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Abstract

Given a degenerate (n + 1)-simplex in a n-dimensional Euclidean space R", which is
embedded in a (n + 1)-dimensional Euclidean space R™*!. We allow all its vertices
to have continuous motion in the space, either in R™*! or restricted in R®. For a
given k, based on certain rules, we separate all its k-faces into 2 groups. During the
motion, we give the following restriction: the volume of the k-faces in the 1st group
can not increase (these faces are called “k-cables”); the volume of the k-faces in the
2nd group can not decrease (“k-struts”). We will prove that, under more conditions,
all the volumes of the k-faces will be preserved for any suﬂimently small motion.

We also partially generalize the above result to spherical space S and hyperbolic
space H™.
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Chapter 1

Introduction

Rigidity is an area that draws research interest from the old times. One of the first
substantial mathematical results concerning rigidity is Cauchy’s rigidity theorem [2],
which says: “Two convex polyhedra comprised of the same number of equal simi-
larly placed faces are superposable or symmetric.” It is natural to ask what if the
convexity restriction is removed. Consider a polyhedron in 3-space such that it can
change its shape while keeping all its polygonal faces congruent. A longstanding
conjecture(mentioned by Euler) has been that the polyhedron is rigid; namely, al-
though adjacent faces of the polyhedron are allowed to rotate along common edges,
the polyhedron can only have rigid motion in 3-space. Nevertheless a counterexample
was found in Connelly [4]. A question remained as to whether the volume bounded
by the surfaces was necessarily constant during the flex. When the polyhedron is
homeomorphic to a sphere, the positive answer was given recently in Sabitov [8]. For
general polyhedral surface, the positive answer was given in “The bellows conjecture”
[5].

The above works share something in common: all the geometric structures they
considered have distance restrictions on some pairs of vertices. For a geometric struc-
ture, instead of putting distance restrictions on some pairs of its vertices, we can also
put volume restrictions on some of its k-faces. This leads to the study of another type
of rigidity. There has some detailed discussion of this kind of rigidity in Tay, White
and Whiteley([9], [10]). An interesting question is: if all k-faces of a n-simplex have
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the same volume, then is the n-simplex necessarily regular? Some results were given
in McMullen [7].

The main purpose of this thesis is to derive rigidity and invariance properties from
geometric structures that have volume restrictions on their k-faces.

In Chapter 2, we will study rigidity properties of certain degenerate (n + 1)-
simplices. The degenerate (n + 1)-simplices are in a n-dimensional Euclidean space
R™ which is embedded in a (n+1)-dimensional Euclidean space R**!. For a degenerate
(n + 1)-simplex, we allow all its vertices to have continuous motion, either in R™!
or restricted in R". For each k¥ with 1 < &k < n, based on certain rules, we separate
all the k-faces of the degenerate (n + 1)-simplex into 2 groups. During the motion,
we give the following restriction: the k-volume of the k-faces in the 1st group can
not increase; the k-volume of the k-faces in the 2nd group can not decrease. We
prove that: if the continuous motion is restricted in R" and also has some “good”
properties, then all k-volumes of its k-faces are preserved for any sufficiently small
motion(we say that it is k-unyielding in R*). When the continuous motion is in R"*!
and real analytic, we derive a sequence of constants ¢y, ..., c,, and prove that the
sign of ¢,_; determines whether it is k-unyielding in R”*!. Our main results in this
chapter are Theorem 2.5, Theorem 2.6 and Theorem 2.7.

Chapter 3 is devoted to study the relationship between these k-unyielding prop-
erties with different £’s by studying the relationship between c,, ..., ¢,. We define a

polynomial

n

fl@) =) (~Diea™,
=0
and prove that f(z) only has real roots(Theorem 3.1). We also give the necessary

and sufficient condition of when f(z) has n-repeated roots(Theorem 3.2).

Chapter 4 is our attempt to study some rigidity properties in spherical space S™
and hyperbolic space H™. Most results in Chapter 2 also have analogues in Chapter
4. Some of them are proved while some remain as conjectures. Since R™ 5™ and H"
are spaces with constant sectional curvature 0, 1 and —1 respectively, we hope it can
help us find more common rigidity properties among these spaces. Our main results

in this chapter are Theorem 4.4, Theorem 4.5 and Theorem 4.6.



Chapter 2

Rigidity and Volume Preserving

Deformation in R"

2.1 Definition

In this chapter, we will study some rigidity and volume preserving deformation prop-
erties of certain degenerate (n + 1)-simplices. The degenerate (n + 1)-simplices are
in a n-dimensional Euclidean space R™ embedded in a (n + 1)-dimensional Euclidean
space R™*!. For a degenerate (n + 1)-simplex, we allow all the vertices to have con-
tinuous motion in the space, either in R™*! or restricted in R®. For each k with
1 < k < n, we proved that, under some restrictions on the k-dimensional volumes (or
k-volumes) of its k-simplices (or k-faces), all k-volumes of its k-faces are preserved
for any sufficiently small motion.

A k-dim simplex is called a k-cable if its k-volume can not increase; it is called
a k-strut if its k-volume can not decrease; it is called a k-bar if its k-volume can
not change at all. We call a framework to be a k-tensegrity framework if some of
its k-faces are labeled as either k-cables, k-struts, or k-bars, and the other k-faces
are just not labeled as anything. All the k-tensegrity frameworks we consider in this
paper are simplices, and each their k-face is labeled as either a k-cable, a k-strut, or

a k-bar. We can consider k-cable, k-strut, and k-bar as volume restrictions imposed



on frameworks. For a framework in RY, if all k-volumes of its k-faces are preserved
for any sufficiently small continuous motion under the volume restriction, then we
say that it is k-unyielding in R%.

We will also call 1-cable, 1-strut, and 1-bar as cable, strut, and bar respectively,
and call 1-tensegrity framework as tensegrity framework. Particularly, for a framework
in R%, we say that it is rigid in R4, if the distance between each pair of vertices can not
be changed for any continuous motion under the volume restriction. We notice that,
“rigid” is a stronger notion than “k-unyielding”, since “rigid” automatically implies
“k-unyielding”, while not necessarily vice versa. Some definition of other types of
rigidity, which is related to tensegrity frameworks, can be found in (3].

When we draw pictures, we use dashed line to represent cable, and use wide solid

line to represent strut.

O O----=-e-- O O—)

(a) vertex (b) cable (c) strut

Figure 2.1:

Given 2 k-tensegrity frameworks G| and G, with the same constructions of k-
cables, k-struts, and k-bars, we say that G| dominates Gs, if the k-volume of each
k-cable of G, is no bigger than the k-volume of the corresponding k-cable of Gy; the
k-volume of each k-strut of G5 is no smaller than the k-volume of the corresponding
k-strut of G; and the corresponding k-bars of G; and G have the same k-volume.

For a framework G in R? we say that it is globally rigid in R¢, if when G
dominates another framework G5 in R?, then G; and G, are congruent. Global rigidity
is a very strong notion imposed on a framework, and global rigidity automatically
implies that a framework is also rigid in R¢.

Figure 2.2 gives an example of one of the simplest tensegrity frameworks. Suppose
Ay, Az, and A; are 3 points in R!, and A, is between A; and A;. Let A1 As and Ay Az
be struts, and let A; A3 be cable(Figure 2.2 (b)). If the continuous motion is restricted



in R!, then it is easy to see that the framework is rigid in R!; however, if we embed
R! into R? and allow the continuous motion to be in R? then the framework is not
rigid in R?. In the above framework, if we switch the role of cable and strut to get a
new framework(Figure 2.2 (a)), then it is not hard to see that the new framework is
rigid in both R' and R?, and is also globally rigid in R2.

(a) (b)

Figure 2.2:

2.2 Construction of k-tensegrity Frameworks

Given n + 2 points A;, A, ..., Ani2 in R™ in general position, which means that
every n+1 points are not in a (n—1)-dim hyperplane. We can treat these n+2 points
as the vertices of a degenerate (n + 1)-simplex. Since A;, A,, ... , Anto are in R™ in
general position, there uniquely exists a sequence of non-zero coefficients o, Qg, ...,
ant2 (up to a non-zero factor c), such that 372 o; = 0 and S aiEZ- = 0, where

O is the origin in R™. We will use these coefficients Qq, O, ..., Gnyo throughout this
paper.

Suppose Py, Py, ..., Py are any k+1 points in the space, we use Ve(Pry ...y Pet1)
to denote the k-volume of the k-simplex whose vertices are P;, B .. Py

Proposition 2.1

~

‘/n(Aly ey A‘i7 e 1A'n+2)/|ai|
is independent of 1 for 1 <i<n+ 2.

Proof. Skipped. O

For convenience, we choose q; to satisfy

-~

]a,-l = n'Vn(Al, ve ,Ai: c. ,An+2)-
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Besides, we also choose a; to be negative, then all the signs of o; are determined
afterwords. We separate these n + 2 points into 2 sets X; and X3 by the following
rule: A; is in X if o; is negative; A; is in X, if @; is positive. Since «; is negative,
so A; is in set X;. Indeed, the separation of these points is a following of Radon’s
theorem, which says that every n + 2 points in R™ can be separated into 2 sets such
that the convex hulls of the 2 sets have a non-empty intersection. Given k with
1 < k < n, we separate all the k-faces A -+ - Ay, into 2 sets Y:1 and Yy 5 by the
following rule: a k-face A;, - - - Aj,,, isin Yy ; if it has odd number of vertices in Xy
a k-face A; --- A;, +1 18 in Yy 5 if it has even number of vertices in X;. Based on the

above separation of k-faces, we construct 2 different k-tensegrity frameworks below.

Framework G, x: let all the k-faces in group Yy 1 be k-cables, and let all the k-faces
in group Y;, be k-struts.
Framework F), ;: let all the k-faces in group Y1 be k-struts, and let all the k-faces
in group Y} » be k-cables.

2-cable and 2-strut are shown in Figure 2.3.

(a) 2—cable (b) 2—strut

Figure 2.3:

For example, G2 is shown in Figure 2.4: (a) shows the 2-cables of Gs,2, and (b)
shows the 2-struts of Go2. Gap is the combination of (a) and (b). Fy, is shown in
Figure 2.5: (a) shows the 2-struts of F,,, and (b) shows the 2-cables of Fry. Fyyis

11



the combination of (a) and (b).

(a) (b)

Figure 2.4:

(a) (b)

Figure 2.5:

We see that Fy,, is constructed by switching the role of k-cable and k-strut in
Gnyi. We use the notation A(t) = (A4;(t),..., Ans2(t)) to denote the continuous
motion which satisfies the k-volume restrictions with ¢ > 0 and A;(0) = A;. The
main purpose of this chapter is to see when the above 2 frameworks are k-unyielding
in R" and R™*1.

Before we start the detailed discussion of k-unyielding properties for general k,

we first give some results for 2 specific cases kK = 1 and k = n. For convenience, a,
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vector -O? will also be written as P when there is no confusion. For example, the
. —_— = ?2 . 2 .
inner product OP; - OP, and OP? can also be written as P, - P, and P respectively.

The following result was prove in Bezdek and Connelly [1].
Theorem 2.1 (1) G, is globally rigid in R™*1.
(2) F,; is rigid in R™.
Proof. We use the same coefficients a4, as, ..., Q2 as before which satisfy Y o; =0
and ) a;4; = 0.

(1) Suppose G’ is a tensegrity framework in R**!' which is dominated by G, 1, and
the vertices of G’ are By, B,, ..., Byis. We then have

0 < (O[lB]_ + -+ Oln+2.Bn+2)2

= Za232 +2)  04B; - B;

i<g
since Y 1 q; =
==Y ailar+-+ i+ +0n)B +2Y 00,8 B
i i<j

= - 0B, - B)?

i<j
Based on the definition, we have |B; — B;| < |A; — A, if A;4, is a cable; and
|Bi — Bj| > |A; — A;| if A;4; is a strut. In both cases, we have
Q0 (Bz — Bj)2 > afiaj(Ai - Aj)z,

SO

—Za,a](B B;) ZazaJA A;)

i<j 1<g

=—Za,- a1+---+o?i+---+an+2)A?+22aiajA,--Aj

1<j
= Zaw +2) oA - Ay

1<j
= (@A + -+ apiodni2)?
= 0.

13




Then a;a;(B; — B;)? = o40;(A; — A;)? must hold. Since each q; is not 0, so we
have |B; — B;| = |A; — A;|, which means that G, is globally rigid in R™+!.

(2) Suppose after a small motion, point A; moves to B;. When the motion is
small enough, By, ..., B,y are still in general position in B*. So we can
find a sequence of coefficients £1, Ba, ..., Bnyos that satisfy > 3; = 0 and
> B:B; = 0, and each f; also has the same sign as ;. Based on definition,
we have §;8;(B; — B;)?* < B:8;(4; — A;)?. Following from almost the same

computation above, we have

0= (Bi1B1+ -+ Bri2Bni2)?
= - BiB;(Bi— B;)?

i<j
> =) BiBi(A: — Aj)?
i<j
= (BiA1+ - + Bni2Ani2)?

> 0.
Then |B; — B;| = |A; — A;| must hold, which implies that F, 1 is rigid in R™.

O
Remark. For k¥ = 1, besides G,,; and F,. 1, any other no-bar tensegrity framework
constructed on points Ay, ..., A, is not rigid in R™; and G is also the only no-bar
tensegrity framework constructed on points A4, ..., An4s to be rigid in R™*!. The
proof is left to the reader.
Figure 2.6 (a) is Go1, which is globally rigid in R?; (b) is Fy1, which is rigid in
R?, but not in R3.
The above rigidity properties of G, ; and F 1 are purely combinatorial properties,
as they are only determined by how we separate points A, ..., An4o into 2 groups.
However, when we talk about the k-unyielding properties of Gnx and F, ; later, we

will find that they are also determined by other factors.

Theorem 2.2 Both G, , and F, n are n-unyielding in R™.

14
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S
~—

Figure 2.6:

Proof. Suppose after a small motion, point A; moves to B;. When the motion is small

enough, the following equation

> Va(Biy.. By, Busa) = S Va(Bi,..., Biy..., Buso)

;>0 ;<0
holds, as both sides of the equation are the n-volume of the convex hull of points Bj,
.+, Bnya. We notice that, one side of the above equation is the sum of the n-volume
of all the n-cables, and the other side is the sum of the n-volume of all the n-struts,
which implies that all these n-volumes are not changed for G, , and Fy n. It means
that G, and F, , are n-unyielding in R". a
Remark. G, , and F,, , are not rigid in R". For example, there has continuous affine
motion to keep all the n-volume of their n-faces fixed while the shape of the n-faces
can be changed.

After we proved that G, and F,, are n-unyielding in R™, a natural question to
ask is: are G, and F,, still n-unyielding in R"*'? We will give the relatively more

complicated answer after we have more preparation in the following sections.
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2.3 Exterior Algebra

Before studying k-unyielding properties for general k, we introduce some mathemat-
ical tools to handle the computation of k-volumes. In this section, we are going to
prove some k-volume related properties by using exterior algebra.

Let A(R") denote the exterior algebra on R™. If a and b are two elements of
A(R™), we will denote the exterior product of a and b by a A b or just ab if it does
not cause any confusion. If a is an exterior product of & elements of R", we say that
a is a decomposable k-vector. If a is a linear combination of decomposable k-vectors,
then we call a a k-vector. We use A¥(R") to denote the vector space that contains all
the k-vectors. We have A(R") = @,_, A*(R™) as a vector space.

Suppose E = {e1,...,e,} is a orthonormal basis of R", then
E(k)z{e,-l/\---/\eik:ISil << <n}

is a basis of A¥(R™).
If P, ..., Pey1 are k+ 1 points in R", we define P; - - - Pr.1 to be a k-vector in
A¥(R™) as

- > —— S5
Pl"'Pk+1 = P1P2/\P1P3/\"'/\P1Pk+1.
From some basic exterior algebra computation, we have

— —
P1P2/\"'/\P1Pk+1=(P2—P1)/\"'/\(Pk+1—P1)
k+1 . R
=D (“D)™'P A AP A A Peyy.
=1

So we also have

k+1
PP = S (D™P A AP A APy,
i=1

Based on the inner product defined on R, we can also define inner product on
A¥(R™). Remember that ;- e; = 1if i = 5; and e; - e; = 0is i # j. We will define

the inner product on A*(R™) as

(€i, AvAei) (e A-- Aej) = det(e, - €5, ) 1<ims<k-

16



This definition is equivalent to say that the inner product of every two different
elements in E®) is 0; and the inner product of every element in E® to itself is 1.
We say that this inner product is naturally well defined, because the definition is

independent of the choice of the basis E.
Lemma 2.1 Ifry, ..., 1y, 81, ..., S are 2k elements in R", then we have

(7‘1 VAR Tk) . (31 VAYCERIVAN Sk) = det(ri . sj)lf’i,jﬁk'

Proof. Based on the definition, the above formula is true when each r; and s; are
elements in the basis F. If we consider each r; and s, as variables, then both sides of
the formula are linear to each variable. We write each r; and s; as linear combinations
of €, ..., e, and expand both sides of the above formula. We will then notice that
they are the same. a
Proposition 2.2 If P, ..., Py, are k + 1 points in R", then we have

—

P Pey® = (K)?VE(Py,. .., Poya).

This property tells us that when we want to computer the k-volume of a k-simplex,

we can compute the inner product of its associated k-vector instead.
Lemma 2.2 If we use l; ; to denote |P; — P;|, then

—
Py Pyii® = det((1f,; + l%,j —12;)/2)2<i j<k+1-

Proof. Since we have

—_— —_— —-—
Py - P> = (PP A -+ AP Pyyy)?

—
= det(P, ﬁ,  PLPj)ocij<k+t1,

17



—> i
so we only need to prove Plﬁ,- PPy = (i3, +13; - 12,)/2. This is true because

2PiP- PP, =2(Pi— P)) - (P, - P)
= (P=P)’+ (P~ )’ = (P, - P)?
=B, +0, -1,
O
Remark. This result tells us that the square of the k-volume of a k-simplex is not
only a polynomial with all its edge lengths l;; as variables, but also a polynomial
with all the I7; as variables.
After we know the relationship between Ve(Pr1, ..., Peyq) and l; j, a interesting
question arises: if all /;; (1 < 4,5 < k + 1) are first given, when can we find a k-
simplex P --- Pyyy in RF such that |P, — Pj| = 1;;7 A complete answered is given

below.

Theorem 2.3 Given l;; >0 (1 <4,7 <k+1, and lij = 1), then we can find a
k-simplez Py --- Py, in R* such that |P; — P;| = l;; if and only if: the k x k matriz
(2, + B;- 17,)/2)2<i j<k+1 is positive semi-definite. If we require P, - - Py to bea

non-degenerate k-simplez, then the same matriz should be positive definite.

Proof. Let A = ((If; + 18; — 12;)/2)2<ij<k+1. If A is positive semi-definite, then
we can find a k x k matrix C, such that A = CCT. Let P, = O, and P,,; be the
point that with C’s i-th row as its coordinate. then the k-simplex P, - - - Py, satisfies
P~ P} = L.

If k-simplex Pp---Pyy; in R* satisfies [P, — P;| = lij, then let C be a k x k
matrix such that C’s i-th row is m . vThen we have A = CC7T, so A is positive
semi-definite. O

We already know that mz is a polynomial with all 7 ; as its variables where
li; = |P;— P;|. The partial derivative of m2 over [ is also a polynomial, and
we will write it as 3!3”. mz We found that alf,jmz can be represented
as the inner product of two (k — 1)-vectors, which is more convenient to be used than

its polynomial form in terms of computation. The two (k— 1)-vectors are given below.

18



Lemma 2.3

—, _ > — —
algle1 -Pyy’=PBP - B- Py Peyr PP PPy Py

Proof. Let A = ((12;+1} ;—17,)/2)2<ij<k+1. From Lemma 2.2, we have Pl—ﬁﬁ2 =
det(A).

If1 <7and1 < j, then I}, only appears inside the (i—1, j—1)-th and (j—1,i—1)-
th item of matrix A. Since A is symmetric, so Oy det(A) is (=1)"9*! times the
determinant of a (k — 1) x (k — 1) matrix B, which is the rest of matrix A without

the (i — 1)-th row and (j — 1)-th column. Since

det(B) = (PR A - A Pl_Pi A NPPot)- (PIByA - AP A--- A PPos)

N

=P B Pk+1 PPy Py,

SO

A

3l?jdet(A)=pipl..._ﬁ;....pj...pk;.pjpl...pi...]%...pkﬂ_

If i =1 or j =1, the formula still holds because of symmetry. a

Now we will start considering the cases when continuous motion P;(¢) (¢ > 0 and
P;(0) = P,) is involved.

For convenience, also for trying to avoid writing a formula that is to long in one

line, we will sometime use p; to replace P, (t) if it does not cause any confusion.

Corollary 2.1 Suppose Pi(t), ..., Pei1(t) (t > 0 and Bi(0) = P,) are continuous

motion, and each their coordinate is a C function over t, then

(m2)' = Z(Pipl i Py 'Pk+71 "PiprcPic Dy 'Pk:)(l?,j(t))',
i<j

where D, = P,(t) and li’j(t) = |Pz(t) — Pj(t)l

Proof. Use chain rule and Lemma 2.3. a

Lemma 2.4 Embed R" into a bigger space R®. For a given [, let wy and wy be any

two l-vectors in R%, then we have
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(1)
Z _  ——
T .aik+1(w1 /\A’Ll . 'Aik+1) . (wz /\All .. A

1< <igy1

(2)
_—
§ : iy Qi Agy - A

11 < <lgyq

Proof. Since (2) is a special case of (1), we only need to prove (1). In order to make
a formula not too wide in a line, we will omit “A” if there is no confusion in the

following. For example, we will write 4; A A; as A;A;. Then we have

_— —
Do, (WAL A ) (e A Ay A
11 < <ipy
k+1 . )
= Z Qi - 0y, (W Z(—l)]+1Ai1 Ay AL
il("'(ik+1 ]=1
k+1
 (ws Z(—l)JHAn v Ai o Ay )
n+2
= Z Qi 0y, Za, Za% Jwids, - Ag) - (wodyy -+ Ay)
11 <<

- Z Z Qg QG wlAh o Atk 1 ) (wlAll e Aik-1Aik+1)

11 << G Fipy1

2
since Y " H? oy =

Z ail"'aik(zaij)(wl"qil"'A ) (ng Ak)

i1 <<,

- Z Z QG atk+1 wlA U Aik—1Aik) ’ (wlAil e Aik—lAik+1)

1< <l T Pl

Z ZZO‘M' C QG wlAn" Atk 1 ) (wlAu' Azk lAz,H_l)

1< <ig—1 Ig fp41

-~ Z Qi oy (widy, - Ay, (Z @, Ai))
ik

11 <<

) (wlAil v 'A’ik—1 (Z aik+1Aik+1))

igt1
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since Y12 a;4; = 0

a

Lemma 2.5 Embed R" into a bigger space R* and P is a point inside R%. For a

given I, let wy be a l-vector and wy be a (I + 1)-vector in R%. Then

Z QG azk wl/\PA "'Aik)'(wz/\Ail"'Aik):O'

i1 <<ty

Proof. We use by (w1, ws; P) to denote the right side of the formula. In order to make
a formula not too wide in a line, we will omit “A” if there is no confusion in the

following. By symmetry, we only need to prove that by (w;,ws; O) = 0. We have
be (w1, wa; O)

k
= Z iy -y (W1 Agy - Ay, - (w22(_1)j+1Ai1 e Ai e Ay)
=1

1< <y

= Z Z Qg - Oy wlAlkAn T Aik-1) ’ (w2Ai1 o 'Aik-1)

1< <lp—1 g

= Z Qg -t Qg (wl (Z alkAlk)All e Tk 1) (ng T Aik-l)
i

11<-<1p 1

2
since Y12 oy A; =

a

Lemma 2.6 Suppose P and Q are any two points in a higher dimensional space R¢.

For a given I, let wy and wy be any two l-vectors in RE. Then

= o

k(w17w21P Q 051,;, (.Ul /\PA te ) (w2 /\QA’Ll - 7-k)

11 < <i
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is independent of the choice of points P and Q. Then we can define a sequence of

constants ¢y, ..., ¢, such that cg =1, and
> oy, PA, A, - QA; - A (2.1)
11 <<t

for 1 <k < n, which is independent of the choice of points P and Q.

Proof.
ce(wr, wa; P, Q) — cp(wy, wa; P, 0)
_— —_—
= — Z (0790 azk(wl/\PA "'Aik)'(w2/\Q/\Ai1"'Aik)
1< <
=0.
In above, the last “=’ comes from Lemma 2.5.

By symmetry, we have
Ck(wl, Wa; Pa Q) = ck(wla Wa, P7 O) = ck(wla Wa; Oa 0)7

which is independent of the choice of points P and Q. O
A geometric optimization problem can be easily solved by using the above results.
Suppose P, P, ..., Py4; are n+1 points in R™, then the question is: at which point

Q does the expression

> VAQP,...,R,)

1<41 <<y,
get minimized? When k = 1, a well-known result tells us that the expression is
minimized when @ is the centroid (or called center of gravity) of points P;, P, cey

Poy1. The following theorem gives the solution for general .

Theorem 2.4 For each k, the expression

Y QB B2

1< <+ <1

is always minimized when Q is the centroid of points P, P, ..., P
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Proof. Suppose P is the centroid of points P,, ..., Piy1. Letyp=—-n—-1landy =1
for 1 <i<mn+1,then S 4 =0 and S 4P, = 0. Using Lemma 2.6, we have

_— —_—
Yo RP.Pl= Y 7,QP, B

1<4) <<y, 0<i1 <<
= Y QP P’-(m+1) S QRB, B>
1<iy <<y, 1<ir < <ip_1
S Z Q-Pz] Tt zk )
1< <<
and “=" holds if and only if Q is the centroid P,. a

2.4 Main Theorems

When we consider the continuous motion of points Ay, ..., Anyo, we use the notation
A(t) = (Ai(?), ..., Ans2(t)) to denote the continuous motion with ¢ > 0 and A;(0) =
A;. When the continuous motion A (%) is restricted in R, similar to the way that we
get o; which satisfies 37"’ @; = 0 and Y2 0, A; = 0, we can get coefficients a; (2),

, Qnt2(t) such that they satisfy S°7*7 a;(t) = 0 and SoM2 0 (8) Ay (t) = 0. Besides,

we can also require o;(t) to satisfy
()] = RV, (A1 (2), ..., Ai(2),.

= A1) ALl) - Appa(2)].

When ¢ is small enough, o;(t) has the same sign as a;(0) = a.

Ant2(t))

For convenience, also for trying to avoid writing a formula that is too long in a
line, we will sometimes use a; to replace A;(t) when there is no confusion. Similar to

the definition of ¢, we can define ¢y(t) = 1 and

\

a®) = 3 @ (t) -0 (O)Pay - ay - Qanar,

11 < <ig

which is independent of the choice of points P and Q.

Lemma 2.7 When each coordinate of A;i(t) is a C* function over t, we have

Z ai1(t) T aik+1( )(au TGy ), =0,

1< <1
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where a; = A;(t).

Proof. When k =1, we have

Z Qi (t)aiz (t) (mz)’

11 <ig
\ \
A ~ TN ——2\/
=- § :(a"ll a- a an+2 QigQ1 "+ Gy =" Ay - an+2)(ai1 Qiy )
11 <i2

= —(@ a3’
=0
=0.

In above, the second “=" comes from Corollary 2.1.
When £ > 2, we have

Z Qi (t) T aik+1( )(au Qg )’

1< <bgy1
= Z Q;, (t) Qg (t) (Z(aij gy - a;;j T aAiz B
1< <lpp j<l
. a’ila‘il . e afij e a';:l - a1k+l)(a1] a,_jlz) )
= ZO‘J t)al aja'l ) Z iy (t) T aik—l(t)ajail ’ a’lk 1 WG G
g<l 11< <y
= ce-1(8) D o (t)eu(t) (a;ar?)
J<i
=0
In above, the first “=” comes from Corollary 2.1; the third “=” comes from Lemma,
2.6; and the last “=” comes from the special case k = 1 which we Jjust proved above.

O

This property leads to our first main theorem.

Theorem 2.5 If A(t) is a continuous motion that satisfies the k-volume restrictions,
and A(t) is also C' over t, then both G and F,x are k-unyielding in R™ for each
k.
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Proof. If A;; -+ A;,,, is a k-strut, then we have
(@, a2 > 0;
if A, - Ay, is a k-cable, then
(@i 03,") < 0.
So for G, x(or F, 1), we have
@iy (8) - @y (8) (@, - iy 2)' > (or <)0.

By using Lemma 2.7, we find that

—_—
(a’ll ’ a1k+12) =0

must hold for Small ¢ > 0. So both G and F,, ; are k-unyielding in R™. O
Remark. For the above theorem, we proved two special cases k = 1 and k = n before
without using the restriction “A(¢) is also C* over t”. We believe that, G, x and F,
can also be proved to be k-unyielding in R™ without the restriction “A(t) is also C*
over t”.

We are now starting to discuss that whether Gnyx and F,; are also k-unyielding
in R**!. Remind that we derived a sequence of constants ¢y, ¢y, ..., ¢, in Lemma

2.6, where cg = 1 and

AN AN

k=Y. o, PA - A, QA Ay,

which is independent of the choice of points P and . These constants play the main
roles in deciding whether G, s and F,  are k-unyielding in R™*+1,

Suppose A (?) is a continuous motion in R**'. When ¢ is small, let B, (t) be A;(t)’s
orthogonal projection onto the hyperplane which contains points Ay(t), ..., Angalt).
Easy to see that, if A(t) is real analytic over ¢, B(t) is also real analytic over t, and
B,(0) = A;. For small ¢, we can find a sequence of coefficients ai(t), ..., anya(t)
such that )" o;(t) = 0,

)+ at)Ai(t) =

i>2
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and
n! Vo (As(t), ..., Ania(t)) ifi=1,

Ckit =
) n!Va(Bi(t), As(t), ..., At), ..., Anga(t)) ifi> 2.

When ¢ is small, o4(t) and o;(0) = o; has the same sign.

For convenience, we define B;(t) = A;(t) for 1 > 2. In order to avoid writing a
formula which is too long in one line, we sometimes use a; and b; to replace A,;(t) and
Bj(t) respectively. Similar to the definition of ¢, we can define ¢, (¢) =1 and

AN \
7

)= Y () -0, ()P, by, - Qby - by,

11 <<,

which is independent of the choice of points P and Q, and has ¢ (0) = .

Lemma 2.8 Suppose A(t) is real analytic over t for small t > 0. Use a; to replace
A;i(t).

(1) If ck—1 > 0, then for smallt > 0,

Z Qi (t) Oy, (t) (a'h U aik+12)l <0,
1< <lpy1

and the equality holds if and only if By(t) = A,(¢).
(2) If cx—1 < 0, then for small t > 0,

Yo (), ()@ a2 >0,

Ty
11 < <tp41

and the equality holds if and only if By (t) = A,(t).
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Proof. We will prove (1) and (2) at the same time.

Z Qi (t) O (t) (a'il R T 2)’

11 < <tpy1
N —
= Z @y (t) Ty, (t) (a'i1 T aik+12)’ - Z Gy (t) T Oy, (t) (bil T bik+12)l
i1<"'<ik+1 ’i1<"'<ik+1
”2 ey
=ai(t) Y an(t)ou,()(arby - b2 — biby - b2
2<i1 <<y
=on(t) Y i (t) - (6)(babsy - by, — bray Aby - by)? — byby, - by 2
2<iy <<y
=ait) D () e, (O((brar?) (b, - b))
2<i1 <+ <d,
— —
In above, the first “=" comes from Lemma 2.7; the last “=" is because biay-bib; =0

for all 4 and j.

If Ay(t) = Bi(t), then the above formula = 0.

In the following, we suppose A, (t) # Bi(t). In terms of the formal power series at
t =0, if two functions have the same leading term (#™, then we will use the symbol

(1P}
~

— —, . .
(b1012)" dominates bya1? in terms of formal power series at t = 0. When ¢, # 0,

we have
ar(t) Y () o, (8)(brar?) by, - by )%
2<i1 < <ig
oa(t) D () o () by by 2(hrar?)
2<i <<
-
=ai(t) D i (t)ou, () by, - by, 2(brar?)’
11 <<l
- a%(t) Z Qiy (t) TGy (t) blbiz T b;l?(bla;z),
2<in < <i
by Lemma, 2.4

NN
=—af(t) Y oi(t) 0, () bibs, by 2(brar2)

<<y,

=~ (B)ci1 (1) (101
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Since A(t) is real analytic over ¢, so (bl—aiz)’ > 0 for small t > 0. So when c;_, # 0,

cx—1 and
Z Q4 (t) Qg (t) (a'i1 e a’ik+12)’
< <igy
have the opposite signs for small ¢ > 0. a

Theorem 2.6 Suppose A(t) is a continuous motion in R™! that satisfies the k-

volume restriction. Also suppose A(t) is real analytic over t.

(1) If ck—1 > 0, then for Gy, points A;(t),... JAn2(t) will keep staying in a com-

mon n-dim hyperplane in R"*! for small t > 0.

(2) If ck—1 < 0, then for Fy,, points A,(t),. .. JAn42(t) will keep staying in a com-

mon n-dim hyperplane in R™* for smallt > 0.

Proof. Still let B, (t) be A(t)’s orthogonal projection onto the hyperplane that con-
tains points Ay(t), ..., Anta(t).

(1) Suppose c;_1 > 0. If points A; (¢), ..., Any2(t) do not keep staying in a common
n-dim hyperplane in R**" for small ¢ < 0, then A;(t) # By(t). By Lemma 2.8,

we have
Z 1273 (t) S & 7 P (t) (a'il U aik+12)l <0.

1< <ipy

However, for G, x, we have

Q;y (t) BRI PO (t) (ail e aik+12), >0

for all the k-faces A, --- A;,,,, which is a contradiction.
(2) The same as (1).

O
Remark. We believe that the above theorem can be proved without the restriction

“A(t) is real analytic over t”.
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Theorem 2.7 Suppose A(t) is a continuous motion in R™! that satisfies the k-

volume restrictions. Also suppose A(t) is real analytic over t.
(1) If ck—y > 0, then Gy is k-unyielding in R"+!.
(2) If ck—1 <0, then F, is k-unyielding in R™+!.

Proof.
(1) Suppose cx_1 > 0. For Gy, ;, we have

ay,y (t) Ty (t) (ai1 e a’ik+12)l >0

for all the k-faces A;, -+ A;,,,. By Lemma 2.8, we have

Z Qi (t) Ty, (t) (ail o 'a’ik+12)l <0,
11 < <ipy1

which implies that

-
(a'il T aik+12)’ =0.

So Gy is k-unyielding in R**1.
(2) The same as (1).

O
Remark. We proved “Gy; is rigid in R"*!” before without the restriction “ A(t)is
real analytic over ¢”. We believe that the above theorem can also be proved without
the restriction “A(¢) is real analytic over ¢”.

As ¢y = 1 is bigger than 0, the above theorem gives another explanation that why
Gp is always rigid in R™*1, If ¢;_; # 0, based on the sign of c;_;, we can tell which
one of G, 1 and F, ; is k-unyielding in R**'. When & > 2, it is possible that c;_; = 0.
If ¢,_1 = 0, then we are interested in knowing what the framework looks like. We

will give detailed discussion for the case k£ = 2 in the next section.
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2.5 2-tensegrity Frameworks G, » and F),,

In the previous section, we proved that the sign of ¢; determines which one of Ghn2
and Fy, 5 is 2-unyielding. Then a natural question to ask is: when does c1 = 0 happen?
The answer is amazingly simple: ¢; = 0 if and only if points Ay, ..., Apio lieon a
common sphere in R". Consequently, if we use S*! to denote the sphere in R” that
contains points A, ..., A, vy Apyo, then ¢; > 0 if é,nd only if A; is inside the
sphere S7™!; and ¢; < 0 if and only if A; is outside the sphere SP1,

Proposition 2.3 ¢, = 0 if and only if points Ay, ..., Anis lie on a common sphere
in R™.

Proof. We define a transformation f in R", such that for any point P # A, f(P) is

a point that satisfies
A1f(P) = AP/ 4 P~

. _—
Since E”:zz a;A1A; = 0, so we have

%

n+2 R

=2

A basic property in inversion geometry tells us that(proof skipped): A; lies on S7~1
if and only if f(S7™') is a (n — 1)-dim hyperplane. Since F(ST ) is a (n — 1)-dim

hyperplane if and only if E?:; a; A1 A;? = 0(which is also equivalent to ¢; = 0), so
A, lies on SP7! if and only if ¢; = 0. O

To show some geometric feature of Gn2 and F,,, we use n = 2 as example.
Suppose that A;, A,, A; and A4 are in such a position that the segments A;A;
and Ay A, share and inner point. Combinatorially, it is very hard for us to tell the
difference between G5, and F,,, so how can we determine that one of them is 2-
unyielding in R* while the other is not? In Figure 2.7 (a) and (b), A; is the point
that is not on the circle. If ZA, +ZA3 > 7 (Figure 2.7 (a)) and A(t) is a real analytic
motion over ¢, then Theorem 2.7 tells us that ¢; > 0 and G2 is 2-unyielding in R3;

and Theorem 2.6 tells us that A;(¢), ..., A4(t) will keep staying in a common 2-dim
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(a) (b)

Figure 2.7:

plane in R3. If ZA; + £A; < « (Figure 2.7 (b)), then ¢; < 0 and F3 is 2-unyielding
in R3.

It will be interesting to know the geometric meaning of ¢, = 0 when £ > 2.
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Chapter 3

Characteristic Polynomial of n + 2

points in R"

3.1 Definition of Characteristic Polynomial

In the previous chapter, we have studied some k-unyielding properties of G, x and F,, ;
for 1 <k < n. In this chapter, we are going to show that there is some relationship
between these k-unyielding properties with different k’s. Remember that we derived
a sequence of constants ¢y, ¢i, ..., ¢, in Lemma 2.6, where ¢y = 1 and

\ \
Cr = E i, oy PAy - Ay - QA - Ay

1< <dp

which is independent of the choice of points P and Q.

We define a polynomial as
f(@) =coz" — iz 4 4 (=Dl 4 4 (=1) .

We call it the characteristic polynomial of the points configuration Ay, ..., Ano.
Suppose (M1, ..., A,) are the roots of f(z). Remember that the sign of ¢x_; plays
the main role in deciding whether Gnx and Fpy are k-unyielding in R**'. We will
show that these k-unyielding properties with different k&’s do have some relationship

by showing that (A, ..., \,) are all real roots.
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3.2 Properties of Characteristic Polynomial

When we define the constant ¢, in formula (2.1), if we use (aqy, ..., ap42) to sub-
stitute (a1, ..., @n42), then the characteristic polynomial f(z) will become o™ f (z/a)
instead. The roots of a"f(z/a) are then (a);,..., a),). In this paper, we are only

interested in the roots of f(z) up to a non-zero factor.

Theorem 3.1 (1) All \; are non-zero real numbers.

(2) If a1, ..., anyo have s negative numbers and n +2 — s positive numbers, then

all A; have s — 1 negative numbers and n + 1 — s positive numbers.

We will give the proof after we prove Lemma 3.2.

This is again a combinatorial property, which is only determined by how we sep-
arates points Ay, ..., A, into two groups.

The idea to prove Theorem 3.1 is to prove that f (z) is the characteristic polyno-
mial of a n X n symmetric matrix ATDA where D is diagonal. In the following we
will show how to construct A and D.

n+2 _
=1 @ = 0, so when

Suppose oy, ..., a; < 0, and 41, ..., apye > 0. Since >
12> 2,

a; + Qi1+ -+ apye > 0.

If we let B,y = Anio, then this property guarantees that line Ani1B,, 1 intersects

with the (n — 1)-dim plane containing points A4, ..., A, at a point B,; ...; line
Ag4+1Bg+1 intersects with the (k — 1)-dim plane containing points A, ..., Ay at a
point By; .... Finally, we also let B; = A,.

Let Bi=~on, ..., e ==Y 0 ..., Pot1 = — S 45 = ainso.

Proposition 3.1 (1) Zle o;+ By =0, and Ele ;A; + BBy = 0.

(2) =Bk + Br41 + ahy1 =0, and —F4 By, + Bri1Bist + o1 Ak41 = 0.

Proof.
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(1) By is the intersection point of (k — 1)-dim plane A; - -+ A and (n + 1 — k)-dim
plane Agi1 - Anya. Since Ele oA = — E:L:,fﬂ o;A; and B = — Ele Q;, SO

we have

k
Z a;A; + Bx By = 0.
=1

k k+1

—Br + Bry1 + aky1 = Zai - Zai + ok = 0.

i=1 =1

By (1), we have

k41 k
0= () aidi+ Bes1Brs) — (O idi + BiBy)
i=1 =1

= ~Bx By, + Br+1Brs1 + apr1Ak41-
ad
For 1 < ¢ < n, let vector v; point the same direction as B;B;41, and the length of
(% be
a1 BiAis1? + Biv1BiBi 12 [V2,

Let d() be the sign function of

DA 2 BB 2
ip1BiAiy1® + Bi1BiBiy1”,

— —
’U,?d(’l,) = ai+1Bl~Ai+12 + ﬁi.HBiBH.lz. (31)

Definition 3.1 If we consider v; as a row vector or a 1 x n matriz, then we define
A to be a n X n matriz with v; as its i-th row. We define D to be a n x n diagonal

matriz with d(i) as its i-th diagonal element.

Let

9(z) := det(z] — AATD)

be the characteristic polynomial of matriz AATD.
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Lemma 3.1 (1) The coefficient of z"* in g(z) is

(D Y7 (i A A ) () - d(i). (3.2)

i1 <<y
(2) g(z) is the characteristic polynomial of matriz ATDA.
(3) d(i))=-1if1<i<s—1;dl)=1ifs<i<n.
Proof.

(1) The coefficient of z"~* in g(z) is (—1)* times the sum of the determinants of

all k x k main diagonal submatrices of AATD. It is exactly formula (3.2).

(2) ATDA = A"Y(AATD)A, which is similar to AATD. So ATDA and AATD have

the same characteristic polynomial.

(3) We have ay, ..., a5 < 0; Gsy1, ..., Gnys > 0; and B = —Zle a; > 0. When
s <1 < n, we have
—_— —
aip1BiAiv1® + Biv1BiBii? > 0.

So d(i) = 1 when s < i < n. If we use Proposition 3.1 (2), similarly to the way

we proved Lemma 2.6, we can get
— — — — —
ai+1BiAi+12 + ﬂi+1Bz'Bi+12 = ai+1PAz'+12 + ,Bi+1PBi+12 - ,BiPBi2

\ \
_ & >o
= 01Biy14i11° — (i Bi1 B*.

When 1 <@ < s—1, since a;4; < 0, we have
- —
@i11Bit14i? — BiBiy1 By < 0.

Sod(i)=-1when1<i<s—1.

Lemma 3.2 f(z) = g(z)
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Proof. By lemma 3.1, we only need to prove

Cp = Z (’Ui1 A /\v,,c)zd(zl)d(zk)

11 <<l

Embed R" into a bigger space R®. For a given [, let w be a I-vector in R¢. By lemma

2.6,
_—

Ck(UJ) = Z Qg - C QY (w A PA“ v 'Aik)z
11 <<y
is independent of the choice of point P. Let us prove a stronger result:
)= D (WAvy A Avy)2d(iy) - - d(ig). (3.3)
11 <<l
We will prove by induction on n.

When n = 1, we have
3
cl(w) = Z ai(w A AlAi)z = ag(w A A1A2)2 + 62((.0 AN AlBg)z = (w A ’Ul)zd(l).
i=1

Suppose when n < m, formula (3.3) is true. Then when n = m + 1, we have

W)= Y a0 (WA Bupdy, Ay

i1<<ip <m+3

N
4
§ : 2
= Qy, "'aik(UJABm+1Az'1 . Azk)
11 <<t <m+1

AN
- 7

+ Z Qg v a,-k_lam.,.g(w A Bm+1Ai1 e Aik_lAm+2)2

11 <<t <m+1

—
§ : 2
+ (07T Olik_IOtm+3 (U.) A Bm+1A1;1 s Aik_lAm-l-?a)
13 <-<ip—1<m+1

by induction

= > (WA, A Aw)2d(i) - d(iy)

11 << <m

\
7
2
+ E Qiy Qg Omga(W A Bryy1 Amga A Br14i - A, )
11 <<t <m+1

\
7
§ : 2
+ Otil e aik_lam+3(w A Bm+1Am+3 A Bm+1Ai1 e A’ik—l)
11< - <ip_1 <m+1
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by (3.1)

= Z (w/\v,-l/\---/\vik)zd(il)"'d(ik)

i1<<ig<m

+ > G (WA Umps A Bpr Ay - Ay, )2d(m + 1)
11 < <ig_1<m+1

by induction

= Z (WA A+ A 'u,-k)2d(z'1) - - d(tg)

1< <ip<m

+ Z (w A Um+1 A Vi, A A ’U,;k_l)2d(i1) T d(ik_l)d(m + 1)

11 < <ip—1<m

_ Z (WA, A /\vik)zd(il) <+ d(iy).

i1 < <ip<m+1
So formula (3.3) is also true for n = m + 1.

O
Proof of Theorem 3.1. By Lemma 3.1 and Lemma 3.2, f(z) is the characteristic
polynomial of matrix ATDA, so all ); are real. Easy to see that A is non-singular.
Since D has s — 1 negative and n + 1 — s positive items on its diagonal(by Lemma

3.1), so f(z) has s — 1 negative roots and n + 1 — s positive roots. O

Theorem 3.2 The necessary and sufficient condition for the characteristic polyno-

\
7

maal f(z) to have n-repeated roots is: A; Ay, - Ay Asy = 0 for all distinct numbers 4,
ig, 13, 14. It is also equivalent to say that each A; is the orthocenter of the n-simplez

with the other n + 1 points as vertices.

Proof.

(1) IfA; = --- = A, then d(1), ..., d(n) have the same sign, so D = I or —I. Since
f(z) = g(z) (Lemma 3.2) is the characteristic polynomial of AA”D (Definition
3.1), so AAT is a multiple of I. So v; - v; = 0 for ¢ # j. Specifically we have
v1-v; = 0 for 7 # 1. This implies that line A4; A, is perpendicular to (n — 1)-dim

- — . .
plane As---Ania. So AjA; - AjA; = 0 for 3 < i < j. By symmetry, we have

AW
7

A,-IA,-; - Ai3 Ay, = 0 for all distinct numbers 4y, i, 43, 14.
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(2) Suppose A;, A4;, - A;, A;, = 0 for all distinct numbers i1, T2, 3, 4. 1t is easy to see
that v; - v; = 0 for i # j. We will prove v} =--- =12, and d(1) = - - - = d(n).

Consider these 5 points By, Biy1, Bio, A1, Agqo, where By, is the inter-
section of line ByAgy; and line By,9Ax,,. Easy to prove that By.o is the
orthocenter of triangle ByAg 1 Ar;2. Then we have | Bi+1Bx|| Brr14k41| =
| Bk+1Bg+2||Br+1Ak+2|. Apply Proposition 3.1 and formula 3.1, we can get
vid(k) = vi,d(k+1). So v} = --- = v% and d(1) = --- = d(n). Then

AATD is a multiple of I, which means that \; = --- = )\,.
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Chapter 4

Rigidity and Volume Preserving

Deformation in S™ and H"

4.1 Elementary Geometry in S" and H"

In this chapter, we study other kind of k-tensegrity frameworks, which are in a n-
dimensional spherical space S™ or a hyperbolic space H". For some basic properties
related to S™ and H™, we will just list them as facts without giving proofs. Some
basic notions can be found in Fenchel’s book [6].

S™ is defined as a sphere with radius 1 in an Euclidean space R™!. If we use

(Z1,...,Tn41) as the coordinates of R**!| then the equation that S™ satisfies is
bt =1

We use S? to denote the semisphere with z; > 0. We will use the standard Rieman-
ntan metric on S™ throughout this paper, and we know that S™ has constant sectional
curvature 1. Besides, ST is geodesic convez, which means that for any 2 points P and
@ in S, their has a unique geodesic connecting P and Q. We use ]/3\@ to denote the
geodesic distance between P and Q.

The definition of hyperbolic space H™ is related to non-Euclidean geometry. We

define R™!(not R™*') as a (n + 1)-dimensional linear space. If we use (z1, ... s Tnt1)
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as the coordinates of R™!, then the equation that H™ satisfies is
2 2 2 _
—ri+zy+-+x,,,=-1, and z; >0.

The restriction z; > 0 makes H™ to be simply connected.
Similar to the way that we defined inner product “” in R", we define a bilinear

product “” in R™! as
E)l . O? =—T1Y1 + ZaY2 + -+ Tpa1Ynad,

where A and B are 2 points in R™! with coordinates (z1, ... yTnt1) and (Y1, ..., Uny1)
separately. Notice that the only difference is the “~” sign at the 1st coordinate part.
If A is a point in H", then OA2=0A- 04 =-1.

Remark. When (ﬁ? =0, _0_1)4 . O? does not have to be 0. This is very different
from the R" case.

This operation “” gives a quadratic form in R™!, which is not positive definite.
However, the restriction of this quadratic form on the tangent space at any point in
H™ is positive definite, then it induces a Riemannian metric on H™. Besides, H™ has
constant sectional curvature —1 and is geodesic convex. We will use Fé to denote
the geodesic distance between any 2 points P and Q in H™.

R™ is of constant sectional curvature 0. S% and H™ are also constant sectional
curvature spaces, and we can apply the notion “simplex” from R™ to St and H" as
well. We first define the notion “simplex” in H™, and it will follow similarly in S%.
Suppose Py, ..., Py are k+1 points in H™, then all the linear combination Ef:ll v P;
with v; > 0 span a cone in R™!. The intersection of this cone with H” is called a
hyperbolic k-simplez, or H*-simplez for convenience. The vertices of this hyperbolic
k-simplex are Py, ..., Py;;. One important fact is: when k = 1, the hyperbolic 1-
simplex is exactly the geodesic that connects points P, and P,. Another fact is: the
hyperbolic k-simplex stays in the k-dimensional totally geodesic submanifold in H™
that contains points P, ..., P,,;. In the S% case, it is called spherical k-simplez, or

S* -simplez for convenience. We use the notation

‘/k(Ply-'-aPk+1)
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to denote the k-dim volume of the hyperbolic(or spherical) k-simplex under the Rie-
mannian metric on H"(or S7). Notice that Vi (P, P;) = Pp,.

Similar to the way that we defined exterior algebra in Euclidean space, we now
give a very brief introduction about exterior algebra in R™!. Remember in the R"
case, based on the inner product “” defined in R", the definition of the inner product
“” in A*(R") is induced and well defined. In the R™! case, a bilinear product “” in
AF(R™') is also induced from the definition of the bilinear product “” in R™!, and

has the following property.
Lemma 4.1 Ifry, ..., 7, s1, ..., s are 2k elements in R™!, then we have
(Fe A Arg) - (st A= Asp) = det(r; - 85)1<i <k

where the “” in right side is the bilinear product defined in R™!.

Proof. The same as the R™ case. a
It Py, ..., Peyy are k + 1 points in R™!, we define P, - -+ Pyy; in A¥(R™!) to be

; : 5 —
P Py =PIP,APP3A--- AP Py
Lemma 4.2 If P, ..., Py are k + 1 points in H", then
OP; - Pyy1? <0,

and “= 0” happens if and only if O-_)Pl, ..., OPgy1 are linearly dependent.

Proof. First suppose k = n. We define A to be a (n+ 1) x (n + 1) matrix with P,’s
coordinates as its ¢-th row. We also define D to be a (n+1) x (n+1) diagonal matrix

with —1 as its 1st diagonal element, and 1 as its rest diagonal elements.

- ]
OP,
A= : , D=

OPn+1
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Then we have

OP,- - P2 = (OB, A---AOPo)?
= det(ADAT)
= —(det(A))?
<0,
and det(A) = 0 if and only if the coordinates of Py, ..., P,,, are linearly dependent.
If k <n, Py, ..., Py stay in a smaller hyperbolic space H* which is embedded

in H™. The problem is then reduced to H*, so we have

OP;--- P <0,
and “=0” happens if and only if OP,, ..., OPkrl are linearly dependent. O
We define

OB, Pens| = [OP - Bos2|2,
Proposition 4.1 If A and B are 2 different points in H", then ﬁz > 0, and
A_B)2 = 2cosh AB — 2, A-B= —coshz_é;
if A and B are in ST, then

7132=2—2c0s2\1§, A-B=cosAB.

Proof. Skipped. U

Proposition 4.2 If A and B are 2 points in ST or H", then we have

d(‘@/z) = 2|OAB|
AB

d

mn both cases.
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Proof. For the S7 case, by using Proposition 4.1, we have

d(zﬁz
JAB

For the H™ case, by using Propos1t10n 4.1 again, we have

d(AB?)

= 2sinAB = 2|04 §|

— = 2sinh ZE
dAB
and
OAB? — (AN B)?
-1 — cosh AB
= det( — )
—cosh AB -1

= —sinh? Ié,

SO

@ = 2|0AB|.
dAB

O
The above proposition tells us that, when AB increases(or decreases), zﬁ2 in-

creases(or decreases).

Proposition 4.3 Suppose Py, ..., Pyy, are k + 1 points in S™ ®(or H™), then both
~ —>

Vi(Py,. .., Pei1) and OP, - -- Pyy1? are functions with all PP as the variables; they
are also functions with all P, -]3 2 as the variables.

Proof. Skipped. a
We will write the partial derivative of V,G(Pl, ooy Peyy) over 13;76, and ﬁ;z as

BI%%(H, ..., Pxy1) and 3W2Vk(P1, .+, Pet1) separately.

4.2 Definition of k-tensegrity Frameworks in ST

and H"

We already defined spherical k-simplex and hyperbolic k-simplex, then some notions

like “k-tensegrity framework” can also be moved over from R" to S% and H™.
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A S* (or H¥)-simplex is called a k-cable if its k-volume can not increase; it is called
a k-strut if its k-volume can not decrease; it is called a k-bar if its k-volume can not
change at all. We call a framework in ST or H" to be a k-tensegrity framework if
some of its Ic-faces(SfL or H*-simplices) are labeled as either k-cables, k-struts, or k-
bars, and the other k-faces are just not labeled as anything. We can consider k-cable,
k-strut, and k-bar as volume restrictions imposed on frameworks. For a framework
in S¢(or H 4, if all k-volumes of its k-faces are preserved for any sufficiently small
continuous motion under the volume restriction, then we say that it is k-unyielding
in S4(or HY).

We will also call 1-cable, 1-strut, and 1-bar as cable, strut, and bar respectively,
and call 1-tensegrity framework as tensegrity framework. Particularly, for a frame-
work in S¢(or H¢), we say that it is rigid in S%(or HY), if the geodesic distance
between each pair of vertices can not be changed for any continuous motion under
the volume restriction.

Given 2 k-tensegrity frameworks G; and G2 In Sd(or H 4) with the same construc-
tions of k-cables, k-struts, and k-bars, we say that G, dominates G, if the k-volume
of each k-cable of Gg is no bigger than the k-volume of the corresponding k-cable
of Gi; the k-volume of each k-strut of Gy is no smaller than the k-volume of the
corresponding k-strut of G,; and the corresponding k-bars of G; and G2 have the
same k-volume.

We say 2 frameworks G; and G in Si(or H4?) are congruent, if the geodesic
distance between any pair of points in G is the same as the geodesic distance between
the corresponding pair of points in G,. For a framework G in Si(or H4?), we say
that it is globally rigid in Sd(or H 4), if when G; dominates another framework G2
in S%(or H d), then G, and G, are congruent. Global rigidity is a very strong notion
imposed on a framework, and global rigidity automatically implies that a framework

is also rigid in R%.
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4.3 Construction of k-tensegrity Frameworks in ST

and H"

Given n + 2 points A;, Ay, ..., Apto in S?(or H") in general position, which means
that every n + 1 points are not in a lower dimensional space S or H n=1). We can

treat these 7 + 2 points as the vertices of a degenerate ST (or H m+1)_simplex. Since

A1, As, ..., Apyp are in general position, there uniquely exists a sequence of non-zero
. -
coeflicients a;, ..., an42 (up to a non-zero factor ¢), such that Z?:lz o;0A; = 0.

Proposition 4.4

\

[OAL- Ay Aps| /|

is independent of i for 1 <i<n+2.

Proof. Skipped. O

For convenience, we choose a; to satisfy

AN

o = [0AL- - Ai -+ Ansal.

Besides, we also choose a; to be negative, then all the signs of «; are determined af-
terwords. We separate these n + 2 points into 2 sets X; and X, by the following rule:
A;isin X, if o; is negative; 4; is in X, if o is positive. Since o is negative, so A; is in
set X;. Given k with 1 <k < n, we separate all the S¥ (or H*)-simplices A;, - - A
into 2 sets Yj,1 and Yy by the following rule: a S¥ (or H*)-simplex A;, - - -A;,,, isin
Y1 if it has odd number of vertices in X7; it is in Y 2 if it has even number of vertices
in X;. Based on the above separation of k-faces, we construct 2 different k-tensegrity

frameworks below.

Framework G, x: let all the k-faces in group Y} ; be k-cables, and let all the k-faces
in group Y} be k-struts.
Framework F, ;: let all the k-faces in group Yi1 be k-struts, and let all the k-faces
in group Y}, be k-cables.
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We see that F,; is constructed by switching the role of k-cable and k-strut in
Gny- We use the notation A(t) = (A;(t),..., Ans2(t)) to denote the continuous
motion with ¢ > 0 and A;(0) = A;. The main purpose of this chapter is to see when
the above 2 frameworks are k-unyielding in S7?(or H") and S™+!(or H™*1).

Before we start the detailed discussion of k-unyielding properties for general k, we

first give a partial result for the specific case k = n.

Theorem 4.1 Gy, and F, . are n-unyielding in S? (or H).

Proof. For Gy (or Fp,), the sum of the n-volume of its n-cables equals the sum of
the n-volume of its n-struts. It is still true during the continuous motion when ¢ is
small, so non of the n-volume changes. It means that Gnn and F, ,, are n-unyielding
in S%(or H™). O

4.4 Main Theorems and Conjectures
Most results in this section have analogues in the R™ case.
Theorem 4.2 (1) G, is globally rigid in S™+!.
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