

Dynamics of Enterprise and Technical System Architectures:

Early insights from Combat Air Operations

John Dickmann Research Assistant, LAI Ph.D. Candidate, MIT-ESD March, 2006

Thesis Committee: Dr. Joel Moses, Dr. Dan Whitney, Dr. Kirk Bozdogan, Dr. Steve Eppinger

Motivation

- Changing nature of competition
- Increased uncertainty
- Increased interdependence between users, partners, suppliers, other stakeholders
- Increased technical complexity and interdependence between enterprises and technical systems
- Commercial and military contexts

Goal: flexible and adaptable enterprises

Concept: Network-Centric Warfare

... in operations and acquisition

© John Q. Dickmann, MIT-ESD/LAI (jqd@mit.edu)

3-30-06

The Basic Idea

- Classic hierarchical tree structure as the foundation
 - Two basic modifications to create all varieties of structures
 - vertical connections
 - lateral connections (within layers)
- Hypothesis: enterprises with more lateral vs. vertical connections will perform better in complex, dynamic and uncertain environments, both operational and acquisition

Approach

- If we examine architectures of operational military enterprises, we may be able to identify features that
 - correspond to desired attributes
 - provide insights into mechanisms that drive enterprise architectures, such as:
 - Key stakeholder dynamics
 - Doctrines
 - Cultures
 - Other external factors
 - impact and are impacted by technical system architectures and social architectures

Combat Air Operations

1991-2003

2003: Iraqi Freedom

- Ratio of lateral to vertical connections
- Number of paths through the system expresses as a ratio to the number of nodes (paths/node)
- Spectral and other network theoretic measures (in progress)
- n.b.: numbers that follow are preliminary

CAMPAIGN	(V)	(L)	(LV)	L/V	LV/V	(L+LV)/ V	(L+1/2LV)/ (V+1.2LV)	LN(PATHS/ NODE)
DESERT STORM	62	21	24	0.34	0.39	0.73	0.45	11.59
KOSOVO	37	17	35	0.46	0.95	1.41	0.63	10.51
AFGHANISTAN	71	40	19	0.56	0.27	0.83	0.61	13.56
IRAQ-II	74	30	43	0.41	0.58	0.99	0.54	11.30

Note: preliminary data

Insights/Observations

- Doctrinal organization was never used
 - Different organization in each case
 - IT enables more choices, more options
- No significant <u>structural</u> change in air operations C2 enterprise since Desert Storm
 - No transformation yet--<u>at the operational level of enterprise</u>
- Possible reasons
 - Externally imposed constraints (risk management)
 - Doctrinal assumptions about proper use and effectiveness of coercive force--inter-service tussle
 - Other forces driving acquisition programs

Insights/Observations

- Architectural measures:
 - V/L ratio may prove a good proxy measure for flexibility of an enterprise architecture, more work is necessary
- Possible that transformational change (and effects) are concentrated at the tactical level
 - The core proposition of NCW
 - Enabled by changed tactical rules (not operational level architecture)
- Potential emergence of a formal coordinating (integrating) layer between service components and Joint Force Commander
- Underappreciated:
 - Role of key actors/leaders
 - Potential for manipulation of enterprise architecture and the strategic agenda of the enterprise--even in a military context

Methodological and Analytical Challenges

- Abstraction and modeling may be a more effective than detailed, microscopic, analysis
- Modeling at a larger scale
 - Examination of architecture may be more informative than micro-level analysis
 - Properties of interest to senior leadership are here
 - Architecture places 'boundaries' or 'constraints' on potential enterprise dynamics, properties, actions at the micro-level
- Catch-22: macro-level modeling and analysis must be supported by a robust micro-level theory

Potential Benefits

- A tool to 'measure' progress toward transformation
- Deeper understanding of fundamental dynamics, mechanisms and driving forces in enterprise transformation
 - Highlight areas where management, senior executive attention have most impact
- Concepts and tools to enable design of flexible and adaptable enterprise-technical systems
 - Impact of organizational modularity on performance (Army)
 - Flexibility of programs to changing user requirements (spiral development)
 - Coordination boards

Operationalization

(a larger agenda)

- Design:
 - Bi-directional causality between capability and structure
 - What are the limitations of lateral vs. vertical architectures?
 - When, where, do different architectures perform 'better'?
 - How do/can we design enterprises to preferentially grow lateral connections?
- Management:
 - Understanding conscious and unconscious forces that drive evolution of enterprise capabilities
 - For the specific case of combat air operations:
 - Is there an upper limit on what the CAOC can 'command'?
- For military operations in general: What architectures enable truly effective capability generation--not just maximization of air power's effectiveness and efficiency?

Questions

Methodological and Analytical Challenge

"While on the Gulf War Air Power Survey, I started trying to count the informal and lateral links between people and organizations in theater and between theater and CONUS. I gave up because it was very difficult to count and the <u>number was very high</u>...very difficult to trace...<u>these connections saved the formal organization ... from</u> <u>collapse</u> by providing timely information, analysis, and instructions." --Dr. Mark D. Mandeles C2 Analyst, Gulf War Air Power Survey

