt the well-known analysis of MQT in JJs to the present purpose, from which we obtain
the crossover temperature Tcr where the fluctuation energy scale in the exponent of equation (51)
goes over from kBT to kBTQ. In the overdamped limit, this is simply kBTcr ≈ h̄�ps ≈ h̄ Renv/Lk.
The fact that the capacitance Csh does not appear in Tcr in the overdamped limit illustrates
that ‘quantum temperature’ would be a misnomer for this quantity; as discussed in [90], in
the overdamped limit quantum tunneling does not contribute to the escape rate at all. Rather,
it is dominated for T � Tcr by the classical fluctuations that necessarily come with strong
damping, via the fluctuation–dissipation theorem27. Figure 11(c) shows a comparison between
the experimental results of [44, 54] and our expectations based on the discussion above (the
parameters used for this comparison are discussed in appendix D). For nearly all of the reported
wires, the agreement is relatively good. We can also compare the average switching current into
the voltage state Isw observed in [44, 54] with our prediction based on equation (55) (we take
the predicted switching current to be that at which the depth of the potential well is equal to the
observed quantum temperature). Figure 11(d) shows that the agreement with experiment is also
good for the same wires.

Our discussion also suggests a different explanation for another observation in [44, 54]
that was interpreted as direct evidence for QPS: the fact that the width of the stochastic
probability distributions P(Isw) (obtained from many repeated Isw measurements) increased
as T was lowered. Since the system is overdamped, at high T the phase particle moving in the
potential U0(Ib, 8) can be thermally excited over a barrier many times (undergo many phase
slips), each time being re-trapped by the damping, before it happens to escape into the voltage

26 This appears to be related to the ‘deconfinement’ predicted in [56].
27 Note that in the underdamped case, kBTcr ≈ h̄ωf, which can be directly identified with quantum zero-point
fluctuations.
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Figure 11. Quantum temperature and switching current in a low-Z environment.
(a) Lowest two calculated energy bands U0(Ib, 8) and U1(Ib, 8) for wire S1
of [44] at Ib = 2 µA. (b) Expanded view of the residual potential well in
U0(Ib, 8). Fluctuations of the Lk–Renv–Csh circuit produced by the wire and its
environment can cause the phase particle to escape from this well even when
there is still a potential barrier, at which point a voltage appears [33–35, 84].
(c) Calculated quantum temperature, and (d) switching current, for wires S1–5
of [44] (blue symbols) and A–F of [54] (red symbols) versus the values inferred
from measurements. TQ predictions were obtained using [90], and Isw predictions
were derived from equation (55), assuming that switching occurs at the bias
current where the potential well depth is reduced to the experimental TQ. With
the exception of wire S3 of [44] and wire B of [54], the agreement is good in
both cases (c) and (d). The fixed parameters used to obtain this agreement are
discussed in appendix D, and the primary adjustable parameter was Renv. We
extract the values: 110� for the data of [44] and 35� for [54]. This difference
is quite plausible, since the phase-slip plasma frequencies at which Renv is to be
evaluated are about an order of magnitude higher in the former case (since the
wires have significantly smaller Acs).

state. At low T , these excitations are sufficiently rare that in a given time the system is more
likely to experience a single fluctuation strong enough to cause escape than it is to experience
multiple weaker fluctuations which act together to cause escape. Just as for JJs, this produces
a P(Isw) that broadens as T is lowered [84], since fewer phase slips are associated with each
switching event, and the resulting stochastic fluctuations of Isw are larger. Note that in contrast
to [44], where these results were explained by local heating of the wire by individual QPSs, our
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discussion would suggest that the energy Ib80 released during a type II phase slip is dissipated
in the environmental impedance Renv.

Very recently, in the wake of MS’s seminal work [61], several experimental groups have
pursued entirely new experimental approaches that have allowed more direct observation of QPS
phenomena [73, 75–77, 85]. Astafiev and co-workers [73, 74] have demonstrated the phase-slip
qubit of [98], where the nanowire is contained in a closed superconducting loop, using both InOx

and NbN films. This can be viewed as the case of Renv = 0, such that as long as the inductance
of the rest of the loop can be neglected, the external flux through the loop corresponds to a
fixed-8 boundary condition for the nanowire. When 80/2 threads the loop, the PSJ is then
biased right at the avoided crossing of width ES in figure 9(c), such that direct spectroscopic
measurement of this splitting becomes possible. For the InOx wires, ES/h ∼ 5–10 GHz [73]
was observed, and for the NbN wires ES/h ∼ 1–10 GHz [74] (note that this particular technique
could only measure values in this range due to the microwave bandwidth of the apparatus). It
is interesting to note that in our model, the phase-slip qubit biased at 80/2 corresponds to a
type II phase slip essentially trapped in the wire, such that a null in the order parameter (of
size ∼lφ) is present somewhere (cf figure 9(a))28. Another recent pair of experiments, in two
different groups, measured NbSi [75, 85] and Ti [77] wires biased through Cr or Bi nanowires
with extremely large dc resistances. A clear Coulomb blockade was observed in both cases, with
threshold voltages VC ∼ 700 µV for the NbSi [85], and VC ∼ 800 µV for the Ti [77].

In table 1, we show that our model can approximately reproduce these observations. Note
that although the InOx and NbN cases fall approximately within the lumped-element regime
λE > l where we can use: VC ≈ ESπ/e, the opposite is true (λE � l) for the NbSi and Ti wires.
In the latter two cases, as discussed for 1D JJ arrays in the Coulomb blockade regime [122], the
blockade voltage expected when the system is much longer than the soliton length (our λE) is
given by VC ≈ ECλE where EC = ESπ/(el) is the critical electric field. This critical voltage for
λE � l is then defined by the condition that the energy barrier for a single soliton of size ∼λE to
enter the array goes to zero, and the subsequent current flow just above VC is carried by a train
of these 2e-charged objects [122].

The primary unknown physical parameter which enters into these estimates for ES and VC

is εin, the chosen values for which are shown in table 1. Also shown are some related values for
this quantity derived from various experiments for three of the cases (we were unable to find an
experimentally-derived value for Ti). Since the real part of a metal’s dielectric constant is nearly
always dominated by the strong inductive response of free carriers under typical experimental
conditions, it is nontrivial to determine the underlying permittivity due only to bound charges
that is relevant for our model of QPS, which we have called εin. For the cases of InOx and NbSi,
we show experimental values obtained on the insulating side of the metal–insulator transition in
these materials, such that the free carrier response is no longer present. It is plausible that these
values provide a useful estimate of the desired quantity on the metallic side of the transition,
although this is by no means certain. For the case of NbN, we show a value extracted by fitting

28 Note that the same is true for any flux qubit when a half-integer number of 80 threads the loop, such that
two counter-rotating currents interfere destructively. However, in a conventional flux qubit based on one or more
JJs, the corresponding null in the order parameter occurs inside an insulating JJ barrier. This may be an important
distinction from the phase-slip qubit of [73, 74, 98], because there are no low-lying electronic states in the insulating
JJ barrier, while there should be such states inside a region of superconducting wire where the gap is forced to zero
by an applied boundary condition (i.e. the flux through a closed loop). The presence of such states might act as a
source of dissipation and/or decoherence.
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Table 1. Comparison of our model with QPS observations on several systems.
In all cases we take lφ = 1.8ξ(0) and εout = 5.5ε0. The electric penetration depth
was calculated from equation (34); for InOx and NbN, where λE > l, the critical
voltage was calculated using VC = ESπ/e and equation (26); for Ti and NbSi
where λE � l, we used VC ∼ ECλE as in [122] for blockaded JJ arrays. The
last two columns show the GZ result for different values of the coefficient A in
equation (57), which separately produce agreement with one of the observations.

εin (ε0) ES (GHz)
l a This λE This GZ, A =

Wire Reference (µm) work Experiment (µm) work Experiment 1.0 0.47

InOx [73] 0.4 1.8 40 2–40a 1.8 8.6 5–10 7.7 190
1 10 2.1 7.2

NbN [74] 0.5 4.8 90 30b 1.9 6.9 1–12 36 kHz 5.0
1 1 2.7 3.7

εin (ε0) VC (mV)
l a This λE This GZ, A =

Wire Reference (µm) work Experiment (µm) work Experiment 3.4 0.58
Ti [77] 20 1 5c – 0.56 0.89 0.6–0.8 0.73 17

2 5c 0.58 0.87
NbSi [85] 5 1 90 70–110a 0.63 0.82 0.7 ∼0 0.76

2 220 0.62 0.84

a Inferred from measurements on the insulating side of a metal–insulator transition: [132] for InOx and [133] for
NbSi.
b Inferred from the plasma frequency extracted from measurements on much thicker NbN films (∼30 nm) [134].
c Chosen by optimizing agreement between figure 10(c) and the experiments of [43]. Note that the predictions for
this Ti wire are relatively insensitive to the choice of εin and a because S0 is of order unity due to the small gap.

to far-infrared absorption spectra; these measurements were made on a film ∼10 times thicker
than the one used in [74] where QPS was observed, however, so it is likely that this value is an
underestimate.

For each of the four materials shown in table 1, we list two possible values for the parameter
a, which is used to obtain the kinetic inductivity 3 = µ0λ

2 (which then determines the stiffness
V1D) according to the relation

3

ρn
= a

h̄

π1
, (56)

where ρn is the normal-state resistivity, 1 is the superconducting gap and a = 1, 1 ≈ 1.78kBTC

in BCS theory. In the phase-slip qubit experiments on InOx and NbN, the total kinetic induc-
tance of each wire was extracted from direct measurements, fixing a = 1.8 for InOx and a = 4.8
for NbN. These are significantly different from the BCS value, which may be indicative of prox-
imity to a disorder-driven SIT at which the bulk superfluid stiffness (∝ 3−1) goes to zero while
the local pairing gap remains finite [86]. For these two materials we list also a corresponding
a = 1 case, where we reduce εin to keep the calculated ES close to the observed value. In the
Coulomb blockade measurements (second two rows), the inductance was not measured directly,
so we simply show the two cases a = 1 and a = 2 in the table for comparison. The question is:
near a SIT where the value of a inferred from bulk measurements can be substantially larger
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than unity (ostensibly due to disorder-driven quantum phase fluctuations), is it appropriate to
use the bulk kinetic inductivity to calculate the local superfluid stiffness V1D relevant for QPS?
This may be an important question, since it has been hypothesized that close proximity to a
SIT of this type is a determining factor in the successful observation of nonzero QPS [73].

Any mechanism for the SIT in these materials which involves only quantum phase
fluctuations (in order to explain the observed coexistence of bulk insulating behavior and a
local superconducting gap in the insulating state [86]) would seem to require the existence of
a microscopic phase correlation length, such that the relative phase is well-defined between
two points spaced closer together than this, and such that finite superfluid stiffness remains
for wavelengths shorter than this [135]. Furthermore, it would seem unphysical for this length
scale to be significantly smaller than the superconductor’s coherence length ξ , without a
corresponding suppression of the gap29. This suggests that the stiffness relevant for QPS, which
involves quantum phase fluctuations at the length scale lφ ∼ ξ , is not the bulk stiffness inferred
from the macroscopic kinetic inductivity, but rather a local stiffness related only to the gap
(corresponding to a = 1). Interestingly, however, as shown in table 1 for the NbN case where
we set a = 1, it was necessary to adjust εin all the way to unity to approach the experimentally
observed range of ES. Since it is unlikely to be the case that εin = 1 in this material, and the
value εin = 90 obtained using a = 4.8 is quite plausible, this could be an indication that at least
in this case the stiffness is suppressed even on length scales ∼ξ as the SIT is approached from
the superconducting side.

The last two columns of table 1 show the corresponding predictions of the GZ model in the
same four wires, according to [46]

ES ≈ 1SGZ
l

ξ
e−SGZ, (57)

where 1 is the superconducting gap, and SGZ is given by equation (48). For these two columns,
we have chosen values of the parameter A for which the resulting prediction agrees with one or
the other of the observations of a given type (ES or VC measurement). As shown in the table, each
case requires a different value for the coefficient A to produce agreement with experiment (given
the same material parameters used for our estimates, tabulated in appendix E). The difference is
particularly large for the Ti wire, which is extremely long, and therefore requires a large value
A = 3.4 to fit the observed VC; by contrast, in our model VC becomes independent of length
once the wire is much longer than λE, since in this regime it is defined by a vanishing energy
barrier for the entry of a single CP soliton of size λE � l.

7. Destruction of superconductivity in one dimension (1D)

In this final section we consider a possible relationship between our model and the observed
destruction of superconductivity all the way down to T = 0 for short wires with Rn & RQ.

29 This is apparent in two well-known ‘phase-only’ models for the SIT: in one, the nominally uniform film is
treated as an inhomogeneous system of superconducting islands coupled by tunneling, essentially a JJ array [136,
137]. In this case the phase correlation length cannot be smaller than the island size, and if the island size is much
smaller than ξ the Coulomb interaction on the islands will likely suppress the gap [138]. Alternatively, in the so-
called ‘dirty boson’ model, the quantum phase fluctuations are described in terms of vortex–antivortex pairs [21].
In order for such a system to have a phase correlation length shorter than ξ , the nonsuperconducting cores of the
vortex fluctuations (with size ∼ξ ) would need to overlap substantially, and the average gap would be consequently
reduced.
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Previous theories have predicted insulating or metallic behavior as the wire diameter [45, 46],
the characteristic impedance ZL [45, 46, 56], or an external shunt resistor [56] is tuned through a
critical value (our model also makes the latter two predictions, as described in sections 5 and 6).
However, none can obviously explain the observed T = 0 transition at Rn ∼ RQ in a low-
Z electromagnetic environment. In all of these theories the predicted transition relies on the
presence of a form of dissipation which somehow remains even as T → 0, such as anomalous
excited quasiparticles [59], a resistive shunt [56], continuum plasmon modes [45, 46, 56] or the
QPSs themselves [58].

Our discussion suggests a possible alternative view, in which a T = 0 SIT may be driven
by disorder-induced quantum phase fluctuations, analogous to the SIT observed in some quasi-
2D systems [22, 23] when the sheet resistance R� & RQ.30 This 2D disorder-induced SIT
has been interpreted using the ‘dirty boson’ model of Fisher and co-workers [21], in which
disorder nucleates (virtual) unbound vortex–antivortex pairs, with sufficient strength that these
unpaired vortices themselves form a Bose-condensate, destroying long-range phase coherence
and producing a gapped insulator [21]. This is closely related to the BKT vortex-unbinding
transition in the classical 2D XY model [6–8].

To connect these ideas to our system, we first recall our discussion above of the BKT-
like quantum phase transition expected when K is decreased from large values down to unity,
associated with unbinding of type II phase slip-anti phase slip pairs in 1 + 1D. This transition
is driven in our model by microscopic, homogeneous phase fluctuations associated with the
effective permittivity for electric fields along the wire, or equivalently, by zero-point fluctuations
of the Cooper pair plasma oscillation at length scales ∼lφ . As predicted in [141], however, a
different kind of transition is also possible, driven by disorder. In the language of the (2 + 1D)
dirty boson model: disorder can nucleate virtual phase slip–antiphase slip pairs in the ground
state, which at some critical disorder strength overlap sufficiently to form a ‘condensate’ (in
this case of instantons [78, 117]) with an insulating gap. In the dirty boson model, the T = 0
critical point at R� ∼ RQ = 80/(2e) corresponds to approximately one vortex crossing for every
Cooper pair crossing [21]. In our 1D case, the corresponding critical point could plausibly be
Rn ∼ RQ. In fact, in [142] the existence of just such a universal conductance ∼R−1

Q in 1D at the
critical point of a SIT was predicted. Such a disorder-based (as opposed to dissipation-based)
mechanism may also be able to explain why the SIT in MoGe nanowires was only clearly
evident for short wires with length.200 nm [18, 40]. Since the logarithmic interaction between
type II phase slips is cut off beyond separations ρ ∼ λE (cf equation (46)) (which effectively
functions as the coherence length/time near the transition), we might expect to see a weakening
or disappearance of the SIT as the wire becomes significantly longer than λE [17]; in fact, our
theory predicts λE ∼100–300 nm for the relevant MoGe wires31.

These ideas may have importance to some recent work on ‘honeycomb’ bismuth films,
consisting essentially of 2D networks of nanowires [144]. In a remarkable sequence of
experiments, a SIT was observed in films with two different network geometries at thicknesses

30 In these materials, evidence for a nonzero gap is observed even in the insulating state [86], indicating that phase
fluctuations drive the transition. A similar disorder-driven SIT at R� ∼ RQ is also observed in some other materials
with higher superfluid density [139, 140] which is believed to result from a different mechanism not associated with
phase fluctuations [138].
31 Note that our analogy to the dirty boson model would not explain the observed reduction in TC near the 1D
SIT in [50, 55]. This reduced TC may be explained by the coexistence in these wires of an unrelated phenomenon:
gap suppression due to an enhanced Coulomb interaction [138, 143]. This is believed to be the origin of a similar
phenomenon observed in thin MoGe films [140] with very similar properties to the wires of [50, 55].
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corresponding not to a sheet resistance of RQ, but instead to thicknesses when Rn of each
nanowire passed through RQ, just like the quasi-1D observations of [50]. This may suggest that
at the experimentally accessible temperatures, these nanostructured films had not yet reached a
2D universal regime, but were rather in an intermediate regime where quasi-1D behavior of the
‘links’ in the wire network still dominated the transition. A crossover between these two regimes
would be controlled by the coherence between QPS in all of the nanowire links connected to
each ‘island’ node in the network. If the QPS amplitudes for adjacent links are incoherent, the
transition would still exhibit quasi-1D behavior. This coherence would be expected to depend,
via Aharonov–Casher-like phase shifts, on charge fluctuations on the nodes [79, 82]. What then
would be expected to occur if this coherence existed, such that the film appears uniform from
the point of view of QPS?

The original works of LAMH can be used to view the transition in quasi-1D wires from a
metallic state to a superconductor as the temperature is lowered in terms of thermally driven,
topological phase fluctuations in 1 + 1D: phase slips; these can be described formally as passage
through the wire of vortices, 1D topological line defects. Mooij and co-workers extended this
idea to zero temperature, effectively postulating quantum tunneling of these objects, which we
have modeled in our work based on an effectively finite mass and zero-point motion arising
from the permittivity for electric fields along the wire. This leads to the following idea: in 2D,
vortices (which can be viewed as 1D line defects) control the superconducting transition via
the BKT mechanism as the temperature is lowered. In 3D, correspondingly, it has long been
thought that vortex rings, effectively 2D objects, control the analogous transition. This idea has
been applied to the lambda transition in 4He [10, 11], high-TC superconductors [1], ordering
in liquid crystals [5] and even to structure formation in the early universe [1, 2]. Starting with
such 2D topologically charged objects, we can imagine a 2D quantum tunneling phenomenon
analogous to our 1D QPS, in which a thin film undergoes a quantum fluctuation process that
can be viewed formally as tunneling of vortex rings. Just as motion of a line defect through a
wire creates a ‘kink’ in some field quantity in 1D, motion of the corresponding 2D ring defect
through a film would create a point defect in 2D, inside of which the phase has slipped by one
cycle relative to everywhere outside. Coherent tunneling of this kind throughout a very thin film
should create a 2D insulating state analogous to what we have discussed here in 1D, and this
may have some connection to the so-called ‘superinsulating’ state suggested in the context of
very thin, highly disordered superconducting films [145, 146].

8. Conclusion

We have described a new alternative to existing theories for quantum phase fluctuations in
quasi-1D superconducting wires, built on the hypothesis of flux–charge duality [61] between
these phase fluctuations and the charge fluctuations associated with JT. A crucial aspect of our
model is the idea that the electric permittivity due to bound charges both inside and near the
wire provides the electrodynamic environment in which quantum phase fluctuations occur. QPS
can in an abstract sense be viewed as tunneling of ‘fluxons’ (each carrying flux 80) through
the wire, and in our model the permittivity constitutes an effective ‘mass’ for these objects,
whose resulting zero-point ‘motion’ produces tunneling. In exactly the same way, the kinetic
inductance of a superconductor (which arises directly from the finite electron mass) can be
viewed as producing the quantum fluctuations responsible for JT. In our model, both QPS and
JT arise from zero-point fluctuations of short-wavelength plasma-like oscillations of the Cooper
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pairs; QPS tends to occur when the impedance of these oscillators and their environment is
very high, such that quantum phase fluctuations are only weakly damped and charge tends
to be the appropriate well-defined quantum variable; JT on the other hand occurs naturally
when the plasma and environment impedances are low, such that charge fluctuations are only
weakly damped and phase tends to be the appropriate well-defined quantum variable. This basic
model has allowed us to predict the lumped-element phase slip energy ES posited by MN as
dual to the Josephson energy [61], in terms of measurable physical parameters 3, εin and εout,
and one adjustable parameter, the QPS length scale lφ ∼ ξ . Although the latter quantity is an
artifact of the discretized form of our model at short length scales, and thus phenomenological
in nature, we have been able to use a single, fixed value of lφ = 1.8ξ for all of the comparisons
with experiment in this work, with favorable results. In at least some cases our model may
suggest qualitatively different conclusions, relative to previous theories, with respect to material
parameters favorable for QPS: whereas current experimental efforts are strongly focused on
materials relatively close to a metal–insulator transition with extremely high resistances in the
normal state (to maximize Rξ ), our model would rule out or de-emphasize those which have
a very large bound permittivity εin due to polarizable, localized electronic states which likely
appear near such insulating transitions.

Building further on the idea of flux–charge duality, we have constructed a distributed
model of quasi-1D wires, dual to the long JJ, which generates 2e-charged soliton solutions
(dual to Josephson vortices) in an infinite wire whose dimensionless admittance K� 1, and
80-‘charged’ instanton solutions (dual to Bloch oscillations for short wires) when K� 1, what
we have called ‘type II phase slips’. A dissipative phase transition at K ∼ 1 separates these
two regimes, which in the short-wire limit is the exact dual of the well-known phase transition
for lumped JJs [83, 147]. A crucial new element of this distributed model in the context of
QPS is the new length scale λE, which is dual to the Josephson penetration depth in long
JJs. This so-called electric penetration depth determines the size of type II phase slips and
their corresponding interaction with each other, and with the circuit environment of a finite
wire. Furthermore, the temperature dependence of this length scale provides a mechanism
for a richer variety of phenomena in R versus T measurements than suggested by previous
theories, and which can explain a variety of the qualitatively different observations made across
multiple materials systems by different research groups. In particular, our model provides an
explanation for the observation that qualitative deviations from LAMH temperature scaling of
the resistance near TC, expected in previous theories to get larger with stronger QPS, in fact
appear to get smaller such that the narrowest wires in some cases exhibit the best agreement
with simple, thermal LAMH theory with no corrections for quantum fluctuations. Our model
also agrees quantitatively with the measurements of so-called ‘quantum temperatures’ in these
narrow wires, previously attributed directly to QPS [44, 54]. Finally, the involvement of the
electric permittivity in our model also provides a very simple and natural mechanism for thermal
attempt frequencies of phase-slip processes, in terms of the physics of noise in damped oscillator
systems. By contrast, previous theories for such attempt frequencies relied on time-dependent
GL theory.

We have compared our model to the results of a new class of experiments in which the QPS
energy or Coulomb blockade voltage was directly measured at mK temperatures, in InOx [73],
NbN [74], NbSi [75, 85] and Ti [77] nanowires, and are able to approximately reproduce
all four observations with reasonable values for material parameters, and only a single value
of the phenomenological parameter (lφ). By contrast, the GZ theory currently used for most
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comparisons with experiment evidently requires quite different values of its input parameter
A for each material to reproduce the observations. One important reason for this difference
is the existence of the additional length scale λE in our model which, as in the R versus T
measurements, results in qualitatively different behavior when l > λE. In particular, our model
predicts that in this regime the measured blockade voltage should no longer increase with the
wire length, as it becomes simply the voltage at which a 2e-charged soliton (of size ∼λE) can
enter the wire.

A final topic of some relevance in concluding our work is the relevance of the present
model to the prospects for realizing practical QPS devices which are dual to well-known
JJ-based circuits, some of which are described in appendix F, and two of which have already
been demonstrated: the phase-slip qubit [73, 74] (dual to the Cooper-pair box), and the phase-
slip transistor [75, 85] (dual to the dc superconducting quantum interference device (SQUID)).
Of particular interest is the prospect of a quantum standard of current dual to the Josephson
voltage standard, which would make use of the dual to Shapiro steps [61, 65, 67, 69]. A device of
this kind would have enormous significance to electrical metrology [148], and has been pursued
in various forms for many years even before the existence of QPS was contemplated [36]
and later suggested for this purpose by MN [61]. Another interesting possibility yet to be
discussed is the dual of rapid single flux quantum (RSFQ) digital circuits. This would in
principle be a voltage-state logic in which Cooper pairs are shuttled between islands, with no
static power dissipation, and possibly a high degree of compatibility with charge-based memory
elements.

We can make several qualitative statements about these prospects based on our model.
First, we can specify the maximum usable length of a PSJ before nonlumped behavior sets
in: the electric penetration length λE. Since all of the circuits just mentioned are based
on lumped-element behavior, this will constrain how large ES can be. Another interesting
observable implication is the dependence of the QPS energy on the permittivity of the dielectric
immediately outside the wire. This might suggest in some cases a low-permittivity substrate
such as glass (or even vacuum if the wire can be suspended) would be preferable to silicon.
Finally, one can show that the quantity ES/EL which determines the extent to which quasicharge
can be treated as a classical quantity (dual to EJ/EC for a JJ) is simply ZL/RQ for a wire of the
maximum length for lumped behavior λE; that is, all QPS parameters drop out, and only the
linear impedance remains. A distributed quasi-1D device with a very large ratio of ZL/RQ has
come to be known in the recent literature as a ‘superinductor’ [149, 150], and is of current
interest for a number of quantum superconducting circuit applications.
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Table A.1. Selected abbreviations used in the text.

Abbreviation Description Abbreviation Description

GL Ginsburg–Landau MS Mooij and Schön
MN Mooij and Nazarov QPS Quantum phase slip
JT Josephson tunneling JJ Josephson junction
MQT Macroscopic quantum tunneling PSJ Phase slip junction
LAMH Langer, Ambegaokar, GZ Golubev and Zaikin

McCumber, and Halperin SIT Superconductor–insulator
BKT Berezinskii, Kosterlitz, transition

and Thouless

Appendix A. List of selected abbreviations, physical quantities and variables

Selected abbreviations, physical quantities and variables are given in tables A.1 and A.2.

Appendix B. Thermodynamics of electric flux penetration in 1 + 1D

Consider the 1 + 1D electric analogue of a magnetic field applied perpendicular to a strongly
type II superconducting thin film: a quasi-1D wire (without any external circuit connections)
which is subjected to a uniform external electric field along its length. In the familiar 2D
magnetic case, one has the usual lower critical field Hc1 below which flux is excluded via the
Meissner effect, and above which magnetic vortices enter the sample; the thermodynamics of
this transition is governed by the Gibbs free energy:

G = F −

∫
dV HE · B, (B.1)

where F is the Helmholtz free energy, HE is the external field and B is the actual magnetic flux
density. The second term is associated with work done by the field source when flux is excluded
from the sample (the overall free energy is lowered when the flux is allowed to penetrate). The
condensation energy of the superconductor (contained in F) is balanced against this, such that
when more free energy is gained by having a uniform superconducting state than the amount of
work required from the source were the flux to be expelled, a Meissner state results in which
field is excluded from the sample except within a distance from the film edges equal to the
so-called ‘Pearl length’ λ⊥ ≈ λ2/2t where t � λ is the film thickness.

It turns out that the additional contribution to the Euclidean action in 1 + 1D associated
with an electric flux source can be written in a completely analogous way:

Stot = Sw −
1

2πK

∫
du dv e · q, (B.2)

where Sw describes the wire, and the second term describes work done by the source. In a
similar manner to equation (B.1), e is the external electric field, and q is the resulting electric
displacement which contains the system’s response to that field. One can get an intuitive feel
for the additional work described by the second term in this case by imagining that the external
field is produced as shown schematically in figure 2(d) by a moving source of magnetic flux.
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Table A.2. Selected quantities used in the text, along with equation numbers.

Equation Description Equation Description

ξ GL coherence length n Number of Cooper pairs that have
TC Critical temperature passed through 6

1φ Gauge-invariant phase difference m Number of fluxons that have
across an element passed through 0

ρn Normal-state resistivity of wire Ck Kinetic capacitance of a PSJ
Rn Normal-state resistance of wire Ck distributed kinetic capacitance (F m)
RQ Cooper-pair resistance quantum Ck0 Ck evaluated at q = 0
LJ Josephson inductance CJ JJ capacitance
EQPS (25) Ground-state energy per length C⊥ distributed shunt capacitance (F m−1)
ES (26) Phase-slip energy per unit length ns Density of Cooper pairs
ES Phase-slip energy me Electron mass
VC Critical voltage �p (16) Bulk Cooper pair plasma frequency
EC Critical electric field �̃p (24) Effective plasma frequency for QPS
JC Depairing current density lφ Length scale for discrete QPS model
Acs Wire cross-sectional area 31D (18) Quasi-1D Coulomb screening length

l, w, t Wire length, width, thickness vs MS velocity
ZL Linear wire impedance ρ⊥ Linear charge density on C⊥
r0 Wire radius in MS model 18 j Quasiflux for j th segment
80 Superconducting flux quantum U (18) (23) Potential energy for 18

λ GL magnetic penetration depth 3 j Loop charge for j th segment
Q Quasicharge Cl (21) Series capacitance for PSJ segment
8 Quasiflux Lg Geometric inductance of JJ barrier
εin Electric permittivity due to �ps Phase slip attempt rate

bound charges inside wire Lλ Type II PS effective inductance
εout Electric permittivity of insulator V1D Quasi-1D superfluid stiffness

outside wire S0 (24) QPS action
δEps Phase-slip energy barrier Rξ Normal-state resistance of length ξ

Tcr Crossover temperature to MQT u, v (33) Euclidean 1 + 1D coordinates
Ib DC bias current ωp (35) Phase-slip plasma frequency
Isw Switching current K (32) Dimensionless plasma admittance
UC Condensation energy density λE (34) Electric penetration length
τGL GL relaxation time j (40) Euclidean 1 + 1D ‘current’
1 Superconducting energy gap q (41) 1 + 1D electric displacement
TQ Quantum temperature e (41) 1 + 1D electric field
JQ (6) Quasicharge current density κE (42) 1 + 1D GL κ

J8 (7) Quasiflux current density ρ 1 + 1D radial coordinate
(total electric field) SII (45) Type II PS Euclidean action

3 London coefficient Sint (47) Type II PS interaction
Lk Kinetic inductance S tot

II (49) Total type II PS action,
ρQ Free charge density with boundary interaction
Bf Free flux density δEII (49) Classical energy barrier for type II PS

vQ, vφ Free charge and flux velocities Renv High-freq. resistive environment
Csh Lumped shunt capacitance EL Inductive energy

Lk Kinetic inductance per length
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Table C.1. Wire parameters used for figure 10. In these four cases we took
εin = 5.

Renv Csh C⊥ εout TC
√

Acs l ξ(0) λ(0)

Wire Reference (�) (fF) (pF m−1) (ε0) (K) (nm) (µm) (nm) (µm)

In [37] 120 50 25 1.5 4.2 41 80 40 0.15
Al [42] 30 50 48 5.5 1.5 15 10 100 0.21
Ti [43] – – 56 5.5 0.41 53 20 80 3.0
MoGe [44] – – 25 1.5 4.0 7.5 0.11 5 0.71

In this situation, mechanical work must be done to keep the magnet moving at fixed velocity
vφ if the wire expels the motional electric field. These considerations imply that external fields
below a critical value will be expelled from the wire, except within a spatial distance λE of its
ends. Above that critical field, ‘lattices’ of type II phase slips will occur analogous to magnetic
Abrikosov lattices [99], which correspond to a spatially and temporally periodic electric field in
the 1 + 1D case. This analogy also applies to the physics of vortex edge barriers, and in particular
to vortex penetration into long, narrow strips [129], which is the 2D case analogous to a finite
wire in 1 + 1D (where the width of the 2D strip is analogous to the length of the wire in our
1 + 1D case) that we discuss in section 6.

Appendix C. Parameters for figure 10

For all wires we take the single value lφ = 1.8ξ (which qualitatively produces the best global
agreement across all cases considered in this paper), while the rest of the input parameters
for each case are shown in table C.1. The values for ξ(0) are taken from the experimental
references, and λ(0) are calculated using the BCS relation (equation (56)) with a = 1, and
ρn taken from the measured total resistance Rn and wire dimensions Acs, l. The temperature
dependence of these quantities was taken from the supplement of [44]. The critical temperature
TC shown in the table was adjusted to optimize agreement with experiment, and for the In and
Al wires, we also adjusted the parameters Renv and Csh associated with the electromagnetic
environment (for the Ti and MoGe wires these do not enter into our prediction since these
cases do not reach the lumped-element limit λE � l). We took εin = 5 for all four cases,
which is reasonable for these relatively low-resistivity films. The permittivities εout describe
an effective average experienced by fluctuation electric fields near the wire; for the first three
cases we use εout ≈ (εs + 1)/2 (where εs is the substrate permittivity), which is the usual
result for a microstrip transmission line with a distant ground plane. We took εs = 10 for
the Al and Ti wires which were on Si, and εs = 3 for the In wire which was on glass. The
MoGe wire was deposited on an insulating carbon nanotube suspended in vacuum above its
substrate by a distance � lφ. To optimize the agreement with experiment we allowed εout = 1.5
(which could plausibly be the case due the effective permittivity of the nanotube). The values
for C⊥ were obtained using Sonnet, a microwave simulation tool, in the first three cases.
For the MoGe case, we adjusted C⊥ upwards from the 15 fF m−1 predicted by Sonnet (for
a bare, suspended wire) to optimize the agreement; this is again a plausible effect of the
nanotube.
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Table D.1. MoGe wire parameters used in figures 11(c) and (d), for wires S1–5
of [44] and A–F of [54].

Wire
√

Acs l Isw 1 Lk EL ES

(nm) (nm) (µA) (meV) (nH) (THz) (GHz)

S1 8.6 110 2.37 0.60 0.93 3.5 290
S2 9.3 195 1.4 0.58 1.5 2.2 260
S3 11.4 104 1.42 0.49 0.62 5.2 13
S4 9.6 200 0.91 0.45 1.9 1.7 410
S5 12.2 120 4.9 0.71 0.44 7.3 0.60
A 13.4 115 10.3 0.77 0.31 10.4 0.09
B 14.6 221 11.3 0.75 0.51 6.3 0.02
C 13.5 100 12.2 0.74 0.27 12.0 0.08
D 13 94 8.3 0.72 0.29 11.1 0.22
E 11 91 5.3 0.69 0.41 7.88 6.7
F 12.4 130 3.8 0.49 0.63 5.13 6.5

Appendix D. Parameter values for figure 11

Table D.1 shows the parameters used to derive the results shown in figure 11 for MoGe wires.
In all cases we use the same values lφ = 1.8ξ with ξ = 5 nm and Csh = 5 fF [44]. The results
are insensitive to Csh since the system is overdamped (RenvCsh <

√
LkCsh). As before, we infer

Lk = 3l/Acs using equation (56) with a = 1, 1 = 1.78kBTC to obtain EL ≡ 82
0/2Lk. Values

for TC, the wire dimensions and the switching currents Isw for wires A–F came from the
experimental references [44, 54], and the Isw values for wires S1–S5 from [151]. The phase-
slip energy ES is obtained using equation (26). For the wires of [54], whose Acs were not
published, we infer it from Rn and the fixed resistivity ρn ≈ 180 µ� cm [151]. For all wires
we use εin = 5ε0, and εout = 1.5ε0, as in table C.1 and figure 10, chosen to optimize agreement
with experiment across figures 10 and 11: significantly smaller εin, εout would degrade the
agreement with experiment for wires S1–S5 in figure 11(d), while larger εin, εout would degrade
the agreement of figure 10(d).

Appendix E. Parameter values for table 1

To produce the values for the four different materials in table 1, in all cases we take lφ = 1.8ξ and
εout = 5.5ε0 (all of these wires were on silicon substrates). All other input parameters are shown
in table E.1. Wire dimensions, sheet resistance R�, as well as 1 and ξ came directly from the
experimental references (in some cases using 1 = 1.78kBTC). The distributed shunt capacitance
C⊥ was obtained using the Sonnet EM simulation software and the specified experimental
geometries. Note that the value for NbN is somewhat larger relative to the other three cases
due to the relative proximity of a ground plane in that particular experiment. Values for λ were
obtained from the BCS relation of equation (56) with the a values shown in the table.
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Table E.1. Wire parameters relevant for the comparison of our model with
quantum phase slip observations shown in table 1.

Wire Reference w t l R� C⊥ a λ 1 ξ εin

(nm) (nm) (µm) (k�) (ε0) (µm) (meV) (nm) (ε0)

InOx [73] 40 35 0.4 1.7 6.3 1.8 6.6 0.41 20 40
1 4.9 10

NbN [74] 30a 3 0.5 2.0 8.5 4.8 1.7 1.6 4 90
1 0.79 1

Ti [77] 24 24 20 1.1 5.8 1 8.5 0.06 80 5
2 12 5

NbSi [85] 20 10 5 0.66 5.5 1 2.5 0.18 15 90
2 3.5 220

a In [74], the wires for which nonzero ES was observed had an average width ranging from 27
to 32 nm. Also, an appreciable amount of spatial variation of the width was observed along each
wire, such that it is possible the measured values are dominated by a ‘constriction’ much shorter
than the total length.

Appendix F. Flux–charge duality and lumped-element superconducting circuits

Figure F.1 shows specific examples of flux–charge duality applied to more complicated JJ-based
circuits. Panels (a) and (b) show the duality between a charge qubit and the phase-slip qubit
of [98]. PSJ-based superconducting qubits may be of particular interest since flux and charge
noise will have their roles interchanged relative to JJ-based qubits. Since the excited-state
lifetimes of present-day JJ-based qubits are thought to be limited by high-frequency charge
noise, exchanging this for high-frequency flux noise (which is thought to be much weaker [152])
should result in much longer lifetimes. Panels (a) and (b) also illustrate how polarization charge
on the nanowire (produced by a nearby gate electrode) is dual to magnetic flux through the
junction barrier of the JJ. Just as a Fraunhofer interference pattern will be observed in the
magnitude of EJ versus flux through the junction (due to the Aharonov–Bohm effect) [99]32,
the same pattern will be observed in the magnitude of ES versus charge on the nanowire (due
to the Aharonov–Casher effect [70]). This may be important for the phase-slip qubit since it
implies charge noise on the nanowire would show up as VC noise in the qubit (dual to IC noise
commonly observed in JJ-based qubits [153]). Panels (c)–(f) show two tunable superconducting
qubits and their dual circuits. Just as a dc SQUID can be used to implement a flux-tunable
composite JJ, the series combination of two PSJs as shown can be used to implement a charge-
tunable composite PSJ. Note that (d) is essentially a tunable version of the phase-slip oscillator
of [71], and (f) is a tunable version of the phase-slip qubit [98].

In addition to qubits, where well-defined, long-lived energy eigenstates are required in
which quantum zero-point fluctuations must be kept undisturbed by the environment, the
circuits shown in (g)–(l) are intended to function in a regime where either quasiflux (for JJs)
or quasicharge (for PSJs) is a classical variable (i.e. where quantum fluctuations are small).
A well-defined quasiflux requires a low environmental impedance at the Josephson plasma
frequency, which is readily obtained using resistively shunted JJs. A well-defined quasicharge

32 Note that this pattern can only be observed if the JJ is big enough so that the required magnetic field does not
destroy the superconducting state, a condition which is not met for typical charge qubit parameters.
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Φ=
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( )=

Figure F.1. Lumped-element JJ circuits and their duals.

requires a high environmental impedance (� RQ) at the phase-slip plasma frequency, which
is much more difficult to realize. In [75, 77, 85], highly resistive nanowires were used to bias
the device; in [116], frustrated DC SQUID arrays in an insulating state were used. Panel (h)
shows the ‘quantum phase slip transistor’ (QPST), implemented in [75, 85]. This device is an
electrometer, dual to the DC SQUID amplifier [154, 155] shown in (g). The QPST is similar to
a single Cooper-pair transistor (SCPT) [156]; however, it could have a much higher sensitivity
than an SCPT, which is limited by the charging energy of the JJs (by how small one can
make the junction capacitance). The QPST is instead limited by the kinetic capacitance Ck,
whose ultimate limit is the series capacitance of the wires, which can be much smaller. Panel
(i) is the Josephson voltage standard, and (j) the quantum current standard proposed in [61].
Under microwave irradiation, dual features to Shapiro steps would allow locking of the incident
frequency f to the applied current I according to I = N f 2e, where N is the number of parallel
PSJs. Such a device would have enormous impact in electrical metrology, allowing for the first
time interconnected fundamental standards of voltage, resistance and current [61, 67, 69, 148].
Finally, panel (k) is a Josephson transmission line, a basic building block of RSFQ digital logic;
(l) shows the dual to this, in which shunt JJs are replaced by series PSJs, flux stored in loops
is replaced by charge stored on islands, and current bias is replaced by voltage bias. The low-
impedance parallel shunts of the JJs in (k) are replaced by high-impedance series resistors in (l).
Such circuits could be of practical interest, both because unlike RSFQ they can have negligible
static power dissipation, and also because voltage-state logic could be significantly easier to
integrate with memory elements than flux-state logic.
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[86] Sacépé B, Dubouchet T, Chapelier C, Sanquier M, Ovadia M, Shahar D, Feigel’man M and Ioffe L 2011
Localization of preformed Cooper pairs in disordered superconductors Nature Phys. 7 239–44

[87] Likharev K K 1979 Superconducting weak links Rev. Mod. Phys. 51 101–59
[88] Kramers H A 1940 Brownian motion in a field of force and the diffusion model of chemical reactions

Physica 7 284–304
[89] Ambegaokar V and Halperin B I 1969 Voltage due to thermal noise in the DC Josephson effect Phys. Rev.

Lett. 22 1364–6
[90] Grabert H and Weiss U 1984 Crossover from thermal hopping to quantum tunneling Phys. Rev. Lett.

53 1787–90
[91] Shockley W 1972 Stark ladders for finite, one-dimensional models of crystals Phys. Rev. Lett. 28 349–52
[92] Saito S and Murayama Y 1989 Macroscopic quantum tunneling in thin superconducting wires Phys. Lett. A

135 55–8
[93] Chang Y 1996 Macroscopic quantum tunneling in one-dimensional superconducting wires Phys. Rev. B

54 9436–42
[94] Bliokh K Y, Bekshaev A Y and Nori F 2013 Dual electromagnetism: helicity, spin, momentum and angular

momentum New J. Phys. 15 033026
[95] Lai A, Caloz C and Itoh T 2004 Composite right/left-handed transmission line metamaterials IEEE Microw.

Mag. 5 34–50
[96] Yurke B and Denker J S 1984 Quantum network theory Phys. Rev. A 29 1419–37
[97] Devoret M H 1997 Quantum fluctuations in electrical circuits Quantum Fluctuations ed S Reynaud,

E Giacobino and J Zinn-Justin (Amsterdam: Elsevier) pp 351–86
[98] Mooij J E and Harmans C J P M 2005 Phase-slip flux qubits New J. Phys. 7 219
[99] Orlando T P and Delin K A 1991 Foundations of Applied Superconductivity (Reading, MA: Addison-

Wesley)
[100] Ehrenreich H and Philipp H R 1962 Optical properties of Ag and Cu Phys. Rev. 128 1622–9
[101] Ehrenreich H, Philipp H R and Segall B 1963 Optical properties of aluminum Phys. Rev. 132 1918–28
[102] Kukkonen C A and Wilkins J W 1979 Electron–electron scattering in simple metals Phys. Rev. B 19 6075–93
[103] Cheung J and Ashcroft N W 1981 Core polarization and the equation of state of potassium Phys. Rev. B

24 1636–42
[104] Choi W S, Seo S S A, Kim K W, Noh T W, Kim M Y and Shin S 2006 Dielectric constants of Ir, Ru, Pt and

IrO2: contributions from bound charges Phys. Rev. B 74 205117
[105] Mooij J E and Schön G 1985 Propagating plasma mode in thin superconducting filaments Phys. Rev. Lett.

55 114–7

New Journal of Physics 15 (2013) 105017 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevLett.89.096802
http://dx.doi.org/10.1038/nphys1697
http://dx.doi.org/10.1103/PhysRevB.85.094503
http://dx.doi.org/10.1103/PhysRevB.85.024521
http://dx.doi.org/10.1016/0370-1573(90)90156-V
http://dx.doi.org/10.1103/PhysRevB.42.9903
http://dx.doi.org/10.1103/PhysRevB.87.144510
http://dx.doi.org/10.1038/nphys1892
http://dx.doi.org/10.1103/RevModPhys.51.101
http://dx.doi.org/10.1016/S0031-8914(40)90098-2
http://dx.doi.org/10.1103/PhysRevLett.22.1364
http://dx.doi.org/10.1103/PhysRevLett.53.1787
http://dx.doi.org/10.1103/PhysRevLett.28.349
http://dx.doi.org/10.1016/0375-9601(89)90727-5
http://dx.doi.org/10.1103/PhysRevB.54.9436
http://dx.doi.org/10.1088/1367-2630/15/3/033026
http://dx.doi.org/10.1109/MMW.2004.1337766
http://dx.doi.org/10.1103/PhysRevA.29.1419
http://dx.doi.org/10.1088/1367-2630/7/1/219
http://dx.doi.org/10.1103/PhysRev.128.1622
http://dx.doi.org/10.1103/PhysRev.132.1918
http://dx.doi.org/10.1103/PhysRevB.19.6075
http://dx.doi.org/10.1103/PhysRevB.24.1636
http://dx.doi.org/10.1103/PhysRevB.74.205117
http://dx.doi.org/10.1103/PhysRevLett.55.114
http://www.njp.org/


56

[106] Kulik I O 1967 On the theory of resonance effects with superconducting tunnelling Sov. Phys.—Tech. Phys.
12 111

Kulik I O 1967 Zh. Tekh. Fiz. 37 157–66
[107] Tinkham M 1996 Introduction to Superconductivity (New York: McGraw-Hill)
[108] Ambegaokar V and Baratoff A 1963 Tunneling between superconductors Phys. Rev. Lett. 10 486–9
[109] Choi M-S, Yi J, Choi M Y, Choi J and Lee S-I 1998 Quantum phase transitions in Josephson-junction chains

Phys. Rev. B 57 R716–9
[110] Aslamazov L G and Larkin A I 1969 Josephson effect in superconducting point contacts JETP Lett. 9 87–91
[111] Liang J-Q and Müller-Kirsten H J W 1995 Quantum tunneling for the sine-Gordon potential: energy band

structure and Bogomolny–Fateyev relation Phys. Rev. D 51 718–25
[112] Martinis J M 2004 Course 13: superconducting qubits and the physics of Josephson junctions Quantum
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