Lean Aerospace Initiative

Creating Value Through Integration

Valuation Techniques for Complex Space Systems

January 31, 2002

Presented By: Michelle McVey Advisor: Joyce Warmkessel

Research Sponsored By Lean Aerospace Initiative

Introduction

> Adding value to the valuation and design process

- Motivation of this research
- > Traditional valuation methods
 - Several insulated groups involved
 - > Engineering, cost estimating, marketing, etc.
 - Analyses are uncoupled, serial
 - Result: sub-optimization
- > Proposed improvement
 - A common representation of the system
 - > Bringing together the stakeholders
 - Analyses are coupled, simultaneous

Lean Aerospace

Failure of current valuation techniques

- Interface between technology and economics
 - Engineers: design something cool, lack understanding of economics/markets
 - Finance: lack of understanding about how technology can be developed/adapted to capitalize on a particular market's needs
 - Fundamental disconnect between two groups
- Neglect value of flexibility
 - > Accounted for by manager's "feel"
 - Need more quantitative approach

Lean Aerospace

Create valuation approach to

- Account for both technology and economics of project
- Encourage interaction between finance and engineers
- Utilize trade-studies to determine optimal product and architecture design
- Use valuation approach to
 - Determine viability of servicing market
 - Investigate product and architecture design trades on market viability

Lean Aerospace

Case Study: Aquarius

> What is Aquarius?

- Low-reliability launch vehicle
- Significantly reduced costs
- Used for low-cost deliverables (water, duct tape, fuel, etc.)
- Possible enabler for new markets (i.e. satellite servicing market)
 - Determination of servicing market viability and value

- Definition: Servicing only as it applies to refueling or using tug vehicle for orbital maneuvers
- Determine most "valuable" approach to servicing
- Compare to competition cases
- Focus on revenue and cost of s/c, not servicing
 - % of increased revenue pays for servicing
- Cost of servicing architecture and fuel delivery

Lean	
Aerospace	-//
Initiative	

Cases

Case	Initial Orbit	Final Orbit	Fuel Tanks	Aquarius Task	Comments		
Baseline	GTO	GEO	OR and SK: Biprop	None	Current s/c design		
AQR 1	Staging	GEO	OR and SK: Biprop (launched empty)	Fuel 1-Time at Staging Orbit for OR and SK	Cheaper Launch		
AQR 2	Staging	GEO	EWSK and contingency: Biprop	Tug for OR and NSSK	Cheaper Launch or Additional Transponders		
AQR 3	GEO	GEO	EWSK and contingency: Biprop	Tug for NSSK	Additional Transponders		
AQR 4	GEO	GEO	Small Biprop	Refuel before each NSSK maneuver	Additional Transponders		
AQR 5	GEO	GEO	Biprop	"Optimal Just in Time" Refueling	Additional Transponders		
AQR 6	Staging	GEO	OR: Biprop SK: EP	Fuel 1-Time at Staging Orbit for OR	Cheaper Launch Or Add. Trans.		
Comp 1	GEO	GEO	SK: EP	None	Additional Transponders		
Comp 2	GTO	GEO	OR and SK: EP	None	Additional Transponders		
	PD/ McVey -013102 © 2002 Massachusetts Institute of Technology						

Valuing Flexibility

> Option for life extension

Continue providing service after design lifetime of satellite

- > Option for relocation
 - Capitalize on valuable market opportunities

Options have value especially in highly volatile markets!

Progress

Examined customer-side:

- > NPVs before options indicate significant customer value (9% increase in after-tax returns)
- > Option for life extension: PV of up to \$140 M
- Competition cases: within 3% rate of return
 - Uses EP: time to orbit and radiation exposure issues
- Examining provider-side:
 - Cost estimates for different architectures and fuel delivery
- Use above info to estimate market size

Similar analysis with new metrics

- >% increase in available payload mass and volume
- > Options very valuable
 - **>** Relocation: Important for surveillance
 - Life extension

New valuation techniques necessary

- Account for technology and economics
- Examine customer and provider benefits
- Don't forget the competition!
- Satellite servicing market
 - > Promising from customer-side
 - > Evaluate provider-side