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Abstract

A method for coupling a Reynolds-averaged Navier-Stokes (RANS) computer code
with an inviscid panel code to predict the maneuvering characteristics of submarines
operating near the free-surface has been developed. The RANS code calculates the
flow field immediately surrounding and in the wake of the body where viscous effects
are important. The panel code calculates the fluid flow in the far field including the
free-surface where viscous effects are negligible. The computational domains used by
each code overlap, and it is this overlap that enables their coupling. The evolution of
the free-surface boundary condition is linked to the evolution of the bulk flow through
a novel iteration technique that first computes the viscous flow near and in the wake
of the body, and then computes the potential flow outside the viscous region including
at the free-surface.

Calculated and measured vertical force and pitching moment are in excellent agree-
ment for conditions where free-surface effects are minimal. In addition calculated ver-
tical plane maneuvering coefficients are presented. There is no known experimental
force and moment data available for submarine bodies where free-surface effects are
significant, and therefore only qualitative statements pertaining to validation of the
method can be made under such conditions.

Five submarine geometries operating at five depths, seven Froude numbers and
several pitch angles have been simulated to obtain relationships between these pa-
rameters and the vertical force and pitching moment on the bodies. Iterative and
grid convergence have been demonstrated.
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Chapter 1

Introduction

1.1 Background

Throughout the Cold War, the U.S. Navy focused its research and development efforts

on designing its submarine fleet to operate undetected for long periods of time in the

open ocean. When the Cold War ended and regional conflicts began to erupt such as

the Gulf War, it became apparent that that Navy's open ocean war-fighting capability

did not fully meet the needs of littoral operations.

Submarines designed to operate primarily in deep water were suddenly carrying

out missions in shallow water. Because the operating envelopes of submarines in

shallow water are so much smaller than the operating envelopes of submarines in

deep water, they become more vulnerable to counter measures such as mines, e.g. far

fewer mines are necessary to block the passage of a submarine in shallow water than

in deep water. A tremendous amount of research has been directed at rectifying this

newly important vulnerability to mines.

It follows that if submarines are more frequently operating in shallow water then

they are also more frequently operating near the free-surface. This is in fact the case.

The focus of the present research seeks to address this issue.

A well known but little understood complication of operating near the free-surface

is the effect that the free-surface has on the maneuvering characteristics of the sub-

marine. The maneuvering characteristics of a submarine define its ability to maintain
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stable, controlled motions while operating. In general, submarines are designed to

be only slightly stable so that they can be more easily maneuvered. Thus, off-design

operating conditions can make the submarine unstable.

As stated earlier, submarines have been designed with the assumption that most of

their operations would take place in deep water. This assumption greatly simplifies

the requirements of the submarine in terms of maintaining stability and control.

Specifically, in deep water the fluid is assumed to behave symmetrically as the body

moves through it, i.e. the fluid behaves above the body as it does below the body

assuming the body is symmetric above and below with exceptions due to various

appendages like the sail.

However, the free-surface invalidates this assumption. As the submarine moves

closer to the surface it necessarily interacts with it. This interaction is, of course, not

symmetric above and below the body. In fact, this interaction appears to have some

surprisingly complex effects on the stability and control of the submarine. These

effects will be discussed in later chapters.

In deep water moving the stern planes to the dive position pitches the stern planes

up causing a submarine to dive. Near the free-surface a submarine must pitch its

stern planes up slightly to maintain a constant depth. This is due to the lifting effect

that the submarine experiences there. Simply put, the fluid pressure between the

submarine and the free-surface is lower than the pressure between it and the ocean

floor. Thus, the submarine tends to rise while operating near the free-surface. Add

heavy seas and an only slightly stable design into this mix and you need a very good

operator to keep the submarine at a constant depth.

Much like surface ships, near-surface submarines generate free-surface distur-

bances or wakes that are detectable via satellite surveillance. Wake patterns can

reveal not only the position of a submarine, but also its size, speed and direction

of travel. The effectiveness of a submarine is strongly (perhaps most importantly)

dependent on its ability to avoid detection. Therefore, wake detection by satellite or

even the fear of wake detection by satellite can incapacitate a vital part of the Navy's

war-fighting capability.
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Recent years have also seen a tremendous increase in the use of remotely operated

vehicles (ROV's) and autonomous underwater vehicles (AUV's) for salvage and ex-

ploration. In fact there have been many important discoveries aided by these vehicles

including ship wrecks such as the Titanic. A less newsworthy but no less impor-

tant duty performed by AUV's and ROV's is mapping the ocean floor. Performance

of such missions often requires operating at or near the ocean surface. To create

accurate maps requires accurate navigation. Accurate navigation near the ocean sur-

face requires robust control systems. As previously stated, robust control near the

free-surface is a non-trivial accomplishment.

Very little research has been directed at predicting the maneuvering characteristics

of small vehicles such as ROV's or AUV's near the free-surface. The current research

attempts to address this situation.

There are three main thrusts of the current research: 1) accurate and efficient

prediction of forces, moments and maneuvering coefficients acting on submerged ve-

hicles, 2) accurate and efficient prediction of free-surface elevations, and 3) automatic

generation of thousands of high quality numerical grids. Each of these components

are necessary to predict the maneuvering characteristics of near-surface submarines.

Each of these efforts will be discussed in detail throughout this and later chapters.

1.2 Prediction of Maneuvering Characteristics

Accurately predicting the maneuvering characteristics of underwater vehicles through

numerical simulations has, in recent years, become a realistic goal due to many of

the significant advances in numerical techniques and computing power. Maneuvering

coefficients are derived from forces and moments. Therefore, predicting maneuvering

coefficients accurately requires accurate prediction of forces and moments.

Predicting the forces and moments on a submerged body advancing in a fluid

is a challenging task, whether from an analytical, experimental or computational

standpoint. The advancing body generates a complex, unsteady, viscous boundary

layer and wake, including crossflow separation. When the body is near the free-
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surface, the problem becomes even more daunting because the body also generates

a complex surface wave system. The energy required to create this system and the

interaction of the generated surface waves with the body can have a significant impact

on the forces and moments on and thus the maneuvering characteristics of the body.

A great deal of research has been done to predict the forces and moments on two-

and three-dimensional submarine-like bodies using empirical and inviscid numerical

techniques. These efforts are all limited by the neglect of viscosity. Since so many

flow field characteristics around submarines are a direct result of viscosity, it is impor-

tant to consider viscosity when predicting submarine maneuvering coefficients. There

is only a small body of research devoted to predicting the forces and moments on

submerged bodies and thus their maneuvering characteristics No previous effort has

been made to compute maneuvering coefficients while including viscous effects.

The research presented herein addresses the problem of predicting the flow due to a

submerged body operating near the free-surface in a calm sea and in deep water. The

forces and moments acting on these bodies as well as the maneuvering coefficients

predicted here are essential to the effective and efficient design of propulsion and

control systems.

In addition the wakes produced by these vehicles and predicted here can be used in

their remote identification and tracking. These steady flow predictions are also con-

sidered the first step toward the computation of the unsteady flow due to submerged

bodies advancing in waves.

1.3 Free-Surface Simulations

To understand the maneuvering characteristics of vehicles the forces and moments

acting on those vehicles must either be measured or accurately simulated.

Due to the relatively recently identified need to understand the interaction of

submerged vehicles with the free-surface, numerical simulations of free-surface flows

have been primarily used to study the interaction and performance of surface ships.

A large body of literature has dealt with the interactions of surface ships and the
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free-surface, atesting to the importance of this challenge. The majority of research in

this area has focused on panel methods.

Panel methods assume that the fluid is inviscid, incompressible and of constant

density, and that the flow is irrotational. These assumptions greatly simplify the

governing equations such that panel methods can be used to compute free-surface

flows very efficiently. Including the effects of viscosity as in RANS methods, makes

the goal of efficiency much more difficult to obtain. However, a large amount of

research has dealt in recent years with computing the viscous free-surface around

surface ships.

The usefulness of each approach is often debated. However, there is little doubt

that each holds an important place in this field.

Two physical conditions must be satisfied at the free-surface: 1) the kinematic

boundary condition and 2) the dynamic boundary condition. For the purposes of

the present research the kinematic boundary condition states that fluid does not

penetrate the free-surface. The dynamic boundary condition states that the pressure

is constant everywhere on the free-surface.

Free-surface flows, in general, are unsteady, i.e. the fluid motion is dependent

on time. For the purposes of this research the fluid flow is assumed to be steady

everywhere except in the turbulent boundary layer and wake of the vehicle and that

the fluid upstream of the submerged body is calm.

The flow characteristics very close to and in the wake of a submerged vehicle

are influenced by viscous effects. These characteristics include three-dimensional

turbulent boundary layers and flow separation. Flow characteristics in the far field,

including free-surface wave patterns, are dominated by inviscid effects.

Many methods have been developed to attempt to model the free-surface. In

general these methods fall into three categories: 1) panel methods, 2) viscous methods,

and 3) hybrid methods. Each of the three approaches are discussed in the remainder

of this section.
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1.3.1 Panel Methods

There are a number of approaches to solving the inviscid flow equations. By assuming

only small free-surface deviations, the boundary condition can be linearized. Limited

analytic results are possible using this approach.

Panel methods transform the problem into a boundary integral formulation. In

so doing, the dimensionality of the problem for the initial set of unknowns is reduced

from three to two. The computational savings of this approach can be dramatic. In

addition, there is a considerable time savings in the discretization of the geometries.

In three dimensions volume grids become surface grids.

The free-surface boundary condition may be applied at the exact location of the

free-surface or at the plane of the undisturbed free-surface. The latter is accomplished

by a Taylor series expansion, which is usuallly linearized by dropping the high-order

derivatives of the fluid velocity resulting from the expansion and is known as Kelvin

linearization. Kelvin linearization is often combined with imposing the Neumann

boundary condition on the ship hull (' - V = #, = n.), where q is the velocity

potential and n' is the hull normal vector. The resulting method is called the Kelvin-

Neumann method.

In the pioneering work of Hess and Smith[12] a method was developed for pre-

dicting the flow about non-lifting, three-dimensional bodies of arbitrary shape in an

infinite fluid. Some years later Dawson[6] computed the inviscid free-surface flows

due to surface ships by enforcing a linearized boundary condition on the plane.

Several authors have attempted to compute flowfields around bodies operating

near the free-surface. Havelock [10] was the first to compute the wave resistance of a

spheroid using slender body theory.

Thomas [31] developed a high-order combined panel and spectral method for mod-

elling wave interactions with two-dimensional submerged bodies like the circular cylin-

der. Scullen [23] used a nonlinear panel method to compute the free-surface flows for

submerged spheroids.
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1.3.2 RANS Methods

Reynolds-averaged Navier-Stokes or RANS methods include the effects of viscosity.

In so doing, RANS methods promise to better model the flow field in numerical sim-

ulations. This advantage is not without cost, of course. Although they are getting

faster every year, due to increases in computer speed and improved numerical meth-

ods, RANS methods are generally much more computationally expensive than panel

methods.

RANS methods require the generation of complex three-dimensional numerical

grids - a well known bottleneck in computational fluid dynamics (CFD) [5]. This will

be discussed in greater detail later in this thesis.

Since it doesn't make much sense to include the effects of viscosity without the

effects of turbulence, RANS methods require the development of turbulence models.

Turbulence models have improved tremendously in recent years but remain a source

of uncertainty and instability in the RANS methods.

RANS methods also suffer from excessive numerical damping of the solution in

the far field, which prevents accurate calculation of the far-field, particularly the far

wake. This problem has been addressed in the literature but is still largely unsolved.

These disadvantages are especially significant in the current research. To compute

maneuvering coefficients for even a single geometry requires many dozens of three-

dimensional simulations. Inefficient, unstable and highly dissipative RANS simula-

tions would preclude their use in such applications.

Panel methods are far more computationally efficient than RANS methods and do

not have a problem with numerical dissipation, but they ignore the effects of viscosity.

It is therefore logical to utilize the strengths of each and to avoid their weaknesses by

coupling the two methods.

Several authors have used this coupling approach to simulate the free-surface flow

past surface ships. Tahara and Stern [30] coupled a RANS method with a source

doublet method by using the RANS solution to create a displacement body which

the panel code used to calculate the free-surface flow.
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1.3.3 Hybrid Methods

Hybrid methods use both panel methods and RANS methods in the prediction of flow

fields around marine vehicles. Hybrid methods are designed to take advantage of the

strengths of each and avoid their weaknesses. In other words, the panel code is used

in that part of the flow domain where the flow is believed to be dominated by inviscid

effects and the RANS code is used only where the viscous effects are important. In

practice, this means that the RANS code is used near the body and the panel code

is used everywhere else.

Campana et al. [1] used a linearized potential-flow method coupled with a near-

field viscous method coupled with a free-surface for flows about surface ships. Their

method requires a calculation with the RANS and potential methods employing a

double-body solution, and then a second calculation with the free-surface effects taken

into account. The solution of the second calculation is then used. In the current

method the RANS and panel methods no double-body solution is required. Thus, it

is believed that the current method is a more efficient approach.

Chen et al. [3] used a combination of RANS and panel methods to iteratively

calculate the free-surface flow with both the RANS method and the panel method

for flows about surface ships. Their method also requires a double-body solution,

and then the free-surface effects are taken into account. However, it differs from

the approach of Campana et al. by taking into account the free-surface effects more

than once. The procedure is as follows: 1) the double-body solution is computed, 2)

the free-surface effects are computed, 3) steps 1 and 2 are repeated until the desired

convergence is achieved. The velocities used as the boundary condition for the double-

body calculation are, however, no longer double-body velocities. Thues, there is an

inherent inaccuracy to this approach that is not present in the current method. The

current method will be discussed in more detail in later chapters.

There are obvious advantages to the hybrid approach. Since the vast majority of

most flow domains can be characterized accurately as inviscid, the viscous domain

need not be very large. Since viscous codes are generally much slower than panel
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codes, this benefit leads to huge computational cost savings.

Additionally, since RANS codes suffer from excessive numerical dissipation, con-

fining the viscous domain to very near the body can mitigate this damping and

improve the overall accuracy of the prediction.

Unfortunately, there is no such thing as a free lunch. Both RANS and panel codes

tend to be complex and difficult to use. Efficiently converged solutions from either

method can be difficult to obtain for complex three-dimensional geometries. Using

both in tandem can exacerbate these problems. It is, therefore, essential to use both

efficient and robust RANS and panel methods when performing hybrid calculations.

Another important issue that arises when using hybrid methods is that RANS

methods operate with velocities while panel methods generally use velocity potentials.

Translating between the two naturally introduces another possibile source of error.

1.4 Numerical Grid Generation

No discussion of CFD would be complete without considering the generation of nu-

merical grids. Recent advances in solving the Navier-Stokes equations have far out-

stripped advances in grid generation. For many years grid generation has been cited

as one of the most significant bottlenecks in CFD simulations.

Grid generation is not a botteneck because it is technically difficult. In fact,

generating a three-dimensional numerical grid around even complex bodies can be

simple in principle. It is a bottleneck, however, because it is usually quite tedious

and time consuming.

Traditional grid generation methods using graphical user interface driven com-

puter programs can only do so much to speed the process. These programs make it

relatively easy to generate grids around even the most complex geometry. Although

much of the process can be automated, without exception it is difficult to generate

many grids of similar geometries and or similar domains without human interaction.

Engineers wishing to design a vehicle to operate near a free surface must consider

a high-dimensional parameter space of operating conditions. Speed, depth, angle of
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attack and geometry are often the most important parameters that must be varied

in the design process. The cumulative total number of unique operating conditions

that must be tested and accounted for can easily approach the tens of thousands. In

other words, if numerical procedures are to be used to predict the maneuvering char-

acteristics of near surface submarines, a range in geometry and operating conditions

of many thousands of calculations must be performed.

It is absolutely critical then that every aspect of the numerical procedure (the

RANS method, the panel method and the numerical grid generation method) be

extremely efficient, i.e. there can be no bottlenecks. For the present research a novel

method for efficiently generating thousands of numerical grids around submarines for

various speeds, depths, angles of attack and geometry was developed.

The technique developed here takes advantage of the inherent similarity of all

grids around submarine-like geometries to remove the need for human intervention

when changing speed, depth, angle of attack and geometry. Thus, it was possible to

generate many thousands of three-dimensional numerical grids for the current research

without the human intervention that slows traditional grid generation. This in turn

has enabled the establishment of a database of maneuvering coefficients to be used

by engineers to design new submarines.

1.5 Current Method

The method used in the current research is a hybrid method in that it uses both a

panel code and a RANS code. In this case the panel code is used in the "outer"

domain, which includes the free-surface. The RANS code computes the fluid flow

only near the body or in the "inner" domain. The flow is assumed to be steady and

the free-surface initially undisturbed.

The novelty of the approach lies in the use of a region of overlap by both the

inner and the outer domains. This overlapping region is chosen so as to exclude the

boundary layer near the body and the free surface itself.

Thus, the panel code is used in a region outside the boundary layer near the body
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up to the free-surface and extended in all other directions to infinity. The RANS code

is used only in the region near the body including the boundary layer and in the wake

where viscous effects are most important.

The flow within the overlap region is considered to be nearly potential, but because

viscous effects are included in this region it need not and can not be entirely potential

with the current method.

In brief, the current method uses the RANS code to calculate the viscous flow near

the body and to determine the bounday condition for the panel code just outside the

viscous boundary layer. The panel code uses this to calculate the outer boundary

condition for the RANS code given the current speed and depth. The two domains

do not just meet on a surface but overlap each other. This process is repeated in an

iterative manner until some measure of convergence is satisfied.

Solutions are obtained after 10 or less iterations of the RANS and panel codes.

Numerical grids are generated automatically. Parameters such as speed, depth and

angle of attack are varied automatically. Over one thousand three-dimensional solu-

tions were calculated to generate a small database of maneuvering coefficients. This

database can be used as is or built upon to provide immediate insight into the ma-

neuvering characteristics of submarines operating near a free-surface.

Several smaller computer codes were developed to assist in the coupling of the

grid, panel and RANS codes. A sophisticated UNIX shell script was developed to

manage the execution of the computer codes as well as to automatically carry out the

parameter studies.

The current combination of efficient computer codes and sophisticated shell scripts

combine to make possible for the first time the prediction of maneuvering character-

istics for a broad range of near surface submarines.

1.6 Validation and Verification

Published predictions of forces and moments using any method for near-surface sub-

merged bodies are a rarity. Predictions of maneuvering characteristics are even more
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rare.

This is due at least in part to the scarcity of high quality experimental measure-

ments. It is also, no doubt, due to the difficulty in obtaining accurate, converged

comparisons with the experimental data that is available.

There is no unclassified experimental data available with which to compare numer-

ical predictions of submarines operating near the free-surface. All of the near-surface

comparisons included in the present research are either indirect or with theory.

Because of the lack of validated predictions for near-surface cases by the current or

any other method and because there is scant experimental data with which to directly

compare the current computations, it was uncertain at the beginning of this research

if including the free-surface in such calculations was even practical. Therefore, to

begin it was necessary to perform a large number of calculations to predict the forces

and moments on bodies in an infinite fluid. These predictions are included in Chapter

7.

A number of things can be done to validate and verify numerical predictions in the

absence of experimental data. Many of these things should be done in the presence of

experimental data. They include grid convergence and iterative convergence studies

and comparisons with theory.

1.7 Content of Thesis

The remainder of this thesis examines, in detail, each of the three principal compo-

nents of the new coupling method, the preliminary validation that was performed,

and the results of the analyses

Chapters 2, 3 and 4 detail the RANS, panel, and grid methods used, respectively.

Chapter 5 discusses the new coupling method. Chapter 6 considers the geometries and

numerical grids used. Chapter 7 presents the preliminary work that was performed to

verify and validate the RANS code. Chapter 8 presents the results of the validation

and verification of the new method. Chapter 9 details the maneuvering characteristics

of the geometries considered. Chapter 10 presents the free-surface wakes generated by
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the geometries under a number of flow conditions. Finally, conclusions are presented

in Chapter 11.
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Chapter 2

RANS Method

2.1 Introduction to the RANS Method

Three major computer programs were coupled in the current research to 1) generate

numerical grids, 2) compute viscous flow near the body and 3) to compute the poten-

tial flow away from the body. The viscous flow is computed by the Reynolds-averaged

Navier-Stokes, RANS, code IFLOW representing the work of Sung et al.[24], [25], [26],

[27], [28], Tsai et al.[32], Huang et al.[13] and Griffin et al.[9].

IFLOW solves the two- and three-dimensional incompressible steady and unsteady

RANS equations using a non-linear k - w turbulence model developed by Wilcox[34]

for closure.

The IFLOW code was chosen for the present research in large measure because of

the extensive prior effort made to validate it against a wide variety of experimental

measurements including forces and moments on deeply submerged bodies. IFLOW

has also been shown to accurately characterize boundary layer flows, and flows with

crossflow separation which typically occur around maneuvering vehicles. This prior

work was critical to the success of the current research as calculating forces and

moments on submerged bodies is a relatively new challenge for RANS codes and only

one other RANS code is known to have been used for this reason.

IFLOW has also been shown to be one of the most computationally efficient RANS

codes. To calculate maneuvering coefficients over a wide range of operating conditions
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required many thousands of complete three-dimensional calculations had to be made.

Inefficient use of available computational resources would have made it impossible to

present the extensive set of results shown in later chapters.

IFLOW has also been proven to be an extremely robust computer code despite

the fact that it is a "research code". In general, if IFLOW converges at one set

of conditions for a particular geometry it will converge at all conditions for that

geometry. This is another critical characteristic that enabled the completion of the

parameter studies included here.

Finally, IFLOW has been shown to yield grid independent solutions for complex

geometries at what are considered to be rather modest grid resolutions. Showing grid

independence in RANS calculations is, in general, a time consuming effort.

In the following sections the numerical schemes implemented in IFLOW are pre-

sented and the turbulence model is described.

2.2 Governing Equations

The governing equations are written as

OU= 0 (2.1)
axi

U+ - + a (vOj - Ti) (2.2)at OXj axi axj axj

OK 0 & OK Owsat + (uK) - [(v + kiVt) ]= - _i - *K (2.3)
at Ox3  Ox3  Ox, Ox,

Ow a a Ow w Ou9
+ - (uiw) [ (V + OYVt)] = -a-Ti, - 2 (2.4)at axj (9xj x K ax-,

where 3* = 0.09, 3 = A, a = , or = or=, ui is the Cartesian velocity component,

p* is the pressure divided by a constant density p, k is the turbulent kinetic energy,

w is the specific dissipation rate, v is the kinematic viscosity, vt is the eddy viscosity

29



given as k/w and ri is the Reynolds stress tensor.

The variables are non-dimensionalized as follows: ui by the free stream velocity

Uo, xi by the characteristic length L and p by pUo 2 /2. L here is the length of the

submarine. The origin of the coordinate system is fixed at the bow of the submarine.

The x-axis is along the longitudinal axis of the vehicle with positive pointing aft. The

y-axis is in the lateral direction with positive pointing starboard. The z-axis is posi-

tive in the upward direction toward the free-surface to form a right hand coordinate

system.

The above equations are solved by the artificial compressibility approach first

proposed by Chorin [4] and improved by Turkel [33]. In this approach an artificial

time derivative of pressure is added to the continuity equation to permit the solution

to be advanced in time. Without this derivative the system of equations is singular.

This approach has been successfully used by Chang and Kwak [2]. A finite volume

method is used.

The mean flow is discretized by a second-order accurate central difference method

with fourth-order dissipation terms. The turbulent mean flow is discretized by one of

the upwind schemes suggested by Yee [36]. An upwind scheme is used for the turbulent

flow because the matrix is already diagonal. Therefore, there is no additional cost in

doing the characteristic formulation.

The time step is based on an explicit one-step multi-stage Runge-Kutta method to

reach a steady-state solution. Several convergence acceleration techniques including

multigrid, local time step, preconditioning and bulk viscosity damping are imple-

mented by the IFLOW code.

A multi-block grid structure is used for complex geometries. For example, the

SUBOFF body with sail is conveniently discretized with a grid block that wraps

around the body and a second block that extends from the sail cap to the outer

boundary. This grid structure or topology is not only convenient, but it also makes

generating grids with non-crossing grid lines much easier. A similar grid structure is

used for the two geometries with stern appendages.

Because we are interested only in the steady state solution, local time stepping is
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used to accelerate convergence. Each point in the grid is advanced by the maximum

possible time step rather than the global maximum or constant time step. This is

advantageous when time steps vary dramatically from one area of the grid to another.

Numerical preconditioning is used to make the speeds of the various wave modes

more or less the same so that convergence can be accelerated. This is important

when using the artificial compressibility approach to solve for the incompressible flow

because the sound speed (one of the wave modes) propagates much faster than the

fluid speed.

The preconditioned mean flow with viscous terms neglected is written in conser-

vative form, i.e. the coefficients of the derivative terms are constant, as

P,-qt+Fx+Gy+Hz =0 (2.5)

where the preconditioned matrix P and the three components of fluxes F, G, and H

are defined as

(1 + 7y)--2  A--2u AO3-v A3-2w -

_ #/3u 1 + 'y- 2u2 ~y/32vu i/- 2wu70-2 = ,y-U 02V y- (2.6)
#Y/- 2v #Y3-2UV 1 + .yt3 2v2  _y7-2wv

-y-2w -y3-2UW _yf- 2vw 1 + y-2W 2

where A = 1+a +-y, and

S*- - U

2 *

U U2 +p* -TXX
q= ,F=

V UV TXY

W UW -TxL w -L - ,z (2.7)

VUW-

G _ - TYX UW - TzX

v 2 + p* - TYY VW - TZY

vw - Tyz J L W 2 +p* _ Tzz .
where a, 0-2 and y are preconditioning parameters.

For mathematical analysis, it is easier to write Eq. 2.5 in nonconservative form,

i.e. the coefficients of the derivative terms are non-constant,
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P qt + Aqx + Bqy + Cqz = 0.

The preconditioning matrix P 1 is now changed to

(I + 7),8- 2 -to32U -y/- 2V 70/3 2W

a/- 2 u 1 0 0
P- 1 = (2.9)

a6-2V 0 1 0

a/- 2w 0 0 1

For the present research a = 1, y = 0 and 0-2 = max(Iu1 2, E), where E= 0.7.

The final system of equations to be solved in conservative form is

P,-lqt + Fx + GY + Hz = (PO 1|PAjqXXX)
~ + PfjP~q~~)~.(2.10)+( Po-'|PBlqyyy )y + ( Po-'|PCqizz )z -

2.3 Multigrid Technique

The multigrid method developed by Jameson[14] to accelerate the convergence of a

system of hyperbolic equations has been implemented in IFLOW. By the cyclic use of

a sequence of fine to coarse grids, the multigrid technique is very effective in damping

the solution modes with long wave lengths, which are primarily responsible for slow

convergence.

In the present research a 3-level V-cycle multigrid technique was used. Boundary

conditions are updated at each Runge-Kutta stage of every grid level in the fine-to-

coarse path. They are not updated in the coarse-to-fine path. This practice is mainly

to avoid introducing boundary condition interpolation errors.

For ease of coding the grid cell number in each coordinate direction for a coarse

mesh is half that used for the next finer grid. The computational grid is generated

in the following manner. A very fine grid with a sufficiently large number of grid

cells to achieve the desired resolution in rapidly changing flow regions including near

the walls is first generated. The next coarser grid is generated by removing every

other point in the fine grid in each direction. This procedure is repeated to form the
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coarsest of the grids.

The 3 level V-cycle solution procedure is as follows:

1. Solve for the flow in the finest grid.

2. Interpolate that solution onto the next coarser grid.

3. Solve for the flow in that grid.

4. Interpolate that solution onto the coarsest grid.

5. Solve for the flow in the coarsest grid.

6. Interpolate that solution onto the next finer grid.

7. Solve for the flow in that grid.

8. Interpolate that solution onto the finest grid.

9. Solve for the flow in the finest grid.

10. Repeat Steps 1-9 until prescribed convergence criteria are met.

2.4 Boundary Conditions

Boundary conditions used at the solid wall are that the three components of the

velocity and the normal pressure gradient are set to zero.

Two far-field boundary conditions are used here. The downstream or outflow

boundary uses a zero gradient for the three velocity components and a non-reflecting

condition for the pressure using the technique developed by Hedstrom[11] and Rudy

and Strikwerda[22].

The non-reflecting boundary condition is particularly important for computations

in small domains such as those used here. It has been carefully implemented such that

convergence rates do not deteriorate noticeably for even the smallest domains used.

This condition is obtained by setting the time derivative of the characteristic variable

corresponding to the negative eigenvalue equal to zero as detailed by Sung[29].
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The upstream and far-field boundary conditions use the velocities calculated by

the panel code, FKX (see Chapter 3), and the same non-reflecting condition for the

pressure.

2.5 Turbulence Model

Time averaging or Reynolds averaging the Navier-Stokes equations results in the

appearance of the correlation -pu'u on the right hand side of the equations (the

Reynolds-averaged Navier-Stokes or RANS equations). This term is referred to as

the Reynolds-stress tensor and is usually denoted by rij. To compute all mean flow

properties of the turbulent flow a means of computing -ri is needed. Since rij = Tji

is a symmetric tensor, it has six independent components and therefore six unknown

quantities are produced as a result of Reynolds averaging. Thus a means of closing

the RANS equations is necessary, which in the present context means that rij must

be modeled. This is what is meant by turbulence modeling.

There are many different types of turbulence models. The most popular being

zero-equation and two-equation models. Each uses the Boussinesq eddy viscosity

approximation to compute rij as the product of an eddy viscosity and the mean

strain-rate tensor. The eddy viscosity is often computed in terms of a mixing length

that is analogous to the mean free path in a gas. Prandtl's well known mixing length

hypothesis leads to a model for rij or r,, in two-dimensions:

T., =_ vrdU/dy, (2.11)

where U is the velocity of the fluid, y is the direction normal to the wall and vT is

the eddy viscosity given by

VT 1Ix dU/dy |. (2.12)

Calculating vT is the fundamental problem of algebraic turbulence models. The

eddy viscosity and thus the mixing length depend upon the flow under consideration

and therefore must be specified in advance. This means that algebraic models of

turbulence are incomplete models.
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Two-equation turbulence models compute the turbulent kinetic energy as well as

the turbulence length scale and are therefore complete models of turbulence, i.e. they

can be used to predict properties of a given flow with no prior knowledge of the flow.

The K-w turbulence model is a two-equation model that solves the kinetic energy

of turbulence equation, K, and the dissipation per unit turbulence kinetic energy, w.

Several other definitions of w are given in Wilcox[34]. He attributes to Saffman the

following: w is "... a frequency characteristic of the turbulence decay process under

its self interaction ... ," and "... w 2 is the mean square of the vorticity of the 'energy

containing eddies' and K is the kinetic energy of the motion induced by the vorticity."

In the same reference w is identified as the RMS fluctuating vorticity or enstrophy

and as the ratio of e to K, i.e. the rate of dissipation of turbulence kinetic energy.

The standard two-equation K-w turbulence model as in Wilcox[34] is used for this

analysis.

aK aK uii a aK
+ Ui i - # i /*Kw + [(v + *vT) -] Ot axi ax xi axi

ow+ U, w= a i -- Ow2 + [(V + UVT) ] (2.13)
at Oxi K Oxj axi Oxi

where t is time, xi is the position vector, ui is the velocity vector, v is the kinematic

viscosity and -rij is the sum of the molecular and Reynolds stress tensors. Also vT =

K*1,0* = , = .= 0.,1 = =

Near the wall: y ~ 0; r12 = - ' '2 VT ; u = , ln[ury]; K = ;
__1_2_2 _jY2 5
"r - =# =3-(data) 9 .""

K 10 *

The terms in the above equations are defined as follows:

aK OKK+ U K (2.14)
at i8xi

is the rate of change of K following a fluid particle

ri ,i (2.15)Oxj
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is the turbulent kinetic energy production term or the rate at which kinetic energy is

transferred from the mean flow to turbulence.

#*Kw (2.16)

is the K dissipation term or the rate at which turbulent kinetic energy is converted

into thermal internal energy.

[(v + U*VT) OK (2.17)
Oxi axi

is the molecular diffusion term or the rate at which turbulent kinetic energy is diffused

by the fluid's natural molecular transport process. The above definitions may be

applied to the terms in the w equation by replacing turbulent kinetic energy and K

by dissipation of turbulent kinetic energy and w.

Wilcox[35] conducted a review of the six closure coefficients (y a, Y*, a, U*, #
and 3*) and suggested the values listed above. Also presented were arguments "as

physically meaningful as possible" from which these coefficients could be established.

These arguments are extensive and therefore won't be included here. In short they

consist of a combination of scaling of the equations describing the flow (RANS, et al.)

and experimental observations.

2.6 Modifications to IFLOW

The method by which IFLOW is coupled to the other computer programs involved

in the current research is described in greater detail in Chapter 5. In brief, great care

was taken to modify IFLOW as little as possible to complete this coupling.

This approach was taken to enhance the maintainability of the coupled method.

IFLOW is constantly being updated with enhanced turbulence models, numerical

schemes and many other features. By making only small modifications to this code

and the other computer codes, it should be possible to rapidly update each component.

The coupled method thereby maintains a high level of modularity.
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Obviously, some maintenance has to be performed, but in this case it is almost

entirely confined to much smaller and more manageable computer programs, which

translate the output from one code into the input of another code.
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Chapter 3

Panel Method

3.1 Introduction

The second major component of the method developed here is a computer program

that computes the velocity field in the potential flow region or overlap region, which

is outside the boundary layer region of the body. The Fourier-Kochin (FKX) code

developed by Noblesse et al. [15]-[19] was selected for this task for a variety of reasons.

As with IFLOW, FKX has a long development history with a strong emphasis on

generality, accuracy, efficiency and robustness. All of these qualities are essential to

enabling the massive number of computations described in later chapters.

A unique characteristic of FKX makes it even more attractive for coupling with a

viscous flow code. FKX computes the velocity field in the potential flow region given

a velocity distribution at a boundary surface rather than a potential distribution at

the boundary surface. This feature greatly simplified the coupling of FKX to IFLOW,

which also only deals with velocity distributions and not velocity potentials, which

do not exist in the viscous domain. No conversion from velocities to potentials or

from potentials to velocities was necessary. Therefore, two possible sources of error

were eliminated.
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3.2 Governing Equations

FKX is a 3-D potential-flow computer code based on a free-surface boundary condition

linearized about the uniform stream opposing the forward speed of the vehicle. The

free-surface Green function satisfying this linearized free surface condition is used.

Variables are nondimensionalized as follows: t* = t/ L/g, Y* = Y/L, V* =

16/ gL, pressure p* = p/pgL, and the potential 0* = q/Lfg i, where V' is the velocity

vector (u, v, w), Y is the position vector (x, y, z), g is the acceleration due to gravity,

and p is the fluid density. The * indicating that those variables are nondimensionalized

will be dropped hereafter.

The velocity vector, 17, is the disturbance velocity. RANS velocities include the free

stream velocity. Therefore, to convert from the panel domain to the RANS domain

the free-stream velocity must be added. To convert from the RANS domain to the

panel domain the free-stream velocity must be subtracted, i.e. V-panel = VRANS - Uoo.

The forward speed of the ship and the frequency of the ambient regular waves

are denoted U and ww, respectively. The flow due to the ship depends on two non-

dimensional parameters FrTL = U/gL is the Froude number and fL = w,, L/g is

the nondimensional frequency.

The velocity potentials of the steady and the time-harmonic flow components are

defined in terms of a growth parameter c as R[q(Y)e-ift]. We have E > 0 so that the

flow vanishes as t -+ -oo. Steady and time-harmonic flows are obtained in the limit

---+ 0.

Laplace's equation V2q = 0 is solved subject to the far-field boundary condition

= O(1/x2 + y 2 + z 2) as x 2 + y2 + z -+ oc and the linear free-surface boundary

condition

- (f + ic - iFrL x 0. (31)
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3.3 Green Function

The Green Function can be expressed as a sum of two components:

G = GS +GF

where GS is the Rankine component and GF is the free-surface component.

The Rankine component of the Green function is written as

4-G s = - -+ 1

r r'

where

r = (X - )2 + (y - 71)2 + (z - ()2

r'/ = (X - )2 + (y - rI)2 + (Z + () 2.

The free-surface component of the Green function is given as

47r2 GF = lim +00+00 eZki(X+Y) dad,-40+ - -o Fr2a2 - k - iEsign(a)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

where k = V/a2 +/ 2 , (X,Y, Z < 0) = (x - ,y - rj, z + (), and (x,y, z 0) is the

location of the singularity and ( , rj, ( 0) is the flow observation point. Finally,

E = ek(z-zo)+i[a(x-xo)+6(y-yo)] (3.7)

The dispersion function, D, is given as

D = (FrLa)2 - k. (3.8)

In the Fourier-Kochin formulation calculations involve distributions of singularities

of the form

40



p= Go (3.9)

and

P = VG -6 (3.10)

P is the hull panel or waterline segment near the point f (xO, yO, zO), which is

in the middle of the hull panel or waterline segment, and o, 5= (6x, 6Y, 6,) are the

source and dipole densities, respectively.

The usual panel method approach is to evaluate G and VG then integrate. In

the Fourier-Kochin approach the space integration is performed first with respect to

x and then a Fourier integration with respect to a and # is done. Thus the Green

function is not evaluated directly. It is instead based on the Fourier representation of

the free-surface component, PF

+o +oo SeZk-i(Xa+YO)
47r2PF lim 2 f dad3 (3.11)

-+ TOO Too Fri2 - k - icsign(a)

where (X, Y, Z < 0) = (c - xo, 17 - yo, ( + zo) and S is the spectrum function defined

as

S= Eo (3.12)

S = J E(ia3x + i,36y + k6z) (3.13)
SPo

For the current research sources and dipole densities are evaluated on the boundary

surface S using the Green identity. These densities are expressed as functions of the

velocity components on S'. The function S becomes

S(a, f) f ASi k(z-zo)+i(a(x-xo)+O(Y-YO) dA (3.14)

where dA is the differential area element of the surface Sz and
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As' =- u- - n- + Z( t' - -tY)U - S - i ( -s - s Y)U t (3.15)'k k *k k

Notice that each variable in Eq. 3.15 is either a geometric variable or a velocity

variable. The velocity potential is not a part of this equation. This is one of the

key differentiators of the FKX method: velocities rather than velocity potentials are

used. This approach lends itself well to coupling with RANS methods, which use only

velocities as well.

The current coupling method will be explained in more detail in Chapter 5. It is

helpful, however, to point out some of the features of the method here. The coupling

method relies on an overlap of the panel and viscous domains. A surface in the RANS

domain which lies between the inner and outer surfaces of the RANS domain is used

as the inner surface of the panel domain. The surface S' serves as this inner surface of

the panel domain. Velocities on this surface are used by the FKX code to determine

the velocities at the outer boundary of the RANS code.

3.4 Modifications to FKX

As with the IFLOW code, great care was taken to limit the number of modifications

to the FKX code to couple it with the other codes. The resulting coupled system of

complex computer programs is therefore much easier to maintain.

Several minor modifications were made to the FKX code, but a sophisticated

generalized computer program was developed to carry out the majority of the tasks

associated with coupling FKX with IFLOW as well as with the GRID code described

in the next chapter.

The modifications to the FKX code were confined to the input and output routines

such that

Because the FKX code uses velocities rather than velocity potential the coupling

of the FKX and IFLOW codes was made easier.
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Chapter 4

Numerical Grid Generation

Method

4.1 Introduction

The third major computer code involved in the new method presented here is respon-

sible for generating the three-dimensional numerical grids that are used by the two

flow solvers. The code used here is called GRID and was developed by the author

specifically for the current research.

As mentioned previously, numerical grid generation is one of the biggest if not

the biggest bottleneck in CFD simulations. Grid generation is tedious and time

consuming in part because commercial grid generation software demands that users

intervene to make even the smallest modifications to the generated grids.

RANS analyses are becoming faster, cheaper and more robust every month. So

much so that RANS codes can now perform parameter studies on grid resolution,

geometry and flow conditions such as speed, depth and angle of attack. However,

without an easy way to modify an existing grid or to generate a new grid it would be

impossible to perform these parameter studies.

The GRID numerical grid generation code was developed to address these issues.

GRID attempts to obviate the need for human intervention to the greatest extent.

As a result, GRID can be used to generate thousands (or more) of unique two and
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three-dimensional numerical grids.

GRID was used to generate each of the several thousand unique, three-dimensional,

structured grids used in the current research.

4.2 Traditional Approach to Grid Generation

The common method used to generate numerical grids for RANS calculations begins

with a geometry. For example, to generate a grid for a body of revolution one would

begin with the offsets, e.g. the radius at a number of longitudinal coordinates (r vs.

x). These offsets would be loaded into graphical user interface (GUI) driven numerical

grid generation software and a grid would be generated by first fitting the offsets with

some sort of spline, distributing points along the body, defining the size of the grid

domain and the spacing required in the three coordinate directions.

Grid points would then be distributed along the twelve edges of the computational

domain. Two-dimensional grid generation methods such as transfinite interpolation

or elliptic methods would be used to create grids on the six faces of the computational

domain. Finally, a three-dimensional volume grid generation method would be used

to create the volume grid. For a complete discussion of traditional numerical grid

generation see Thompson [8].

If, during the course of the investigation, the offsets of the body were to change the

grid would need to be regenerated by the user interactively. To change the number

of grid points in any direction would also require interaction through the GUI. If the

grid were used in a RANS calculation and were found to be inadequate, e.g. there was

not enough resolution near the body or the domain size was too small, the grid would

be regenerated through the GUI. If a grid sensitivity study were to be performed each

grid in the study would be generated through the GUI.

In brief, if the traditional approach to numerical grid generation is employed every

modification to the grid requires human interaction with the GUI driven software.

Human interaction is not only slow, but it is a potential source of error.

Typically, it requires anywhere from several hours to several days to complete the
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first numerical grid after the offsets have been defined. It then requires from minutes

to hours to make each of the above described modifications.

Most of the steps described above are repeated many times while using CFD tech-

niques to study the performance characteristics of a geometry. Repetition is almost

always an opportunity for automation with the help of a computer program. It is this

repetitive characteristic of numerical grid generation methods that is exploited in the

current research to dramatically improve the efficiency of numerical grid generation.

In other words, every possible repetitive task is automated in the GRID computer

program.

In the current research several thousand grids were generated. Therefore, it was

not practical to use the traditional approach to numerical grid generation. Fortu-

nately, it was possible to automate every one of the above described steps such that

generating several hundred grids was no more labor intensive than generating one or

two grids. The act of automating each of the above steps resulted in a new grid gen-

eration code and that employs a unique grid generation method. This new method

is described in the next sections.

It is of interest to note that GUI driven software seldom runs on supercomputer

platforms like Crays where RANS codes are usually executed. Therefore, each time a

grid is generated or modified it must be transferred from the grid generation platform

to the RANS platform. Even with the current high bandwidth communications avail-

able, grids of many megabytes can be slow to transfer. Additionally, because binary

data is often platform dependent, grids are most often saved and transferred as ASCII

formatted files, which are much bigger than binary files. Finally, due to security issues

it is often impossible to execute a file transfer without human interaction.

The new grid generation method avoids the problem of transferring large grid files

by doing away with the GUI and running on whatever platform the RANS code runs

on.
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4.3 The Current Approach to Grid Generation

As mentioned above every possible attempt was made to automate the grid generation

process. In so doing a new grid generation method was developed. This method is best

described as a parametric method because nearly every step in the grid generation

process has been described by a parameter. These parameters are included in a simple

ASCII input file. Therefore, changing the input file and executing the GRID code

creates a new grid.

For example, to change the number of grid cells in one of the coordinate directions

requires a simple modification to a number, i.e. parameter, in the input file. The

same procedure is used to change many other characteristics of the grid including:

the distribution of grid points, geometry, domain size and body angle of attack.

Since the parameters are included in an ASCII file, they can be changed with any

number of computer programs. Therefore, changing the grid can be automated.

The most difficult and time consuming aspect of the current grid generation pro-

cess is to parameterize the geometry. Parameterizing the geometry is accomplished

by writing or modifying subroutines in the GRID code. This is explained in more

detail later. After a geometry is parameterized it becomes possible to substitute other

similar geometries with only a very small amount of additional work. It also becomes

possible to switch from one geometry to the next, e.g. SUBOFF to Albacore by

changing the geometry parameter in the input file.

The benefits of this method are great. No longer is human interaction required

for any but major changes to the numerical grid. Since major changes are seldom

made once a grid topology is settled upon, human interaction is almost completely

unnecessary in order to perform parametric studies involving the grid.

In fact, when a geometry such as a body of revolution has been parameterized it is

suddenly possible to generate grids for bodies of revolution of virtually any geometry.

Never before has it been possible to generate so many grids so quickly. In fact,

once a grid has been set up in the GRID code one can generate a virtually unlimited

number of grids with no human interaction whatsoever.
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4.4 Semi-automatic Grid Generation

Some human intervention is required at some point in the process of generating a

numerical grid. The method employed here requires that this intervention take place

at the very beginning of the grid generation process by writing software, but that

little or no intervention is required thereafter. Thus, the term "semi-automatic"

rather than "automatic" is used here to describe this method.

The geometries considered in the current research are all submarine-like bodies.

Several configurations were analyzed including: bare hull, bare hull plus sail, bare

hull plus stern appendages. Two bare hull geometries were considered: SUBOFF and

Albacore.

Fundamentally, all structured grids are very similar to each other. Grids can

be described parametrically such that they are virtually indistinguishable from each

other. Grids are often described in a parameter space like i-j-k space rather than

x-y-z space. Here i, j and k correspond to the three boundary fitted computational

coordinate directions, while x, y and z correspond to the three cartesian coordinate

directions.

Figure 4-1 illustrates the difference between computational and physical space

and how one maps to the other. An important observation to make here is that the

computational space does not indicate the geometry. In other words, the geometry

could have been the SUBOFF bare hull, a prolate spheroid or virtually any other

body of revolution.

For example a two-dimensional c-grid' around a hydrofoil section would be de-

scribed in parametric or computational space as being a rectangle. A three-dimensional

c-h-grid around a wing would be described in parametric space as a cube. It is easy

to see that if the shape of the hydrofoil or wing changes only slightly the parametric

'A two-dimensional single block grid is typically described as a c, o or h-grid. The letters
correspond roughly to the physical shape of the grid. A two-dimensional grid around a hydrofoil
that starts at the outflow boundary, sweeps forward and wraps around the foil and ends at the
outflow boundary is a c-grid. Three dimensional grids are typically described as combinations of the
these three types of grids. A three-dimensional grid might be a c-grid in the i-k plane and an o-grid
in the j-k plane. It would then be called a c-o-grid.
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Figure 4-1: Computational space versus physical space for the body of revolution
configuration.

description of the grid wouldn't change at all, i.e. a grid for a NACA0012 hydrofoil

would be parametrically identical to a grid for a NACA0016 hydrofoil.

It follows that a grid for the SUBOFF bare hull can be made to be parametrically

identical to a grid for the Albacore bare hull. That is exactly what GRID does

whenever possible. In other words, geometry is a parameter in the GRID code.

Switching from one geometry to the next is as simple as changing a flag in the GRID

input file.

These geometries are supplied either through input files or by writing extensions

to GRID's integrated geometry library.
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4.5 Grid Configurations

Each grid configuration must be built into GRID by writing extensions to the GRID

code. In this research submarine configurations were built one step at a time. For

example, the first configuration considered was the bare hull. Then a configuration

was built that added the sail. Then another configuration was built that added stern

appendages and so forth. Modifications were made to allow for variations in the angle

of attack and size of the grid domain.

This is, no doubt, the single biggest drawback of this method. Writing such code

can be difficult and tedious. The benefits described here, however, far outweigh the

difficulty of writing such code. In other words, generating one grid is still a bottleneck,

but once it's generated a virtually unlimited number of variations can be made to it

with ease.

Once a configuration is built into GRID, it is reasonably simple to add another

geometry through modifications to the geometry library or to make modifications

to a geometry through input files. For example, the submarine bare hull configu-

ration allows users to swap in any submarine-like geometry. Currently, there are 6

submarine-like geometries built into the library.

It is also easy and straightforward to make modifications to a geometry once it's

in the library. For example, through the GRID input file it is possible to modify the

length of the parallel middle body of every submarine-like geometry. The position,

span, chord length and angle of attack can be modified for configurations with stern

appendages.

It should be noted that, commonly, the angle of attack, AOA, of a submarine

is not changed in the grid. Coordinate transformation within the RANS code make

such changes simple. However, this was not possible here due to the presence of the

"fixed" free-surface. In other words the AOA of the submarine was modified with

respect to the free-surface.

Modifying the AOA automatically required great care due to the challenge of keep-

ing grid lines from crossing. In particular, as the depth diminished the domain size
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necessarily became smaller making changes to the AOA troublesome. Nonetheless,

variations in the AOA between 4' were done for each geometry considered and at

all depths considered.

4.6 Summary of Method

Note that no mention has been made of GRID being a completely general grid gen-

eration code. There is little hope of such a code being developed in the near future.

Instead, GRID is focused on being a completely general submarine grid generation

code. (Previous work on GRID by the author also included surface ships and several

other types of grids.)

The grid generation procedure used by here can be summarized as follows:

" Define the commonalities of all grids. For example:

1. Domain size

2. Sub-domains or blocks

3. Number of grid points in each direction in each sub-domain

4. Spacing of grid points in each direction in each sub-domain

* Abstract the geometry of interest into the fragments that make it up. Examples

of fragments:

1. bow

2. stern

3. sail

4. stern appendages

" Abstract the fragments into the parameters that define them. Examples of

parameters:

1. length
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2. height

3. shape

4. position with respect to a reference

" Place all parameters in an easily modifiable ASCII input file.

- This is critical for performing automated parameter studies.

" Write computer code that generates the fragments which are now independent

of the underlying geometry.

" Write modifications or enhancements to the integrated geometry library.

" Put the bits and pieces together to make a complete 3-D numerical grid.

4.7 Parameter Studies

Obviously, if all that is required to change a geometry is a modification to an input

file then these changes can be made automatically with little extra effort by using

utilities that can modify these input files. In the present research UNIX shell scripts

were used along with the sed2 command to modify the parameters in these input files

to accomplish the parameter studies presented herein.

The following parameters were varied for the current research:

" Configuration - bare hull, bare plus sail, bare hull plus stern appendages

" Geometry - SUBOFF, Albacore

" Domain size - as depth decreased the viscous domain size decreased so as not

to intersect the free-surface

2sed is the UNIX "stream editor" command. It takes as arguments editing commands and a
filename. It then executes the editing commands on the named file. A typical command in the
present research would cause a parameter in the file to be changed from one value to another.
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* Grid resolution - to automate grid convergence studies, the number of grid

points in each direction can be changed automatically

" Grid spacing - as domain size changes the grid spacing must change

" Angle of attack - with respect to the free-surface

* Parallel middle body - length

The following parameters can be varied in GRID via input files for the geometries

considered here. In other words, no modifications need be made to the geometry

library itself to accomplish the following changes:

" Sail shape, span, width, chord length, position

" Stern appendage shape, span, width, chord length, position

" Hull radius

* Bow length

" Stern length

In addition several other configurations are available for each of the geometries

under consideration. They are:

" Bare hull with sail and stern appendages

" Articulated stern planes - with flap and with flap and tab, i.e. two and three

pieces

" Bare hull with bow planes

" Moving free-surface - for nonlinear, viscous free-surface calculations

" Inside water or air tunnel
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4.8 Summary

A robust, semi-automatic method for the generation of numerical grids was developed.

This method allows for the generation of grids for several submarine configurations,

including bare hull, bare hull plus sail, bare hull plus stern appendages. The method

is generic in the sense that different geometries can be easily substituted for each

configuration, e.g. SUBOFF and Albacore.

The grid generation method allows many parameters to be changed automatically,

i.e. without human intervention. Parameters that can be changed automatically

include grid resolution, grid spacing, domain size, geometry, configuration, and angle

of attack.

The generic and automated nature of the code allow it to be used for parameter

studies like those described in later chapters.

Since typical CFD publications include on the order of three or four numerical grids

and the current publication includes approximately 640 unique three-dimensional

grids, the current grid generation method is believed to represent an improvement in

efficiency of approximately two orders of magnitude over traditional grid generation

methods.

In fact, the current method is so robust and efficient that a new numerical grid was

generated for every condition studied, and over three thousand conditions ere studied.

Approximately one in five of these conditions required a unique grid. However, it was

simply easier to generate a new grid every time the conditions changed. This resulted

in 640 unique grids, but each of those was generated approximately five times.
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Chapter 5

Coupling Method

5.1 Introduction

In the present research the GRID, IFLOW and FKX codes have been coupled. As

mentioned previously the IFLOW and FKX codes were chosen because they have

been extensively validated and because they are both extremely robust and efficient.

The GRID code was developed here to those same standards so that there would be

no weak links in the coupled method. Since there were no weak links, the resulting

coupled method shared those same characteristics.

A great deal of effort was made to validate and verify the new method. In fact,

several thousand three-dimensional computations were made for five different geome-

tries subject to many different flow conditions.

5.2 Method

The coupling was accomplished by decomposing the flow field into viscous and inviscid

parts. Velocities calculated by the RANS code in the viscous domain are provided to

the panel code in the inviscid domain as boundary conditions and vice versa. This

process is repeated until the solution is converged. By overlapping the viscous and

inviscid domains the two codes can communicate with each other. Thus, the inner

viscous domain also includes some portion of the inviscid flow field. The results from
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this research indicate that the calculation of forces and moments is not very sensitive

to how the two domains overlap as long as the overlap region does not include the

boundary layer.

A schematic of the flow domain is shown in Figure 5-1. The two flow codes

communicate via velocities calculated at their common boundaries. The RANS code

provides velocities to the panel code at the inner panel boundary, and the panel code

will provide velocities to the RANS code at the outer boundary of the RANS domain

as well as on the free-surface. Conceptually, it may be useful to consider the surface

represented by the dashed line in Figure 5-1 as the body in the inviscid domain.

To couple two or more methods or computer programs it is necessary to translate

the output of one into the input of the other. One way to do this is to modify

each of the computer programs to conform to the requirements of the others. A

problem with this approach is that the best codes for this type of research are the

technologically most advanced and, therefore, necessarily research code. Research

codes are by definition constantly under revision. If the input/output scheme of one

of the codes is changed the above mentioned revisions must be made again. Thus,

maintenance of coupled research codes can be problematic. There seems to be little

that can be done about this problem unless some industry standards are established

for input and output of CFD codes.

Great care was taken to modify each of the three major codes as little as possible.

In fact, the coupling was accomplished through the input and output of each code

rather than by directly linking each code. In other words, the coupled codes remained

as independent as if they were uncoupled. The output of one code was used to create

the input for the next. There were no direct links in the source code from one code to

the next. There are several very important advantages to keeping the codes separate

in this fashion.

* Faster development time

" Easier to update individual codes

" Easier to maintain the necessarily huge and evolving code base
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* Less memory used during calculations

The one serious drawback to this method is the need to read and write many large

data files during a single computation. This drawback was mitigated by the fact that

less than 2% of the CPU time needed to accomplish a complete, coupled calculation

was spent in the reading and writing of files. This is due in part to the very fast

storage devices used by Cray computers and in part by the large amount of CPU

time needed to solve the RANS equations.

Several small computer codes were developed to translate the output from one

code into the input of the next code. Generality was emphasized while developing

each of these smaller codes to make them as parameter independent as possible, i.e.

independent of geometry or flow condition.

5.3 Implementation

The implementation of the method is outlined below.

1. Define parameters governing the flow such as depth, speed, geometry, and angle

of attack.

2. Define viscous inner (RANS) and inviscid outer (panel) domains.

3. Generate numerical volume grid for the inner RANS domain (shaded region in

Figure 5-1).

4. Generate numerical surface grid (panels) defining free-surface for the outer panel

domain.

5. Generate a surface grid on the inner boundary for the panel code.

6. Compute the flow in RANS domain.

7. Use RANS velocities at common boundary shown by dashed line in Figure 5-1

as boundary condition for panel domain.
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Free surface velocities
computed by panel code

Outer boundary of RANS domain:
Velocities here are provided by panel code

Figure 5-1: Schematic illustrating inner and outer flow domains for a submarine

operating near the free-surface. The inner domain is shaded. The outer domain

encompasses everything outside the dashed line and under the free-surface.

8. Compute flow in inviscid domain with panel code.

9. Update velocities at the outer boundary of RANS domain with the inviscid

solution from step 7.

10. Repeat steps 5 thru 8 until solution is converged. (see discussion below regarding

convergence criteria)

11. Compute hydrodynamic properties including forces and moments and surface

wave elevations.
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12. Repeat steps 1-10 until all speeds, depths, angles of attack and geometries are

considered.

Conventional convergence criteria were used to determine the number of RANS/panel

couplings. The root mean square of the pressure residual was required to drop by 4

to 5 orders of magnitude before a calculation was declared converged. In the present

research steps 5 thru 8 were repeated 5 times, which was adequate to satisfy the

imposed criteria. Each RANS iteration consisted of 40 iterations for a total of 200

RANS iterations and five FKX calculations for each condition.

A sophisticated UNIX shell script was created to manage the entire coupling

process. This script consisted of commands to execute the grid, RANS and panel

codes as well as several codes that assisted in the coupling of each. In addition the

script was used to cycle through the various sets of parameters studied here, such as

geometry, speed, depth, grid resolution, etc.

Since the GRID, IFLOW and FKX codes are all serial codes and since the author

had access to a multi-CPU Cray computer, several shell scripts were run in parallel

such that parametric studies were accomplished in a minimum amount of time.
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Chapter 6

Geometries, Grids and Domains

6.1 Introduction

As with any new method it is essential to make every effort to validate and verify the

method with theory and or experimental data under as many different conditions as

possible. This is the only way to understand the limitations of the new method. A

great deal of work was devoted to verification and validation in the current research.

An unusually large number of geometries and flow conditions were considered. Each

of the five geomtries and a few of the grids and domains used are presented in this

chapter.

All geometries and grids were generated using the GRID numerical grid generation

code described earlier in Chapter 4.

Due to time and resource limitations it is never possible to exercise any method

under every possible condition. However, a significant step toward validation and

verification of the current method was made here. Procedures used to conduct verifi-

cation and validation have been established by Roache[20]. These procedures include

grid and iterative convergence studies as well as comparisons with experimental data.

Five three-dimensional geometries were considered based in part on their relevance

to the research and in part on the availability of theoretical and experimental data

with which to validate the numerical method. Grid insensitive solutions were obtained

for each under a wide variety of conditions including changes in depth, speed and angle
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of attack, i.e. the solutions did not change significantly with increased grid resolution

all else being the same.

6.2 Geometries

The five geometries used were the SUBOFF bare hull, the SUBOFF with sail, the

SUBOFF with four stern appendages (no sail), the Albacore bare hull and the Alba-

core with four stern appendages (no sail).

The geometries considered here are shown in profile in Figure 6-1 and Figure 6-2.

Figure 6-1 shows the geometries without lifting tail surfaces. Figure 6-2 shows the

geometries with lifting surfaces. These geometries were chosen due to the availability

of force and moment measurements which were used to verify the current method.

Detailed descriptions of the characteristics of the SUBOFF geometries and exper-

imental setup can be found in Roddy [21]. Descriptions of the Albacore geometries

and experimental setup can be found in Dempsey [7].

6.3 Domain

The computational domain for the Albacore bare hull in an infinite domain, i.e.

not near the free-surface, is shown in Figure 6-3. In physical space the x-direction

corresponds to the longitudinal axis of the hull and increases from bow to stern, the

y-direction is the transverse direction and is positive to starboard, the z-direction

forms a right hand coordinate system and is positive in the upward direction. The

origin of the physical coordinate system is at the bow of the submarine.

In computational space the i-direction runs along the body in the longitudinal

direction, the j-direction starts at the top of the submarine and traverses the azimuthal

direction, and the k-direction starts at the body and is roughly normal to it. The

origin of the computational coordinate system is also at the bow of the submarine.

The grid is made up of a c-grid1 in the longitudinal-body normal (i-k) plane and

See Chapter 4 for a discussion of c, o and h grids

60



rILI~~ U

(a) Albacore bare hull

U
Lx(b) SUBOFF bare hull

(c) SUBOFF bare hull with sail

Figure 6-1: Geometries considered in the present research without lifting surfaces.

x (a) SUBOFF bare hull with four stern appendages

(b) Albacore bare hull with four stern appendages

Figure 6-2: Geometries considered in the present research with lifting surfaces.
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iconst plane

j=O plane

k=0 lane

j=jmax/2 plane

Figure 6-3: Domain: Coarse grid (40 x 24 x 24) for the Albacore bare hull in an
"infinite" domain.

an o-grid in the azimuthal-body normal (j-k) plane. All other grids for all other

geometries conform to a similar topology.

Figure 6-4 shows the coordinate system used.

6.4 Grids

Three parameters were varied that made it necessary to generate a large number of

numerical grids:

1. Grid resolution

2. Body Depth

3. Angle of Attack

The remainder of this section serves to illustrate just a few examples of the grids

generated as a result of these parameter variations.
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IHorizontal
Reference

Figure 6-4: Coordinate system.

6.4.1 Grid Resolution

In the verification of any CFD calculation it is necessary to determine the dependency

of the solution on the resolution of the numerical grid. If the calculations are shown to

be dependent on grid resolution then they cannot be trusted. In the current research

grid insensitive solutions were obtained for each of the five geomtries at a number of

conditions. Due to time limitations a representative subset of the parametric study

mentioned above was tested for grid sensitivity.

Three grids around the Albacore bare hull are shown in Figure 6-5.

The number of grid points listed in the figure corresponds to the longitudinal,

azimuthal and body-normal directions, respectively. The solution was shown to have

no significant difference when comparing the medium grid solution with the fine grid

solution. Therefore, the medium grid resolution was used throughout the parameter

studies presented in later chapters.

6.4.2 Body Depth

Figure 6-6 shows how grids around the Albacore bare hull varied with depth. Grid

lines were not allowed to cross the free-surface as that would lead to an undefined

boundary condition.

Figure 6-7 shows the effect that changing depth has on the physical domain of
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(a) Coarse grid: 40 x 24 x 24

(b) Medium grid: 80 x 48 x 48

li-ri

N ei12 7 x7

Figure 6-5: Resolution: Representative coarse, medium and fine grids for the Albacore

bare hull. The grid numbers listed are for the longitudinal, azimuthal and body-

normal directions, respectively.
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(a) Z/ = -0.25
--- ----

LZ

(b) Z L -.

(c) ZA 0.7

Figure 6-6: Depth: Albacore bare hull at various depths.
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-j=0 plane

k=0 plane|

0_ c~st plane

------ -j=jmax/2 plane

Figure 6-7: Depth and Domain: Coarse grid for Albacore bare hull with body-near

the free-surface.

the solution. Great care was taken to implement a robust numerical grid generation

scheme that automatically disallowed crossing grid lines as the domain size and shape

changed.

6.4.3 Angle of Attack

To allow the calculation of vertical plane maneuvering coefficients it was necessary

to vary the angle of attack of each geometry for all speeds and depths. This led to a

complication not usually encountered in "infinite domain" calculations.

Traditional "infinite domain" calculations at angle of attack require only that

the velocities at the outer boundary of the domain be transformed to comply with

the angle of attack under consideration leaving the grid unaltered. In the present

research this was not possible because of the relationship between the body and the

free-surface. Obviously, the free-surface is "fixed" in space and, thus, the body must

be rotated relative to the "fixed" mean free-surface.

That meant that a new grid had to be generated for each angle of attack. Figures

6-8, 6-9 and 6-10 shows several examples of the grids generated for the various angles
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of attack.

This requirement increased the difficulty of keeping the grid lines from crossing. A

simple algebraic grid generation technique was used to rotate the submarine without

introducing unwelcome negative grid cell volumes. In brief, this procedure went as

follows:

1. Generate entire grid at zero AOA.

2. Rotate submarine body to desired AOA.

3. Smoothly dampen the rotation of the grid surrounding the body such that no

rotation occurred at the outer boundary of the grid.

6.5 Conclusion

The GRID code was used to generate thousands of unique, three-dimensional numer-

ical grids. Parametric studies were carried out on grid resolution, grid distribution,

geometry, configuration, domain size and angle of attack. The results of these studies

are presented in the following chapters.
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L.

I (a)0 AA

- - ----

(b) 20AOA

Z.

Figure 6-8: Albacore bare hull at various angles of attack and near the free-surface.

All grids were generated algebraically, i.e. with no elliptic smoothing.
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(a) Albacore bare hull, oc 4 0 ZCG/L=-0.15, 80 x 24 x 48
Z

(b) SUBOFF bare hull, ca = -2*, ZCG/L=-0.15, 80 x 24 x 48
Z

(c) SUBOFF bare hull with sail, cc = 20, ZCG/L=-0.15, 96 x 2 4 x 4 8

Figure 6-9: The symmetry plane and bodies from some of the 3-D grids used in the

present research with particularly small domains. NOTE: the thick horizontal line

just above the grid represents the mean free-surface.
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Figure 6-10: SUBOFF with four stern appendages at various angles of attack near

the free-surface. Notice that the grids are identical at the outer boundary, where the

coordinate transformation has been suppressed.
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Chapter 7

RANS Verification and Validation

7.1 Introduction

Although a great deal of prior effort had been made to verify and validate IFLOW

by Sung et al.[24], [25], [26], [27], [28], Tsai et al.[32], Huang et al.[13] and Griffin et

al.[9], there remained a reasonable amount of uncertainty that IFLOW could do an

adequate job of calculating maneuvering coefficients for the current research.

Therefore, a significant additional effort was made at the outset of this research to

minimize this uncertainty by further validating IFLOW against available experimental

data without considering the effects of the free-surface. This experimental data was

taken such that free-surface effects were minimal or assumed to be nonexistent. The

results of those efforts are presented in this chapter.

7.2 Iterative Convergence

Iterative convergence is measured by the log of the RMS of the pressure residual

here. In general, it is essential that the pressure residual decrease by 4 to 5 orders

of magnitude to establish an iteratively converged RANS solution. It is not practical

for the residual to be driven to machine zero.

It should be said that iterative convergence is just as much a grid generation

verification as a RANS verification. A "bad" grid can be responsible for poor iterative
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convergence. There are some basic guidelines for what makes a good grid versus what

makes a bad grid, but grid generation remains to a great extent an effort of trial and

error. The GRID code described earlier allows for the easy redistribution of grid

points and changes in grid resolution. A great many trials have been performed by

the author to understand what makes a "good" submarine grid. Only a small fraction

of those grids are presented here.

Figure 7-1 shows the iterative convergence for three grids at various angles of

attack. Clearly, the six solutions meet the criteria for iterative convergence.

The angles of attack considered are representative of the angles of attack consid-

ered with the coupled method in later chapters. There is one important difference,

however. For the RANS only calculations shown in Figure 7-1 angle of attack was

achieved by transforming the angle of attack of the flow at the outer boundary. Only

grid resolution was changed. For the coupled method presented in the remaining

chapters, the angle of attack was changed by rotating the body of the submarine

with respect to the mean free-surface. Therefore, it was important to give considera-

tion to what makes a good grid when the body is rotated. It was also important to

measure iterative convergence with these new types of grids. This convergence data

is presented in the next chapter.

7.3 Grid Convergence

A series of successively finer grids were generated in an attempt to determine the

sensitivity of the solution to the resolution of the grid. The goal of this type of

effort is to determine the minimum requirements for grid resolution and to establish

confidence in the solutions.

Relatively small grids were used throughout this research. The proper distribution

of grid points is essential to using such small grids to achieve correspondingly accurate

solutions. Again, many more grids were generated and tested than are presented

here. It was this trial and error effort that "found" grids small enough and, therefore,

efficient enough to be used in the parametric studies that necessitated thousands of
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Figure 7-1: Iterative convergence for SUBOFF bare hull calculations.
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Figure 7-2: Side force vs. angle of attack for SUBOFF bare hull.

three-dimensional calculations.

7.3.1 Bare Hull

Figures 7-2 and 7-3 show the side forces and yawing moments, respectively, for a

range of angles of attack for the SUBOFF bare hull. The calculations show that the

RANS code is not very accurate for angles of attack larger than 10'. This is likely

due to the use of the linear k - w turbulence model here.

Nonlinear turbulence models available in the IFLOW code are more accurate at

high angles of attack, but they are much more CPU intensive. The intent of the

current research is to predict maneuvering coefficients. The maneuvering coefficients

computed here require only small angles of attack. Therefore, it was determined that

the linear k - w turbulence model was adequate for these purposes.

These calculations indicate that the solutions are grid converged for all angles of

attack, i.e. the solutions do not change significantly from the 80 x 24 x 48 grid to the

120 x 36 x 72 grid. From these calculations it was determined that the 80 x 24 x 48

grid would be adequate for the free surface calculations presented in later chapters.
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Figure 7-3: Yawing moment vs. angle of attack for SUBOFF bare hull.

7.3.2 Bare Hull with Stern Appendages

Figures 7-4 and 7-5 show the side forces and yawing moments for a range of angles

of attack for the SUBOFF with stern appendages. Both figures indicate that the

solution is both accurate and grid converged.

The solution is accurate in the sense that the forces and moments fall mostly

within the error bars of the experimental data. It should be noted that the measure-

ments are not perfectly symmetric for positive and negative angles of attack. The

calculations are perfectly symmetric and the line representing the experiemental data

is not parallel to the line representing the calculated results. This is probably due to

the presence of struts and maybe even due to the presence of the free surface.

The solution is grid converged in the sense that solutions do not change signif-

icantly for all angles of attack from the 112 x 48 x 48 grid to the 168 x 72 x 72

grid.

From these calculations it was determined that a grid resolution of 112 x 48 x 48

would be adequate for the free-surface calculations presented in the next chapters.
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Figure 7-4: Side force vs. angle of attack for SUBOFF with stern appendages.
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Figure 7-5: Yawing moment vs. angle of attack for SUBOFF with stern appendages.
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7.4 Summary

Prior to verifying and validating the new method, the IFLOW code by itself was

verified and validated. This effort was successful in establishing the limits of the

IFLOW code and in determining the minimum (near optimum) number of grid points

that could be used in all configurations in all subsequent calculations.

The successful effort made to verify and validate IFLOW at the beginning of this

research showed that it was at least reasonable to expect that a coupled method that

included IFLOW could predict the maneuvering characteristics of near-surface sub-

marines. The grid sensitivity study performed here served to guide the grid generation

for the coupled calculations. In subsequent chapters all vertical plane maneuvering

coefficients are shown. All horizontal plane experimental data can be transformed

to vertical plane data as the bodies are studied here are symmetric about both the

vertical and horizontal planes, and the experimental data exists for deep water only.
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Chapter 8

Coupled Verification and

Validation

8.1 Introduction

As with any other computational method, the current method must be verified and

validated. According to Roache [20], verification is the process of determining if the

computational models are the correct implementation of the conceptual models, and

if the resulting code can be properly used for an analysis. Verification looks for errors

in the programming and implementation of the models. Validation is the process of

determining the degree to which a model accurately represents the real world. It isn't

possible to validate an entire CFD code. Here, as in any other validation attempt

the code was validated for a range of applications for which there exists experimental

data.

Verification is often described as "solving the equations right", while validation is

described as "solving the right equations". In this research the verification that was

done involved determining that the solutions satisfied iterative and grid convergence

criteria. Verification also showed that the calculated free-surface waves generated by

the submerged bodies are qualitatively in agreement with theory. Validation involved

comparing calculated and measured vertical forces and pitching moments.

This chapter is devoted to the validation, verification, performance and limita-
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tions of the method developed to predict the maneuvering coefficients of near-surface

submarines.

8.2 Iterative Convergence

For any RANS calculation it is necessary to check the convergence history to verify

or establish confidence in the solution. This is even more important in the present

research since a large number of calculations were performed without the benefit of

direct comparison with experimental data to validate the numerical results. In addi-

tion, experience had shown that the small domains like the ones used here often yield

slower convergence rates and even divergence for RANS calculations. (As explained

later this problem was avoided in the present research.)

To improve convergence and reduce CPU time the solution from one condition

was used as the initial guess for the solution to the next condition. This technique

proved to be quite efficient despite the fact that only a cursory attempt was made

to optimize it, i.e. to find the minimum number of RANS multigrid cycles per flow

condition.

Given the large number of calculations, it is not practical to show all the conver-

gence histories. Figure 8-1 shows convergence histories for some of the SUBOFF bare

hull calculations. This style of plotting convergence history was used to clearly show

as many convergence histories as possible in one plot and to illustrate the efficiency

gained by using one solution as the initial conditions for the next solution.

A drop of four to five orders of magnitude in the root mean square of the pressure

residual' is considered adequate convergence for most applications. For this figure

Froude number and depth were held constant and the angle of attack was varied from

0' to 18'. The larger spikes in the plot indicate a change in the angle of attack. The

smaller (barely visible) spikes in the plot indicate the sudden change in the RANS

boundary condition due to the coupling with the panel code. This plot indicates that

1The pressure residual is the measure of the maximum change in pressure from one iteration to
the next. Therefore, for the purposes of determining if a calculation is converged changes in the
calculated pressure are tolerated only in the fourth of fifth significant digit.
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perhaps as few as 80 cycles could be used per condition rather than 150.

-1

-2-

-3

-4
to2 ,4 60

-5

6100 200 300 400 500 600
number of multigrid cycles

Figure 8-1: Convergence history for the SUBOFF bare hull, a varies from 0' to 60,
FrL = 0.5, ZCG = -0.7L, ReL = 14 x 107, grid: 80 x 24 x 48. Conditions to simulate
experimental conditions as in Figure 8-4. The large spikes in the plot result from a
change of angle of attack. ZCGIL is the vertical location of the center of gravity.

Figure 8-2 shows the convergence history for the SUBOFF with sail configuration

with a grid resolution of 96 x 24 x 48. As the depth was varied from deep to shallow

the solution from the previous depth was used as the initial guess for the next depth.

More RANS multigrid cycles were used for the initial depth and the final two depths

than for the intermediate depths to ensure iterative convergence. This figure was

included because it represents one of the more challenging sets of conditions.

8.3 Grid Convergence

A second essential step in establishing confidence in RANS calculations is a grid refine-

ment or grid convergence study. By comparing the solutions produced by successively

finer meshes, the possibility that the grid is a source of solution error is minimized.

In other words, if two grids of different resolution produce the same answer any error

in that answer is more likely due to the numerical method than the grid. Research

presented in Chapter 7 showed that the grid resolutions used in the present study
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Figure 8-2: Convergence history for the SUBOFF with sail, ZCG/L varies from -1.0
to -0.15, a = 0, FrL = 0.1, ReL = 14 x 10', grid: 96 x 24 x 48. NOTE: the large
spikes in the plot result from a change in depth.

yield grid independent force and moment calculations in an "infinite" fluid.

Consistent with those results the plot of vertical force and pitching moment versus

angle of attack for the SUBOFF bare hull in Figure 8-3 for three different grids

indicates that the solution no longer changes significantly beyond a resolution of

80 x 24 x 48 for the SUBOFF bare hull. Similar results not shown here were obtained

for the Albacore bare hull. A grid convergence study for the SUBOFF with sail

geometry showed that a grid of 96 x 24 x 48 was adequate.

8.3.1 Validation of the Coupling

The successful coupling of IFLOW with FKX was confirmed by comparison of the

forces and moments of the coupled solution with the forces and moments of the

uncoupled solution for pitch angles between zero and six degrees.

Z' and M' were calculated for the SUBOFF and Albacore bare hulls with the

coupled code and with the RANS code only and are compared in Figures 8-4 and 8-5.

The coupled vertical force and the uncoupled vertical force solutions are nearly

identical. The slope of the pitching moment curve with the free-surface is higher than

without the free surface and appears to compare less favorably with the measured
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Figure 8-3: Vertical force and pitching moment for SUBOFF bare hull with three
grid resolutions. ReL = 14 x 107 , ZCG/L = -0.7, FrL = 0.1.

data. It should be noted that the experimental data is not symmetric about the

origin. This is probably due to the use of struts to support the model on the towing

carriage. These struts may play a larger role in influencing the pitching moment than

the vertical force especially when the body is pitched downward. If this is true than

the pitching moment from the coupled solution may in fact be more accurate than

the uncoupled solution since it more nearly matches the measured data at positive

pitch angles. This will be the subject of further investigation.

82



0.75

0.5

0.25

0

-0.25

-0.5

-0.75

1.5

1

0.5

0

-0.5

-1

-1.5

* Z' measured
caic: with free surface

-------- caic: no free surface

Linear fit of measured
data between -4' and +40

-4 -2 a (derees) 2 4

N M' measured
caic: with free surface

- - - - - -- calc: no free surface

Linear fit of measured
data between -40 and +4'

-4 -2 a (derees) 2 4

Figure 8-4: Vertical force and pitching moment for SUBOFF bare hull with and
without the effects of the free-surface. ReL = 14 x 10, 80 x 24 x 48. Conditions with
free-surface are ZCG/L = -0.7, FrL = 0.5.

8.4 Performance

In addition to verification and validation, it is perhaps equally important to measure

and discuss the performance of a new method. The intention of the present research

was to develop a technique that could be used to develop a large database of ma-

neuvering coefficients, thereby, making it useful to the engineer designing submerged

vehicles. To achieve this goal it was essential to develop a very efficient method that

required little human interaction and little CPU time.

Typically, one set of SUBOFF bare hull flow conditions could be simulated using

an 80 x 24 x 48 grid in 200 RANS multigrid cycles with 5 panel code couplings and
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Figure 8-5: Vertical force and pitching moment for Albacore bare hull with and
without the effects of the free-surface. ReL = 14 x 107, 80 x 24 x 48. Conditions with
free-surface are ZCG/L = -0.7, FrL = 0.5.

a total CPU time of 82 minutes on a single processor Cray J90. Approximately, 82%

of the CPU time was used by the RANS code and 18% was used by the panel code.

The single processor Cray J90 is approximately as fast as a 1 Ghz Pentium.

These performance characteristics were very similar for all geometries and con-

ditions considered. As a result a wide range of conditions were considered and a

correspondingly large database of maneuvering characteristics was created.
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8.5 Limitations of Method

An effort was made to determine the range of applications for which the method can

be applied. A number of parameters were varied in the current research. The limits

on those variations are discussed below. In most cases the limit of variation was

determined by the iterative convergence history.

8.5.1 Geometry

No geometric limitations were discovered in the current research, i.e. computations

were successful for all geometries considered. This is not a claim that the current

method can deal with any geometry, but there is no known submarine-like geometry

that could not analyzed with the current method subject to the following limitations.

8.5.2 Domain Size

Because neither the bodies nor the grids were allowed to penetrate the free-surface

the size of the domain above the submarine decreased as the depth of submergence

decreased. Small domains are well known to cause iterative convergence difficulties.

A cursory study of the convergence history versus domain size showed almost no

relationship, however.

It is believed that this is due to the method itself. The FKX code computes the

flow field at the outer boundary of the IFLOW domain where the flow is considered

to be inviscid. It is well known that panel codes such as FKX are quite accurate

where the flow is considered to be inviscid. Therefore, the boundary condition used

by IFLOW in the current method is quite accurate. As a result instabilities inherent

in small-domain RANS only methods are completely avoided here.

8.5.3 Depth

The depth of submergence was limited in the sense that neither the grid or the body

itself was not allowed to penetrate the free-surface. This is an important limitation
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and eliminates some very interesting flow conditions. The complexity of such flows,

however, made it impractical to include in the present research.

The iterative convergence of the solution tended to deteriorate slightly as the

body approached the free-surface. Some not inconsiderable care was given to grids

generated for centerline depths of Z/L < 0.25 to insure good iterative convergence.

In addition, as the depth of submergence was decreased the solution from the

previous depth was used as the initial guess for the solution at the shallower depth.

This improved iterative convergence as well.

8.5.4 Speed

Since the lengths of the bodies were fixed, varying the Froude number varied the

speed of the vehicles. In the present research Froude numbers were varied between

0.1 and 1.0. It is believed that this will account for most of the speeds at which

submarines operate near the free-surface.

Iterative convergence did not appear to be correlated with the speed of the sub-

merged vehicle, i.e. convergence did not suffer with either increasing or decreasing

speed.

8.5.5 Angle of Attack

There are two reasons why angle of attack can be limited in the current method:

1. negative cell volumes

2. grid or body penetration of the free-surface

As mentioned in earlier chapters, to simulate an angle of attack the body itself

must be rotated to that angle of attack. This led to some initial difficulties in generat-

ing grids with no negative cell volumes. However, careful coding of the numerical grid

generation computer program virtually eliminated negative cell volumes as a limiting

factor. As long as the domain was big enough the submarines could be rotated to

angles of attack as high as 18' without introducing negative cell volumes.
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There is no way to prevent the grid or body from penetrating the free-surface at

shallow depths and high angles of attack. Therefore, future effort must be made to

improve the method to allow the body to penetrate the free-surface.

The current limitations on the angle of attack of the body near the free-surface are

likely to not limit the usefulness of the method as submarines do not usually operate

at high angles of attack near the free-surface.

8.6 Summary

Despite the availability of a relatively large amount of experimental data by the nor-

mal standards of computational fluid dynamics calculations, the range of applications

presented here far outstripped the range of validation. It is important to recognize,

however, that the code was verified for the entire range of applications. The obvious

conlcusion is that more experimental data is needed to more completely validate the

method. Of course, collecting this data is expensive and time-consuming. In the

mean time, the current method can be used to illustrate interesting or potentially

problematic characteristics in the design of submarines.
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Chapter 9

Maneuvering Characteristics of

Near-Surface Submarines

9.1 Introduction

After the time-consuming but necessary verification and validation effort was com-

pleted, attention was turned to predicting maneuvering coefficients across a wide

range of conditions. A great deal of effort was made in the present research to de-

velop a database of maneuvering coefficients that could used by submarine designers

to guide their work. Figures within this chapter illustrate much of this database.

To accomplish this goal several thousand unique, three-dimensional computations

were completed. Parameters such as speed, depth, angle of attack and geometry were

systematically varied to create the most comprehensive computational database of

maneuvering coefficents available today.

The results of this research are presented here.

9.2 Processing the Results

In the present research depth, Froude number, angle of attack, geometry and grid

resolution were varied producing several thousand unique combinations and thus sev-

eral thousand unique three-dimensional computations. IFLOW, FKX, GRID and the
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coupling method proved to be very robust and computationally efficient. Without

a robust and efficient method the creation of this database would not have been

accomplished.

Due to the great number of computations performed, it was necessary to develop

a data management system to perform and track the computations. This system

helped to minimize the necessity for human interaction, which in turn minimized the

introduction of human error. The data management system consisted of a series of

UNIX shell scripts that could be easily ported from the Cray environment to any

other UNIX environment.

Shell scripts are simply text files made up of commands much like a computer

program. Upon execution of a shell script the operating system interprets each com-

mand and carries it out. In other words, shell scripts are not compiled. Shell scripts

allow many of the same functions found in conventional programming languages like

C and Fortran such as variables, loops, and conditionals. It was through these loops

and conditional statements that the parameter studies were carried out, where the

variables were the parameters.

There are three main steps to these analyses: 1) pre-processing of the input data,

which includes grid generation, 2) analysis of the flow field, 3) post-processing of the

output data, including the calculation of forces and moments on the bodies. The

shell script was used to manage and automate to the greatest extent each of the three

steps. It is safe to say that most of the results presented in this thesis would not

appear there if shell scripts had not been used.

A great advantage of using shell scripts rather than performing modifications to

the coupled computer codes is that future releases of the GRID, IFLOW and FKX

codes can be easily interchanged with the versions used in this research. Additional

parametric studies can also be accomplished by modifying the current scripts without

modifying the underlying software. In general, it is easier to modify and maintain shell

scripts, which are interpreted rather than compiled, than it is to maintain compiled

computer code.

The results of the parametric studies performed for this research are presented in
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the following sections.

9.3 Forces and Moments

9.3.1 Description of Computations

The experimental force and moment measurements available for comparison were not

made with the intention of including the effects of the free-surface. However, since

they are the only publicly available force and moment data for submarine-like bodies

these measurements are the logical starting point for the validation of the present

method. Indeed, the first step in validating the coupling of the RANS and panel

codes should be to verify that the coupling has done "no harm", i.e. that the coupled

method yields the same results as the RANS only method when the free-surface effects

are expected to be negligible.

The experimental measurements were made in the towing tank at the David Taylor

Model Basin in Maryland by Roddy [21] (SUBOFF) and Dempsey [7] (Albacore).

The models were towed at a depth of about ZCG/L = 0.7 with ReL = 14x10 7 and

FrL ~ 0.5, where ZCG/L is the vertical location of the center of gravity of the body.

A positive angle of attack was accomplished by inclining the bow upward toward the

free-surface. A positive vertical force is defined as upward toward the free-surface and

a positive pitching moment is defined as a moment that causes the vehicle to pitch

up.

There is no experimental data available with which to directly compare the results

presented in this section. However, the attention given to validation of the RANS

code and to the verification and indirect validation of the coupled codes it is believed

that the results presented in this chapter are at least reasonable. As stated earlier

relationships between the vertical force/pitching moment and depth/Froude number

have been established. These relationships are shown in Figures 9-1 - 9-5.

Seven Froude numbers and 6 depths are represented in each of the figures. The

vertical force and pitching moment are shown for the SUBOFF bare hull in Figure 9-1,
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the Albacore bare hull in Figure 9-2, the SUBOFF with sail in Figure 9-3, the SUB-

OFF with stern appendages in Figure 9-4 and the Albacore with stern appendages in

Figure 9-5.

9.3.2 Effect of Speed and Depth

Clearly, the vertical force and pitching moment are depth and speed dependent for

all of the geometries investigated here. In fact, these relationships are quite complex.

For Froude numbers less than about 0.3, Z' and M' do not change significantly as the

depth changes. However, as speed increases at shallow depths Z' increases to larger

positive values as Froude number approaches 0.4. As the speed continues to increase

the vertical force decreases to negative values.

The free-surface wave patterns in Figures 9-10 thru 9-12 aid in the understanding

of the effect speed has on vertical force and pitching moment. These figures show the

free-surface disturbance at a fixed depth of ZCG/L = -0.2 for various speeds for the

SUBOFF bare hull, the SUBOFF with sail and the Albacore with stern appendages,

respectively.

The initial observation to make is that the wave patterns change dramatically as

speed changes. Both the amplitude and the wavelength increase with speed. It is,

therefore, not surprising that the vertical force and pitching moment vary sharply

with speed.

In addition, it is well known that the amplitude of the waves produced by the

submerged bodies increases as depth decreases.

Another interaction takes place here. The free-surface tends to have a "lifting

effect" on the body. As the body approaches the free-surface the volume of fluid

between the body and the free-surface decreases, and therefore the speed of the fluid

above the body tends to be higher than the speed of the fluid below the body. This

induces a lift force on the body in the upward or positive direction. It is these changes

in amplitude and wavelength that drive the complexity of these relationships.

The following discussion serves to further illustrate the source of this complex-

ity for the SUBOFF bare hull geometry. It can, however, be applied to the other

91



geometries considered here as all wave patterns and all force and moment maps are

somewhat similar.

From Figure 9-1 it can be seen that at a depth of ZCG/L = -0.2 the vertical force

goes from small positive values (upward direction) to large positive values and then to

negative values as speed increases. This curious behaviour can be better understood

if one observes the free-surface wave patterns in Figure 9-10 created by the body as

its speed increases.

Throughout all speeds the body will tend to have a positive vertical force due to

the above mentioned "lifting effect". If the free-surface were fixed then the submarine

would experience a positive vertical force for all speeds. The discussion below will

explain why the positive vertical force increases sharply at FrL = 0.4 and then

decreases to negative or downward values for FrTL > 0.65.

It is useful to consider the peaks and troughs of the waves generated at the free-

surface. If a peak is directly over the submerged body that fluid will tend to push

the body downward and the body will experience a negative vertical force due to the

peak. If a trough is directly over the body the body will experience a positive or

upward vertical force due to the trough.

The pressure on the hull due to the surface wave that contributes to the vertical

force acts in the body-normal direction. If a peak or trough is located above a section

of the hull (like the bow or stern) that has curvature in the x-z plane, then the peak

or trough effects both the vertical and longitidunal forces acting on the body, i.e. it

does not act solely in the vertical direction.

At FrL = 0.25 the wave pattern above the body is mostly symmetrical fore and

aft. Therefore, the effect of the peaks and troughs on the vertical force largely cancel

each other. At FrL = 0.4 the peak of the wave resides directly over the bow of

the submarine, while the trough is spread over the aft two-thirds of the submarine.

The bow of the submarine has the highest curvature in the x-z plane. Therefore, the

vertical (downward) force on the body due to the peak is not as great as the vertical

(upward) force on the body due to the trough, which resides directly over the parallel

middle body of the submarine. This is the source of the large increase in upward
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vertical force seen at FrTL = 0.4 in

For FrL > 0.7 there is only a peak over the body and no trough. This downward

vertical force due to this peak overcomes the lifting effect of the free-surface to cause

the submarine to experience a net downward vertical force as seen in Figure 9-1.

Similar reasoning can be applied to the other geometries studied here to explain

the effect of speed on the vertical force and pitching moment of near surface sub-

marines.

9.3.3 Effect of Downstream Boundary

To determine the sensitivity of the solutions to the location of the donwstream bound-

ary a parameter study was performed on the Albacore with stern appendages with

the downstream boundary located at 1.5 body lengths downstream of the stern in

addition to the already computed parameter study with the downstream boundary

located at three body lengths downstream of the stern.

Figures 9-6 through 9-9 compare the vertical force and pitching moment versus

speed and depth for the Albacore with stern appendages computed in the two do-

mains.

Figure 9-6 shows the vertical force with the downstream boundary set at three

body lengths downstream of the stern. Figure 9-7 shows the vertical force with the

downstream boundary set at 1.5 body lengths downstream of the stern.

Figure 9-8 shows the pitching moment with the downstream boundary set at three

body lengths downstream of the stern. Figure 9-9 shows the pitching moment with

the downstream boundary set at 1.5 body lengths downstream of the stern.

Only very small differences are noted in the solutions for the two domains. This

indicates that the location of the boundary at 3 body lengths downstream of the stern

is adequate.
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9.3.4 Effect of Geometry

Figures 9-1 - 9-5 also indicate the important role geometry plays in vehicle perfor-

mance near the free-surface. While the trends seen in Figures 9-1 - 9-5 for the five

geometries are similar, the magnitude of the vertical force changes significantly from

geometry to geometry.

Figures 9-1,9-3 and 9-4 show the forces and moments for the three SUBOFF

configurations. Figures 9-2 and 9-5 show the forces and moments for the two Albacore

configurations. Obviously, the appendages play a significant role in the behaviour of

the submarines near the free-surface. In general, the appendages tend to increase the

magnitude of the forces and moments on the bodies at all speeds and depths.

In addition the hull shape tends to have a significant impact on the performance

of the submarines. The Albacore bare hull experiences much higher downward forces

than the SUBOFF bare hull. The SUBOFF bare hull appears to interact with the

free-surface at greater depths than the Albacore bare hull.

As before it is helpful to look at the free-surface wave elevations generated by the

three bodies in Figures 9-13 and 9-14 to understand why this is so.

Figure 9-13 shows the free-surface disturbances produced by the five geometries

at ZCG/L = -0.2 and FrL = 0.4. Figure 9-14 shows the free-surface disturbances

produced by the five geometries at ZCG/L = -0.175 and FrL = 0.7. In both Figures

a = 0' and ReL = 14 x 107. The grid resolutions for the five geometries are: bare

hulls - 80 x 24 x 48; SUBOFF with sail - 96 x 24 x 48; and bare hulls with stern

appendages - 112 x 48 x 48.

The following discussion serves to explain the dependence of forces and moments

on hull shape by comparing the free-surface disturbances produced by the two bare

hull configurations.

For the Albacore bare hull the first peak is focused on a part of the hull with a

small cross section, while the first trough is spread out over about the remaining 2/3

of the hull. In addition the peak is over a relatively highly curved section of the hull

decreasing its effect on the vertical force, whereas the trough is over a flatter section
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of the hull increasing its effect on the vertical force. This causes the dramatic rise in

upward vertical force seen in Figure 9-1 near FrL = 0.4

The SUBOFF bare hull shows a similar trend. However, the peak of the free-

surface wave is over a flatter section of the hull which increases its impact on the

vertical force and negates most of the upward vertical force generated by the trough.

Thus the maximum magnitude of the upward vertical force is smaller for the SUBOFF

bare hull than for the Albacore bare hull.

Another interesting result of these calculations is the change in sign of the vertical

force and pitching moment with increasing Froude number for all five geometries.

Only the vertical force will be discussed in detail here, but a similar analysis can be

applied to the pitching moment. At low Froude numbers FrL < 0.5 the vertical force

is positive which tends to pull the bodies toward the free-surface. At FrL > 0.5 the

vertical force is negative which tends to push the bodies away from the free-surface.

Again this can be understood by considering the free-surface waves produced each

body. Figure 9-12 shows the free-surface waves generated by the SUBOFF body at

FrL = 0.65, 0.8 and 1.0. In this figure the body is covered by nearly all of the wave

peak. This peak tends to push the body away from the free-surface. Similar results

were found for the Albacore and SUBOFF with sail bodies but are not shown for

brevity.

Much the same analysis can be applied to understand the pitching moment the

bodies experience. The distribution of the free-surface peaks and troughs changes the

magnitude and the sign of the pitching moment.

Figures 9-1 - 9-5 also show clearly that the appendages have a significant effect on

the amplitude of the free-surface waves. This effect translates into higher magnitudes

of forces and moments

9.4 Maneuvering Coefficients

By varying the angle of attack of each of the geometries for all of the conditions

considered it was possible to compute the vertical plane maneuvering coefficients.
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These coefficients, Z' and A', for the five geometries as functions of depth and

Froude number are shown in Figures 9-15 thru 9-19. The effect of speed and depth

on Z' and M' is quite significant. The tendency for small deviations in pitch angle

to cause large changes in vertical force and pitching moment is, in general, increased

with a decrease in vehicle depth.

It is not entirely clear from these figures, but inspection of the calculations reveals

that as Froude number is increased while depth is kept constant at ZCG/L = -0.175

Z'1 actually changes sign for all five geometries. This implies that positive pitch angles

cause a decrease in vertical force and negative pitch angles cause an increase in

vertical force for FTL ~ 0.5.

Another interesting result can be seen in Figure 9-17. The Z' coefficient for the

SUBOFF with sail configuration is not a function of speed or depth for FrL > 0.6.

This implies that the free-surface waves near the body generated by the body are not

dependent on the angle of attack at high speeds.

Similar reasoning can be applied to Figures 9-15 and 9-16 to infer that the free-

surface waves generated by the bare hull configurations are only slightly dependent

on the angle of attack for FrL > 0.6.

The M' coefficients are generally better "behaved" in that they tend to be more

a function of depth than Froude number for all geometries.

Figures 9-18 and 9-19 indicate that the stern appendages have a significant impact

on the vertical plane maneuvering coefficients as expected. The magnitude of both Z'

and M,, for the appended bodies was greater than that for the unappended bodies.

Due to the comprehensive number of calculations, performed it is possible to calcu-

late maneuvering coefficients that are functions of speed and depth. These coefficients

could be used to directly indicate the maneuvering characteristics of the submarines

with respect to speed and depth. The magnitude of these coefficients can be approx-

imated by observing the gradients in Figures 9-15 thru 9-19. In other words, closely

spaced contour lines in these figures imply that vehicle is unstable in this region. By

this reasoning all vehicles are unstable in shallow depths near FrL - 0.4.
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Vertical plane maneuvering coefficients for SUBOFF with stern ap-
a function of depth and Froude number. Based on calculations with
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9.5 Summary

The method developed here was efficient and robust enough to allow the development

of a comprehensive database of maneuvering coefficients to assist in the complex task

of designing submarines. A sophisticated data management system was developed to

perform and manage all stages of the several thousand unique computations necessary

to create this database.

Due to the large number of computations performed, a new type of map was

created to visualize the results. Traditional line plots of coefficients versus one pa-

rameter were discarded in favor of contour maps of coefficients versus two parameters,

e.g. speed and depth. These maps can be used to quickly identify combinations of

operating conditions where the submerged vehicle is unstable. The concept of the

coefficient map can be applied to virtually any combination of parameters of interest.

The results of the parameter studies indicate that vertical force, pitching moment

and vertical plane maneuvering coefficients are significantly effected by geometry,

speed and depth. The effect of geometry includes the presence or absence of ap-

pendages as well as the shape of the hull.

The use of free-surface disturbance patterns was found to be useful in understand-

ing why forces, moments and maneuvering coefficients are so strongly dependent on

geometry, speed and depth.

The vertical plane maneuvering coefficients were calculated for all geometries at

all conditions by varying the angle of attack of the body at all conditions. Several

interesting observations were made from these results. For example, it was observed

that Z' was independent of speed and depth for FrL > 0.6 for the SUBOFF and

Albacore bare hulls and the SUBOFF with sail configurations. This implies that

the near-body free-surface disturbances created by the bodies was not altered by the

angle of attack at high speeds.

Several other maneuvering coefficient could be computed from this data. These

coefficients could be used to directly predict the maneuvering characteristics of the

submarine with respect to speed and depth. These coefficients can be approximated
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by observing the gradient of the vertical force, the pitching moment and the vertical

plane maneuvering coefficients with respect to both speed and depth. This informa-

tion can be used to guide the design of submarines operating near the free surface.

Finally, because the new method is efficient and robust many more parameter

studies can be performed with relative ease. For example, another study underway is

addressing the effect of the length of the parallel middle body on the performance of

submarines.
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Chapter 10

Surface Wake Patterns

10.1 Introduction

No discussion of the maneuvering characteristics of near-surface submarines would

be complete without the consideration of the free-surface wakes generated by the

submarines. As demonstrated in the previous chapter free-surface wakes interact with

the body to modify their maneuvering characteristics and performance. Free-surface

wakes also tend to be very durable and easily detectable via satellite instrumentation.

Proper calibration of satellite image analysis can elucidate the size, speed, location,

depth and direction of slightly to moderately submerged vehicles.

It is important to note that there is no experimental data with which to compare

the results presented in this chapter. It is equally important to understand, however,

this does not mean that the results presented here are of no use. Given the constraints

of the present research, the calculations of the free-surface wakes were verified to

the greatest extent possible, where verification is defined loosely as having solved

the equations right. In other words, the solutions presented here were iteratively

converged, found to be insensitive to grid resolution and qualitatively consistent with

the results that were expected.

Further research is needed to validate the predictions of the free-surface wakes as

experimental data becomes available.
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10.2 Surface Wakes

A number of parameter studies were performed including speed, depth and geometry.

The predictions of the free-surface elevations were made by the FKX code as the very

last step of the coupling procedure. Many thousands of such predictions were made.

Only a selected few are presented here. Those presented here serve to illustrate the

effects that speed, depth and geometry have on the free-surface disturbance.

Figures 10-1 - 10-4 show the free-surface wakes for the SUBOFF bare hull, Alba-

core bare hull, SUBOFF with stern appendages and Albacore with stern appendages

for three different speeds at a depth of ZCG/L = -0.25.

Clearly, the wave patterns are dependent on the speed of the body. The lengths

of the waves generated are approximately equal to twice the Froude number. At this

scale the influence of the geometry on the free-surface disturbance is barely noticeable.

Distinct differences are seen at higher resolution as was shown in the previous chapter.

However, these similarities indicate that it may be difficult to distinguish geomet-

rical differences via satellite imagery.

The free-surface wakes created by the five submarine configurations at a depth of

ZCG/L = -0.25 are shown in Figures 10-5 and 10-6 at 0' and 20 angles of attack,

respectively.

It is somewhat easier in these figures to see the subtle differences in free-surface

wakes caused by the geometric variations. These differences are primarily confined to

small differences in wave slope. The SUBOFF geometries produce a slightly steeper

bow wave due to the blunter nose on these bodies. The sail also increases the slope

of the bow wave.

Differences aft of the midbody are not prominent. It may be difficult to distinguish

geomtries via satellite imagery of their wakes.
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10.3 Summary

The method developed here was able to predict the free-surface disturbance as a

function of speed, depth, geometry and angle of attack. The method was shown to

be both robust and efficient. Several thousand free surface wakes were calculated in

this research. Only a small fraction of those are shown here.

The free-surface disturbances were'shown to

Relatively subtle differences in the free-surface disturbances can serve to distin-

guish between geometries.
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Figure 10-1: Free-surface wave elevations SUBOFF bare hull. ZCG/L = -0.25,

a = 00, ReL = 14 x 107. The wave elevations shown are different for each speed.
Negative elevations (troughs) are indicated by dashed contours.
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Figure 10-2: Free-surface wave elevations Albacore bare hull. ZCG/L = -0.25, a =
0 , ReL = 14 x 107. The wave elevations shown are different for each speed. Negative
elevations (troughs) are indicated by dashed contours.
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Figure 10-3: Free-surface wave elevations SUBOFF with stern appendages. ZCGI=

-0.25, a = 00, ReL = 14 x 10O. The wave elevations shown are different for each

speed.
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Figure 10-4: Free-surface wave elevations Albacore with stern appendages. ZCGI

-0.25, a = 0', ReL = 14 x 10'. The wave elevations shown are different for each

speed. Negative elevations (troughs) are indicated by dashed contours.

122



\ \ SUBOFF Bare Hull \\\

/

\Albacore Bare Hull\

SUBOFF with Sail

SUBOFF with Stern Appendages

- \\ Albacore with Stern Appendages

Figure 10-5: Free-surface wave elevations. FrL = 0.55, ZCG/L = -0.25, a = 0*,

ReL = 14 x 107. Negative elevations (troughs) are indicated by dashed contours.
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Figure 10-6: Free-surface wave elevations. FrTL = 0.55, ZCGiL = -0.25, a 20,

ReL = 14 x 107. Negative elevations (troughs) are indicated by dashed contours.
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Chapter 11

Conclusion

The method developed in the present research is an efficient and robust technique for

calculating the forces, moments and maneuvering coefficients on submerged vehicles

as functions of depth, Froude number and geometry. This method can be a useful

tool for both experimentalists and vehicle designers.

A comprehensive study to verify and validate the method was undertaken. This

included never before performed verification and validation of the stand-alone RANS

code as well as of the coupled method. Considerable effort was devoted to ensure that

acceptable iterative convergence, grid convergence and comparisons with available

data were made.

Five different geometries were considered: SUBOFF bare hull, SUBOFF with sail,

SUBOFF with stern appendages, Albacore bare hull, Albacore with stern appendages.

Three levels of grid resolution were used for each geometry to establish the sensitivity

of the solution to grid resolution. Calculations were made for each geometry at eight

speeds, eight depths and five angles of attack.

Several thousand unique calculations were made with various Froude number,

depth, angle of attack, grid and geometry variations on a computer no faster than a

1 GHz PC. This was possible because of the efficiency and reliability of the GRID,

IFLOW and FKX codes. In addition it would not have been possible to complete so

many calculations in such a short time without the use of shell scripts for the pre-

and postprocessing as well as the coupling of the IFLOW and FKX codes.
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The results of these thousands of calculations have been compiled into the largest

database of computed maneuvering coefficients available today. A new technique to

visualize such data was developed to assist in understanding the dependencies of the

coefficients on two parameters.

It has been shown that the vertical plane forces, moments and maneuvering coeffi-

cients are strongly dependent on vehicle speed, depth and geometry. As was expected

the surface waves generated are also strongly dependent on the same variables. It

was demonstrated that the surface wave patterns can be used to better explain the

complex relationships between speed, depth, geometry and performance.

The limitations of the method are detailed in Chapter 8. Experimentalists can use

this method and/or these results to quantify the effects of the free-surface on their

experimental measurements within the mentioned limits of the method.

Designers can use this method to better understand and account for the complexity

of the relationships between geometry, depth, Froude number and vertical force and

pitching moment for near-surface submarine operations.cha

In addition, surface wave elevations computed by this method can be used to cal-

ibrate satellite imaging techniques to better determine vehicle speed, depth, location,

direction and type.

Finally, much experimental data remains to be collected to validate the new

method presented here. Measurements needed include both the maneuvering co-

efficients and the free surface wakes.
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Appendix A

Maneuvering Coefficients
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Table A.1: Maneuvering Coefficients for SUBOFF Bare Hull.

ZCG/L FrL Z' X 10-3 M' x 10-3 Z'L x 10-5 M'I x 10-5
-0.500 0.10 -0.006 -0.014 -0.564 -1.405
-0.500 0.25 -0.006 -0.014 -0.556 -1.409
-0.500 0.40 -0.006 -0.014 -0.558 -1.413
-0.500 0.55 -0.006 -0.014 -0.574 -1.410
-0.500 0.70 -0.006 -0.014 -0.575 -1.407
-0.500 0.85 -0.006 -0.014 -0.582 -1.405
-0.500 1.00 -0.006 -0.014 -0.578 -1.407
-0.350 0.10 -0.007 -0.016 -0.694 -1.635
-0.350 0.25 -0.007 -0.016 -0.694 -1.636
-0.350 0.40 -0.007 -0.017 -0.712 -1.664
-0.350 0.55 -0.010 -0.039 -0.993 -3.888
-0.350 0.70 -0.006 -0.016 -0.635 -1.636
-0.350 0.85 -0.006 -0.016 -0.648 -1.632
-0.350 1.00 -0.007 -0.016 -0.659 -1.633
-0.250 0.10 -0.011 -0.021 -1.086 -2.078
-0.250 0.25 -0.011 -0.021 -1.102 -2.101
-0.250 0.40 -0.013 -0.022 -1.255 -2.154
-0.250 0.55 -0.019 -0.031 -1.874 -3.102
-0.250 0.70 -0.007 -0.020 -0.667 -2.001
-0.250 0.85 -0.007 -0.020 -0.678 -2.005
-0.250 1.00 -0.008 -0.020 -0.751 -2.011
-0.225 0.10 -0.013 -0.023 -1.277 -2.257
-0.225 0.25 -0.013 -0.023 -1.320 -2.307
-0.225 0.40 -0.016 -0.024 -1.645 -2.362
-0.225 0.55 -0.012 -0.021 -1.158 -2.135
-0.225 0.70 -0.007 -0.021 -0.688 -2.129
-0.225 0.85 -0.007 -0.021 -0.660 -2.139
-0.225 1.00 -0.008 -0.021 -0.759 -2.148
-0.200 0.10 -0.016 -0.025 -1.554 -2.501
-0.200 0.25 -0.017 -0.026 -1.668 -2.605
-0.200 0.40 -0.024 -0.026 -2.381 -2.603
-0.200 0.55 -0.015 -0.023 -1.470 -2.261
-0.200 0.70 -0.007 -0.023 -0.743 -2.279
-0.200 0.85 -0.006 -0.023 -0.647 -2.301
-0.200 1.00 -0.008 -0.023 -0.783 -2.318
-0.175 0.10 -0.020 -0.028 -1.958 -2.847
-0.175 0.25 -0.023 -0.031 -2.342 -3.091
-0.175 0.40 -0.042 -0.030 -4.187 -2.982
-0.175 0.55 0.146 -0.090 14.619 -9.014
-0.175 0.70 -0.010 -0.025 -0.965 -2.543
-0.175 0.85 -0.008 -0.026 -0.805 -2.569
-0.175 1.00 -0.009 -0.026 -0.934 -2.586
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Table A.2: Maneuvering Coefficients for Albacore Bare Hull.

ZCG/L FrTL Z' X 10-3 M' X 10-3 Z, X 10-5 M', x 10- 5

-0.500 0.10 -0.007 -0.014 -0.564 -1.405
-0.500 0.25 -0.007 -0.014 -0.556 -1.409
-0.500 0.40 -0.007 -0.014 -0.558 -1.413
-0.500 0.55 -0.007 -0.014 -0.574 -1.410
-0.500 0.70 -0.007 -0.014 -0.575 -1.407
-0.500 0.85 -0.007 -0.014 -0.582 -1.405
-0.500 1.00 -0.007 -0.014 -0.578 -1.407
-0.350 0.10 -0.007 -0.015 -0.694 -1.635
-0.350 0.25 -0.007 -0.015 -0.694 -1.636
-0.350 0.40 -0.008 -0.015 -0.712 -1.664
-0.350 0.55 -0.007 -0.015 -0.993 -3.888
-0.350 0.70 -0.007 -0.015 -0.635 -1.636
-0.350 0.85 -0.007 -0.015 -0.648 -1.632
-0.350 1.00 -0.007 -0.015 -0.659 -1.633
-0.250 0.10 -0.009 -0.017 -1.086 -2.078
-0.250 0.25 -0.009 -0.018 -1.102 -2.101
-0.250 0.40 -0.011 -0.019 -1.255 -2.154
-0.250 0.55 -0.009 -0.018 -1.874 -3.102
-0.250 0.70 -0.007 -0.017 -0.667 -2.001
-0.250 0.85 -0.008 -0.017 -0.678 -2.005
-0.250 1.00 -0.008 -0.017 -0.751 -2.011
-0.225 0.10 -0.010 -0.018 -1.277 -2.257
-0.225 0.25 -0.010 -0.019 -1.320 -2.307
-0.225 0.40 -0.013 -0.020 -1.645 -2.362
-0.225 0.55 -0.009 -0.019 -1.158 -2.135
-0.225 0.70 -0.007 -0.018 -0.688 -2.129
-0.225 0.85 -0.008 -0.018 -0.660 -2.139
-0.225 1.00 -0.008 -0.018 -0.759 -2.148
-0.200 0.10 -0.011 -0.020 -1.554 -2.501
-0.200 0.25 -0.012 -0.021 -1.668 -2.605
-0.200 0.40 -0.019 -0.022 -2.381 -2.603
-0.200 0.55 -0.009 -0.021 -1.470 -2.261
-0.200 0.70 -0.007 -0.019 -0.743 -2.279
-0.200 0.85 -0.008 -0.020 -0.647 -2.301
-0.200 1.00 -0.008 -0.020 -0.783 -2.318
-0.175 0.10 -0.012 -0.022 -1.958 -2.847
-0.175 0.25 -0.017 -0.025 -2.342 -3.091
-0.175 0.40 -0.035 -0.025 -4.187 -2.982
-0.175 0.55 -0.009 -0.022 14.619 -9.014
-0.175 0.70 -0.007 -0.020 -0.965 -2.543
-0.175 0.85 -0.007 -0.021 -0.805 -2.569
-0.175 1.00 -0.008 -0.021 -0.934 -2.586



Table A.3: Maneuvering Coefficients for SUBOFF with Sail.

ZCG/L FrLI Z' x 10-3 M' x 10-3 Z, x 10-5 M', x 10-5

-0.500 0.10 -0.020 -0.014 -0.564 -1.405
-0.500 0.25 -0.019 -0.014 -0.556 -1.409
-0.500 0.40 -0.020 -0.014 -0.558 -1.413
-0.500 0.55 -0.022 -0.015 -0.574 -1.410
-0.500 0.70 -0.019 -0.014 -0.575 -1.407
-0.500 0.85 -0.019 -0.014 -0.582 -1.405
-0.500 1.00 -0.019 -0.014 -0.578 -1.407
-0.350 0.10 -0.022 -0.017 -0.694 -1.635
-0.350 0.25 -0.022 -0.017 -0.694 -1.636
-0.350 0.40 -0.024 -0.017 -0.712 -1.664
-0.350 0.55 -0.024 -0.017 -0.993 -3.888
-0.350 0.70 -0.023 -0.017 -0.635 -1.636
-0.350 0.85 -0.023 -0.017 -0.648 -1.632
-0.350 1.00 -0.023 -0.017 -0.659 -1.633
-0.250 0.10 -0.033 -0.021 -1.086 -2.078
-0.250 0.25 -0.034 -0.022 -1.102 -2.101
-0.250 0.40 -0.039 -0.021 -1.255 -2.154
-0.250 0.55 -0.033 -0.022 -1.874 -3.102
-0.250 0.70 -0.034 -0.023 -0.667 -2.001
-0.250 0.85 -0.034 -0.022 -0.678 -2.005
-0.250 1.00 -0.034 -0.022 -0.751 -2.011
-0.225 0.10 -0.038 -0.023 -1.277 -2.257
-0.225 0.25 -0.040 -0.024 -1.320 -2.307
-0.225 0.40 -0.053 -0.023 -1.645 -2.362
-0.225 0.55 -0.044 -0.021 -1.158 -2.135
-0.225 0.70 -0.037 -0.023 -0.688 -2.129
-0.225 0.85 -0.038 -0.024 -0.660 -2.139
-0.225 1.00 -0.039 -0.024 -0.759 -2.148
-0.200 0.10 -0.045 -0.026 -1.554 -2.501
-0.200 0.25 -0.054 -0.028 -1.668 -2.605
-0.200 0.40 -0.151 -0.018 -2.381 -2.603
-0.200 0.55 -0.085 -0.022 -1.470 -2.261
-0.200 0.70 -0.042 -0.025 -0.743 -2.279
-0.200 0.85 -0.043 -0.026 -0.647 -2.301
-0.200 1.00 -0.044 -0.026 -0.783 -2.318
-0.175 0.10 -0.056 -0.029 -1.958 -2.847
-0.175 0.25 -0.103 -0.040 -2.342 -3.091
-0.175 0.40 -0.390 -0.027 -4.187 -2.982
-0.175 0.55 -0.116 0.004 14.619 -9.014
-0.175 0.70 -0.048 -0.028 -0.965 -2.543
-0.175 0.85 -0.054 -0.030 -0.805 -2.569
-0.175 1.00 -0.057 -0.030 -0.934 -2.586
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Table A.4: Maneuvering Coefficients for SUBOFF with stern appendages.

ZCG/L FrL Z' x 10-- M' x 10-3 Z', x 10- M, x 10~

-0.500 0.10 -0.010 -0.012 -0.564 -1.405
-0.500 0.25 -0.010 -0.012 -0.556 -1.409
-0.500 0.40 -0.012 -0.012 -0.558 -1.413
-0.500 0.55 -0.011 -0.008 -0.574 -1.410
-0.500 0.70 -0.005 -0.007 -0.575 -1.407
-0.500 0.85 -0.005 -0.008 -0.582 -1.405
-0.500 1.00 -0.006 -0.010 -0.578 -1.407
-0.350 0.10 -0.011 -0.014 -0.694 -1.635
-0.350 0.25 -0.011 -0.014 -0.694 -1.636
-0.350 0.40 -0.014 -0.014 -0.712 -1.664
-0.350 0.55 -0.012 -0.010 -0.993 -3.888
-0.350 0.70 -0.009 -0.010 -0.635 -1.636
-0.350 0.85 -0.009 -0.012 -0.648 -1.632
-0.350 1.00 -0.010 -0.012 -0.659 -1.633
-0.250 0.10 -0.016 -0.019 -1.086 -2.078
-0.250 0.25 -0.014 -0.020 -1.102 -2.101
-0.250 0.40 0.053 -0.045 -1.255 -2.154
-0.250 0.55 0.024 -0.068 -1.874 -3.102
-0.250 0.70 -0.031 -0.042 -0.667 -2.001
-0.250 0.85 -0.033 -0.029 -0.678 -2.005
-0.250 1.00 0.135 -0.045 -0.751 -2.011
-0.225 0.10 -0.018 -0.021 -1.277 -2.257
-0.225 0.25 -0.011 -0.023 -1.320 -2.307
-0.225 0.40 0.132 -0.066 -1.645 -2.362
-0.225 0.55 0.063 -0.109 -1.158 -2.135
-0.225 0.70 -0.043 -0.063 -0.688 -2.129
-0.225 0.85 -0.052 -0.040 -0.660 -2.139
-0.225 1.00 0.313 -0.046 -0.759 -2.148
-0.200 0.10 -0.046 -0.044 -1.554 -2.501
-0.200 0.25 -0.032 -0.054 -1.668 -2.605
-0.200 0.40 0.098 -0.320 -2.381 -2.603
-0.200 0.55 0.098 -0.306 -1.470 -2.261
-0.200 0.70 -0.067 -0.114 -0.743 -2.279
-0.200 0.85 -0.074 -0.038 -0.647 -2.301
-0.200 1.00 0.377 -0.047 -0.783 -2.318
-0.175 0.10 -0.042 -0.025 -1.958 -2.847
-0.175 0.25 -0.011 -0.034 -2.342 -3.091
-0.175 0.40 0.209 -0.020 -4.187 -2.982
-0.175 0.55 0.188 -0.162 14.619 -9.014
-0.175 0.70 -0.056 -0.097 -0.965 -2.543
-0.175 0.85 -0.088 -0.057 -0.805 -2.569
-0.175 1.00 0.474 -0.067 -0.934 -2.586

101



Table A.5: Maneuvering Coefficients for Albacore with stern appendages.

ZCG/L FrL Z' x 10-3 M' X 10-3 Z' x 10-5 MI x 10-5
-0.500 0.10 -0.009 -0.012 -0.564 -1.405
-0.500 0.25 -0.009 -0.012 -0.556 -1.409
-0.500 0.40 -0.013 -0.011 -0.558 -1.413
-0.500 0.55 -0.009 -0.007 -0.574 -1.410
-0.500 0.70 0.001 -0.006 -0.575 -1.407
-0.500 0.85 0.001 -0.008 -0.582 -1.405
-0.500 1.00 -0.002 -0.009 -0.578 -1.407
-0.350 0.10 -0.009 -0.014 -0.694 -1.635
-0.350 0.25 -0.009 -0.014 -0.694 -1.636
-0.350 0.40 -0.030 -0.010 -0.712 -1.664
-0.350 0.55 -0.019 0.002 -0.993 -3.888
-0.350 0.70 0.004 0.000 -0.635 -1.636
-0.350 0.85 0.004 -0.005 -0.648 -1.632
-0.350 1.00 0.001 -0.008 -0.659 -1.633
-0.250 0.10 -0.010 -0.016 -1.086 -2.078
-0.250 0.25 -0.010 -0.017 -1.102 -2.101
-0.250 0.40 0.033 -0.031 -1.255 -2.154
-0.250 0.55 0.009 -0.034 -1.874 -3.102
-0.250 0.70 -0.014 -0.024 -0.667 -2.001
-0.250 0.85 -0.015 -0.020 -0.678 -2.005
-0.250 1.00 -0.015 -0.019 -0.751 -2.011
-0.225 0.10 -0.011 -0.017 -1.277 -2.257
-0.225 0.25 -0.009 -0.019 -1.320 -2.307
-0.225 0.40 0.159 -0.061 -1.645 -2.362
-0.225 0.55 0.060 -0.065 -1.158 -2.135
-0.225 0.70 -0.018 -0.039 -0.688 -2.129
-0.225 0.85 -0.024 -0.028 -0.660 -2.139
-0.225 1.00 -0.022 -0.024 -0.759 -2.148
-0.200 0.10 -0.011 -0.019 -1.554 -2.501
-0.200 0.25 0.003 -0.022 -1.668 -2.605
-0.200 0.40 0.409 -0.072 -2.381 -2.603
-0.200 0.55 0.199 -0.115 -1.470 -2.261
-0.200 0.70 -0.010 -0.058 -0.743 -2.279
-0.200 0.85 -0.036 -0.037 -0.647 -2.301
-0.200 1.00 -0.030 -0.031 -0.783 -2.318
-0.175 0.10 -0.112 0.027 -1.958 -2.847
-0.175 0.25 -0.087 -0.018 -2.342 -3.091
-0.175 0.40 1.073 -0.060 -4.187 -2.982
-0.175 0.55 0.579 -0.202 14.619 -9.014
-0.175 0.70 0.025 -0.082 -0.965 -2.543
-0.175 0.85 -0.042 -0.047 -0.805 -2.569
-0.175 1.00 -0.036 -0.037 -0.934 -2.586

______________~~~ ___________ 1''



Bibliography

[1] Campana, E., A. Di Mascio., P.G. Esposito, and F. Lalli, "Domain Decomposition

in Free Surface Viscous Flows", 6th Conference on Numerical Ship Hydrodynamics,

Iowa City, Iowa, 1993.

[2] Chang, J.L.C., and D. Kwak, "On the Method of Pseudo Compressibility for

Numerically Solving Incompressible Flows", AIAA Paper-0252, 1984.

[3] Chen, H.-C., W.-M. Lin and K.M. Weems, "Interactive Zonal Approach for Ship

Flows Including Viscous and Nonlinear Wave Effects", 6th Conference on Numer-

ical Ship Hydrodynamics, Iowa City, Iowa, 1993.

[4] Chorin, A.J., "A Numerical Method for Solving Incompressible Viscous Flow Prob-

lems", J. Computational Physics, vol. 2, pp. 12-26, 1967.

[5] Cosner, R.R, "Future Requirements in Surface Modeling and Grid Generation,"

Proceedings of the Surface Modeling, Grid Generation and Related Issues in Com-

putational Fluid Dynamics Workshop, NASA Conference Publication 3291, NASA

Lewis Research Center, Cleveland, OH, May 1995.

[6] Dawson, C.W., "A Practical Computer Method for Solving Ship-Wave Prob-

lems", Second International Conference on Numerical Ship Hydrodynamics, Berke-

ley, 1977.

[7] Dempsey, E. M., "Static Stability Characteristics of a Systematic Series of Stern

Appendage Control Surfaces on a Body of Revolution", David Taylor Naval Ship

Research and Development Center Report 77-0085, Aug. 1977.

133



[8] Thompson, J.F, Z.U.A. Warsi, C.W. Mastin, Numerical Grid Generation, North-

Holland, 1985.

[9] Griffin, M.J., T.C. Fu, C.-H. Sung, and T. T. Huang, "Applications of CFD to

Compute the Hydrodynamic Interaction of Submarine Appendages", 3rd Interna-

tional Symposium on Performance Enhancement for Marine Applications, New-

port, Rhode Island, May 5-8, 1997.

[10] Havelock, T.H., "The Wave Resistance of a Spheroid", Proceedings of the Royal

Society of London, Ser. A 131 (1931), pp 275-285.

[11] Hedstrom, G.W., "Nonreflecting Boundary Conditions for Nonlinear Hyperbolic

Systems", Journal of Computational Physics, vol. 30, pp. 222-237, 1979.

[12] Hess, J.L. and A.M.O. Smith, "Calculation of Nonlifting Potential Flow about

Arbitrary Three-Dimensional Bodies", Journal of Ship Research, Vol. 8, pp 22-44,

1964.

[13] Huang, T.T., T.C. Fu, and C.-H. Sung, "Computation of the Hydrodynamic

Characteristics of a Fully Appended Submarine for Design Applications: Part 1

- Current Capability and Future Development", Presented at 1st Symposium on

Marine Applications of CFD, McLean, VA, May 19-21, 1998.

[14] Jameson, A, "Multigrid Algorithms for Compressible Flow Calculations", in

Multigrid Methods II, Lecture Notes in Mathematics Series, No. 1228, Hackbusch,

W., and Trottenberg, U. Eds., Springer-Verlag, New York, 1986.

[15] Noblesse, F. and C. Yang, "Fourier-Kochin Formulation of Wave Diffraction-

Radiation by Ships or Offshore Structures", Ship Technology Research, vol. 42, pp.

115-139, 1995.

[16] Noblesse, F., and X.B. Chen, "Decomposition of Free-Surface Effects into Wave

and Near-Field Components", Ship Technology Research vol. 42, no. 4, pp. 167-185,

1995.

134



[17] Noblesse, F., and C. Yang, "Fourier Representation of Near-Field Free-Surface

Flows", Ship Technology Research, vol. 43, no. 1, pp. 19-37., 1996

[18] Noblesse, F., X.B. Chen, and C. Yang, "Fourier-Kochin Theory of Free-Surface

Flows", 21st Symposium Naval Hydronamics, Trondheim, 1996.

[19] Noblesse, F. and X.B. Chen, "Far-Field and Near-Field Dispersive Waves", Ship

Technology Research, Vol. 44, 1997.

[20] Roache, P.J., Verification and Validation in Computational Science and Engi-

neering, Hermosa Publishers, Albuquerque, New Mexico, 1998.

[21] Roddy, R.F., "Investigation of the Stability and Control of the DARPA SUBOFF

Model (DTRC Model) from Captive-Model Experiments," Report DTRC/SHD-

1298-08, Sept. 1990.

[22] Rudy, D.H. and J.C. Strikwerda, "Bounday Conditions for Subsonic Compress-

ible Navier-Stokes Equations", Computers and Fluids, vol. 9, pp. 327-338, 1981.

[23] Scullen, D.C., "Accurate computation of nonlinear free-surface flows", PhD. The-

sis, The University of Adelaide, 1998.

[24] Sung, C.-H., M.J. Griffin, J.F. Tsai and T.T. Huang, "Incompressible Flow Com-

putation of Forces and Moments on Bodies of Revolution at Incidence", AIAA

93-0787, 31st AIAA Aerospace Sciences Meeting, Reno, Nevada, January 11-14,

1993.

[25] Sung, C.-H., T.C. Fu, M.J. Griffin, and T.T. Huang, "Toward Accurate Predic-

tion of Forces and Moments on Axisymmetric Bodies at Angle of Attack", Eurovisc

Workshop, Emmen, Switzerland, October 28, 1994.

[26] Sung, C.-H., T.C. Fu, M. J. Griffin and T. T. Huang, "Validation of Incompress-

ible Flow Computation of Forces and Moments on Axisymmetric Bodies Undergo-

ing Constant Radius Turning," The Twenty-First Symposium on Naval Hydrody-

namics, Trondheim, Norway, June 23-28, 1996.

135



[27] Sung, C.-H. and M.J. Griffin, "Improvements in Incompressible Turbulent Horse-

shoe Vortex Juncture Flow Calculations", AIAA 91-0022, 29th Aerospace Sciences

Meeting, Reno, Nevada, January 7-10, 1991.

[28] Sung, C.-H., M.J. Griffin and R.M. Coleman, "Numerical Evaluation of Vor-

tex Flow Control Devices", AIAA 91-1825, AIAA 22nd Fluid Dynamics, Plasma

Dynamics and Lasers Conference, Honolulu, Hawaii, June 24-26, 1991.

[29] Sung, C.-H., "An Explicit Runge-Kutta Method for 3-D Incompressible Turbu-

lent Flows", Report DTNSRDC/SHD-1244-01, July, 1987.

[30] Tahara, Y. and Stern F., "Validation of an Iterative Approach for Calculating

Ship Boundary Layers and Wakes for Nonzero Froude Number", Journal of Com-

puters and Fluids, Vol. 23, 1994.

[31] Thomas, G.R. "A Combined High-Order Spectral and Boundary Integral Equa-

tion Method for Modelling Wave Interactions With Submerged Bodies", PhD The-

sis, Massachusetts Institute of Technology, 1997.

[32] Tsai, J.F., Sung C.H., Griffin, M.J., and Huang, T.T. "Effects of Grid Resolu-

tion on Axisymmetric Stern Flows Computed by an Incompressible Viscous Flow

Solver", presented at the ASME Summer Fluids Engineering Conference, FED-Vol.

158, pp 99-108, June 20-24, 1993.

[33] Turkel, E., "Preconditioned Methods for Solving Incompressible and Low Speed

Compressible Equations", Journal of Computational Physics, vol. 72, 277, 1987.

[34] Wilcox, D.C., Turbulence Modeling for CFD, DCW Industries, Inc., CA, 1993.

[35] Wilcox, D.C., "Reassessment of the Scale-Determining Equation for Advanced

Turbulence Models," AIAA Journal, Vol. 26, No. 11, pp. 1299-1310, November,

1988.

[36] Yee, H.C., "A Class of High-Resolution Explicit and Implicit Shock-Capturing

Methods", NASA Technical Memorandum 101088, February, 1989.

136


