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Abstract

Vortex-induced vibration (VIV) results in fatigue damage of offshore oil exploration and
production structures. In recent years, the offshore industry has begun to employ curved
slender structures such as steel catenary risers in deep-water offshore oil systems. The
top-end vessel motion causes the slender riser to oscillate, creating an unsteady and non-
uniform flow profile along the riser. The purpose of this research is to develop a VIV
prediction model for slender structures under top-end periodic motions. The key approach
to this problem requires identifying the dimensionless parameters important to the
unsteady VIV.

A set of data from a large-scale model test for highly compliant risers conducted by
industry is available. The spectral analysis of the data showed a periodic pattern of the
response frequencies. A constant Strouhal (St) number model was proposed such that
shedding frequencies change with local inline velocities. The Keulegan-Carpenter
number (KC) controls the number of vortex pairs shed per cycle. A KC threshold larger
than 40 was found to have significant response for a long structure with finite length
excitation region. An approximate solution to the response of an infinite beam with a
finite excitation length was obtained; this solution provided an explanation for the high
KC threshold. A model for an equivalent reduced damping Sg under a non-uniform,
unsteady flow was proposed. This equivalent reduced damping Sg was used to establish a
prediction model for the VIV under top-end periodic motions. A time domain simulation
of unsteady VIV was demonstrated by using Green's functions. The turning point
problem wave propagation was solved for a pipe resting on a linearly varying stiffness
foundation. Simple rules were established for conservative estimation of TDP fatigue
damage with soil interactions. Guidelines for model test experiment design were provided
based on dimensional analysis and scaling rules.

Thesis Supervisor: J. Kim Vandiver

Title: Dean of Undergraduate Research
Professor of Ocean Engineering
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Chapter 1 Introduction

1.1 Problem Statement

Vortex-induced vibration (VIV) is an important source of fatigue damage of offshore oil

exploration and production risers. These slender structures experience both current flow

and top-end vessel motions, which give rise to the flow-structure relative motion and

cause VIV. The top-end vessel motion causes the riser to oscillate and the corresponding

flow profile appears unsteady. In recent years, the industry has begun to employ curved

slender structures such as steel catenary risers in deep-water applications. The

configurations of the curved structures determine the flow profiles along the structures

and therefore affect the VIV fatigue damage rates. Also, these long slender structures

tend to have low fundamental frequencies, so VIV of these long structures is often in

higher modes, e.g., 3 0th mode or even 1 0 0th mode. At these high modes with

hydrodynamic damping, the dynamic response is often propagating waves rather than

standing waves.

This thesis focuses on vortex-induced vibration problems for slender structures under

unsteady flow situations. The unsteady flow here is confined to cases involving the top-

end periodic motion of the structure. The purpose of understanding the VIV behavior is

to estimate the fatigue damage rate of structures. Three typical configurations of slender

risers used in industry are shown in Figures 1.1 to 1.3: the Combined Vertical Axis Riser,

or CVAR (Figure 1.1), the Lazy Wave Steel Catenary Riser, or LWSCR (Figure 1.2), and

the Steel Catenary Riser, or SCR (Figure 1.3). These three configurations were evaluated

in a model test conducted by PMB/Bechtel in 1998. Under top-end periodic excitation of

the CVAR model, examples of inline acceleration at one location and the spatial variation

of the velocity along the riser are shown in Figures 1.4 and 1.5. As can be seen in these

figures, the flow is both non-uniform and unsteady. The principal goal of this thesis is to

develop a VIV prediction model for slender structures under top-end periodic motions

based on available data, considering the effects of the non-uniform, unsteady flow and

very high mode number. In order to achieve this goal, we have to identify important

dimensionless parameters with respect to the unsteady problem and use these parameters

9



to characterize the dynamic behavior of the VIV response. Using dimensionless

parameters, we can extend the results from the available tests to predict the motion of

new structures.
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Figure 1. 1. Combined Vertical Axis Riser
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Figure 1.2. Lazy Wave Steel Catenary Riser (LWSCR).
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Figure 1.3. Steel Catenary Riser (SCR).
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Figure 1.4. Acceleration time series in the in-plane direction for top-end amplitude 2 ft,

top-end period 5 sec, at pup 3.
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Figure 1.5. The flow profile of the maximum velocities along CVAR. Top-end motion:

sinusoidal with A=3 ft and T=3 sec.

In addition to the major goal of developing the unsteady VIV model, we explore other

important issues as shown in Figures 1.1 to 1.3. 1). Top-end periodic motion is a problem

with a moving boundary condition. We explore the moving boundary effects for the
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system. 2). The effects of the structural discontinuity between the buoyant pipe and the

bare pipe will be investigated. 3). At the sea floor, the influence of the soil interactions on

the riser dynamics will be studied.

1.2 Overview of the Thesis

Chapter 2 provides the background for this research. Section 2.1 identifies the

dimensionless parameters related to the unsteady VIV problem. Section 2.2 introduces

the available data from industry. The data will be analyzed later in the thesis. Section 2.3

reviews the research related to steady VIV and the wave-induced vibrations.

Chapter 3 discusses the dispersion relations for the systems we are interested in. The

knowledge of the dispersion relation is very important for understanding the wave

behavior later. Section 3.1 elaborates on the derivation of the dispersion relations. Section

3.2 discusses the root loci for the dispersion relations of several model systems. Section

3.3 verifies of the dispersion relations between measurements and theoretical results.

Chapter 4 explores the effects of varying material properties and boundary conditions,

which include structural discontinuities and soil interactions. Section 4.1 introduces the

cutoff frequency. Section 4.2 develops the WKB method to solve the system with spatial-

varying properties. Section 4.3 develops the mathematical tools to solve the varying

foundation stiffness problem. Section 4.4 analyzes the data for the effects of material

discontinuity and soil interactions. Section 4.5 compares different soil interaction models

and provides the guidelines to simplify the problem.

Chapter 5 establishes the unsteady VIV model by developing the equivalent reduced

damping for non-uniform, unsteady flow. Section 5.1 reviews the approach to be used

and previews the final results. Section 5.2 discusses the influence of the top-end periodic

motion on the inline amplitudes along the riser. Section 5.3 gives examples to

demonstrate the physical meaning of the reduced damping and the effects of the power-in

13



length. Section 5.4 establishes an excitation frequency model for unsteady VIV. Section

5.5 discusses the importance of the KC number. Section 5.6 demonstrates the procedure

of solving for the unsteady VIV of a spring-mounted cylinder, by using the concept of

reduced damping. Section 5.7 develops the equivalent reduced damping model for the

unsteady VIV. Section 5.8 illustrates the relationship between the RMS A/D and the

equivalent reduced damping. Section 5.9 uses the non-dimensional frequency to explain

the observed results from model tests. Section 5.10 describes the procedure of predicting

the fatigue damage rate based on the equivalent reduced damping.

Chapter 6 summarizes this thesis. Section 6.1 discusses the insights we have gained from

this research. Section 6.2 provides guidelines for model test design by scaling laws.

Section 6.3 lists the new contributions of this thesis, while Section 6.4 suggests future

research directions.

14



Chapter 2 Background

Before entering into the details of the unsteady VIV problem, we need to understand

some background knowledge useful for later theoretical developments and experimental

data analysis. The dimensional analysis will include the introduction of all dimensionless

parameters important to unsteady VIV. The review of the steady current VIV problem

and the wave-induced vibration problem provides the direction in which we should

proceed for analysis of the unsteady VIV problem.

2.1 Dimensional Analysis

Dimensional analysis enables us to find the dimensionless parameters related to the

problem of interest, and also facilitates the scaling between the prototype and the model

test. First we list the variables associated with the VIV problem of a slender cylinder in

water under a top-end periodic motion excitation. This slender cylinder can be modeled

as a tensioned beam with structural damping. These variables and their units are listed in

Table 2.1.

Table 2.1. The independent variables related to the unsteady VIV under the top-end

periodic motion.

Fluid Structure

Young's Moment DampingDimtrLnh
Density Viscosity Mass/Length Diameter Length

Modulus of Inertia Ratio

p/ m E I D L

MUD Ml'T-' MuL ML'T-2  L4  1 L L

Others Top-end Excitation Soil

Water Depth Top Tension Gravity Amplitude Frequency Stiffness/Length

h T g A fex K

L MLT-2 LT 2 L T ML'T-2
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There are 14 variables in total for the system. In this table, Young's modulus and the

moment of inertia always come together as the bending stiffness, so we can regard EI as

one variable, and the number of variables becomes 13. With the Pi theorem, we are able

to reduce the variables to 10 dimensionless parameters that characterize this problem. A

variable that is frequently used in the dimensional analysis for fluids is flow velocity. We

use the magnitude of the top-end periodic velocity, defined as

Vo = 2zif,,A,

to substitute the top-end excitation frequency. The dimension of V is LT-1. There are

many possible combinations of these parameters to create 10 dimensionless groups. One

set of 10 dimensionless groups is:

P m El L h T gD A K

PfVo DpD2 1 pV 0
2D* 4 'DD' pV 2D 2 V 2 'D'pV 2 (2.1)

Some groups are well known. For example, we introduce the top-end maximum Reynolds

number as

Reo = p .DV. (2.2)

Because the top-end motion is sinusoidal, the Reynolds number may change with time,

but the defined Reo is a constant. Mass ratio is expressed as M 2 comparing the mass

per unit length of the structure and of the fluid. A physically meaningful mass ratio

should include the added mass effect in the numerator. The added mass per unit length

can be written as

ma = C,,, p ,D (2.3)
4

where Cm is the added mass coefficient, affected by the shape of the structure and the

dynamics of the fluid. The total mass per unit length is

m, =m+ma. (2.4)

16



m mThus, the mass ratio ' 2 is physically important, while the 2 can be obtained
pf D pfD

without knowing the details of the hydrodynamics (good for scaling). For the

T
dimensionless parameter with respect to tension (written as above), we should

pfV
2 D 2

consider the geometric shape of a catenary riser. The solution of the shape for a catenary

cable is

y = To (cosh --1), (2.5)
mg TO

where To is the horizontal tension of the cable. Thus, a physically meaningful

dimensionless parameter is ,gD which controls the static shape of the riser. For the
mgD

dimensionless parameter with respect to the bending stiffness EI, a better expression is to

compare the relative importance between the bending effect and the tension effect. If the

bending effect dominates, we can apply a beam model for the problem, while if the

Ely 2
tension effect dominates, we can use a string model. The term represents the

comparison between bending and tension, where y is the wave number for the

propagating wave, written as

-T+ T2+4mEI (2gf)2

-= 2 E1 (2.6)

From this equation, we see that it is required to know the vibration frequencyfin order to

obtain the wave number. Without knowing the response, we can still express the ratio as

EI
2 to be one dimensionless parameter. The Froude number (Fr) is introduced as

TD2

Fr = , (2.7)
gD

which is a ratio of the inertial effect to the gravitational effect. For a horizontal riser

moving vertically in the fluid, this parameter expresses the relative importance of the

hydrodynamic force and the hydrostatic force. The Keulegan-Carpenter number (KC),

defined as

17



KC = ,A (2.8)
D

is used to characterize the top-end amplitude of the excitation. Under a top-end periodic

excitation, the local amplitudes along the riser vary depending on the top-end amplitude.

We can also define the KC number in terms of any local velocity so that the KC number

will be a spatially varying dimensionless parameter. Finally, a dimensionless parameter is

needed to express the effects of the soil stiffness. For a tensioned beam on an elastic

foundation, there is a cutoff frequency corresponding to the soil stiffness:

1K
fCUt = 2 , (2.9)

where K is the soil stiffness per unit length, and m, is the total mass per unit length. The

comparison between the cutoff frequency and the wave frequency, or the ratio , is
fca,

important to determine the behavior of the wave propagation. Without knowing the

response, we can define an alternative dimensionless parameter as 0 to
-,,,K / m

characterize the effects of the soil stiffness. To sum up, the following 10 dimensionless

parameters specify the fluid properties, the structural properties, and the excitation:

m EI L h T VID
Re0 , 2 'TD2 

5 Fr,KC, 0 (2.10)
pfD2 s D'D'mgD' '4K/rm

All the above parameters are independent variables to fully characterize the problem.

Here we discuss some more dimensionless parameters important to the unsteady VIV.

These parameters are functions of some of the parameters shown in Equation 2.10. The

significance of these dimensionless parameters will be demonstrated in this thesis. First,

to define these parameters, the maximum normal velocity along the riser is more

important that the top-end maximum velocity. The location where the local maximum

normal velocity occurs depends on the riser configuration. We note V. as the maximum

normal velocity. The dimensionless parameters Re, Fr, and KC can also be defined by the

maximum normal velocity, and are noted as Re.,Fr,, and KC.. Several physically

meaningful variables regarding these dimensionless parameters are the natural frequency,

18



the vortex shedding frequency, and the response (vibration) frequency. For a tensioned

beam with pinned-pinned boundary conditions, the formula for the natural frequency is

1 EI ng4 T nrc2
fna, = - -I( nr)4 +-T( )~ , (2.11)

2z m, L m, L

where m, is the total mass per unit length. This natural frequency formula is valid for a

tensioned beam with a constant tension and a constant bending stiffness. For a tensioned

beam with spatially varying properties, the natural frequency will be more complicated,

but the combined effect of EI, T, and m, will be similar. The ratio between the response

frequency and the natural frequency, f tells which mode the response frequency
fn

corresponds to, and we can also use response mode number n as a dimensionless

parameter. For the vortex shedding frequency, it is necessary to introduce the Strouhal

number (St). The St number for a uniform flow is defined as

St - , (2.12)
V

where f, is the shedding frequency, and Vis the flow velocity. In general, St is a

function of mass ratio, Re and KC. The St relationship for the unsteady flow problem will

be explored in the later part of the thesis, while from Equation 2.12 we that infer the

shedding frequency will be a function of the diameter and the flow velocity even for

unsteady VIV. The response frequency is influenced by the shedding frequency. The non-

ID
dimensional frequency, defined as and specified here as fnd, is an important

Vma

parameter closely related to the St number. Notice that this parameter is defined by the

vibration frequency rather than the shedding frequency in St. The non-dimensional

frequency is the inverse of the reduced velocity, and we will use this parameter to discuss

the analyzed results in Chapter 5.

The lift coefficient, defined by

CL p DV2 (2.13)

19



is used to specify the excitation force in the VIV direction (the transverse direction).

Similarly, the drag coefficient, defined as

F
CD D (2.14)

controls the riser motion in the inline direction. The hydrodynamic damping ratio gh,

determined by various damping models and influenced by the flow velocity, the vibration

frequency, and the response amplitude, is also a very important dimensionless parameter.

The effects of the structural damping and the hydrodynamic damping always come

together, so we write the combination as

= s + gh (2.15)

where g is the total damping ratio. The reduced damping, defined for the steady VIV

problem as

sRWo
S, = 2,(2.16)

will be employed in the response prediction of the unsteady case and is defined carefully

there. The term R, the damping coefficient per unit length including the effects of the

structural damping and the hydrodynamic damping, can be written as:

R = 2micag. (2.17)

The reduced damping Sg expresses the relative importance of the energy consumption

and the energy entering the system. In Chapter 5, we will show the significance of this

parameter in a steady flow and extend the results to the unsteady flow problem. The

product of the mode number and the damping ratio ng, also called the wave propagation

parameter, is a critical parameter to determine whether we should use a modal model or a

wave model to approach the problem. Later in the thesis we will also show that this

parameter is essential for analyzing the moving boundary effects of the top-end periodic

excitation. One more important parameter is the length ratio of the power-in region,

Lpower-in . The power-in length is controlled by the riser configuration, and all the known
L

geometrical related parameters can determine the riser configuration. Another way to

represent the power-in length is by the number of wavelengths in the power-in region,

20



noted as N.. We will show that the product N,,g is essential to specify the effects of the

finite length power input.

In summary, the physically meaningful dimensionless parameters are as follows:

Reo, m' 2,E L , T , ,St,fdCL,CDSg,ng,Nn;-. (2.18)
pfD T 'D D mgD f..

2.2 Available Data

A large-scale model test for highly compliant risers (HCR) has been conducted by

PMB/Bechtel under a joint industry project. The experiments were performed at a lake

without significant current flows. Three different riser configurations were tested: the

Combined Vertical Axis Riser, or CVAR (Figure 1.1), the Lazy Wave Steel Catenary

Riser, or LWSCR (Figure 1.2), and the Steel Catenary Riser, or SCR (Figure 1.3). The

configurations of LWSCR and CVAR were formed with the buoyant pipes installed in

specific portions of the risers. Excitation was sinusoidal at the top end of each riser.

Several excitation amplitudes and periods were conducted for each configuration. The

directions of the excitation were mostly vertical, except for the tests of SCR configuration

in which the directions were vertical, transverse horizontal, and 450 horizontal. Eight sets

of sensors were installed along the riser for each configuration. Each set of sensors was

mounted in a short tube, which was called a 'pup'. Each pup contained 2 accelerometers

in the in-plane direction (in the plane of the curvature) and 2 accelerometers in the out-of-

plane direction (perpendicular to the in-plane direction). Each sensor had 2 strain gages in

both directions at the middle of the pup.

The sinusoidal excitation at the top caused the whole riser to oscillate, and the relative

velocity between the riser and water generated vortices that induced vibrations mainly in

the direction perpendicular to the flow direction. For example, when the SCR (Figure 1.3)

was excited vertically with a sinusoidal motion of amplitude A and period T, the whole

riser oscillated with period T in the plane of the curvature. The amplitudes of the

sinusoidal motions along the riser depended on the catenary shape. At each location, the

vortices generated by the relative motion in the in-plane direction induced vibration in the

21



out-of-plane direction. The relative velocity between the riser and water in the in-plane

direction was basically sinusoidal. This varying velocity is different from the velocity in a

steady current case, where the vortex patterns follow the Strouhal relationship. It is

therefore a challenge to figure out the VIV frequency content for this unsteady problem.

The 8 sets of sensors (pups) were connected to the risers in different locations for each

configuration. Table 2.2 shows the locations of all pups in 3 configurations. Pup 7 was

out of order during the test, so we will omit it for the later analysis. It can be seen that one

pup was close to the top of the SCR, while the other pups for the SCR and all the pups for

LWSCR and CVAR were located in the middle portion of the risers.

Table 2.2. Distance (ft) from anchor to top of each sensor for three configurations.

Pup number CVAR LWSCR SCR

On anchor 5.5 5.5 5.5

Pup8 331.5 487.5 259.5

Pup 7 357.5 513.5 285.5

Pup 6 371.5 527.5 311.5

Pup 5 385.5 541.5 325.5

Pup 4 399.5 555.5 339.5

Pup 3 413.5 569.5 353.5

Pup 2 427.5 583.5 379.5

Pup 1 453.5 609.5 1221.5

On top 849.5 1485.5 1233.5

An impulse response test was also conducted by hitting a point close to the top end of the

riser with a heavy hammer. This test is called the 'whack test'. This test is useful to

understand the wave propagation behavior of the riser and to determine the measured

dispersion relation for the riser.
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2.3 Previous Research

The VIV problem for a flexible cylinder under uniform flow has been extensively studied

(Griffin, 1985, Sarpkaya, 1979, Bearman, 1984). Hartlen and Currie (1970) provided a

lift-oscillator model to approach the lock-in behavior of VIV. A VIV program SHEAR 7,

developed by Prof. Vandiver in MIT group, is used in industry mostly for fatigue damage

rate estimation under steady shear current. Some of the previous knowledge concerning

this topic is included in this program as well as in Vandiver's work (1993).

For VIV under unsteady current, several experiments were carried out for structures

under sinusoidal oscillatory flow or sinusoidal oscillating structures in still water. To see

the vortex patterns in oscillatory flow, Williamson (1985), and Williamson and Roshko

(1988) used flow visualization techniques to capture the evolution of the vortices near the

structure. Sarpkaya (1976, 1986) and Justesen (1989) measured forces under oscillatory

flow in the range of 1-30 for KC number. Sumer and Fredsoe (1988) tested VIV of a free

cylinder in waves. For VIV of curved structures or inclined structures, very little research

has been conducted up to now. Kozakiewicz et al. (1995) studied the influence of oblique

attack of current flow. Triantafyllou (1991) reported the dynamic response of curved

cable structures under added mass and drag force effects. Bearman et al. (1984) proposed

a frequency varying forcing model for the harmonically oscillating flow. Ferrari and

Bearman (2000) modified the original model and carried out numerical simulations.

Blevins' book (1990) provided a thorough and compact resource for a variety of flow-

induced vibration topics.
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Chapter 3 Dispersion Relation

3.1 Derivation of the Dispersion Relation

The governing equation for a damped tensioned beam (Bernoulli-Euler beam) on an

elastic foundation is:

a2 _ 2_ a 8y a2y ,EI T +m +c +ky=q(x,t), (3.1)
ax 2 aX2 aa2 a

where y is the response at location x and time t, E is the Young's modulus, I is the

moment of inertia, T is the tension, m is mass per unit length, c is the linear damping

coefficient, k is the elastic foundation stiffness per unit length, and q is the excitation

force. We first assume all the coefficients here are constant, and by plugging in a plane

wave solution with the form Ael(y-t) , a dispersion relation can be obtained as:

Ely4 + T y2 -mCo 2 -icco+ k =0. (3.2)

There are four solutions for the wave numbers of this equation:

-T ±IT2-4EI m(-aw2-ic+k 2

2EI 12

Thus, the wave numbers are functions of wave frequency, and there are four possible

wave components for this governing equation. If the bending stiffness term is negligible

compared with the tension term, that is, the system can be modeled as a string problem,

then the dispersion relation can be written as:

Ty -McO -ico+k =0, (3.4)

and the wave number solutions are:

r7 =± +mco 2 +icco - k (35)
T

where we have only two wave components for the problem. In the following discussion,

the wave numbers will be used to identify the behavior of the waves and also to obtain

the Green's function solutions.

3.2 Root Loci for the Dispersion Relation
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As can be seen from equations 3.3 and 3.5, wave numbers are generally complex. The

real part of the wave number determines the wave propagating direction and the

wavelength, while the imaginary part gives the spatial decay or growth of the wave

amplitude. Thus, it is important to understand the effects of the structural properties on

the wave number, and how it varies with frequency. One way of seeing this is to plot the

root loci in the complex y domain for changing frequencies. The locations of roots in the

complex wave number, y, domain are important when calculating the Green's function

for a harmonic excitation, as will be seen in Chapter 5. The problems are classified into

12 categories depending on the presence of terms, as shown in Table 3.1.

Table 3.1 Dispersion relations for the 12 classified categories.

String Beam Tensioned beam

no spring Ty 2 -mco2 =0 EIr -mMco2 =0 EIr 4 +Tr2 -mC02 =0

no damping

spring Ty 2 + k -mco 2 =0 Ely4 + k -mC02 =0 EIy4 +T y2 + k -mco 2 =0

no damping

no spring Ty 2 _ic-mco2 =0 EIy -icC-M 2 =0 EIy4 +Ty 2 -ica-mO2 =0

damping

spring T y 2 +k -it-mco 2 0 EIy 4+k -ic-m-m2 0 EIY4 +Tr 2 +k -ic-mC2 =0

damping

Cases without soil springs and without damping are simple. The wave numbers for a

string, a beam, and a tensioned beam are y = ± , y = ±
fT j EI EI

-T+ T 2 +4mEw 2  T+VT 2 +4mEICO2

and y 2E 2EJ , respectively. For a string,

there are two waves traveling to the opposite directions. For a beam and a tensioned

beam, there are two propagating waves and two evanescent waves. The root loci for these

three cases are shown in Figures 3.1 to 3.3. In these figures and in the following figures
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for the root loci, we use solid, dashed, dotted, and dashdot lines to indicate different roots

of solutions.
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Figure 3.1. The root locus for a string in the

increasing wave frequency directions.
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Figure 3.2. The root locus for a beam in the complex y-plane. Arrows point to the

increasing wave frequency directions.
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Figure 3.3. The root locus for a tensioned beam in the complex v-plane. Arrows point to

the increasing wave frequency directions.

For cases with an elastic foundation, there is a cutoff frequency wc = -- . A cutoff
m

frequency distinguishes the wave propagation behavior. For a string, the wave numbers

mr 2_-k 2
are r = ± . Thus, when the wave frequency follows the relationship cw > oe,

both roots are real and two waves propagate to the opposite directions. When co < coc,

both roots are imaginary and there are two evanescent wave solutions for the problem.

The root locus in the complex y-plane is shown in Figure 3.4. It demonstrates that two

roots turn to the real axis as wave frequency is larger than the cutoff frequency. For a

inc 2 -k
beam, we can write the dispersion relation as y4 = . When co > co, the four roots

EI

) 4

iCa2 - k
are / ± E

ic2 - X

EI)
, two propagating waves and two evanescent

) 14waves. When co < ce , the four roots are y = MC2

EI 2
v2 Any of these
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roots represents a wave propagating to one direction and decaying (or growing) in a

particular direction. For example, Ae(YX-Ct) with r = -MC2 ) 4  F2 +i--
EI 2 2

represents a wave traveling to the positive x direction and decaying in the same direction,

as shown in Figure 3.5. When formulating the Green's function solution for a harmonic

excitation, two of these solutions will add up to form an evanescent wave without

propagating behavior. This evanescent wave is different from the evanescent wave for a

string in that for the beam case the wave has an underdamped-like zero-crossing, though

it is not an important issue for the system behavior. The root locus in the complex y-plane

is shown in Figure 3.6.

-1.5 -1 -0.5 0
Real(y)

0.5 1 1.5 2

Figure 3.4. The root locus for a string on an elastic foundation in the complex y-plane.
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x

Figure 3.5. The wave with decaying amplitude traveling to the right.
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Figure 3.6. The root locus for a beam on an elastic foundation in the complex y-plane.

The tensioned beam behaves mostly the same as a beam except there is another threshold

for underdamped-like and overdamped-like evanescent waves. From the dispersion

relation, we get r 2 =
-T ± (T2 - 4E1(k - mC 2 )

2EI
. When co > cot, the four roots are

30

1

0.5

E
0

CO

F F I I F I F I
F I I I F F F I
F F I I I F I F F
F I I I I I F F F

F F I F F F F F F
F F F F F F F F F
F F F I F F F F F

F F F F F F F F

F I F I F F F F

-I----L---4.....V
F F F F F F F

F F F F F F F F F

F F F F F F F F F

F F F F F F F F F
F F F F F F F F F

F F F F F F F F I

0

-0.5

0.25 -

0.2

0.15-

0.1

0.05

0-

-0.05

-0.1

-0.15

-0.2

-0.25

4

7

'V



4EI(km+ T + T2 -4EI(kmW2)

2EI 2EI
two propagating waves

and two evanescent waves. When co < oc, the problem becomes more complicated.

When T2 > 4EIk, the value T2 - 4E1(k -mC 2O) of the inside square root is always

positive. The four roots are

T- T2 _4EI(k-mM2)

2EI

T+VT2 -4EI(k-moM2)
, 2 , four overdamped-like

2EI

evanescent waves. As T 2 < 4Ek , we get

2 _ k -mw 2

EI

where 0 = tan-'
V4EI(k - MC02) - T 2

(- _ - . Therefore, the wave numbers are
-T

= k -mC 2

r El

X +, e

e 2,
k -mO 2

El
e 2

These roots will form underdamped-like evanescent waves. The root loci are shown in

Figures 3.7 and 3.8, for T 2 > 4EIk and T 2 < 4EIk respectively. It is clear that there is one

cutoff frequency in Figure 3.7 above which two solutions become real, while in Figure

3.8 another threshold frequency is present for two types of evanescent waves.
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Figure 3.7. The root locus for a tensioned beam (T 2 > 4EIk ) on an elastic foundation in

the complex y-plane.
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Figure 3.8. The root locus for a tensioned beam (T 2 < 4EIk) on an elastic foundation in

the complex y-plane.
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All the above cases are energy conservative. When the energy dissipation comes into

play, as the constant damping model used here, the root loci will be distorted in the

complex plane. For a string with constant damping, the dispersion relation is

Ty 2 - icCo - mw 2 =0 and the wave numbers are y= 71() ±+cao 1). The root locus is
T

shown in Figure 3.9. As c increases, the imaginary part of the wave number gets larger

and this imaginary part determines the decaying effect in space. For high frequencies, the

wave number approaches a constant for a constant c and thus the decaying of the wave

amplitude in space will be affected by the wave frequency. This is not the case for other

systems such as a beam or a tensioned beam. Figures 3.10 and 3.11 show the curve

distortion for a beam and a tensioned beam. Figures 3.12 to 3.15 show the root loci for

three different kinds of systems with damping and spring terms. Notice that for a beam or

a tensioned beam, four solutions are in four different quadrants. As can be seen from

these figures, there is no clear cutoff frequency for each case. However, as the damping

term is small, the behaviors become similar to the cases without damping (Figures 3.4,

3.6, 3.7, 3.8), and the cutoff frequency does give an idea of the tendency of the wave

behavior.
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Figure 3.9. The root locus for a string with damping in the complex )-plane. Two

different values of damping are used for the two curves on each side, and larger damping

constant makes absolute value of the imaginary part larger.
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Figure 3.10. The root locus for a beam with damping in the complex y-plane.
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Figure 3.11. The root locus for a tensioned beam with damping in the complex )-plane.
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Figure 3.12. The root locus for a damped string on an elastic foundation in the complex y-

plane.
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Figure 3.13. The root locus for a damped beam on

plane.
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Figure 3.14. The root locus for a damped tensioned beam (T 2 > 4EIk ) on an elastic

foundation in the complex y-plane.
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Figure 3.15. The root locus for a damped tensioned beam (T2 < 4EIk) on an elastic

foundation in the complex y-plane.

3.3 Verification of the Dispersion Relation

A typical whack test result on the SCR model is shown in Figure 3.16. Pup 1 is close to

the top end where the riser was hit, while pups 2, 3 and 4 are near the TDP and 4 may

have been on the bottom. The data in pup 1 shows an impulse without much dispersion.

This impulse travels along the riser. Due to the dispersive characteristics of the riser, the

high frequency components of the impulse move faster than the lower frequency ones, as

shown in the times series of pups 2, 3 and 4. The dispersion relation thus can be

estimated from the data. Due to the resolution limitation, we use the traveling time

between pups 1 and 2, between pups 1 and 3, and between pups 1 and 4. Assuming all the

frequency components are in the impulse shown in pup 1, we are able to identify how

long it takes for a wave with a certain frequency to move from pup 1 to pups 2, 3 and 4.

Because we know the distance between every two pups, as demonstrated in Table 2.2, we

are able to calculate the average velocity from the distance and the wave traveling time.

Thus, the 'average wave number' can be estimated from the velocity and the wave

frequency, and we obtain the dispersion relation curve (in SI unit) shown in Figure 3.17.
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Figure 3.16. In-plane bending moment (ft-lbs) time series of a whack test for SCR with a

hard bottom.
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Figure 3.17. Dispersion relation (SI) for SCR from the whack test results.

The dispersion relation can also be obtained theoretically from the material properties of

the riser. The riser can be modeled approximately as a straight tensioned beam with

constant bending stiffness and slowly varying tension. The damping term can be
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neglected due to its minor effect on the dispersion relation. Therefore, the governing

equation can be written as:

a4y Y a y) 02,
El 24T(x) + m = , (3.6)

x' 4 x aX x at 2

and the dispersion relation is

EIy(x) 4 + T(x)y(x) 2 - MiC2 = 0, (3.7)

where the derivative term of tension is dropped because it is small for slowing varying

tension. This is a local dispersion relation. For the propagating wave to the positive x

direction, the local wave number is written as

-T (x+QT + 2+4mElw
2

jx)= + 2E1 (3.8)

That is, the wavelength and the wave velocity change along the riser. The experimental

dispersion relation shown in Figure 3.17 is actually an average result from a long distance

of wave traveling. To make the theoretical result comparable with the experimental

relation, we have to estimate the 'average wave number' for a certain distance.

The practical method for calculating this wave number is first to write down the time for

a wave with frequency co to travel a distance L. The local wave velocity is

dx
v(x) = , (3.9)

dt

or

dx
dt = . (3.10)

V(x)

Over a finite distance, we integrate Equation 3.10 and get

Sdx
dt= x (3.11)

where L is the distance traveled and r is the time spent to travel the distance L. The wave

velocity can be represented by the wave frequency and the wave number:

v(x) - ,o (3.12)

so we are able to write the time as
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r I y(x)dx

f - m~co dx.(3.13)I -T(x) + T(x)2 +4mEIc&(313
1 2E1dx.

N 2EI

The average velocity calculated in the experimental dispersion relation is defined as

v = L / z-. The corresponding 'average wave number' as in Figure 3.17 is then estimated

based on the average velocity and the wave frequency

L /-7 x) + )T(x) 2 + 4mElw2
IL .4EIC02dx

)O CtO Co 2EI (3.14)
V Llr L L

That is, the 'average wave number' is a spatial average over the region that the wave

travels.

The risers for all configurations in this test are made of 1.25" ID X 0.125" wall 6061-

T6511 extruded aluminum tube. The material specifications in SI are as follows:

Young's modulus: 7E10 Pa

Outer diameter: 0.0381 m

Inner diameter: 0.0318 m

Moment of Inertia: 5.37E-8 m^4

Mass per unit length: 2.63 kg/m

The added mass per unit length is estimated as

0D2

ma = CmPprc , (3.15)
4

where Cm is the added mass coefficient, pj is the fluid density, and OD is the outer

diameter. Here we assume negligible added mass for the whack test, i.e., Cm, is set to

zero, and the total mass per unit length is still 2.63 kg/m. If in the general case when

Cm =1, the added mass per unit length is 1.14 kg/m, and the total mass per unit length is

3.77 kg/m. This total mass will be used in the discussion in Chapter 4. A tension

prediction from a commercial finite element program is available and shown in Figure

3.18. Using numerical integration with all these estimated properties, we are able to

predict the 'average wave number'. The comparison between the predicted and the
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experimental dispersion relations is shown in Figure 3.19. Though the high frequency

components of the experimental results tend to have lower wave numbers than the

predicted ones, they agree reasonably well and may only need some fine-tuning for the

numbers of material properties. One likely source of the difference is that the actual

added mass was not known.
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Figure 3.18. Prediction of tension variation by an industrial finite element program.
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Figure 3.19. Comparison of the theoretical and the experimental dispersion relations. The

solid line represents the theoretical prediction while circles, triangles, and squares

represent the experimental results.
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Chapter 4 Wave Propagation on Material with Varying Properties

4.1 Discontinuity and Cutoff Frequency

An oil riser is built up by assembling several sections to form a long slender structure. It

may have discontinuities across adjacent sections, for example, between the buoyant pipe

and the bare pipe. Also, another type of discontinuity comes from the touch-down point

(TDP). When the bottom part of a riser lies on the underwater soil, it is possibly modeled

as an elastic foundation to account for the soil-structure interaction. Thus, the TDP

becomes a discontinuity connecting two parts with and without an elastic spring term.

These types of discontinuities are discussed as follows.

At the point of discontinuity, the kinematic and dynamic conditions must be continuous.

For a string, the displacement and the force have to be the same for both sides at the

interface. For a beam or a tensioned beam, two additional terms, the slope and the

bending moment, must be continuous. Thus, the sums of these quantities for the incident

wave and the reflective wave have to equal the quantities for the transmitted wave.

A simple case demonstrates the calculations for the discontinuity problem. Figure 4.1

shows a string with different material properties on both sides of x = x0 . From the

previous section, we know the wave numbers are y, = and

r2= m2c -k 2  . Let us make Ya and Y2a as the positive ones, and Ylb and 7 2b as

the negative ones. Assuming the incident wave comes from the left where x < x., we

have
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Incident wave:

displacement y, = Ael'(ri X-)

forcef, = T a' = iyAei( -at)

Reflective wave:

displacement y, = Are '''b-CO

forcef, = T ' = iy'1 bArei("rXWt)
ax

Transmitted wave:

displacement yt = Ae4("X"t

forcef, = T2 ayt = y72 aT 2Aea
0x

These equations are valid whether the frequency is above or below cutoff. To match the

displacement and the force at x = xO, we obtain

Ai e 'YaXO + Are"bX0 = 4e Y2.x0

iraTAeir,"xo + YlbI Are'' = iy 2 aT 2 4e "Y2.*

(4.1)

(4.2)

Assuming A, is known, we can solve Ar and A, by these two equations, or we can write

it in a matrix form:

[ elbXO

i'ylblieI bO

-e *2aXO Ar -e'"axo

2e A J. . -"COelrla A1 .
-iY2aT 71 'aTe _

(4.3)

Thus, we can add up the different components of waves and obtain the solution.

A
mI;, k,

Figure 4.1. A string with different material properties on both sides of x = xO.
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Although the equations are applicable to cases above or below cutoff frequency, the wave

behavior is quite different for both cases. The cutoff frequency for the left part is

rkl kColl = ,and the cutoff frequency for the right part is ac2= --. Assumek 2 >k,
mm 2

and an incident wave from the left has the frequency co > wC1 * When an incident wave

comes to the interface point xO, the cutoff frequency in the right part is critical to

determine the wave behavior. If o > oc2 , the transmitted wave propagates and a certain

amount of energy moves toward the right. If CO < oc2 , the right side can only have

evanescent waves, and the energy is reflected to the left part. Figure 4.2 shows a snapshot

of a wave above the cutoff frequency and Figure 4.3 shows a snapshot when below

cutoff. Notice that the wavelength is longer on the right side in Figure 4.2. This is

( 2 -k
because y =M7W 2 2 and k2 > k, so that the right side has a smaller wave number

T

and thus has longer wavelength.

2
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Figure 4.4. A tensioned beam with different material properties on both sides of x = x0 .

The discontinuity problem for a tensioned beam (Figure 4.4) on an elastic foundation

with damping is more involved. The wave numbers are

-T± (T2 -4EI(-mw2 -icw+k ))2 j2

2EI
. As shown in the previous section, these

four wave numbers are in four different quadrants. They represent four types of waves: 1.

decaying to the right and traveling to the right; 4. decaying to the right and traveling to

the left; 3. decaying to the left and traveling to the right; 3. decaying to the left and

traveling to the left (here traveling direction means the moving direction of the phase

velocity). These are shown schematically in Figure 4.5. We assign the wave numbers
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Yi,, 71IYI, Yldfor the left part respectively, and 7
2a,

7
2b Y2c 7

2d for the right part,

respectively.
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Figure 4.5. Four types of waves for a beam or a tensioned beam.

Assuming the incident wave comes from the left, we can write its two possible

components of the displacement as y,, = Ajei a'') and yb = Aibei''lbXw~) . The two wave

numbers are selected due to the energy radiation condition. These components have

smaller amplitudes at the right and thus satisfy the energy decaying behavior in the

propagating direction. Also, we have to determine the displacements for the reflective

wave: yrc = ArCei(~') and yd= Ae(r1dx-t) , as well as the displacements for the

transmitted wave: y,, = A,,e'(Y2a-') and Yt = Ae'('2bX-') . The amplitudes of the wave

components have to satisfy the kinematic and dynamic conditions, i.e., the continuities of

_y a2_ a3y Oy
displacement y, slope , moment EI 2 , and force -EI + T- (for a constant EI

for both left and right portions). After some arrangements, the equation can be written as

a matrix form:
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The amplitudes of different wave components can be determined from this matrix

equation. We use a tensioned beam with mass per unit length 1347 kg/m and stiffness per

unit length 86000 N/M2 as an example. The simulated results are shown as two

snapshots in Figures 4.6 and 4.7. This system has a cutoff frequency 1.27 Hz. With

incident wave frequency 1.5 Hz for Figure 4.6 and 1 Hz for Figure 4.7, the behaviors tend

to be similar as those for the cases above or below the cutoff frequency, though there is

no generally defined cutoff frequency for a damped system.
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Figure 4.6. A snapshot of a wave with frequency above the undamped cutoff frequency

on the right side for a damped riser. Discontinuity is at x=500.
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Figure 4.7. A snapshot of a wave with frequency below the undamped cutoff frequency

on the right side for a damped riser. Discontinuity is at x=500.

4.2 Spatial Variation of Properties: the WKB Method
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In addition to the discontinuities at certain locations along a riser, it may also have

spatially varying properties. For example, the tension along the riser varies due to

different water depths. Here we assume the slowly varying properties, and the WKB

method is suitable for solving this type of problem.

The governing equation for a damped tensioned beam on an elastic foundation with

slowing varying properties is written as:

EI(x) (T(x) +m(x) 2 +c(x)-+k(x)y =0,
&2 2 &X & aX at

Assuming a harmonic solution with the form

y = y(x)e-e,

it becomes

d457EI +
dx4

To take care of

d(EI)d '7 d2 (EI) d 2Y d2- dT dy 2- -.2 + - -- T --.mC y - ICCy- + ky = 0. (4.6)
dx dx3  dx2 dx2 dx2 dx dx

the spatial variation in this problem, we use the WKB method and let

Y(x)= eO(x) {ao(x)+ a,(x)+ a2 (x)+...}, (4.7)

where a, and a2 are higher order corrections. We also assign

dO(x) 
(X)

dx

which is the local wave number along the system. The derivatives of y(x) are
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= ire'"9 {a, +a, +a2 +...}+e" ao' +a'+ a2 ' +...,
dx

d.= (-Y 2 ea'Oaa 2 ... +2iye' ao'+a + a +.. o" a +a ±+a2 +...

dY= (Or" - 3r' - ir'3 o la, + a, + a2 +...} +(3ir'- 3r 2 )eO a' +a ra + +

+3iye'O ao+ a,"f+ a2"+.. + e'o a" "+a,"+a2"+.,

=d " -4r"r -3 Y'2 - 6ir'r 2 + y' )e'" { a,, + a, + a2 ..

dx

4& T( '4yy3' 26i'+

+(4ir" -12yr'- 4iy')e'I ao' +a' + a2 ' +... + (6ir'-6 2 )eI ao +a" +a 2 + +

+4iye'I ao+a," + a 2 + ... +e' (4) +a () +aa2 (4

Inserting the corresponding terms into Equation 4.6, we obtain the equation for the

leading order:

EI(x)y4 (x) + T(x)r 2 (x) - m(x)Co 2 - ic(x)o> + k(x) =0. (4.9)

This is the same as the dispersion equation for a damped tensioned beam on an elastic

foundation. Therefore, the local wave number has to satisfy the local dispersion relations.

The next order terms give

EI(-6i)' 2 ao + y 4 a, -4iy7a o
' )+ 2(EJ)'(-iy3a.)-T(i'ao -y 2a, +2iyao )-

-T'(iyao) -m)2 a -icoa +ka, = 0.

All the terms with a, can be eliminated due to the dispersion relation Equation 4.9. After

rearrangement, we get

ao[6Ely'y2 +2(EI)'y' +Ty'+T'y]+ 2ao' [2E y 3 +Ty] =0,

or

d {a2(x)[2EI(x)y3(x) + T(x)y(x)]} =0. (4.10)
dx

Equation 4.10 gives the amplitude variation along x. To this order, we can write the

harmonic solution as

y(x, t) ~ ao(x)eO(X)-Ct, (4.11)

where
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0(x) = fy(x)dx.

Notice that due to the complex wave number obtained from Equation 4.9, 0(x) and the

amplitude a. are also complex. The complex 0(x) contributes to the decay of the

amplitude from damping, and the complex ao gives phase shift in the response. Equation

4.10 is actually closely related to the power balance along x, except the attenuation due to

damping. For an undamped system, we will have an average power

1
(P)= a (EIY3 w +- Tyo). (4.12)2

The power equality (known as Green's law) states

(P) Q, = (P) K,
and thus

1
a2 (x)[EI(x)y3 (x)co + - T(x)y(x)co]= constant,

2

the same as Equation 4.10. Figure (4.8) shows snapshots for an example case with

varying properties.
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Figure 4.8. Snapshots for a tensioned beam with linearly decreasing tension on an elastic

foundation (solid line: no damping; dashed line: 2% damping). On the right side, the

wavelength is shorter and the amplitude is larger for the solid line due to the smaller

tension there.

4.3 Varying Foundation Stiffness: Turning Point Problem

Although the WKB method is powerful for solving spatially varying problems, it fails

around a turning point. For a spatially varying foundation stiffness problem (the cutoff

frequency also varies in space with the stiffness constant), the turning point refers to the

location where the wave frequency is equal to the cutoff frequency. At this location, the

wavelength becomes singular, and the wave changes from above cutoff frequency on one

side to below cutoff frequency on the other side. In this section, we will solve the

problems with linearly varying spring constants. Extending the solution from the linearly

varying stiffness case with patched solutions in different regions can solve problems for

more complicated variations of the spring constant.

The governing equation of a string with a linearly varying spring constant can be written

as:
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-T a2 + 2 +k(x)y =0,
ax2  at2

where we assume constant tension and constant mass. Inserting a harmonic solution

y = Y(x)e-"' to this equation, we get

d 2Y
-T -mco2Y+k(x)Y=O. (4.13)

Assume the linearly varying k(x) has the spring constant as shown in Figure 4.9, and

also it satisfies k(O) = mCo 2 . This choice of k(O) is just for the convenience of calculation

and does not influence the generality because we can shift the solution to a proper x

location later on. With this setup, we can write the spring constant as:

k(x)= ax+mw 2 , (4.14)

where a is the slope of the linear variation. Inserting Equation 4.14 into Equation 4.13,

we get

d 2Y

--T + axY=O,

or

dY xY =0. (4.15)
dx2 T

Equation 4.15 is an Airy equation and we can simplify it by introducing

x = - x,
T

and therefore

d =a~y d

dx T c&

Substituting these two terms for the terms in Equation 4.15, it becomes

d 2y
2XY = 0. (4.16)

Solutions for Equation 4.16 can be written as

Y(x) = DAAi(z) + DBBi(z),
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where A i and Bi are Airy functions. For an infinitely long string, because Bi is divergent

for positive x and thus it is not physically meaningful, the second term is eliminated. The

solution will be

y(x,t) = DAAi - x e-'(T (4.17)

A typical Airy function Ai is shown in Figure 4.10. The decay on the right side is

expected because the wave frequency is smaller than the cutoff frequencies there. On the

left side, the wavelength gets longer and the amplitude gets larger as x gets close to 0.

These behaviors can be explained by the power balance as in Equation 4.12.
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Figure 4.9. A schematic plot for the spring constant variations in space.
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Figure 4.10. The Airy function Ai.

The beam and the tensioned-beam cases are more involved due to the lack of a special

function in the high order problem such as the Airy function just shown. Here a
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tensioned-beam problem is elaborated to demonstrate the procedure for solving this

problem. Basically we have to use the integral representation for the equation, and then

solve the approximate solutions in three different regions: 1. close to the turning point, 2.

left of the turning point, and 3. right of the turning point. The solution close to the turning

point is approximated using Taylor's series expansions. The solutions on the left and the

right sides are obtained by the steepest descent method. These three solutions match in

the overlapping regions and we obtain results similar to the Airy function.

The detailed derivations of the solutions for the turning point problem are shown in

Appendix 1. Here we only demonstrate the final results of the sophisticated calculations.

Figure 4.11 shows four solutions for a typical tensioned beam with linearly varying

stiffness. Solution B has the behavior similar to Airy function Ai. To obtain a physically

meaningful solution for a specific problem, boundary conditions have to be imposed to

decide the weighting of each of these four solutions. For example, an incident wave from

the left side for an infinitely long tensioned beam cannot have infinitely large response a

the right side. Thus, only solutions B and D in the figure, both of which have small values

for large x, can satisfy this radiation condition requirement.
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Figure 4.11. Four solutions for a typical tensioned beam with linearly varying spring

constant.

4.4 Data Analysis for the Effects of Boundary Conditions

With the understanding of the theoretical background from previous sections, we would

like to report the experimental results for two kinds of boundary conditions: the material

discontinuity between the bare pipe and the buoyant pipe and the soil boundary

conditions at the touch-down point (TDP). We will use the theoretical outcome to

interpret the experimental results.

In the CVAR test, pups 1 to 5 were mounted on the side of the bare pipes, while pups 6 to

8 were mounted on the side of the buoyant pipes. Thus, the data are useful for

investigating the bare-buoyant discontinuity boundary conditions. The total mass per unit

length of the buoyant pipe is larger than that of the bare pipe. According to the wave

number formula as in Equation 3.3, when the mass per unit length increases, the wave

number also increases. Equation 4.12 for the power balance shows that when wave
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number increases, the displacement amplitude decreases. Therefore, we anticipate that

the displacement amplitudes are smaller in the buoyant pipe portion than in the bare pipe

portion. Because the wave number is also a function of the wave frequency, it is more

useful to look at the spatial variations of the response one frequency at a time. Figure

4.12 illustrates the RMS displacements of a CVAR test with top-end period 3 sec and

top-end amplitude 3 ft. Each of these curves represents the RMS displacements for a

frequency interval. The frequency interval for each curve is equal to the top-end

excitation frequency of the corresponding case. That is, we use the frequency partitioning

technique to distinguish different frequency contents. In order to demonstrate the

decreasing ratio between the two sides, we re-scale all the curves so that the mean of each

curve is 1. It can be clearly seen that there is an amplitude jump between pup 5 and pup

6. The left side with buoyant modules has smaller amplitudes as expected.

1.4 - - - -4 - - 4 ---- 4 - - - - ---

E
ci)

1.2 - - - - -

0.68-

PTip 51 116
0

0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56
x/L (x=0 on the bottom)

Figure 4.12. The spatial variations of the RMS displacements for CVAR, top-end

amplitude 3 ft, top-end period 3 sec. The vertical line is the location of the material

discontinuity. RMS displacements are scaled to make the mean of each curve equal 1.

To obtain the theoretical predictions of the response, the specifications of the riser and

the buoyant modules are needed. For the bare pipe, we use the same material properties

as in Section 3.3, except that the added mass is included now. Including the added mass,
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the mass per unit length for the bare pipe is 3.77 kg/m. The buoyant modules have

comparatively small bending stiffness, and the mass per unit length is different from that

for the bare pipe. The bare pipe in the buoyant part has mass per unit length 2.66 kg/m

(not including the added mass). The buoyant module has density 40 lb/ft, and it has

OD=4.8025 in and ID=1.75 in. Therefore, the mass per unit length for the module is 6.50

kg/m and the added mass per unit length is 11.7 kg/m. The total mass per unit length for

the buoyant pipe is then 20.9 kg/m. The tension variation for the CVAR is shown in

Figure 4.13. With this information, we can calculate the RMS displacements for different

frequencies. The comparisons between the experimental and the theoretical results are

shown in Figure 4.14. Notice that the amplitude jump around the material discontinuity

agrees well between the measurements and the theoretical predictions. Thus, the model

for the discontinuity in a previous section is verified by the data.

3500

3000 - - - --- - - --- - - --- -- - -SI I

2500 ---- ---

I I I I I

22000------ --------- +--- ----- ---

c 1500 - - - - - - -- --
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500------ - --- - -

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/L, x=O on the bottom

Figure 4.13. The tension variation for the CVAR test. This is estimated from finite

element analysis.
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Figure 4.14. The comparisons between the experimental and the theoretical results of the

RMS displacements for the top-end excitation amplitude 3 ft, the period 3sec. The RMS

displacements shown here are rescaled so that the mean value along the whole length for

each set of data is 1.

The problem for soil interactions is more complicated. The SCR test is suitable for testing

the soil interaction model. In this test, the pups are around the TDP, so we are able to

observe the response above and below the TDP. There are two directions of the top-end

excitations for the SCR. The vertical excitation drives the riser in the in-plane direction

and the VIV is mainly in the out-of-plane direction. In contrast, the horizontal excitation

drives the riser in the out-of-plane direction and the VJV is in the in-plane direction. At

the part of the riser sitting upon the soil, the in-plane motion will hit the soil while the

out-of-plane motion will sweep the soil. Thus, the wave behavior may be different in the

two different directions. It is also expected that the spatial variations of the response will

be frequency dependent. That is, the waves with the same frequency will have the same

wavelength, and the wave behavior will be similar. Therefore, we use the frequency

partitioning technique to separate the frequency components in the response. The RMS

displacements of different pups for different frequencies are demonstrated in Figures

4.15. The response is in the in-plane direction, while the excitation is horizontal and in
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the out-of-plane direction. Each single curve in any figure represents the measurements

of one excitation test for a specific frequency range. All the RMS displacements are

normalized so that the average value of the measurements in one test is 1. Normalizing is

a necessary step because it enables the comparisons among different excitation tests.

With the aid of the normalization, it clearly shows that the trends of the spatial variation

in each subplot (one frequency partition) are very similar. This figure facilitates the

analysis of the soil effects to the riser motions.
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Figure 4.15. The spatial variations of RMS displacements for SCR, horizontal excitation,

in-plane response. Each curve corresponds to one combination of the top-end excitation

at a frequency interval.

From this figure, we see that the positions with negligible response are different for

different frequencies. For frequency = 1 Hz, the location with small RMS displacement is

at around x/L = 0.26-0.27. For frequency = 2 Hz, this location starts to move toward left,

and for the rest of the frequencies the location is at about x/L = 0.25. Only when

frequency = 8 Hz, small response is observed at the left side. A possible explanation for

this feature is the spatially varying soil stiffness. As in Section 4.3, where we introduced
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a linearly varying foundation stiffness, the cutoff frequencies along the riser are spatially

varying. From frequency 1 Hz to 3 Hz, the waves coming from the right penetrate more

and more toward the left as the wave frequency increases. As the frequencies are above 3

Hz, the waves hit a relatively hard foundation around x/L = 0.25, where the foundation

stiffness is much larger than the right side of the riser. This behavior is reasonable

because the catenary riser lies deeper and deeper toward the anchor end. We assume the

TDP of the riser is at about x/L = 0.28, and thus, as x/L gets smaller, the stiffness of the

soil effect gets larger. When frequency goes up to 8 Hz, the waves start to penetrate more

because the frequency is above the cutoff frequency of this harder part of the soil.

Theoretically, the wavelength can be calculated from the material properties EI, tension,

mass per unit length, and the foundation stiffness. Due to the low spatial resolution, we

are not able to obtain a good foundation stiffness model, and thus it is not easy to

calibrate the results. One more observation is that the spatial decay for high frequencies is

large. As seen in the plots for frequencies 6 and 7 Hz in Figure 4.15, the RMS

displacements drop at least 90% in about 20 m (approximately 2 wavelengths). Using the

logarithmic decrement, we get an approximated damping ratio of about 0.18. From all the

observations above, we suggest that the soil interactions can be modeled as a spatially

varying elastic foundation with strong damping. A detailed model of the soil effects

requires more sensors close to the touch-down point region. Though the boundary

conditions caused by the soil may be complicated, we will show in the next section that

simple kinds of boundary conditions are sufficient to conservatively predict the fatigue

damage rate.

4.5 Soil Interaction Model

In this section, we will compare the effects of different soil models in terms of various

boundary conditions and ascertain a conservative and simple model for the soil

interactions.

First, let us consider a pinned end model for the TDP. For a tensioned beam without

damping, we can express the wave propagation solution as
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y = Ae'x't + Be''Y~t + Ce"e- + De'e-"'. (4.18)

Assuming the TDP is at x = 0 and the incident wave comes from the side x <0, we

immediately get C = 0 due to the limit amplitude at x -+ -oo. Imposing the boundary

conditions y(0,t) = y"(0, t)= 0 for the pinned end, we obtain

A+B+D=0, (4.19)
-A-B+D=0,

or

D =0,

B= (4.20)

The solution thus is written as

y = A(e-i(x+t) -e i(yx+(t)) (4.21)
=-2iAsinyx-e-.

This is a normal mode solution for the displacement, and the corresponding curvature

solution is

y" = 2iAy 2 sin yx -e-"'. (4.22)

As an example, we assume an incident wave with the amplitude A =1 m and the

frequency co = 4 rad/s, and the system is a tensioned beam with the tension 2 x 106 N,

Young's modulus 2 x 10" N/m 2 , the moment of inertia 0.0025 M4 , and the mass per unit

length 1000 kg/m. The RMS displacement and the RMS curvature for the pinned end

boundary conditions are shown in Figure 4.16. The left side is the part without touching

the soil, while the right side is the part of the riser laying on the soil. The maximum

amplitude for the RMS displacement is about 42, which is correct for a standing wave

amplitude of 2.0, which results from a complete reflection of the pinned boundary

conditions. The maximum RMS curvature is about 0.0057 1/m, which is actually 7f2y2,

as can be inferred from Equation 4.22.

63



2

a)

15E

a)

0.01

0.008

0.006

0.004

E)

I -- - - -F -+T- - -- +T - - -

- -- - - --- -- - - --

-600 -400 -200 0 200 400 600

- - - ------ - - -- -- -- - ---- -- --- - - - -- - - - - - - -- -

-600 -400 -200 0 200
location (m) (x=0 is TDP)

400 600

Figure 4.16. The RMS displacement and the RMS curvature for a tensioned beam with

pinned end at x = 0 as the model of the TDP.

For a tensioned beam with a clamped end, we impose the boundary conditions

y(O, t)= 0, (4.23)
y'(O, t)= 0,

into the solution Equation 4.18 and get

A

-o

or

+ B + D =0,

A + iB + D =0,

B =-iA,

D = (i - 1)A.

The solution for the displacement becomes

y = A[e-(x+)t) - ie'(Yx-') + (i - 1)exe~i'].

The corresponding solution for the curvature is

y" = A[-y 2 e-it xy"'> +i)1 2e'YXO') + (i -1Dr 2 ye-io"' ].

For the same material properties and the same unit incident wave as in the pinned end

case, the RMS displacement and the RMS curvature for the clamped end boundary

(4.24)

(4.26)

(4.27)
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conditions are demonstrated in Figure 4.17. The RMS displacement is slightly larger near

the TDP, while the maximum value of the RMS curvature is about 0.008 at x = 0. This

maximum RMS curvature can be calculated by setting x = 0 for Equation 4.27, and the

curvature (for a unit incident wave) becomes

y(x = 0) = (-2 + 2i)y2 e'. (4.28)

The magnitude is 2-hry2, and the RMS value is 2Y2, which is V2 times of the

maximum curvature for a pinned end case.
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Figure 4.17. The RMS displacement and the RMS curvature for a tensioned beam with

clamped end at x = 0 as the model of the TDP.

The solutions for more complicated boundary conditions have been developed in

previous sections. If we model the soil as an elastic foundation with a constant stiffness,

the results in Section 4.1 can be used and the response depends on whether the wave

frequency is above or below the cutoff frequency of the soil foundation. Figure 4.18

shows the RMS displacement for a tensioned beam with an elastic foundation as the soil

model. The soil stiffness is 32000 N/M 2 and the wave is below the cutoff frequency. The

corresponding RMS curvature is shown in Figure 4.19, with comparison to the maximum

RMS curvatures of both the pinned end and the clamped end models. Notice that

65



although the RMS displacement close to the TDP is larger for the elastic foundation

model, the maximum RMS curvature for the elastic foundation model is not greater than

the RMS curvatures of the pinned end and the clamped end cases. In terms of the fatigue

damage rate, which is relevant to the curvature rather than the displacement, the pinned

end model is a conservative model compared to the elastic foundation model, and the

clamped end model is even more conservative. Furthermore, the calculations with

pinned-end or clamped-end boundary conditions are much simpler. For a wave above the

cutoff frequency, the RMS displacement and the RMS curvature are shown in Figures

4.20 and 4.21. Because part of the energy of the wave transmits to the soil, the maximum

RMS displacement and curvature are both smaller than those for the elastic foundation

model, so the pinned end model and the clamped end model still serve as simple and

conservative models.
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Figure 4.18. The RMS displacement and the corresponding soil stiffness for a tensioned

beam with the elastic foundation as the model of the soil. The wave frequency is below

the cutoff frequency.

66



0.01

:)

U
2,

Of:

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

--- -- - - - - --

-- - - -- I---1--- -4-.

------ - - - I- - - - - - -

- ---- I

- -L-

- - - -

- - - - -

- - --- - - - e

I I I

-- i - o -i

I - -- - - -- - - - -

-- elastic foundation
pinned
clamped

-600 -400 -200 0 200 400 600
locations (m) (x=0 is TDP)

Figure 4.19. The RMS curvature for a tensioned beam with the elastic foundation as the

model of the soil, as in Figure 4.18. The dashed line is the maximum RMS curvature for

the clamped end model and the dashdot line is the maximum RMS curvature for the

pinned end model. The wave frequency is below the cutoff frequency.
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Figure 4.20. The RMS displacement and the corresponding soil stiffness for a tensioned

beam with the elastic foundation as the model of the soil. The wave frequency is above

the cutoff frequency.
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Figure 4.21. The RMS curvature for a tensioned beam with the elastic foundation as the

model of the soil, as in Figure 4.20. The dashed line is the maximum RMS curvature for

the clamped end model and the dashdot line is the maximum RMS curvature for the

pinned end model. The wave frequency is above the cutoff frequency.

For an elastic foundation with linearly varying stiffness in space as the soil model, the

solutions are available in Section 4.3 by applying the steepest descend method. This is a

reasonable model because the contact between the riser and the soil tends to get deeper

going from the TDP toward the anchoring point. Figure 4.22 shows the RMS

displacement of a tensioned beam and the corresponding foundation stiffness. The

location x = 0 is the TDP, from where the soil stiffness increases linearly in space. As

can be seen in the figure, the displacements also increase in the positive x direction, as

well as the wavelengths. The turning point is at the location where the cutoff frequency

equals the wave frequency. For a 4 Hz wave on the riser with the mass per unit length

1000 kg/m, the stiffness at the turning point should be 16000 N/M2 . From the subplot for

the stiffness, we know that the turning point is at x = 500 m. Around x = 500 m the

displacements drop suddenly due to the cutoff frequency barrier at x > 500 m. Figure

4.23 shows the RMS curvature for the same foundation model. Interestingly, although the

displacements increase as x gets larger, the corresponding curvatures decrease for larger
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x. This decrease is due to the increase of the wavelength. The curvature is proportional to

the square of the wave number, and thus it is inversely proportional to the wavelength

square. As can be seen in Figure 4.23, the maximum RMS curvature is not larger than the

maximum RMS curvatures for both the pinned end and the clamped end models.

Therefore, we can safely use the pinned end model for the TDP in terms of conservative

estimation of the fatigue damage rate.
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Figure 4.22. The RMS displacement and the corresponding soil stiffness for a tensioned

beam with the elastic foundation linearly varying in space as the model of the soil. At

x = 500 m the wave frequency equals the cutoff frequency.
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Figure 4.23. The RMS curvature for a tensioned beam with the linearly varying elastic

foundation as the model of the soil, as in Figure 4.22. The dashed line is the maximum

RMS curvature for the clamped end model and the dashdot line is the maximum RMS

curvature for the pinned end model. At x = 500 m the wave frequency equals the cutoff

frequency.

Above all, we know it is conservative to use the simple pinned end model at the TDP for

the complicated soil interactions in terms of the fatigue damage rate, and a simple

clamped end model is even more conservative.
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Chapter 5 Unsteady VIV Model

5.1 The Approach to the Unsteady VIV Problem

VIV due to top-end periodic motion consists of two kinds of complexity: non-uniformity

and unsteadiness. To develop the prediction tools for this complicated problem, we have

to understand and quantitatively evaluate the dimensionless parameters that characterize

the VIV behavior of risers under unsteady flow conditions. In this chapter we will

develop an approach to model the unsteady VIV from the available data.

We first show the final results of the model in this section, so that the direction of the

approach will be clearer.

The principal concept of the method we develop is to use the important dimensionless

parameter, the reduced damping Sg, to explain the relationship between the excitation

and the response. The reduced damping Sg for steady flow is defined as

S9 = 2 ,o (5.1)

as described in Chapter 2. Some experimental results for the Sg -RMS A/D relationship

for a flexible cylinder under uniform steady current were compiled by Griffin (1980). A

curve fit to the published experimental data is shown as a thick line in Figure 5.1. With

the additional lines for constant lift coefficients, we understand that when the reduced

damping is large, the lift coefficient tends to be a constant, but when the reduced

damping gets smaller, the lift coefficient also gets smaller due to limit cycle effects above

1 diameter amplitude. This relationship is a convenient way to link the damping, the lift,

and the response into graphical representation without solving the complicated partial

differential equations. Later in this chapter, we will develop an equivalent Sg for the top-

end periodic motion induced unsteady vibration. In order to get an impression of the

outcome first, we demonstrate the relationship between the equivalent Sg and the

response in Figure 5.2. The equivalent Sg will be defined carefully later in this chapter.

This plot shows exceptional agreement with the curve for steady uniform flow. This good
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agreement shows that by properly choosing the equivalent reduced damping, we will be

able to use the same curve as in the uniform flow to predict the response.

101
1 - -1I - -1-:-1] - I _ experimental

1- -I-7I-4it-- -- I - -- -- I--1 -I -- C=o.o1
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10 1010 10
Reduced Damping, Sg

Figure 5.1. The relationship between the reduced damping and RMS A/D for a steady

current VIV. A curve (the thick curve) fit to the published experimental data is shown,

and each diagonal line is the Sg -RMS A/D relationship for a constant lift coefficient.

72



10 ... . . . . . . ..... . .. .experimental
.. ..... .. ... CI=0.01 :

C1=0.02:

-C1=0.5
-- C14.1

10-

102 1. 10 10 102

210 ... ..... ... 10

Reduced Damping Sg

Figure 5.2. The relationship between the equivalent reduced damping Sg and RMS A/D.

The reduced damping is obtained from the CVAR unsteady flow profile, and the RMS

displacements are from measurements with frequency partitioning. The data include all

different combinations (period and amplitude) of top-end excitation, and measurements

from all pups.

The essential task is to define the equivalent Sg for the unsteady VIV problem. As shown

in Equation 5.1, Sg is a function of frequency. Therefore, we will develop a method to

consider different frequencies separately. A frequency partitioning technique will be

introduced to achieve this goal. In addition, the effects of the non-uniformity and the

unsteadiness should be considered. We will establish the procedure to obtain the

equivalent S9 in this chapter.

5.2 Top-end Motion: Response Amplification

Before proceeding to the reduced damping model, we first investigate the effects of the

top-end periodic motion on the inline velocities along the riser. Though the velocity

profile for HCR has been calculated by the finite element method and the results have

been shown, we would like to know analytically how the moving boundary conditions
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influence the motions along the riser. At the end of this section, we will find that the

wave propagation parameter ng;, the product of the mode number and the damping ratio,

is the key dimensionless parameter governing the maximum inline amplitude along the

riser under a top-end periodic motion.

To demonstrate the effects of the moving boundary conditions, we use a very simple

model, a string with constant damping. The governing equation is

- T  +m +c-=0 (5.2)
Ox 2  t2 ax

and the boundary conditions are

y(0,t)= 0,

y(L, t) A e'"O.

That is, the total length of the riser is L, and the end at x = 0 is fixed, while the end at

x = L is the top end with a sinusoidal moving boundary with frequency co. Assuming a

wave propagating solution y = e(r-wt) , we get the dispersion relation

Ty 2 --mCO2 - icco = 0, (5.4)

or

r = = co (5.5)
T

where yT is a complex number. We introduce the damping ratio

q C (5.6)
2mw

so the wave number can be written as

r +)I+mCO2 + i2MC92 Y

(5.7)
2 )Y

_____ 2

T

The solution thus can be expressed as

y = aei(r*-xt) + ,e'-Yx-t). (5.8)
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To determine the coefficients a and ,6, we impose the boundary conditions and get

a + 6 =0,

aeiyL + ,e-irIL = A.

From the second boundary condition we also know that the frequency follows

o = coo. (5.10)

Obtaining the coefficients and plugging them into Equation 5.8, we get the solution

y=A e - e- e (5.11)
e 7yL _ e-ir,L

With this result, we are able to run the dynamic simulation for the response due to the

moving boundary conditions. Figure 5.3 shows the traces of the response during a period

of time for two different damping ratios. The left end is fixed while the right end moves

sinusoidally with unit amplitude in both cases. Notice that the maximum amplitudes

along both strings are larger than 1 at the anti-nodes. This behavior is the response

amplification associated with moving boundary conditions. The amplification factor,

defined as the ratio between the maximum response amplitude to the moving boundary

amplitude, is larger for a smaller damping ratio, as can be seen in Figure 5.3. The

response amplification is important for the VIV problem because the top-end vessel

motion with small amplitude may end up generating a large inline motion somewhere in

the riser. This may cause significant VIV, which may not be anticipated from the small

amplitude vessel motion. Figure 5.4 demonstrates the influence of different top-end

frequencies on the amplification factor. It can be seen that when the frequency is a

multiple of the 1st natural frequency, that is, one of the undamped natural frequencies, the

amplification factor is large, compared to the factor for frequencies off the natural

frequencies. As mode numbers get higher, the peaks of amplification factors become

lower, and finally the amplification factor becomes unimportant for very large mode

number.
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Figure 5.3. The traces of the response to the sinusoidal moving boundary condition at

x / L =1. Two different damping ratios are shown with the same amplitude (unit

amplitude) moving boundaries.
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Figure 5.4. The amplification factor with respect to different moving boundary

frequencies. The frequencies in the x-axis are normalized by the I"t undamped natural

frequency of the string. The damping ratio is 0.02.
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To illustrate how the amplitudes of the amplification factors are affected by the moving

boundary conditions, we have to establish the relationship between the response

amplitude and the moving boundary frequency. Assuming a unit amplitude moving

boundary, we have the response from Equation 5.11

Y = - e .ix (5.12)
e i- e

If we assume small damping ratio, then the wave number in Equation 5.7 can be

approximated to

M2 )Y
y, (1+±i2g) 2

(5.13)
McO)2 )Y (

T

The amplification factors we are most interested in are those at the natural frequencies,

where the undamped natural frequencies are

n7VT
CO L = . (5.14)

L m)

Plugging the natural frequencies into Equation 5.13, we get the wave number

nzl7
L (l+ig). (5.15)
L

With this simplified y,, we can rewrite Equation 5.12 for the response as

.nrx n;Tx .ngx nrx

e Le L -e Le L
Y =

e wre- -nir Cinr e n~r(5.16)

feL -- e e L

Here we have to decide where the maximum response occurs along the riser, so that we

can plug in a suitable value of x to evaluate Y. Figure 5.3 shows that the maximum

response for both damping ratios arise at around x / L = 0.9. This location is at the anti-

node closest to the moving boundary. More generally, for the boundary frequency at the

n-th mode, the far right anti-node will be at
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2n -1
xL 2n/L (5.17)

2n

Inserting this term into Equation 5.16, we get

N 2n-1I q~ 2n-1 -N 2n-1 qr2n-1

e 2e 2X e 2 R e 2X

e-nr -e (5.18)

e 2 + e 2
=1

e '"" _e-""

Equation 5.18 is the maximum response amplitude for the boundary frequency at one of

the natural frequencies. For small gng, we can further simplify the response by

introducing the series expansion of an exponent

X2 
3

e =+x+--+--+ (5.19)
2! 3!

and taking only the first two terms we get

Y =i 2 2
(1+ gnz) -(1-gnrc) (5.20)

i

rcng

That is, when ;cng is small, the amplitude will be approximately . In Figure 5.4, the
7rng

damping ratio is 0.02, so the estimated amplification factors for the first three modes will

be about 15.92, 7.96, 5.31, very close to the magnitudes of the peaks in Figure 5.4. For

large rcng (mostly due to very large n),

e r";' >> e-r"' (5.21)

and thus the response is approximately

e'"
Y = i -= i. (5.22)

That is, the amplification factor for large ;rng is 1, the same as the simulation result.

From these results, we know that ng is a very important parameter. It not only

determines whether the amplification factor is significant or not, but also quantitatively

provides the solutions for small ng . For the HCR experiments we discuss in this thesis,
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the top-end motions are at around the 5 0 th to 1 0 0 ' modes, so the amplification factor is

not a critical problem. However, for other risers excited at low modes, the effects of the

amplification factor should definitely be considered.

The string model discussed above takes the simple form of the solution. We introduce

how to proceed for a straight tensioned beam with damping, and the study for the effects

of ng may need further computer simulation. The governing equation is

EI T(5.23)
x 4  Ox 2  at2

and the boundary conditions for both ends are

y(O, t) = 0,

y"(Ot) = 0,

y(L, t) = Ae-"*' ,

y"(L,t) = 0.

That is, the total length of the riser is L, and the end at x = 0 is a pinned end while the

end at x = L is the top-end with a sinusoidal moving boundary with frequency coo.

Assuming a propagating wave solution y = ei(rx-t) , we get the dispersion relation

Ey 4 +TY 2 -m 2 -iCCO = 0. (5.25)

The four roots can be obtained and we can write them as

7 = ±i, ±2, (5.26)

where y,, 2 are complex numbers. The solution thus can be represented as

y = aiei(ylx-t) + Aed-'''-"3 + a 2e'(2X-t) + 8J 2 e(-2XWt), (5.27)

and its second derivative is

= 2 i(rIx-WI) 2 -l- l (2 - t _2 -O
y -y e ae - y 2

1 el-Y'~( t - 7y2 a 2er~o Y 2 6 2 e'xt). (5.28)

The coefficients a,, A, a 2, 82 are unknown and should be determined by the four

boundary conditions. We impose the boundary conditions in Equation 5.24 and get four

equations:
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a+/3+a 2 + P2 =0,

~712 a1 _ 712 A-7 2 a2  72 2 = 0,

aieyIL +ie~iyL +a 2eir2L +)62eir2L = A,

-y 2 aei1L -yi2 AeIYIL -7 2
2 a 2 r2L 7 22ee'YL - o.

Notice that from the third boundary condition, we also obtain the frequency

Co = 00.

(5.29)

(5.30)

Equation 5.29 can also be written in a matrix form

12 12 12 12 ][ 0 ]

eyIL e-irL eir2L eir2L a 2 [ >. (5.3
2 "IrL 2 -iY' L 2 iY2L 2 -ir2L fi2 0e e 72 e e A /,

From the matrix form we can obtain the dynamic response of the moving boundary

conditions by computer simulations. The results for the tensioned beam are qualitatively

very similar to the result for the string, as in Figure 5.4, except that the space between

adjacent peaks is different for high modes.

1)

5.3 Reduced Damping S9 for Steady Flow

Ro

The reduced damping, S = 2 , has been introduced as a parameter to account for the

relative importance of the damping force and the fluid excitation force. A physical

problem can show the appearance of Sg in the solution. For a spring-mounted rigid

cylinder with viscous damping under uniform flow, as shown in Figure 5.5, we can write

the governing equation as

a2y ay 1M +R--+ Ky=- pfV 2DCL cos ot, (5.32)
at2  at 2

where M is the mass of the cylinder per unit length, R is the damping coefficient per unit

length, K is the spring constant per unit length, and the term at the right hand side is the

periodic lift force (per unit length) due to the shedding vortices. Under lock-in conditions,

the excitation frequency equals the natural frequency, which is
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K = t = (5.33)

At resonance, the solution can be written as

y = Y sin cot. (5.34)

Substituting this solution into the equation, we can cancel the mass term and the spring

term. Equating the damping term with the excitation at the right hand side, we get

RYO =- pJV 2 DCL, (5.35)
2

or

Y - 1 PV 2 CL- CL (5.36)
D 2 Rco 2Sg

That is, the ratio of the lift coefficient to the reduced damping gives the response

amplitude for a spring-mounted cylinder under steady uniform flow. The larger the

reduced damping Sg , the smaller the response amplitude.

M

Figure 5.5. A spring-mounted cylinder.

The reduced damping is also important for a flexible cylinder. Consider a long cylinder

modeled as a flexible beam with constant bending stiffness. The beam has a power-in

region far from both ends. The wave propagation parameter n; is sufficiently large that

waves travel away from the power-in region and do not return to create a standing wave

pattern. An ideal excitation is applied over a finite region of length Lin. Within the

power-in region the excitation force varies sinusoidally in time and also as a standing

wave in space. The wavelength is identical to that of waves at the frequency of the

excitation. The governing equation can be written as
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a' y ay D2y
El a +R a 2 = f(x) ", (5.37)

with

f 1x)-pfV2DCLcoskx, -L,,I'2<x<L,,/2
2 (5.38)

0, x<-L.. /2,x > L../2,

where k = 2 , the corresponding wave number for the excitation frequency. The
El

excitation is shown in the upper panel of Figure 5.6. The corresponding response

amplitude is demonstrated in the lower panel, and we will describe how to obtain this

solution by the procedure of deriving the Green's functions. The details of deriving

Green's function solutions are shown in Appendix 2, where both the 'single' Green's

function and double Green's function will be discussed.

We assume the system to be infinitely long to remove the reflective interference from the

boundaries. Inserting the harmonic solution y(x) = Y(x)e-'" and taking the Fourier

transform, we get

p___ _____V DCL _____ sin(y - k)L,, sinQy + k)Lin 1
47EI = 4 - i2kg 4 k4 2(y -k) 2(r+k)

R
where the damping ratio is defined as = 2 . After the complicated employment of

the residue theory, we obtain the final result (Green's function solution) as

kL .. kL.

V 2 DCL Y1 cos '" ik sin

Y(x) - pJV2 D l 3 ( cosy x Y2 _-k 2 +±5 .04EIy (eir -k
kL,~ k kL,~(5.40)

yj cos kL'" - k sin---'" ip V2DCLco b
+ey,'1' cosh7yx 2 2 )+

7 + k 22coR

where y, is one of the roots of r4 - i2k4 ; - = 0, and it is the root with positive real and

positive imaginary parts. This is the solution valid only in the excitation region. A

solution with corresponding excitation is shown in Figure 5.6. The width of the excitation

band equals to 4.5 wavelengths. In order to see the trend of the response amplitude with
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respect to the width of the excitation band Lin, we have to simplify Equation 5.40 if

possible. We make a few assumptions to approach the simplified result. If we require that

kL
the width of the excitation band equals odd multiples of half wavelengths, cos '" and

2

sin kLn in Equation 5.40 become 0 and ±1, and the response at the midpoint is
2

1 k, 2 (ieirLi,,/2 + e-ri,, / 2 3 iriL"' /2 - e y ,, / 2

Y(x = 0) = - FpV DCL 3 ± ).(5.41)
2 2i71 coR c R

We further assume small damping for the problem, so that the root y can be written as

i k+k . (5.42)
2

Plugging this relation into Equation 5.41 and removing some small terms, we obtain a

very simple form for the response at the midpoint:

ipf V2 DCL -k ;
Y(x = 0)~ L(1-e 4 'n (5.43)

2w R

Or, we can write the response amplitude in term of the reduced damping S,, as:

Y (x =0) C - L,_ L ( 4-e "). (5.44)
D 2Sg

This result is very important. The reduced damping Sg again appears explicitly in the

solution. It shows that the response amplitude at the midpoint will increase when the

width of the excitation band Lin increases, and it will finally reach a saturated amplitude

C
CL as Lin approaches infinity. To verify this result, we employ Equation 5.40, the full

2Sg

analytical solution, for different Lin and record the amplitude at the midpoint. The

comparison between the results from Equation 5.40 and the curve from Equation 5.43 is

shown in Figure 5.7. The simplified solution fits remarkably well with the exact solution.

This agreement demonstrates the validity of the simple and useful solution of Equation

5.43. If Nn is defined as the number of wavelengths that fit into the length Lin, then

Nin= Li, / A and the above expression may be expressed in terms of N, :
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YI(x = 0) CL (1N

D 2S9 (5.45)

Thus, the product N,,g is an important parameter to describe the power-in length of the

excitation. For an infinitely long beam (i.e., ng is large enough so that we can ignore the

boundary effects), the dimensionless parameters Nng and L govern the response
2Sg

amplitude for a finite length sinusoidal excitation.

-300 -200 -100 0

-400 -300 -200 -100

100 200 300 400

0 100 200 300 400

Figure 5.6. The finite length excitation with sinusoidal wave shape and the corresponding

response amplitude. The system is modeled as an infinite beam with damping.
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Figure 5.7. The comparison of response amplitude at x=0 between the simulated results

(solid line) and the simplified form in Equation 5.43. The damping ratio is 0. 1 and the

frequency is I rad/s.

For a finite system under uniform flow, the experimental data fit has been shown in

Figure 5. 1. The data shown in Figure 5.1 is for the riser with uniform flow along its

whole length. When the flow does not cover the whole length, some modifications are

needed for the calculation of S9 . For example, a set of experiments was conducted with

the lower part of the riser in still water. An example is shown in Figure 5.8. The left side

is the actual problem with the partial coverage uniform flow, and the right side is the

equivalent case with uniform flow. An equivalent reduced damping is found such that the

equivalent uniform flow case has the same total power-in and the same total damping

(Richardson, 200 1). The total damping for the original problem and the equivalent

problem can be written as

ktal = R Ltotal = Ref Lowe,_in -+ R ef = R L Loal

Lpower-in

From this equation, we find that the effective damping per unit length for the equivalent

case is modified by a length ratio. Thus, the equivalent reduced damping Sge can be

written as
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S =S - Lota - Rco L'"'"1  (5.46)
Lpower-in pf V 2 Lpwrig e g L o e r i / 7 p o erL

This method makes the results successfully fall into the curve of the Sg -RMS A/D

relationship as in Figure 5.1. That is, if a physically meaningful effective damping is

defined, the curve in Figure 5.1 will be still valid.

power-in - -

total

Figure 5.8. The partial coverage uniform flow and the equivalent uniform case with

equivalent reduced damping Sge

5.4 Time Evolution of Excitation Frequency and St Number

To determine the equivalent Sg for the unsteady flow, we have to follow the outline

described in Section 5.1. The first point is to understand how the shedding frequency

changes with time under the top-end periodic motion. We can infer the shedding

frequency by the measured response frequency. Based on the data, we will propose a

constant Strouhal number model in this section regardless of the change of the inline

velocity.

The flow that causes VIV originates from the top-end periodic motion. For example, the

top-end vertical motion for the CVAR generates oscillations in the in-plane direction

everywhere along the riser. The flow due to the in-plane relative motion between the riser

and water has nearly sinusoidal flow velocities. The vortices are then shed and the VIV is

mainly in the transverse, or the out-of-plane, direction. The flow velocities are not only

time varying, but also spatially varying according to the configuration of the riser. Figure
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5.9 shows a flow profile of the maximum flow velocities along the CVAR. For this plot,

the top-end motion is sinusoidal with amplitude 3 ft and period 3 sec. This velocity

profile was calculated by Passano of Marintek using the finite element program RIFLEX.

The figure shows that a local minimum velocity close to the middle of the riser occurs

around the junction between the buoyant pipe and the bare pipe. The flow oscillates

everywhere along the riser with the same constant period as the top-end motion. The

velocity amplitudes varies spatially according to the values in Figure 5.9. The phases of

the velocities along the riser are not in general the same.

1.6

sensor (pup 3)-

location of junction

1 .2 - - -- --- -- - --- ---- - - --- - - - -- - - --I - -- -- -

1.2---------- --- - - ---- --- -
E~ 1 - - -I - - -

E
E 0.6- --- ---- -------- ---- - - - - --- ----

E
0.4- -------- ------------ --- ------

0.2------------- --------- -

0
0 50 100 150 200 250

location (m), x=0 on the bottom

Figure 5.9. The comparison of the measurement (small circles) and the prediction of the

inline maximum velocities along CVAR. Top-end motion: sinusoidal with A=3 ft and

T=3 sec.

At any point of the riser, the sinusoidal flow velocities in the inline direction makes

vortex patterns that are much more complex than in steady flow cases. A new parameter

similar to the Strouhal number is needed to describe the relations between the shedding

frequencies and the flow velocities. It is thus important to analyze the data in frequency

domain for the transverse direction and link it to the inline direction velocity.
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First the measured inline accelerations are used to infer the inline velocities. A typical

time series of the inline acceleration is shown in Figure 5.10. A band-pass filter is applied

to the data to obtain the sinusoidal component with the same period of the top-end

motion. For a sinusoid with displacement amplitude A, the amplitude of the velocity is

A c and the amplitude of the acceleration is Aw 2'. Thus, from the filtered acceleration to

get the inline velocity, we have to divide the acceleration amplitude by Co. A set of

'measured' (inferred from the measured inline accelerations) inline velocities for one test

is shown in Figure 5.10 by the small circles. Notice that it agrees very well with the

prediction from the finite element method.

1.5

0.5 - _- - --- -- -A

0.

-1.51
0 10 20 30 40 50 60 70

time (sec)

Figure 5. 10. Acceleration time series in the in-plane direction for top-end amplitude 2 ft,

top-end period 5 sec, at pup 3.

Spectral analysis is conducted for the transverse direction in order to know the VIV

frequencies. A typical acceleration time series for the out-of-plane (transverse) direction

is shown in Figure 5.11. The power spectral density of this acceleration time series is

shown in Figure 5.12. The spectrum is calculated by Welch's averaged, modified

periodogram method, with FFT length equal to 2048, and Hanning window length equal

to 512. The total length of this set of data is 2601 and the sampling rate is 40 Hz. This

figure shows the broadband frequency content found in the response, and the broadband
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frequency content is due to the wide range of flow velocities for the sinusoidal inline

motions.
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Figure 5.11. Acceleration time series in the out-of-plane direction for top-end amplitude 3

ft, top-end period 5 sec, at pup 3.
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Figure 5.12. Acceleration power spectral density in the out-of-plane direction for top-end

amplitude 3 ft, top-end period 5 sec, at pup 3.
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To find the Strouhal number for this unsteady case, corresponding inline velocities and

response frequencies have to be identified. One way to attack this problem is to watch the

frequency variations in time. A zoom-in of Figure 5.11 is shown in Figure 5.13. Notice

that at time around 22 sec, 24.5 sec, and 27 sec, the vibration frequencies are higher

compared to those at other times. The time duration between any two peak frequencies is

consistent with the top-end period 5 sec because in each period there are two maximum

flow velocities. Time evolution of the frequency content is found by a short time spectral

method, the Maximum Entropy Method. The data length to calculate the spectrum is 32,

that is, 0.8 sec, the order of the autoregressive model is 10, the length for FFT is 2048,

and we shift the window by 8 (0.2 sec) each time to calculate the next spectrum. Because

the window length is 0.8 sec, it may average several cycles with different frequencies.

The outcome for data in Figure 5.13 is shown in Figure 5.14, which clearly shows the

periodic behavior of the frequency content. The period of the frequency evolution is

about 2.5 seconds, or half of the top-end period.

4

3 - - - -- - - - - - -I f 1 I

2-------------------- ------- --------

4

10 12 14 16 18 20 22 24 26 28 30
time (sec)

Figure 5.13. Zoom-in of acceleration time series in the out-of-plane direction for top-end

amplitude 3 ft, top-end period 5 sec, at pup 3.

90



16

12 -- - - - - I I - - -

14 - - --

I 1 . 1 S 0

I* %III

-.- - I - - - 1 & I

. I a 1 0%I

0
10 12 14 16 18 20 22 24 26 28 30

time (sec)

Figure 5.14. Time evolution of the frequency contents for the out-of-plane acceleration,

top-end amplitude 3 ft, top-end period 5 sec, at pup 3.

We estimate the Strouhal number by considering the velocity amplitude in pup 3 and the

maximum response frequency there. Pup 3 is the location closest to the maximum of the

velocity profile along the CVAR riser (see Figure 5. 10), so it is the major VIV power-in

region. As an example, we examine the case when the top-end amplitude is 3 ft and the

period is 5 sec. The inline velocity amplitude for pup 3 is 0.93 m/s (normal to the riser

axis), and the maximum response frequency, as shown in Figure 5.14, is about 4 Hz. The

outer diameter at this location is 0.0381 mn. Thus, we get

St 0.164. (5.47)
V 0.93

The same procedure can be used to obtain the Strouhal number for different patterns of

top-end excitation. For all the CVAR cases, St is in the range from 0. 16 to 0. 17 using the

above procedure, so we assign St=0. 165 for all the tests. We also make the assumption

that the Strouhial number is always constant while the inline velocity is varying with time.

That is, the shedding frequency follows the constant Strouhal number relationship all the

time, as

St .__ V (5.48)

V~ ~ *10
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Therefore, the shedding frequency is varying as a sinusoid in the same way as the

velocity. The periodic pattern can be seen in Figure 5.14, although sometimes the

frequency content does not follow exactly the sinusoidal velocity at this pup location.

Unexpected frequencies may come from the excitation of other locations.

Based on the assumption that the shedding frequency is proportional to the local velocity,

an example of the inline velocity and the shedding frequency is plotted in Figure 5.15.

The ratio between the values of the two curves is governed by the constant St number.

Figure 5.16 shows the time evolution of the frequency content as in Figure 5.14, but with

the addition of a predicted curve obtained from the constant Strouhal number relationship

based on the same windowing and sampling as the real data. The good agreement

supports the constant St assumption. The constant St number relationship implies that the

distance between any two consecutive vortices is constant. In Figure 5.17, the distance L

for a steady current case can be written as

T V
L=V -T-= -- (5.49)

2 2 f,

where T, is the shedding period of the vortices. A shed vortex travels downstream with

the current velocity V, and the next vortex is shed on the opposite side after R . Notice
2

that St - , so we have
V

D
L= . (5.50)

This relationship is valid for any current velocity, so the constant St assumption does

imply a constant distance between consecutive shedding vortices.
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Figure 5.15. The inline velocity and the shedding frequency for a constant St number.
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Figure 5.16. Time evolution of the frequency contents for the out-of-plane acceleration,

top-end amplitude 3 ft, top-end period 5 sec, at pup 3. The solid line is obtained from the

moving average of the constant St model with the same window length as the MEM

calculations.
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L

V

Figure 5.17. Vortex shedding under a steady current with velocity V. The distance

between vortices is L.

5.5 Effect of KC Number on the Frequency Contents

2ff A
The KC number is defined as , where A is the amplitude of a sinusoidal motion. In

D

our case, this motion is that of the riser in the inline direction. When the KC number

approaches infinity, the relative motion between the riser and water does not reverse

direction, and it can be regarded as a steady current case with flow moving toward one

direction only. The KC number is also a factor of how many vortex pairs are shed during

one cycle of the inline riser motion. As described in the last section, the distance between

two successive vortices is constant for a constant St. The larger the KC number, the

longer the traveling distance per stroke, and the more vortices are shed during one stroke.

We can calculate quantitatively how many shedding cycles there are in an inline stroke

before reversing the inline velocity direction. Assuming the inline velocity is sinusoidal,

it can be written as

V = V sin f)t,

where V is the velocity amplitude, and Q is the inline frequency, as the frequency for

the sinusoidal velocity in Figure 5.15. V is actually AQ if we express it with the

displacement amplitude. Thus, we can also write the KC number as

KC = .1~
QD

With the constant St number and the St number relationship
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t=fD _co,DSt=--
V 2rV

we can write the shedding frequency as

2ff StV
co = 0 sinQt. (5.51)D

One shedding cycle (2 vortices) takes time t' such that

fco(r)dr = 27r. (5.52)

The time for an inline stroke is a half period, which is

7r
t=

To determine how many shedding cycles per stroke, we plug this time into the left side

integral in Equation 5.51 and divide it by 27r. Thus,

" 2rStV

N 0 sin Q -dr St)N = = _ (-COS Q-C):,
2zc DQ 0 (5.53)

2StV KC -St

QD r

This equation represents a compact and important relationship. The number of vortices

shed per inline period is governed by the product of KC and St numbers. For example,

the smallest top-end excitation amplitude for the CVAR test, 0.5 ft, corresponds to a KC

number (with diameter 0.125 ft)

27r -0.5
KCO.s = =- 8;T ~ 25.

0.125

This is the KC number at the location where amplitude is 0.5 ft. In other locations along

the riser the KC number is different due to different inline amplitudes. For the above KC

number, and the average St number 0.165, we get

8ff -0.165
N = 6=1.32.

That is, there are only fewer than 2 shedding cycles during one stroke. A larger KC

number will tend to have more vortices shed during one stroke and more sustainable

vortex patterns than a smaller KC number.
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The spectral density functions for different KC numbers are shown in Figure 5.17. From

Figure 5.10, we know the velocity amplitude at pup 3, around 1.53 m/s. The KC number

can be estimated from this velocity amplitude, and similarly the KC numbers for other

amplitudes can be estimated. The KC numbers for amplitudes 0.5, 2, and 3 ft are 20, 80,

and 120, respectively. Notice that as the KC number gets larger, the response spectrum

has higher frequency content. This relationship is consistent with what we described

above: the larger the KC number, the more shed vortices per stroke. The spectrum

spreads out and centers at higher frequency for the larger KC number, as shown in the

panel for the larger top-end amplitude in Figure 5.17.
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Figure 5.17. The spectral density functions for cross-flow acceleration at three different

top-end amplitudes, i.e., different KC numbers. The excitation period is 3 sec. The

measurements are at pup 3. The KC numbers at this location are around 20, 80, and 120

for the three different amplitudes.

Another feature notable in Figure 5.17 is that for a smaller KC number (the case of A=0.5

ft), the spectrum has spikes only at the multiples of the excitation frequency (1/3 Hz). In

contrast, for a larger KC number (the case of A=3 ft), the spectrum covers a wide range

of frequency without clear spikes at the multiples of the excitation frequency. An

explanation for this is that when the KC number is small, for example, 20 to 30, the
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vortices generated per stroke are so few that their number is discretely governed by the

KC number. That is, the timing of vortex generation is shifted from the Strouhal

relationship to the closest multiple of the excitation frequency. The KC number can be

used as an indicator to distinguish between the behavior dominated by the excitation

frequency and the behavior dominated by the Strouhal frequency. In this thesis we are

concerned primarily with behavior associated with larger KC numbers in which the VIV

frequency is governed by a Strouhal number.

5.6 Spring-mounted Cylinder in Unsteady Flow

With the proposed model of the shedding frequency, we will examine an introductory

problem to prepare for a more complicated one. A spring-mounted rigid cylinder, as

shown in Figure 5.5, is under unsteady flow with sinusoidally changing inline velocities.

Likewise, the shedding frequencies also change sinusoidally. The governing equation,

with the constant St assumption, can be written as

M +R-+Ky= PV(t)2DCLcos( 27rf,(r)dr), (5.54)
at2  at 2

where

V(t)= AQ sin Qt,

StV StAQ sinQt. (5.55)

D D

The frequency Q (in radians/sec) is the frequency of the inline motion, and A is the

amplitude of the inline displacement. The shedding frequencies vary with time, so we

have to use integration to obtain the phase of the lift force excitation. The maximum

StAQ
possible shedding frequency is ft = D The natural frequency of the system is again

KD

c-) = (in radians/sec). In the case that con <27cfo, the shedding frequency will be

sometimes at the natural frequency, corresponding to a period of time at resonance. Also,

due to the reduced velocity bandwidth, a shedding frequency close to a natural frequency

may lock-in to the natural frequency. Thus, for a certain interval of time the system will

be at resonance in a quasi-steady sense. The excitation at this duration of time contributes
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most to the response at the resonant frequency. An effective way to simplify this

unsteady vibration problem is to find an approximately equivalent steady problem.

In order to estimate how long the shedding frequency remains within a certain frequency

interval, we have to obtain the probability density function for Equation 5.55. With the

knowledge of the probability density function for a sine function, we can write the

probability density function for Equation 5.55 as

2
p(f) = ,(5.56)

,z fs 2  2

wherefis the frequency we are interested in. Figure 5.18 shows the probability density

functions for inline amplitudes 1 ft and 3 ft, both with period 5 sec. The St number used

is 0.165 and the diameter of the cylinder is 0.125 ft. Notice that for different inline

amplitudes and periods, the term fso will be different and thus the probability density

function will be wider or narrower in frequency range. This probability density function

provides the probability of time the shedding frequency spends within a frequency Af .

For example, in the case of amplitude 3 ft, the frequency spends more time around

frequency 4 Hz than around 3 Hz. The longer the frequency stays at one frequency, the

more the energy at that frequency is able to flow into the system, and the greater the

response of the riser at that frequency.
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cylinder under unsteady flow. Suppose the inline amplitude is 3 ft and the period is 5 sec,

and the natural frequency of the system is 4 Hz. Considering the lock-in bandwidth, we

let the resonant frequency interval be t10% of the natural frequency. That is, the

frequency interval is from 3.6 Hz to 4.4 Hz. The probability density function and the

interval are shown in Figure 5.19. The area below the curve and inside the frequency

interval is the duty cycle the excitation spends on the resonant frequency interval. That is,

only a portion of the total time can be regarded as contributing to the resonance. This area

(probability) can be calculated as

Pr(f < < = d = tan- , (5.57)
< f < -f 

- "-I
where f, and fa are the lower and the upper bounds of the frequency interval. This

1 n3f, perid 5 ec

probability represents the ratio of the duty cycle to the total cycle, written as pg-'" . An
Total

effective way to treat this unsteady excitation is to pack all the excitation at the power-in

time intervals into a smaller spatial region which has the excitation all the time. That is,
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we approximately convert an unsteady excitation problem into a steady flow problem but

with a smaller local excitation region. For the problem stated in Equation 5.54, the

T
equivalent power-in length becomes the duty cycle ratio poe-in times the total length.

The problem turns into the partial excitation problem stated at the end of Section 5.3, and

we can write the equivalent reduced damping Se as

Se = S, ' . (5.58)
power-in

That is, we can obtain an equivalent reduced damping for a spring-mounted cylinder

under unsteady flow. The concepts of using the probability as the duty cycle ratio in time

and of obtaining an equivalent reduced damping will now be extended to the problem for

a flexible cylinder under non-uniform, unsteady flow.
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The ultimate goal is to use S9 to link the excitation and the response for a long flexible

cylinder under top-end periodic motions. We seek to determine an equivalent reduced
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damping for this unsteady flow problem. The principal idea in solving this problem is

shown in Figure 5.20. A flow velocity profile of CVAR under the top-end periodic

motion is illustrated in the upper left panel. For any small spatial section Ax of the riser,

there is a local sinusoidal inline velocity. The local shedding frequency is also sinusoidal

due to the constant St assumption. The probability density function of the local shedding

frequency can be obtained as shown in the lower right panel of Figure 5.20. For a specific

frequency interval, we can calculate the probability, i.e., the duty cycle for that frequency

interval at the specific location. This step is the same as the one shown in the previous

section, except that here the probability density function is calculated only for the specific

Ax location. As shown in Figure 5.18, the probability density functions for different

amplitudes are different. Therefore, we have to divide the whole riser into many sections,

each Ax in length. Within each section the maximum inline velocity is evaluated. Then

we obtain the probability density function of frequency for each section, as shown in

Figure 5.20. For a specific frequency interval, the total excitation may come from many

spatial sections. For each contributing section, the associated duty cycle is evaluated

according to the local probability density function. For each frequency interval, the sum

of the duty cycles at all contributing sections is the total duty cycle. If this number

exceeds 1.0, for example 3.7, then this means an equivalent excitation has 100% duty

cycle (i.e., steady flow) over a length equal to 3.7 Ax.
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Figure 5.20. The mapping from the unsteady velocity profile to the probability density

function of excitation frequency.

We propose a simple but conservative model for accumulating the effects of all

distributed excitation along the riser. As in the spring mounted cylinder example, the duty

cycle for a particular frequency interval at a specific spatial section is equivalent to a

100% duty cycle on a shorter section whose length is given by Ax -duty cycle=

T
"pwr Ax. The fraction of the excitation region at the frequency is thus the duty cycle

Ttotal
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T
ratio power-in . If we then add up all such sections, we obtain the equivalent length

Total

Lpower-in of cylinder which has steady excitation at the chosen frequency interval.

Therefore, the equivalent steady excitation for this specific frequency at this section

L
covers only power-in of the total riser length. A very conservative assumption has been

Ltotal

invoked. For a specific frequency, the excitation contributed from all the spatial sections

has been accumulated as if they were in the same phase. This assumption is very

conservative because any two out-of-phase excitation forces will partially cancel each

other, causing smaller system response. We thus pack all the equivalent steady excitation

into one equivalent section, with a length equal to

Lpowerin(fj) = AxZ Tpower-in(fj (5.59)
Axi , Total

This equivalent length will be frequency dependent because the probabilities of different

frequency intervals are different. Following the procedure as in the partial flow problem

described in Section 5.3, we know

Rtota = RLoa, = RffL (5.60)

or we can obtain the equivalent damping coefficient as:

Reff (fj )=R L'"'"' . (5.61)
Lpower-in (fi)

Two points remain to be clarified. First, we have not specified how to choose the

frequency intervals as in the lower right panel of Figure 5.20. Second, we have to

determine the damping coefficient R used in Equation 5.61. We will discuss how to

partition the frequency content first.

For linear vibration, the steady state response of the system at a certain frequency is

caused by excitation at that frequency. Thus, our purpose in frequency partitioning here is

to separate the contributions from different frequencies, so that we are able to use a quasi-

steady model for a single frequency. In the previous section, we chose the upper bound
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and the lower bound of the frequency interval by considering the lock-in bandwidth of

VIV response. In the problem encountered here, the mode number is very high and thus

the modal density is high. Therefore, we are not able to distinguish two adjacent modes,

and the selection of the frequency bounds described in the previous section is not useful.

As observed in the spectra of the response from the CVAR test as in Figure 5.17, the

spectra tend to have spikes at the multiples of the excitation frequency. This phenomenon

is because when the inline velocity is periodic, the vortices tend to organize themselves

so that an integer number of vortices are shed during one stroke (Blevins, 1990). Based

on this phenomenon, we propose to define the width of each frequency interval as -,
T

where T is the top-end period. This method is equivalent to considering how many

vortices are shed per top-end cycle as a parameter. We will show that with this choice of

Af , we can compute damage per vortex shed. With this frequency partitioning, we then

compute the duty cycle for each frequency interval. The equivalent reduced damping Se

for the unsteady VIV can now be written as:

Rwg Rco Ltoa
=S ef - -- ) '"'t (5.62)ge Pf 2  piV 2 Lpower-in

where o is the frequency (in radians/sec) we are interested in, V is the velocity associated

with this frequency by the Strouhal relationship, and Lpowerin is the total equivalent

length with 100% duty cycle.

For a steel riser, the damping coefficient R in Equation 5.60 is mainly contributed by

hydrodynamic damping. Because we are mostly interested in the response from high flow

velocities, the damping outside of the power-in region corresponds to lower flow

velocities. Thus, we apply the low reduced velocity damping model used in SHEAR7 to

our problem (Venugopal, 1996). For a preliminary calculation, we do not include the still

water term of the model. The damping coefficient per unit length can then be written as:

R = CrpfDV , (5.63)

where C,, is an empirical coefficient and V is the velocity associated with the source of

damping. The coefficient Cr, is set to 0.18 for SHEAR7, and we will use this value in our
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unsteady case. In our problem, flow is non-uniform and unsteady, so the real damping

may be time varying. Because the model we propose has a very small power-in region

(only each spatial section as shown in the upper left panel of Figure 5.20), we can use the

average velocity over space and time for the damping calculation. In the CVAR case, if

2
we average the maximum inline velocities in space and then multiply the answer by -

(the time average of a sinusoid), we obtain a value around 13.6% of the peak inline

velocity along the riser. That is, the average velocity, V,, for damping computation

purposes is about 13.6% of the maximum velocity. Or, the average velocity can be

expressed as

V, =raVmax, (5.64)

where r. is the fraction of peak velocity, which will be different for different riser

configurations. Vmax is the maximum inline velocity along the riser. Thus, we are able to

obtain the damping coefficient R by Equations 5.63 and 5.64.

If we further use the identity c> = 2;f and the relationship V = , the equivalent
St

reduced damping Sge becomes

C,,DrVmax Ltotal 2ff f 12

gpower-in 2ffSt 2Crra Ltotal Vmax _ 2 2rl a Ltotal J5.65)
pf 2 D2  "Lo,,i JD fnd Lpowerin

St2

where the definition of the non-dimensional frequency fnd = _ shown in Section 2.1 is
Vmax

used. Notice that in this expression of the equivalent reduced damping, ra, the ratio of the

average velocity to V. is a function of the riser configuration. The factor L'otal is a
power-in

function of both the configuration and the top-end excitation. That is, with the knowledge

of the riser configuration and the top-end periodic excitation, we are able to calculate the

equivalent reduced damping for any specific frequency we are interested in.
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5.8 The Sg -RMS A/D Relationship for Unsteady VIV

In this section we will verify that the Sg -RMS A/D relationship for steady flow as shown

in Figure 5.1 has an equivalent result for measured response in unsteady flow in terms of

Sge. In order to reach this goal, we have to obtain the measured RMS A/D for the same

frequency intervals as used in the frequency partitioning for Sge

With a response spectrum, the RMS values for a frequency interval can be estimated by

RMS= fpdf, (5.66)

where p is the spectrum, and fl, f2 are the lower and upper bounds of the frequency

interval. In the discrete domain, we just substitute the integration operator by a

summation sign. As shown in Figure 5.21, the spectrum is partitioned to several

frequency intervals, according to the partitioning for calculating Sg,. The nominal

frequency at each frequency interval is a multiple of the top-end frequency (0.2 Hz in this

example). For each interval, the spectrum is summed up to obtain the mean square

acceleration for that frequency range. The circles shown in the lower panel of Figure 5.21

represent the calculated mean square value for each frequency interval. The greater the

area under the spectral curve in an interval, the higher the mean square acceleration for

that interval.
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Figure 5.21. The frequency partitioning for the acceleration spectrum for CVAR, top-end

amplitude 2 ft, top-end period 5 sec, pup 3. Each circle is the acceleration mean square

for each frequency interval calculated from the measured spectrum.

To obtain the RMS displacement from the acceleration spectrum, we use the spectral

relationship

SA ()= 4 S ((0), (5.67)

where co is the frequency in radians/sec that we are interested in, while SA(co) and

Sx(co) are the 'spectral density functions for the acceleration and the displacement,

respectively. With this relationship, any acceleration spectrum can be converted to a

displacement spectrum by dividing the acceleration spectrum by o4. Figure 5.22 shows a

pair of corresponding spectra for acceleration and displacement. As can be seen in the

figure, the high frequency contents in the acceleration spectrum are suppressed due to the

division of C4, while the low frequency contents are amplified. The same frequency

partitioning technique can be used for the displacement spectrum, and it yields the RMS

displacements for different frequency intervals. The only difficulty in this technique is

that for very low frequencies, small measurement noise will contribute to extremely large

displacement spectral density (due to the division of very small CO4). Fortunately, we are

only interested in the frequency ranges due to VIV, and these frequencies are not very
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low. Thus, we just ignore the lower frequency intervals when calculating the RMS

displacements. An example of the calculated RMS displacement is shown in Figure 5.23.
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Figure 5.22. The acceleration spectrum ((m/sA2)A2/Hz)
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Figure 5.23. The RMS displacement of discrete frequency intervals obtained from the

displacement spectrum for CVAR, top-end amplitude 3 ft, top-end period 5 sec, pup 3.
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Now we are able to obtain the RMS displacement within each frequency interval for any

top-end excitation. Each data point in Figure 5.23 has a corresponding Sg, for the

specific frequency interval. That is, we are able to mark a point in the Sg, -RMS A/D plot

for each frequency interval under a certain top-end excitation at a specific pup. By this

procedure, we can mark all the points for all the frequency intervals under all excitation

patterns at all pups. Figure 5.24 demonstrates the results by marking all the data points in

a plot. Every data point corresponds to the measurement of a sensor at each frequency

interval for a combination of top-end amplitude and period. That is, the frequency

partition technique breaks down the total response into components from different

frequencies. Remarkably, all the data points fit very well with the relationship curve for

the steady VIV problem. Thus, we have figured out a way to interpret the unsteady VIV

response by introducing an equivalent reduced damping model for the unsteady flow.
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measurements from all pups. The very low values are from sensors far away from the

location of V. .

5.9 Non-dimensional Frequency

After being able to verify the usage of the equivalent reduced damping model, we would

like to explore this problem in a dimensionless sense. We will introduce the importance

of the non-dimensional frequency, and use it to explain the comparisons of response to

different top-end excitations.

The non-dimensional frequency is defined as fnd = D. The frequency in the definition
Vmax

is the vibration frequency, which is caused by the shedding frequency forces. For a

constant Strouhal number, fd has a maximum value equal to St. Figure 5.25 shows the

spectra for three different excitation frequencies with the same top-end amplitude. If we

use the non-dimensional frequency in the abscissa (the spectra unit should be normalized

accordingly), the rescaled spectra are shown in Figure 5.26. The spectra are rescaled by

using the relationship

S. (fd)dfnd = S.(f)df,

df Sx(f).
dfnd

The rescaled factor , which is equal to "m , can be obtained from the definition of
dfnd D

the non-dimensional frequency. The unit of the spectra is (m/s 2 )2 because of the

normalization. Notice that when we use the non-dimensional frequency to represent the

spectra, they are similar to each other. That is to say, the non-dimensional frequency

content does not depend on the excitation frequency. The magnitudes of the spectra do

differ for different excitation amplitudes and periods. We will discuss this difference later

in terms of the displacement rather than the acceleration.
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Figure 5.25. The acceleration spectra ((M/s^ 2)^ 2/Hz) of three different excitation periods

for CVAR configuration. The top-end amplitude is 3 ft and the measurement is for the

cross-flow pup 3.
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To further demonstrate the normalization with non-dimensional frequency, we randomly

select three tests for CVAR with different amplitudes and different periods. The spectra

with respect to the frequency are shown in Figure 5.27, and the spectra with respect to the

non-dimensional frequency are illustrated in Figure 5.28. Again, the spectra in Figure

5.28 all center around the same range of fnd . This result is remarkable and it confirms

that the 'average' St number does not vary too much in different tests.
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Figure 5.27. The acceleration spectra ((m/sA2)A2/Hz) of three randomly selected different

excitation periods and amplitudes for the CVAR configuration. The measurement is for

the cross-flow direction of pup 3.
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Figure 5.28. The acceleration spectra ((m/s^\2)^2) of three randomly selected different

excitation periods and amplitudes for CVAR configuration. The abscissa is the non-

dimensional frequency. The measurement is for the cross-flow direction of pup 3.

Next we discuss the effects of the non-dimensional frequency on the power-in length

ratio L'o'"l . This ratio is a function of the riser configuration and the top-end
Lpower-in

excitation. If the riser configuration is fixed, the velocity profile will have approximately

similar spatial distributions even though the top-end periods or amplitudes change. The

ratio of the velocities between two excitation patterns is approximately constant.

Consider the probability density functions at the same location of two cases with different

top-end amplitudes and periods. The probability density functions are shown in Figure

5.29. The left panel is for the amplitude 3 ft, the period 5 sec; the right panel is for the

amplitude 2 ft, the period 8 sec. The frequency interval, I/T, for the left panel is about 0.5

Hz, while it is about 0.21 Hz for the right panel. The functions are quite different, but if

we integrate the areas under the curves for the shaded frequency intervals, the

probabilities of the two cases will be the same. That is, the duty cycles for those specific

frequency intervals are the same. A better approach to this problem is to use the non-

dimensional frequency to plot the probability density function. This function is shown in
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Figure 5.30. Because the abscissa is rescaled, the ordinate has also been rescaled. Using

the non-dimensional frequency, the probability density function will always be the same

regardless of the change of the top-end excitation. Furthermore, for the same riser

configuration, if the probabilities (the duty cycle ratios) for two cases are the same, the

length ratios for these two cases will be the same. The important outcome of this

conclusion is that if we look at the same value of non-dimensional frequency, and if the

Af.-D L,
partition width in terms of is fixed, the ratio ot'" will be the same for

dmx Lpower-in

different excitation cases.
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Figure 5.29. Two probability density functions of different top-end amplitudes and

periods. The left panel is for amplitude 3 ft, period 5 sec; the right panel is for amplitude

2 ft, period 8 sec.
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Figure 5.30. The probability density function for sinusoidal frequencies at a point, with

fd as the variable.

From Equation 5.66 for the equivalent reduced damping S, we know that it is a

function of r f.d and Lt"'"a . The average velocity ratio r is influenced by the
Lpower-in-

configuration. Therefore, if we have the same configuration, the same fd will yield the

same total , and thus the same Sge. The same Sge represents the same response
power-in

Af.-D
amplitude. In brief, for the same riser configuration, the same fnd and the same ,

VM

the RMS A/D will be the same regardless of the top-end excitation. Figure 5.31

demonstrates RMS A/D for three different top-end periods. Remarkably, the RMS A/D

all fall into a very narrow band in the figure, indicating that the response amplitude at a

certain frequency interval is only a function of the non-dimensional frequency, and not

influenced by the top-end period.
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Figure 5.31. The RMS A/D from the calculation of partitioned frequency intervals. This

is for CVAR tests: top-end amplitude 3 ft, top-end periods 5, 7, 9 sec, pup 3.

5.10 Fatigue Damage Rate Prediction

In terms of industrial needs, the most important aspect is to predict the fatigue damage

rate. Though it is possible to calculate the RMS response of the simulated results, as

demonstrated in Appendix 3, and then obtain the fatigue damage rate, we will illustrate a

more practical method with the usage of the S9 -RMS A/D relationship. That is, if we

know Sg , we know the RMS A/D, and then we can predict the fatigue damage rate

following the similar procedure introduced in SHEAR7.

Suppose a riser configuration is known, and the top-end periodic motion (e.g., the vessel

motion) is also known. The inline flow velocities along the riser can be calculated by a

sophisticated finite element program. With the velocity profile, we can obtain the

shedding frequencies by the St relationship. A frequency partitioning technique is needed

to further calculate Sg for discretized frequency intervals. In the previous sections, we

use the top-end frequency as the width of the frequency interval. The partitioning can

also be carried out by the modal frequency if the modal density is not too high. After the
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partitioning, we are able to obtain the probability of occurrence for each frequency

interval at each location from Equation 5.58, Pr(fa < f < fb) tan-' 2f

L f, - f2

The next step is to calculate the length ratio in Equation 5.61, Lotal , for each
power-in

T f T
frequency interval, where Lpowerin(fj)= AxZ "power-in f). The duty cycle ratio power-in

A, ';otal Total

is inferred from the probability just shown above. Finally, we obtain reduced damping Sg
2ff St2 C ,. rr Loa h o fiin

for each frequency interval by Equation 5.66, Sg,, = "'" . The coefficient

Cr is assigned 0.18 from the SHEAR7 model.

Now we have an equivalent Sg for each frequency interval. We use the Sg -RMS A/D

curve to infer the RMS A/D for each frequency interval. The quantity we need for the

fatigue estimation is the RMS stress, or equivalently, the RMS curvature. For a wave, we

know that the curvature is

y "-2 Aei(x-O), (5.68)

where y is the wave number. Because we have already partitioned the frequency

contents so that at each frequency interval the frequency can be regarded as a constant,

and so can the wave number. We can then multiply the RMS A/D by the corresponding

wave number for each frequency interval and obtain the RMS curvature. The RMS stress

for each frequency interval is estimated as

S = . (5.69)

Next, we calculate the fatigue damage rate for each frequency interval by using the S-N

curve expression for the Rayleigh distribution. The damage rate per year can be written

as

D, = coT(S,,,)b-F( ),2 (5.70)
2zfC 2
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where o is the frequency of that interval, T is the second per year (365*24*3600 sec), b

and C follow the relationship

NSb = C, (5.71)

which is determined by the material properties, and F is the Gamma function. Equation

5.71 illustrates a way to calculate the fatigue damage rate for each frequency interval. To

obtain the total fatigue damage rate for the riser under a specified unsteady flow, we sum

up the damage rate of all frequency intervals and get

D = D,. (5.72)

That is, through the procedure described above, we are finally able to estimate the fatigue

damage rate with only the knowledge of the material properties, the riser configurations,

and the specifications of the top-end excitation. Considering the complexity of the

unsteady VIV, this is a practical and conservative method for predicting the damage rate.

This procedure has been used for the CVAR riser for all the available combinations of the

top-end excitation amplitudes and periods, and the estimations of the fatigue damage

rates are shown in Figure 5.32. As can be seen in the figure, when the top-end amplitude

gets larger or the top-end period gets shorter, the fatigue damage gets worse. This result

is as expected. When the top-end amplitude is fixed while the top-end periods vary, we

know that Sg is the same for the same f.d . In order to have the same Idthe shorter

top-end period requires higher response frequency, and vice versa, because of the

constant Strouhal relationship. The same Sg gives the same RMS A/D, but the RMS

stresses are different. According to Equations 5.69 and 5.70, the RMS stress is

proportional to Y2. That is, for a beam, it is proportional to wo, while for a string, it is

proportional to C
2 . For a tension beam the RMS stress will be proportional to between

the first power and the second power of the frequency. Equation 5.71 shows that the

b
damage rate is proportional to S,,,, . For the CVAR riser, b is about 4.3. Therefore, for

different top-end periods with the fixed top-end amplitude, the fatigue damage rate is

inversely proportional to between 5.3th (for a beam) and 9.6th (for a string) power of the

top-end period. The relationship shown in Figure 5.32 falls in between these two extreme

cases (about 6.3th power by curve fitting). We also know that when the top-end period is
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fixed while the top-end amplitudes differ, S, is the same for the same fd,, if the width of

the frequency interval is properly chosen as in Figure 5.29. The same value of fnd

requires a higher frequency for a larger top-end amplitude, and vice versa. Similar to the

case of a fixed amplitude and varying periods, the fatigue damage rate is proportional to

between 5.3th (for a beam) and 9.6th (for a string) power of the top-end amplitude. It is

not easy to verify this power dependence because there are only 3 different top-end

amplitudes, but the results demonstrated in Figure 5.32 support this conclusion.
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Chapter 6 Summary

The most important results of this thesis have been shown in Chapter 5. There a VIV

model for a slender structure under the top-end periodic motions has been proposed. The

construction of the model is based on many important dimensionless parameters.

Specifically, an equivalent reduced damping S9 is estimated and the S9 -RMS A/D

relationship is used to predict the response. Also, the discussions of the amplification

factor and the effects of boundary conditions provide insights for the modification and

simplification of our model. In summary, we have combined the knowledge from the

theories and the experimental results to develop a novel approach to this unsteady VIV

problem. In the rest of this chapter, we will review what new insights this thesis presents,

how to apply the knowledge to the design of model tests, and what directions future work

may take.

6.1 New Insights Other Than Steady Flow VIV

Several dimensionless parameters have been identified through this thesis. In previous

work of others for steady current VIV, parameters such as St, Re, and the mass ratio have

been extensively studied. Here, we would like to address the dimensionless parameters

important to the unsteady VIV due to the top-end periodic motion.

For a long slender cylinder, the wave propagation parameter nC determines if we should

use the modal method or the wave propagation method to approach this problem. Large

nQ makes the adjacent modes indistinguishable and thus it should be treated as a wave

problem rather than a standing wave vibration problem. This is valid for both steady and

unsteady VIV problems. Furthermore, we have discussed the effects of the top-end

moving boundary conditions to the inline motions along the riser. The wave propagation

parameter nC serves qualitatively as a threshold of determining the importance of the

amplification factor, and also quantitatively as the solution of the amplification factor,

, for small nC. The amplification factor is important and should be carefully
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investigated because it tells that small amplitude moving boundary conditions can induce

large inline motions along the riser.

The solution of an infinite beam under sinusoidal finite length excitation is written in

Equation 5.45 as - (X =0) -'L (l -e 2 ). This solution shows that for a beam with
D 2Sg

a long excitation region, the response will be governed by the ratio of two dimensionless

parameters CL and Sg . This ratio is very important because it represents the balance

between the excitation force and the damping force. A parameter to characterize the

effects of the power-in length is N,,g . When N,,g =1, the response amplitude will reach

about 80% of the saturated amplitude. The relationship has been shown in Figure 5.7. For

an infinite beam with the same excitation length but different frequencies, higher

frequencies correspond to larger N1,, and thus the response amplitude is closer to the

saturated amplitude.

For the unsteady flow problem, we have proposed a constant St model based on the

observed frequency evolution. That is, the St number is a constant regardless of the

sinusoidal change of the inline velocity. The KC number therefore controls how many

vortices are shed during one velocity cycle. For a small KC number, the shedding

frequencies are governed by the top-end excitation frequency, and mostly the shedding

frequencies are multiples of the excitation frequency. As KC gets larger, more vortices

are shed during one excitation cycle. We use a parameter N = KC -St to indicate how

many vortex pairs are shed per cycle of the riser. Also, the data shows that no significant

response amplitude is observed for KC<30. For a spring-mounted cylinder in uniform

flow in previous research, VIV response is seen at lower KC numbers. This discrepancy

can be explained by the effects of the power-in length shown just above. For the CVAR

riser, the excitation region is concentrated on the center portion of the riser. For a very

small KC such as 6-20, the inline velocity is small and the corresponding vibration has a
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long wavelength. Thus the parameter N,,g becomes relatively small and the response

will be at only a few percent of the saturated amplitude. The vibration in a spring-

mounted cylinder does not have this 'unsaturated' effect. Thus, a long flexible riser with

finite length excitation requires higher KC numbers to have the same scale of response

amplitude for a spring-mounted cylinder.

The work in Chapter 5 demonstrates how to develop an equivalent reduced damping

model Sg, for the unsteady VIV problem. The major concept in this work is to obtain the

modification factor 8 by finding the equivalent quasi-steady power-in length for the

unsteady excitation. The top-end periodic motion and the riser configuration both

influence the value of this factor. The agreement between the measured RMS A/D and

the estimated Sg, in Figure 5.24 supports the model we developed. An important

dimensionless parameter to explain the results of different top-end excitation patterns is

the non-dimensional frequency fad. We have demonstrated that normalizing the

frequency in terms of fd ,we obtain the similar spectra (centered at the same location)

for different top-end amplitudes and periods. Also, by carefully choosing the width of the

frequency interval, the response amplitude will be the same for the same fn . Thus, the

non-dimensional frequency fd is useful for both the frequency comparisons and the

amplitude comparisons for any combination of the top-end excitation. Therefore, if we

know the response for one combination of the top-end excitation, we will be able to infer

the response for any other excitation by scaling the spectra with fnd

In addition to the dimensionless parameters shown above, we also consider other

important parameters such as the mass ratio and Re. Because the available data is limited,

we only have one mass ratio and a small range of Re. The range of Re covers only up to

the scale of 10', that is, supercritical Re values on the offshore risers are excluded. Thus,

the results developed in this thesis can be strictly applied to subcritical flow. More
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experiments should be conducted to verify or extend the usage of these results to

supercritical Re values.

6.2 Guidelines for Model Test Experiment Design

From Equation 2.10, we showed there are 10 dimensionless parameters to characterize

the unsteady VIV problem due to the top-end periodic motion. They are

m EI L h T V__D
Re0 , , 2 '4s, , , ,Fr,KC, 1  . (6.1)

p D2 TD D D "mgD' 4K _/m

In principle, if we would like to build a model test for a prototype, these 10 parameters

should all be the same. In practice, however, it is not possible to make all the matching

between two different scales. Thus we have to sacrifice some of the matching to scale the

system.

First we would like to obey the geometric similarity. For a prototype and a model, we

require that all the shapes be similar, but only different in length scale. We assume the

scaling between the two systems is

kD =-D (6.2)
Dm

where D, is the diameter of the prototype, while D,, is the diameter of the model. The

dimensionless parameters associated with the geometric similarity are L h, and KC.
D'D

To satisfy the geometric similarity, the scaling requirements are

D, L, h, A,
Dm L -~-- kD' (6.3)D,, L,, h,, A,,,

That is, we have to make a model with the same length ratio for the diameter, the riser

length, and the water depth. Also the top-end excitation amplitude should be in the same

scale. Next, in order to have the same static geometric shape, both the mass ratios and the
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Tparameters for the model test and the prototype
mgD

should be the same. In practice,

gravity is not easy to change, and also the fluid will likely be the same (i.e., water).

Therefore, we have

Pjp Pf

Tm aP,

The matching of the mass ratio is written as:

2 m

pfPD, PjmD,,

(6.4)

(6.5)

With the same fluid density, the scaling of the mass per unit length of the structure is

2

mm = k (6.6)

To satisfy this scaling requirement, we should use the same kind of material (i.e., the

same density) for the model test and the prototype, because this scaling in Equation 6.6 is

the same as the ratio of the cross-sectional area. The matching of

T T

T.
is

mgD

=D '",m (6.7)

or the scaling of the top-end tension is

T -mPDPk3.

Tm mm Dm
(6.8)

The tension at the top should be intentionally set to the 3 rd power of the length ratio. With

the scaling of the tension, we can scale the bending stiffness EI by matching the

EI
parameter :

D2
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2 E (6.9)
TD| T,,D,

We separately discuss the scaling of the Young's modulus and the moment of inertia. The

moment of inertia is proportional to the 4th power of the diameter, so the scaling is

- k4 (6.10)
I,

Therefore, the scaling of the Young's modulus is

2 
D'

Em TmDm P

We should choose a material with a lower Young's modulus for the model. The damping

ratios chosen for the model and the prototype can be the same for the matching. Now,

only the parameters associated with the dynamic similarity remain. In order to match the

Re number, the relationship

pfpDVOP _pf,,D,,Vom, (6.12)
p PM

has to be satisfied. Because of the same fluid density and viscosity, the top-end velocity

should be scaled as

V " _ Dm - 1 (6.13)
VOm D, kD

For matching the Fr number, we have

4O P VOm (6.14)

or we have the scaling for the top-end velocity:

-V f (6.15)
Om
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Equation 6.13 and Equation 6.15 conflict each other, so it is not possible to both satisfy

the Froude-number scaling and the Reynolds-number scaling. That is, we have to

sacrifice one of them to proceed. To decide which scaling is suitable for our problem, we

consider the variables we are interested in. In general, we expect all frequencies (e.g., the

top-end excitation frequency, the shedding frequency) to be in the same scale as the

natural frequency. We write again the natural frequency for a tensioned beam:

1 E1 nrc T nrc 2
fat -( -)4+-( ) . (6.16)

2;r m, L m, L

The scaling of the natural frequency is

na _EI/ImL T/mL2-natp - p- = 1 (6.17)
fnat, JE,I, m,L, TI mL,2 kD

Equation 6.15 implies the scaling of the top-end excitation frequency:

= / .A (6.18)
fetm Vn mAm

Putting the Froude-number scaling for the velocity in this equation, we obtain

fexp 1 (6.19)

Therefore, in terms of matching the frequency, it is necessary to use the Froude-number

scaling and discard the Reynolds-number scaling. The scaling of the excitation frequency

should be carefully set according to Equation 6.19. Also, the maximum possible shedding

frequency can be written as

f .St (6.20)
D

Assuming constant St and using the Froude-number scaling for the velocity, we obtain

-= V p - (6.21)
fm VomDp ko
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In order to have the same St without matching the Re number, the cylinder has to be

roughened so that we have a nearly constant St curve with respect to Re. The last

parameter to match is , and the scaling for the soil stiffness is:
-K1m

KP m V 2 /D 2

K m 2 / 2 = kD* (6.22)

That is, for the model test, we have to find a material softer (with the scale as in Equation

6.22) than the soil stiffness in the prototype. In summary, to follow the Froude-number

scaling, Equations 6.3, 6.6, 6.8, 6.11, 6.19, and 6.22 have to be satisfied. Also, because

the Re number does not match, careful judgment should be made to assure the

equivalence between the prototype and the model test.

Now we would like to examine the scaling rules for some important parameters. The

added mass coefficient C, must be the same to keep the total mass per unit length the

same. C, is a function of the Re number, the KC number, and the reduced velocity. The

KC number has been kept the same. The effects of the Re number on the response

frequency, and thus the reduced velocity, should be justified so that added mass

coefficient does not vary too much. Next we test the drag force per unit length. The

balance between the drag force and the total weight of the riser (including the added mass

weight) should match for the model and the prototype in order to have the correct scaling

of the dynamic behavior. The ratio of the drag force to the weight is 2 PJDCDV2

m~g

Plugging all the scaling into this ratio, we need a constant drag coefficient for both the

model and the prototype. CD is a function of Re. If we roughen the cylinder, the drag

coefficient will not vary much for different Re. Therefore, a roughened cylinder will also

satisfy the requirement for the drag coefficient. For the reduced damping, the matching is

Rcop Rma),2, (6.23)
p, PPfmV
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or

R PV 2f

R , V, , f2 
(6 .2 4 )

For the steady flow problem, the model for the damping coefficient (the still water

contribution) used in SHEAR7 again requires the equivalent effect of the Re number.

6.3 New Contributions

This thesis makes the following new contributions:

1. Solved the turning point problem for a tensioned beam with a linearly varying

stiffness foundation.

2. Established simple rules for conservative estimation of TDP fatigue damage

(effect of soil interactions). Being able to solve the complicated models such as

the linearly varying foundation model and the discontinuity model, we verified

that the simple pinned-pinned model is more conservative than these complicated

models in term of the curvature, or equivalently the fatigue damage rate.

3. Determined the effect of the wave propagation parameter, n4, on the response to a

periodic moving boundary. The amplification effects due to the periodic moving

boundary conditions are significant if n4is small. The factor can be up to 10 times

1
the boundary motion amplitude. The amplification factor for small n4is -

zrng

4. Examined the importance of dimensionless parameters KC, reduced damping Sg,

non-dimensional frequency, and n for unsteady VIV due to top-end periodic

motion. The effects of the KC number on the response frequency were discussed.

The KC number also serves as a threshold for the response amplitude. The

reduced damping Sg is present in the solution of a damped system.

5. Developed an equivalent reduced damping Sge model for unsteady VIV. The

equivalent reduced damping model was developed by introducing a conservative

and equivalent quasi-steady model. A modification factor to include the effects of
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the riser configuration and the top-end excitation was proposed in obtaining the

equivalent reduced damping S,,. The CVAR data was used to verify the Sge -

RMS A/D relationship, and a fatigue damage rate model was established based on

this relationship.

6. Obtained a simple formula for the effect of the excitation length on the VIV

response of an infinitely long system. An important dimensionless parameter

N,,g was identified. Using the results of the finite length excitation, we are able

to explain the high KC threshold observed in the response.

7. Provided guidelines for the model test experiment design based on dimensional

analysis and scaling rules. A careful derivation of the scaling rules was conducted.

The Froude-number scaling was used and the matching of the Re number was

compensated by roughening the cylinder for the model test.

6.4 Further Work

We suggest the following directions for extending the work in this thesis.

1. Use the equivalent reduced damping model for other known velocity profiles, and

verify the Sg -RMS A/D relationship. It will be important to test the proposed

model against other sets of data. The velocity profile for the experiment is needed

to obtain the equivalent reduced damping. It will be interesting to compare the

response for different riser configurations.

2. Modify the reduced damping model for the unsteady VIV by including the effects

of the correlation length, the spatial decay, and the more sophisticated

hydrodynamic damping model. The reduced damping model proposed in this

thesis is only a first step toward this complicated unsteady VIV problem. The

effects of the correlation length, the spatial decay of the power into the system,

and better hydrodynamic damping model should be included to establish the

prediction model.
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3. Explore the unsteady VIV problem for other ranges of the KC number. There is a

KC number gap between KC=40 and KC=100. Future experiments should be

conducted to fill this gap. Higher KC number cases should also be explored so

that the trend between the unsteady flow and steady flow problems can be

characterized.

4. Conduct the full-scale test specifically for improving the unsteady VIV model.

The measurement from the full-scale test can be use to verify and calibrate the

unsteady VIV model proposed here. The effects of the high Re numbers can also

be identified from the full-scale test.
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Appendix 1 Derivation of the Solution for the Turning Point Problem

The governing equation of a tensioned beam with linearly varying spring constant is

written as:

S -T +Ma 2Y +k(x)y=0.
W4 aX2 Oat2

Assuming a harmonic solution y = Y(x)e-w' and k(x)= ax + m>2 as in the string case,

we get

dY TdY +a xY =0. (1.2)
dx EI dx2 EI

Using the normalization

X= -- x,
EI

we have

d Y d 2y
4 -p 2 + TY = 0, (1.3)

T (aY
where p = , a p > 0. We try an integral representation with the form

EI EI

Y(X)= ef sf(s)ds, (1.4)

where f(s) is a function to be found to satisfy the differential equation and c is a special

contour discussed later. The derivatives of this integral are:

Y= fe- (-sf(s))ds,

2 = e~Ys(s2f(s))ds,

4 = s(s4f(s))ds,

and

Y=fe ysdf(s) ds - e~"f(s) a,
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where a and 8 are the end points of the contour c. In order to implement the integral

representation, e-xsf(s) 0 has to be zero. We can insert all the corresponding terms into

Equation 1.3 and get

e-s [s'f(S) - ps 2f(s) + d(s) ds 0,f L5'~~5' ds]d 0

or

s4f(s)- ps 2 .f(S)±df(s) -0. (1.5)
ds

Solving this differential equation for f(s), we obtain
S5 S3

1 S

f(s)= e (1.6)

and

s3 s5

Y(X) e 3 5ds. (1.7)

Thus, Equation 1.7 is the solution for a tensioned beam with a linearly varying spring

constant, provided the end points a and P of the contour c satisfy the condition
- S3 S5

-xs+ps's
e 3 5 9 = 0. (1.8)

One of the choices for the contour is to make the values at the end points convergent to 0,

s3 s5 s5
that is, to make -s+ p - --- -- oo. Letting s = pe' , as p --+ oo, the term --

3 5 5

becomes dominant. We have

-- =- e 9 =--(cos50+isin5O).
5 5 5

. 3 S5

If cos 50 > 0, then e 3 5 -+ 0 as p --> oo. Therefore, the phase has to be in the

following zones:

7 C 3ff 5ff 7f 9;f -9ff -7ff -5ff -31r-- <9<-, <0< , <9<-, <0<- ,0
10 10 10 10 10 10 10 10 10 10

which are shown in Figure 1.1. Any contour that originates from one of these zones and

ends in another of these zones will be a valid contour. Therefore, we have five zones and
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four independent solutions, each of which connects two different zones. This corresponds

to four solutions for a fourth order differential equation.

0.5

0.4 - - - --- ----

0.1 - - - - - - - - - --- - - -

0 - - - - - -- -

-0.23 - -- - - - -- - -

-0.5 - -
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Figure 1. 1. Zones of valid contour terminations.

First we explore the approximations around the turning point using Taylor's expansion.

Close to the turning point XY= 0, we can expand the integral representation as:

-xs+ps5 
s

Y(X)= e 3 5 ds

n=0 -!

To obtain the four independent solutions, we have to assign four different contours for

the integral. From the valid zones of integration in Figure 1.1, it is known that any of

these contours is composed of the following integral sub-contours:

fe 5 fe 5 f e 5 , e 5

or these can be written as a unified form:

2qf 3 5

e S

I3 se P I ds, (1.10)

where q = -2,-1,0,1,2. This integral can be simplified by introducing the change of

variable
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* 2q~r

a- =se

and Equation 1.10 becomes

.2r5 a3 6q'r
1 q(n+l) n- 5+p 3e5

'q = e 5 o-"e5P3 da. (1.11)

The integral has to be carried out numerically. With these sub-contour components, we

have to decide the combinations of these components to form four different contour

integrals. In order to make all four solutions real, four combinations are selected as

follows and the contours are shown in Figure 1.2:

CA = (Z2 -1-2),
2i = n!

CB =-J
2i= n

C=Y I + -1 2 -- 2),
2 n!

CD = - -(2I0 - I, - I).
2n=O n !

1 1
The coefficients - and - are used to normalize and to make the results real. Adding up

2i 2

the first several terms of these series will be enough to capture the behavior around x = 0

and to match with the asymptotic solutions on both sides.
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CA CB

-- - -- ----- - - -

0.5

0

0.5

0

-0.5
-0. .5 0

CD

---------- 

-

_----------

5 0 0

0.5

0

-0.5
.5 -0.5 0 0.5

Figure 1.2. Four contours for Taylor's expansion solutions.

To use the steepest descent method for the asymptotic solutions, the saddle points have to

be found first. The exponent of the integrand is

S3 S5

h(s)= -Xs+ P .
3 5

(1.13)

The derivatives of h(s) are

and

h"(s) = 2ps - 4s3.

The saddle points have to satisfy

h'(s)= -X+ ps 2 -s 4 = 0.

(1.14)

(1.15)

(1.16)

The locations of the saddle points will depend on X-. The values of the saddle points are

shown in Table 1.1 and the locations are shown in Figure 1.3.
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Table 1.1. Saddle points for different values of Y. At the bottom line,

0 = tan-] ,2 0<0<-.C

p 2

Saddle a b c d

point

p+ p 2 - _ 2 -4 --p p+ p 2 4 2 -_

2 2 2 2

2

+< <- p+ p 2 _4 p - -4 p± p 2 p 2- 4
2 2 2 2

2 1 .0 1 .0

-> F4e 2 4 2 4 2 4 2

4

I 

,

0- --- - - - ---- ----

,21

2 2

Figure 1.3. The saddle point locations for A. Y <0, B. 0 < x < , C. Y > .
4 4

The steepest descent contours have Im (h(s)) = constant. Letting s = s, + is,, we get

h(s,+iS)=(-S, + s- PSrs -s+2ss2 -ss3 5

+(ySi + ps -s2s -s s ±+2s2s3 1 s).
3 5

(1.17)

For a contour passing through a saddle point, the imaginary part of Equation 1.17 has to

satisfy

2 P 3 3-XS+PS ss -ss, 2ss = m(h(s)),
3 5

(1.18)
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where s0 is the value of a saddle point. With Equation 1.18 and the locations of saddle

points as shown in Table 1.1, we can plot the steepest descent contours and identify

specific paths to have maximum real part of h(s) at the saddle points.

When - <0, the steepest descent contours for four saddle points are shown in Figure 1.4.

The thin lines are those with constant imaginary h(s) , while the thick lines are the

integration paths with maximum real parts of h(s) at the saddle points.

la

10
--

6.

42-

-2-

-4

-6

-10 -8 -6 -4 0 2 4 6 8 1

10 . ,

8-

-0

10 -8 -6 -4 -2 4 6 8 10

10b

8

4

0

-2

-4-

-6

-8-

-101
-10 -8 -6 -4 -2 0 2 4 6 8 10

id
10

8

6

4-

2-

-2-

-4-

-6

-8

-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 1.4. The steepest descent contours (thin lines) and the integration paths (thick

lines) of all four saddle points (marked in circles) for X <0. Arrows are the directions of

integration.
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To illustrate how to carry out the asymptotic solution by the steepest descent method, we

calculate the solution for the case I a, that is, the saddle point sl, = for
2

x <0. Expanding h(s) around the saddle point, we get

h(s)= h(s) + h+h"(sa ) (S -Si) 2 +... (1.19)

The second term of the right side vanishes because of the requirement of a saddle point.

The terms h(s0 ) and h"(s 0 ) can be carried out by plugging the value of the saddle point

into Equations 1.13 and 1.15. Thus, the solution becomes

h'(s, ) 2

Y(i)~ e h(sl) fe 2! ds. (1.20)

To further simplify the integral in Equation 1.20, let

2 h"(Sla)\ 2

2!

where

h"(sa) = 2ps - 4s'

-2p+2 p 2 _4k 2 -4k. (1.21)

Thus, we get

2 p+ 2  p 2 -4 p 2 4 _S:4)2 (S - sl),

and we have to decide which sign carries the correct integration direction. The direction

we like in the a domain is from -oo to +oo, while from Figure 1.4 1 a the assigned

integration direction in the s domain is nearly from +oo to -oo. Therefore, we have to

select the negative sign to have a consistent integration direction, that is,

j2 p+2 2p 2 _4k p 2 -4i(SS) 12)
0' s s) (1.22)

or

0 = -g1a ()(s-sS), (1.23)

where
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2 p+2 4p 2 -4k p2 -4(

2

Plugging Equation 1.23 into Equation 1.20, the solution becomes

eh(s) -ght e- dc.
Y9a )~ fe_,d.

Because the main contribution for the integration in the equation is around the saddle

point, that is, around - =0, we can extend the integration region and the solution will

not change much. We thus can write the asymptotic solution as

or

Y(X )~ f e-C2
d-,

-gla (X)

h(s )

Y(g) .

-gia (X)

(1.26)

(1.27)

This is the asymptotic solution of 1a. Similar procedures can be followed to obtain the

solutions for Ib, Ic and Id. The results are shown in Table 1.2.

Table 1.2. The asymptotic solutions of four saddle points for iX <0.

la lb

Y1a(X)-47reh(sl.) 
Yb(E ieh(sgb)

bXe g1 (X)

/2p+ 2 p 2 - 4 2 -4k 2 p 2 P
1 2 2 2

lc ld

lc '~ h(slc) () 7h(Sld)
e

igic z e 4g9d

: + p 2 _4 Y 2 -4k 2 4Y -2p -4Y
g1C = 2 gia =- 2
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To match the solutions close to the turning point by Taylor's expansion method, we have

to combine the asymptotic solutions correctly to generate the same integration paths.

Table 1.3 shows the matching between Taylor's expansion solutions and the asymptotic

solution for - <0.

Table 1.3. The matching between Taylor's expansion solutions and the asymptotic

solution for - <0.

Taylor's CA CB CC CD

Asymptotic (1c) (lb) + (1c) + (ld) (ld) - (lb) -2(la) + (1b) - (ld)
2i 2i 2 2

2

Figure 1.5 shows the steepest descent contours and the integration paths for 0 < x < .

The solutions can be obtained by the same procedure described above for Y <0. Notice

-2

that p = T , where a is the slope of the linearly varying spring constant. In our
El EI

case p may be small, so that the solutions in this range can actually be covered by

Taylor's expansion around the turning point Zt7= 0. In this situation we can skip the

calculations of the asymptotic solutions in this range.
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10

8

6

4

2

0C

-2-

-4-

-8 
-

-i-10 -8 -6 -4 -2 0 2 4 6 8

2c

0 -8 -6 -4 -2 0

1.5. The steepest

2a

,/ , , ,

10 -4 2 4 6 8 10

descent contours (thin lines) and the integration paths (thick

2

lines) of all four saddle points (marked in circles) for 0 < x < . Arrows are the
4

directions of integration.

2

The steepest descent contours and the integration paths for x > are shown in Figure
4

1.6. Following similar steps and assigning a relation

1 .0 3 .30

A2e"O 4 e' 2 +2- 4 e 2, (1.28)

where A >0 and 0 < <-, we obtain the asymptotic solutions in Table 1.4. To match
2

the solutions from the integration paths with the solutions around the turning point, the

combinations of these asymptotic solutions are shown in Table 1.5.
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Figure 1.6. The steepest descent contours (thin

3b

-10 -8 -6 -4 -2 0 2 4 6 8 1
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-10 -8 -6

lines) and

-4

the

-2 0 2 4 6

integration paths

8 10

(thick

2

lines) of all four saddle points (marked in circles) for Xi > . Arrows are the directions
4

of integration.

1.4. The asymptotic solutions of four saddle points for - >
4
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3a 3b 3c 3d

V "eh(s") .eh(s3b) _ S_____ Ieh(s3d

Ya(x) Yb(Y) _,c Y )~ _ Y_ _)~

Ae A e i(+-)) i--+)
Ae 2 _Ae 2

0
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Table 1.5. The matching between Taylor's expansion solutions and the asymptotic

solution for i > .
4

Taylor's CA C, CC CD

Asymptotic (3a) + (3b) + (3c) + (3d) (3a) + (3b) (3c) - (3d) (3b) - (3a)

2i 2i 2 2

Now we are able to patch together all the solutions for the left side, right side, and close

to the turning point to get a global solution. Figure 1.7 shows four solutions for a typical

tensioned beam with linearly varying stiffness. To obtain a physically meaningful

solution for a specific problem, boundary conditions have to be imposed to decide the

weighting of each of these four solutions.

X10
4

12-------r--- , - -_-- - - - _-_ -r--0-

8-X

6 - L- ------- i- -- -- - - I-- - - - - - I -

-2

-2 -------- - - - -

20-

15 -JJ- - - 4----

-5'
-600 0 -2 0 200

4 - - - - - - - - - - -- - - - - -

2- -1 - - -

2 - - -i -- - - 4- 1- - - --

I I I

S I I I I

0- -L -

-2 - - - -I------ -

-3 - - V-- - - - - --- - 4 - - - - - - -

X

X 1 02 D
I I .L J - -

-

-2 --- ----- -- ---- --

- I I I I

00 -2 0 200 400 600

Figure 1.7. Four solutions for a typical tensioned beam with linearly varying spring

constant.
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Appendix 2 Derivation of the Green's Function Solutions

For a curved riser under a top-end periodic motion, the loading (lift force due to vortices)

along the riser is unsteady in time and varying in space, as shown in the previous chapter.

We introduce Green's function method to solve this kind of problem. That is, we solve

the impulse response first, and then use the convolution integral to obtain the solutions

for arbitrary forcing functions. There are two types of Green's function as for our

purpose: one of them is the response for a harmonic excitation, and the other is the

response for a Dirac delta function in both time and space. Green's function for the

second type is called the double Green's function. We will address each of these types

separately in the following two sub-sections.

2.1 Green's Function for a Harmonic Excitation

The governing equation for a damped tensioned beam with an elastic foundation under a

harmonic excitation at a single point can be written as:

EI -T Y+m +c ky=(x)e-, (2.1)
x 4  a2x at2  at

where 3(x) is the Dirac delta function located at x =0. To illustrate how to proceed, we

first consider a simpler case, an infinitely long tensioned beam under a harmonic

excitation. The equation for this problem is written as:

EI ' -T a m + = (x)e- t . (2.2)
x4  a2x at2

Assuming a harmonic response function y(x, t) = Y(x)e-'", the equation becomes

d4 Y d 2
EI -T - mo 2 Y = 3(x). (2.3)

dx4 d 2X

The differential equation can be further simplified to an algebraic equation by integral

transformation. The Fourier transform is suitable for this equation. The Fourier transform

and its inverse we use are written as:

147



Y')I= Y(x)e'yxdx,

Y(x) = f (y)e-'&xdy.

After the Fourier transformation, the equation becomes

EIyY 4 Y+T y 2Y -mC 2 Y (2.4)

or

- 1 1
Y -(Y J= 4  2 -M 2  (2.5)

E[g y' + Try m

The inverse Fourier transform gives the solution

Y(x)=- Iw 2 dy. (2.6)2)r EIy + T 2-MC2

We can evaluate the integral by the residue theory. The poles of the integrand satisfy

Ely4 + Ty 2 - mw 2 = 0. (2.7)

This equation is exactly the dispersion relation for a tensioned beam. That is, the root loci

we discussed in Section 3.2 are important for deciding the locations of poles for the

Green's function solutions. As shown in Figure 3.3 (in the text), two roots for this

dispersion relation are in the real axis while two other roots are in the imaginary axis:

-T±+ T 2 +4mo 2 EJ T + NT2 +4mom 2 E (2.8
2' 2EI 2EI

The integration contour depends on the value of x. Due to the numerator of the integrand,

the term e-'Y, we select the contours for x > 0 and x <0 as shown in Figure 2.1. The

added contours in the lower and the upper planes, respectively, are selected such that

e-'y vanishes as the contour radii go to infinity. The figure shows that for x > 0, we

have to add up the residues for r3 and 74, while for x <0 , we have to add up the

residues for yj and 72. The residue for r3 is
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Res YY 2eix-
(Ely' +T -mW 2 ) /(_ 3 )

-T+VT2 +4mw2 Ex

e 2EI

-2T 2 ±+4mo 2 E -T+ +T 2 +4mo 2 EI

2 E1

Similarly, we can get the residue for r4, which is

_T+ T2+4mw
2
El

Res e 2E

2J2 T 2T+4ciE2i T + 4mco2EI I
2EI

Adding the contributions of these two residues together, we are able to write the solution

for x > 0:

y(x, t) = Y(x)e-'' = e-' t (-2fi) I Res

S + -T+T2Em2El (2.9)
ie(eN 2E1 - Cw'oze e e

-T + T2 +4mw 2 EI 2T+ T2 +4m 2 EI
2-,T 2 +4mw2 EI 27T 22E + 4m EI E2E1 2E1

The first term of the solution is a propagating wave, while the second term is an

evanescent wave. The similar procedure can be used in solving the solution for x <0 .

Combining the solutions for x >0 and x <0 , the unified solution can be written as:

T+ T 42 EI |x|-wl T+ T 
2

+4 mw 2El

1 I e e 2E1I -it
y(x,t) = I e (2.10)

2T 2 + 4m 2EI -T+ T 2 +4mo 2EI T+ T2 +4mco2EJ
2EI 2EI

For a damped tensioned beam with an elastic foundation, we first locate the four poles of

the integrand. The root loci in Section 3.2 provide the information about where these

poles are and how the integration contour should be selected. Figure 2.2 shows an

integration contour for x > 0. We can then follow the same procedure with the residue

theory and obtain the solution:

149



y(x,t) = Y(x)e = e- (-27i)J Res.
21r 73 Y4

(2.11)

The procedure is also valid for x <0 and thus we are able to get the solution for all x.
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Figure 2.1. The integration contours for a tensioned beam. The left panel is for x > 0 and

the right panel is for x <0 .
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Figure 2.2. The integration contours for a damped tensioned beam with an elastic

foundation when x > 0.

For a finite system, we cannot use the Fourier transform in an infinite domain just

developed above. We again use the tensioned beam without damping as an example, but

now we set the region to be 0 < x <1, where I is the total length of the system. The

governing equation is

a 4 Y-Ta 2 Ya 2 Y 3 =(5( )e"
EI -T +m ae-

ax4 a2x at2
(2.12)
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where is the location of the sinusoidal excitation. The steady state solution of the

problem can be written as y(x,t) = Y(x)e-", and inserting this solution into the equation,

we get

d4Y d2Y
EI 4 T mco2Y = 5(x -), (2.13)

dx4  d 2X

which is valid in 0 < x < 1. Due to the property of the Dirac delta function, Equation 2.13

can also be shown as

d4Y d 2Y
EI -T -mM 2 Y = O , x . (2.14)

dx 4  d 2X

Solving Equation 2.14 for both sides of the delta function, we obtain

Y (x)= A, sin ax+ B, cos ax+C, sinh a 2 x+ D cosh a 2x, O<X< (2.15)
Y2(x)= A2 sinax+B2 cos a, x+ C2 sinh a2x+ D2 cosh a2x, <x<l

where

-T+ T2 +4m2 EI

a,= 2E1 (2.16)
_T + T2 ±+4mw 2 EI

a2 - 2EI

In order to solve the eight coefficients, we need two boundary conditions at the left end,

two boundary conditions at the right end, and four boundary conditions across the delta

function. Around the point of the delta function, we can integrate Equation 2.13 and get

EI JY dx -T Yfdx-mw2 JYdx=i, (2.17)

or

EIY" NI -TY' *+ -mw 2  Ydx =1. (2.18)

Because the displacement must be continuous, the last term of the right side vanishes.

Also, if the first derivative of Y does not vanish, the third derivative will blow up. Thus,

the second term is zero and we have

Y"(W)- Y,'( = (2.19)
E d

The other three boundary conditions at the location of the delta function are
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Y1( ) = Y2 (4)

(= Y2'(4), (2.20)

Y"( )= Y2"()

To illustrate how to proceed for the Green's function solution, we assume pinned end

boundary conditions for both ends of the tensioned beam. That is, we have the four

boundary conditions

Y(0) =0, Y"(0) =0, (2.21)
Y(l) =0,Y"(l) = 0.

Imposing these four boundary conditions, we obtain the simplified solutions as

Y(x)= A, sin a,x+ C, sinh a 2 X, (222)
Y2(x)= A2(sin ax - tan al cos ax)+ C2(sinh a 2 x-tanh a 2lcosh a 2 X)-

Now the unknowns are reduced to four. Imposing the first and the third conditions of

Equation 2.20, we get the relationships between coefficients:

tana~l1 tan a, )(2.23)
C 1 = C 2 (1 tanh a 2 l

tanh a 2

Plugging these two relationships into Equation 2.22 and imposing the other two boundary

conditions, we finally obtain the Green's function solutions for both sides of the Dirac

delta function, written as:

1 [ (tan aj - tan al)cos a, sin ax +
EI(a2 +a 2 ) a, tan a,1l

± (tanha 2 - tanh a2l)cosh a 2  sinh a 2 X O<X<
a2 tanh a21 2.4a2  2 (2.24)

1 sin a1 [ (sin ax -tan a 1 cos ax) +
EI(a, 2 + a 2 

2 ) a tan a,

sinha 2 4(sinha 2 x -tanha 2 lcosha 2 x)

a 2 tanh a 2 1

An example of the Green's function solution is shown in Figure 2.3.
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Figure 2.3. The Green's function solution of a tensioned beam for a sinusoidal excitation

at the midpoint.

2.2 Double Green's Function

In order to solve the problem with arbitrary spatial and temporal excitation functions, we

have to obtain the double Green's function and use convolution both in time and in space.

We use a damped tensioned beam with elastic foundation to demonstrate this procedure.

The governing equation is

EI +ky+c (2.25)

where the forcing function is the Dirac delta functions both in time and in space. The

system can be either finite or infinite. The solution for a finite system with pinned-pinned

boundary conditions can be found in Graff (199 1, pp. 17 8-179). We will develop a

solution only for the infinite long tensioned beam here.

First we take the Fourier transform to convert the spatial parameter to y domain. The

equation becomes

EIY Y+Ty y+ky+c-+m t2 = ; 45(t), (2.26)
at 2
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where Y(y, t) is the Fourier transform of y(x, t). We then assume zero initial conditions

and apply the Laplace transform to Equation 2.26, which becomes

EIy4 Y +T y2Y + kY +scY + s2 mY = e (2.27)

where Y(y, s) is the Laplace transform of Y (y, t). The transformed solution Y(y, s) can

be also written as

e''' 1
Y(y,s)= -2 2  ,+C2' (2.28)

42;m s2+ 2gWns+On

where

2 EIy 4 +Ty 2 +k
m (2.29)

2 C

2gco~s .

The inverse Laplace transform can be obtained by partial fractions and transform tables.

The result is

e'- ' 1
y (e-' - e-), (2.30)

m -a

where

a co , + i ~ l g 2(2 .3 1)

This solution is valid for g <1. We then need the inverse Fourier transform to determine

the double Green's function. The double Green's function for this infinitely long

tensioned beam with damping and elastic foundation is

C

G(x,t; e = 1 i-( sin codtdy, (2.32)
27cm Cod

where

E174+T7 2 +k c2
CWd 2* 4 2  (2.33)

M 4M
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Equation 2.32 is the double Green's function and it can be evaluated numerically. For the

response of an arbitrary loading q(x,t), we have to use this double Green's function and

apply the convolution integral with the form:

y(x, ) = f dr E d G(x, t - z-; c)q( , zr)d . (2.34)

Thus, we are able to calculate the response of any kind of unsteady forces applied to the

system. This is a useful formula for us to compute the VIV response under an unsteady

current.
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Appendix 3 Time Domain Response Simulation for the Unsteady VIV

To obtain the response solutions using Equation 2.34, we have to develop a model for the

loading q(x, t) under top-end periodic motions. From Section 5.4, we learned that the

response frequencies change with time, due to the sinusoidally varying velocities. The St

number is approximately invariant during the motion cycle. The frequency variations

have been modeled by Bearman et al. (1984). We approach this problem with a similar

but modified technique so that the forcing function is smooth in time.

We first focus on the loading at one point, and later we will discuss the spatial variations

due to the non-uniform flow profile. The flow velocity at a point can be written as

V = V sin Qt, (2.1)

where V is the velocity amplitude, which varies along the riser, and the frequency Q is

the top-end excitation frequency, the same value along the riser. A novel model for the

shedding frequencies is proposed here:

Co = CO[sin(20t - ) 1], (2.2)
2

which is plotted in Figure 3.1. By the St relationship we determine the frequency
amplitude coo as

ifStV
0 = D . (2.3)D

As shown in the figure, the maximum velocities (±1 m/s) have the corresponding

maximum shedding frequencies. By using this model, the time evolution of the frequency

is smooth and the artificial effect of a discontinuous function to the response calculation

is eliminated.
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Figure 3. 1. The inline flow velocity at a point and the corresponding shedding frequency

model. The amplitude of the velocity is I m/s and the period is 3 sec.

The lift force per unit length at this location is modeled as

F(x,t) = 2pf DUC sin( fc(,r)d-r). (2.4)

U20 0

The integral inside the sinusoidal function is due to the variation in time of the

frequencies. The velocity U now can be expressed as the shedding frequency by the St

relationship:

U(t) = .ot (2.5)
2rSt

We also assume a constant lift coefficient 0.5 for a simplified simulation. The time

evolution of this force model is shown in Figure 3.2 At the times when the velocities are

large, both the frequencies and the amplitude are large according to the model in

Equation 3.4.
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Figure 3.2. The unsteady force model at a single point. The top-end period is 3 sec.

The spatial effects due to the velocity profile should also be considered in the forcing

model. We discretize the velocity profile to have fewer sections along the length. A

discretized velocity profile for a CVAR test (the original profile is shown in Figure 1.5

(text)) and the corresponding maximum forces obtained from Equation 3.4 are shown in

Figure 3.3. It can be seen that the larger forces are concentrated around the center portion

of the riser, while the excitations at both sides are negligible. In addition to the

amplitudes of the forces along the riser, we also have to assign the phase for the force at

each location. This issue is very complicated requiring knowledge of the correlation

length of the unsteady VIV. However, this correlation problem is not yet well understood.

We thus propose a preliminary model for the phases. We assume the phase is the same

for portions with the same maximum amplitudes, while the phase for each portion with

different maximum amplitudes is randomly assigned. Several snapshots of the excitation

forces are shown in Figure 3.4.
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Figure 3.3. The digitized velocity profile for a CVAR test and the corresponding

maximum force per unit length at each location.
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Figure 3.4. Three snapshots of the excitation forces per unit length. This force model is

used for calculating the response for unsteady VIV.
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With Green's function and the forcing model, we are able to calculate the dynamic

response under the top-end periodic excitation. Figure 3.5 shows a snapshot of the

response to an unsteady force at a single point x = 0. The time series of the force is

shown in Figure 3.2. Because the system is a tensioned beam, the waves are dispersive.

The high frequency components travel faster than the low frequency components. As can

be seen in Figure 3.5, at both ends (toward x = ±1) the wave frequencies are high. The

waves with large amplitudes at around x = ±0.15 come from just shed vortices associated

with the peak inline velocity. The waves with large amplitudes at around x = ±0.5 are

associated with the previous peak inline velocity, while the envelope shapes of these

waves are distorted due to the dispersive characteristics and the system damping. From

this snapshot, we can imagine that the response of the riser accounting for all the

unsteady excitations along the whole riser will be very complicated.

4

-1-3 - -- -- --

23---------------------------

I I~~'4
cJ) ~ 1 -- _____ I_

2 0

-4
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

location (normalized)

Figure 3.5. A snapshot of the calculated response under unsteady excitations at a point.

Figure 3.6 shows the times series of the experimental as well as the predicted response of

the CVAR riser with respect to the top-end motion induced unsteady VIV. The response

is at the location of pup 3 for the top-end excitations with the amplitude 3 ft and the

period 5 sec. The two time series demonstrate similar patterns. At certain times, the
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accelerations have large amplitudes with high frequencies, which is associated with the

large inline velocity from the principal power-in region. The duration of the high

frequency components tend to be longer for the predicted response. Also, the predicted

accelerations are generally larger than the measurement, so this is an over-predicted

model by a factor of about 1.5 to 2. Figure 3.7 displays a snapshot of the calculated

response under unsteady excitations for the CVAR velocity profile with top-end

amplitude 3 ft, top-end period 5 sec. The results are a sum of the response due to the

unsteady excitation everywhere in the riser. From this figure we see that the response at

the center portion is higher than that at both ends. This phenomenon is directly related to

the flow profile of CVAR, which has the major power-in region at around

x = 0.45: 0.55. The time domain simulation, while not able to be shown in the thesis, is

available upon request.
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Figure 3.6. Time series for measured and calculated accelerations. The measured and the

calculated accelerations are both for CVAR, top-end amplitude 3 ft, top-end period 5 sec.

The measurement is at pup 3.

162



1.5 - -- ------- - - -- - -

1 ----5 - - - -

0.5 -- --- - -- --- -- -- - --- - - - - - -
E

I I I

0-

SC. -0 .5 - - -- -- - - - - - - - -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
location (normalized)

Figure 3.7. A snapshot of the calculated response under unsteady excitations for the

CVAR velocity profile with top-end amplitude 3 ft, top-end period 5 sec.
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