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Abstract

Paperboard is one of the most widely used materials. The inelastic deformation of

paperboard plays a crucial role during many manufacturing processes (e.g., the con-

verting process whereby paperboard is converted into a product such as a milk carton

by punching and subsequent folding) and during in-service applications. There is a

scarcity of constitutive models describing inelastic behavior of paperboard under com-

plex loading, despite the paper industry's great need of analytical tools to aid the

design and manufacturing of better paperboard products. In this thesis, two consti-

tutive models are developed to model the highly anisotropic, elastic-plastic behavior

of paperboard/paper: (1) A three-dimensional elastic-plastic interface constitutive

model is developed to model the out-of-plane delamination behavior of paperboard.

The onset of interface separation is controlled by a limit surface in the normal-shear

traction space. The limit surface is taken to shrink with a monotonically-increasing

scalar internal variable reflecting damage associated with the history of inelastic rel-

ative interface displacement. (2) A three-dimensional, anisotropic continuum consti-

tutive model is developed to model the in-plane elastic-plastic deformation of paper

and paperboard. The proposed initial yield surface is directly constructed from the

yield strengths measured in various loading directions and the corresponding ratios of

plastic strain components. An associated flow rule is used to model the plastic flow of

the material. Anisotropic strain-hardening of yield strengths is introduced to model

the evolution of the yield surface with inelastic strain. The two constitutive models

are implemented into finite element software to enable the simulation of paperboard

mechanical behavior under complex, finite deformation. The models are shown to be

capable of accurately capturing both the out-of-plane delamination (via the interface

model) and the anisotropic in-plane elastic-plastic (via the continuum in-plane model)

behavior of paperboard under complex loading.

The two models are combined to simulate the mechanics of a converting process

(creasing and subsequent folding) of paperboard. The simulations agree well with
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corresponding experimental observations. In particular, the underlying mechanisms
of damage and delamination development during creasing and subsequent folding are
predicted well; the macroscopic response of the bending moment vs. bending angle
also agrees with experimental data.

This research provides physically based three-dimensional material models of the
anisotropic, elastic-plastic deformation of paperboard that enable the computational
design of paperboard process and product design.

Thesis Supervisor: Mary C. Boyce
Title: Professor

Thesis Supervisor: David M. Parks
Title: Professor
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Chapter 1

Introduction

Paper and paperboard are two of the most commonly utilized materials in nearly

every industry. Paper is formed by draining a suspension of fibers in a fluid through

a filter screen to form a sheet of pulp fibers. Paperboard is in general composed of

several pulp fiber sheets bonded by starch or adhesive material, and is usually a multi-

layered structure. Schematics of typical paper and paperboard macrostructure and

microstructure are shown in Fig. 1-1, which also depicts the common nomenclature

for the three orthogonal directions of paper and paperboard. "MD" refers to the

machine (rolling) direction, and "CD" refers to the cross or transverse direction. The

machine and cross directions form the plane of the structure, and ZD refers to the

out-of-plane (or through-thickness) direction. Due to the continuous nature of the

paper-making process, fibers are primarily oriented in the plane; furthermore, within

the plane, fibers are more highly oriented in the MD than the CD. In this thesis, to

simplify notation, the 1-direction is used to represent the MD, the 2-direction for CD

and the 3-direction for ZD.

In contrast to the wide applications of paper material and the existence of paper

since ancient times in China, there is a scarcity of constitutive models describing

the mechanical behavior of paper and paperboard. In the paper industry, trial and

error approaches are still commonly used for the design of paperboard products and

manufacturing processes. Although mechanical testing can be conducted to help de-
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sign the processes, an experimental database approach is an expensive and laborious

approach, given the wide range in material and processing parameters of paper and

paperboard, including different mechanical/chemical treatments, surface treatments

(e.g., coatings, prints), pulp and layering parameters (thickness, order etc.), loading

geometry, and service conditions. Analytical models with the capability to capture

the mechanical behavior of paper/paperboard offer the possibility to computationally

assess the parameter space and optimize the products and process design. The pur-

pose of this research is to develop such constitutive models, based on experimental

observation of stress-strain behavior of paper and paperboard, which can be applied

to simulate and predict behavior of paper and paperboard in their manufacturing

process or in service.

1.1 Description of material

The basic component of paper and paperboard is wood pulp. Desired properties

of paper and paperboard can be achieved by many ways; e.g., using different wood

fibers, different fiber density (grammage [grams/area]), applying different chemical

and mechanical processing, different structure (e.g., number of pulp layers), etc. In

the paper-making process, wood pulp is suspended in a dilute aqueous solution before

being sprayed onto a moving filter mesh to create one layer of the paper pulp sheet.

For paperboard, several of these pulp sheets are bonded together with starch or adhie-

sives. Bond density is lower between layers than within them. Coming off the filtering

mesh, the paper sheet or the paperboard laminate is pressed through large cylindrical

roller to densify and squeeze out moisture. The sheet or laminate is further dried by

pressing it through rollers while subjected to elevated temperatures. Rolling of the

sheets results in densification and improves the intra-layer and inter-layer bonding.

Depending on fiber type, fiber density and the chemical/mechanical treatment,

the mechanical behavior of different types of paper and paperboard differ in detail.

However, general characteristics of the response remain similar. In this contribution,
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the anisotropic elastic-plastic behavior of paper and paperboard is illustrated using

TRIPLEXTMI paperboard as an exemplar material. TRIPLEXTI is a commercial

product of STORA-ENSO. It is comprised of five layers: the three-layer core is made

of mechanically-processed softwood pulp (commonly termed "mechanical" layers),

and the two outer layers (one on each side of the core) are made of bleached kraft

pulp (commonly termed "chemical" layers). This is shown schematically in Fig. 1-1.

A layer of starch or other adhesive is sprayed between adjacent layers during the

lamina consolidation processing stage. The two outer layers of bleached kraft pulp

are designed to be stiffer than the core's mechanically-processed softwood pulp. The

final thickness of the board is approximately 0.45mm, and the grammage is about

280g/m 2 .

The microstructure of TRIPLEXT was studied by Dunn [18] and Smith [5]

through SEM (Scanning Electron Microscope) images. Fig. 1-2 to Fig. 1-4 depict

an in-plane view of a coated chemical layer with image magnification from low to

high. Images of the mechanical layer were also obtained by carefully peeling off the

chemical layers from TRIPLEXTM. Fig. 1-5 to Fig. 1-7 show the MD-CD planar view

(looking from ZD) of the mechanical layer with increasing magnifications. From these

pictures, we can observe that the majority of fibers are along or within a small angle

of the machine direction. It is also obvious that the fibers are densely interconnected

with each other. Because the chemical layer experiences the pressing from the roller in

the machine direction more directly than does the mechanical layer, this "preferred"

fiber orientation effect is slightly more pronounced in the chemical layer. By compar-

ing the planar views of the chemical and mechanical layers, we can also observe that

the fiber density of the chemical layer is higher than that of the mechanical layer. By

looking at these images and the corresponding length scale, we note that the fiber

length is of the order of 1 - 5mm and the fibers possess the shape of a flattened tube,

with fiber width/diameter approximately of the order of 10 - 50pm.

Micrographs of sample TRIPLEXTM paperboard were also taken edge-on. Fig. 1-

ITRIPLEXT-A is a trademark of STORA-ENSO, Sweden.
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8 and Fig. 1-9 depict a cross-section view of the paperboard in the MD-ZD plane

(looking from the CD). Those from the CD-ZD plane (looking from the MD) are

shown in Fig. 1-10 and Fig. 1-11. Again, from these images we can see the flattened

tube shape of the fiber (flat because of the rolling and pressing). From the MD-

ZD view images, we primarily see the fibers that have been cut longitudinally along

its axial direction because the majority of the tubes are oriented in the Machine

Direction. In contrast, from the CD-ZD plane view pictures, we observe the oval

shape of the cross-sections of the fibers pointing out of the plane.

1.2 Review of experimental behavior of paperboard

The preferential fiber orientation in paper and paperboard results in highly anisotropic

mechanical behavior, including anisotropic elasticity, initial yielding, strain-hardening

and tensile failure strength:

" Anisotropic elastic constants for paper and paperboard have been measured by

several investigators (e.g., Mann, et al.[23], Castegnade, et al.[11], Persson[28],

Koubaa and Koran [4]). Their data show that the through-thickness moduli are

at least two orders of magnitude less than the in-plane moduli. In-plane data of

Persson [28] and Stenberg, et al.[31] show that moduli in the MD are 2-4 times

greater than those of the CD.

" The Persson [28] data on paperboard also shows that the initial tensile yield

strength (- proportional limit) in the through-thickness direction is two orders

of magnitude lower than the in-plane initial yield strength values. The Stenberg,

et al. [31] data on multi-layer paperboard and single-layer pulp shows similar

results. Within the plane, these data show that the initial tensile yield strength

of paper and paperboard in the MD is typically greater than that in the CD by

a factor of 2 - 4. The Stenberg, et al. [31] data also show an asymmetry in the

initial yield strength for in-plane tension and compression in both the machine
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and cross directions.

" The in-plane tensile stress-strain curves of Persson [28] and Stenberg, et al. [31]

on paperboard show substantial strain-hardening in which the yield strength in-

creased by more than a factor of two after a strain of less than 5%. The in-plane

strain-hardening is also highly anisotropic. The percentage strain hardening

achieved in MD tension is greater than that obtained in CD tension.

" The Persson [28] and Stenberg, et al. [31] data also show that the in-plane

tensile failure strength in the MD is greater than that of the CD by a factor of

2 -4.

" Stenberg, et al. [31] data indicate that initial yield strengths as well as failure

strengths for paperboard are different for tension and compression in the same

direction.

" Biaxial-stress failure loci (Gunderson, et al. [16],[17], deRuvo, et al. [13] and

Fellers, et al. [15]) show substantially different failure strengths in machine and

cross directions. These data also show that failure tends to be dominated by

one or the other of these two directions when subjected to combined loading in

both directions. Data by Gunderson, et al. [16],[17], and Fellers, et al. [15] also

show that the failure strength for paper is different in tension and compression

in the same direction.

Most experimental investigations on mechanical behavior of paper and paperboard

have been concentrated on the in-plane behavior. However, during manufacturing and

in-service applications, paperboard is often subjected to combined loadings which

include out-of-plane deformations. The out-of-plane loadings can cause interfacial

delamination to separate the paperboard layers. In some instances delamination is

desirable, as in the case of creasing, whereby a punching process locally damages

the interface in a controlled manner to enable accurate formation of corners during

the subsequent folding of paperboard. In other instances, however, delamination is
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undesirable, such as during in-service loading, where, for example, a box may be

dropped or subjected to bending (e.g., Carlsson, et al. [21] and Donner and Backer

[10]). In either situation, the out-of-plane behavior is crucial to the final outcome of

the process.

In work by Dunn [18] and Smith [5], the deformation mechanisms operative dur-

ing through-thickness loading of paperboard are experimentally investigated. Scan-

ning electron microscopy is used to monitor the evolution in microstructure during

through-thickness tensile and shear loading. Results show that the initiation, inter-

action and propagation of delamination along interfaces between paperboard laminae

play a crucial role in the damage and failure of the laminated structure under out-of-

plane loading. In work by Stenberg, et al. [32], [33], a series of modified ARCAN [6]

testing systems are used to obtain nominal stress-strain curves of paperboard under

various combined out-of-plane loading conditions.

In addition to the out-of-plane tests, Stenberg [31] and Dunn [18] also conducted

extensive testing on the in-plane behavior of TRIPLEXTM to facilitate the develop-

ment of constitutive models to capture the in-plane behavior. These results will be

reviewed in more detail later in this thesis.

1.3 Research motivation and framework of this

research

Besides the general purpose of developing constitutive models to simulate and pre-

dict mechanical behavior of paper and paperboard, this research was also partly

motivated by the need of the paper and pulp industry to have an analytical de-

sign tool to simulate and predict the behavior of the paperboard during two of the

key processes of producing paperboard packages: creasing and subsequent folding.

These two processes are part of the paperboard converting process, which converts

paper/paperboard into specific end products.
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Creasing/folding can be divided into three steps: (1) The creasing or punching

of the paperboard into a female die by a male die. (2) Unloading of the the board

by removing the male die. (3) Folding of the creased board to form corners with the

desired shape as parts of the paperboard package. The entire process is schematically

illustrated in Fig. 1-12.

In the first step, as shown in part (b) of Fig. 1-12, the paperboard is punched

between a narrow male and female die. The purpose of this process is to create

interlaminar damage inside the creased region primarily by out-of-plane shearing.

After the punching process, the paperboard is taken out and folded in the direction

that would make the punched area bulge out to form the interior of the corner of

a paperboard box. Micromechanically, the crease is formed because the in-plane

compressive stress and out-of-plane shear stress introduced by the bending cause the

paperboard layers to separate along the pre-damaged surfaces created by the punching

process. This converting process involves complicated, history-dependent behavior of

the paperboard under both in-plane and out-of-plane loadings. For the paper and

pulp industry, it is very important to be able to obtain a good quality crease, such

that the overall designed shape can be obtained for the final paperboard products,

while securing the capability of the boxes to sustain loads during service.

The final quality of the crease can be influenced by many different factors in

addition to the structure and the material properties of the paperboard, such as the

geometry of the male and female die (luring the punching process, the depth of the

punching, the way the creased paperboard is folded, etc. (some of these processing

parameters are illustrated in Fig. 1-13) Fig. 1-14 shows the SEM picture of a good

crease and Fig. 1-15 shows that of a bad one. If there is insufficient bulging out

of the crease in the form of delamination at the outside of the crease, the outside

layer of material may tear or fracture, which will result in a bad crease and a loss

of end product function. A crease is also considered of poor quality if delamination

occurs preferentially toward one side of the bend rather than in the middle, because

this weakens the crease's capability to take loads along its axis, which can result
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in undesirable wandering of the package edge. Considering the complexity of the

creasing/folding process, it is obvious that analytical models capable of simulating

the process are very desirable because going through the traditional trial-and-error

approach for designing this process can be very expensive and time-consuming. One

of the end-goals of this research is to develop such an analytical tool.

Based on the experimental results and motivations discussed above, in this re-

search we propose two constitutive laws to model the three-dimensional mechanical

behavior of paperboard under combined (both in-plane and out-of-plane) loading

conditions. First, a three-dimensional, anisotropic constitutive law is introduced to

model the elastic-plastic in-plane behavior of paperboard layers (or paper sheets).

The initial yield surface of the model is directly constructed from internal state vari-

ables comprising the yield strengths measured in various loading directions and the

corresponding ratios of plastic strain components. An associated flow rule is used to

model the plastic flow of the material. Anisotropic strain-hardening of yield strengths

is introduced to model the evolution in the yield surface with strain. With the inelas-

tic out-of-plane behavior captured by an interface model, this constitutive law will

take the out-of-plane behavior as elastic. Second, due to the importance of inelas-

tic out-of-plane behavior of paperboard in processes such as converting, we propose a

three-dimensional interface traction vs. relative-displacement separation model where

a limiting separation surface (analogous to a yield surface) in the normal-shear trac-

tion space evolves with the inelastic component of the relative interface displacement

following an internal state variable approach. The interface model is capable of simu-

lating the delamination of paperboard along its interfaces, which is the main source of

paperboard inelastic out-of-plane deformation as shown by experiments (e.g., Dunn

[18] and Carlsson [21]). Schematics of how these two constitutive laws work together

to model the behavior of the TRIPLEXTM paperboard are illustrated in Fig. 1-16.

Details of literature review on the constitutive models for paper and paperboard

will be reviewed in the next two chapters before the proposed models are introduced.
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1.4 Outline of the thesis

The three-dimensional elastic-plastic constitutive law for modeling the behavior of the

pulp layers will be introduced first in chapter 2. Related literature will be reviewed

before presenting the model developed in this research. The model will then be

implemented into the commercial Finite Element Method (FEM) software package

ABAQUS, and simulations will be conducted to test the capability and robustness of

the implementation.

The interface constitutive model will be presented in Chapter 3. The implemented

model will then be used to simulate behavior of paperboard under various through-

thickness or combined in-plane and out-of-plane loadings. Numerical results obtained

will be compared with experimental data, demonstrating the capability of the model

to capture inelastic out-of-plane behavior of paperboard and, potentially, of other

laminated composite materials.

Armed with the in-plane and interface constitutive models, the creasing/folding

process will be simulated in Chapter 4. First, the numerical results from simulation

of SEM creasing and folding tests conducted by Dunn[18] will be compared to the

experiments. Second, simulation results of the standard creasibility tests used in the

industry will be introduced and compared with experimental data.

In Chapter 5, the entire modeling framework is reviewed and future possible mm-

provements of the models are discussed.

A procedure for identifying the needed material properties from experiments is

provided in the appendix.

35



ZD, 2

Paper
fibers

CD,3/

CD, 3/

Chemical pulp

Mechanical pulp

Chemical pulp

Interfaces

ZD, 2

Paperboard

fibers

MD,1

fibers interface

Pulp layers

Figure 1-1: Schematics of paper and paperboard macrostructure and microstructure.
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Figure 1-2: SEM image of MD-CD planar view of the chemical layer of coated

TRIPLEXTM at low magnification. (Dunn[18])

Figure 1-3: SEM image of MD-CD planar view of the chemical layer of coated

TRIPLEXTM at intermediate magnification. (Dunn[18])
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Figure 1-4: SEM image of MD-CD planar view of the chemical layer of coated
TRIPLEXTM at high magnification. (Dunn[18])

Figure 1-5: SEM image of MD-CD planar view of the mechanical layer of coated

TRIPLEXTM at low magnification. (Dunn[18])
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Figure 1-6: SEM image of MD-CD planar view of the mechanical layer of coated

TRIPLEXTM at intermediate magnification. (Dunn[18])

Figure 1-7: SEM image of MD-CD planar view of the mechanical layer of coated

TRIPLEXTM at high magnification. (Dunn[18])
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Figure 1-8: SEM image of ZD-MD side view of the TRIPLEXTM at low magnification.
(Dunn[18])

Figure 1-9: SEM image of ZD-MD side view of the TRIPLEXTM at high magnifica-
tion. (Dunn[18])
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Figure 1-10: SEM image of ZD-CD side view of the TRIPLEXTM at low magnifica-
tion. (Dunn[18])

Figure 1-11: SEM image of ZD-CD side view of the TRIPLEXTM at high magnifica-
tion. (Dunn[18])
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Figure 1-12: A schematic of the paperboard converting process.

Male die

W,

Stopper Stopper

h2 
Pt

hi

Female die W2Female die

Figure 1-13: Example of parameters that can influence the final quality of a crease.
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Figure 1-14: SEM image of a good crease. (Tetra Pak)

Figure 1-15: SEM image of a bad crease. (Tetra Pak)
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Figure 1-16: Illustration of the framework of modeling the TRIPLEXTM paperboard.
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Chapter 2

In-plane Constitutive Model

2.1 Introduction

Many material models have been proposed to describe the mechanical behavior of pa-

perboard. These models fall into roughly three categories: network models, laminate

models, and anisotropic models of the yield surface and/or the failure surface.

Perkins, et al. [1] and Sinha, et al. [3] described a micromech anically-based net-

work model for the in-plane constitutive behavior of paper. A meso-element was

constructed to represent the microstructure of the fibrous paper network. The me-

chanical response of the meso-element depends on the fiber properties and properties

of the inter-fiber bonds. They found the inelastic behavior of the inter-fiber bonds

to play a crucial role in the overall in-plane inelastic behavior of paper. Stahl and

Cramer [30] also developed a network model for low-density fibrous composites. Net-

work models can incorporate micro-level mechanisms, such as inter-fiber interaction

and bonding. While these models begin to elucidate the underlying mechanisms of

deformation, they do not provide a continuum-level description of paper or paper-

board.

Page and Schulgasser [2] developed models of paperboard based on classical lam-

inate theory. While this type of model can predict the elastic response well, it was

not extended to capture the anisotropic yielding and subsequent strain hardening
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response.

Gunderson, et al. [16],[17], deRuvo, et al. [13] and Fellers, et al. [15] each

used the Tsai-Wu quadratic yield condition to model the failure loci they obtained

experimentally. The quadratic nature of this type of model has many shortcomings

when applied to paper and paperboard. Experimental data showed the biaxial failure

locus to be distinctly non-quadratic. Arramon, et al. [7] developed a multidimensional

anisotropic strength criterion based on isotropic deformation modes (Kelvin modes)

that captures the nonquadratic failure envelope. They applied the model to form

a strength envelope for paperboard by constructing tensile and compressive modal

bounds. However, these efforts only acted to study final failure and did not attempt

to study initiation of yield or subsequent strain hardening.

In this research, a general three-dimensional constitutive model of the anisotropic

elastic-plastic behavior of paper and paperboard is proposed. The initial elastic be-

havior is modelled to be linear and orthotropic. The onset of plastic flow is captured

by a non-quadratic yield surface. The yield surface is taken to evolve anisotropically

with a scalar measure of plastic strain, with plastic flow modelled using an associated

flow rule. The model is detailed in the following sections, and numerical results are

compared to experimental data.

2.2 Experimentally- Observed Behavior

2.2.1 Elastic-Plastic Behavior of TRIPLEXTM Paperboard

As discussed in the introduction, five-layered TRIPLEXTM Paperboard was used in

this research project as an exemplar material. Stenberg, et al. [32],[33],[31] con-

ducted an extensive experimental investigation documenting the stress-strain behav-

ior of TRIPLEXTM. Note that the outer chemical pulp layers are typically stiffer and

stronger than the inner mechanical layers; however, these layers cannot be separately

produced for individual evaluation because their final structure and chemical com-
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position are dependent on the processing history. Therefore, Stenberg concentrated

most of his effort on obtaining the behavior of TRIPLEXT^' material in terms of

its effective composite behavior. However, by carefully grinding off other layers of

the TRIPLEXT^41 composite, Stenberg [31] was able to conduct a limited number of

tests on the individual mechanical and chemical layers. The experimental results of

Stenberg, et al. [32],[33],[31] are reviewed below.

In-plane behavior

The TRIPLEXT^I composite in-plane uniaxial tensile stress-strain curves for the MD,

the CD, and an orientation 450 from the MD are plotted together in Fig. 2-1. These

stress-strain curves clearly depict the anisotropic in-plane elastic, initial yield and

strain-hardening behavior. There is a factor of 2 to 3 difference in the modulus and

initial yield strength between MD and CD. Hardening achieved in MD (flow strength

increases by 300% over a strain of 2%) is higher than that in CD (flow strength

increases by 200% over a strain of 5%). MD-CD shear properties are deduced from

the 45' test result.

Fig. 2-2 shows the in-plane lateral strain (CD) versus axial strain curve for MD-

tension, together with the corresponding axial stress-strain curve from Fig. 2-1. Sim-

ilar data is shown for CD-tension in Fig. 2-3. The elastic in-plane Poisson's ratios

(Vi= -C/li), v13 and V31, can be calculated from these curves as v13 = 0.37 and

V31 =0.12. Upon subtracting the respective elastic strain components, the lateral

plastic strains for both the MD and CD tension cases are computed and shown ver-

sus the respective axial plastic strains in Fig. 2-4. These two curves indicate that

for both test orientations, the ratio between lateral plastic strain and axial plastic

strain is nearly constant until final fracture. This data provides information for later

construction of the plastic flow rule.

Tensile loading/unloading/reloading data (Persson [28] and Stenberg, et al.[31])

show that after various amounts of plastic strain, upon unloading, the elastic tensile

modulus is nearly unaffected by plastic strain, consistent with traditional elasto-
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plasticity.

Fig. 2-5 shows the in-plane compression stress-strain curves for the machine and

cross directions. Note that global specimen buckling was constrained in these tests.

These data show that compressive yield is anisotropic. Furthermore, a comparison

of Fig. 2-1 and Fig. 2-5 shows a yield strength difference between tension and com-

pression, with the compressive yield strengths being smaller than those in tension by

65% and 25%, for MD and CD, respectively.

The anisotropic in-plane elastic-plastic properties obtained from these tests are

summarized in Table 2.1.

Out-of-plane behavior

The out-of-plane stress-strain behavior of paperboard was experimentally obtained

using a modified ARCAN [6] design by Stenberg, et al.[32],[33]. Fig. 2-6 shows the

schematic of the design. Nominal stress-strain curves were obtained for TRIPLEXT"

under various through-thickness loading conditions.

A representative ZD tensile stress-strain curve obtained by Stenberg, et al.[32],[33]

is shown in Fig. 2-7. The stress measure is force per unit initial cross-sectional area;

the x-axis is the nominal strain, defined as the relative normal separation of the top

and bottom surfaces of the laminate, divided by the initial laminate thickness. At

the earliest stage of deformation, the stress increases linearly with strain, exhibiting

a composite modulus of E2 = 20 MPa. The stress-strain relation shows a small

amount of pre-peak nonlinearity before reaching a peak stress of 0.4MPa. After the

peak, the stress-strain curve exhibits pronounced softening. Tensile testing conducted

within a scanning electron microscope (Dunn [18], Smith [5]) on the same material

reveals the nucleation of multiple inter-laminar microcracks near the peak stress,

followed by their growth and coalescence, resulting in the observed softening. Similar

results have been obtained for tests involving combined through-thickness tension and

shear (Stenberg, et al.[32],[33]; Dunn [18]). Therefore, the observed peak stress and

subsequent softening for through-thickness loading are due to delamination of the
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paperboard and will not be further considered here. This inelastic through-thickness

behavior is modelled through an interface model, as will be described in detail in the

next chapter. It is also observed that the amount of lateral (in-plane) strain in the

plane generated during the through-thickness tensile loading is negligible, indicating

that Poisson's ratios v2 1 and v2 3 are close to zero.

Fig. 2-8 shows the through-thickness compression stress-strain curve obtained by

Stenberg, et al.[31]. Up to a nominal compressive strain of 3%, the compressive

stress increases linearly with strain. With larger strains, the stress starts to increase

exponentially with strain. The data also show that only a small amount of permanent

deformation remains after unloading from a peak strain level of more than 20%,

indicating nonlinear elastic ZD compressive behavior up to moderately large strains.

These observations of the through-thickness compressive behavior will be incorporated

into the modeling work.

Representative through-thickness shear stress-strain curves (ZD-MD shear and

ZD-CD shear) obtained by Stenberg, et al. [32],[33] are shown in Fig. 2-9. Features

similar to those of the through-thickness tensile curve are observed. The composite

transverse shear moduli are observed to be G 1 2 = 34MPa for ZD-MD and G1 =

26MPa for ZD-CD, and the peak shear stress is 1.1MPa for ZD-MD and 0.9MPa

for ZD-CD. In situ shear testing within a SEM (Dunn, et al. [18]) reveals the peak

stress and subsequent softening to be governed by microcracking and delamination,

similar to that observed during the tensile loading. The through-thickness ZD-CD

shear stress-strain curve shows similar features.

When conducting through-thickness tensile and shear experiments, specimens are

glued to the loading fixture. For the ZD compression tests, however, no glue is used.

The application of glue to the specimen has some influence on the properties of the

paperboard due to the penetration of glue into the specimen. Stenberg, et al.[32],[33]

discussed this issue and proposed a method to account for the effect of glue on the

measured properties.

The anisotropic linear elastic out-of-plane properties are summarized in Table 2.2.

49



The out-of-plane behavior will be discussed in much more detail in the following

interface constitutive model chapter.
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2.3 The In-Plane Constitutive Model

In this chapter, a three-dimensional, finite deformation constitutive model for paper

and paperboard pulp layers is proposed. As discussed in the introduction chapter,

from experimental results, the inelastic out-of-plane behavior is predominantly con-

trolled by the delamination of the paperboard along its interface; thus the inelastic

out-of-plane behavior will be modeled in this research in the form of an interface

element model. Based on this, the model for the continuum pulp layers will take

the in-plane behavior to be elastic-plastic and the out-of-plane behavior to be elas-

tic. Due to the assumption of elastic out-of-plane behavior, the application of the

in-plane model alone will be limited to predominant in-plane loading. However, when

the model is combined with interlaminar decohesion models, as will be described

in the next chapter, a general-purpose tool is achieved for modeling behavior under

significant out-of-plane loading, such as occurs during converting processes and the

in-service behavior of a broad class of paper and paperboard products.

2.3.1 Stress-strain relationship

First, the total deformation gradient F at a material point within a lamina is multi-

plicatively decomposed into an elastic part and a plastic part:

F = FeFP, (2.1)

where FP represents the accumulation of inelastic deformation. Although the maxi-

mum in-plane strain level in traditional applications of paper sheets is small, we adopt

the present finite deformation formulation so that the model can be easily applied to

applications such as paperboard converting processes, which generally involve finite

rotations of paperboard layers and may exhibit moderately large, but highly localized

in-plane strains. The evolution of FP is given by

P = LPFP, (2.2)
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where LP is the plastic velocity gradient, which will be defined by the flow rule. The

elastic strain is obtained by using the elastic Green strain measure:

E = -[FeTFC - Ie , (2.3)
2

where I is the second-order identity tensor. The second Piola-Kirchoff stress measure,

T, relative to the plastically deformed configuration FP, is then calculated using the

linear relationship:

T = C[Ee], (2.4)

where C is the fourth-order stiffness tensor, which is taken to be orthotropic. Values

of the components of C are defined by the orthotropic elastic moduli. To model

the through-thickness nonlinear elastic compressive stress-strain relationship, the

through-thickness engineering elastic constant, EZD, is taken to be an exponential

function of the ZD strain under compression as follows:

EZD = ED(aE.2) (2.5)

where E'D is the initial elastic modulus in ZD, E" is the ZD elastic Green strain com-

ponent, and a is a constant determined by fitting the compressive through-thickness

stress-strain curve; its value is listed in Table 2.2. The stiffness tensor C under ZD

compression is in turn determined assuming constant Poisson's ratios. (i.e., v'j still

correlate to vji through original EZD value) The Cauchy stress, T, is calculated from

its relation to the second Piola-Kirchoff stress by

T = (detFe)Fel-TFe~T  (2.6)

2.3.2 Yield Condition

The through-thickness strengths (tensile and shear) of paper and paperboard materi-

als are typically two orders of magnitude lower than those observed in the plane.
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Therefore, the through-thickness stress components play little role in the inelas-

tic deformation and failure of paperboard under in-plane loading.' Furthermore,

from investigation of the mechanisms of deformation and failure of paperboard under

through-thickness loading, it is clear that the majority of through-thickness inelastic

deformation occurs in the form of interlaminar microcracking and delamination of

the discrete pulp layers, as opposed to inelastic through-thickness deformation dis-

tributed quasi-homogeneously within laminae. Thus we can assume that only the

in-plane stress components will drive the in-plane inelastic deformation of the pulp

layers. Additionally, in classical metal plasticity and in plasticity-based models of

yielding in polymers, the deviatoric stress is taken to drive yield because the under-

lying deformation mechanisms are governed by shear (for example, dislocation glide

in crystalline metals). However, in the case of paper, there is no evidence that yield

and subsequent plastic flow are driven by deviatoric stress. The porous nature of

paper also suggests that mean stress plays a role. Micro-mechanically, yielding is

governed by various forms of inter-fiber interactions and nonlinear behavior of wood

fibers. Based on these considerations, the total stress will be taken to drive the yield

condition described in this research.

In order to experimentally define an in-plane yield surface for paper, multi-axial

data is required. Although the anisotropy of the yield surface is well-recognized, due to

numerous studies of the uniaxial behavior in different directions, such as that reported

in Fig. 2-1, a literature search reveals virtually no data on the initial and evolving

multi-axial yield surfaces of paper and paperboard. However, several researchers have

obtained biaxial failure surfaces of paperboard under combinations of MD and CD

normal stress. Fig. 2-10 shows a representative biaxial failure locus (deRuvo, et al.

[13]). Similar data have been reported in work by Fellers, et al. [15] and Gunderson,

et al. [16]. In Fig. 2-10, the left plot shows the biaxial strength data of envelope

grade paper, and the right one shows those of sack paper. The authors tried to fit

'Under significant in-plane compression or very large through-thickness compressive strain, this
may not be strictly true. However, for the present, these scenarios will not be considered further.
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the failure loci using the Tsai-Wu criterion as shown the solid lines in the figures.

However, due to the quadratic nature of the criterion, the fitting is not good in some

regions. Meanwhile, one common feature observed in these failure loci is that the

data points tend to form prominent "subgroups", with each subgroup lying on a

nearly straight line. For example, for low, but non-zero values of MD stress, failure

occurs at nearly the CD uniaxial tensile failure strength; similarly, for low, but non-

zero values of CD stress, failure occurs at roughly the MD uniaxial tensile failure

strength. This observation suggests that the experimental biaxial failure locus can be

well-captured by a set of straight lines in a 2-dimensional biaxial stress space, and can

be generalized to planes in 3-dimensional space. This is better illustrated in Fig. 2-10,

where dashed lines were drawn (not the maximum stress lines). It is obvious that

these lines can better represent the failure stress loci. (Karafillis, et al. [20] and

Arramon, et al. [7] developed yield surface and failure surface models, respectively,

which capture this nonquadratic feature.) In stress space, these lines or planes can be

defined by their minimum distance to the origin, together with their corresponding

normal directions. Given that a comprehensive set of experimental data is generally

unavailable (and indeed, is a challenging task to obtain) to determine the full surface,

we hereby assume that the yield surface exhibits the same characteristic features

observed in the failure surface. Therefore, the yield surface is taken to be constructed

of N sub-surfaces, where N K is the normal to the Ku, such surface, defined in the

material coordinates formed by MD, CD and ZD. SK is the equivalent strength of the

Kth sub-surface, defined by the distance from the origin to each sub-surface, following

its normal direction. Thus, the following form of yield criterion is proposed:

N IX -[ K
f (T,SK 1" _ , K 12k _27

K=1
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where XK is the switching controller with

1; if T-NK > 0
XK ': 28)

0; otherwise

T is the 2nd Piola-Kirchoff stress measure relative to the F configuration, and 2k is

an even integer. NK is the outward normal of the Kth sub-surface, defined relative

to the material coordinates.

A schematic of a four sub-surface system (N = 4) for biaxial loading, with zero

in-plane shear stress, is shown in Fig. 2-11. The normals and corresponding sub-

surface strengths are illustrated. The parameter 2k is taken to be equal to or larger

than 4, indicating a non-quadratic yield surface. Figure 2-12 shows the effect of

different 2k values in controlling the shape of the yield surface in the biaxial stress

plane for this simplified four sub-surface system. Higher 2k-values give rise to sharper

corners between adjacent sub-surfaces and reduce the curvature over increasing central

portions of each-subsurface. A schematic of a six sub-surface yield surface, with non-

zero in-plane shear stress 'T3, is shown in Fig. 2-13. This figure graphically illustrates

the normals and corresponding equivalent strengths of the sub-surfaces. For this yield

surface, the six normals are taken to be of the following form:

3

NK = Nj ei 0 ej, K = I...1I (2.9)
i,j=1

and

Nj = NiA, K = I, ...V17 (2.10)

where ei, i = 1, 2, 3 are the basis vectors for the material coordinates formed by the

MD, ZD and CD, respectively. Here, the subsurface normal index K ranges over the

six Roman numerals I, ... , VI.

Because out-of-plane stress components are assumed to have no effect on the

plastic deformation within a lamina, components of N1' involving the 2-direction
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(i.e., the ZD direction) are set to be zero. This results in elastic through-thickness

behavior, as proposed. Determination of each non-zero entry of these matrices will

be discussed in the next section.

2.3.3 Flow rule

The plastic flow rule is defined as

LP =_ DP = -K (2.11)

where LP is the plastic flow rate, and DP is the symmetric part of LP. For paper

and paperboard, the in-plane plastic strains (even at failure) are small; therefore we

take the skew part of LP to vanish, or WP = 0, as a simplification. K is the flow

direction, and ;* is the magnitude of the plastic stretching rate. K is a second-order

tensor with unit magnitude:

K = K/ 11 K 11, (2.12)

where

|lk 11= k -k. (2.13)

In Fig. 2-4, the in-plane lateral plastic strain versus axial plastic strain data showed

that the ratio between these two plastic strain components is nearly constant for both

the MD and CD simple tension cases. These ratios are taken to define the normal

directions of the two respective sub-surfaces of the tensile quadrant of' the biaxial

yield surface, in the absence of shear stress. Thus, the plastic flow of' the material is

taken to follow an associated flow rule:

k= 09f (2.14)
OT
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With the yield condition defined in Equation 2.7, k can be further calculated as

k= = 2k A 2k- K (2.15)
K=1

where

AK SN (2.16)

For the six sub-surface yield surface shown in Fig. 2-13, assuming an associated

flow rule, the sub-surface normals NK, K =I, II,. ..1 I are defined using the corre-

sponding plastic strain ratios. For example, for sub-surface I(one) in Fig. 2-13, the

plastic strain ratio from the MD simple tension test is nearly constant at -0.5. The

two nonzero components of N' are then determined by solving the following two

equations:
N 3 3  0.5 (2.17)
N1 11

and (to make a unit normal)

(N'l 2 + (N' 2 =1, (2.18)

which gives N'l1 = 2/ 5 and N 33 = -1/v15. Similarly, the plastic strain ratio from

the CD simple tension test is nearly constant at -2/15, giving NIl 1 = -2//229

and N"133 = 15/,/229. With appropriate experimental data, similar calculations can

determine the normals of each of the sub-surfaces. However, currently, there is no

experimental data for the plastic strain ratios for compression in either the machine or

cross directions. For the four sub-surface biaxial yield surface shown in Fig. 2-11, the

normals for the two sub-surfaces in the compressive quadrants, IV and V, are assumed

to have normal directions antiparallel to those of corresponding tensile sub-surfaces I

and II, respectively, as seen in the figure, but with generally differing strength levels.

For the normal of sub-surface III, representing yielding under positive pure shear

stress (T13 =T31 # 0; Tij = 0 otherwise), the two non-zero components are NI' 1 3
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and N 3 1 . Due to the symmetry of shear stress,

N" 1 3 - N" 3 1 , (2.19)

and

(N' 13) 2 + (N"') 2 = 1, (2.20)

Thus we have N' 1 13  N" 3 1  2 v2/2, and the normal of the other sub-surface

representing yielding under negative pure shear stresses is taken to be N 1 = -N"'.

In summary, the components of the normals in the material coordinates for the six

sub-surfaces determined are given in Table 2.3

2.3.4 Strain-hardening functions

To capture the anisotropic strain-hardening observed for the in-plane behavior, the

equivalent strengths, S', of each sub-surface are taken to evolve with the accumulated

equivalent plastic strain, i.e.

SK = S'7(), (2.21)

where 1 = f 'ydt is the equivalent plastic strain. Fig. 2-14 shows schematically how the

shape of a biaxial yield surface evolves with increasing equivalent plastic strain for the

case of zero in-plane shear stress. For the yield surface, the SA-values, K =I, II, IV

and 17, are directly related to the uniaxial yield strength of the material for MD/CD

tension and compression and the corresponding plastic strain ratios (see appendix).

The equivalent yield strengths for the two pure-shear sub-surfaces are taken to be

equal, S' =_ S"', and are related to the in-plane MD-CD shear strength.

In this research, anisotropic strain hardening is modelled by taking the S" to

depend on the amount of accumulated plastic strain as follows:

Si = So + Aitanh(Bi') + Cy, i =...VI (2.22)

where
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so: Initial equivalent yield strength for sub-surface i

Aj, Bi, Cs: hardening constants

The constants are determined by fitting the experimental stress-strain curves, as

discussed further in the appendix.

2.3.5 Discussion

The proposed constitutive model can be applied to different paperboards as a whole,

to any individual pulp layers inside the paperboard, as well as to paper sheets. One of

the advantages of the proposed model is its flexibility to incorporate new experimental

information. With more experimental information (e.g., off-axis stress-strain curves

with corresponding lateral strain vs. axial strain curves), the yield surface, and in

turn the flow rule, can be easily refined to provide even more accurate modeling of

the behavior of paper or paperboard layer by incorporating more sub-surfaces. If a

large enough 2k value is used, the yield surface will have sharp corners, and the added

extra information will not change the previous match between model and data.
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2.4 Implementation and verification of the model:

Application to model TRIPLEXTMI

The constitutive model described above was numerically integrated using a Newton-

Raphson procedure. The commercial FEM software package ABAQUS's user-defined

material behavior capability (UMAT) was used to implement the model. Several ho-

mogeneous and inhomogeneous deformations were simulated to test the model. First,

simulations were conducted to determine the model parameters for description of the

averaged behavior of TRIPLEXT 4̂ by fitting the material properties to experimental

data. Uniaxial tension data on TRIPLEXT^I paperboard in the MD, CD and 45'

direction were used to fit the material properties as were compression data in the

MD and CD. A method for fitting model properties to data is given in the appendix.

After the model properties were calibrated with the MD, CD and 450 data, these

parameters were used to predict the stress-strain behavior during tensile loading in

directions 22.50 and 670 off-axis of the MD and were compared to experimental data.

Then, the material model was further tested through simulation of the behavior of

TRIPLEXTM plates with a central hole, subject to in-plane tensile loading.

2.4.1 Simulations to determine the model parameters for be-

havior of the TRIPLEXTM laminate

The implemented constitutive model can be applied to the entire composite TRIPLEXTAI

paperboard laminate, as well as to the individual pulp layers inside the board. In this

section, simulations are conducted to determine the model parameters for behavior

of the TRIPLEXT^1 laminate.

Comparisons of the experimental and the simulated stress-strain curves for uniax-

ial MD, CD and 45' tension are shown in Fig. 2-15. Fig. 2-16 shows the corresponding

comparison of experimental and simulated lateral strain vs. axial strain curves for the

MD and CD. These results demonstrate that the proposed constitutive relationship
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can model the elastic-plastic behavior of the paperboard over the full range of strain.

It is also seen that an associated flow rule with a simple constant normal direction for

the sub-surface captures the lateral strain vs. axial strain curves well. If second-order

accuracy is needed to capture the lateral strain vs. axial strain curve, the sub-surface

normals, NK, could be taken to evolve with plastic strain. The CD result, together

with the MD result, demonstrates the anisotropic capability of the proposed model.

Compression simulations are also conducted. Fig. 2-17 shows the comparison of

the experimental and the simulated stress-strain curves for uniaxial MD and CD

compression. These results show that the constitutive law is capable of modeling the

asymmetric tension and compression yielding and hardening behavior. Comparison of

experimental and simulated stress-strain curves for uniaxial ZD compression is shown

earlier in Fig. 2-8. The curves show that the stiffening of through-thickness ZD elastic

modulus can be modeled well by setting the modulus to evolve exponentially with

the ZD compressive strain.

It should be noted that specimen failure takes the form of fiber fracture or fiber

pull-out at the end of the in-plane tensile testing. In this research, in-plane tensile

failure is not considered. (Under in-plane compression, paperboard fails in the form

of delamination and local buckling, as will be shown later in this thesis)

By fitting these experimental curves, the properties needed in the model were

determined. The nine orthotropic elastic constants used for in the simulations in

this research for the averaged behavior of TRIPLEXTM are summarized in Table 2.4.

(The constant a for exponential stiffening of ZD engineering elastic constant is listed

previously in Table 2.2) The yielding and hardening parameters are listed in Ta-

ble 2.5. The yield surface normals used for TRIPLEXTM have been listed previously

in Table 2.3. The details about how to obtain this information from experimental

data are discussed in the appendix. The final set of parameters describing the initial

yield surface and the hardening of the yield surface used in the simulations was shown

in Fig. 2-11 and Fig. 2-14. Because these properties are obtained from experimental

results on TRIPLEXTM , which is a five-layered composite, they are averaged values
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for the whole composite. If the same set of experiments can be conducted for each

individual layer, the properties can be modified to fit each layer. It is also worth

noting that the specimen failed under less than 0.4% of total compressive MD strain.

Thus the compressive quadrants of the hardened yield surfaces shown in Fig. 2-14 are

of less practical meaning when plastic strain is larger than the strain at which the

specimen failed by delamination and local buckling [31].

2.4.2 Simulations predicting the off-axis in-plane stress-strain

behavior of TRIPLEXTM

With the full suite of material properties obtained from fitting the MD, CD and 45'

data on TRIPLEXTJ, two simulations were then conducted to test the predictive

capability of the model. The stress-strain behavior subjected to tensile loading in two

off-axis directions, 22.50 from the MD and 670 from the MD, is simulated. Fig. 2-18

compares the experimental and the simulated stress-strain curves in these two loading

directions. The stress-strain curves predicted by the model are in good agreement

with the corresponding experimental curves, showing that the model is capable of

providing good predictions to the in-plane stress-strain behavior.

2.4.3 Simulation of deformation of paperboard under inho-

mogeneous in-plane loading

To further test the robustness of the numerical implementation of the constitutive

model, simulations of paperboard under inhomogeneous in-plane loading were con-

ducted. In particular, the constitutive model was used to simulate the behavior of a

rectangular TRIPLEXTM board with a central hole under in-plane loading. Because

of the existence of the central hole, inhomogeneous in-plane straining is going to re-

sult when the board is loaded uniformly along its boundary. The averaged values of

the material properties of the TRIPLEXT" as a whole, as summarized in Table 2.2

to Table 2.5, were used in these simulations.
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First, a 40mm long by 30mm wide board with a central hole radius of 4mm was

subjected to uniformly-applied displacement boundary conditions in the MD along

opposite sides. The behavior of the board in the elastic regime is first studied. Fig. 2-

19 shows the mesh used for this simulation and boundary conditions applied. Due

to the symmetry of this problem, only one quarter of the board is simulated. In

particular, boundary 1, which includes all nodes on that surface, as marked in the

figure, was fixed in the global X direction (same as MD in this case). Boundary

2 was fixed in the global Y direction (same as CD in this case). Boundary 3 was

fixed in the global Z (same as ZD in this case) direction to prevent out-of-plane

deformation. It is also along boundary 3 where uniform tensile displacement is applied

along global X direction. Fig. 2-20 shows the contour of the in-plane normal Cauchy

stress component, Txx, in the global X direction as indicated in the figure, before any

plastic deformation is developed inside the board. The typical stress concentration

distribution is shown around the hole. The stress distribution was also normalized

by the corresponding macroscopic nominal stress, (calculated as the reaction force

at boundary 3 divided by the initial surface area) and the corresponding contour is

shown in Fig. 2-21. This contour plot indicates that the stress concentration factor in

this simulation is 3.34, larger than the conventional 3.0 value for an infinite body of

isotropic elastic material. A contour plot of the stress component Tyy in the elastic

regime is also shown in Fig. 2-22, where maximum compressive stress and zero stress

are seen at the material points on the circumference of hole, as expected.

After plasticity started to develop inside the board, overall features of the stress

distribution remain the same. The macroscopic nominal stress vs. nominal strain

(calculated as applied displacement divided by the initial length of specimen) curve for

this simulation is also plotted in Fig. 2-24. Point A in this figure indicates the elastic

stage corresponds to the contour plots just shown. All the following are contours at

the final stage of deformation indicated by point B in Fig. 2-24. (With a macroscopic

nominal stress of 33MPa and nominal strain of 5%.) Fig. 2-23 again shows contours

of the in-plane normal Cauchy stress component, Txx, at end of simulation. Plastic
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deformation has occured at the equator and then the stress concentration factor has

decreased. A contour plot of the Cauchy stress component Tyy in global Y direction

at end of the loading is shown in Fig. 2-25, where again maximum compressive stress

and zero stress are seen at vertices located at the intersection of the global X and Y

axes with the circumference of the hole. Fig. 2-26 shows the contour of the equivalent

plastic strain, 5'. Not surprisingly, the highest plastic strain is observed near the two

points around the hole where stress concentration is located. A magnified quarter of

region around the hole in this contour is also shown in Fig. 2-27.

Because the board is essentially under compression in the CD in the previous

simulation, nodes located on boundary 3, as indicated in Fig. 2-19, were fixed in ZD

to prevent warping of the board out of the loading plane. To reduce the influence of

this boundary condition, another simulation was run with everything else the same,

except the width of the board increased from 30mm to 100mm. The mesh and the

contours of the stress components TxX and Tyy, as well as the equivalent plastic

strain for this geometry are shown in Fig. 2-28 to Fig. 2-31. These figures present the

same features of those shown in the previous simulation.

To test the robustness of the numerical implementation of the model to off-axis

loading, simulation was conducted with the MD oriented 450 to the global X di-

rection. Due to the asymmetry property of this problem, one half of the board is

simulated with appropriate boundary conditions to capture the asymmetric nature

of the structure, as shown in Fig. 2-32 with applied boundary conditions indicated.

As in the previous simulation, the response of the board in the elastic regime is first

investigated. Fig. 2-33 shows the contour of Cauchy stress component TXy (in global

coordinates as indicated in the figure.) before any plasticity is developed inside the

board. As expected, zero shear stress is shown in vertices located at the intersection

of the global X and Y axes with the circumference of the hole. The maximum shear

stress is achieved on off-axis points on the circumference of the hole. Fig. 2-34 shows

the contour of the same stress component Txy after a nominal strain of 5% applied

at the boundary. General features observed in Fig. 2-33 remains at this deformation
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stage except that the zone of stress concentration has propagated out. The contours

of stress component Txx and Tyy are also plotted in Fig. 2-35 and Fig. 2-36. Fig. 2-37

shows the contour of the equivalent plastic strain. The maximum equivalent plastic

strain is achieved near the points of stress concentration.

These three simulations verified that the numerical implementation of the consti-

tutive model into UMAT subroutine is robust under inhomogeneous straining condi-

tions.

2.5 Evaluation of material parameters for

mechanical and chemical pulp layers

As discussed in the previous sections, there is a scarcity of experimental data on the

in-plane yielding and plastic flow of paper or paperboard. So far, the most intensive

tests available were conducted by Stenberg [311, and most of his tests were conducted

on TRIPLEXTM paperboard, which is composed of a three-layered core formed by

three inner mechanical pulp layers and two outer chemical pulp layers. In other words,

the in-plane test results shown previously are all based on the five-layered composite

and represent an averaged behavior of the three mechanical and two chemical layers.

To facilitate the distinction of mechanical and chemical layers in the FEM simulations,

the same experimental data obtained for the entire composite is needed for each of

these two different types of pulp layers. Unfortunately, because the TRIPLEXTM is

a commercial product and is made continuously in its manufacturing process on the

paper mill, it is very difficult to reproduce the same type of individual chemical and

mechanical pulp layers under lab conditions. Up to this point, only limited further

tests were conducted by Stenberg [31] to provide needed additional information. The

representative test specimens for each layer were obtained by grinding off the other

layers from the TRIPLEXTM. In this section we show results from these tests and

discuss how we deduce the material parameters needed to describe the mechanical
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and the chemical pulp layers, using the proposed model, based on this experimental

information and additional assumptions.

2.5.1 Experimental data on individual layers

Three types of tests were conducted by Stenberg [31] to provide extra information to

determine the material parameters needed to describe the in-plane behavior of the

chemical and mechanical pulp layers: uniaxial MD tension stress-strain tests on the

mechanical pulp layer; uniaxial CD tension stress-strain tests on the mechanical pulp

layer; and uniaxial MD tension tests on the chemical pulp layer. The length of the

test pieces is 100mm and width is 15mm.

Fig. 2-38 shows the MD tensile stress-strain curves for mechanical and chemical

layers. From these two curves, we can obtain the modulus, the initial yield strength

and the failure strength for the mechanical and the chemical layers in the MD. One

step further, we can calculate the ratio between MD modulus of chemical and me-

chanical layers to be approximately 2.5 : 1 (8.9GPa vs. 3.4GPa). As a verification,

according to elementary composite mechanics, the modulus of the TRIPLEXTM com-

posite can be calculated as E, = 0.6Emech + 0. 4 Echem = 5.6GPa, where Echem and

Emech are the MD modulus of each of the two layers. This value is exactly the same

as that observed experimentally from Stenberg's test on TRIPLEXT". The ratio

between the MD tensile initial yield strength of the chemical and mechanical layers is

about 2 : 1 (24M Pa vs. 12MPa); the ratio between the MD tensile failure strength

of the chemical and mechanical layers is about 2.7: 1 (80MPa vs. 30MPa).

Fig. 2-39 shows the MD and CD tensile stress-strain curves for the mechanical

layer. From the CD curve, we can obtain the modulus, the initial yield strength and

the failure strength for the mechanical layer in the CD. Furthermore, we can calculate

the ratio between MD and CD modulus of the mechanical layer to be approximately

3 : 1 (3GPa vs. 1GPa); the ratio between the MD and CD tensile initial yield strength

of the mechanical layer is about 2 : 1 (12MVIPa vs. GMPa); the ratio between the

MD and CD tensile failure strength of the mechanical layer is about 2 : 1 (30MPa
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vs. 15MPa).

2.5.2 Additional assumptions made

Since these curves are all of the experimental data available at this point to distinguish

the behavior of the mechanical and chemical layers, we have to make assumptions

about the rest of the material parameters needed to describe each of the pulp layers.

In this research, the following assumptions are made:

" The ratios between other corresponding elastic moduli of the two pulp layers are

the same as those between the MD moduli of the two layers. The poisson's ratios

of each individual layer are the same with those of the composite. With these

assumptions and the known elastic modulus values of the entire TRIPLEXT M ,

the elastic moduli of each of the individual layers can be determined by using

basic composite mechanics principles. The constant a for exponential stiffening

of ZD engineering elastic constant for the two layers are taken to be the same

as that of the composite TRIPLEXTM. (listed previously in Table 2.2)

* The ratio between the two pulp layers' initial tensile yield strengths on the yield

surface, i.e., the S'o's (K = 1, 11 and III), is 2 : 1, the same as that between

the MD initial yield strength of the two layers.

" For the value of the initial compressive yield strength on the subsurface, SKto,

(K 117 and V), both layers are assumed to take the same value as those of the

TRIPLEXTM. (The mechanisms of in-plane compression yielding and failure in

the form of buckling involves the interfaces, not just the pulp layers, and will

be further discussed in the interface model chapter.)

" The ratios between the values of the constant A 1 , A 2 and A 3 of Equation 2.22

in the two pulp layers is assumed to be 2.7 : 1, the same as that between the

MD tensile failure strengths of the two layers.
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" The values of A 4 and A5 for both layers are assumed to be the same as those

of the composite TRIPLEXTM.

" The Bi and Ci (i = 1..5)values in Equation 2.22 for the chemical and mechanical

layers are assumed to be the same as those for the entire TRIPLEXT".

" The yield surface normals for the chemical and mechanical layer are assumed

to be the same as those for the entire TRIPLEX T "', given in Table 2.3 .

Further tests will be necessary if more accurate calibration of the model is needed.

The numbers used in this research for all the parameters for the two layers are sum-

marized later in this chapter.

2.5.3 Simulations to determine the model parameters for be-

havior of individual pulp layers inside TRIPLEXTM

Simulations were also conducted to determine model parameters for the chemical and

mechanical pulp layers inside TRIPLEXTM by matching the limited experimental

data on the individual layers as described previously.

Fig. 2-40 shows the comparison of simulated and experimental results for MD

tensile stress-strain for the mechanical layer. Results for CD tensile stress-strain

curves for the mechanical layer are shown in Fig. 2-41. Fig. 2-42 shows the comparison

of simulated and experimental results for MD tensile stress-strain behavior for the

chemical layer. Part of the model parameters for each layer such as the modulus,

initial yield strength and failure strength, can be directly determined by matching

the experimental data available on these two layers. The remaining parameters are

determined by following the assumptions discussed in the previous section. Further

verification simulation can be conducted based on these assumptions. For example,

after parameters for each layer are determined following the available data and the

additional assumptions, they are used to conduct simulations to reproduce behavior of

the entire TRIPLEXT" observed experimentally. One of the simulations conducted is
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to reproduce the MD tensile composite stress-strain curve for TRIPLEXTI. Fig. 2-43

shows the mesh used to model the TRIPLEXTAI composite, with each individual layer

modeled using its own set of parameters. Fig. 2-44 then plots the comparison of the

model-reproduced MD stress-strain curve of the TRIPLEXTM with the experimental

data. The experimental and model-fitted MD stress-strain curves for each of the layer

are also plotted in this figure. It can be seen with the set of parameters fitted for

each of the layer, the stress-strain behavior of TRIPLEX"" is reasonably reproduced,

indicating that the parameters for each layer involving the MD tensile behavior are

well deduced. Furthermore, the initial yielding point on the stress-strain curve for

chemical and mechanical layers are marked in the figure, with corresponding points

(same strain) on the composite stress-strain curve marked as well. It can be seen that

because displacement boundary condition was applied, the composite starts to show

nonlinear behavior when the chemical layer starts to yield, as marked by point "C"

in the figure. With larger strain applied, the mechanical layer starts to yield as well,

giving extra nonlinearity to the composite stress-strain curve.

The nine orthotropic elastic constants used in the simulations in this research

for the chemical pulp layers are summarized in Table 2.6, and those used for the

mechanical pulp layers are in Table 2.7. The yielding and hardening parameters for

the two pulp layers are listed in Table 2.8 and Table 2.9. The yield surface normals for

the two pulp layers are the same as those used for TRIPLEXT M , listed in Table 2.3.

2.6 Discussion

This chapter presented a finite deformation elastic-plastic constitutive model for in-

plane behavior of paper and paperboard. The anisotropic elasticity is modelled using

orthotropic linear elasticity, albeit generalized to connect the work-conjugate stress

and strain measures T and E'. The initial anisotropic yield behavior is modelled by

an initial yield surface constructed from sub-surfaces defined by the measured initial

yield strengths and plastic strain ratios in various loading conditions. The strength of

69



each sub-surface is taken to harden with respect to the equivalent plastic strain, thus

providing anisotropic strain hardening of the yield surface. The material parameters

needed by the model are obtained by fitting uniaxial stress-strain and lateral strain vs.

axial strain data. With the fitted parameters, the model was shown to be predictive

of other in-plane stress-strain behavior.

The proposed model can be applied to simulate a wide range of in-plane problems

for paper and paperboard such as the behavior under inhomogeneous, multiaxial in-

plane loading or bending. Furthermore, the proposed constitutive model, together

with the interface constitutive law modeling the through-thickness tensile and shear

behavior, enables the simulation of complex loading conditions such as those that

occur during various converting processes as well as drop-loading conditions of pa-

perboard products.
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Elastic Poisson's Tensile yield Plastic Compressive
modulus Ratio strength strain ratio, yield strength
(GPa) (MPa) dE/ (MPa)

MD 5.6 0.37 12.0 -0.5 7.3
CD 2.0 0.12 6.5 -0.133 5.0
450 4.1 8.0

Table 2.1: Experimental results of uniaxial tensile tests. (Stenberg [31])

Elastic Poisson's Poisson's Shear Shear Stiffening
modulus Ratio v21  Ratio v23  modulus modulus constant a
EZD(MPa) G12 (MPa) G23 (MPa)
18.0 -0.0055 -0.0035 34.0 26.0 5.4

Table 2.2: Elastic out-of-plane properties. (Stenberg, et al. [32, 33])

K N7 N33 N 3

I 2//5 -1/ 5 0
II -2/ /29 15/229 0
III 0 0 /2 /2
IV -2/ /5 1/ /5 0
V 2/ V229 -15/ /229 0

VI 0 0 - 2/2

Table 2.3: Non-zero components of the sub-surface normals used in modeling
TRIPLEXTA, expressed in the material coordinates
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E, E 2  E3 G12 G1 3  G23 v 1 2  V13 V 2 3

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa)
5600.0 18.0 2000.0 34.0 1300.0 26.0 -0.005 0.37 -0.004

Table 2.4: Elastic constants used by model for the TRIPLEX" composite laminate.

So (MPa) S" l(MPa) Sd" (MPa) Siv (MPa) Soli(MPa)
10.7 6.5 6.0 6.5 6.3

A1(MPa) A 2 (MPa) A 3(MPa) A 4 (MPa) As(MPa)
19.0 40.0 8.0 6.0 9.0
B 1  B2 B 3  B 4  B5

260.0 160.0 375.0 160.0 310.0
C1 (MPa) C2(MPa) C3 (MPa) C4(AIMPa) C (MPa)

800.0 250.0 200.0 300.0 225.0

Table 2.5: In-plane yielding and hardening parameters used to model TRIPLEXTI.

E1  E2 E3 G 12  G13 G23 112 v13 7v23

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa)
8900.0 25.0 3400.0 58.0 2400.0 38.0 -0.005 0.37 -0.004

Table 2.6: Elastic constants used for the chemical pulp material.

E E2 E3 G 12  G 13  G23 1-2 V13 V2 3

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa)
3400.0 16.0 960.0 20.0 800.0 15.0 -0.005 0.37 -0.004

Table 2.7: Elastic constants used for the mechanical pulp material.

SJ(MPa) S'(MPa) SJ"(MPa) S"v(MPa) So(MPa)
10.7 6.5 6.0 6.3 6.3

A1(MPa) A 2(MPa) A 3(MPa) A 4(MPa) As(MPa)
19.0 20.0 7.5 6.0 9.0
B1 B 2  B 3  B4 B5

260.0 160.0 375.0 160.0 310.0
C1(MPa) C2(MPa) C3(MPa) C4(MPa) Cs(MPa)

800.0 250.0 200.0 300.0 225.0

Table 2.8: In-plane yielding and hardening parameters used by model for mechanical

pulp layers in TRIPLEXTM.
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S (MPa) S f(MPa) Sl"(MPa) Slv(MPa) S1(MPa)
22.0 16.5 8.0 6.3 6.3

A1(MVIPa) A 2(MPa) A 3(MPa) A 4 (M Pa) As(MPa)
44.0 20.0 18.0 12.0 12.5
B 1  B 2  B 3  B 4  B5

260.0 160.0 375.0 160.0 310.0
C1(MPa) C2(MPa) C3 (MPa) C4 (MPa) Cs(MPa)

800.0 250.0 200.0 300.0 225.0

Table 2.9: In-plane yielding and hardening parameters used by model for chemical
pulp layers in the TRIPLEXTM composite laminate.
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Figure 2-1: TRIPLEXTM in-plane stress strain curves. (Stenberg [31])
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Figure 2-6: Illustration of the new Arcan design. [32]
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Figure 2-7: Through-thickness ZD tension stress-strain curve. (Stenberg, et al.

[32],[33])
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Figure 2-18: Comparison of experimental and simulated stress-strain curves for tensile
loading in off-axis directions 22.50 and 670 from the MD direction.
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Figure 2-19: Mesh of simulation of straining of TRIPLEXT" rectangular board

(40mm long; 30mm wide) with central hole.
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Figure 2-20: Contour plot of the in-plane normal stress component Txx before any
plasticity developed (Stage A on the corresponding macroscopic stress-strain curve)
from simulation of straining of TRIPLEXTM rectangular board (40mm long; 30mm
wide) with central hole.
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Figure 2-21: Contour plot of the normalized in-plane normal stress component Txx
before any plasticity developed from simulation of straining of TRIPLEXTM rectan-
gular board (40mm long; 30mm wide) with central hole.
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Figure 2-22: Contour plot of the in-plane normal stress component Tyr before any

plasticity developed from simulation of straining of TRIPLEXTM rectangular board

(40mm long; 30mm wide) with central hole.
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Figure 2-23: Contour plot of the in-plane normal stress component Txx from simu-
lation of straining of TRIPLEXTM rectangular board (40mm long; 30mm wide) with
central hole.
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Figure 2-24: Macroscopic nominal stress vs. nominal strain curve for normal stress
component Txx from simulation of straining of TRIPLEXT' rectangular board
(40mm long; 30mm wide) with central hole.
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Figure 2-25: Contour plot of the in-plane normal stress component Ty from simula-

tion of straining of TRJPLEXTM rectangular board (40mm long; 30mm wide) with

central hole.
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Figure 2-26: Contour plot of the equivalent plastic strain, "y, from simulation of

straining of TRJPLEXTM rectangular board (40mm long; 30mm wide) with central

hole at nominal strain of 5%.
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Figure 2-27: Magnified upper right corner (around the hole) of the contour plot of
the equivalent plastic strain, , shown in Fig. 2-26.
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Figure 2-28: Mesh of simulation of straining of TRIPLEXT" rectangular board
(40mm long; 60mm wide) with central hole.
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Figure 2-29: Contour plot of the in-plane normal stress component Txx from simu-
lation of straining of TRIPLEXTM rectangular board (40mm long; 60mm wide) with
central hole.
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Figure 2-30: Contour plot of the in-plane normal stress component Tyy from simula-
tion of straining of TRIPLEXTM rectangular board (40mm long; 60mm wide) with
central hole.
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Figure 2-31: Contour plot of the equivalent plastic strain, 7', from simulation of
straining of TRJPLEXTM rectangular board (40mm long; 60mm wide) with central
hole.
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Figure 2-32: Mesh of simulation of off-axis straining of TRIPLEXT^L' rectangular
board (40mm long; 30mm wide) with central hole.
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Figure 2-33: Contour plot of the in-plane normal stress component Txy before any
plasticity developed from simulation of off-axis straining of TRIPLEXTM rectangular
board (40mm long; 30mm wide) with central hole.
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Figure 2-34: Contour plot of the in-plane normal stress component Txy from sim-
ulation of off-axis straining of TRIPLEXTM rectangular board (40mm long; 30mm
wide) with central hole.
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Figure 2-35: Contour plot of the in-plane normal stress component Txx from sim-
ulation of off-axis straining of TRIPLEXTM rectangular board (40mm long; 30mm
wide) with central hole.
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Figure 2-36: Contour plot of the in-plane normal stress component Tyy from sim-
ulation of off-axis straining of TRIPLEXTM rectangular board (40mm long; 30mm
wide) with central hole.
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Figure 2-37: Contour plot of the equivalent plastic strain, ', from simulation of
off-axis straining of TRIPLEXTM rectangular board (40mm long; 30mm wide) with
central hole.
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Figure 2-38: Comparison of MD tensile stress-strain curve for mechanical and chem-

ical pulp layers (Stenberg [31])
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Figure 2-39: Comparison of MD and CD tensile stress-strain curve for mechanical

pulp layer (Stenberg [31])
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Figure 2-40: Comparison of experimental
tensile loading for mechanical pulp layer.

IL

U)

20

18

16

14

12

10

8

6

4

2

0
0.005 0.01 0.015

0.01

Strain
0.015

and simulated stress-strain curves for MD

0.02 0.025 0.03 0.035

Strain

Figure 2-41: Comparison of experimental and simulated stress-strain curves for CD
tensile loading for mechanical pulp layer.
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Figure 2-42: Comparison of experimental
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Figure 2-43: Mesh used to reproduce the MD tensile stress-strain curve for

TRIPLEXTM using fitted parameters for each of the individual layers.
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Figure 2-44: Comparison of model-reproduced and experimental MD tensile stress-
strain curve for TRIPLEXTM.
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Chapter 3

Interface Constitutive Model

During certain converting processes (processes whereby paperboard is converted into

a product such as a milk carton) and in-service applications, paperboard is often

subjected to combined loadings which include out-of-plane deformations. The out-of-

plane loadings can cause interfacial delamination to separate the paperboard layers.

In some instances delamination is desirable, as in the case of creasing, whereby a

punching process locally damages the interface in a controlled manner to enable ac-

curate formation of corners during the subsequent folding of paperboard. In other

instances, however, delamination is undesirable, such as during in-service loading,

where, for example, a box may be dropped or subjected to bending (Carlsson, et

al.[21], Donner and Backer[10])

In work by Dunn [18], the deformation mechanisms operative during through-

thickness loading of paperboard were experimentally investigated. Scanning electron

microscopy was used to monitor the evolution in microstructure during through-

thickness tensile and shear loading. Results revealed that the initiation, interaction

and propagation of delamination along interfaces between paperboard laminae play a

crucial role in the damage and failure of the laminated structure under out-of-plane

loading. In work by Stenberg, et al. [32][33], a series of modified ARCAN[6] testing

systems were used to obtain nominal stress-strain curves of paperboard under various

combined out-of-plane loading conditions. Based on these experimental results, we
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propose a 3D interface traction vs. relative-displacement separation model where a

limiting separation surface (analogous to a yield surface) in the normal-shear traction

space evolves with a monotonically-increasing measure of the inelastic part of the

relative interface displacement following an internal state variable approach. The

model is implemented into finite element software (here, the commercial ABAQUS[19]

program is used) on a plane strain basis to analyze the out-of-plane behavior of multi-

layer paperboard structures.

3.1 EXPERIMENTAL OBSERVATIONS

To study the out-of-plane mechanical behavior of paperboard, macroscopic tests were

conducted on specially-designed test fixtures at STFI (Swedish Pulp and Paper Re-

search Institute) by Stenberg, et al. [32][33] using the ARCAN[6] design. Nom-

inal stress-strain curves were obtained for a multi-layer paperboard under various

through-thickness loading conditions. To investigate the micro-mechanisms behind

the macro-level behaviors observed, microscopic tests were conducted using in situ

SEM by Dunn[18].

3.1.1 Macroscopic experiments

Three types of macroscopic through-thickness experiments were conducted by Sten-

berg, et al. [32][33]: ZD pure extension; shear without normal constraint (ZD-MD or

ZD-CD); and combined normal (tensile or compressive load in ZD) and shear (MD or

CD) tests. Specimens were constructed from TRIPLEXTM paperboard. It should be

noted that some important differences exist between paperboard and conventionally-

defined laminated composites. It is customary for layers of conventional laminated

composites to be distinct, separate entities with relatively clearly-defined interfaces

between such layers. For the paperboard structure, since it is continuously formed by

laying one wet mat over another, the individual layers are not particularly distinct

from one another. Instead, there exists a small amount of weaving and entanglement
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of fibers across the interfaces, in addition to the sprayed bonding agent. Therefore,

a relatively weak mechanical coupling exists between layers due to both the fiber

entanglement and bonding along the interfaces. Procedures such as controlling the

amount of starch applied during different stages of processing enables the interfaces

between the core mechanical layers to be designed to be weaker than the interfaces

between the mechanical core and outer chemical layers.

A ZD tensile stress-strain curve obtained by Stenberg, et al. [32][33] is shown

in Fig. 2-7. The stress measure is force per initial cross-sectional area; the nominal

strain is calculated by dividing relative opening displacement of the loading platens by

the initial board thickness. At the earliest stage of deformation, the stress increases

linearly with displacement. The stress-strain relation shows a small amount of pre-

peak nonlinearity before reaching a peak stress value. After the peak, the stress-strain

curve exhibits pronounced softening. This result is similar to data from Persson[28].

A through-thickness shear (ZD-MD) stress-strain curve obtained by Stenberg, et

al. [32][33], is shown in Fig. 2-9. Features similar to those of the tensile curve are

observed, except that the stress transmitted through the paperboard does not drop to

zero even when a very large amount of relative motion is applied to top and bottom

loading surfaces. Instead, it asymptotically approaches a value (about 12% of the

peak strength) that cannot be ignored in general. Another important feature of the

shear test is that normal dilation is observed during the test; i.e., ZD thickening is

observed when out-of-plane shear load is applied under conditions of zero net ZD

tension/compression, as shown in Fig. 3-1. According to SEM tests by Dunn[18], this

can be explained by the interface shear failure mechanisms, which produces dilation

due to fiber disentangling, interlocking and rotation.

A series of combined normal (ZD) loading and shear loading tests (MD or CD)

were also conducted by Stenberg, et al. [32][33]. In these experiments, a fixed normal

force, either tensile or compressive, was applied, together with increasing shear dis-

placement. Shear stress-strain curves were obtained for each of these tests. Several

shear stress-strain curves in MD-ZD are plotted in Fig. 3-2 for different normal force
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conditions. The applied normal stresses and the corresponding peak shear stresses

are plotted in the normal-shear stress space as shown in Fig. 3-3. As can be seen, the

shear strength of the paperboard is "pressure" dependent. These stress loci form a

separation surface in the through-thickness normal and shear traction space. Details

about using this surface as the interface separation criterion will be discussed later in

this chapter.

In summary, macroscopic data reveal the following important features of the out-

of-plane behavior of paperboard:

" For through-thickness tension, the stress-strain curve starts linearly, showing a

modulus of 18MPa. The curve shows a small amount of non-linearity prior to

the peak load. For through-thickness shear, the stress linearly increases with

the strain with an initial moduli of 34MPa (ZD-MD) and 26MPa (ZD-CD).

Similar to the tensile behavior, only a small amount of non-linearity is shown

before reaching the peak shear stress.

" A peak stress of approximately O.4MPa is reached for ZD tension, followed by

pronounced softening behavior after the peak. The peak shear stresses achieved

are approximately 1.1MPa (ZD-MD) and 0.9MPa(ZD-CD).

" The shear strength of the paperboard increases with compressive normal stress

and decreases with tensile normal stress; i.e., the shear strength of paperboard

is normal-stress-dependent.

" The stress drops dramatically after the peak stress is reached for both through-

thickness tension and shear. The tensile stress decreases to zero at large tensile

strain. However, residual shear-load carrying capability remains even for more

than 200% out-of-plane nominal shear strain.

" Paperboard tends to dilate in the through-thickness direction when out-of-plane

shear is applied.
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* As discussed in Chapter 2, TRIPLEXTM exhibits nonlinear elastic stress-strain

behavior under ZD compression up to large strains of more than 20%. This

behavior is modeled by the in-plane model. (Interfaces do not fail under ZD

compression alone.)

3.1.2 Microscopic experiments

Microscopic tests were conducted by Dunn[18] at MIT using a scanning electron

microscope (SEM) testing system to investigate the micro-level physical mechanisms

underlying the through-thickness paperboard behavior observed in macroscopic tests.

Through-thickness extension, shear, shear without normal constraint, combined nor-

inal load and shear tests, and bending tests were conducted on five-layer TRIPLEXTM

paperboards, the same material used in the macroscopic tests of Stenberg, et al.

[32][33]. SEM micrographs were taken at different stages of deformation, concurrently

with the stress-strain curves, to monitor the micro-level events occurring during the

deformation.

Fig. 3-4 shows an example of a ZD tensile stress-strain curve correlated with

microscope images of the ZD-MD cross section, as shown in Fig. 3-5 - Fig. 3-14. Po-

sitions on the curve where SEM pictures were taken are marked by step numbers. By

inspecting the in situ SEM micrographs corresponding to each of the points on the

stress-strain curve, Dunn[18] found that no noticeable microcracking can be observed

prior to the peak stress. At stage 4, which is immediately post-peak, microcrack for-

mation is apparent inside the cross-section, indicating that the peak in stress-strain

curve correlates with the beginning of microcrack formation. Furthermore, the mi-

crocracks are observed primarily along the weaker mechanical/mechanical interfaces.

After peak step 4, the stress drops as the coalescence of microcracks forms several

major delaminations, as can be seen in the micrograph at step 5. As the imposed

displacement increases, the load continues to drop, major delaminations become dom-

inant, and small local delaminated regions start to unload, as shown in micrographs

of steps 6 - 7. At step 8, fiber bridging between separated interfaces is obvious, and
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at step 9, a second major delamination re-opens. Beyond step 10, stress drops slowly

as fibers bridging the delaminated gap are disengaged. At very large strains, the

specimen splits into two separate parts, and the stress goes to zero.

In summary, there is no significant change in material structure prior to the peak

in stress. At the peak stress, microcracks initiate primarily along the relatively weaker

mechanical/mechanical interfaces inside the core. The formation of microcracks and

their subsequent coalescence decreases the internal load-carrying area of the specimen

at the elevation of the interface, leading to the dramatic drop of the nominal stress

level. After a dominant delamination spreads across the entire cross section of the

specimen, the rate of decrease in nominal stress with additional strain is reduced.

Fiber bridging and fiber pull-out are now the dominant deformation mechanisms,

providing residual load-carrying capability until final separation of the specimen.

Fig. 3-15 shows an example of a ZD-MD shear stress-strain curve correlated with

microscope images, as shown in Fig. 3-16 - Fig. 3-21. The first figure shows the speci-

men at no load. In Fig. 3-17, the specimen has been loaded into the nonlinear region.

By comparing with the previous picture, no appreciable deformation is developed in

this stage. The third image was taken immediately after the peak stress is achieved.

It can be clearly seen that at this stage, most of the damage was concentrated along

one of the mechanical/mechanical interfaces in the form of a single delamination span-

ning the entire viewing frame. This is obviously different from what was observed

in the ZD tension test. In the subsequent images, it can be seen that the major

delamination continues to open in the Z-direction. Because of extensive fiber-fiber

interactions along the shearing interface, observable in the form of fiber bending as

well as fiber interlocking and friction, the stress plateaus instead of dropping to zero.

These fiber-fiber interactions are also responsible for the normal (through-thickness)

dilation associated with interface shearing.

In summary, the following major observations were made from the microscopic

tests:

* Corresponding to the peak on the stress-strain curve, one or several micro cracks
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were first observed, and the propagation and coalescence of the cracks leads to

the softening behavior.

" The major separations or delaminations of the laminated paperboard occur

primarily at the interfaces between different pulp layers. Furthermore, the de-

laminations are more likely to develop along the weaker mechanical/mechanical

interfaces than along the stronger mechanical/chemical interfaces.

" Delamination of the paperboards under pure through-thickness shear tests is

more homogeneous (both along an interface and over the set of interfaces) than

that under through-thickness pure tension tests.

" The mechanisms observed in SEM videos and image analysis from the micro-

scopic tests are also operative at the macro-level.

" General features of the microscopic stress-strain tests are similar to those ob-

tained from macro-level tests.

3.1.3 Summary

Based on these observations, it is clear that the behavior of the interfaces between

different paper pulp layers plays a crucial role in the damage and failure of the pa-

perboard laminates when out-of-plane loading is applied. This leads us to propose

an interface model which can capture important features of the through-thickness

behavior of paperboards: e.g., the peak stress, the post-peak strain-softening, the

shear-induced dilation and the normal-stress-dependence of the shear strength. Fur-

ther, the observation that interface cracking occurs around the peak point of the

stress-strain curve indicates that we can construct a separation surface using the

data points of peak shear stress and applied normal stress in normnal-shear traction

space as an interface separation criterion. Such a surface, based on data by Sten-

berg [32],[33],[31], has been previously shown in Fig. 3-3. Furthermore, the interface
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constitutive law can be implemented into FEM models to explicitly simulate the in-

terface separation process, thus providing the capabilities to provide more insights to

the design and manufacturing of paperboards.
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3.2 Interface modeling and formulation

To explicitly model the delamination of an interface, some researchers have developed

cohesive zone models to describe the interface between two materials. A cohesive zone

type of model was first developed by Dugdale[14] and Barenblatt[8] and further devel-

oped by Comninou [12], Needleman[24] and Ortiz and Blume[26] to analyze interface

separation between different materials. Needleman first incorporated this method

into finite element analysis simulations of void nucleation by inclusion debonding

[25]. Later Xu and Needleman[35] used the model in other applications. Several other

researchers (e.g., Socrate[29]; Biner[9]; Williams and Addessio[34]; Lissenden[22]) uti-

lized similar types of models to simulate interface behavior under different conditions.

In most models, the cohesive surface constitutive relation relates the traction

and relative displacement across the separating surfaces by introducing an interface

potential. These previous interface traction-displacement models have many advan-

tages. However, in these prior research works, the interface constitutive relation is

derived from an interface potential and so is not history-dependent; i.e., the colhe-

sive traction-displacement relationship is fully reversible. Therefore, the irreversible

damage accumulated at the interface is not taken into account, and these models

cannot be accurately applied to situations where the interface is subject to unload-

ing and subsequent reloading. Such histories are common in many manufacturing

processes of paperboard products, e.g., the creasing and subsequent folding of paper-

board. Needleman[25] and Ortiz and Pandolfi[27] have proposed irreversible cohesive

laws to overcome this problem by introducing an evolution in either the effective

peak stress or effective peak opening displacement of their potential-based models.

However, these new approaches solve the problem numerically without explicitly ad-

dressing the physics behind the history-dependent behavior of the interface. Also,

the potential-based nature of these methods limits the general flexibility to handle

different types of traction-displacement relations.

In this research, an interface decohiesion model is constructed based upon a sep-
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aration surface in the normal-shear traction space that enables inelastic separation

following an internal state variable approach. The model has the benefits of the

potential-based cohesive interface models. For example, there are no prior restric-

tions on the size, location, distribution, or direction of growth of the interface cracks;

no restrictions on the size of plastic zone ahead of the crack tips; no restrictions on

the constitutive behavior of the bulk of material; and interactions between developing

microcracks or major delaminations at different locations within the structure will be

taken care of naturally as a result of calculation. Furthermore, the proposed model

addresses the history-dependent nature of interface separation in a physically-based

manner. Instead of using an interface energy potential as the basis of the cohesive

models, a separation criterion is formulated in a manner analogous to that of a yield

surface in plasticity, as discussed previously. The separation criterion is constructed

in the normal-shear traction space and is introduced to control the initiation and

evolution of interface cracks. A non-associated flow rule enables the model to simu-

late normal dilatation due to shearing of the separated surfaces. A history-dependent

state variable, the interface damage, is also introduced in the model. With the evolu-

tion of the state variable, the history-dependent behavior of the interface is accurately

captured. Furthermore, through-thickness shear, pure tension and combined normal

and shear loading experiments provide enough information to determine the material

properties needed for model implementation.

3.2.1 Kinematics

Consider a body as shown in Fig. 3-22, with initial undeformed configuration Bo

partitioned by an interface So into two parts, Bo+ and Bo-, lying on the plus and

minus sides of So, respectively. The respective boundary portions, So+ of Bo+ and

So- of Bo- initially coincide with So in the undeformed configuration. On So there

are corresponding points Po+ C So+ and Po- c So-, which also coincide in the

undeformed configuration. The position of any point P on the interface surface in

the undeformed configuration is denoted by X, and we assume parametric coordinates
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1 and 2 in surface So. The two tangent vectors of the reference interface then can

be written as
Ox

tio = - i = 1, 2 (3.1)

and the initial normal direction of interface So can be obtained as

no = tio X t2, (3.2)
1tio X 2o

with the understanding that coordinates have been chosen such that no points from

So- to So+. Upon deformation mapping x, the initially-coincident surfaces of the

interface, So+ and So-, are separated into the deformed positions S+ and S-, respec-

tively. To describe this discontinuous behavior of the deformation mapping, a mean

deformation mapping can be defined over the initial surface So to identify a unique

deformed configuration of the interface, S, by defining

1
x -(x+ + x-) (3.3)

2

and setting

S = x(S). (3.4)

The initially-coincident points Po+ and PO- are now located at P+ = x+(Po+) and

P- = x-(PO~), and we can define the interface relative displacement as

A = x+(PO+) - x-(PO-) (3.5)

Furthermore, a co-rotational coordinate system for the interface can be defined by

two tangential vectors

t*- i=1, 2 (3.6)
O~i

and a normal vector
t* x t*

n = 1 2 .(3.7)
t* x t*
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To make the two tangent vectors have unit length are perpendicular to each other,

we further define

ti - 1, (3.8)
St* |

and

2 n x t. (3.9)
jn x t1

This co-rotational coordinate system (ti, t 2 , n) will rotate with the body under

rigid body rotation and translation, as shown in Fig. 3-22. Use of such co-rotational

coordinate system is convenient for implementation of a frame-indifferent description

of the traction-displacement law.

The traction vector T and relative displacement across the interface, A, can be

expressed in component form as

T = Tn + Tt1t1 + Tt.t2
(3.10)

= (T -n)n + (T t1 )t 1 + (T - t2)t2;

and

A = Ann + At 1ti + At 2t2

(3.11)
= (A -n)n + (A t)t 1 + (A - t 2 )t 2 .

In the following parts of this section, the subscripts 'V', 't1 ' and 't 2 ' will always indicate

components in the normal, the first and the second tangential directions along the

interface surfaces, respectively in the current configuration.

In applications to interfaces in paperboard, the reference configuration will be

essentially planar, so that generalized coordinates j are most conveniently taken to

be cartesian in the MD and CD, respectively.
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3.2.2 Decomposition of Displacement Jump

Through-thickness load-unload tests indicate that unloading prior to the peak stress

does not result in significant permanent deformation; whereas, upon unloading after

the peak stress, a significant permanent deformation is observed along with continu-

ously diminishing elastic unloading stiffness. Therefore, the relative interface incre-

mental displacement, dA = A(t + dt) - A(t), where t is a monotonically-increasing

(time) parameter, can be additively decomposed into elastic (dAn) and plastic (dAP)

parts:

dA = d A + dAP. (3.12)

In component form, the relations can be written as

dAn dAe + dAP

dAt, dAe1 + dAP (3.13)

-~t dAe2 + dAP)

3.2.3 Interface Constitutive Law

The interface constitutive law relates the co-rotational incremental traction compo-

nents with the incremental displacement components through the interface stiffness

as follows in component form

dT= K- (dAn - dAP )

dTt = K 1 (dA 1 - dAn) (3.14)

dTt. = Kt,(dA, - dA 2),

where Ka, KAt and K 9 are the components of the instaitaneous interface stiffness,

evaluated in the co-rotational coordinate system, shown in Fig. 3-22. This incremental

interface traction-displacement law is expressed in co-rotational coordinates because

rigid body rotation introduces neither relative interface separation nor traction force.
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Also note that the components of the interface stiffness are, in general, functions of

the state of the interface. In other words, the stiffness may evolve with the evolution

of interface damage, which will be discussed in detail later.

3.2.4 Interface separation criterion

As discussed in section 3.1, the experimental data by Stenberg [32][33] indicates that

a peak stress exists in through-thickness shear, tension and combined normal-shear

stress-strain curves. From the stress-strain curves it can also be seen that the pre-

peak inelastic or nonlinear portion is relatively insignificant. Microscopic tests by

Dunn [18] show that these peak stresses coincide with the formation of interface

delamination in the form of microcracks, which then propagate and coalesce with

ongoing deformation, producing the post-peak softening. Thus, if we plot the peak

shear stress values together with the amount of ZD normal stress applied in the

stress space, we obtain a separation surface in the shear-normal traction space that

is analogous to a yield surface. This surface is a physically descriptive representation

of the criterion for the onset of permanent interface separation. An experimental

separation surface has been shown previously in Fig. 3-3, together with a functional

form chosen to match it.

Based on the experimental data for TRIPLEXTM paperboard, a specific form for

the criterion was determined:

f (Tn, Ttl, T,2, Sn, S , St.2) aiTj2k + a2 T 2k + T. - c =0 (3.15)

where T, Ttl and T 2 are the components of the traction vector defined previously; k

is an integer which determines the curvature of the surface. The parameters a1 , a2

and c are defined as follows:

Sn(D) Sn(D)
C = S.(D); a= 2 - (3.16)

St (D)2k Set (D)2k
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where S,(D), St, (D) and St (D) are the instantaneous ZD tensile strength, the shear

strength in MD, and the shear strength in CD of the interface, respectively. To

simplify the model further, we assume that there is only one state variable, which

controls the state of separation of the interface, the accumulated damage in the in-

terface, D. Definition of the damage state variable will be given later in this chapter.

The strengths are then assumed to take initial values of Sno, St,1 and S 20 and are

taken to evolve with the dimensionless interface damage variable D, which monitors

the level of interface damage.

As a simplification, the numerical simulations in this thesis will be based on a 2-D

framework. (This is a good approximation as long as there is no off-axis (MD/CD)

in-plane loading.) In 2-D, Equation 3.15 can be simplified to:

f(Tn, T, Sn, St) = atT 2k + Ta - c 0 (3.17)

where St can be either Se or St and at =--D) as defined in Equation 3.15; Tt

can be either Tt or T1 defined in Equation 3.16, depending on which 2-D stress

space is being probed. The exponent 2k is taken to be 2 in this work since this

was found to best fit the available data. The shape of this function in the traction

space is shown in Fig. 3-3. It can be seen that this functional form provides a very

good approximation to the experimental surface. The tension, Sn, and the shear, St,

strengths of the interface are the respective intersections of the locus with the axes.

The proposed interface separation criterion has the following features:

" The shear strength of the interface is dependent on the normal pressure. The

shear strength increases with increasing compressive normal stress and decreases

with increasing tensile normal stress.

" The shear behavior is symmetric with respect to the normal traction axis. In

other words, the behavior of the interface under shear is the same if the direction

of shear traction is reversed. This appears to be generally true for paperboard.
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" The separation criterion is not closed on the compressive side of the normal

traction axis because interface failure does not develop under purely normal

compressive load.

" With a certain 2k value (e.g., 2k = 2), the 2-D interface separation criterion is

determined if the two parameters a and c are determined. In other words, the

criterion can be fully determined by conducting a shear and a tension test on

the paperboard laminates. If a series of combined out-of-plane normal and shear

loading tests could be done, more accurate mathematical forms of the criterion

could be obtained by data-fitting the experimentally-obtained surface in the

traction space, perhaps leading to other values for the curve-shaping exponent

2k.

3.2.5 Flow rule

The flow rule determines the inelastic components of the relative displacement incre-

rment once inelastic separation across the interface starts. In general, a flow rule can

be written as

dAP = XMdAP, (3.18)

where

1; if f = 0 and dT*. >O (3.19)
0; f < 0 or f = 0 and dT*. < 0 .

Here dAP = /dAP - dA' is the magnitude of the equivalent plastic displacement

increment, dT* is the incremental trial traction vector (defined as E Kjd\jej, 't =

ti, t 2 , 71), 9- is the normal direction on the separation surface, and M is the unit flow

direction, expressed in the co-rotational normal and tangential interface coordinate

system as

M = M/ IM, (3.20)
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where

MI = A7In + M 1t, + 11Vt 2 t 2 . (3.21)

For an associated flow rule, the flow direction is the normal to the interface sepa-

ration surface, and we may take

AI = f (3.22)
OT'

where f is the interface separation function defined in Eqn. 3.15, and T is the traction

vector. This equation can be expressed in component form as

Of - = Of Of
An =At==(

OTn' 1 T' 2 OT 3.2,

The associated flow rule acting on the f of equation 3.15 will result in some amount

of normal dilation under the action of only shear stress. However, the experimentally-

observed dilation exceeds the amount produced assuming an associated flow rule

and 2k-values that fit adjacent points on the separation surface. Therefore, a non-

associated flow rule is followed to better capture the observed behavior. For a nor-

mal/shear non-associated flow rule, the components of the flow direction Al can be

constructed as

Of Of Of (3.24)
_'n n ="I J - e, = A_, 2 = , (324OT~h' ti O2

where p is a dimensionless frictional function which is dependent on the state variable,

interface damage, i.e., p = p(D). For example, the p-function could be a function of

the equivalent inelastic separation. The function p will be determined by matching

the experimental curve of ZD dilation vs. MD/CD shear strain. In this research the

[z function is taken to be

p = A(1 - BD) (3.25)

where A and B are constants determined by matching the experimental dilation curve

and D is the internal state variable monitoring the damage, which will be defined later.

For the particular form of interface separation criterion considered in Eqn. 3.17,
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an associated flow rule gives the direction of the normal to the interface separation

surface as

N = 2atTtt + n; (3.26)

for the case of a non-associated flow rule, the direction of the inelastic displacement

increment is given by

M = 2atTtt + /in (3.27)

where t can be either t, or t 2 ; Tt can be either Ttl or Tt2 defined in Equation 3.16,

depending on which 2-D stress space is being probed.

The magnitude of the inelastic displacement jump, dAnP, is determined by the

consistency condition, which requires the interface separation criterion to be satisfied

at any time once the criterion is reached under any monotonic loading, i.e., f (t+dt) =

0, where f is defined in Equation 3.15.

3.2.6 Evolution of State Variable

As discussed previously in the experimental work review, microscopically, the physi-

cal mechanism behind the mechanical behavior of the paperboard under out-of-plane

loading is the same for different loading situations; namely the breaking and slippage

of bonds between fibers. In other words, it is the damage of these fiber bonds which

gives rise to the initiation of permanent interface separation. Therefore in this re-

search, a single dimensionless scalar state variable, the interface damage D, is used.

The interface damage can be interpreted as the fraction of interface area debonded vs.

the initial interface bonding area. Since the interface damage is directly related to the

permanent separation of the interface, it is further assumed to be a function of the

equivalent inelastic displacement, which is determined by the consistency condition.

Therefore, for the damage state variable, we have

D - hD(AP) (3.28)
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where 11D is a mathematical function which makes D evolve from 0 to 1 when _A

increases from 0 to a sufficiently large value, e.g., about the average fiber length.

In this research, 11D is taken to be the following form

1D=tanht(AP/b) (3.29)

where b is a constant with units of length. It is usually of the order of the fiber

diameter, say 30 - 80pim. The interface strength and stiffness are in turn assumed to

evolve with the damage state variable as follows:

Sn = Sn o(1 - R.D); St, = S (1 - Re1D); St= StlO(1 - R, D), (3.30)

where Sno, St,. and St., are the initial (undamaged) interface strengths, and Rn,

Rt, Rt2 are constants controlling the residual strengths of the interface, as will be

discussed later.

For the interface stiffness, unloading tests by Stenberg [31 show continuously

diminishing elastic stiffness once inelastic separation has begun (i.e., post-peak). In

this research we take

K, =KnO (1 - RnD); Kt, = KtIO (1 - RtD); K1, = KO (1 - Rt 2 D), (3.31)

where K,,, K 10 and K1 20 are the initial interface stiffness in the normal and shear

directions, respectively; Ra, Rt, and R 2 are constants controlling the asymptote

values of the elastic stiffness.

3.2.7 Residual shear resistance

The Stenberg[32],[33] through-thickness shear test results show non-negligible shear

load-carrying capability remaining after the shear deformation is very large(e.g., more

than 100% nominal strain) as shown in Fig. 3-41. Due to the nature of the fiber net-

work structure of paperboard, some fibers protrude from the separated interface and
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are dragged during the shearing. These protruding fibers interact with each other

and give rise to the residual shear resistance phenomenon observed. This interesting

phenomenon can be captured within this interface model framework by letting the

two interface shear strengths St, and St2 asymptote towards the residual strengths

observed in the out-of-plane shear tests under zero ZD load, as shown in Equation

3.30. Theoretically, there should be no ZD normal tension strength after the interface

is completely separated under large shear straining, as any protruding fibers would

become disengaged. However, in order to avoid numerical problems when implement-

ing the model and to keep the overall shape of the yield surface without significant

change, we assume there would also be a very small amount of normal tensile strength

remaining when the interface is fully damaged, such as one to two percent of the ini-

tial normal tensile strength. Mathematically, this idea of capturing the residual shear

strength behavior is to evolve the shear strengths between their undamaged values to

their residual values

RnSno < Sn(D) < Sno;

RtjStIO < StI(D) < StIO; (3.32)

Rt 2St2 St 3(D) St20,

where Rn, Rt, and Rt. 2 are constants controlling the asymptote value of the normal

tensile strength and the two shear strength values relative to their initial values. Rt,

and R 2 are first determined by matching the asymptotic value of the experimental

residual shear strength and Rn, is then determined such that the overall shape of the

limiting surface will not change significantly, as will be discussed later in this chapter.

(The same Rn, Rt, and Rt2 have been previously introduced in Equation 3.31 for the

de-stiffening of the elastic constants. These two groups of constants can take different

values.)
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3.2.8 Finite element implementation

One of the advantages of the interface constitutive law is that it can be naturally incor-

porated into conventional finite element software by directly applying the constitutive

relation into surface-like finite elements, i. c., interface elements. The user-defined el-

ement capability (UEL) of the commercial FEM software ABAQUS is used in this

case to fulfill the task.

For the 2-D plane strain case, an interface element with four nodes and two degrees

of freedom at each node is designed to carry out the kinematics, as shown in Fig. 3-24.

These four nodes form two pairs of nodes whose reference locations initially coincide

on surface So in the undeformed configuration. A co-rotational coordinate system can

be defined on the mean surface S (in the 2-D case, it becomes a line), as introduced in

the preceding section, as r1, and r 2 . By using the standard shape function, Ni(1ih, '112),

i =1, .. , where n is the number of nodes on each side of the surfaces, we can express

the relative displacement across the interface as

A (rql, r2) =ZxiNi(r1, rq2), (3.33)
i=1I

where

xi =x- - xi- (3.34)

are the relative displacement at the corresponding nodes on the surface. For a 2-D

case, relative displacement across the line of interface can be expressed as

A = xjN (rq), (3.35)
i=1

where rT can be either 1, or '112 in Equation 3.33. Under this definition, A remains

invariant upon rigid rotation and translation of the element.

The nodal forces are derived from the principal of virtual work

611 = 6W, (3.36)
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where 6V and 6W are the virtual variations of internal strain energy and external

work, and are calculated over the surface S respectively as

6 V T -6A('q1, 712)dS = T ' 6xiNi(i1, 712 )dS (3.37)
SS S

and
n

6W = F 3xi, (3.38)

where F are nodal forces.

The interface elements are compatible with conventional FEM elements, which

can be used to model the bulk materials.
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3.3 Evaluation of properties of interfaces

As discussed previously, most of the experimental work was conducted on TRIPLEXT"

paperboard, which is a five-layered structure containing four interfaces of two types:

two between the mechanical core and the outer chemical pulp layers (the outer in-

terfaces) and two between the mechanical pulp layers inside the mechanical core (the

inner interfaces). The outer interfaces are stronger than the inner ones. For this

reason, the testing results of Stenberg, et al.[32],[33],[31] shown in the previous sec-

tions represent the behavior of the whole composite. Nevertheless, because the pulp

layers and the interfaces are essentially in series when loaded out-of-plane, the load

carried by the interfaces is the same as that applied. Furthermore, because the me-

chanical/mechanical interface is weaker than the mechanical/chemical interface, the

peak and post-peak softening behavior observed in the stress-strain curve are due to

delaminations taking place primarily along the mechanical/mechanical interfaces, as

observed from the SEM tests. Thus, out-of-plane data on the entire TRIPLEXT"

more or less gives the behavior of the mechanical/mechanical layer. To obtain the

behavior of the mechanical/chemical interface, some further experiments are neces-

sary.

To fulfill this purpose, Stenberg[31] conducted ZD tensile tests on the outer inter-

face only. A representative stress-strain curve for the outer interface is shown together

with a stress-strain curve for the entire composite in Fig. 3-25. The "outer interface"

is obtained by carefully grinding out the rest of the material from the TRIPLEX"

composite using a flat grinder. Because the five pulp layers and the four interfaces

are in series with each other under out-of-plane loading, the force carried by each of

them is the same. Furthermore, Dunn's [18] work shows that before the peak stress

is achieved, the majority of the through-thickness deformation comes from the pulp

layers, not from the interfaces. Based on the first observation, we can infer the initial

interface strengths S., St,0 and S 20 of the weaker mechanical-mechanical interfaces

directly from the peak stresses oii the stress-strain curves for the composite. With
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this information, we can obtain the initial strength of the two interfaces based on

the information shown in Fig. 3-25. Based on Dunn's observation [18], we assume

that the stiffness of the interface is much larger than those of the pulp layers, so

that the majority of the elastic out-of-plane deformation would come from the pulp

layers. With this assumption, the initial slope of the through-thickness tensile and

shear stress-strain curves can be taken as the average through-thickness stiffness of

the pulp layers. For the interface stiffness, we take them to be approximately ten

times larger than those of the pulp layers. The method to obtain the out-of-plane

elastic constants for the pulp layers has been discussed in the previous chapter.

The interface stiffness can be backed out by considering the individual pulp layers

and the interfaces as springs in series, since we know the stiffness of the laminate and

those of the individual pulp layers.

Since there is no experimental data available on out-of-plane shear stress-strain

behavior of the mechanical/chemical interface in this research (Note: as discussed

before, we can more-or-less interpret the data on TRIPLEXTM as a good approxima-

tion to represent strength behavior of the weaker mechanical/mechanical interface),

we assume the ratio between shear stiffness and strength of the inner and outer in-

terfaces is the same as that between their tensile stiffness. With this assumption and

shear behavior of the entire composite as an approximation to the behavior of the

weaker inner interface, we can deduce the shear parameters needed by the model for

the outer interface also.

It is also worth noting that with the ground laid down by this research work and

the experimental work done by Stenberg, et al. [32],[33],[31], it should be relatively

easy to conduct further tests to obtain more accurate properties of the interfaces.

The interface properties used in this research will be summarized in the simulation

results section.
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3.4 Verification of interface model

A series of general one-interface-element simulations are conducted to verify the im-

plementation of the interface model.

First, a ZD tension simulation is conducted. The corresponding stress-strain curve

is shown in Fig. 3-26. The figure shows that the typical softening behavior of the in-

terfaces is represented by the model. Before peak, the interface behaves elastically

until the separation criterion is satisfied. The pre-peak hardening is neglected be-

cause it is relatively insignificant in the overall deformation behavior being modelled,

and our attention is focused on the peak and post-peak behavior. At peak, the in-

terfaces start to undergo permanent separation, causing softening behavior. Under

large strain, the ZD tensile strength approaches zero.

A shear test without normal constraint simulation is also simulated. The cor-

responding stress-strain curve is shown in Fig. 3-27. Again, the typical softening

behavior of the interfaces is represented. At large strain, the interface shear strength

approaches the asymptote value we assigned, capturing the residual shear strength

behavior of the interface as discussed in the previous section. Fig. 3-28 shows the

ZD normal dilation versus applied shearing displacement curve for this simulation,

capturing the shear dilation behavior of the interface.

Fig. 3-29 shows the normal stress vs. shear displacement curve from a simple

shear simulation with ZD normal deformation constrained. Under shearing, once the

separation criterion is satisfied, shear sliding attempts to dilate the interface, which is

not permitted by the boundary condition, so a compressive normal stress is generated,

as shown in the figure. The shear stress-strain curve will be shown later with other

curves in Fig. 3-30.

To show the normal-stress sensitivities of the model, four more simulations are

conducted. In the first two simulations, different fixed ZD normal tensile stress are

applied, along with monotonically increasing shear displacement. In the other two

simulations, different fixed normal compressive stress levels are applied, along with
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increasing shear displacement. The obtained shear stress versus applied shear dis-

placement curves are plotted in Fig. 3-30, together with the curves from the "pure

shear" and "shear" with normal constraint simulations. This figure clearly shows

that the shear strength of the interface increases under compressive normal stress

and decreases under tensile normal stress, a typical pressure sensitivity behavior for

this material.

To illustrate the history-dependence of the model, a loading-unloading simulation

is conducted. First the element is loaded by through-thickness ZD tension until some

amount of damage has been accumulated in the interface element. Then the load is

reduced before it is finally increased again for further loading. The through-thickness

normal tensile traction-displacement curve is plotted in Fig. 3-31. The figure shows

that upon unloading and reloading, the interface element correctly keeps track of the

remaining strength of the interface as well as the evolution in the stiffness of the

interface due to accumulation of interface damage.

Two simulations are conducted to verify the response of the interface element in

the traction space. In both simulations the interface element is loaded in combined

through-thickness shear and tension. For the first simulation, the separation criterion

for the interface is fixed without evolving, i.e., no softening (1D-= 0). The theoretical

separation criterion for the interface is plotted, along with the response of the interface

element obtained from FEM simulation in the traction plane in Fig. 3-32. Initially,

the interface behaves linear elastically until the separation criterion is satisfied. Once

the separation surface is reached, the traction response of the interface from FEM

remains on the separation surface, and moves around the separation surface to satisfy

the flow rule. For the second simulation, the interface softens, so the separation

surface shrinks in the traction plane. Fig. 3-33 shows the separation surfaces at

different stages of the deformation, associated with different levels of interface damage

accumulated. These separation surfaces are compared to the FEM traction response

of the interface. In this case, after reaching the initial separation surface, the FEM

response follows the softening evolution of the separation surfaces with the damage
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state variable evolving. These two figures verified that the separation criterion, the

evolution of the criterion and the flow rule are working correctly.
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3.5 Simulation of out-of-plane tests on paperboard

Finally we present numerical results obtained from the simulation of out-of-plane tests

as conducted by Stenberg, et al. [32],[33],[31] and Dunn[18]. The numerical simula-

tions effectively test the capability of the interface model to capture the macroscopic

behavior and the underlying micromechanical mechanisms behind the mechanical

behavior of paperboard during out-of-plane loading.

The FEM model is composed of two parts, the continuum pulp layers and the

interfaces between pulp layers, as shown in Fig. 1-1. The length of the board (in MD

or CD) is 40mm, and the thickness is 0.45mm. Because the out-of-plane inelastic

behavior is primarily controlled by the interfaces, instead of using the in-plane elastic-

plastic material model described in the previous chapter, an orthotropic elasticity

constitutive relation is used for the paperboard pulp layers to simplify the simulations.

In fact, as will be discussed later in the section, the in-plane stress-levels achieved

in the out-of-plane test simulations are relatively low compared to the initial yield

strength of the pulp layers. Thus, assuming orthotropic linear elastic behavior for

the pulp layers in these simulation will not change the important features of the

simulations. The proposed interface model is used for the interfaces. As discussed

previously, TRIPLEXTM is comprised of five pulp layers with four interfaces, as shown

in Fig. 1-1. One thousand first-order continuum plane strain elements are used for

the pulp layers in the FEM model, with 100 elements in the length direction and 2

elements in the thickness direction for each layer. An orthotropic elastic model is

assigned to these plane-strain elements. The nine orthotropic elastic constants used

for the chemical pulp layers are summarized in Table 2.6, and those used for the

mechanical pulp layers are in Table 2.7. These constants for chemical and mechanical

pulp layers are calculated from stress-strain curves from tests on these individual

layers by Stenberg, et al.[31], as discussed in the previous chapter.

As discussed previously, the initial strength and the elastic constants needed for

each interface can be backed out from the stress-strain curves for the individual
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Stiffness
K,, (MPa/mm) 400
Kt10 (MPa/mm) 800

Initial interface strength

Sn. (MPa) 0.45
Stio (MPa) 1.45
Strength/Stiff ness residual

Rn 0.97
R_ _ 0.87

Damage Evolution and flow rule
A 0.28
B 0.99

b (mm) 0.085

Table 3.1: Parameters used for the outer interfaces (MD-ZD plane)

interface, pulp layer and the TRIPLEXT" composites. The constant b used in the

evolution function of damage can be determined by matching the post-peak stress-

strain curves. The constants used in the friction function jt can be determined by

matching the experimental dilation curve. The values of these parameters used in

the interface model are summarized in Table 3.1 for MD-ZD loading of the outer

interfaces and in Table 3.2 for the inner interfaces.

Due to the nature of the material structure and its manufacturing, there are

always heterogeneous defects distributed along the interfaces. In the case of paper-

board, such defect areas could be those over which there is less concentration of

starch and/or lower density of inter-fiber bonds. These relatively weaker areas are

usually the locations where the micro-cracks initiate and later on develop into major

interface delaminations. To simulate this important physical phenomenon, spatial

distributions of the strength of the interfaces are needed. With the interface element

model, incorporation of such spatial distribution is easily achieved by assigning an

initial distribution of strengths to the interface elements on the four interfaces in the

paperboard laminate. There are two main issues in finding a good representative

defect distribution model for the real interfaces. First, we must consider the location
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Stiffness

KQ0 (MPa/mm) 320
Ktl0 (MPa/mm) 640

Initial interface strength

S,, (MPa) 0.35
Sti (MPa) 1.18
Strength/Stif f ness residual

R_ 0.97

R_ _ 0.87

Damage Evolution and flow rule

A 0.28
B 0.99

b (mm) 0.085

Table 3.2: Parameters used for the inner interfaces (MD-ZD plane)

and the length scale of the defect area. The distribution is assumed to be random due

to the nature of paper manufacturing. Thus the location of the defect area is really

of random nature. The length scale of the defect area involves both the macroscopic

fiber density and the length scale of the microstructure of paperboard, i.e., size of

inter-fiber bonds, fiber length etc. Second, we must determine the magnitude of the

interface strength heterogeneity over these weaker areas. It is non-trivial to develop

rigorous answers for these classes of questions, and the procedure requires intensive

statistical testing. As a simple expedient, a step-type of random distribution is used

in this research, as shown in Fig. 3-34 and Fig. 3-35 for MD axial distribution. In

3-D, the real interface strength distribution should cover the area of interface. In our

plane-strain idealization, it is simplified into a line distribution. The assumed relative

interface strength, normalized by the maximum interface strength, is plotted as the y

axis, and the normalized location of the interface elements in the MD/CD-direction

is plotted as the x axis. Such a distribution is somewhat coarse but sufficient to

demonstrate the capabilities of the model. In fact, the relatively easy process of gen-

eration and usage of such interface strength distributions is one of the advantages of

this type of interface model. It also should be noted that this idealization is used for
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simulations in the MD-ZD plane. We further note that since we are idealizing the

area defects as line defects (for plane strain simulation), simulations in CD-ZD plane

may require a different line distribution.

With the distributions of interface strength shown in Fig. 3-34 and Fig. 3-35,

respectively, for the four interfaces, two simulations of ZD tension were conducted,

where the bottom surface of the paperboard was fixed and the top surface was dis-

placed in ZD. The through-thickness average normal stress vs. applied displacement

curves as obtained in the experiment and as computed by the models are compared in

Fig. 3-36. The FEM results and experimental results match very well. Also, the two

defect distributions give very similar macroscopic outputs. Contour plots of through-

thickness normal stress component for the first defect distribution case, at different

loading stages, are plotted in Fig. 3-37 and Fig. 3-38. These stages are also marked

on the overall stress vs. applied displacement curve in Fig. 3-36, as A, B, C ... H. At

the beginning of the deformation, e.g., stage A, all the composite deforms elastically.

With increasing tensile loading, the locations on the interfaces with lowest assigned

interface strength start to undergo plastic separation, as indicated by arrows shown

in stage B, which is near the peak on the stress-applied displacement curve. With

further loading applied, the initiated small cracks start to propagate until several

major cracks start to dominate the deformation, as can been in stages C and D. At

these two stages, we can also see stress concentration near the crack tips and much

lower stress levels along the separating surfaces. At later stages, the propagation of

the major cracks finally causes the delamination of the laminates. By comparing the

distribution of the interface strength as shown in Fig. 3-34 with the locations where

the initial cracks start and the final major cracks develop in the contour plots, we can

clearly see that the defects are instrumental in initiating the delamination process.

The propagation and interactions between cracks are also taken care of as a natural

outcome of the calculation. To further compare the FEM deformed configuration

with those obtained by Dunn[18], a central portion of the contours (relative position

0.3 < x < 0.65, x = 0 at the left end of the specimen and x = 1 at the right end of
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the specimen) from Fig. 3-37 and Fig. 3-38 are magnified and shown in Fig. 3-39 and

Fig. 3-40. Comparison of these deformed configurations with the SEM micrographs

obtained by Dunn[18] shows that the FEM model accurately captures the structural

feature of the deformation of the paperboard. The highest in-plane normal stress

component at each step is checked to make sure it is appropriate to use the elastic

material model for the pulp layers. The results show that it is near stage F, which is

far beyond peak stage, that stress levels higher than the in-plane initial yield strength

are achieved, and then only at local areas of the pulp layers. This indicates that using

linear elastic behavior for the pulp layers in this simulation is appropriate.

Fig. 3-41 shows a comparison of through-thickness shear stress vs. applied shear

displacement curves obtained from ZD-MD shearing of paperboard without normal

constraint. In this simulation the bottom surface of the paperboard was fixed, and the

top surface was subjected to a shear displacement, but was free to expand in the ZD.

The FEM results and experimental results again match very well, and the two defect

distributions again give very similar results. The comparison of through-thickness

dilation vs. applied shear displacement curves is shown in Fig. 3-42. Contours of

the out-of-plane shear stress component are plotted in Fig. 3-43 and Fig. 3-44. At

the beginning of deformation, there is no inelastic interface separation. Once the

separation criterion is satisfied at some of the weaker spots, small cracks initiate in

shear and pop open in the thickness direction, due to the shear-induced dilation.

Stress concentration around the crack tips and stress relaxation on the fractured

interface surfaces can be seen during the delamination process. At the final stages

of deformation, one major de-bonding separates the paperboard into two pieces. By

comparing the deformed shapes of paperboard under pure extension and pure shear,

we can also see that the deformation of TRIPLEXTM under shear without normal

constraint is more homogeneous than that of the paperboard under pure tension, as

also observed in the microscopic experiments by Dunn [18]. As in the last simulation,

to further compare the FEM deformed configuration with those obtained by Dunn[18],

central portion of the contours (relative position 0.3 < x < 0.65) from Fig. 3-43 and
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Fig. 3-44 are magnified and shown in Fig. 3-45 and Fig. 3-46. Once more, one can see

that comparison of these deformed configurations with the SEM micrographs obtained

by Dunn[18] indicates that the FEM model accurately captures the structural features

of the deformation of the paperboard under out-of-plane shear. The highest level of

in-plane stress is checked for each stage of deformation and is less than 10MPa in

this simulation, which is less than the initial MD yield strength of the pulp layers.

Again, this justifies the usage of linear elastic in-plane behavior.

To show the ability of the model to capture the sensitivity of through-thickness

shear resistance on the through-thickness normal pressure, simulations are conducted

by fixing the bottom surface and first applying on the top surface different constant

values of ZD normal compressive stress, followed by increasing imposed shear displace-

ment. The resulting through-thickness shear stress versus applied shear displacement

curves are plotted in Fig. 3-47, together with the curves from the corresponding sim-

ulations. The numerical results agree very well with the tests.

Fig. 3-48 shows contours of the through-thickness normal stress from another sim-

ulation with interface strength distribution 1. In this simulation, increasing shearing

displacement is first applied until the laminate started to exhibit permanent sep-

aration at the weak spots; then the shear displacement is held at this fixed value

(0.07mm); and through-thickness tensile displacement is applied to further delami-

nate the system. History of the applied boundary condition is shown in Fig. 3-49.

The corresponding macroscopic shear stress-strain curve for the first stage and normal

stress-strain for the second stage are shown in Fig. 3-50 and Fig. 3-51, respectively.

During the shearing period, small cracks initiate and pop open in the thickness direc-

tion, due to the shear-induced dilation. Again, the initial small cracks develop along

the locations of the pre-assigned defects. In the second loading stage, the interfaces

continue to delaminate along the cracks caused by the first stage shearing until sev-

eral major cracks become dominant and the final delamination of the laminate occurs.

Another important observation is that the peak overall tensile stress achieved in the

second stage of deformation of the laminate is about 0.14MPa, as shown in Fig. 3-

139



51, lower than the peak stress achieved in the pure ZD extension case, 0.35MPa, as

shown in Fig. 3-36. Explanation for this behavior is that during the first shearing

stage, some interface damage has been developed which leads to the decreased tensile

strength.

3.6 Simulation of local buckling of paperboard

under in-plane compression

The interface model represented interfaces as an integral part of the paperboard

structure. The model can be applied to simulate mechanical behavior of paper-

board in many other applications other than simple out-of-plane loading scenarios.

In this section, we apply the interface model to simulate the in-plane compression of

TRIPLEXTM paperboard which results in local layer kinking and buckling.

The 2-D plane strain mesh during different stages of the compressive deformation

is shown in Fig. 3-52. The length of the entire paperboard is 1.75mm and the thickness

is 0.45mm. Orthotropic linear elastic behavior is used for the pulp layers and the

interface element is used along the four interfaces. As shown in the figure, a mesh

density difference is used as the source of inhomogeneity to trigger the buckling. The

board is fixed at one end, and a uniform in-plane compressive displacement boundary

condition is applied on the other end. At step 1, the board started to kink near the

location where mesh density changes. At step 2, the interface starts to delaminate

primarily near locations where the kinks were developed. A major delamination

formed at step 3. In step 4, this major delamination takes over, causing the whole

structure to fail by buckling.

The corresponding compressive stress vs. the applied compressive displacement

curve is shown in Fig. 3-53. The peak stress obtained is around 28MPa. The average

MD compressive strength obtained by Stenberg[31], is around 20MPa. Considering

the fact that, first, linear elastic behavior is used for the in-plane behavior of the pulp
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layers and second, the length of the specimen here is shorter than those of Sternberg,

the result obtained is very good. Furthermore, the fact that such good prediction

of peak compressive strength is obtained with only linear elastic in-plane behavior

indicates that the interface model is capable of representing a very important part of

structural behavior of the composite.

3.7 Discussion

Based on microscopic and macroscopic through-thickness experimental results, a gen-

eral 3-D elastic-plastic internal state variable theory interface constitutive relation is

presented to model the out-of-plane behavior of laminated paperboard. The initi-

ation of the permanent interface separation is controlled by a pressure-dependent

traction-based separation criterion. The behavior of the fractured interface is con-

trolled by the evolution of the separation criterion and frictional separation flow rule.

The constitutive relation is verified by simplifying it into a 2-D plane-strain interface

model and implemented kinematically into a 2-D interface element through the user

defined element (UEL) of the commercial software ABAQUS. (In the latest versions

of ABAQUS, the constitutive model can be more easily implemented with a newly

available user-defined interface behavior module (UINTER,/VUINTER), which ex-

empts the users from implementing the kinematics portion of the interface element

as in UEL.) The interface element is compatible with conventional continuum finite

element discretization of the continuum pulp material. The interface elements are

used to simulate the delamination of paperboard laminates under through-thickness

loading. Numerical results show that the model can represent the following important

features of the mechanical behavior of interfaces in paperboard as well as many other

laminated composite materials:

" Shear strength dependence on normal stress

" Post-peak softening interface traction-displacement jump relation
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" Coupling between through-thickness normal and shear behavior; i. e., shear de-

formation introduces dilation in the normal direction due to the interaction of

fiber entanglement and the fractured interface surfaces

" History-dependent interfacial behavior

" Reduction of interface stiffness with interface damage

The proposed interface constitutive law can explicitly simulate the delamination

and fracture of interfaces. It imposes no explicit restrictions on the size, location,

distribution, or direction of the growth of cracks. This enables the model to be

able to naturally predict the initiation of microcracks and their growth into major

delamination at any location.

This interface constitutive relation can be relatively easily modified and applied

to many different type of interfaces ranging from interfaces in classical composite

materials to brittle materials. The simplified 2-D model shows that even with only

a single state variable, the interface damage D, very good numerical results can

be obtained. The interface damage can be interpreted as a fraction of interface

area debonded vs. the initial bonding area. The post-peak softening behavior can

be adjusted by tuning the evolution function of the state variables. The frictional

pressure sensitivity behavior can be adjusted by adopting different forms of separation

or delamination criterion. The coupling effect between normal and tangential shear

behavior can be adjusted by using non-associated flow rule to control the ratio between

normal plastic flow and tangential plastic flow.

Functionals and parameters needed in the constitutive relation can be relatively

easily obtained by conducting pure tension, pure shear and combined normal and

shear loading experiments.

Simulations show that with a distribution of interface strength to simulate the

distributed interface defects, the delamination process of the laminated paperboard

can be explicitly simulated. In the absence of localized external loadings, small cracks
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first initiate at these defects and later propagate into dominant major cracks which

lead to the final delamination of the laminates.
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Figure 3-1: ZD dilation - shear displacement curve under unconstrained ZD-MD

shear(Stenberg, et al. [32], [33]).
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Figure 3-3: Experimental peak strength locus and theoretical initial separation sur-
faces.
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Figure 3-4: Micro-level ZD normal stress-strain curve obtained by Dunn [18] from
SEM.

Figure 3-5: Triplex MD through-thickness SEM tension image correlated with stress-

strain data obtained by Dunn [18](Step 1).
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Figure 3-6: Triplex MD through-thickness SEM tension image correlated with stress-

strain data obtained by Dunn [18] (Step 2).

Figure 3-7: Triplex MD through-thickness SEM tension image correlated with stress-

strain data obtained by Dunn [18] (Step 3).
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Figure 3-8: Triplex MD through-thickness SEM tension image correlated with stress-

strain data obtained by Dunn [18] (Step 4).

Figure 3-9: Triplex MD through-thickness SEM tension image correlated with stress-

strain data obtained by Dunn [18] (Step 5).
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Figure 3-10: Triplex MD through-thickness SEM tension image correlated with stress-
strain data obtained by Dunn [18] (Step 6).

Figure 3-11: Triplex MD through-thickness SEM tension image correlated with stress-
strain data obtained by Dunn [18] (Step 7).
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Figure 3-12: Triplex MD through-thickness SEM tension image correlated with stress-
strain data obtained by Dunn [18] (Step 8).

Figure 3-13: Triplex MD through-thickness SEM tension image correlated with stress-

strain data obtained by Dunn [18] (Step 9).
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Figure 3-14: Triplex MD through-thickness SEM tension image correlated with stress-

strain data obtained by Dunn [18] (Step 10).

Figure 3-15: Micro-level stress ZD-MD shear strain curve curve obtained by Dunn

[18] from SEM.
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Figure 3-16: Triplex MD through-thickness SEM shear image correlated with stress-

strain data obtained by Dunn [18] (Step 1).

Figure 3-17: Triplex MD through-thickness SEM shear image correlated with stress-

strain data obtained by Dunn [18] (Step 2).
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Figure 3-18: Triplex MD through-thickness SEM shear image correlated with stress-

strain data obtained by Dunn [18] (Step 3).
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Figure 3-19: Triplex MD through-thickness SEM shear image correlated with stress-

strain data obtained by Dunn [18] (Step 4).
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Figure 3-20: Triplex MD through-thickness SEM shear image correlated with stress-

strain data obtained by Dunn [18] (Step 5).

Figure 3-21: Triplex MD through-thickness SEM shear image correlated with stress-

strain data obtained by Dunn [18] (Step 6).
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Figure 3-22: Illustration of 3-D interface between two solids.
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Figure 3-23: Flow directions on the yield surface.
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Figure 3-24: Kinematics: 2-D interface element.
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Figure 3-25: Comparison of ZD tensile stress-strain curve of the outer interface and
the TRIPLEXT" composite laminate.
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Figure 3-29: Through-thickness normal stress vs. shear displacement (MD-ZD) curve
from one-element FEM simulation with zero through-thickness normal displacement
(-An 0).
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Figure 3-30: Normal stress sensitivity curve of through
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0.4

0.3 -

0.2 -
U)

0

z
0.1

0.025 0.05

-thickness shear stress-strain

Normal separation [mm]
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Figure 3-32: Response of non-softening interface element in the traction space under
combined through-thickness loading of monotonically increasing proportional relative
separation and sliding. (dAt/dAn = 1.0)
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Figure 3-33: Response of softening interface element in the traction space under
combined through-thickness loading of monotonically increasing proportional relative
separation and sliding. (dAt/dAn = 1.0)
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Figure 3-34: Initial defect distribution 1.
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Figure 3-35: Initial defect distribution 2.
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Figure 3-37: Contour of local normal stress component in ZD from pure tension
simulations using defect distribution 1 (Fig. 3-34). A-D, respectively, denote contours
at load levels of the correspondingly named points on the stress-strain curves shown
in Fig. 3-36
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Figure 3-38: Contour of normal stress component in ZD from pure tension simulations

using defect distribution 1 (Fig. 3-34) (continued). E-H, respectively, denote contours

at load levels of the correspondingly named points on the stress-strain curves shown

in Fig. 3-36
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Figure 3-39: Magnified view of central part of contour of normal stress component
in ZD from pure tension simulation using defect distribution 1 (Fig. 3-34). Relative
position 0.3 < x < 0.65.
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Figure 3-40: Magnified view of central part of contour of normal stress component in

ZD from pure tension simulation using defect distribution 1 (Fig. 3-34) (continued).

Relative position 0.3 < x < 0.65.
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Figure 3-41: Comparison of MD-ZD pure shear stress applied shear displacement
curves from experiment and FEM.

0.12

0.1

E
0.08

0.06

0.04
0z

0.02

0 0.25
Shear displacement applied to paperboard [mm]

Figure 3-42: Comparison of dilation curves under pure shear from experiment and
FEM.
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Figure 3-43: Contour of through-thickness shear stress component from pure shear
simulation using defect distribution 1 (Fig. 3-34). A-D, respectively, denote contours
at load levels of the correspondingly named points on the stress-strain curves shown
in Fig. 3-41.
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Figure 3-44: Contour of through-thickness shear stress component from pure shear

simulation using defect distribution 1 (Fig. 3-34) (continued). E-H, respectively,
denote contours at load levels of the correspondingly named points on the stress-

strain curves shown in Fig. 3-41.
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Figure 3-45: Magnified view of central part of contour of normal stress component
in ZD from pure shear simulation using defect distribution 1 (Fig. 3-34). Relative
position 0.3 < x < 0.65.
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Figure 3-46: Magnified view of central part of contour of normal stress component
in ZD from pure shear simulation using defect distribution 1 (Fig. 3-34) (continued).
Relative position 0.3 < x < 0.65.
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Figure 3-47: Pressure sensitivity of shear strength: Comparison of experimental and
numerical results in MD-ZD.
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Figure 3-48: Contour of through-thickness normal stress component from combined

through-thickness shear and tension simulation using defect distribution 1 (Fig. 3-34)

(MD-ZD).
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Figure 3-49: History of applied boundary conditions for from FEM simulation using
defect distribution 1 (Fig. 3-34)

1.2

0.9

CU

C 0.6
U)
I-

CI)

0.3

0.02 0.04 0.06 0.08
Applied shear displacement [mm]

Figure 3-50: MD-ZD pure shear stress applied shear displacement curves from FEM
using defect distribution 1 (Fig. 3-34) (first stage of deformation).
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using defect distribution 1 (Fig. 3-34) (second stage of deformation).
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Figure 3-52: Mesh of the paperboard at different stages of deformation from the
in-plane buckling simulation of TRIPLEXTM.
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Figure 3-53: Compressive stress vs. applied compressive displacement curve obtained

from in-plane buckling simulation of TRIPLEXTM.
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Chapter 4

Simulation of an exemplar

converting process: creasing and

folding

Converting process converts flat paperboard into a final shape through a series of

sub-processes, e.g., the creasing and subsequent folding of paperboard; the gluing

of the paperboard; printing or coating on the paperboard surface, etc. The entire

converting process involves dozens of different control variables. For example, during

the creasing process, many parameters can influence the processing results. Some of

the parameters have been previously shown in Fig. 1-13, such as the punching depth,

the width of the male and female die, the shape of the male die, etc.

It is very desirable for the paperboard industry to be able to simulate the process

because the high number of design parameters involved in the process makes it ex-

pensive to conduct experimental parametric studies on all of the variables for so many

different types of paperboards. With the implementation of the interface model and

the in-plane model into a finite element package, simulation of the process is made

possible.

In this chapter, two types of simulations are conducted. First, simulations of

a creasing/folding processes performed in a SEM are conducted. Then industrial
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creasability tests are simulated. The primary difference between these two types

of simulations lies in the way the pre-punched paperboard is folded. Both of these

simulations are conducted within a 2-D plane-strain framework.

4.1 Simulation of SEM creasing/folding process

Dunn [18] conducted tests to investigate the micro-mechanisms underlying the de-

formation behavior of paperboard during creasing and folding. Photographs of the

testing apparatus used to conduct the creasing and that used to perform folding are

shown in Fig. 4-1 and Fig. 4-2, respectively. The FEM simulations of the creasing

and folding processes are illustrated in Fig. 4-3 and Fig. 4-4. The first step is to

apply a fixed normal in-plane stress at the ends of the paperboard before placing it

between a male die and a female die, with two stoppers on each side of the male

die above the top surface of the paperboard. The fixed stress is applied to simulate

the web-tension that paperboard experiences during the actual punching process that

occurs on a roller. The second step is the punching (or creasing) of the paperboard

by a male die into the female die, followed by unloading of the male die in step 3.

In step 4, the web tension stress is removed, as well as the two dies and the two

stoppers. The creased paperboard is then clamped on its left side (see Fig. 4-4). The

top clamp starts some distance beyond the far left tip of the specimen and ends near

the center of the creased region. The bottom clamp starts at the same place as the

top clamp, but ends at a distance about the thickness of the specimen to the left end

of the creased region. In the next step (step 7), the clamped paperboard is rotated

approximately 20 degrees, as done in the SEM tests. Step 7 also moves in the load cell

which will fold the creased specimen. In Step 8, the load cell displaces vertically and

the paperboard is folded to form the designed corners. In the last step, the folding

load cell is unloaded.

As discussed earlier, the creasing process involves a large number of design vari-

ables which influence the end quality of the paperboard products. Dunn [18] con-
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ducted SEM tests to investigate the effect of the width of the male and the female

die on the quality of the crease. In this section, two tests are simulated. In the FEM

models, the material parameters obtained for the mechanical and chemical layers, as

well as those obtained for the inner and outer interfaces in the previous chapters are

used to represent the TRIPLEXTM paperboard. Because the in-plane model doesn't

include mechanisms to fracture or fail the material when the in-plane strain is large

enough, the in-plane hardening equations expressed in Eqn. 2.22 are modified such

that the flow strength of the sub-surfaces would flatten out after reaching the corre-

sponding fracture strength, instead of continuing to increase with increasing plastic

strain. These new hardening constants are summarized in Table 4.1 and Table 4.2,

respectively. As will be shown later in the SEM pictures taken by Dunn [18], in-plane

fracture does not occur until the very end of the test and only in very localized areas.

A1(MPa) A 2(MPa) A 3(MPa) A 4(MPa) As(MPa)
70.0 28.0 12.5 12.0 12.0
B1  B2 B 3  B 4  B5

80.0 80.0 30.0 60.0 30.0
C1(VIPa) C2(MPa) C3(MPa) C4(M/IPa) Cs(11IPa)

10.0 10.0 25.0 10.0 10.0

Table 4.1: Modified in-plane yielding and hardening parameters used by model for
mechanical pulp layers in TRIPLEXT".

A1(MPa) A 2(MPa) A 3(MPa) A 4 (MPa) As(MPa)
35.0 18.0 10.5 10.0 10.0
B1  B 2  B 3  B 4  B5

80.0 80.0 30.0 60.0 30.0
C1(MPa) C2(MPa) C3(MPa) C4 (MPa) Cs(1IPa)

10.0 10.0 25.0 10.0 10.0

Table 4.2: Modified in-plane yielding and hardening parameters used by model for
chemical pulp layers in the TRIPLEXTM composite laminate.

In the first simulation, the width of the male die is 0.5mm and and that of the
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female die is 1.56mm. The length of the specimen is 24mm. The paperboard specimen

is punched to a depth of about 0.6mm and then taken out and folded at a moment

arm of about 20mm. SEM micrographs of the MD-ZD cross section are taken during

the process, and these images are compared with corresponding FEM contour plots

from simulation of the test as follows.

Fig. 4-5 shows the micrograph taken when the male die just came into contact

with the specimen. Contours of the MD normal stress component at the correspond-

ing stage in the FEM simulation is plotted in Fig. 4-6. In Fig. 4-7 and Fig. 4-8,

experimental and numerical results are compared when the punching begins. At this

stage, material directly beneath the male die undergoes both through-thickness and

in-plane compression. At the bottom surface of the specimen under the male die, the

material is under in-plane tension. Material in the gap between the male die and the

female die is primarily under out-of-plane shear. At this stage, no obvious delamina-

tions are apparent in either the SEM or the FEM images. Fig. 4-9 and Fig. 4-10 show

results when the male (lie is about to penetrate into the female die. At this stage, as

depicted in both the SEM and FEM images, material in the gap between the male

and female die starts to delaminate due to out-of-plane shear. Both images also show

the specimen thickness to increase in these sections because of the shear-induced in-

terface dilation. The final stage of punching (creasing) is depicted in Fig. 4-11 and

Fig. 4-12. Up to this point, the intended shear damage is imparted to the material

being punched through between the male and female (lie. Delaminations are more

apparent and are distributed along the sheared sections of the specimen. Note that,

as shown by the contours from the FEM simulation, the maximum MD normal stress

achieved in the chemical layers exceeds both the experimental uniaxial MD tensile

and the compressive failure strength. (approximately 90MPa and 40MPa, respec-

tively). However, these stress values are only reached at small localized areas under

significant amount of ZD compression.

After the maximum punching depth is reached, the male die is retracted. Fig. 4-

13 and Fig. 4-14 show the results at some intermediate stage. It can be seen from
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both numerical and experimental results that the specimen during the retraction step

follows the retraction of the male die at this stage, indicating elastic unloading. In

Fig. 4-15 and Fig. 4-16, however, the male die pulls away from the specimen, showing

plastic deformation accumulated inside the specimen. Arrows in Fig. 4-15 indicate

some of the damage locations. It should be noted that, due to the fibrous nature of

paperboard and the effect of a 2-D SEM image, the delaminations in the SEM images

are not as obvious as those shown by the FEM results. However, the very fact that

the SEM images show significant thickening of the specimen on each side of the male

die clearly indicates the existence of delaminations inside the creased region. Another

observation is that both FEM and SEM results show distinct regions of compression

and shear. Material at the ZD compressed center under the male (lie is much denser

that the surrounding shear-dilated regions. The punching force vs. punching distance

curve for the male die is plotted in Fig. 4-17.

For the folding process, the SEM images of the specimen prior to folding are

shown in Fig. 4-18. The corresponding contour plot of the equivalent plastic strain

from the FEM simulation is shown in Fig. 4-19. Some of the very obvious delami-

nations created (luring the punching process are marked by arrows in Fig. 4-18. In

addition to the cracks near the creased region, cracks are also observed outside of

the region as indicated by the arrows. During folding (Fig. 4-19), we can see obvious

delaminations and in-plane plasticity at localized regions where the male and female

(lie had contacted the specimen during the punching step. In Fig. 4-20 and Fig. 4-21,

the pre-delaminated interfaces continue to open up, primarily because of the in-plane

compressive stress produced by the bending moment, as indicated by the FEM MD

normal stress contour. Fig. 4-22 and Fig. 4-23 show the final shape of the specimen at

the end of the test after the load is removed. The FEM simulation captures the main

features of the folded region very well, i.e., one major delamination along the outer

interface on the outside of the crease and another long delamination along one of the

inner interfaces inside the mechanical core. The bending moment (vertical reaction

force times the corresponding moment arm) from the FEM simulation is also plotted
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in Fig. 4-24. This curve is similar to curves obtained from industrial creasability

test results, as will be shown later. (The maximum bending angle achieved by the

FEM simulation is about 60 degrees before the elements became too distorted for the

simulation to continue. The exact bending angle was not measured in the SEM test.

A reasonable estimation will be between 60 to 90 degrees.)

To further study the underlying mechanics of the creasing/folding process. The

behavior of one representative interface element during the entire simulation is stud-

ied. The representative element is located in the region between the male and female

die, as indicated in Fig. 4-25. Fig. 4-26 plots the time history of the relative normal

and shear displacement of the interface element across the entire process history. Step

time 0 to 2 corresponds to the period when web-tension is applied and the male die

just started touching the specimen. Step time 2 to 4 corresponds to the punching

period, and step time between 4 to 9 represents the intermediate steps between the

punching step and the folding step. Time 10 and after corresponds to the folding

step. From Fig. 4-26 we can see that the representative interface element is subjected

to negative shearing separation which in turn created ZD normal tensile separation

during the punching step. The two relative displacements plateau after the punching

step before increasing again in the final folding step. The corresponding accumu-

lated interface damage is plotted in Fig. 4-27. This figures show the essential idea of

the creasing/folding process: interface damages are created during the punching step

(around a value of 0.6 in this case, on a scale of 1.0) so that later on, this intended

damage will make it easier for the ideal crease shape be created in the folding process,

where the interfaces delaminate further. (In this case, a final damage of around 0.8

was achieved)

The crease created in this test is considered to be a "good" crease because it is

more or less symmetric about its center. Dunn [18] also produced a crease of poorer

quality by using larger (lies. In particular, the male die width is increased to 0.86mrnm

and the female die width to 2.03mm. The larger gap between the male and female

(lie generates lower out-of-plane shear strain in the material in the gap, which means
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less interface damage will be created. Meanwhile, a larger male die creates a wider

punched region, which in turn increases the difference in moment arm length between

the two ends of the punched region. These two effects together generally result in an

unsymmetrical crease.

Simulation of this test is conducted to further test the predictive capability of the

models. As in the last simulation, contours from the FEM simulation are compared

with the corresponding SEM pictures. Fig. 4-28 shows the picture taken when the

male die just came into contact with the specimen. Contours of the MD normal

stress component at the corresponding stage in the simulation is plotted in Fig. 4-29.

A similar comparison is made for the last step of the punching process in Fig. 4-

30 and Fig. 4-31. As in the last simulation, the FEM results capture the general

characteristics of the punch process. The punching force vs. punching distance curve

for the male die is plotted in Fig. 4-17 as the dashed line. Comparing to the solid

line shown for the previous simulation in the same figure, a bit lower punch force is

required to punch the specimen to the same depth into the female (lie b)ecause the gap

between male die and female is larger in the second simulation, which makes it easier

for the male die to punch the board into the female die. The same information at the

end of the subsequent unloading step is shown in Fig. 4-32 and Fig. 4-33. Note that

the radius of the corner of the male die used in the simulation is larger than that of

the male die in the SEM test, for the purpose of better numerical convergence. This

results in lower stress level in material in the regions around the male (lie corners

in the FEM simulation compared to that generated in the test. For the folding

process, the SEM image with no folding moment applied is shown in Fig. 4-34. The

corresponding contour plot of the equivalent plastic strain at the same stage from the

FEM simulation is shown in Fig. 4-35. Fig. 4-36 and Fig. 4-37 show the comparison

of the experimental and numerical results at the stage when a major delamination

has developed along one of the inner interfaces. With further increase in the bending

moment applied, more delaminations develop under in-plane compression stress in the

creased region as shown in Fig. 4-39. The corresponding SEM image is shown in Fig. 4-
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38. By comparing these two figures, it is obvious that the FEM simulation captures

the main features of the deformation of the creased region very well at this stage.

Fig. 4-40 shows the SEM image at the end of the test. The crease became lopsided

to some extent at this stage, indicating the formation of "bad" crease with more

delaminations developed at end of the punched-damaged region closest to the clamps.

The simulation started to have convergence problems before this stage is reached. The

bending moment (vertical reaction force times the corresponding bending arm) from

the FEM simulation is also plotted in Fig. 4-41. The peak bending moment required to

fold the specimen in this simulation is about 14Nmm, higher than that required in the

last simulation. (A value of about 13Nnm, as shown in Fig. 4-24). This is as expected

since the larger gap between male die and female die creates less damage during the

punching process which makes it harder to fold later on. In summary, comparison of

the FEM simulation results with SEM creasing/folding tests show that, armed with

the interface model and the in-plane model, the numerical simulations represent the

entire process very well by capturing the micro-mechanical mechanisms underlying

the creasing/folding process. Combinations of the SEM and FEM results provides a

complete understanding of the mechanics behind the process. In particular, the stress

contours and information about the interface available from the FEM simulation (such

as those shown in Fig. 4-26 and Fig. 4-27) provides additional insights to the entire

process. This information can be utilized to optimize the design of the process.

4.2 Simulation of an industrial creasability test

Simulations were also conducted to simulate the industrial standard creasability test

(Swedish standard test number SE 015). A schematic of the test is showne in Fig. 4-

42. The creasability test is different from the SEM creasing/folding test of the last

section in that the folding of the creased paperboard is done by clamping one side

of the un-punched portion of the board and rotating this portion with respect to

a fixed point, instead of by vertical translational movement of a loadcell against the
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specimen. This procedure is performed on a creasability tester, which is an instrument

used to measure the bending resistance of paperboard as a function of the bending

angle. As shown in Fig. 4-42, a creasability tester consists of a clamping device with

one fixed clamp and one movable clamp. The paperboard sample is pivoted about

a rotational center located at the front edge of the fixed clamp. The loadcell is a

blunted knife-edge mounted near the other end of the specimen. A force transducer

is used to measure the reaction force at the knife tip.

The steps of the FEM simulations are illustrated in Fig. 4-43 and Fig. 4-44. Five

simulations were conducted to investigate the effect of die size and punch depth on the

bending resistance of the creased paperboard. Since the punching step is more or less

the same as that in the previously discussed punching process, here we concentrate our

attention on the folding process and the corresponding bending moment vs. bending

angle curve. A schematic of the folding process of the creasability test simulated is

shown in Fig. 4-45, and the parameters studied are depicted in Fig. 4-46. The length

of the rotating portion of the specimen is 10mm and the width of the specimen is

20mm. The control parameters of the simulated creasability tests are listed in Table

4.3.

test# Male width [mm] Male type Female width [mm] Crease depth [[nn]

1 0.7 Square 1.5 -50
2 0.7 Square 1.5 150
3 0.9 Round 1.5 50
4 0.9 Square 1.7 -50

5 0.9 Square 1.7 150

Table 4.3: Control parameters used for the creasability tests.

Comparison of the numerical and experimental bending moments vs. bending

angle curves are shown in Fig. 4-47 to Fig. 4-51 (The tests were conducted at Tetra

Pak, Sweden). From these curves, we can see that the FEM simulations predict the

peak moment of the test quite well. The numerical results also predict the trend of the

effects of the test parameters accurately, i.e., (1) the peak bending moment decreases
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with increasing punch depth (shown by comparison of tests 1 and 2, 4 and 5); (2) with

the same punch depth, a larger gap between male die and female die width, or in other

words, a larger distance between male and female die, decreases the peak bending

moment (shown by comparison of tests 1 and 4, 2 and 5); (3) There is a lower peak

bending moment when a square-shaped male die is used instead of a round-shaped

one (shown indirectly by comparison of test 3 and 5). The peak bending moments of

these simulated tests are listed together with values from corresponding experiments

in Table 4.4. The numerical predictions of the bending angle corresponding to the

peak bending moment are larger than the experimental values in all of the cases.

This is primarily because in the FEM simulations, a rounded plate (attached to a

load cell) with finite width was used, which causes some sliding between the plate

and the specimen; while in the creasability tests, a sharp knife is used, which prevents

the specimen from finite sliding at the contact point at the beginning of the rotation

of the clamped portion. Another issue encountered in the FEM simulation is that,

when the rotation of the clamps reaches about 40 - 50 degrees, mesh distortion at the

far end of the crease (with respect to the clamps) becomes too large for the simulation

to continue. This is why, in the FEM simulations, the maximum bending angle that

can be reached is around 50 degrees. However, since the peak bending moment is the

most important indicator of the bending resistance of the specimen, this issue is less

significant.

test# Experimental peak moment [Nmm] Numerical peak moment [Nmm.]
1 22 20
2 14 13.5
3 24 21
4 22 19
5 15 15

Table 4.4: Comparison of peak bending moment for the creasability tests.

Contour plots of the MD normal stress component at the final stage of the FEM

simulation is plotted in Fig. 4-52, and that of the equivalent plastic strain is shown in
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in Fig. 4-53. From Fig. 4-52, we can see that the individual layers are under bending

and each layer is subject to both tension and compression. At this stage, most of the

plastic strain is concentrated in regions that had made contact with the male and

female dies during the punch process.

With the good predictive capability shown, the combined interface and in-plane

model can be used to make the design of the creasing/folding process for different

types of paperboards more efficient by running computer simulations which comple-

ment a much-reduced amount of testing.

4.3 Discussion

Although the simulations are found to be predictive of the corresponding experimental

observations, there are still aspects of the simulations that need to be further explored

in order to make the simulations better representative of the real process. Some of

these possible future improvement are listed below:

" In these simulations, a uniform distribution of the interface strength is used. As

discussed and investigated in the interface model chapter, the real paperboards

have a nonuniform distribution of interface strength, and the strength distribu-

tion changes the properties of the paperboard. So in future simulations, defect

distributions should be introduced.

" Extension of the simulation to three dimension.

" Further investigation in numerical techniques is needed to improve the severe

discontinuity issue during contact and localized mesh distortion. For example,

an explicit finite element package (e.g., ABAQUS EXPLICIT) can be used

which will improve the contact simulation, with data transferred back to implicit

package for unloading. Also remeshing techniques can be used to prevent severe

element distortion.
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Figure 4-1: Experimental apparatus for conducting the punching test [18].

Figure 4-2: Experimental apparatus for conducting the folding test [18].
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Left stopper Male die Right stopper

Female die

Undeformed board placed between male and female die

Step 1: Apply web tension on the board

Step 2: Punching(Creasing) of board

U i

Step 3: Unloading of board after punching

Step 4: Removal of creasing fixture (dies and stoppers)

Figure 4-3: Illustration of the creasing/folding process; part (a), creasing.
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Step 6: Clamping of the punched board

Step 7: Rotation of the clamp and the board and moving in
of the load cell

Step 8: Folding of the board: load cell moves futher down

Step 9: Retraction of the load cell

Figure 4-4: Illustration of the creasing/folding process; part (b), bending.
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Figure 4-5: SEM image of TRIPLEXTM MD punching process (step 1) [18]
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Figure 4-6: Contour plot of MD normal stress from simulation of SEM TRIPLEXTM
MD punching process corresponding to that shown in Fig. 4-5.
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Figure 4-7: SEM image of TRIPLEXTM MD punching process (step 2) [18].
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Figure 4-8: Contour plot of MD normal stress from simulation of SEM TRIPLEXTM

MD punching process corresponding to that shown in Fig. 4-7.
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Figure 4-9: SEM image of TRIPLEXTM MD punching process (step 4) [18].
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Figure 4-10: Contour plot of MD normal stress from simulation of SEM TRIPLEXTM

MD punching process corresponding to that shown in Fig. 4-9.
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Figure 4-11: SEM image of TRIPLEXTM MD punching process (step 6) [18].
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Figure 4-12: Contour plot of MD normal stress from simulation of SEM TRIPLEXTM

MD punching process corresponding to that shown in Fig. 4-11.
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Figure 4-13: SEM image of TRIPLEXTMI MD punching process (step 7) [18].
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Figure 4-14: Contour plot of MD normal stress from simulation of SEM

MD punching process corresponding to that shown in Fig. 4-13.
TRIPLEXTM
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Figure 4-15: SEM image of TRIPLEXTM MD punching process (step 8) [18].
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Figure 4-16: Contour plot of MD normal stress from simulation of SEM TRIPLEXTM

MD punching process corresponding to that shown in Fig. 4-15.
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Figure 4-17: Punching force vs. punching distance curve for the male die obtained
from FEM simulation of the punching process as first step of a converting process.
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Figure 4-18: SEM image of TRIPLEXTM MD folding process (step 1) [18].

Figure 4-19: Contour plot of initial equivalent plastic strain from simulation of SEM
TRIPLEXTM prior to MD folding process corresponding to that shown in Fig. 4-18.
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Figure 4-20: SEM image of TRIPLEXTM MD folding process (step 3) [18].
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Figure 4-21: Contour plot of MD normal stress from simulation of SEM TRJPLEXTM
MD folding process corresponding to that shown in Fig. 4-20.
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Figure 4-22: SEM image of TRIPLEXTM MD folding process (step 6) [18].
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Figure 4-23: Contour plot of MD normal stress from simulation of SEM TRIPLEXTM,
MD folding process corresponding to that shown in Fig. 4-22.
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Figure 4-24: Bending moment vs.
of the folding process as last step

bending angle curve obtained from FEM simulation
of a converting process.
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Figure 4-25: Illustration of location of a representative interface element used to
investigate behavior of the interface during converting process.
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Figure 4-26: Time history of the relative interface normal and tangential separation

of the representative interface element shown in Fig. 4-25 during the entire converting

process.
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Figure 4-27: Time history of the accumulated damage inside the representative in-
terface element shown in Fig. 4-25 during the entire converting process.
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Figure 4-28: SEM image of TRIPLEXTM MD punching process (step 1, male die
width 0.84mm and female die width 2.03mm) [18].
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Figure 4-29: Contour plot of MD normal stress from simulation of SEM TRIPLEXTM
MD punching process corresponding to that shown in Fig. 4-28.
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Figure 4-30: SEM image of TRIPLEXTM MD punching process at the last step (male
die width 0.84mm and female die width 2.03mm) [18].
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Figure 4-31: Contour plot of MD normal stress from simulation of SEM TR{IPLEX",
MD punching process corresponding to that shown in Fig. 4-30.
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Figure 4-32: SEM image of TRIPLEXTM MD punching process at the last step of
unloading (male die width 0.84mm and female die width 2.03mm) [18].
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Figure 4-33: Contour plot of MD normal stress from simulation of
MD punching process corresponding to that shown in Fig. 4-32.
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Figure 4-34: SEM image of TRIPLEXTM MD punching process at the first step of
folding (male die width 0.84mm and female die width 2.03mm) [18].
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Figure 4-35: Contour plot of MD normal stress from simulation of SEM TRJPLEXTM
MD punching process corresponding to that shown in Fig. 4-34.
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Figure 4-36: SEM image of TR{IPLEX"' MD punching process at step 2 of folding

(male die width 0.84mm and female die width 2.03mm) [18].
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Figure 4-37: Contour plot of MD normal stress from simulation of SEM TIRIPLEXTM
MD punching process corresponding to that shown in Fig. 4-36.
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Figure 4-38: SEM image of TRIPLEX"' MD punching process at step 3 of folding

(male die width 0.84mm and female die width 2.03mm) [18].

+1.630021
+8.6000+01

+4.4000+01
+3.200*+01
+2. 0000+01
+. 0000+0031-.000e+00

-1.6000+01
* 2.8000+01
-4 .0000+017 -. 252e+01

Figure 4-39: Contour plot of MD normal stress from simulation of SEM TRIPLEX"M

MD punching process corresponding to that shown in Fig. 4-38.
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Figure 4-40: SEM image of TRIPLEXTM MD punching process at the final step of

folding (male die width 0.84mm and female die width 2.03mm) [18].
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Figure 4-41: Bending moment vs. bending angle curve obtained from FEM simulation

of the folding process as last step of a converting process. (male die width 0.84mm
and female die width 2.03mm)
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Figure 4-42: Schematics of the creasability test apparatus. (Swedish standard test

number SE 015)
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Left stopper Male die

Female die

Step 1: Undeformed board placed between male and
female die

Step 2: Apply web tension on the board

Step 2: Punching(Creasing) of board

Step 3: Unloading of board after punching

Figure 4-43: Illustration of the creasability test; part (a), creasing.
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Step 5: Removal of creasing fixture (dies and stoppers)

Step 6: Clamping of the punched board

Step 7: Move in the folding load cell

Step 8: Folding of the board: rotation of the the clamps
with load cell fixed

Figure 4-44: Illustration of the creasability test; part (b), folding.
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Figure 4-45: Geometry of the creasability test.

Figure 4-46: Illustration of parameters whose effect is investigated in the creasability

test.
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Figure 4-47: Comparison of numerical and experimental bending moment vs. bending
angle curve for creasability test 1.
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Figure 4-48: Comparison of numerical and experimental bending moment vs. bending
angle curve for creasability test 2.
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Figure 4-49: Comparison of numerical and experimental bending moment vs. bending
angle curve for creasability test 3.
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Figure 4-50: Comparison of numerical and experimental bending moment vs. bending
angle curve for creasability test 4.
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Figure 4-51: Comparison of numerical and experimental bending moment vs. bending
angle curve for creasability test 5.

Figure 4-52: Contour plot of MD normal stress component at the final stage of the
FEM creasability test simulation.
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Figure 4-53: Contour plot of the equivalent plastic strain at the final stage of the
FEM creasability test simulation.
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Chapter 5

Summary and Future Work

5.1 Summary

Two constitutive models are developed to model the behavior of paperboard under

finite, combined in- and out-of-plane deformations:

1. A three-dimensional elastic-plastic interface constitutive model is presented to

model the out-of-plane delamination behavior of paperboard. The onset of in-

terface separation is controlled by an evolving limit surface in the normal-shear

traction space. The limit surface is taken to evolve with the inelastic component

of relative interface displacement via a state-variable approach. The constitu-

tive relation is implemented into finite element software to enable simulation of

the delamination of paperboard under complex through-thickness loading con-

ditions. The functional forms and material properties needed by this model

can be experimentally determined by conducting through-thickness shear, pure

extension and combined shear and normal loading tests. Simulations of com-

bined loading conditions are conducted and compared with experimental data,

demonstrating the capability of the proposed model to capture the delamination

behavior of paperboard and, potentially, other laminated composite materials.

The proposed interface constitutive law imposes no explicit restrictions on the
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size, location, distribution, or direction of the growth of cracks. This enables

the model to be able to naturally predict the initiation of microcracks and their

growth into major delamination at any location.

2. A three-dimensional, anisotropic continuum constitutive model is developed to

model the in-plane elastic-plastic deformation of paper and paperboard. The

proposed initial yield surface is directly constructed from the yield strengths

measured in various loading directions and the corresponding ratios of plastic

strain components. An associated flow rule is used to model the plastic flow

of the material. Anisotropic strain-hardening of yield strengths is introduced

to model the evolution in the yield surface with strain. The constitutive model

is found to capture major features of the highly anisotropic elastic-plastic be-

havior of paper and paperboard. Furthermore, with material properties fitted

to experimental data in one set of loading directions, the model predicts the

behavior of other loading states well.

The implementation of each constitutive models is tested extensively before being

applied to simulate two of the key manufacturing processes of paperboard prod-

ucts: creasing and subsequent folding. Two types of simulations were conducted:

simulations of the SEM creasing/folding process and simulations of the industrial

creasability test. The simulations are found to be predictive of the corresponding

experimental observations. In particular, the underlying micromechanisms of dam-

age and delamination developed during creasing and subsequent folding are predicted

well; the numerical macroscopic response of bending moment vs. bending angle curves

under different sets of creasability testing parameters also agree with experimental

data. Parametric study of numerical macroscopic response also predicted the trend

well. These simulations show the proposed physically-based material models of the

three-dimensional anisotropic, elastic-plastic behavior of paperboard enable the com-

putational design of paperboard processing and product design.
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5.2 Future work

First, the interface constitutive relation can be relatively easily modified and applied

to many different types of interfaces ranging from interfaces in classical composite ma-

terials to brittle materials. Although very good numerical results were obtained with

only a single state variable (the scalar interface damage D), it might be worthwhile

to introduce more state variables which will better represent the process of interface

damage. For example, if experiments can be conducted such that the interface is

loaded first in tension till some damage is created before unloading and subsequently

being loaded in shear, the extra information can then facilitate improvement of the

evolution of the interface damage as multi-factor controlled process. Further work can

also be done to refine the separation criterion and softening functions. More refined

distribution functions of the interface strength and their effects on the macroscopic

behavior of the structure will be another set of interesting topics to investigate. Work

can also be (lone to implement the model into three dimension and conduct simula-

tions of creasing at angles to MD/CD.

For the in-plane constitutive model, with more experimental information (e.g.,

off-axis stress-strain curves with corresponding lateral strain vs. axial strain curves),

the yield surface and, in turn, the flow rule can be easily refined to provide even more

accurate modeling of the behavior of paper or paperboard layer by incorporating more

sub-surfaces. Further work can also be done to address the issue of' cross-hardening

(e.g., how material behave when loaded in CD before being loaded in MD till some

amount of plasticity and unloaded.) by making the strain hardening function depend

on more state variables, instead of just the equivalent plastic strain. As indicated in

the creasing/folding simulation discussions, failure mechanisms need to be introduced

into the model to capture in-plane fracture or fiber-pull-out behavior such that the

stress carrying capability of the paper or paperboard will drop down when the in-

plane strain is large enough. (An interesting idea will be modifying the interface

model and apply it to model the in-plane fracture.)
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In addition to the creasing/folding process, the combined models can be applied

to aid other aspects of paperboard processing and product design.
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Appendix A

Method to determine the model

parameters from experiments

In this appendix, we summarize the definition of the material properties and the

method to obtain them from experimental data. The yield surface is comprised of six

sub-surfaces as shown in Fig. 2-13.

A.1 Definition of properties

The elastic properties used for TRIPLEXT" were listed in Table 2.1 and Table 2.2.

The yield and post-yield properties are listed here in Table 2.5. The yield surface

normals were listed in Table 2.3.

A.2 Methodology for identifying material proper-

ties from data

The properties needed by the model can be obtained from relatively simple uniaxial

experimental data on paper or paperboard pulp material.
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Notes Properties Definition

EAD Young's modulus in MD direction

ECD Young's modulus in CD direction

EZDo Young's modulus in ZD direction

Elasticity v12 Poisson's ratio between MD and ZD directions

(see Table 2.1 V13 Poisson's ratio between MD and CD directions

and Table 2.2) v23 Poisson's ratio between ZD and CD directions

G12 Shear modulus in the MD-ZD plane

G 13  Shear modulus in the MD-CD plane

G23 Shear modulus in the CD-ZD plane

So' Initial equivalent yield strength of sub-surface I

Initial value S Initial equivalent yield strength of sub-surface II

of sub-surface Sii Initial equivalent yield strength of sub-surface III

strengths S v Initial equivalent yield strength of sub-surface IV

(Table 2.5) S Initial equivalent yield strength of sub-surface V

( l Initial equivalent yield strength of sub-surface VI

Flow strength Si Flow strength of sub-surface I

of sub-surfaces Sii Flow strength of sub-surface II

(Eqn. 2.22) Sii Flow strength of sub-surface III

Sil Flow strength of sub-surface IV

S 7  Flow strength of sub-surface V

S171 Flow strength of sub-surface VI

Hardening A1 , i 1...5 Hardening constants in Equation 2.22

constants Bi, i 1.. .5 Hardening constants in Equation 2.22

(Table 2.5) C, i 1.. .5 Hardening constants in Equation 2.22

Stiffening a constant determing stiffening of ZD elastic modulus un-

constant (Ta- der compression (Eqn. 2.5)

ble 2.2)

Table A.1: Definition of properties
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A.2.1 Elastic constants

The initial elastic behavior is taken to be orthotropic in this model. A total of ten

elastic constants are needed to define the orthotropic elasticity: the Young's moduli

in MD, CD and ZD, the shear moduli G12, G13, G23 and the Poisson's ratio v2 1 ,

v13 , v 2 3 and the ZD stiffening constant, a. These data can be obtained by standard

uniaxial stress-strain and corresponding lateral strain vs. axial strain curves.

A.2.2 Initial yield and subsequent strain hardening

As discussed in the text, for the yield surface, the sub-surface strengths, S , are

directly related to the uniaxial in-plane yield strengths of the material and the cor-

responding plastic strain ratios.

To obtain the material properties, consider the case where the uniaxial stress-

strain curves for tension in the MD and tension in the CD, compression in the MD

and compression in the CD have been obtained. Let X' denote the yield strength for

MD uniaxial tension. For this case, the yield condition expressed in equation 3.14 is

reduced to:
N

[ i 1]2k - I = 0. (A. 1)
S=I

Furthermore, for uniaxial MD tension, the only non-zero contributions, due to the

switching controller, are those for the sub-surfaces I and 1V, which gives

XtN 11 2k +XtNvl2k_

]1 + =0 A2

Similarly, for the case of uniaxial tension in CD, the yield criterion reduces to:

YtNI!33]2k Y 1NIv33 2kI= (A3ytgII ] v[tr ] .J=I,(A3

SI Sly

where Yt denotes the CD tensile yield strength. For the case of MD compression, the

yield condition becomes:
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T11 2k + 17 ]2 k - 1 =0SX 1 ll l k+[ J/1 (A.4)

where X' > 0 is the MD compression yield strength. For the case of CD compression:

-YcN'33 -k+ Yc Nv33,k_1-
I cI 12k, 2i[=cN (A.5)

where Yc > 0 is the CD compression yield strength. Thus, by solving equations (A.2)

to (A.5) with four equations for four unknows, S', i = , 11, IV and 17, direct rela-

tions between the S', i I, II, 117 and 17 and uniaxial tensile and compressive yield

strengths are obtained as follows:

S Q 2 1

Q 1

Sly = YtJV[ - (YN)2k Q3

Q24S~ = i~ s(11ei)2kQ )]-2 ; A

Sv = X t '[1 - (XtN 1)2 )k,

Q1 = [-Y1cjaV 2 - N ]2k ,X Y" v]2k - Xt N11 2 k

(Xtyc)2 k[( V L 2 k I VN N1 2 k]

and

where

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)Q3 = [-XcN1] 2 k - [ytlylj]2k
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and

4 = (XcYt ) 2 k[( \Nf> ) 2k - (Nj\VNf1 I) 2k] (A.13)

The equivalent yield strengths for the two shear sub-surfaces are taken to be equal,

S", = Svr. With one additional experimental stress-strain curve, for example, the

in-plane shear MD-CD stress-strain curve which gives the shear strength Z', S... and

S", can be expressed as a function of X', Yt, X , YC and Zt by applying the same

method. However, a shear stress-strain curve may be difficult to obtain for paper

material. Instead, an off-axis tensile stress-strain curve can be used to calculate

S'I' and S"7 . Here, the uniaxial stress-strain curve in the off-axis direction 450 to

the MD direction is used. The uniaxial stress state in the off-axis direction can be

transformed to the material directions by a simple tensor rotation which gives the

following non-zero stress components instead:

I 1 0
v45

T= 2 1 0 (A.14)

0 0 0

where V45 is the yield stress obtained from the 450 off-axis stress-strain curve. Sub-

stitution of T into the yield condition and utilizing the values of Si, i =1,1I,1I and

V already obtained, S " and Sv" are related to the in-plane experimental data by:

y + y45 N1 V4 5NII + N11
SI=SVI W Nf[1-( 2 11 2 33)2k_( 2 11 2 )3 2k]-'. (A.1s)13[ _ Si SI'
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