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Abstract

Modeling is an essential part of the analysis and the design of dynamic systems.
Contemporary computer algorithms can produce very detailed models for complex
systems with little time and effort. However, over complicated models may not be
efficient. Therefore, reducing a model to a more manageable size has become an at-
tractive research topic. A very useful type of reduced models is obtained by removing
as many physical components as possible from the original model. Such approach is
known as model reduction in the physical domain. Many results have been achieved
in model reduction in the physical domain during past decades. Nonetheless, the
newest developments in engineering practice as well as in theoretical research have
brought about further challenges and opportunities. In this thesis, the criteria and
the scope of model reduction in the physical domain are reinvestigated. As a result, a
criterion based on the H,, norm of certain error model is proposed. Furthermore, the
scope of model reduction is also extended. In this thesis, a mathematical framework
is constructed for model reduction in physical domain. Specifically, model reduction
problem is formulated as an optimization problem with bilinear matrix inequality
(BMI) constraints. A branch-and-bound algorithm is developed to solve the BMI
problem. The algorithm is proved to converge to global optimum. Several examples
are presented to illustrate the use of the proposed model reduction scheme.
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Chapter 1

Introduction

1.1 Motivations

Multi-energy domain dynamic systems are of great significance in contemporary

industry. A multi-energy domain system may include mechanical, electrical, fluid

and/or thermo components/subsystems '. Today such systems are involved in many

aspects of our daily life. In traditional enterprises such as automobile industry, as

well as at newly emerging frontiers such as home automation systems, engineers and

researchers are working hard to find efficient means for the simulation, analysis and

synthesis of these systems.

The rising importance of multi-energy domain systems has motivated intensive

research activities on modeling methodologies. A multi-energy domain system usually

contains a significant number of components. With the growing system complexity,

the simulation, analysis and synthesis procedures rely increasingly on accurate and

compact models, which in turn calls for systematic modeling procedures.

As a result of decades of enormous research effort and investment, detailed mod-

els for complex systems can now be built efficiently with various computer softwares.

Such softwares include Simulink, Easy5 and 20Sim. New packages with more sophis-

ticated features are also under development, including CASDA being programmed

'For the sake of succinctness from now on the word 'components' refers to both components and
subsystems
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at the Laboratory of Mechatronics Research at MIT. In fact, with the encapsula-

tion function, which is available in virtually all successful modeling softwares, models

with great complexity can be constructed in reasonable amount of time. Interest-

ingly, it is this tremendous power of assembling complex models that brings about

new challenges to the research of modeling methodology.

While complex models could be very accurate, they could also be unnecessarily

cumbersome. Quite often not all the components make significant contribution to

the system dynamic behavior[16]. Therefore, a vital step in modeling is to reduce the

model to a more manageable size.

A very useful type of reduced models is obtained by removing as many physical

components as possible from the original model. Such approach is known as model

reduction in physical domain. The resultant models preserve the physical meanings

of their structures and parameters, which are essential to analysis, synthesis and sim-

ulation. On analysis aspect, the information on physical structures and parameters

provides insightful understanding toward how components contribute to system dy-

namic behavior. On synthesis aspect, such reduced model can be the basis of much

simpler designs that achieve the performances of more complicated systems. On the

simulation perspective, the resultant model may save considerable computational cost

while providing meaningful data.

Attractive as this model reduction approach is, a systematic way to accomplish

the task has been beyond the reach of researchers. During the past decade significant

research efforts have been concentrated on this topic [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 18,

19, 20, 21, 22, 23, 24, 26, 35]. Section 1.2 gives a survey of existing procedures.

In this thesis, a methodic procedure is developed for model reduction in the phys-

ical domain. New concepts are incorporated into the development of the procedure,

such as formulation of model reducion problem as an optimization problem. With

these new concepts, and with contemporary mathematical tools, the proposed pro-

cedure has achieved some desirable properties, such as guaranteed convergence and

guaranteed error bound.

The following sections give brief descriptions on existing as well as proposed model

12



reduction methods.

1.2 State of the Art

Currently, three major types of model reduction methods exist,

1. Methods based on the mathematical manipulation of a system's input-output

relation,

2. Methods based on physical interpretation of system's dynamic behavior,

3. Combination of 1 and 2.

The first category, which has been developed mainly by control community [27,

28, 29, 30, 31, 32, 34, 57, 58, 59], include such procedures as modal truncation and

balanced truncation. These procedures aim at reducing the order of the transfer

matrix between the input and the output. One of their major advantages is that strict

mathematical proofs exist. Furthermore, procedures such as balanced truncation

target at worst case scenarios. Therefore the error bound of the reduced model is

guaranteed. On the other hand, transfer matrices and their realizations are not

designed to contain the information about the internal structure of the system. In

general these procedures may not be directly applied to the modeling of physical

systems.

The second category has been developed by mechanical engineering community

[18, 19, 21, 24, 26]. This category includes various ad-hoc model reduction rules.

Besides, in the past decade a family of procedures based on power criteria 2 have

attracted significant amount of attention. These procedures try to identify the signifi-

cance of a component by the magnitude of power flow associated with the component

in a given dynamic process. These procedures have clear physical interpretations.

However, such procedures are based on physical intuition rather than strict mathe-

matical derivation. It is not surprising that in certain cases they can not guarantee

error bounds.

2 Power-based procedures are discussed in more details in Section 3.2.
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The third category tries to combine the previous two categories and exploit the

advantages of both [8, 9, 11, 12, 13, 22, 35]. The most prominent family of existing

methods in this category are the MODA procedures3 [22]. These methods are quite

successful in dealing with simple dynamic systems or systems with some specific

structure or parameter configurations. Examples of such systems include those of

which the eigenvalues can be divided into several groups far away from one another

on the s plane [8, 9, 11], or those of which the subsystems have very weak coupling

with one another [11, 35]. The foundation of the procedures in this category is

the understanding of the relation between system dynamics and system parameters

and/or structure. Currently this relation is still far from fully comprehended, which

is reflected by the fact the existing procedures are effective for relatively straight

forward cases only. None the less, combining the mathematical and physical aspects

of modeling is an interesting idea that attracts many researchers these days.

Although far from satisfactory, all these previous attempts have led to deeper

understanding towards the behavior of dynamic systems. At the same time, a rich

selection of powerful mathematical tools have become available in recent years. The

utilization of up-to-date results from both physical and mathematical fields, along

with the development of novel ideas, have made this thesis work possible.

1.3 Proposed Work

This thesis concentrates on model reduction of causal LTI lumped parameter systems

with all eigenvalues in the open left half of the s plane. Specifically, the study focuses

on removing independent energy storage elements. In this thesis 'removing' an energy

storage element means setting the corresponding I or C to zero. Removing indepen-

dent energy storage elements result in systems with lower orders, which facilitates a

wide range of analysis, synthesis and simulation efforts.

On theoretical perspective, this thesis recalibrates the fundamentals of model

reduction in physical domain and sets up a rigorous mathematical frame for the

3 MODA procedures are discussed in more details in Section 3.3.
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Figure 1-1: Outline of the Proposed Model Reduction Procedure

problem. Past works on the criteria as well as the scope of model reduction are

reinvestigated. Based on the advantages and the restrictions of the past works, new

concepts and solutions are proposed. Specifically, H,, norm of some error model is

chosen to be a criterion for acceptable reduced models. At the same time, the scope of

model reduction is expanded to include the adjustment of all system parameters in the

process of finding a reduced model, as detailed in Chapter 4. These findings not only

have clear physical meanings and rigorous mathematical definitions, but also paved

a way for utilizing contemporary mathematical tools for solving model reduction

problems. In fact, this thesis proposes the formulation of model reduction problem

as an optimization problem with bilinear matrix inequality (BMI) constraints, and

the solution constructed for the problem is proven to converge to global optimum.

On practical point of view, this thesis develops a fully automated algorithm with

guaranteed error bound for model reduction in physical domain. Figure 1-1 gives

an outline of the algorithm. Basically, the user supplies the original model and the

acceptable error margin, the algorithm automatically searches for a reduced model

with some energy storage element removed. Since rigorous mathematical formulation

as well as proof for convergence are developed, for the type of problem discussed in

this paper, as specified at the beginning of this section, the algorithm is guaranteed

to provide the simplest model.
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1.4 Thesis Outline

Chapter 1.2 gives a brief survey of existing model reduction procedures, including

modal truncation, balanced truncation, optimal Hankel norm approximation, power

approach and critical system eigenvalue approach.

Chapter 3 discusses the criteria for model reduction in the physical domain. The

advantages and the disadvantages of two prominent criteria, namely the power cri-

terion and the CSE criterion, are discussed. Furthermore, a criterion based on H,

norm of certain error model is presented. This criterion is the foundation of the work

in this thesis.

Chapter 4 expands the scope of model reduction in the physical domain and sets up

a mathematical formulation for the problem. Specifically, model reduction problem

is extended to include appropriate change of system parameters. This is in contrast

with most existing procedures, which try to eliminate some system components while

keeping the parameters of the rest unchanged. It is shown that simpler models can be

obtained with the extended model reduction problem. Furthermore, a parameteriza-

tion scheme is found such that, with the help of positive definite lemma, the extended

model reduction problem is formulated as an optimization problem under BMI con-

straints. BMI problems are among the most intensively studied topics nowadays.

With the formulation proposed in this thesis up-to-date progresses in mathematical

research can be applied to model reduction.

Chapter 5 presents a branch-and-bound based algorithm for solving the optimiza-

tion problem associated with model reduction. A brief survey is given on the branch-

and-bound method, followed by the construction of a branch-and-bound algorithm

for model reduction problem. The proposed algorithm is shown to converge to global

optimum.

Chapter 6 gives several examples to illustrate the proposed model reduction ap-

proach. The first example gives a graphic illustration of the convergence procedure of

the branch-and-bound algorithm. The second example shows the proposed approach

can achieve results that may be difficult to obtain with inspection. The third example

16



shows the use of a filter to specify the frequency range of interest, and the final one

shows the application of the proposed procedure to model assembly problem.

Chapter 6 summarizes the contribution of the thesis and makes recommendations

for further research.
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Chapter 2

A Survey on Model Reduction

Methods

This chapter presents a survey on existing model reduction methods. The methods

to be reviewed include,

" Modal truncation

* Balanced truncation

" Optimal Hankel norm approximation

" Power approach

" Critical system eigenvalue approach

For each method, the following issues are discussed,

" What quantities are looked at in the model reduction procedure,

* To which systems the method is applicable,

* Which mathematical tools are used,

* What are the advantages and the disadvantages of the method.

19



2.1 Modal Truncation

The rational of modal truncation[17] identifies and removes the state variables asso-

ciated with very fast modes. The method is applicable to LTI systems with some

eigenvalues far away from the imaginary axis.

The method is based on the Jordan canonical form of the original system. For

simplicity, assume that the original system has a set of unique eigenvalues A1 ,. . ,An.

In such a case, the Jordan canonical form of the system is,

A1  0 ... 0 b1

o A2 ... 0 b2
A 0B= C=ci c2 ... Cn (2.1)

o o ... A bn

Without loss of generality one can assume that |AiI < A2 1 < ... < JAnJ. The fastest

eigenvalues are then removed with the corresponding state variables and the elements

in B and C.

The advantage of the modal truncation is that the poles of the truncated model

are a subset of the poles of the original system. Therefore the method is quite useful

for further analysis and/or design effort that are based on system spectrum. The

disadvantage of the method is that the reduced model may not have a clear physical

interpretation, due to the coordinate transform that is usually required to obtain the

Jordan canonical form. Due to the coordinate transform, both the truncated and

the preserved state variables are in general some combination of the state variables

of the original system. And consequently it is difficult to determine which physical

components are removed/kept in the reduced model.

'The result can be trivially extended to systems with repeated eigenvalues.
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2.2 Balanced Truncation

The balanced truncation method[33] identifies and removes the state variables associ-

ated with small controllability/observability, in other words, the state variables that

do not make significant contribution to the input/output relationship of the system.

The method is applicable to LTI systems.

Balanced truncation is based on balanced realization of a transfer function[33].

A minimal realization A, B, C and D of a stable, rational transfer matrix G(s) is

balanced if the controllability Gramian P and the observability Gramian Q satisfy,

P = Q = diag(i,( 2, .-. --,u9n) (2.2)

where ai > 2> > ... > On. P and Q can be calculated by solving the Lyapunov

equations,

AP+ PAT + BBT 0(2.3)

AT Q + QA + CTC=O (2.4)

A standard procedure exists for obtaining balance realization. The procedure includes

the following steps [33],

1. Compute the controllability and observability Gramians P and Q.

2. Find a matrix 1? such that P = 7Z*Z.

3. Diagonalize ]ZQK* to get ]ZQK* = UE2W.

4. Let T-' = Z*UE-1/ 2 . Then (TA- 1), TB, CT- 1, D is a balance realization.

A reduced model with lower system order can be obtained with the truncation of

the balance realization. Specifically, let the balanced realization A, B, C and D of

G(s) and the corresponding E be partitioned compatibly as,

A [A,1 A12

[A 21 A2 2

21



- -T

B = [Br B]T

C = C1 C2c [e1 e2

E= E (2.5)
0 E2

where the smallest eigenvalue of Ei is greater than the largest eigenvalue of E2-

Then the system G defined by All, B1, C1 and D is stable, and ||G(s) - 0 (s)H1, <

2trace(E 2). Often E and E2 are chosen such that the summation of all components

of E2 is much less than the smallest component of E1.

Balanced truncation procedure is very successful. This is partly due to the fact

that it provides a systematic method for achieving a reduced order transfer matrix

and guarantee the error of the reduced model in H norm. On the other hand, the

procedure is not designed for model reduction in physical domain. In the similarity

transform with T, the physical meaning of the resultant state space realization may

be lost, and may be difficult to recover after the truncation. Consequently, very

few publication have been seen on the application of balanced truncation in physical

domain. One of these few works is Reference [12], in which balanced truncation is

used to estimate the order and the spectrum of the reduced model before some model

reduction in physical domain is performed.

2.3 Optimal Hankel Norm Approximation

Similar to the balanced truncation method, the optimal Hankel norm approximation

method[60] identifies and removes the state variables associated with small control-

lability/observability. The method is applicable to LTI systems.

With optimal Hankel norm approximation, one tries to progressively remove the

state variables associated with the smallest Hankel singular number. To remove the

such state variables, one shall use the following steps[60],

22



1. Find a balanced realization A, B, C, D with

[zi o] (2.6)
0 O-I,

where a is the smallest Hankel singular number of the transfer matrix G(s) and

r is the multiplicity of o.

2. Partition A, B and C according to the partition of Sigma,

A - [All A 1 2

A 2 1 A 2 2

-T

B = [B BT ]

C = C1 C2  (2.7)

and find an orthogonal matrix U such that B2 = -CU.

3. Construct the state space matrices of the reduced system by,

A = L-'(a.2A + E 1 A 1 E 1 - -C[UBf) (2.8)

B =- 1 (E+aOC7U) (2.9)

C= C1E 1E+UB 1  (2.10)

D = D - U (2.11)

wherer = E - a2 .

The advantage of the optimal Hankel norm approximation is that it has a even

smaller error bound than the balanced truncation. Reference [60] states that the

transfer matrix of the reduced model, b(s), satisfies ||G(s) - d(s)||K = a, while

if balanced truncation was used one would have |IG(s) - b(s)1K = 2ro-. However,

the potentially higher accuracy comes with the cost of more involved mathematical

calculation. At the same time, the method shares the disadvantage of the balanced
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truncation, which is the lack of physical interpretation due to the similarity transform

required to obtain the balanced realization in step 1.

2.4 Power Approach

The power approach[19, 26] stipulates that the physical components that are asso-

ciated with small power flows make insignificant contribution to the overall system

dynamic behavior. The approach is used on lumped parameter systems.

The approach uses numerical simulation to obtain the power flow associated with

the system's dynamic behavior under certain specific input(s), and remove the com-

ponent(s) with small power flow. A detailed presentation of the method can be found

in the next chapter.

The advantage of the method is that it has very straightforward physical interpre-

tation. Also, the method does not involve the use of high level mathematical concepts,

which makes it readily acceptable to most engineers in industry. On the other hand,

as shown in the next chapter, power associated with a physical component is not a

good criterion to measure the significance of the component, and the power approach

may lead to erroneous results.

2.5 Critical System Eigenvalue Method

The critical system eigenvalue method[25] identifies and removes the physical compo-

nent(s) that make insignificant contribution to a prescribed set of system eigenvalues,

called critical system eigenvalues. It is applicable to LTI systems.

This method uses two stages of exhausted search to identify the relevant physical

component(s). A more detailed presentation of the method can be found in the next

chapter.

The advantage of the procedure includes its clear physical meaning. Also the

critical eigenvalues of the original system and the reduced system are close to each

other, which is a very desirable property. A major disadvantage is the low efficiency
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Chapter 3

Criteria for Model Reduction in

Physical Domain

3.1 Introduction

This chapter examines some widely used criteria for model reduction in the physical

domain and proposes a criterion used in this thesis. The choice of a criterion is

essential for a sound reduction procedure. To a large extent, the criterion determines

both the usefulness and the computational cost of the model reduction procedure. An

ideal criterion should use value(s) with clear physical meaning, to sufficiently describe

the error of a prospective reduced model. At the same time, efficient methods should

be available for calculating this value. Section 3.2 discusses the power criteria, which

have been widely used for model reduction in the physcial domain during the past

decade [18, 19, 21, 24, 26]. Three counter examples are presented for these criteria.

Section 3.3 discusses the critical system eigenvalue criterion [20, 22, 25], another

popular criterion. Section 3.4 proposes a criterion based on the H norm of a certain

error model. The physical meaning of the criterion is presented as well. As shown

later, H criterion lays the foundation of a more general, more rigorous and more

computationally effective model reduction procedure.
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3.2 Power Criteria

In the past decade, a very active research area of model reduction in the physical

domain is a family of procedures based on power criteria [18, 19, 21, 24, 26]. The

underlying intuition of the power criteria is the conjecture that components associated

with small power flow makes small contribution to a system's dynamic behavior. The

existing model reduction approaches based on power criteria are composed of the

following three major steps,

1. Calculate a system's time response under certain input with numerical simula-

tion,

2. Use various indices to measure the power flow into and/or out of a component,

3. Remove the components associated with low power flow level.

However, despite of more than ten years of research, no strict mathematical proof has

been presented for the conjecture. The lack of a proof has prompted the author to

reinvestigate such criteria and come up with several counter examples.

This section shows that the use of the power criteria may lead to erroneous results.

Three examples are presented,

1. Elements associated with low power flow may make large contribution to the

system dynamic behavior,

2. Elements associated with high power flow may make small contribution to the

system dynamic behavior,

3. Elements associated with low power flow for one input direction may have high

power flow for another.This adds further trouble for power criteria, which rely

on the systems' time response to specific inputs. Because calculating the time

response for all possible input directions is impractical.

The power criteria use various time averages of the power flow associated with a

component to measure the corresponding power level. As pointed out in reference
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Figure 3-1: Contribution of an Element with Low Power Level

[18], the power flow of a component is in general a function of time. For example, if

the current goes through a resistant R is sin(t), then the power flow into the resistant

is Rsin 2(t). The researchers using power criteria [18, 24] believe that various time

averages can used as the measurements for the power flow level associated with a

component. In literatures [18, 19, 21, 24, 26], two different indices have been used.

One is the RMS metric, which is the square root of the time average of the square

of the power flow. Specifically, RMS metric is defined as Pi= ] F(t)dt where

Pi(t) is the power associated with bond i. The other is the activity index defined as
T

Ah = 1 ,P(t)Idt where n is the total number of bonds in a bond graph model.

j=1

Activity index is the normalized time average of the absolute value of power flow.

The example in Figure 3-1 demonstrates that an element associated with low

power level can make a significant contribution to the system dynamic behavior.

The physical system is composed of a voltage source, a resistance, a capacitance and

a inductance. Suppose the output of the system is the flow associated with the 1

junction, which is the current in the circuit. Also, let the initial conditions be zero.

Since this system is of second order, analytical solution of the time response can be

calculated. With the notations in Figure 3-1 and denote the output current be i(t),

the system dynamic equation can be written as,

di2 (t) R di(t) 1 1 dsin(t)
+ - + i(t) =-(.)dt2  L dt LC L dt
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Following any standard procedure for solving second order systems, i(t) can be ob-

tained as,

i(t) = 20sin(t) - 20.0062e- 0 -0025 sin(0.9997t) (3.2)

At the same time, the voltage across the inductance VL, the capacitance VC and the

resistance VR, which are useful for calculating the power flow associated with each

component, can be obtained as VL = Ldt, Vc = j$ i(T)dzr and V7 = Ri(t) respec-

tively. Finally the power flow associated with each component is the multiplication

of the flow and the voltage associated with the component. The calculated power re-

sponses of the components are shown in Figure 3-2. The RMS of the power associated

with the bonds 1, 2, 3, 4 are Pi = 5.0408, P2 = 28.6864, P3 = 29.0632 and P4 = 2.5939
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respectively '. Obviously P4 is significantly smaller than the others. Thus accord-

ing to the RMS index, bond 4 and therefore element R can be removed. Also, one

can calculate the activity indices as Al 1 = 0.0781, Al2 = 0.4399, Al3 = 0.4461 and

A14 = 0.0359. The activity index of bond 4 is obviously the smallest and significantly

smaller than all the others. So the activity indices also indicates that bond 4 can be

removed. Now Figure 3-3 plots the flow of the original model and that of the reduced

model 2. In this figure at t = 39.4sec, for the original model i(39.4) = 12.2628, but for

the reduced model i(39.4) = 19.3674. The error is 58%, which is significant. There-

fore, the R element is relevant to the flow associated with the 1 junction. The physical

meaning of this result is now interpreted. In the time interval [20sec, 40sec], the R

element dissipates about half of the power supplied by the source. Also note that

the dissipated power is on average less than one tenth of the power being exchanged

between the I and C element. By eliminating the R element, the rate of increase of

the energy in the system is changed significantly. Therefore with the increase of time

the error increases slowly but steadily.

The example in Figure 3-4 shows the case where the elements with high power level

make insignificant contribution to the system dynamic behavior. The input is f, = 0.

Suppose the output is the flow associated with m, and the spring displacements have

the initial values of xkl(0) = 1 and xk2(0) = 0.015. The simulated power responses

of the components are shown in Figure 3-5. The RMS power of the bonds are: Pi =

0, P2 = 0.3497, P3 = 0.4464, P4 = 0.8096, P5 = 0.7308, P6 = 1.5808 and P7 = 1.7443.

Thus according to the RMS index, k 2 and m2 are the most important elements in

the system. The activity indices are found to be Al 1 = 0, Al 2 = 0.0655, Al 3 =

'One may observe that P2 and P3 are greater than P1. This is not surprising because of the
resonant behavior of this lightly-damped second order system. In fact, this system has damping
coefficient = 0.025, natural frequency of w, = 1rad/sec and damped natural frequency of wd =
0.9997. Due to the small damping ratio one can expect a very high resonant peak. And since the
input frequency is very close to the damped natural frequency, the system gets very close to resonant
peak. For lightly-damped system being excited close to resonant frequency, the time average of power
associated with energy storage elements can be greater than the power input to the system.

2 One may notice that in this example the period of the original system is longer than that of the
reduced model. This is because the original system has damping, so in the transient period one can
observe the oscillation at damped natural frequency, which is lower than the natural frequency as
observed in the reduced model, which does not have damping.
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Figure 3-5: Simulation of power v.s. time

0.0697, Al 4 = 0.1318, A15 = 0.1223, A16 = 0.2979, A1 7 = 0.3128, which also indicates

that bond 6 and bond 7, and correspondingly k2 and M2 , are important. Now consider

a reduced system with bond 6 and 7 removed along with k2 and M2 . Bond 5 is

therefore also eliminated since the 0 junction it connects becomes isolated without

bonds 6 and 7. Figure 3-6 shows the output of the original system and that of the

reduced system. The two curves are indistinguishable. In this example, one can see

that the dynamics of the subsystem consists of k2 and M2 is much faster than that of

the rest of the system. Although the magnitude of the power associated with bond

5 is large, its direction switches in such a short time, that the subsystem composed

of bond 1 through 4 hardly feels the existence of bond 5. Therefore, the k2 and M2

elements are not relevant.

The third example shows that for different input directions the power flow associ-

ated with a component can be very different, and therefore power criteria, which are

based on the power flow associated with individual components under specific inputs,

may not be useful for MIMO systems. Consider a two-input system with a trans-

former. The physical system and the corresponding bond graph model are shown in
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Figure 3-7. The system parameters are: R 1 = 0.7, R2 =10, C1 = 5, C2 = 50, and the

constitutive relation of the I field is,

f3 4 -8 P3(33)

h4 -8 36 P4

where fi and pi represent the flow and the momentum associated with the ith bond

respectively. Let the effort e6 (t) associated with the capacitance C be the output.

Following standard procedures in system analysis, the transfer matrix relating E6(s)

and the input vector U(s) =[(s), 2(s)]T can derived,

E6 (s) = G(s)U(s) = ± g I 92 U(S)(3.4)
Y o-

where

9o = S +7.8s3 +1934s2 + 3680s +2.14e004 (3.5)

g'= -20s2 - 100s + 2e004 (3.6)

92 = 14032 + 280s - 7.399e - 012 (3.7)

Figure 3-8 shows the plot of the singular values of G versus frequency. Only one

curve is visible since at any frequency, the smaller one of the singular values is zero.

As seen in the plot, the magnitude of the effort associated with the capacitance C 1

changes significantly, from zero corresponding to cmim to 1.75 corresponding to ax, at

3.032rad/sec, depending on the input direction. In fact, at this frquency for the input

direction corresponding to the larger singular value, the circuit displays a resonant

behavior and therefore both of the indices of the power flow goes in/out of C1 are large.

More detailed computation shows that the power criteria indicate the component of

C, is important for the input directions associated with largest singular values while

irrelevant for those associated with zero singular value. In short, the conclusion drawn

for one input direction can not be generalized for another.
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The counter examples in this section show that the power criteria, as they are

defined up to now, have severe limitations.

3.3 Critical System Eigenvalue Criterion

Another criterion for model reduction in physical domain is the critical system eigen-

value criterion [20, 22, 25]. Intuitively, this criterion requires that the eigenvalues of

the reduced model be close to those of the original model within a semi-circle of a

prescribed radius on the left half of the s plane.

Up to this time, the only procedures that that implement critical system eigenvalue

criterion are the MODA procedures. The MODA procedure most related to model

reduction of LTI systems in physical domain was published in [22] and is discussed

here. This procedure includes two stages 3. The first stage is to determine the 'critical

system eigenvalues', denoted as CSEs in [22]. The CSEs are constructed by progres-

sively increase the complexity of a candidate model till its spectrum radius reaches a

3The fact that the MODA procedure is repeated here does not mean the author agrees with all
the implicit assumptions Reference [22] made for this procedure, neither does it mean the author
agrees with the underlying thoughts of the procedure.
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prescribed value. This spectrum radius is named in Reference [22] as 'frequency range

of interest' and denoted as FROI. The second stage is to progressively increase the

complexity of the system obtained in the first stage till the change of the eigenvalues

within the prescribed radius is smaller than a given tolerance. Specifically, in the first

stage CSEs are constructed with a iterative procedure. The iterative procedure starts

with a model, called the baseline model, composed of a set of pre-selected components.

Then, a set of candidate models are constructed, each with one more component than

the baseline model. The spectrum, as well as the controllability and observability of

each candidate model are calculated. All candidate models with uncontrollable or

unobservable modes are eliminated from further search. In the remaining candidate

models, the one with the smallest increase, with respect to the baseline model, in the

spectrum radius is chosen as the new base line model. Then new candidate models

are built upon the new baseline model and the procedure repeats till the spectrum

of the baseline model in a certain iteration step reaches the specified radius. And

the eigenvalues of the resultant model are CSEs. For the second stage, the procedure

starts with the baseline model obtained in the last iteration of the first stage. Then a

set of candidate models, each with one more component than the baseline model are

constructed. The eigenvalues of each candidate model is calculated. Following that,

the eigenvalues of each candidate model are compared to those of the baseline model.

That is, the pair-wise distances of the eigenvalues of the candidate model and those

of the base line model are obtained. For each candidate model, the maximum value

of such pair-wise distances is defined as the change of CSE of the candidate model

with respect to the baseline model. The candidate model with the largest change of

CSEs is chosen as the new baseline model and the procedure repeats. The algorithm

terminates when at certain iteration, the change of CSE is less than a prescribed

tolerance.

CSE criterion has its advantages and disadvantages. On the advantage side, CSEs

are important aspects of system dynamics and are very useful in system analysis and

design. On the disadvantage side, CSE criterion has some foundamental restrictions

and difficulties. In theory point of view, eigenvalues do not constitute a completed
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description of an dynamic system. In fact, system zeros are equally important. In

implementation point of view, a systematic and high efficient method is yet to be

found for relating the system eigenvalues and system components. This explains the

fact that variations of MODA, the only procedures that use CSE criterion up to now,

have to conduct exhaustive searches in both of the two stages.

The MODA procedure is worthy of some discussions. The MODA procedure in

Reference [22] has been successfully used for the analysis of an automobile suspension

system. At the same time, this procedure has room for improvements. First, the

resultant model may include the dynamics outside FROI, therefore the model may be

unnecessarily complex. In fact during the second stage dynamics outside the FROI

may be added to the model, for the sake of the convergence of the spectrum within

the FROT. This is not be a good trade-off. Second, this procedure tries to simplify a

model by removing certain physical components while keeping the parameters of the

other components the same. As shown in Section 4.2, this imposes further restriction

on model reduction.

As a conclusion, CSE criterion may become very useful given more understanding

is achieved towards the profound relation between system eigenvalues and system

components.

3.4 H,, Criterion

This section proposes a criterion based on the H norm of a certain error model.

The physical meaning of the criterion is presented as well.

In areas such as control as well as system identification, the accuracy of a model's

frequency response has for long time been a measurement for the model's goodness.

The accuracy can be measured by the deviation of the frequency response of the

model from that of the original system. Given the popularity of frequency-domain

criteria in those areas, it is natural to consider using such a criterion for model order

reduction.

This section proposes the H. norm of an error model as a criterion. As shown in
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this thesis, the use of H norm has the following advantages,

1. H norm takes into account the scenarios at all frequencies and all input di-

rections,

2. No numerical simulation required,

3. Strict mathematical formulation and powerful mathematical tools can be de-

veloped for H norm related problems.

First, let us construct an error model that describes the difference between the

original physical model and the reduced physical model, where the latter is obtained

by removing some energy storage elements from the former. The error model is

shown in Figure 3-9, where G and G, are the transfer matrices of the original and the

reduced systems respectively. Also, the input to the error model (which according to

the structure of the error model is the input to the original and the reduced system),

the output of the original system, the output of the reduced system and the output

of the error model are denoted as u, y, y, and e respectively. The error model, whose

transfer matrix is denoted as Gerror, compares the output y of the original system

and the output y, of the reduced system, and produces an error output. If the error

output is small for all inputs with unit magnitudes, the reduced model is taken as a

good simplification of the original one.

Second, let us consider the use of the H norm of this error model as the criterion

for the accuracy of the reduced model. This choice is based on the time and frequency

domain interpretation of the H, norm. In the time domain, HO, norm of Gerror can

be written as [17],

||Gerroro(s)Hoo = max IIe(t)H12  (3.8)
Mt)1(2=1

which is the largest 2-norm of the error for all inputs with unit 2-norm. In frequency

domain, |Gerror Hoc can be written as,

||Gerror(s)o = max -(Gerror (jOi)) (3.9)
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which is the largest gain of G,,,,, for all frequency points. Thus, if IIGerO, is small,

the frequency response of the original model and that of the reduced model are close

at every frequency point. Since the frequency response is a complete description of an

LTI system, a reduced system is indeed a good approximation of the original system

the H norm of the error model is small.

With the notations in Figure 3-10, the transfer matrix of the error model can be

written as,

Gerro= G - G, (3.10)

Accordingly, the error margin y, as in Figure 1-1 is chosen as the largest allowed H.

norm of the error model. In other words, a reduced system is acceptable if it satisfies,

G - Gll <'p (3.11)

For a specific problem, the user has the freedom of choosing lp. This is because

the error model and the algorithm for determining the reduced model as presented

later in the thesis do not impose any requirement on the choosing of 7 3. For example,

one can choose y, to be a small number, say 5 % or 3 % of the smallest gain in the

frequency range of interest. Or one can choose ry, to be a small number compared

to the dc component of the frequency response. As always one shall be careful when

choosing a specific error margin and understand the its meanings and implications.

In many applications, a system's dynamic behavior is of interest in certain fre-

quency range only. In such cases, one can add input/output filters to the error model

in Figure 3-9 to specify the dynamic properties of interest. The resultant model is

shown in Figure 3-10. The detailed discussion on the error model with filters is in

Section 4.4.

Finally, one shall be aware of the limitation of this error model. Essentially,

H, norm is a description of LTI systems and therefore this error model shall be

used for LTI systems. This approach may be applied to nonlinear systems that can

be sufficiently approximated with linearization, or time-variant systems that can be

sufficiently approximated with piece-wise time invariant systems. This error model
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shall not be used beyond its capacity.

3.5 Summary

This chapter focuses on the discussion of criteria for model reduction in physical do-

main. Existing criteria are evaluated, along with the algorithms that implement them.

Furthermore, a criterion based on the H,, norm of some error model is presented.

This criterion has some advantage over the existing ones.
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Chapter 4

Mathematical Formulation of

Model Reduction in the Physical

Domain

4.1 Introduction

This chapter proposes the idea of formulation of the model reduction problem as an

optimization problem. This idea has widened the scope of model reduction in the

physical domain and led to simpler reduced models. Existing procedures for model

reduction in the physical domain[18, 19, 21, 24] focus on the removal of some physical

components while leaving the parameters of the others unchanged. However, it is

well known that some physical components in a dynamic system may have a strong

coupling with one another and thus make contributions to the dynamic behavior of

the overall system as a whole. Therefore, some physical components can be removed

only if the parameters of the other components are adjusted accordingly. Conse-

quently, if the parameters of a system are allowed to change, more components may

be removed. Existing procedures may not identify and eliminate such components.

To solve this problem, this thesis formulates the model reduction problem as an op-

timization problem. This idea is based on the fact that in principle, one can test all
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legitimate reduced models with all parameter combinations and choose the best one,

which is the one with the minimum number of energy storage elements. Obviously,

testing all possible reduced systems is not realistic. But with more sophisticated

optimization techniques, one can expect to develop a search procedure that gives

an answer in reasonable time. The transform from the model reduction problem to

an optimization problem with BMI constraints is discussed in detail in this section.

The solution of this optimization and the proof of convergence is presented the next

chapter.

4.2 Expanding the Scope of Model Reduction

This section discusses the necessity of expanding the scope of model reduction in the

physical domain. Specifically, one needs to consider changing all system parameters

in the model reduction procedure. In the past, researchers have focused on removing

some elements while keeping the parameters of others unchanged [18, 19, 21, 24].

This notion is a straight forward extension of everyday experience. However, it has

brought about excessive restrictions on model reduction.

Due to the coupling within the system, a set of elements can make contribution

to the system dynamics as a whole. Therefore, in model reduction, all parameters

shall be considered simultaneously. For example, consider the system show in Figure

4-1. The component parameters are M = 10, M2 = 1, kI = 1, k 2 = 1, R 1 = 1,

R2 = 1 and R3 = 1. The input and the output of the system are the velocity at the

left end of the system and the displacement associated with kI respectively. With the

generalized momenta associated with the masses and the generalized displacements

associated with the springs as state variables, i. e. with the state vector [PI, P2, q 1, q 2 ],
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Figure 4-1: A Spring-Mass-Damper System

the state space matrices can be written as,

(Ri+R
3 )

M M2

RI _._R 2 +R

A = M 1  
M 1  2

1 - 1 0

0 1 00

B = 1 0 0 ]

C = 0 0 ki 0

D=O (4.1)

The frequency response of the system is shown in Figure 4-2 with solid lines. The

pole-zero plot is shown in Figure 4-3 as well. From Figure 4-2, one can see that the

bode plot of the system is quite similar to that of a second order system in its 3db

band width which extends up to 0.3 rad/sec. At the same time, since there is a

significant peak at the frequency of 0.2rad/sec, any reduced model shall be at least

second order. Indeed, one can construct a second order system that approximates

this fourth order system. In this reduced system, as shown in Figure 4-4, C2 and 12

are set to be zero. Furthermore, in the reduced model, the parameters of k = 0.6667
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and I = 14 are quite different from those of k, = 1 and I1 = 10 in the original model.

The frequency response of the reduced system is shown in Figure 4-2 with dashed

lines, which indicate that the reduced model is a good simplification. The H norm

of the corresponding error model is 0.07. Since the system is an SISO system, the

H norm of the error model is the maximum value of the magnitude of the transfer

function of the error model. Compare to the magnitude of the frequency response

of the original system, which is greater than 0.5 in the 3db band width, the error is

indeed very small. On the other hand, if the parameters of the components of the

reduced system must be equal to those of the original system, in other words if I of

the reduced model must equal to 11 and same for C, one would have greater error. In

this case, the H norm of the error model is 1.4, twenty times of the reduced model

in Figure 4-4. The frequency responses of the original model and the model with I

and C fixed is shown in Figure 4-51.

As a conclusion, the scope of model reduction shall be expanded to include proper

adjustment of system parameters for better results.

4.3 Formulation of Model Reduction Problem as

Optimization Problem

4.3.1 Model Reduction in an Optimization Perspective

This section formulates the model reduction problem as a optimization problem.

As mentioned in the introduction of this chapter, one could search all parameter 2

combinations to find a system that satisfies Equation (3.11) and has the maximum

'One may ask why the mass in the reduced model is not the sum of the masses in the original
system M1,+ M2 = 11. In fact, in the original system the connection between the two masses k 2 = 1
is far from rigid. Therefore in most frequency ranges within the band width M 1 and M 2 do not
move at the same velocity as a rigid body. So no wonder in the reduced model the mass is not the
sum of M 1 and M 2. In fact, if one construct a second order system with the structure of the reduced
model and set the spring coefficient to be 1 and the mass to be 11, one would have the H, norm of
the error model be 1.36, which is far larger than the error of the reduced model introduced above.

2 From this point on, the word 'parameter' refers to the parameters of energy storage elements,
i.e. I and C, of a system unless otherwise stated.

47



k *

vi -
M

R R2

I=14

fi

Sf 0 1 R2 =1

C=1.5 Ri 1 1

Figure 4-4: Reduced Spring-Mass-Damper System

5

-5

-10

-15

-20

--25

-45 -

-90-

-135 --

-180 -Lr Ii . . . .

102

Figure 4-5: Frequency Response: Solid: Original Model, Dashed:
with I = 11 and C = C,

Reduced Model

48

Bode Diagram
10..

CL

10
Frequency (rd/sec)

10



Generalized model Reduced Model

G, (s) Optimization G. (s)

t,i = 1...n Procedure ,,j =l.n', n' !s n

G(s)+

(pt, i = I..

Original model

Figure 4-6: Outline of the Optimization Procedure

number of I's and C's set to zero. However, it is impractical to literally try out

all possible parameter combinations because there are infinitely many of them. To

search the parameter space efficiently and find the best result, one needs the help of

sophisticated optimization tools.

Figure 4-6 illustrates the proposed optimization procedure for model reduction.

The original model SYSO is an nWh order system with a transfer matrix G. The pa-

rameters are denoted as p.. The generalized model SYS 9 is a system that has the

same structure with the original model while its parameters, pg, can be chosen from

all positive real numbers. The transfer matrix of the generalized model is denoted as

G9 . The optimization procedure to be developed searches over the set of all general-

ized models and produces a reduced model with as many parameters as possible set

to zero and satisfies Equation (3.11).

An optimization problem has the following two essential aspects,

" Index function

" Constraints

which are discussed in the following sections.
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4.3.2 Choosing an Index Function

In this section, an index function for the optimization problem associated with model

reduction is constructed. The goal of model reduction is to remove as many physical

components as possible. So the index function shall be constructed in such a way that

the function reaches optimum when as many components as possible are removed.

This problem is solved in two steps,

1. Prove that an energy storage element can be removed if its parameter can be

set to a sufficiently small positive number,

2. Find an index function that reaches maximum when as many parameters as

possible are set to be sufficiently small.

Denote transfer matrices of the system with pi set to zero (and the same param-

eters with the original system otherwise) as G .gi=O Denote the system with pIgi as a

variable as G,, and the system with fti has a positive value 6 as G,,=. With these

notations we have,

Theorem 1 If for a sufficiently small 6 > 0, ||G - G>, < ,, and if G,,= 0 is

stable, then ||G - Go K,,| <y, holds.

Theorem 1 basically says that if the parameter of a component can be set to be

sufficiently small, the component can be removed 3 . To prove Theorem 1, some existing

results, listed below, are used.

Lemma 1 For an nth order causal LTI system, when the state vector x is composed

of the flows associated with inductances and efforts associated with capacitances, the

state space equation can be written as [36],

pig1

d
.- x= Apx + Bu

IAgn

y=Cx + Du (4.2)

3G.=0 is stable means when a energy storage element is removed from the original system, the
reduced system is stable.
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where Ap, BP,,C, and Dp are constant matrices.

Lemma 2 Ifoi(xi, .. ., xn),...,pWm(xi,. ..,xn) are continuous functions ofX1,...,xn

and f(yi,. .. , y) is a continuous function of y1 ,.. . , ym, then

U = f (01(x1, . x), . . .,om(z ,..., n)) (4.3)

is a continuous function of x 1 ,...,xn[37].

Lemma 3 If f (x) and g(x) are continuous with respect to x, then (x) is continuous

with respect to x except for the points where g(x) = 0 [37].

Proof of Theorem 1

First, let us prove that JG,=o - G1is a continuous function of pig in the

neighborhood of pgi = 0. Since the HO norm is the largest singular value of the

transfer matrix along the Jw axis, only the value of the transfer matrix along the

imaginary axis is relevant. According to Lemma 1, Gk9 evaluated along jw axis can

be written as,

pg1

Pgi

adj j.-Ag

CP Bp + - Bj D(4.4)

91-g

det jW -.- AP
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According to the definition of determinant,

det jW -.- Ap (4.5)

as well as the terms in,

y,1

adj jwAP . -- A, (4.6)

are polynomials of pia, which are continuous of g9 i. Since G,=0 is stable, every entry

of G,,=o must be finite on jw. Therefore (4.5) evaluated at pg = 0 is nonzero on

jw. It has already been shown that (4.5) is continuous with respect to gi, therefore

there exist a neighborhood of gi = 0 in which (4.5) is nonzero. Therefore according

to Lemma 3 every entry of Gpgj is continuous in this neighborhood. Now the entries

of G,,=o(jw) are independent of pia9 , and the H norm of a matrix is a continuous

function of the entries of the matrix. Thus according to Lemma 2, HJGgg=O - G 9gII

is a continuous function of pgi. Given ||G,,=o - G,,J9 , _ K =9 = 0, we have VE > 0,

36 such that Vygi < 6, ||Gg,,=0 - Gi91  <e.

Given that JIG - G/,W=K|| <-y,, ]c > 0 such that

IG - G 9 i 6=6 + E <y ,(4.7)

due to continuity. On the other hand for a sufficiently small 6, we have,

G - G c=0I10

JIG - Ggja= + GTgi= - G!LPO= 0||

" ||G - GA,5=s||o + ||G Ai=6 - Gpgj=0 || c-

||G - G gi ='s|c±o + C
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(4.8)

End of Proof

Theorem 1 says a component can be removed if its parameter is sufficiently small,

which is equivalent to say that it can be removed if the inverse of its parameter is

sufficiently large. So in order to get the inverse of as many parameters as possible to

be large, the author proposes the following index function,

maxL = E (4.9)
z=1 i

Subject to,
1

<;H (4.10)
lugi

J|G - Gglo <-yp (4.11)

where H is a sufficiently large number. The choice of H is discussed later in the

section. Figure 4-7 is a plot of L = + -for the range of X1 , X2 C [0.01, 2]. From
X1 X2

the figure one can see that L increases rapidly when either x 1 or x2 is small, and

increases more rapidly when both variables are small.

Before proceeding several symbols are introduced for future convenience. For the

sake of succinctness from this point on - is denoted as pL. Also, since L is continuous

from now on only strict inequality signs are used in the constraints. Strictly speaking,

now the goal is to find p9 i such that the corresponding L is sufficiently close to its

supreme. But to avoid unnecessary inconvenience the symbol of max is still used.

Thus the optimization problem is now,

max L = S t' (4.12)

subject to,

< H (4.13)

IG - GIK < yp (4.14)
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Now it is a good time to discuss one of the constraints on the scope of this thesis,

which is the systems under investigation are those whose frequency response is not

very sensitive to energy storage elements with sufficiently small parameters. With

this constraint, the solution of the proposed optimization problem corresponds to

the parameter configuration where all removable components are squeezed to be suf-

ficiently small, as made clear in later paragraphs. Strictly, the constraint can be

written as following. Denote the parameters of the independent energy storage ele-

ments of the system as pi,... , p,,, and denote the corresponding transfer matrix of

the system with these parameters be G(g1 , ... , g). The above-mentioned constraint

can be represented as, VE > 0, 3A., such that VA16, A2i < A, ||G(p 1,... , -)=A

G (pi,.. .,'pt)K1i=A 2 I, < e, Vi for all combinations of pj,j Z i. The physical mean-

ing of the Aj is a threshold, and if the parameter of component i is less than the

threshold, the dynamic behavior is no longer sensitive to the component. Physically,

this constraint does not severely shrink the extent of the proposed procedure. In

fact, the frequency response of a reasonably designed system shall not be sensitive

to extremely small system parameters, which usually are parasitic parameters not

considered in the design and not controllable in the manufacturing procedure.

Theoretically, H shall be chosen to be sufficiently large. H is sufficiently large if

it satisfies two conditions,

1. An energy storage element can be removed if the corresponding p is sufficiently

close to H.

2. The system frequency response is insensitive an energy storage component if its

parameter is sufficiently close to H.

To search for a sufficiently large H, one can choose an initial value and follow the

procedure in Figure 4-8, where q is a scaling factor greater than one. The initial

value of H can be chosen several order of magnitudes greater than the inverse of the

smallest system parameter.

For a specific industrial application, one can in fact choose H empirically. In

engineering practice, an engineer usually knows before hand the smallest parameter
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The reduced model satisfies
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Figure 4-8: Progressive Procedure for Choosing H
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that is possibly relevant in the system design and analysis. It is quite often sufficient

to choose H to be several order of magnitude greater than the inverse the parameter 4 .

The solution of the proposed optimization problem pushes the y4 of all remov-

able components to be sufficiently close to H 5. In fact, one question raised about

the optimization procedure is that if the p' corresponding to one particular com-

ponent could increase in the vicinity of H in such a way that the parameters of

other components that would get close to H are kept small. With the newly added

constraint, this specific concern disappears, as illustrated in the following. Set the

inverse of the parameter of one component, denoted as p' without loss of general-

ity, to be a value hi close to H 6 while satisfying the H norm of the error model,

JG - G(p4 = hi)jo < 'yr. Also, suppose the inverse of the parameter of another

component, denoted as p4, can be set to h2 sufficiently close to H given p' = h, i.e.

JG - G(pj = hl, p4 = h2 )11, <'7h. In this case, the increase of [' does not interfere

with the increase of p4. Actually, according to the newly added constrain on systems,

if pl increases to hk, according to the newly added constraint on systems we have

JG - G(pl = h7,[4 = h2 )11K < y, when E is sufficiently small, e.g. several order of

magnitude smaller than the tolerance of the optimization problem. In other words,

I4 can increase independent of p.

One interesting implication of this index function lies in causality perspective.

In the process of searching the elements that can be removed, no element is actually

removed and therefore there is no need to reassign causality and recalculate the system

equations. This could save significant time for the search of a reduced model.

4Also, one can choose different upper boundaries for p, denoted as Hj, instead of using a single
H, as long as all Hj satisfies the above listed two conditions. A set of well chosen H! may facilitate
the search for the optimum. On the other hand, there may or may not be strict rules for the
choice of a set of 'good' Hj, since the optimization problem to be solved, i.e. BMI, is known to be
complex. So if one would like to take advantage of various H rather than a single H, it is his/her
own responsibility to make sure the choice contributes to the optimization search positively.

5If some physical component(s) is removable, then the optimum point is sufficiently close to the
boundary of the area under search. If no physical component is removable, the optimum point
does not always occur at the boundary. Because in this case, the optimum would occur where y4
significantly less than H for all i.

'As mentioned before, H shall be chosen to satisfy the above mentioned two conditions.
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4.3.3 Relating System Parameters and H,, Norm

One more issue left is that the constraint (4.14) does not contain the decision variables

pf explicitly. This problem is solved in two steps,

1. Obtain system state space equations that explicitly contain p,

2. Represent the H, norm of the error model with system state space equations.

A parameterization of causal LTI systems with respect to p can be found in Ref-

erence [38]. Specifically, when the generalized momenta associated with inductances

and the generalized displacements associated with capacitances are chosen as state

variables, the state space equations of the generalized model can be written as,

A 9 = JAE 9 B C = JcEg D

where,

[' 1

Eg

(4.15)

(4.16)

/'

and JA, B, JC, D are independent of p'.

The H, norm and the system state space equation can be related via positive

definite lemma [33],

Lemma 4 (Positive Definite Lemma) Let -y> 0, let A, B, C and D be a state

space realizetion of a stable system G(s), then the following conditions are equivalent,

1. ||G|O < 1

2. There exist P > 0 such that,

PA + A*P

B*P

C

PB

-7

D

(4.17)D* < 0

-yJ
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Let the state A state space realization for G - G is [34],

[A 0

0 Ag I [B 1
B

(4.18)

Combining (4.15) and (4.18) gets the state space realization of G - G. that explicitly

contains p',

A 0 I 0 B

0 JA 0 E9 B

S i 0 e

(4.19) into (4.17) leads to the following result,

(4.19)

Theorem 2 The constraint of IG - G1,| < 7p is equivalent to ] symmetric P > 0,

I 0 AT 01 A 01I 0
P+PSOEg J0 ~J o JAI 011E

BT BT P

Cr -c
0 Eg

I B
PI

B

-7PI
[1 0

0 Eg

0

CT

c

-7PI

(4.20)

<0

Constraint (4.20) contains p' explicitly. For the sake of compactness from now on

denote the left hand side of Inequality (4.20) as M(4, P).

Constraint (4.20) is obviously a bilinear matrix inequality (BMI) constraint since

the constraints contain multiplication of decision variables P' and components of P.

In summary, the model reduction problem can be formulated as the optimization

problem as below,

max L =L
i=1

0 < p < H Vi

(4.21)

(4.22)

(4.23)P > 0
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M(p4, P) < 0 (.4

where n t4 and n' = n(2n +1) independent components of the symmetric matrix P

are decision variables.

4.4 Error Model with Input/Output Filters

The interpretation of H norm as in Equation (3.9) leads to the idea of using filters

to specify the frequency range of interest for model reduction. In many applications,

the system dynamic behavior is of interest only within a limited frequency range. In

such cases, the reduced model is required to have a similar frequency response to the

original model within the given range. To produce such reduced models, one can use

input/output filters with the passing bands set to be the interested frequency ranges

only, and therefore exclude the frequency components of the error output outside the

interested frequency range. The error model with input/output filters is shown in

Figure 3-10.

The use of filters is illustrated in the following example. In Figure 4-9, the solid

lines and the dashed lines are the frequency responses of a fourth order and a second

order system respectively. If the frequency range of interest is W < lrad/sec, then the

second order system is a good simplification of the fourth order system. However, the

two systems differs significantly in the frequency range near W= 4crad/sec. In fact,

the magnitude of the frequency response of the error model without filter is shown

in the left half of Figure 4-10. Since the system under consideration is an SISO

system (and therefore so is the error model), the H norm of the error model is the

maximum of the magnitude of the frequency response of the error model. Then one

can read from the figure that the H norm of the error model is more than 0.9. But

this data is actually irrelevant because such large error happens outside the frequency

range of interest. The right half of the Figure 4-10 shows the magnitude of an error

model with an output filter. The filter is a tenth order Butterworth filter with cut

off frequency at 1rad/sec, heavily attenuating the frequency components outside the

range of interest. Now the H norm of the error model is approximately 0.014. The
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Figure 4-9: Bode Plot of a Fourth Order and a Second Order System

error is much smaller than the magnitude of the frequency response of the original

system in its band width in the interested frequency range, which is in the order of

magnitude of 1. This result is consistent with our inspection of the bode plots, i.e.

the second order system is a good approximation of the fourth order system.

As shown in Figure 3-10, the error model is a series connection of the input filter,

the system in Figure 3-9 and the output filter. Let a state space realization of the

input filter 7 be AM, B , CM and Dj, and that of the output filter be Aout, Bout,

Cot and D Also let the corresponding state vector be x-, and xot respectively.

Furthermore, a state space realization of the system in Figure 3-9 is provided in (4.18).

Then with some trivial and tedious algebraic manipulation8 a state space realization

'Since for input/output filters only their transfer matrices are relevant, any state space realization
can be used.

S See Appendix C.
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of the overall error model can be obtained as,

0 0

0 Ao0 t Bout C -Jc

B A 0
Cin7  0

LLB L0 JA

BiJ

0

[B]BID i,
LLB

Cout Dout C -Jc I]I

]
I 0 0

0 I 0

O 0
0 0

0 Eg

10 0

I 0

0 0
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Berror =

Cerror

Derror =0 (4.25)

Magnitude of Error: w/o Filter
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where Is' are unit matrices with appropriate dimensions.

Equation (4.25) is the same as (4.19) except for some constant terms. One can

substitute (4.25) into (4.17) and get a BMI constrain of the same form. Therefore

any future result developed for the case without filters applies directly to the case

with filters.

Besides providing a means for delineating the frequency range of interest, the

input/output filters can be used in many creative ways to expand or enhance the

proposed model reduction procedure. One good example is the use of the output

filter in the case where the output of the original system is small and the phase

error must be confined. In this case, an output filter can be designed if the following

quantities are known in advance,

1. The relevant frequency range,

2. The order of the magnitude of the output of the original system in the relevant

frequency range.

This may well be the case in many engineering applications. One can use an output

filter that magnifies the error output in the relevant frequency range. It is already

known that, when the magnitude of the output of the original system is large enough,

a constraint on Ho norm of the error model requires the phase of the original model

and the reduced model to be sufficiently close. Therefore, if the amplification of the

filter is designed such that during the relevant frequency range, the magnitude of the

output of the original system multiply by the amplification shall be large enough, the

phases of the original and the reduced models are required to be sufficiently small by

the H norm constraint. Another example may include the use of the filters to specify

the input/output directions of special interest, in which the case the input/output

filters shall be designed to have large amplification at these directions.
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4.5 Summary

This chapter focuses on the formulation of model reduction problem as an optimiza-

tion problem. Efforts have been made to expand the scope of model reduction in

physical domain as well as give it a rigorous mathematical frame. Furthermore, no

causality change occurs during the search process, which may save significant time

rebuilding system equations.
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Chapter 5

Solving the BMI Problem

Associated with Model Reduction

5.1 Introduction

Optimization problems with BMI constraints have raised great interest in system and

control area in the last few years. Many problems in the area can be reduced to BMI

form in an elegant manner. At the same time, it is widely known that BM1 problems

are difficult problems.

Significant efforts have been invested in developing procedures to find global op-

timum of BMI problems [39, 40, 41, 42, 43, 44, 45, 47, 48], most of which based on

variations of the branch-and-bound method. Although in most cases the convergence

of the algorithms to the global optimum is proved, in practice branch-and-bound

procedures are well known for their low efficiency.

In this chapter, a branch-and-bound procedure based on the partitioning of part of

the decision variable space is presented. With the partitioning of part of the decision

variable space one can expect to reduce the computational cost of solving the problem

and achieve better efficiency. The convergence of the algorithm to the global optimum

is proved. In the numerical experiments the algorithm exhibits acceptable convergence

rate.

In Section 5.2, the branch-and-bound (denoted as BB hereafter) method is briefly
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reviewed. A algorithm for model reduction based on BB is presented in Section 5.3.

Section 5.4 proves the convergence of the algorithm. The last section of summarizes

this chapter.

5.2 Review of Branch-and-Bound Procedure

The BB method is mostly used for solving difficult optimization problems. This

section gives a very brief review of the method. A detailed presentation of the method

can be found in Reference [49]. An application oriented introduction can be found in

[50].

The following is a general outline of the BB method for finding the c-optimum of

function f over a set D [49],

1. Start with a relaxed set To DD and partition To into finitely many subregions

TiZi cEZ+t

2. For each subregion Ti, find 3(T) and a(Ti) that,

3(T) supf (T n D) < a(Ti) (5.1)

In other words, 3(T) and a(Ti) are the lower and upper bounds of the maximum

value of f on D. Then choose A = max/3(Ti), = maxca(Ti) satisfy,
2 2

A < maxf(D) <C(5.2)

Thus A and ( are the lower and upper bounds of the overall optimum.

3. If(C-A < cthen stop,

4. Otherwise remove subregions T for which a(Ti) A + E, further partition the

remaining subregions and go to 2.

Figure 5-1 is an illustration of the procedure. In the first step the region under

search is divided into four subregions. In the second step the upper and lower bounds
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Figure 5-1: Illustration of the BB Method

of the optimum for each subregion are calculated. Apparently the maximum will

not occur in the two subregions on the right because the upper bounds for of the

maximum over these two regions are smaller than the lower bounds of the maximum

of the upper left region. Therefore the two regions on the right are eliminated from the

future search. The remaining regions are further divided in Step 4, and the algorithm

continues till convergence.

The BB algorithm must satisfy the following condition to converge to global op-

timum [49],

Lemma 5 Any infinite series of successively partitioned regions {Tm} satisfy,

lim (/(Tm) - a(Tm)) = 0 (5.3)
m-+00

where /(Tm) and a(Tm) are the upper and lower bounds of the optimum on Tm re-

spectively.

In a series of successively partitioned regions {Tm}, each Tmgi is a partitioned part

of Tm. Figure 5-2 shows a successively partitioned regions.

Given the general frame of the BB algorithm, for an individual optimization prob-

lem appropriate algorithms have to be constructed to accomplish each step. The most

prominent task is to develop the algorithms for the following three basic operations,
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Figure 5-2: Illustration of a Successively Partitioned Series

1. Partition a region into subregions,

2. Calculate the upper bound of the optimum over a subregion,

3. Calculate the lower bound of the optimum over a subregion.

Developing good algorithms to perform these operations are essential for the con-

struction of a decent BB process.

For optimization problems in high dimensional space a BB algorithm might have to

search a large number of subregions in each iteration step and result in low efficiency.

References [39, 41] reported an algorithm which solves a BMI problem with twelve

decision variables in 2422 seconds. Also according to [41], algorithms presented in [47]

and [44] have lower performance in the numerical experiments. The BMI associated

with the model reduction of a second order system has twelve decision variables.

Spending forty minutes on a second order system does not seem to be acceptable.

Reference [40] attempted to enhance the efficiency of BB algorithm by reducing the

number of subregions. However in this reference an incorrect assumption was made

that upper and lower bounds as defined in the reference exist over all subregions.

'In one of his email communications with the author of this thesis, the author of Reference [40]
acknowledges that the algorithm constructed for calculating the upper bound as in the reference
may not have solution.
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5.3 Branch-and-Bound Procedure for Model Re-

duction Problem

This section presents a BB algorithm that divides the searched region with respect to

p4 only. As stated at the end of Chapter 4, the decision variables of a BMI problem

associated with the model reduction of an n'h order system include n p' and n(2n+1)

independent components of P. Therefore for a system whose order is not trivially

small, the number of p' is a small fraction of the number of all decision variables.

Thus dividing along p only may result in much less number of subregions in the

search.

To facilitate further presentation and the proof, the form of the constraints are

adjusted. First, a standard representation of BMI problems [47] is adopted. The

constraint (4.23) can be written as,

Z:p-7G > 0 (5.4)
j=1

where pjs are the independent components of P, and G, are constant matrices with

the same dimensions as P. G(k, 1) =1 if P(k, 1) is p and 0 otherwise. Furthermore,

for each given problem, without loss of generality p can be assumed to be finite.

Denote the upper and lower bound of pj as Pisup and pjinf respectively. The constraint

(4.24) can be written as 2[47],

M ppwij) = F oo + E p'iFio + (pjFo + EE w- F. < 0 (5.5)
i=1 j=1 i=1 j=1

where,

Wiy = p'4pJ (5.6)

Matrices Fi 1 has the same dimension as M. FO0 contains terms independent of p, p

and wpj. Fio(k, 1), Fol(k, 1) and FifJ(k, 1), i, j J 0 are the coefficients of pi, pJ and wi 1

2The purpose of rewriting constraint (4.24) is to separate the linear and nonlinear terms with
respect to I'4 and p.
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in the (k, 1) component of M respectively. Also denote the matrix whose jth entry is

wij as W. Second, as shown in Section 5.2, the BB method works on subregions of

the overall decision variable space. Therefore instead of using the constraint (4.22),

we use,

Ikinf </ <'sup i =1,.. . n (5.7)

where liinf and y delineates the boundary of a specific subregion. Third, the

constraint of P > 0 is replaced by the following equivalent constraint,

Piinf LtP GI -ZwiGj < 0 (5.8)
1 :lj=1

-P'SUP *PjG + w-jGj < 0 Vi (5.9)
-3=_ j=1

The equivalence is obvious. In fact, with (5.7) P > 0 is equivalent to,

(/Ainf - PD) [ PJ GJ < 0 (5.10)
J=1

n'

(-PiP+ 4 'i) E PJGJI < OVi (5.11)
J=1

Inequalities (5.8) and (5.9) can be obtained by expanding the left hand sides of

inequalities (5.10) and (5.11). The significance of inequalities (5.8) and (5.9) will be

made clear when proving the convergence of the proposed algorithm. As a summary,

after these adjustments the optimization problem on a subregion has the following

form,
n

max L = E Pi' (5.12)
i=1

subject to,

Iinf < /' < p'su, Vi (5.13)

Piinf [±pjG -- 2<EijG< 0 (5.14)
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Figure 5-3: Illustration of the PT(T)

n' n'

PU{ E p K y GJ + E w yGj < 0 Vi (5.15)

7, 
n ' 

n n '

M(tipj, wig) FOO + 1 :p'Fio + E pj Fo + S S wjFi < 0 (5.16)
i=1 j=l i=1 j=l

Wij = pip (5.17)

In this paragraph, the algorithms for the three basic operations are constructed.

The algorithm for the partitioning a subregion T is denoted as PT(T). The input to

PT(T) is a region T, defined by the inequalities,

T = ['finf < p' < p',,... Ainf < '4 </4SUp1  (5.18)

PT divides T evenly along its longest edge. Mathematically PT generates two sub-

regions T8ubi and Tsu62 that satisfies,

I//Ij*jnf + Aij*sp I 1
Tsu1 = p'ls < LI < p'1 , . /. .,p*jinf < p's < 2 [ininf </n tInsup

(5.19)

r i t pLi*inf + Pi*sup I
Tu2= Akinf < /I < A jj~ +[&up< /I< [tup inf< /A < II

(5.20)

where i* is the index for max(pL3,, - pt,'g). The output of PT is T6su6 and Tub2 2.

Figure 5-3 is an illustration of the operation. The algorithm for calculating the upper

bound of max L over T is denoted as UB(T). The input to UB(T) is region T.

UB(T) solves the optimization problem consists of (5.12), (5.13), (5.14), (5.15) and

71



(5.16). The output is the best parameter configuration for UB(T) problem {' 4 UB},

the corresponding PUB and the corresponding maximum 3(T) =? ijvs if UB is

feasible, and an 'infeasible' flag otherwise. UB has one less constraint, namely (5.17),

than the original optimization problem. Therefore O(T) is greater than or equal to

max L over T, and thus can be used as an upper bound for max L. Furthermore,

obviously there is no guarantee for max L to reach /3(T), and 4'UBs do not necessarily

satisfy all constraints of the original optimization problem. If UB(T) is infeasible,

then the original optimization problem is not feasible on T, since the latter has only

more constraints than the former. The algorithm for calculating the lower bound of

max L over T is denoted as LB(T). The inputs to LB(T) are region T and PUB

obtained in UB(T). LB(T) fixes P 3 in (5.14), (5.15) and (5.16) to be PUB and solves

the optimization problem of (5.12), (5.13) and (5.16). The constraints (5.14) and

(5.15) is now redundant because PUB is guaranteed to be positive definite 4. The

outputs are the best parameter configuration for LB(T) problem {p$L} and the

corresponding maximum a(T) = P'iLB if LB is feasible, and an 'undetermined'
i=1

flag otherwise. Since LB(T) has one more constraint than the original optimization

problem a(T) is less than or equal to maxL. Furthermore, {ILB} is guaranteed to

satisfy all constraints of the original problem. Since LB(T) has two more constraints

than UB(T), in general the feasibility of UB(T) does not guarantee the feasibility of

LB(T).

Since for an arbitrary subregion T, UB(T) and/or LB(T) are not necessarily

feasible, new mechanisms be added to the general frame of the BB algorithm to handle

3The way P is calculated and used in the proposed branch-and-bound procedure directly influ-
ences the efficiency of the procedure. The efficiency of a branch-and-bound procedure may be higher
if, for each subregion, the obtained lower bound is closer to the obtained upper bound, which in
turn implies that the search is closer to convergence. The use of the value of P obtained in the
upper bound problem to calculate the lower bound is based on a widely acknowledged speculation
in branch-and-bound algorithms[47], that is, the lower bound may have a better chance to be close
to the upper bound if the former is generated with the same P of the latter. If for a specific problem
the speculation turns out to be true, the branch-and-bound problem may converge faster. Other-
wise, several more partitioning of the involved subregion may be required, which may slow down the
convergence procedure.

4 PUB is positive definite because it is obtained from problem UB. In problem UB, (5.14) and
(5.15) guarantees the positive definiteness of PUB.
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such cases. If UB(T) is not feasible, in other words no parameter combination in T

satisfies (5.13), (5.14), (5.15) and (5.16) simultaneously, then the original optimization

problem, which has one more constraint than UB(T) namely (5.17), is not feasible on

T. Consequently T shall be remove from further search. The case for LB is different.

Later in the thesis it will be proven that after sufficiently many partitions, feasibility

of UB implies feasibility of LB. In other words, for a subregion T not removed by

the algorithm, when the volume of T is sufficiently small LB is always feasible. This

means when LB(T) is infeasible T shall be kept in the partitioning and search process.

Example 1 illustrates the issue of the feasibility of UB and LB.

With the above algorithms the overall BB process can be constructed. The mean-

ings of some new symbols are listed below. TkI is a subregion indexed I at the

kth iteration of the BB process. Q =k {TTk} is the set of subregions at Step k.

Ak max(a(Tk)) is the largest value of L achieved in Step k, since as pointed out in
argi

the last paragraph, a is the sum of a set of parameters that satisfy all constraints of

the original optimization problem. Now the steps of the BB process can be listed as

following,

Step 0 Set T = [0 < p' <H,...,0 <jp4 < H], Ao = 0, t1 = T, and k = 0. Set

the tolerance of the algorithm Ea > 0.

Step 1 Set k = k + 1. For each Tkl E D, solve UB(Tki). If UB(Ti) is infeasible,

remove Tkl. Otherwise obtain 3 (Tkl) and the corresponding PUB. Then solve

LB(Tk1). If LB(Tk1 ) is infeasible, mark Tke as 'undetermined'. Otherwise obtain

a(Tkl). Set Ak max{a(Tkl)}, and the corresponding {P'I,... p',} are labeled

Step 2 In Dk, delete all Tkl's such that /(Tke) A< -±- Ea. Denote the set of the re-

maining regions Rk. If R, = #, the algorithm terminates. Ak is the -suboptimal

value with corresponding {p'1,... , p4}. Otherwise, continue to Step 3.

Step 3 In Rk choose T* that corresponds to max(#(Tk,) - a(Tki)). Also, choose all
argi

'undetermined' Tkls. Denote the set of all the chosen regions {Th} where h is
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the index. Set bk+I-= {Rk \ {Th}} U {U(PT(Th))}. Go to Step 1.
h

The proposed BB method automatically seeks the combination of the system

parameters that contains as many p4 close to H as possible. This is different from

most existing model reduction procedures in physical domain, which tries to remove

physical components one by one. As shown by an example in the previous chapter,

the former approach may lead to simpler reduced models.

5.4 Proof of Convergence

This section proves with Lemma 5 that the algorithm converges to global E-suboptimum

. The very first step shall be the proof of the existence of /(Tm) and a(Tm), i.e. the

feasibility of UB(Tm) and LB(Tm), when m is sufficiently large. The proof is neces-

sary because, as pointed out in Section 5.3, in general the feasibility of UB and LB

are not guaranteed over a given region.

The following lemma is useful.

Lemma 6 Given the partitioning rule PT, any infinite successively partitioned series

{Tm} satisfies,

VE > 0,]2(C) s.t. Vm > ((E) <E Vi (5.21)

Physically, Lemma 6 says that after sufficiently many partitions, the edge length of

the region being cut becomes arbitrarily small. This lemma is obviously true.

Now the proof of the feasibility of UB and LB for sufficiently large M is presented.

The feasibility of UB(Tm) is trivially true because the algorithm removes any subre-

gion with infeasible UB. So for a infinite successively partitioned series UB(Tm) is

feasible Vm. Given the feasibility of UB(Tm), the feasibility of LB can be proved by

showing,

Theorem 3 With the partitioning rule PT, when m is sufficiently large if UB(Tm)

is feasible then LB(Tm) is feasible.
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Proof

The proof is constructed in two stages. In the first stage, it is shown that when

m is sufficiently large, WijUB is arbitrarily close to p'iUBPjUB. In the second stage, it

is shown that when WiJUB is sufficiently close to p'iUBPUB, if UB is feasible LB is

feasible.

Now let us begin with the first stage. According to Lemma 6 when M is sufficiently

large the following equations hold for arbitrarily small Ec > 0,

PiUB inf ± Ei (5.22)

On the other hand, the solution of UB must satisfy the constraint (5.14). According

to [40], (5.14) leads to,

iinfPJUB - WijUB - NiinfPjinf ± PjinfAiUB < 0 (5.23)

'iinfPjsuP - iUBPjSUP - liinfPjUB + WijUB < 0 (5.24)

Substitute (5.22) into (5.23) and (5.24) one gets,

'iUBPjUB ± i(Pjinf - PjUB) <WijUB < 1 iUBPjUB + Ei(Pjsup - PUB) (5.25)

which leads to,

WijUB ' iUBPjUB + F's (5.26)

where El is arbitrarily small.

Equation (5.26) indicates that WijUB and iUBPjUB are arbitrarily close. Based

on this one can prove if UB is feasible then LB is feasible. In fact, assume UB is
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feasible and LB is not feasible, i.e. Vp' c (p'4 , p4 ), one gets 5

n n'/

Foo + i 'i4F0o + Z:PJUBFoJ
i=1 j=1

n n'

+ S ((p'PUB)Fij > 0
i=l j=1

which leads to (due to P UB E (p 2 U 'in72 )),

n n/l

Foo + 5 piUBFio + PjUBFoj
iz=1

n n'

+ S Sp4UBPJuB)Fij > 0
i=l1j=1

(5.28)

Then due to continuity for sufficiently small 6',

n n' n n'

F 0 ±+5 piUBFo + S PJUBFOJ + S p'iUBPjUB + c')FZ3 > 0
i j=l i=lj=1

(5.29)

Inequality (5.29) indicates that UB is infeasible. This leads to a contradiction to our

assumption that UB is feasible. As a conclusion, if UB is feasible then LB is feasible.

End of Proof

Given the result of Theorem 3 it is straight forward to prove lim (/(Tm) -

a(Tm)) = 0, i.e.

Theorem 4 In an infinite successively partitioned series of {Tm}, Ve > 0, ]C(c) such

that Vm > c(c), /(Tm) - c(Tm) <ac

Proof

According to Lemma 6, Veo > 0, 3]'(co), such that Vm > '(Eo), iA'sup - IAinf <6E0 Vi.

Since J = S p', one gets /(Tm) - a(Tm) < neo =-e. One can further set '(co) =

' (). Then Vec> 0, ](c), such that Vm > (c), /3(Tm) - a(Tm) < 6.

End of Proof

Theorem 4 shows the proposed algorithm satisfies the requirement of Lemma 5.

Therefore the algorithm converges to global e-optimum 6.

'As stated in Section 4.3.2, equality sign is not relevant in this optimization problem.
6The efficiency of the calculation highly depends on the specific problem. One thing worthy of

pointing out is, it has been proven in the literature that in the worst case, the complexity of a BMI
problem is proportional to the exponential of its size[46].
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5.5 Summary

This chapter proposes a BB based algorithm for solving the BMI optimization problem

associated with model reduction. The contribution of this section can be summarized

as,

" Constructed a BB algorithm for model reduction in physical domain. The

algorithm partitions along system parameters only.

- Added to the general frame of the BB algorithm the processes for handling

subregions with infeasible UB and LB problems.

- Constructed a BB algorithm for model order reduction in physical domain.

" Proved that the proposed algorithm converges to global c-suboptimum.

- Proved that after sufficiently many partitions, the feasibility of UB leads

to the feasibility of LB.

- Proved with Lemma 5 that the proposed algorithm converges to global

E-optimum.
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Chapter 6

Examples

6.1 Example 1: A Generator

The purpose of this example is to use graphs to show the convergence procedure of

the proposed BB algorithm.

The system under consideration is shown in Figure 6-1 and its bond graph model

is shown in Figure 6-2. The accuracy requirement is 'y, < 0.1. The range of search

is = ' c (0, 500) and Ar = ' (0, 500). The corresponding BMI problem has

twelve decision variables, which include p', ' and ten independent elements of P.

Since only two independent system parameters are involved in this example,

graphs can be used to show the converge process. The specific process recorded

12: 1

Ke: I11

R11: 1

R2: 100

Figure 6-1: A Generator System

79



I2 11

R2 |f1 s GY / I RI

Se

Figure 6-2: Bond Graph Model of a Generator System

in Figure 6-6 through Figure 6-9 includes ten iterations. Each figure shows the state

of the subregions at the beginning of an iteration, along with a short explanation of

the contents of the figure. White blocks are the subregions that have been removed,

grey blocks are the remaining 'undetermined' subregions and the black blocks are the

regions whose associated LB problem was found feasible during the previous itera-

tion. In these figures, the horizontal axis is for p' the vertical axis is for '. The

search range of pL and p' are set to be [0, 500].

On the performance aspect, the algorithm converges in 41.9225 seconds and 10

iterations.

The result is p4 = 0.9634 and p' = 491.0155. This result shows that 2 can

be removed and I shall be set to = 1.0380. The reduced model and the

corresponding bond graph are shown in Figure 6-3 and 6-4 respectively. The frequency

responses of the original system and the reduced system are plotted in Figure 6-5.

The two responses are almost identical.

This example also demonstrates that, as pointed out in Section 5.3, for a given

subregion UB and/or LB is not necessarily feasible. In fact, as shown in Figure

6-7, UB is infeasible over the region of {0 < p' < 500, 0 < p4 < 500. Denote this

subregion as T. Since the constraints of UB is a subset of the constraints of LB, LB

is also infeasible on T.
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Figure 6-3: Simplified Generator System

Ii

R2 r GY 1 RI

Se: T

Figure 6-4: Simplified Bond Graph Model of a Generator System

Bode Dagram
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Figure 6-5: Frequency Responses of the Original and the Reduce Model
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Figure 6-6: Iteration of BB Procedure

3rd Iteration
3rd Iteration
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3rd Iteration: One quarter
of total area removed for

infeasibility of UB

4th Iteration

4th Iteration
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4th Iteration: more areas
removed for infeasibility

of UB.

Figure 6-7: Iteration of BB Procedure
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500

450

400

350

300

250

2001

150

100

50

0 J
0 100 200 300 4(0 500

7th Iteration: Three quarters
of total area removed for

infeasibility of UB.

8th Iteration

500

450

400

350

300

250

200

150

100

50)

2
S 100 200 300 400 500

8th Iteration: An area feasible
to LB found. Many areas will

be removed because upper
bound of L over them is now

less than k.

Figure 6-8: Iteration of BB Procedure
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Figure 6-9: Iteration of BB Procedure
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kIl: 20 k2: 20

M: 20 M2:5 M3:20

R3: 10 RI: 20 R2: 20 R4:10

Figure 6-10: Bond Graph Model of a Fifth-Order System

6.2 Example 2: A Fifth-Order System

This example illustrates the use of the proposed model reduction procedure for a

more complex system. The system under consideration is shown in Figure 6-10. The

accuracy requirement is 'yp < 0.01. The JA, B, JC and D matrices are,

--A + R3) Ri 0 -1 0

R 1  -(R1+R 2) R 2  1 -1

JA=0 R2 -(t2 +R4) 0 1

1 -1 0 0 0

0 1 -1 0 0

B = 1 0 0 0 ]

c= 1 0 0 0 0

D = 0(6.1)

Let us first try to approach the problem by inspection. The parameters of the sys-

tem components are in the same order of magnitude, so no component is obviously re-

dundant. Furthermore, the poles and zeros of the system are [-7.9929, -1.1305, -0.7500+

0.6614i, -0.7500-0.6614i, -1.1305, -0.4466] and [-7.4161, -1.1462, -0.4688+0.5007i, -0.4688-

0.5007i] respectively. There is one very close pole/zero pair, which is -1.1305/-1.1462.

So one may suspect mathematically the model can be reduced to a fourth-order one.

At the same time, since all the system parameters are of the same order of magnitude,

it is difficult to identify which components or combination of components make major
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Figure 6-11: Reduced System

contribution to this pole/zero pair.

Now let us apply the procedure presented in this thesis. Define the p' as follows,

I = I, [2= I, mu4 = -, 14= j, [' = The range of search is p E

(0, 1000).

The proposed procedure provides a reduced system of first order! The procedure

gets the following result, p' = 0.0420, p' = 999.8186, [' = 999.8325, P4 = 991.1318

and P' = 954.6731. These results indicate 12, I3, C as well as C2 can be removed,

and the resultant model is shown in Figure 6-11.

The H,, norm of the error model is 0.009. The frequency response of the original

model and the reduced model are shown in Figure 6-12.

Some may wonder why the reduced model has a mass of 23.8, instead of the

summation of the masses of the original system, which is 45. One explanation comes

from the bode plot of the original system shown with dashed lines in figure 6-12. From

the structure of the original system, one can see that the response at the extremely

low frequency is solely determined by R 3 and R4 , which totals forty. The parameters

of these resistances are not being changed, since the proposed procedure works on

the parameters of the energy storage elements only. At the same time, despite of the

fact that the frequency response of the original system has some ripples, its overall

shape is quite close to the frequency response of a first order system, with break-off

frequency at about irad/sec. Thus it makes sense for the reduced model to have an

overall mass of about forty.
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Figure 6-12: Frequency Response of the Original (Dashed Line) and the Reduced
(Solid Line) Systems

This example also shows that the proposed model reduction procedure identifies

the contribution of the combination of energy storage elements to the system dynamic

behavior, rather than tries to remove the components one by one. In fact, it is

difficult to point out, in this example, which component makes major contribution to

which eigenvalue. The model reduction procedure 'summarizes' the contribution of

all components and use the minimum number of energy storage elements to realize

the transfer matrix (in this case a transfer function) of the original system.

6.3 Example 3: Error Model with an Output Fib-

ter

This example illustrate the use of input/output filters. Consider the system in Figure

6-13. Suppose the frequency range of interest is to < lrad/sec. The magnitude of the

frequency response within this range is greater or equal to 0.05. Let us chose },, be

30solid lines.

A sixth-order Butterworth filter with cut-off frequency of Trud/sec is used as the
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Figure 6-13: A Fourth-Order System

Bode Diagram
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Figure 6-14: Frequency Response
Dashed: Reduced

of the Fourth-Order System: Solid: Original,
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output filter. With the notations in (4.25), its state space realization can be written

as,

-3.8637 -1.8660 -1.1427 -0.9330 -0.4830 -0.1250

4.0000 0 0 0 0 0

0 2.0000 0 0 0 0
Ao010

0 0 1.0000 0 0 0

0 0 0 1.0000 0 0

0 0 0 0 1.0000 0

Bout= [0.2500 0 0 0 0 ]

Cout = 0 0 0 0 oo0.5000

Dout = 0 (6.2)

The proposed algorithm gives the reduced model shown in Figure 6-15. The cor-

responding frequency response is shown in Figure 6-14 in dashed lines. The response

matches that of the original model up to about 1.5rad/sec as required.

The H, norm of the error model is 0.014, which is less than the required error

margin of 0.015.

6.4 Example 4: Model Assembly

In contemporary engineering practice, system assembly is an important part of system

design. Many complex systems are assembled with the subsystems which are off-

the-shelf products. How to build simplest model for such systems is an interesting

problem.

One may have less freedom in the modeling of such assembled systems. Often off-

the-shelf products come with models, developed by the suppliers, whose parameters

are not subject to change or omission. In such cases, the best one can do is to decide

which self-designed components and/or the related physical phenomenon shall be

included in the model. Such kind of problems are sometimes referred to as model
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Figure 6-15: Reduced System

assembly problems.

Model assembly problem is in fact a variation of model reduction problem. The

only difference is that now only part of the parameter space, i.e. the parameter space

corresponding to the self-designed energy storage elements, needs to be searched. The

optimization procedure developed in the previous chapters for model reduction can

be directly applied to model assembly problems.

Consider the system in Figure 6-16 with all the component parameters. This

system is composed of a motor and a mechanical system. The shaft of the motor

pulls a mass horizontally via a cable with compliance and resistance. Assume the

friction between the mass and the ground is negligible. Suppose the parameters of

the motor are given and are not subject to change. Let the input be the voltage of

the electric source, and the output is the current1 in the circuit. The problem is to

identify the relevance of the mechanical components, namely the inertia of the shaft,

spring and the mass.

Choose as the state variables the generalized momenta associated with inductance

I, inertia J, mass M as well as the generalized displacement associated with the

'The current is useful when, for example, choosing an appropriate power amplifier.
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01R=L=

IC= I

capacitance C and spring K. Denote the state variables as pi, P21P31 q1 and q2 .

Denote the inverse of mechanical side system parameters -1,-L and kc as A', P' and

34 respectively. With the following state vector x P1, P2, P3, q 1 q2 ] T the system

parameterization can be found as,

1 -1 0-10 100R0 0

R1 1 0 ± 04 00010 10

Fe0 1 -101 OSy400 (6.3)102

1 0 0 0 0 0 0 010

0 1 -10 0 '00 01 0 0 0 0 0 P'3

B9  = 1 0 0 0 ] (6.4)

C9  = 1 0 0 0 0 (6.5)

D9  =0 (6.6)

For this example, the error margin is chosen to be a value much smaller than the

peak value of the frequency response. Specifically, 7, is chosen to be 0.003, which is

less than lsearch be 0 < p4 < 1000. The optimization procedure finds the mass M

and the spring k can be removed while the inertia of the shaft changes very little.

The resultant H. norm is 0.0021.

This result makes physical sense. The shaft of the motor has a quite small radius,
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Bode Diagrams

From: U(1)
011

-4 -. . . I . I I.

0

Figure 6-17:
System

Frequency (rad/sec)

Bode Plot of the Original (Solid Lines) and the Reduced (Dashed Lines)

therefore the numerical value of the output torque of the motor is very small compare

to that of the force on the cable. Consequently the influence of the dynamics of the

mechanical side on the electric side is quite small.

The bode plots of the original and the reduced system are shown in Figure 6-17.

The two responses are almost identical.
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Chapter 7

Conclusion and Recommendations

for Further Research

The major work of this thesis can be summarized in one sentence: based on the

intuition obtained from the recalibration of the fundamentals, and utilizing results

of contemporary research, a rigorous framework and an algorithm with satisfactory

efficiency are developed for model reduction problem.

The most important step in the research is perhaps expanding the scope of model

reduction to include the adjustment of all system parameters. Physically, this expan-

sion is reasonable because many components may make contribution to the dynamics

of the overall system as a whole, due to the coupling among them. Consequently,

much simpler model may be obtained when the parameters of all components are

subject to change. Furthermore, the idea of searching the whole parameter space

for the best model leads to the understanding that model reduction in the physical

domain is essentially an optimization problem.

Formulating the model reduction in the physical domain as an optimization prob-

lem is another significant step. One major achievement in this step is the mathe-

matical abstraction of the goal of model reduction, i.e. the construction of a index

function that reaches its optimum when as many energy storage elements as possible

are set to be arbitrarily small. Also, it is proven that an element is removable if

its parameter can be set to be a sufficiently small positive value. Consequently, no
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causality change happens during the search process and therefore one does not have

to rederive system equations for different candidate reduced models. The formula-

tion of model reduction as an optimization problem opens up the gate for applying

competent mathematical tools for model reduction. In fact, this formulation relates

the model reduction problem with one of the most attractive frontiers of in control

and dynamics area, which is the solving of BMI problem. Future progresses in BMI

research can be directly exploited for model reduction purpose.

The discussion on the power-based methods is another interesting part of the

thesis work. The author has not seen any continuation of the effort for developing

variations of such methods, which started in 1988 and produced several publications,

since 1999, the year when the three counter examples were published in [1] and [5].

In this thesis, a BB procedure is proposed for solving the BMI problem associated

with model reduction. The proof of its convergence to global maximum assures the

simplest model, for the model reduction problem discussed in this thesis, can be

achieved.

The thesis work also brings up some interesting topics for future research. One is

to include the dissipation elements in the model reduction procedure. At this time,

the simplest parameterization with both dissipation and energy storage elements gives

a 'trilinear' matrix inequality constraint(See B). Although in principle BB algorithm

can be used to solve such kind of problems, the efficiency could be low due to the

mathematical complicity. A better form of parameterization may be the key. Another

possible research topic is to develop solutions for the associated BMI problem with

better efficiency. The BMI problem involved in model reduction is quite structured,

which provides the possibility of developing specialized high efficiency algorithms.

Also, model reduction criteria other than H, norm shall be investigated for various

applications.

As a summary, the contributions of this paper include,

e Constructed three counter examples for power-based model reduction proce-

dure.
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" Expanded the scope of model reduction in physical domain to include the ad-

justment of all system parameters.

" Developed a fully automated model reduction procedure that guarantees the

error of the reduced model in H norm.

- Formulated model reduction problem as an optimization problem with

BMI constraints.

- Developed a BB algorithm for the optimization problem associated with

model reduction. Proved the convergence of the algorithm to the global

optimum.

And the recommendations for future work include,

* Include dissipation elements in future model reduction procedure.

* Enhance the efficiency for solving BMI problems.

* Investigate error norms other than H,.
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Appendix A

List of Symbols

1

n: Order of the original system,

Pi(t): Power flow associated with the bond labeled i

-Pi (t): RMS of Pi (t),7 Pi = z fP (t) dt

Ali: Activity index of bond i, defined as AL[ = f T Idt

G: Transfer matrix of the original model,

G,: Transfer matrix of the reduced model,

Gerror: Transfer matrix of the error model as in Figure 3-9,

e0 (t): Output of the error model as a function of time,

'yr: Prescribed error margin. The transfer matrix of the reduced model shall satisfy

JIG - GrH0o0 < ,,

SYSO: Original system,

SYSg: Generalized system. A system with the same structure of the original system

while the parameters of the energy storage elements can be chosen aribitrarily,

pi: The parameter of the ith energy storage element in the original system,

,Ltgi: The parameter of the ith energy storage element in the generalized system,

AP, B,, C,,Dp: State space representation of the generalized system with the flow

associated with the inertances and the efforts associated with the capacitances as the

'Standard symbols, such as w for angular frequency, is not listed.
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state variables,

pA: Inverse of pti,

L: Index function for the optimization problem associated with model reduction,

H: The artificial upper bound for p'. Chosen to be a sufficiently large number,

r: Scaling factor used for the search of H,

A, B, C, D: State space representation of the original model, with the generalized

momenta associated with the inertances and the generalized displacements associ-

ated with the capacitances as state variables,

Ag, Bg, Cg, D: State space representation of the generalized model, with the gen-

eralized momenta associated with the inertances and the generalized displacements

associated with the capacitances as state variables. Since B. and D9 are independent

of system parameters one has B9r= B and D =D,

Eg: Parameter matrix for the generalized model, E9 =-

JA: Matrix that relates Ag and Eg, A = JAE

Jc: Matrix that relates Cg and Eg, Cg =JcEg,

P: A positive definite matrix,

M: A matrix that contains the BMI constraints of the optimization problem associ-

ated with model reduction,

Ain, Bin, Cin, Din: A state space realization of the input filter of the error model as

in Figure 3-10,

AO t, Bot, Cout, Dot: A state space realization of the output filter of the error model

as in Figure 3-10,

Aerror, Berror, C error, Derror: A state space realization of the error model as in Figure

3-10, Aerroro, Berroro, Cerroro, Derroro: A state space realization of the error model as

in Figure 3-9,

{ Tm}: A series of successively partitioned region in a BB process,

3(T): Upper bound of the optimum over region T,

a(T): Lower bound of the optimum over region T,
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pj: Independent components of P. G3 : Constant matrix, Gj (k, 1) =1 if P(k, 1) = p

and 0 otherwise,

Wif: w-- = yp,

F23: Constant matrices, Foo contains terms independent of pi, pl and wej. Fjo(k,l),

FO (k, l) and F -j(k, l), i,j $ 0 are the coefficients of p', ip and w-j in the (k, l) com-

ponent of M respectively,

W: A matrix whose (i, j) component is wij,

Pimf ;,isu: Upper and Lower bound of p' over a subregion,

T: A subregion in BB algorithm,

UB(T), LB(T): The algorithm for calculating the upper/lower bound of the opti-

mization problem associated with model reduction over region T,

PT(T): The algorithm for partitioning region T,

Tk,: A subregion indexed 1 at the kt iteration of the BB algorithm,

(P : The set of all Tkl at the kIth iteration,

Ak: Ak max('(Tk,)),
arg I

Ca: Tolerance of the BB algorithm,

NAUB,)PjUB, WijUB: pi, pj and wj obtained as the solutions for the UB problem.
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Appendix B

System Parameterization with

Dissipation Elements

Consider a causal LTI system with n energy storage elements and m dissipation

elements. Let , i = 1,... , n be the parameters of the energy storage elements.

Let pd, j = 1, ... m, be the parameters of the dissipation elements. The unit of Pd

is either resistance or conductance, depends on the causality of Adj. Let the state

variables be choosen as the generalized momenta associated with the inductances

and the generalized displacement associated with the capacitances. The state space

equaton of the system can be written as[38],

A = [JSS+ JSLLJLS] E (B.1)

B = [JSu + JSLLJLU] (B.2)

C = [JoS + JOLLJLS] E (B.3)

D = [JOLLJLU] (B.4)

where,

E =--.(B.5)

L lien -
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ydi

L =-(B.6)

/-dm

and all J matrices are determined by system structure and are independent of fItj

and Itdj. So the state space representation contains multiplication of P and I.Ldj

Substitute A, B, C and D into positive definite lemma, i.e. Inequality (4.17)

one gets the condition pei and p/1 shall satisfy. The inequality contains the term

PA + A*P. According to Equation (B.1) one has,

PA = P [J±s + JSLLJLS] E (B.7)

The right hand side of Equation (B.7) contains the multiplications of three unde-

termined variables, which are the components of P, L and E. Thus the resultant

constraint is a 'tri-linear' inequality.
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Appendix C

State Space Realization of Error

Model with Input and Output

Filters

Now let us construct a state space realization of the error model with input and

output filters. This system is a series connectoin of the input filter, the error model

without filters and the output filter. Let a state space realization of the input filter

be Ain, Bin, Cin and Din. Let the state space realization of the output filter be Aot,

Bout, Cot and Dout. An the state space realization of the error model, according to

Equation (4.18),

A 0
Aerroro = (C.1)

0 Ag

B
Berroro = [(C.2)

B

C = CerrorO -Cg (C.3)

D - D = 0 (C.4)

Denote the inputs and the outputs of the input filter, the error model without filter

and the output filter be u., yin, Uerroro, Yerroro, uo0 t and yout respectively. Also
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denote the corresponding state vectors be x, Xerroro and xo0 t respectively. Note

that yout is also the output of the overall system and u, is also the input to the

overall system. Let us first look at the output filter, which can be represented as,

d

di xout = A0 s1x0 st + B0 stu0 st (C.5)

Yout = Coxo±t + Dotuot (C.6)

Due to the series connection between the error model without filters and the output

filter, u 0 t is in fact Yerroro. Also Yerroro can be written as,

Y = Cerroroxerroro (C.7)

Substitute Equation (C.7) into Equations (C.5) and (C.6) one gets,

d
xot= A0 sex0 st + Bout Cerroroxerroro (0.8)

Yout = ±Couxout + DoutCerroroxerroro (C.9)

With the state space representation of the error model of,

d
jXerrorO= Aerroroxerroro ± Berrorouerroro (0.10)

Yerroro = CerroroXerroro (C.11)

one can rewrite Equations (C.8) and (C.9) as,

d Xout Aout BoutCerrorO x(Yu + 0 err (C12
XerrorO _ L 0 Aerroro XerrorO Berroro

Yout = [Cot DoutCerroro X 0  (C.13)
XerrorO
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Due to the series connection between the input filter and the error model without the

filter, one has Uerroro yin. Therefore one has the equation,

d [ 1 [ Aout Boutcerroro iF 1 + 0 F 1. 4
dt[XerrorO 0 AerrorO Xerroro Berroro

Yout [ Cout DoutCerroro (C.15)
Xerroro

where yn is determined by the following equation,

d
X = AinXin + B nUin (C.16)

dt

Yin = CznXin + Dinuin (C.17)

Substitute Equations (C.16) and (C.17) into Equations (C.14) and (C.15) one gets,

X71n Ain 0 0 Xin Bin
d
j Xout = 0 Aout BoutCerroro XOUt + 0 Uin

Xerroro BerroroCin 0 Aerroro XerrorO BerroroDin

(C.18)

Xin

Yout [ 0 Cout DoutCerroro XOt (C.19)

XerrorO

Substitute Equations (C.1) through (C.3) one gets Equation (4.25) immediately.
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