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Abstract

Geometry is the synthetic tool we use to unify all existing analytical cone-beam reconstruc-
tion methods. These reconstructions are based on formulae derived by Tuy [Tuy, 1983],
Smith [Smith, 1985] and Grangeat [Grangeat, 1991] which explicitly link the cone-beam
data to some intermediate functions in the Radon transform domain. However, the es-
sential step towards final reconstruction, that is, differential-backprojection, has not yet
achieved desired efficiency.

A new inversion formula is obtained directly from the 3D Radon inverse [Radon, 1917,
Helgason, 1999]. It incorporates the cone-beam scanning geometry and allows the theoret-
ical work mentioned above to be reduced to ezact and frugal implementations. Extensions
can be easily carried out to 2D fan-beam reconstruction as well as other scanning modalities
such as parallel scans by allowing more abstract geometric description on the embedding
subspace of the Radon manifold. The new approach provides a canonical inverse procedure
for computerized tomography in general, with applications ranging from diagnostic medical
imaging to industrial testing, such as X-ray CT, Emission CT, Ultrasound CT, etc. It also
suggests a principled frame for approaching other 3D reconstruction problems related to
the Radon transform.

The idea is simple: as was spelled out by Helgason on the opening page of his book,
The Radon Transform [Helgason, 1999] — a remarkable duality characterizes the Radon
transform and its inverse. Our study shows that the dual space, the so-called Radon space,
can be geometrically decomposed according to the specified scanning modality. In cone-beam
X-ray reconstruction, for example, each cone-beam projection is seen as a 2D projective
subspace embedded in the Radon manifold.

Besides the duality in the space relation, the symbiosis played between algebra and geom-
etry, integration and differentiation is another striking feature in the tomographic recon-
struction. Simply put,

e Geometry and algebra: the two play fundamentally different roles during the inverse.
Algebraic transforms carry cone-beam data into the Radon domain, whereas, the geo-
metric decomposition of the dual space determines how the differential-backprojection
operator should be systematically performed. The reason that different algorithms in



cone-beam X-ray reconstruction share structural similarity is that the dual space de-
composition is intrinsic to the specified scanning geometry. The differences in the
algorithms lie in the appearance of algebra on the projection submanifold. The al-
gebraic transforms initiate diverse reconstruction methods varying in terms of com-
putational cost and stability. Equipped with this viewpoint, we are able to simplify
mathematical analysis and develop algorithms that are easy to implement.

o Integration and differentiation: forward projection is the integral along straight lines
(or planes) in the Euclidean space. During the reconstruction, differentiation is per-
formed over the parallel planes in the projective Radon space, a manifold with clear
differential structure. It is important to learn about this differential structure to en-
sure that correct differentiation can be carried out with respect to the parameters
governing the scanning process during the reconstruction.

Originating from simple geometric reasoning, we provide new interpretations on the Tuy-
Smith data sufficiency condition and Finch’s stability constraint on the source orbit. The
true nature of the locality in 3D reconstruction is discussed.

Rigorous study on the geometric arrangement of the X-ray source during cone-beam scan-
ning and the related sampling mechanism is carried out. It is aimed at enhancing the
quality of cone-beam imaging and reducing the patient’s radiation exposure by developing
more efficient data acquisition techniques.

Thesis Supervisor: Berthold K.P. Horn
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 The Problem and Motivations

The problem in cone-beam computerized tomography (CT) is the recovery of the density
function of a 3D object from a set of cone-beamn projections. Such a system uses an area
detector to receive the rays emitted from an X-ray point source and attenuated by partial
absorption in the object that they pass through. As in traditional (planar) CT, the source
and the detector are placed on opposite sides of the object being scanned. Rays contributing
to an image on the detector surface form a cone with the X-ray source at the apex (Fig.
1-1). From the X-ray radiance value recorded at a point on the area detector one can
compute the integral of attenuation along the ray from the X-ray source to the given point

on the detector.

For convenience of exposition, we replace the detector array with an image plane perpendic-
ular to the principal direction, a line connecting the X-ray source to the origin (typically the
center of the object). By doing so, we avoid the need to address the specific arrangement
of individual detector configuration. A coordinate transformation is then required to map

a particular detector surface onto the chosen standard image plane.

In order to obtain many different views of the object, the source-detector pair may be

mounted on a rotational cylindrical gantry and the tested object may also undergo a si-
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Image plane

Figure 1-1: Illustration of a cone-beam projection: the image plane is perpendicular
to the principal direction which connects the source to the center of the object.

multaneous translation — it is as if the X-ray source and the detector travel together on
a smooth 3D curve while remaining at a fixed position relative to one another. This curve
followed by the X-ray source relative to the object being scanned is called the source orbit.
A sequence of 2D cone-beam images projected from various source positions can be acquired

and used to reconstruct the distribution of absorption inside the 3D object.

Mathematically speaking, cone-beam reconstruction is the recovery of a function, f on R3,
by a collection of its line integrals emitting from a space curve. It can be treated as a
specific Radon problem [Radon, 1917, Helgason, 1999] with incomplete data in the sense

that only a subset instead of all of the line integrals are available.

The 3D cone-beam imaging system is currently progressing to take over the conventional
multi-slice 2D machines because of its many attractive qualities: faster scans, higher pa-
tient’s throughput, significant reduction in X-ray dosage, and isotropic resolution. It also
has great potential to enhance the speed and accuracy of CT imaging while lowering haz-

ardous radiation exposure.
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1.2 Previous Work

Ever since Hounsfield delivered the first CT machine in 1972, CT technology has received
broad acceptance as a reliable means to inspect otherwise inaccessible internal structures by
both medical and industrial communities. A 1979 Nobel prize was awarded to Hounsfield
and Cormack for their landmark contributions to the invention and algorithmic development

of the first-generation CT.

Among all the creative involvement leading to cone-beam CT, Radon’s 1917 paper is the
resilient fountainhead [Radon, 1917]. It solved the problem of recovering a 2D function
f from all of its line integrals (known as the X-ray transforms in modern time), denoted
by X f, as well as a version of the 3D problem in which the building blocks of the inverse
reconstruction are all of the 2D planar integrals of f, denoted by Rf (which is later called the
Radon transform of f). His simple and classical results have grown roots into an interesting
branch of mathematics, integral geometry. Those same results, germ to modern diagnostic

medicine, continue to nurture a benevolent growth in the medical imaging society.

The original Radon paper provides the most lucid description and derivation of the Radon
transform and its inverse. A deep and extensive theoretical development and reference on

the Radon transform is given by Helgason [Helgason, 1999].

Under the circumstances of tomographic reconstructions, only a subset of line integrals is
obtained from X-ray scans. Such tasks, nevertheless, are treated as Radon problems because
their main results still rely on the Radon transform theorem. Everyone, who has spent some
time with the Radon transform, would discover from it a wellspring of mathematical ideas
and an unfailing beauty. The many attractions of the Radon transform are partly due to
Radon’s simple and explicit inversion formula, partly due to the rich dualities and cascaded
hierarchies inherent in the geometric structure. It has been adapted to several 2D scanning

geometries such as those in parallel-beam and fan-beam CT.

Natterer’s book [Natterer, 1986] provides a comprehensive and eloquent account on math-

ematical studies in computerized tomography.

Horn’s two seminal papers [Horn, 1978, Horn, 1979] represent a prime development in 2D

15



image reconstruction that occurred when the earlier parallel scans were replaced by the
faster and more effective fan-beam data acquisitions. His insight is that an inversion formula
could be written regardless of the ray sé,mpling schemes. Whereas, only for certain sam-
pling geometries, proper local scanning coordinates yield a simpler and factorable Jacobian.
Consequently, reconstruction can be implemented in the favorable fashion of summation-

filtered-backprojection. The prominent example is the fan-beam reconstruction.

Now, a renewed initiative is in the direction of replacing multi-slice 2D scans by the even

more efficient 3D cone-beam data collections.

From a geometric point of view, 2D fan-beams and 3D cone-beams share common features in
the sense that the divergent rays emitting from a single source point constitute a projective
subspace in the Radon transform domain, and, in both cases, the X-ray source travels on
a 1D manifold. However, algorithms developed for 2D and 3D reconstruction so far bear

little resemblance in their overall structure.

The principal difficulty encountered in the 3D reconstruction is caused by the sophisti-
cated mapping from the local projection geometry to the Radon space geometry, especially
when non-planar source orbit is used. Unfortunately, such an orbit is required for exact
reconstruction in 3D. Besides, 3D volumetric data is inherently bulky and difficult to man-
age. Without a clear understanding of the unique structure intrinsic to the problem, data

manipulation and storage may lead to exceedingly high computational cost.

The mainstream approach in the early days of 3D reconstruction was based on approxi-
mation. For example, rebinning divergent rays to parallel rays so that the reconstruction
algorithm for parallel-beams based on the Fourier-slice theorem can be applied. Such recon-
struction methods are characterized by excessive computational and structural complexity.
Furthermore, reconstruction error introduced by the rebinning is difficult to track down and

therefore hard to remediate. It leads to poor reconstruction performance.

The first practical and well-known filtered backprojection (FBP) cone-beam reconstruction
algorithm is given by Feldkamp (FDK) et al. [Feldkamp, 1984] for circular source orbits.
In such a case, data from cone-beams with narrow angles is treated in an approzimate way

using ad hoc extensions of 2D fan-beam methods. The FDK algorithm is easy to implement,
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however, it only gives reasonably good reconstruction near the mid-plane and cannot be
used for wide cone angles. As we shall see, the planar source orbit postulated here does not

provide enough information of the Radon transform that is needed for exact reconstruction.

The excellent work of Tuy [Tuy, 1983], Smith [Smith, 1985] and Grangeat [Grangeat, 1991]
laid out the theoretical foundation for ezact cone-beam reconstruction by deriving analytical
inversion formulae as well as the critical data sufficiency condition. Together they pictured a
bigger frame of mathematics relevant for solving the cone-beam problem — Radon transform
is still behind all these achievements, although in Tuy’s formulation, it is almost completely
concealed by the Fourier transform. These derivations indeed add new perspectives to our

understanding of the Radon transform.

As early as 1961, Kirillov derived an inversion formula for the complex-valued functions
under cone-beam geometry [Kirillov, 1961]. It requires an infinite source orbit, which is
certainly not met in practice. Following Kirillov’s derivation, Tuy gave the first, practically
useful, cone-beam inversion formula for real-valued functions in 1983 [Tuy, 1983]. This was
also the first time that the data sufficiency condition became explicit: all or almost all
planes intersecting the object should meet with the source orbit. Tuy’s formulation has a
classical touch of Fourier analysis. We will detail some of the subtle links between the

Radon transform and the Fourier transform in section 3.3.2.

Smith and Grangeat’s cone-beam inversion formulae are both cast in the framework of the
Radon transform theorem. They have established connections between the cone-beam data
and the 2nd-order radial derivative of the Radon transform, R” f, through some intermediate
functions in the Radon transform domain. As a result, Radon’s inversion formula can be
evoked. Note that the 2nd-order radial derivative of the Radon transform is needed in order

to use the 3D Radon inversion formula — R”f is then backprojected to recover f.

Smith’s intermediate function is the Hilbert transform, ’Hl{R' f }, of the 1st-order radial
derivative of the Radon transform. It can be filtered over the parallel planes to obtain R”f.
In the case of Grangeat’s formulation, the lst-order radial derivative, R'f, serves as an

implicit link between the cone-beam data and R"f.

A breakthrough insight in these early derivations is that the data collected while the X-ray

17



source moves on a 3D curve (a 1D manifold) is sufficient for exact reconstruction. That is,
it is not necessary for the source to be placed at every point on a specific 3D surface (a 2D

manifold) encompassing the 3D object.

Another important point is that inversion is possible even though the Radon transform
itself is not available. This is good since a nontrivial integral equation [Gelfand, 1986] need

to be solved in order to obtain planar integrals from cone-beam projections.

Although the cone-beam problem is mathematically solved, there is so far no ezact imple-
mentation available. It is not clear how the differential (or filtered)-backprojection operator

can be discretized for Tuy, Smith and Grangeat’s analytical inversion formulae.

Motivated by the earlier theoretical results, attempts have been made in the last decade
by many groups to derive true 3D cone-beam reconstruction algorithms. Most of them are
based on Grangeat’s Fundamental Relation, in which, the weighted line integral of each
slice of fan-beams inside the recessive cone is related to the first radial derivative of the
Radon transform, R'f. The second radial derivative of the Radon transform is thereby
determined. Examples include the cone-beam algorithm proposed by Grangeat himself
using Marr’s approach [Marr, 1981] to invert the Radon data [Grangeat, 1991]. Axelsson
and Danielsson [Axelsson, 1994] further improved Grangeat’s algorithm by using the Fourier
linogram method to speed up the transfer of cone-beam data into the Radon transform

domain.

The major disadvantage of the above Radon-based algorithms is that intermediate resam-
pling and interpolation in the Radon space are needed. Furthermore, reconstruction can

only start after all of the cone-beam data is collected.

More recent works on obtaining relatively efficient FBP-typed algorithms [Kudo, 1994,
Defrise, 1994, Wang, 1999] have shown some promises. However, a common misconcep-
tion, primarily due to an unfamiliarity with the topological and differential structure of the

Radon space (a non-Euclidean manifold), hampers their success.

The analytical inversion formulae mentioned above are based on continuous data, while in
practice, the orbit is sampled (we only take images with the source positioned at a finite

number of points along the orbit), and each image in turn is also sampled (using a discrete
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grid of detectors). This discretization leads to degradations and artifacts that have not been
well understood mathematically because discrete sampling can not be introduced into Tuy,
Smith and Grangeat’s intermediate-staged inverse formulations. There is as yet no precise

mathematical model to address this problem.

Sampling geometry for nonplanar source orbit has not been explored. As a result, the
subject of effective data-acquisition techniques for cone-beam imaging has not matured. In
many cases, the image quality available from existing cone beam reconstructions remains

inferior to that of single slice fan beam reconstructions.

As with most inverse problems, the cone-beam reconstruction may only be possible if the
data collection satisfies additional conditions. It may also be subject to ill-posedness,
i.e., large amplification of inevitable measurement noise in the data by the reconstruc-
tion method. A remaining and very important issue then is the characterization of the
source orbit that minimizes the noise amplification in reconstruction and that samples the

transform space most efficiently.

Overall, optimization in reconstruction efficiency and stability among the exact cone-beam

methods need to be further studied and understood.

1.3 A Few Goals of the Thesis

This thesis is aimed at developing efficient and easy to implement cone-beam reconstruction
algorithms based on an analytical approach. A second goal is to develop a good data-
acquisition strategy in order to help reduce the needed X-ray exposure for a given image

quality.

Our research is a continuation of Tuy, Smith and Grangeat’s theoretical work on cone-
beam reconstruction. Their intermediate functions, obtained within a projection, should be
viewed as the first stage of the inverse procedure. Our focus instead is on the second stage,

across the projections, that essentially brings us to the final reconstruction.

The results we obtained is also an extension, in dimension, from Horn’s general inverse

formulation for arbitrary sampling schemes in 2D to a principled approach for a true 3D
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cone-beam reconstruction. Such a frame is general enough to accommodate various scan-
ning geometries in both 2D and 3D. Furthermore, our understanding of the nature of 3D
reconstruction shows that there is a geometric inheritance in tomographic reconstruction
passed from lower to higher dimensions. In this thesis, the geometric principle that governs

the process of tomographic reconstruction will be developed.

Aside from the practical and mathematical aspects of our considerations above on the
cone-beam problem within the framework of Radon transform theorem, some extraordinary

findings lie in its unique mathematical aesthetics. Some observations are:

(1) Geometry and algebra each has its own interesting life thread in this particular prob-
lem. Their fruitful union is embodied in the simple and nice differential property of the
Radon transform. We want to show their true relations in the context of cone-beam

geometry.

(2) Geometric touch is incredibly vivid: several different kinds of geometries alternatively
come into the scene. When their fundamental structures and interaction are under-

stood, simple algorithms can be easily derived.

(3) Moreover, it is revealed that the Radon transform theorem has one of the richest
compositions of duality, in both geometry and algebra. This particular aspect will be

explored in our full capacity.

1.4 Thesis Organization
Here is how this thesis is organized:

e Chapter 2: This chapter provides the required mathematical background — the Radon
transform theorem and how it can be applied to 2D and 3D tomographic reconstruc-

tions. The general geometric context for cone-beam reconstruction is presented.

e Chapter 3: The focus of this chapter is a thorough analysis of three cone-beam in-

version formulae derived by Tuy, Smith and Grangeat. Section 3.1 presents the main
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results obtained by Tuy and Smith. A new, simplified proof of Grangeat’s Fundamen-
tal Relation is given in section 3.2. We then undertake, in section 3.3, a mathematical
equivalence study using Fourier analysis. It has been shown that Tuy, Smith and
Grangeat’s intermediate functions are all related to the first differential form of the
Radon transform within a cone-beam projection. Results are obtained in the more
general n-dimensional space. The purpose is to demonstrate the applicability of sim-
ilar reconstructions to various scanning geometries in 2D, 3D, or even nD, when the
source apex moves on a 1D manifold. Some subtle relationships between the Radon

transform and the Fourier transform are also revealed.

Chapter 4: Section 4.1 studies the internal geometric structure of the cone-beam
problem. The key ideas are decomposition and embedding. Each 2D divergent-ray
projection is a projective, embedding subspace in the Radon manifold. Section 4.2
presents the key result of this thesis — the canonical cone-beam inversion formula. It
achieves the Radon space decomposition in an analytical form. After mapping out the
differential structure of the Radon manifold with respect to the parameter governing
the scanning process in section 4.3, we provide in section 4.4 a unified inverse proce-
dure which would carry Tuy, Smith and Grangeat’s intermediate functions toward the
final reconstruction. It results in a family of ezact, FBP-typed cone-beam reconstruc-
tion algorithms. This chapter bridges the previous theoretical work with practical
implementation. The resulting algorithms are very easy to understand and imple-
ment with complexity level in the order of O(mn3) (where n is the edge size of the
volumetric data and m depends on the number of projections). Section 4.5 is a gen-
eral discussion on tomographic reconstructions. By allowing more abstract geometric
description of the embedding subspace on the Radon manifold, the inverse procedure

presented earlier can be adjusted and used in a variety of scanning geometries.

Chapter 5: This chapter provides a few critical mathematical devices for studying the
Radon space sampling mechanism related to the geometrical properties of the source
orbit. The main concept lies in the method of moving frames: each great circle on the
backprojection sphere (a Radon sphere) undergoes rigid 3D motions relative to the

X-ray source moving on the orbit. We demonstrate it through the sinusoidal orbit.
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Chapter 2

Mathematical Background

Cone-beam reconstruction has an elegant mathematical foundation — the Radon transform
theorem. As we walk through Tuy, Smith and Grangeat’s inverse formulations, it becomes
clear that the Radon transform has gradually stepped out of the shadow of the Fourier

transform. It gives rise to an increased geometric transparency.

Our analysis of Tuy, Smith and Grangeat’s formulae relies on the Radon transform and
its inverse. This chapter provides the required mathematical background, as well as the

geometric context we used to approach the cone-beam reconstruction problem.

2.1 The Radon Transform and Its Inverse

The Radon transform of a function f on R” is the set of integrals of f over the hyperplanes
of dimension n — 1 in R®. In the 2D case, as in the traditional slice-at-a-time CT, the
integrals in the Radon transform are along lines. In the 3D case, appropriate for cone-beam

CT, the integrals are over planes.

A hyperplane in R? is determined by its unit normal vector 8 and its perpendicular

distance [ from the origin,

Lig:= {welR" lz-B=1,1>0, ﬂes"—l}, 2.1)
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where “” denotes the inner product and S”~! denotes the (n — 1)D unit sphere in R".

The Radon transform of f can therefore be conveniently expressed as a function of two

parameters (I and f):

Rf(1,B) = / w2 (2.2)

where the integration plane is L; g.

The Radon space then is the space P" = Rt x S"~! of all hyperplanes in R*. However,
sometimes, the symmetric space R x S"~1 provides extra analytical convenience and there-
fore is desirable. A potential problem is that the mapping (I,8) — L;g from R x 8"~!
to P™ is not bijective, since (I,8) and (—!,—f) identify the same hyperplane. This can

be easily resolved by extending the Radon transform Rf as an even function, that is,
Rf(_la _ﬂ) = Rf(lvﬁ)

Under certain smoothness conditions, i.e., f € S(R™), in the Schwartz space, Rf is differ-
entiable on P™. The derivative of Rf with respect to its first parameter, [, is customarily

called the radial derivative.
The Schwartz space S is defined as the functional space on R* such that for f € S(R"),
(1) f € C®°(R"), the space of continuous, infinitely differentiable functions;

(2) f and all its derivatives are rapidly decreasing:

sup|e|*|8 £ (2)] < oo (2.3)

for any multi-indices © = (1,12, ,in) and § = (j1,J2,"** ,Jn), where ix’s and ji’s (k =
, oirtizttin

1,2,--- ,n) are all non-negative integers. The mizture derivative 0% denotes ah—ﬁ
' 2,022 * ** Ozn

where € = (21, %2, ,Tn)-

We will assume f € S(R*) throughout our discussion, but we should also be aware of the

fact that this assumption can be relaxed, i.e. to Sobolev space, in many situations.

For the purpose of easy visualization, one can map P" onto R using (I,3) — !3. Note

that this mapping is singular at the origin, since it is not possible to recover the direction
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of B from I8 when [ = 0. Let R” denote the target space, in distinction with the familiar
Euclidean space. Then each hyperplane in R” correéponds to a Radon point in R?. In
this target space, one can imagine a set of concentric spheres centered at the origin. For
a given point P € R™\{0}, the spherical local chart seems to be convenient. It consists of
a radial component, [, and a (n — 1)-dimensional basis on the plane tangent to the sphere

containing P (Fig. 2-1). This local chart is called the geodesic chart.

al

Figure 2-1: The Radon space P" is mapped to R* with a singularity at the
origin. The local chart illustrated here is called the geodesic chart.

On the other hand, contrary to the common practice, we do not recommend using R" as a
working space in tomographic reconstruction, since R” is a nongeneric representation of P™.
It is easy to check that the sampling conditions in R* do not reflect the sampling conditions
in P™. Furthermore, it gives us a distorted perception of the topological relationships among
the space P™ and subspaces of P". For example, the projective subspace P"~! containing
all hyperplanes intersecting at one point, say x, manifests itself as a curved surface in R".
Under the action of linear group transformations, the subspace P"~! undergoes a rigid
motion. In accordance, the curved surface, as seen in R*, deforms and changes position. It
is in fact difficult to describe both P"~! and its global evolutions in R*. Some of the failures
in previous attempts at deriving cone-beam reconstruction algorithms can be attributed to

this inappropriate representation.
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Alternatively, one can visualize the Radon space P" in the object space, i.e., by attaching
to each point, z € R*, a (n — 1)D unit sphere. Denote this sphere by S=1 where
is considered as an index. This visualization uses points on S2~! to represent the unit
normals of all the hyperplanes through . We call such a sphere a Radon sphere, or

backprojection sphere when the inverse of the Radon transform is discussed.
Rl‘l

Radon sphere

X

Figure 2-2: Visualization of the Radon space in the object space.

Recovering a function f € S(R") from its Radon transforms is called the inverse Radon

transform. The following inversion formula is given in [Helgason, 1999, Natterer, 1986]:

Theorem 2.1 The function f € S(R™) can be recovered from its Radon imnsform Rf by

Lom-n_pym-2e [ 70
(e renee [ R

dag, for odd n
I=x-8 :
f(@) = (24)

n—1
(2m)1-n (—1)(n=1)/2 /S - %l(%Rﬂl, 9)

dB, for even n
I=z-B

N =

\

where S"~1 is the (n — 1)D unit sphere and H is the Hilbert transform, defined by

HR)(s) = + / ROR (2.5)

TS oo S—1
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The above integral is considered as the Cauchy principal value. One can think of the Hilbert

transform as a convolution with 1/(xs).

Note that the integral in Eqn. (2.4) over S 1 is the backprojection operator — it
integrates over all the hyperplanes passing by @. The integration sphere is therefore called
the backprojection sphere with its center at z. The backprojection sphere agrees with

the Radon sphere we defined earlier.

Also note that the Radon transform integrates over all points on a hyperplane, while the
backprojection integrates over all hyperplanes through a point. It is in this sense that
backprojection is known as the dual operator of the Radon transform, and the Radon

space is called the dual space of the Euclidean space R".

The original inversion formulae for the 2D and 3D cases were given by Radon in his 1917
paper [Radon, 1917]. In the same paper, generalization was considered in several directions.
One is the inverse of similar integal transform in higher dimensional space, and the other

is towards the inverse reconstruction of integrals over curves or surfaces.

Interestingly, inverting the Radon transform differs fundamentally in odd and even dimen-
sional space: in odd dimensions, it acts more locally in the sense that the result at a
particular point depends only on the Radon transforms on the hyperplanes near that point.
Whereas, in even dimensions, the inversion is not local since the Hilbert transform is a

global operation.

2.2 Properties of the Radon Transform

Important properties of the Radon transform include [Helgason, 1999, Poularikas, 2000]:

 Differential property:

R{a-Vf}(l,ﬁ) = a-ﬁw, (2.6)

where o is an arbitrary vector in R* and V denotes the gradient.
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e Central Slice Theorem:

Fz—)E{f}(pﬂ) = -Fl—m{Rf}(pa :3)7 (27)

where Fy_.¢ denotes the nD Fourier transform, and Fi_,, denotes the 1D Fourier

transform with respect to the radial parameter.

The differential property relates the Radon transform of the directional derivative to the
derivative of the Radon transform. Note that the coefficient o - B is the projection of a
onto the unit normal vector B of the hyperplane. This property implies a powerful link
between the algebraic integral transform of the scalar derivative field, a - Vf, and the
geometric relations in connection with the Radon transform Rf. We will see it applied to
our proof of the Fundamental Relation (see section 3.2) which lies at the heart of cone-beam

reconstruction.

The Central Slice Theorem establishes the link between the Radon transform and the Fourier
transform — the nD Fourier transform of a function f is the 1D Fourier transform of its
Radon transform. This property has been widely used in the parallel-beam tomographic

reconstruction.

The close relation between the Radon transform and the Fourier transform is emphasized
in [Helgason, 1999]. In fact, the intimate tie between these two transforms provides one of

the easiest derivation of the Radon inversion formula (Eqn. (2.4)).

2.3 2D and 3D Reconstructions

For n = 2, Eqn. (2.4) is reduced to (see also [Radon, 1917]):

1

f@ =g [ u(gries)|_, ds (29)

It is clear, for each direction B € S!, a one-dimensional global convolution needs to be
performed. Hence, the value f(x) at a particular point depends on all of the transform

values Rf during the inverse. This non-local character inherent in the 2D Radon transform
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inverse is attributed to the Hilbert transform in the formula.

In the planar tomographic reconstruction, the Radon transform Rf (I, 3) is obtained directly

from the X-ray projections:

R10.6) = [ B +t8Y at, (2.9)

where B+ is a unit vector in the direction perpendicular to 3.
Using this 2D approach, a 3D volume can be obtained by stacking many 2D slices.

In the case of n = 3, Eqn. (2.4) is reduced to (see also [Radon, 1917]):

1 8’Rf (1, B)

=g dg. (2.10)

I=z-B

The derivative in the integrand indicates a remarkable locality in the 3D inverse: to compute
f(x) we need to know only integrals over all planes that are close to . This is distinctively
different from the 2D case, where all of the line integrals contribute to the inverse at any

reconstruction point.

The quantity we back project here is the second radial derivative R”f of the Radon trans-
form. Hence to use this formula, we need the second radial derivative of the Radon trans-

form, not necessarily the Radon transform Rf itself .

Note that the differential-backprojection operator, when evaluated for point x, acts on

Rf(l,B) of all or almost all planes passing through x, where [ = z - 8, and no other planes.

2.4 The Hilbert Transform

The Hilbert transform appeared in Eqn. (2.8) (for even dimensional case) is a 1D convolution
along the radial direction. The resulting transform remains in the Radon domain. Since the
convolutional kernel 1/(s) is known as a tempered distribution [Helgason, 1999], special

care needs to be taken in order to regularize the computation.

The Hilbert transform of a derivative can be best understood in terms of the Fourier trans-
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form. Taking the derivative in the radial direction corresponds to multiplying by ip in the
transform domain, where p is the radial frequency. Taking the Hilbert transform corresponds
to multiplying by (1/4i)sgn(p). Cascading the two operations corresponds to multiplication

of their transforms, and it yields

ip(1/4)sgn(p) = lpl- (2.11)

This is the transform of the ramp filter.

Since the Fourier inverse of |p| exists only as a singular distribution, a windowing operation
is needed in order to stabilize the computation. One can, e.g., think of the ramp filter

response h(l) as the limit of

+2/€2, for |l| <€
he(l) = (2.12)

—2/12, for |l| > €

as € — 0. See [Horn, 1978] for detailed derivation.

Then in the 2D inverse reconstruction (Eqn. (2.8)), we have a two-step process: first “filter”
the projection data in the radial direction (1D) by convolving with the ramp filter h(l), then

back project — i.e., take the integral over St
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Chapter 3

Cone-beam Reconstruction: The

Early Results

The 3D Radon inversion formula, Eqn. (2.10), is considered to be the cornerstone in the
development of cone-beam reconstruction techniques. The inversion formulae given by Tuy
[Tuy, 1983], Smith [Smith, 1985] and Grangeat [Grangeat, 1991] represent different ways of
exploiting Eqn. (2.10) in the context of the cone-beam projective geometry — i.e., where R f
itself is actually not known. They share important similarities in that their implementations

can be split into three phases, including two transformations and a backprojection:

o Transformation of cone-beam projection data to a chosen intermediate function (e.g.,

the 1st-order radial derivative of Rf in Grangeat’s formula);

o Transformation of the intermediate function to the 2nd radial derivative of Rf;

e Use of the Radon inversion formula Eqn. (2.10) to recover f.
This chapter provides a thorough analysis on the theoretical results obtained by Tuy, Smith
and Grangeat. Tuy and Smith’s inversion formulae are introduced and briefly compared
in section 3.1. We then give a new and simplified proof of Grangeat’s Fundamental Re-

lation in section 3.2, the emphasis being that this formulation is a result of the simple

and nice differential property of the Radon transform. Our proof reveals more geometric
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meaning underlying the Fundamental Relation. The study of mathematical equivalence of
three inversion formulae, and extensions of these early results based on Fourier analysis are
presented in section 3.3. Section 3.4 discusses the orbital condition for exact cone-beam

reconstruction. We give this condition a new interpretation from the viewpoint of duality.

3.1 Revisiting Tuy and Smith

The density function f is compactly supported in R3. Let = supp(f). Assume that the
source orbit, parameterized by ®()\) (A € A), is a continuous and differentiable 3D curve,
residing outside the convex hull of Q. The cone-beam image obtained from a particular point

source ®()\) measures the half line integrals of attenuation along rays passing through ®(}):
+00
g\ a) = / F@®O) +ta) d, ac S, (3.1)
0

where a is a vector belonging to the unit sphere S2 which we call the projection sphere.
 Note that both the projection sphere and the Radon sphere (or backprojection sphere) are

viewed in the object space.

It is clear that cone-beam images do not directly capture the Radon transform since they
contain integrals along lines, not over planes — if the lines were parallel, integrals over
planes could be computed from the line integrals by one more integration. However, the

lines diverge from the X-ray source in cone-beam imaging (see Fig. 3-1).

Figure 3-1: Parallel-beam projection v.s. cone-beam projection (rays are restricted
onto a thin slice).

Tuy’s and Smith’s formulations are very similar in their initial use of the cone-beam data.
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Both approaches extend the collection of line integrals of f, for a particular X-ray source
position, homogeneously from the unit sphere into the whole 3D space, and then apply the
3D Fourier transform. The resulting Fourier transform serves as an intermediate function

to link the cone-beam projection data to R”f.

The difference between the two approaches is in the form of the ray transform function:
Tuy used the half line integral of f as the basis of extension, whereas Smith used the whole

line integral.

e Tuy’s ray transform is the half line integral, known as the divergent ray transform:
+00
Df(\a) = gi1()a) = / F®O) +ta) dt, ac S (3.2)
0

e Smith’s ray transform is the whole line integral, known as the X-ray transform:

+00
X\ a) = go() o) = / F(®() +ta) dt, acS2 (3.3)
— 00
For a € S? outside the collimator cone, the divergent ray transform g; (A, @) is considered
to be zero. Since the angle between any two rays within a projection never exceeds m, we
have, either g;(A\, @) = 0 or g1 (A, —a) = 0. As a result, the whole line integral g»(\, a) =

91(A, @) + g1(A, —a) is simply a symmetric extension of the half line integral g;.

If g(a) is defined on the unit sphere S2, then the homogeneous extension g"(a) of degree

—1 to the 3D space is defined as follows:

g (re) = Zg(a). (3.49)

Since the rate of decay is only in the magnitude of |1/r|, the Fourier transform of g(a)

exists only as a distribution.

Let g{l and g% be the homogeneous extension of g, and g2 respectively with degree —1. Note

that Eqn. (3.2) and (3.3) naturally allow for such extensions by relaxing a from S? to R3.

Tuy was the first to derive a cone-beam inversion formula for real-valued functions with

projections from a bounded source curve. He obtained in [Tuy, 1983],
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Theorem 3.1 The density function f on Q can be recovered from cone-beam data using

_ 1 aGl(A:B)
fa) = /S mi® (V)-8 oA

g, (3.5)

where G1(\,B) is the 3D Fourier transform of g\, @)) restricted onto the unit sphere
B € 82, and \ € A is a solution for ®(\)-B =z - B and ®'()\) - B # 0.

Eqn. (3.5) holds if the source orbit meets the following conditions:
(1) ®()) is outside Q = supp(f);
(2) ®(\) is bounded, continuous and almost everywhere differentiable;

(3) For all (z,B) € Q x S2, there exists A € A such that ®()\)-B =z -3 and ®'(A\)-B #0.

In proving Theorem 3.1, Tuy used the following change of variables:

z=®)\)+ta, acR, 0<t<oo
T: 1 (3.6)
p= ?, 0 S t < oo
The Jacobian of the map T is —p. Therefore,
m .
G\ B) = / / FBO) +ta) dt | e 2P da
R3 \ JoO
w .
00 , _ .
— /0 pe2mp<1>()\)-ﬁ 8 f(w)e—%rzpm-ﬁ dz | dp
w .
= [ oPeoeloB)m 2 dp (3.7)

Then Eqn. (3.5) can be verified by plugging in Eqn. (3.7) and comparing the result to the

inversion formula for the Fourier transform in spherical coordinates:

1@ = [ (|7 #Fasclom)e==dp) ap. (3.8)

Clearly, to use this result, at least one solution A € A for ®(\) - 8 =z -3 and ®'(A) - B #
0 needs to be found for all (or almost all) (z,8) € @ x S2. Condition ®'(\) - 8 # 0
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eliminates the case of tangential intersection between a plane passing through supp(f)
with the source orbit. Finch proved that these conditions are also necessary for stable

reconstruction [Finch, 1985].

Because Tuy’s inverse is implicit with respect to the source curve parameter A, a practical

implementation is not immediately available.

Smith used a similar function — the 3D Fourier transform of g% with respect to c, de-
noted by Gz(),B) (restricted onto the unit sphere 3 € S2). He found the following

connection: Ga(A,B) is proportional to the Hilbert transform H of the radial derivative
R f(1,B) li=a()-p-

The Hilbert transform of a function can be written as a convolution with 1/(7s) (see
Eqgn. (2.5)). The 1D Fourier Transform of this convolution corresponds to multiplication
with (1/i)sgnp, where p is the radial frequency. The Hilbert transform appears also in the

simpler 2D case.

The derivative in the radial direction corresponds to multiplication by ip in the transform
domain. The composition of the two operations then corresponds to multiplication by
ip(1/3)sgn(p) = |p|- The inverse Fourier transform of this (which exists only as a distribu-

tion) is the ramp filter familiar from 2D reconstruction (given in Eqn. (2.12)).

If we apply the ramp filter to G2 we obtain R”f, accordingly, the 3D Radon inversion
formula can be evoked. In [Smith, 1985], Smith obtained

Theorem 3.2 The density function f on  can be recovered from cone-beam data using

f@) =53 (0@ FL8) db, (3.9

where ® denotes convolution, h(l) is the ramp filter response, and F(l,8) = Go(\, B) with
=8\ -B=z-8.

Again, to make this work, for all (or almost all) (z,3) € Q x S2, at least one solution A € A
needs to be found such that ®()\) -8 =z - 8. As in Tuy’s case, Smith’s inversion formula

is implicit with respect to A.
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3.2 Grangeat’s Fundamental Relation — A Simplified Proof

The intuitive key in Grangeat’s inverse formulation is that the first radial derivative of
the Radon transforms can be computed from cone-beam data. If the rays were parallel,
the situation would be much simpler, since the Radon transforms over 2D planes could be
obtained via 1D integrals. However, in the cone-beam case, rays diverge from the point

source and the Radon transform itself cannot be recovered.

According to Grangeat’s Fundamental Relation, each slice of fan beams, and its adjacent

slices within a projection, supplies the first radial derivative of the Radon transform.

A typical fan-beam slice is shown in Fig. (3-2).

Py

Li.p \P-

N en - Image Plane

Figure 3-2: Illustration of a fan-beam slice intersecting with the image plane.

In Fig. (2-4), a Radon plane intersecting the support of f is denoted by Lz . Denote
by P1 P, the intersection line between L; g and the image plane. Denote by o the angle
between L; g and the principal direction which may go by the name the angle of the slice

(it is a term for convenience). Let the central ray be the shortest line on L; g from the
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point source to the detector plane, denoted by SC. Note that SC is perpendicular to P, P;.

Because the fan beams restricted onto the plane L; g all meet at the source, it seems natural
to use polar coordinates on this plane, with the origin placed at the X-ray source and the
axis aligned with the central ray. Denote by r and 6 the radial and angular parameters

respectively in this polar coordinates.

Then, Grangeat’s Fundamental Relation [Grangeat, 1991] can be re-stated as

Theorem 3.3 The first radial derivative of the Radon transform, R'f, can be computed

from cone-beam projection data using

ORILE) _ 82{ [EN drde}, (3.10)

where the double integral is performed on the plane L, g.

Note that the inner integral / f(r)dr, for some fixed 8, represents an X-ray projection
in polar coordinates on the Radon plane L; 3 — this is a measurement available from the

cone-beam image.

Proof: We shall slightly change our viewing angle and set up local Cartesian coordinates

as follows:
r_ _ %)
|2(N)]
T = gy xpB (3.11)
zl — ml X yf

with the origin at ®(\) (Fig. (3-3)). Note that the principal direction is aligned with the

y-axis but runs in the opposite direction.

This coordinate system is exceptionally convenient for expressing an arbitrary point r € L; g

in terms of the distance along the ray from the source, r, and two angles, # and a:

r = <rsinf,rcosfcosa,rcosfsina > . (3.12)
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z1=x’xy’ ‘

_.»” Image plane

)
00|

x’=y’xp

Figure 3-3: A local coordinate is intentionally set up for a particular fan-beam slice
Ly 3. The principal direction is aligned with the y-azis.
In this coordinate system, the plane normal 8 has the form
B = <0,—sina,cosa > . (3.13)

Integrating the inner integral, / f(r)dr, by part and applying zero boundary condition,

we get

/f(r)dr = —/er-g—:dr

= — /r(sinﬁfz + cos @ cos afy + cos@sinaf,) dr. (3.14)

Using this result, we compute

%{/cotﬂ/f(r)drde} = //r(fysina—fzcosa)drdt?

_ —//r(ﬁ-Vf) dr df. (3.15)
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Here, / / r(,@ -Vf ) dr df can be easily recognized as the Radon transform of 8- Vf in
the polar form. By the differential property of the Radon transform (Eqn. (2.4))

~r{p-vs) = -p.p2RLLE) _ _ORILA) (3.16)

The last equality holds because 8 - 8 = 1. It leads us to the Fundamental Relation. =

The ray transform used in Grangeat’s formula can be expressed as
+o00
Pf(\ra) = gs(\ ra) = / F(BO) +ta)dt, acS? reR, (3.17)
0

which is a homogeneous function of degree 0. What Eqn. (3.17) does is projecting the
image of the divergent ray transform g; (A, @) from the projection sphere to the image plane

(see Fig. 3-4).

Image plane

Figure 3-4: Ray transform function g3 is the projection of g1 onto the image plane.
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The ray sampling density on the projection sphere is typically uniform, hence, on each
intersection line between a Radon plane and a image plane, the ray sampling density varies
proportionally to the cos of the angle between a particular ray and the central ray (sampling
is finer near the central ray). The weighting factor, 1/(cos#), in Eqn. (3.10) is therefore
used to counter-balance the ray sampling density. As a result, the weighted line integral of
the density integrals on a given Radon plane reflects the mean value of the divergent ray

transforms on that plane.

We are able to show that the Fundamental Relation is a result of the differential property of
the Radon transform. Our proof also reveals the geometric significance of the varying angle
of the Slice, a. This angle « is an intuitive link between the coordinates in the projection
reference frame and the coordinates in the Radon space. For V3 € 82, a simple relationship

holds:
| =|0S]sina, (3.18)

where [ is radial parameter of the Radon plane, and |OS| is the distance from the source to

the origin (see Fig. 3-5).

N

Figure 3-5: Relation of the radial parameter, I, and the angle of the slice, a.

As a limiting case, where X-ray source is put infinitely far, the parallel projection corre-

sponds to # = 0 and o = 0 (see Fig. 3-6). Accordingly, the parallel projection can be well
0 0

suited into the Fundamental Relation by setting cosf = 1 and —— = — in Eqn. (3.10).

da 0l
Note that cos@ = 1 reflects the uniform ray sampling in the parallel projection scheme.
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Figure 3-6: Parallel-beam projection as a limiting case of cone-beam projection.

The distance from the source to the image plane is fixed for each projection, denoted by
|O'S| (O’ is the projection of the origin O from the point source S). Let s be the radial
distance of the intersection line on the image plane from the image center O’. It is easy to

verify that
s =|0'S|tana. (3.19)
Therefore, the partial derivative with respect to o in Eqn. (3.10) can be evaluated through

the radial derivative of the weighted line integrals on the image plane [Grangeat, 1991]:

o |08 o
da ~ (1 - tan? @) ds’ (3:20)

The 2nd-order radial derivative of the Radon transform R’ f is uniquely determined by the

scalar field R'f. And from R"f we can find [ using 3D backprojection (Eqn. (2.10)).

An apparent advantage of Grangeat’s formula lies in its directness in relating itself to the
Radon inversion formula and its operational simplicity. From each cone-beam projection, a
set of 1st-order radial derivative of the Radon transforms can be easily computed by differ-
entiating over a set of fan-beam slices. Because derivative acts locally, Grangeat’s formula
prevails in locality as well. However, this locality feature in Grangeat’s formula can not be

used too naively, since the rays penetrating the object are almost always contaminated by
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Figure 3-7: Derivative with respect to o corresponds to derivative with respect to the radial
distance on the image plane.

attenuation outside the ROI (region of interest), as a result, locality can only be achieved
in a limited sense. On the other hand, a successful application of Grangeat’s formula can

be found in the local scans of a long object via longitudinal data truncation.

Grangeat’s formula provides the first radial derivative of the Radon transform. However,
the link between the first derivative R'f and the second derivative R" f is more elusive than
it looks, and indeed there is a misconception here that is more of a superficial misunder-
standing. To explain this, we notice that a coordinate is needed to compute R f from R'f.
We have not yet found a natural coordinate to accomplish such a task — the Radon space
is just not a usual space we are familiar with. A common practice in current cone-beam
reconstruction algorithms makes use of the spherical coordinates in the warped space R3 (it
was introduced in section 2.1). In these methods, the first radial derivatives of the Radon
transform obtained from the cone-beam measurements are resampled and interpolated along

a set of radial directions, then finite difference is applied to compute the second derivative.
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A clear sign of its incorrect sampling scheme is the singularity at the origin, where, the
Radon transform and its derivatives are not meaningful because the direction of the plane
passing by the origin can not even be recovered. Besides, as we have mentioned in section
2.1, the geometric relationships in the Radon space P* are not correctly duplicated by IR3.
We are actually disoriented in the Radon space under Euclidean influence. To correct this,
we need to further understand the Radon space geometry in connection with the cone-beam

geometry. We will take time to do this in the next chapter.

One obvious but also important observation is that the backprojection is common to all
three inversion methods derived by Tuy, Smith and Grangeat (Eqgn. (3.5), (3.9) and (3.10)).
It turns out, as will be deliberated in section 3.3.2, that the odd part of Tuy’s intermediate
function G is related to Grangeat’s intermediate function Rf'(l,3), the lst-order radial
derivative of the Radon transform, and the even part of G; is linked to Smith’s interme-
diate function G3, the Hilbert transform of Rf’(l,3). The striking similarity among three
inversion formulae in terms of the backprojection is because they are all but disguised faces

of the 3D Radon inverse (Eqn. (2.10)).

It is clear that these three inversion formulae do not immediately provide efficient reconstruc-
tion algorithms. The most expensive operation — differential-backprojection (or filtered-
backprojection in Smith’s case), which is performed in the projective Radon space, has
implicit dependence on the source curve parameter A. In this sense, the backprojection is

a problematic issue common to all three inversion methods.

3.3 Algebraic Varieties in Cone-beam Reconstruction

In this section, we seek out for the relationships of Tuy, Smith and Grangeat’s cone-beam

inversion formulae. Our aims are:

e To make it conceptually easy to take: why we have not just one, but three cone-beam

inversion formulae? Where do they differ? How do they connect?

e To reveal the significance of the homogeneous space within each cone-beam projection,

as well as the algebraic varieties and geometric hierarchies inherent in this subsystem.
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e To demonstrate the strong connection between the Fourier transform and the Radon

transform, and similar connections between their derivatives as well.

e To reveal the duality principle in the subsystem.

3.3.1 The Homogeneous Space

Each cone-beam projection consists of rays emitting from a point source. The pencil of
divergent rays form a 2D projective space with its projection center at the X-ray source.

This space is equipped with the following equivalence relation
a~ra forr#0. (3.21)

It induces homogeneous coordinates, in which, multiplying the coordinates of a point by
a nonzero number does not change its position. The projective space is also known to
mathematicians as the homogeneous space. This latter one will be used consistently with
our discussion of the homogeneous functions defined on the same space. Denote by H) the
homogeneous space attached to the X-ray source at ®(A) (A € A), where A is the indexing

set.

In the homogeneous space H), various inversion formulae take their initial form. Already,
we have seen three ray transform functions defined on H), namely g{‘, gg, and g3 with
homogeneous degree —1, —1 and 0 respectively. The integral transform of g, gh and g3
then lead us to some intermediate functions in the Radon transform domain and can be
inverted through the 3D Radon inversion formula after all the projection data has been
collected and transformed into the Radon space. In this sense, each cone-beam projection
subsystem plays a significant role in cone-beam reconstruction. While the main source of
variations in algebra can be attributed to the homogeneous coordinates within each cone-

beam projection.

The algebra attached to the homogeneous space is rich and variant. However, it is a deeply
involved subject and is not the main effort of this thesis. We will only try to gain some

fundamental understanding of the algebraic varieties related to our cone-beam problem in
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the coming discussion.

3.3.2 Differential Form

This section is intended to show, using Fourier analysis, how Tuy, Smith and Grangeat’s
inversion formulae are connected by the differential form of the Radon transform. The basic
tools used are the derivative property of the Fourier transform as well as the Central slice
theorem of the Radon transform (see section 2.2). The later relates the Radon transform to

the Fourier transform.

We shall pay attention to the even and odd game played between G1, G2 and the Radon
transform derivative. As a reminder, G; and G5 are the Fourier transform of the divergent
ray transform g? in the 3D space and its symmetric counterpart gg respectively. We shall
also pay attention to how each Fourier transform derivative parallels with a derivative of

the Radon transform.

We start with the more general nD case, since the projective space P" nestles a chain of
projective subspace with lower dimensions, i.e., P!, P"2 ... P Note that the Radon
space, P", is at the top of this dimensional hierarchy, and the fan-beam projection, corre-
sponding to a 1D projective space, is located down at the bottom. By understanding the
general context of reconstruction in nD space, we are not only in a position to see the inner
build-ups of the nD Radon inverse, but also be able to compare 3D cone-beam reconstruc-
tion with 2D fan-beam reconstruction, so that analogies can be drawn and knowledge of

old and new can be exchanged.

In R, the homogeneous extension (with degree —1) of the divergent ray transform g; (A, )

can be expressed as
oo
O a) = / f(EQO) +ta)dt, acR", (3.22)
0

where a is a vector in R*. The X-ray transform is the symmetric extension of the divergent

ray transform, hence
gg(’\7 C!) = g{l(Aa a) + g{L(’\H -a)a a €R". (323)
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Denote G; and G5 as the nD Fourier transform of g{‘ and g% respectively. Then,

G = [ m(ha)e e da

= / / ” F(B(N) + ta)e P 4t da (3.24)
n Jo

and, by the scaling law of the Fourier transform, we have for Gs:
G2(>‘7ﬂ) = Gl (Aaﬂ) + Gl()‘a _IB) (325)

We mimic Tuy [Tuy, 1983] in choosing the following mapping

z=®(\)+ta, acR", 0<t<o0
T . . (3.26)
t

, 0<t< @

Now, a € R” is a high dimensional vector so the Jacobian of T' becomes —p"2. Via the

change of variables in Eqn. (3.24) we obtain

o0
Gi(\B) = / n /0 2 f (@) 2meE 2B 4 dg

— /oo pn—2627rip<1>()\)-ﬁ f(m)e—21rip:c~ﬁ dx dp
0 Rn
e ]
= /0 P2 Fase(pB)e®™*EN B dp, (3.27)

For notational convenience, we will sometimes denote Fy_,¢ by Fz. Plugging Eqn. (3.27)

into Eqn. (3.25) which is G2, we obtain the even part of G1 (with respect to 3),

G1(\,B) + Gi(\, -B) =

o0 . oo 3
/O pn_sz (pﬁ)ezmpq)()‘)'ﬁ dp + /0 pn—sz(_pIB)e—Zme(A)-ﬁ dp. (3.28)

The odd part of G, is

Gl(Aaﬂ) - Gl()‘v _:B) =

oo i 00 .
/ P2 Fy (pB) e PN P g — / P2 Fy(—pB)e 2P NP dp (3.29)
0 0
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We are now ready to prove the following:

Theorem 3.4 G, Gy and the Radon transform are related by

(2@:*2 (Gl (A B) + G1(), —ﬁ))
.  (2m)n?
% = = T A TV (3.30)
lzé()\)-ﬁ
\n—2

\ (2723r (Gl(/\,ﬂ) —Gi (), _g)) , nodd
w2l o [enres - 0-) aan

aln=2 I=2(\)-8 = (@) PG\ B) n odd

Proof: We have, from the Central Slice Theorem of the Radon transform

oo 2 2wip®P (A oo 2 2mipP (A
| e remee e say = [ ptn {R1,8) ) O (332

— 00 —00

Using the the derivative property of the Fourier transform, we get

2 \n—2 +o00 B - . 8n_2
( WZ / o 2Fl_,p{Rf(l, ﬂ)}e2 PENB, = S RI8) (3.33)
- =3(\)8
Combining (3.32) and (3.33) yields
2 \n—2 +oo e - . an_z
( w;zr / P2 F, (pB)e?™ 2N By = 53 Rf(1,B) (3.34)
- =% (\)5

Briefly recall the discussion in section 2.3, the Hilbert transform in Fourier language corre-
sponds to multiplying the radial frequency p by (1/¢)sgn(p). Hence, when n is odd, changing
p" % in Eqn. (3.34) to |p|"2 leads to

(271—1‘)1'1_2 /+oo |p|n_2F:1: (pﬂ)e2ﬂ'ip¢(/\)-ﬁdp — Hl{ 8n_2Rf(l: ,B) }

27 oo Hln—2 (3.35)

I=®(\)-8

When n is even, |p|"~2 = p"~? so the result is the same.
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Comparing equations (3.34) and (3.35) with (3.28) and (3.29), we notice that the major
discrepancies lie in the forms of the integral range. So we rewrite the second term in Eqn.

(3.28) and (3.29) (which is G1(A, —8)) by a change of variable from p to —p:

w . 0 .
/ P2y (—pB)e NP dp = / (=p)" 2 Fa(pB)e”™ 2N P dp (3.36)
0

—00

Note that (—p)®~2 in the above equation can be written as p"~2 for even n and |p|"=2 for
odd n. Plugging Eqn. (3.36) back into the even and odd equations (3.28) and (3.29) and
comparing the results with (3.34) and (3.35), it yields (3.30) and (3.31). =

All is satisfying after this even-or-odd game is complete. There is a difference between the
even and odd dimensions. To make the even and odd rules more straight, we draw the

following diagram:

For n even: : For n odd:

Gy Gy

(even) (even) (even) (odd)

(n-2)

G2 R®?f G2 R

Figure 3-8: Relationships between the Fourier transform of the divergent ray transform,
X-ray transform and the Radon transform derivatives.

In the case of n = 3, the odd part of G; goes to R'f, the first radial derivative of the Radon
transform, while the even part of G; goes to Go, the Hilbert transform of R'f. Tuy, Smith
and Grangeat start with three different ray transform functions, now they meet, for the first
time, at this triangle. Recall from the proof of Theorem 3.4, it is easy to understand that
they are connected by the nice and simple differential properties of the Fourier transform
and the Radon transform. From here, Tuy, Smith and Grangeat set foot on separate paths
again to complete their reconstructions. Our intention in the next chapter is to start with

this triangle meeting and develop a common framework to carry Tuy, Smith and Grangeat’s
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immediate functions, G1, G2 and R'f, towards the final reconstruction.

In the general context, the n-dimensional space, we observe that the homogeneous space
spanned by the divergent rays within each cone-beam projection, which is a (n — 1)D pro-
jective space, supplies the (n — 2)th differential form of the Radon transform. The ladder,
certainly a mysterious medium in this dimensional hierarchy, is p"~2 from the Jacobian of
the mapping T"! At the bottom level, we have the familiar 2D fan-beam case (1D projective
space). And at the top is the whole Radon space P™. It is observed that the dimensional
hierarchy inherent in the nD projective space is highly dependent on its foundational 1D
space. It should not be a surprise that the non-local character in 2D reconstruction will be
preserved regardless of the dimensionality of the space. Therefore, in cone-beam reconstruc-
tion, contrary to the common assumption, the remarkable locality in 3D Radon inversion

formula cannot be used without justification.

Independent of which homogeneous extension we start with, we end up with the (n — 2)th
differential form of the Radon transform. In order to use the nD Radon inversion formula
(Egn. (2.4)), the (n — 1)tk differential form needs to be acquired, through the interaction
of each cone-beam projection subsystem with the whole Radon space. We call this last

differential form the ezterior differentiation. It will be covered in the next chapter.

3.3.3 Duality

Duality is one of the most important concepts in the Radon transform theorem. We have
learned from [Helgason, 1999] that the Radon transform and its inverse can be seen as the

analytical counterpart of the geometric dual between points and planes in R3.

In cone-beam reconstruction, however, we have only integrals along lines instead of planes.
Lines are self-dual in R? [Mundy, 1992], hence there is no direct inversion available. On
the other hand, within each cone-beam projection subsystem, a significant dual relation
between lines and planes make itself available for us to explore. The line and plane duality

in the homogeneous space can be best explained by the following axioms (also see Fig. 3-9):

e Any two distinctive lines determine a plane;
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e Any two distinctive planes determine a line.

Image plane

Source

Image plane

Figure 3-9: Dual form: lines and planes are dual in the 2D projective subspace

The complete dual chain — from lines to planes back to points, provide us the key to invert

the straight line projections in cone-beam X-ray tomography.
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3.4 Orbital Condition for Exact Reconstruction

The derivation of the data sufficiency condition for exact reconstruction in Tuy, Smith
and Grangeat is constructive and inherent in their inversion formulae. The key ingredient of
this condition is that all (or almost all) planes passing through the object intersect with the
source orbit — so as to guarantee that points lying in the transform space can be calculated

from the available projection measurements.

Our analysis has shown that the validity of this data sufficiency condition has a simple
geometric reasoning which is articulated through the duality principle, notwithstanding the

algebra attached to the homogeneous space during the inverse.

Recall the discussion in the previous section, the lines in R? are self-dual, therefore, there
is no direct link available to recover the 3D density function from the ray transforms.
The inverse reconstruction can only be established, indirectly, through the projective space
induced by each cone-beam projection. Since now, planes are dually connected to both lines
(in the projective space) and points (in R?). To complete the dual chain, it is necessary
that all the planes passing by supp(f) intersect with the source orbit. It should not be a
surprise that plane is used as a medium in the statement of the data sufficiency condition.

It reveals the dual law governing the geometric relationships in the cone-beam system.

It is clear that a circular orbit (as being used in the Feldkamp algorithm) will not do, since
one can construct many planes passing through points that lie above or below the plane of
the circle which do not intersect the orbit. Such planes are near parallel to the plane of the
circular orbit. The only thing that can be reliably reconstructed from images taken from a

circular orbit is the density distribution on the plane of the circle itself.
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Chapter 4

The Canonical Cone-beam Inverse

In the homogeneous space induced by each cone-beam projection, H), we have been eluded
by an even and odd puzzle. Now coming out and getting temporarily satisfied with the
outcome of the Tuy-Smith-Grangeat relationship, we found ourselves entered the Radon

sea and lost coordinates.

What Tuy, Smith and Grangeat mainly accomplished so far is the transfer of the cone-beam
data into the Radon domain. From an algorithmic point of view, it remains unanswered how
the transformed data should be processed in order to recover the original density function.
It is easy to discérn, in the inversion formulae provided by Tuy, Smith and Grangeat, the
differential-backprojection depends on the source curve parameter A in a very nontrivial way:
at each reconstruction site x, the integrand in the 3D backprojection need to be evaluated
for all planes passing through that point, with normal in all directions 8 € S? and the radial
distance determined by [ = - 8 = ®(\) - 8. The nontriviality lies in finding the roots for
®()\) - B =z - B (bearing in mind that we are dealing with nonplanar source orbit instead
of a planar curve which makes the root finding a nontrivial task). It suggests, at least a
sound reason, to let A initiate the reconstruction so that solving nonlinear equations for
each pair of (z,) in (2, S2) could be eliminated, or reduced in numbers. Another reason
to get A involved more explicitly is that the source curve ®(\) characterizes the geometry
associated with the cone-beam system and it governs the whole scanning process. So we

look into the geometry.
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4.1 Cone-beam Geometry

We assume that the 3D source orbit is parameterized by ®(\) = ($1(\), #2(A), #3(N))

with ) in a closed interval A. We also assume that the following conditions are met:
(1) ®()) is outside the convez hull of Q = supp(f);

(2) ®()\) is an analytic curve which means that its three components ¢1, ¢2, and ¢3 are all

analytic functions;

(8) Almost every plane passing by supp(f) intersects with ®()\) transversally at least once,
that is, for every € Q and almost every B € S?, there ezists A € A such that ®()\)-8 = z-B
and ®'(\)-B #0.

The major difference between our orbital conditions and those of Tuy lies in the analytic

assumption on (). Most of the simple and nice curves belong to this family.

For convenience of exposition, we will sometimes drop such words like “almost all”, “almost
every”, “almost everywhere” applied to either a set of points on the source orbit, or a set
of planes in the Radon space, but bearing in mind that violations are admitted if they

constitute only a zero measure set.

4.1.1 Fiber Bundle Structure

In a cone-beam system, we have two independent geometric spaces: one is the vector
space spanned by the divergent rays projected from a single point source, the other is the
nonplanar orbit on which the X-ray source traverses. These two spaces combined provide

information about the Radon space that will become clear later.

The source orbit ®()\) (A € A) is a smooth and differentiable 1D manifold, denoted by B.
Each point on the source orbit is associated with a 2D projective space of lines passing
by that point. This 2D projective space is already known to us from Chapter 3 as the
homogeneous space H), indexed by A € A. Also familiar from Chapter 3, each H), by
its line-and-plane duality, can be interchanged with a projective space of planes that has

the same projection center. Denote by P?\ the projective space of 2D planes. Pi is a 2D
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differentiable manifold.

It is clear now that from each point lying on the source orbit grows a projective space
consisting of a family of planes. This projective space is a subspace of the Radon space
P3 which includes all the 2D planes in R®. The density function under reconstruction is
compactly supported. Therefore, only those planes intersecting with supp(f) make con-
tributions during the inverse, since the Radon transform Rf and its derivatives are zero
otherwise. It is a sufficient reason to reduce the size of the Radon space in our consideration
so that it covers only planes through the support of f. We still call this reduced Radon space
by the name Radon space assuming no ambiguity could arise in the context of cone-beam

reconstruction. Then, if the source orbit conditions are met, the sum E P? is a covering

AEA
space of the Radon space.

The geometric structure described above is called a fiber bundle in differential geometry

[Kobayashi, 1963], denoted by T := ZP?\ (T is meant for the total space), with B and
AEA
P? as its base space and fiber space respectively. There is a well-defined projection map

7 : T — B on the fiber bundle. For a typical fiber we have P3 := n~()\). Each fiber P2

is a submanifold of P3. The inclusion map from P% to P? is given by

ir: B — (l’ﬂ)L:w).g' (4.1)

This map is injective, therefore, P2 is embedded in P3. The embedding map (Eqn. (4.1))
connects the local coordinates (A, 3) of T to the global coordinates (I,3) of the Radon
manifold in a simple manner, that is, [ = ®(\)- 3. It suggests that A may serve as a natural

coordinate in both the progressive scanning and reconstruction process.

The fiber bundle T is also a trivial fiber bundle in the sense that its local basis is a
Cartesian product of two independent bases from the base space and the fiber space, that
is, {)\ € A} ® {ﬂ € Sz}. This same basis may well be used as a local basis for the Radon

space.

Both the base space B and the fiber space P? are differentiable manifolds. Therefore, the
fiber bundle T is differentiable. Locally, the first local coordinate A relates to the first global
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coordinate ! by the differentiable map [ = ®(\) - 8. Hence,

0 1 0
FThe ——_<I>’()\) BoN (4.2)
Note that the differential structure of the Radon space is intrinsic and is not affected by

the local basis induced by a different selection of the source orbit.

It is worth to mention that the reason why we introduce the fiber bundle is that it char-
acterizes the underlying geometric structure of the cone-beam scanning, and, importantly,
it provides a natural mapping, [ = ®()) - 3, from the local to the global coordinates of
the Radon space. However, the above mapping is not bijective, because some planes in the
Radon space are repeated multiple times in T. Denote by M (A, 3) the number of times that
the 2D plane Lg(y).,5 intersects with the source orbit. Then the same function M A\ B),
depicts the number of times that the plane Lg)).3,4 is repeated in T. This M (A, B) is

called the redundancy function or M-function,

4.1.2 Dual Space Decomposition

The family of planes passing by a point source constitute only a subset of all the planes in
the Radon space. At the end of the scanning process, the covering of the Radon space is

completed by ZP?\ In this sense we say that the Radon space, the so-called dual space,

. AEA .
can be decomposed. To be able to describe the geometric constraint raised by each cone-

beam projection, we pick up a point source, say S, and a projection line that connects the
source S to a point P on the image plane. Then for each point @ lying on SP, the family
of planes passing by both S and @ intersect at SP. As a result, the normal directions of
this set of planes are perpendicular to the projection line SP and are confined to a great
circle on the backprojection sphere surrounding @ (see Fig. 4-1). We name the great circle

the backprojection circle.

It is easy to see that the effect of rotating the X-ray source around the test object is to
provide many different backprojection orientations so that the 3D backprojection sphere

can be fully covered (see Fig. 4-2).
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Backprojection sphere ......... i
JEE A great circle T

Projection line

Projection sphere

Figure 4-1: A bundle of Radon planes interesting at a projection line

greatcircle 1,

Figure 4-2: Backprojection orientations vary from projection to projection
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Note that the rotational pattern of the 2D great circles on the backprojection sphere is
different from point to point in the object space. A remaining question is how this ro-
tation shall be analytically formulated. A related problem in the object space, which is
an Euclidean space, is how to set up local frames so that the sequential cone-beam pro-
jections under the unique movement of the X-ray source can be locally described. These
local frames shall be convenient for transformation between projections, and convenient to

transform from local coordinates to their commonly shared global coordinates.

As one can see in our earlier discussion, the basis {)\ € A} X { B e Sz} is naturally formed
in the transform space, the Radon space of 2D planes, not in the object space. It is not

suitable for our current request.

We consult the famous method of moving frames [Carmo, 1976], with its earliest ap-
pearance found in Fresnel’s treatment of space curves, and later substantially developed
and generalized by Cartan. In the case of a continuous and differentiable source orbit, we
can make use of the normalized principal direction, denoted by ~(\) = ®(\)/|®())|, and

construct an orthogonal local frame consisting of the following basis:

R(\) = (7'(N), v(V), ¥'(N) xy(N)). (4.3)

It generates a set of 3-by-3 orthogonal matrices as A ranges in the indexing set A. These
matrices are associated to a set of consecutive rotations. By this construction, the sequential
X-ray projections induce a rotational group transformation on both R3 and the projective

subspace P? attached to the source orbit.

The potential leverage of the moving frame method in cone-beam reconstruction has not
been fully understood and explored so far. In fact, the importance of the moving frame
representation in cone-beam reconstruction is no small amount. Other than its convenience
in transferring two consecutive image coordinates, it is also responsible for transformation
of the projective basis in the Radon space. Amazingly, the same rotational group trans-
formation simultaneously describes the coordinate transform in both object space and the
transform space. To explain this, we notice that in the transform space, the family of

planes passing by each point Q and an X-ray source S are represented by a unit circle on
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the backprojection sphere surrounding . This circle is perpendicular to the source-to-point
line SQ. When the X-ray source is moved around the object, it seems to rotate around )
and the unit circle therefore changes its orientation while still remaining on the backpro-
jection sphere. This is a rigid motion. And Carton’s orthogonal moving frames provide us

a machinery to describe such a motion.

So now, we have acquired an intuitive understanding of the cone-beam geometry, in both
its imaging space and the transform space. In the transform space, we have found that the
internal structure of the 3D backprojection has a simpler decomposed form which can be
described by a set of orthogonal transformations of a 2D backprojection. The transforma-
tions are formulated by the 3-by-3 orthogonal matrices (Eqn. (4.3)) which are well known

as Cartan’s moving frames, with the local origin anchored on the source orbit.

In the next section, we will derive from the 3D Radon inverse a new inversion formula to ac-
commodate the cone-beam projective geometry. It will achieve the geometric decomposition

described here in an analytical form.

4.2 The Canonical Cone-beam Inversion Formula

Before we can switch coordinates from [ to A and derive our new inversion formula, we make

a short detour to address the issue of non-bijective nature of the mapping | = () - 8.

4.2.1 Analytic Curves

Given an analytic curve, all its components are analytic functions. An analytic function

has the following nice properties:

A. Tt can be locally described by a power series.
B. The analytic function is constant if it has a constantly-valued segment.

C. A analytic function consists of isolated and finite number of critical points on a closed

interval unless it is constant.
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Note that only constantly-valued functions have infinite number of critical points.

Under our assumption that the source orbit ®()) is analytic and non-planar (implicit in

condition (3)), we have:

Lemma 4.1 For every B € S?, there ezists a finite number of disconnected intervals so

that the inverse mapping of | = ®()\) - B is injective on each of these interval.

Proof: Let’s choose an arbitrary 8. Denote by L g the plane that has normal 8 and goes
through the origin. Denote by Lg(y).5,3 the plane with normal 8 and passing by ®(N).
The plane L g shall be called the level plane. Then, the dot product I = ®(A) - B can be
interpreted as the elevated height of the plane Lgy).3,3 above or below the level plane (see
Fig. 4-3).

Py

Figure 4-3: A space curve and its relationship with 2D planes

The orbit ®()) is an analytic curve, therefore I(A\) = ®()) - B is an analytic function.
Moreover, ®()) is nonplanar, it is easy to verify that I(\) # constant. By the property
(C) of the analytic function, /() has only a finite number of critical points that satisfy
I'(A) = ®()\)- B = 0. Denote by A1, X2, -+, Apy(a) the complete set of the critical points for
I(\) = ®()\) - B. This allows us to construct the following disjoint intervals:

Ai = [Ai?A’i+1] for 1 = 1727' v 7m(:6) -1 (44)
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Now, suppose that the inverse mapping of [(A) = ®()) - B is not injective on one such
interval, say A;, which means that there are a dual or multiple images of certain [ on A;. It
implies that = ®()\)- B has at least two distinctive roots on the interval A;. Denote by )\gl)
and )\,(-2) the two distinctive roots, then A; < )\51) < )\,(;2) < Ai+1. By the mean-value theorem
and the property (B), (C) of the analytic function, we can find at least one critical point
strictly between )\t(-l) and Agz) such that I'(A) = ®'()\) - 8 = 0, contradict to the previous
assumption that A;, A2, -+, Apy(g) are the only roots for I'(A) = ®'(A) - B = 0. It settles our

proof. m

For each B € S?, a plane perpendicular to 8 can only intersect with the source orbit finite
number of times, since each interval constructed in our proof of Lemma 4.1 allows no more
than one of such intersections, and the number of intersections is bounded by the number

of intervals. We conclude then

Lemma 4.2 For every B € S?, the redundancy function M (X, B) is bounded.

- 4.2.2 Inversion Formula

Equipped with an intuitive understanding of the cone-beam geometry and the nature of the
mapping | = ®()) - B, we now start with the 3D Radon inversion formula Eqn. (2.10):
1 *Rf(l,8)

@) =52 Jo—ar

ag.

=z 8

Our goal is to express the backprojection operator in the above formula in terms of the
natural coordinate A\. We also expect that such a change of variables will results in a
decomposed form of the 3D backprojection operator since each cone-beam projection gives
rise to a geometric constraint which confines the backprojection orientations onto a set of

great circles.

Theorem 4.1 With cone-beam geometry, 3D Radon inversion formula Eqn. (2.10) can be

61



reformulated explicitly in terms kof the source orbit parameter X by

___1_ " . |¢I>’(}\)-ﬂ|
f@) =53 /A { /ﬁ cfoson) pes (@0 8.8 55 dﬂ} d\, (45)

where {x — ¢I>()\)}J' denotes the plane perpendicular to x — ®()\) and through the origin.
The derivative in R"f acts on its first variable, and M (X, B) is the redundancy function.

Note that the inner integral in the above equation is a 2D backprojection over the unit
circle perpendicular to the projection ray @ — ®()), and each plane Lg(y).3,3 is weighted
by its multiplicity in the fiber bundle space T.

Proof: In Eqn. (2.10), the backprojection integrand, R"f, is evaluated at [ = = - 3. In

terms of the dirac delta function, Eqn. (2.10) can be expressed as

f@) = g [ [ _RI0B-z-p)dl ap
1 L "
- ‘W/sz/_LR ,B)( -z - B)di dB (4.6)

for some finite bound L. The last identity holds because the density function in our study

is compactly supported. Therefore, Rf and its derivatives are finitely supported.

For a fixed 8, by Lemma 4.1, we can find a finite number of intervals, denoted by A,
(i = 1,2,--- ,m(B) — 1), such that on each A; the inverse mapping of | = P(N\) - B is
injective. When switching from the global coordinates (I, 3) to the local coordinates (X, 8),
separately on each interval A; (i = 1,2,--- ,m(B) — 1), the inner integrand of Eqn. (4.6)

boils down to

/A RH(@0)B,0)5(20) -6 -z HIF' () -BldA (4.7)

2

The above equation shall be interpreted by

R'F(®())-B,8), for A€ A
LTI I Al .

0, otherwise
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Hence, Eqn. (4.7) is nonzero if and only if there exists a root for ®(A\) - 8 = « - B8 on the

interval A;.

Then the summation over the index 7 yields
| BH@0)-8,0)630) -8 -2 B)I# () Bldr (49)

However, this sum is different from f_LL R"f(l,8)6(l—z-B) dl, because each plane Lg»).5,3
is subject to multiple covering in the fiber bundle space. The repetition is finite (by Lemma
4.2) therefore summable. A simple remedy is to divide by the M-function M(),3) to

eliminate the redundancy in the calculation when we switch from I to A. The result is

_ z _ |2'(A\) - 8|
= /52/3 ) B.B)(@(N) B~ LA A A (410

Note that if M (X, B) = 0, R"f(®()\) - B,8) actually does not contribute to the integral,
therefore the appearance of singularity in the denominator is false. We can simply reassign

the value of the M-function by M (), 8) = +oo for those M (A, 8) = 0.

Then, by changing the order of the integration in Eqn. (4.10), we get

1@ =5z [ { [ R @0 -p.8)6(@0) - )ﬁ)%dﬁ} ENRRCRLY

The dirac delta function selects only S in the directions perpendicular to ®()\) — z, hence

T ——L " . w_l_
f@ =5 [ { /, RV L COR YR oo dﬁ} (412

This completes our proof. =

We notice that the dirac delta function is our main trick in deriving the new inversion
formula. It is appropriate to use in the context of our derivation because of the summability
over the finite number of intervals A; (Lemma 4.1) and the boundedness of the number of

the plane-orbit intersections (Lemma 4.2).

63



Reading from Eqn. (4.5), there is, at each fixed source position, only one 2D backprojection
need to be performed along each projection ray. The resulting value is constantly assigned
to all the points lying on that ray. The ambiguity naturally occurring within one single cone-
beam projection is due to the fact that points on the same ray are in the same equivalent
class. This uncertainty shall be resolved when information from projections of all directions

are combined.

Our inversion formula reveals the geometric structure of the 3D backprojection operator. It
differs fundamentally from all previous inversion formulae by reducing the backprojection
from 3D to 2D with explicit dependenéy on the source orbit. This makes the reconstruc-
tion more direct and can be easily described. Even though without this formula, we can
still obtain cone-beam reconstruction algorithm based on the analysis conducted in sec-
tion 4.1 alone, it is obvious that Eqn. (4.5) gives a compact geometric description of the
backprojection, from which we can almost visualize the solution procedure.

Since the source orbit is sampled, the outer integral of Eqn. (4.5) should be numerically

treated as a Riemann sum:

1" N w o
sz{/ﬂe{m B(n )} ﬁes2R f(‘p()\z) ﬂvﬂ) M(A“ﬂ) dﬂ}()\q,.H )\1) (413)

The inner integral can be discretized by:

N-1

R'F®ON) - 85,85) 35 d a0 (4.14)

Jj=0

2
where 3; = cosf;a’! +sinfjat?, 6; = (2nj)/N (j =0,1,--- ,N —1) and Af = Fﬂ is the
discretization step. The unit vectors a = = — ®(\;)/|z — ®(\;)|, a** and a2 form an
orthonormal basis.
Eqn. (4.5) produces the well-known summation-filtered-backprojection formula. It allows

progressive refinement during the image reconstruction. Note that M-function determines

the contribution of each measurement. It shall be precalculated for a selected source orbit.
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4.3 The Exterior Differentiation

In the preceding sections, we have focused largely on the backprojection operator and we
have derived a decomposed formula of the 3D Radon inverse. However, the link between the
cone-beam data and the 2nd-order derivative of the Radon transform is yet to be established

in terms of the natural coordinate A.

Tuy, Smith and Grangeat’s work enables the transfer of the cone-beam data to some in-
termediate functions related to the first radial derivative of the Radon transform. Since
each cone-beam projection does not provide parallel planes, it is obvious that an exterior
differentiation or filtering is needed so that the intermediate functions can be transformed

to the second radial derivative R" f.

Now we look at the differential structure of the fiber bundle T. It is a covering space of
the Radon space, and is locally differentiable. Since the local basis for T is also a local
basis for P®, the Radon space, differentiation with respect to the global coordinate ! can
therefore be assessed by differentiation with respect to the local coordinate A. Another way
to see this is to imagine a set of parallel planes in a near neighborhood, the infinitesimal
changes in ! can be viewed as infinitesimal changes in A (see Fig. 4-4). In turn, if we take
an infinitesimal step along the tangent direction of the source orbit, we will certainly find
a plane parallel to the one we started with. It is natural therefore to differentiate over the

parallel plane with respect to parameter A\ of the source orbit.

Figure 4-4: Differentiating over parallel planes.
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We start with Grangeat’s intermediate function R'f, switching the coordinates from [ to A

by the inverse of the differentiable map [ = ®()) - B yields

R'f(®(\)-B,B) = <1>'(A1) _ﬂaR’f@g’/\\)'ﬂ’ﬂ), (4.15)

where R" f is read as the 2nd-order partial derivative of the Radon transform with respect
to the radial parameter [ at [ = ®()\) - 8. Note that R'f(®(\) - 8,8), obtained from a
cone-beam image, is now considered as a “function” of A, which is a natural result of the
progressive scanning process. The differentiation over continuous images was unfamiliar to
us earlier, but it should not be such a surprise if we compare it to the differentiation over

parallel planes. Their spirit are the same.

The discrete version of Eqn. (4.15) is

R'f(®N)-B,8) = <I>'()\11.) .ﬂR'f(‘I’()\iH) 'ﬂ;‘i)l—_li;f(q’()\i)) B.8) (4.16)

It is the first order approximation through a one-step finite difference. Higher order approx-
imation can be achieved by engaging more cone-beam images. It means that a few more

images shall be acquired in advance.

Tuy’s inversion formula (Eqn. (3.5)) captures the concept of the exterior differentiation.
That is also the reason why Tuy’s source orbit condition is the most accurate among the
three. It imposes a transversality condition on the plane and orbit intersections which we

will analyze soon.

From the discussion in Section 3.3, Tuy’s intermediate function G; can be split into even
and odd parts. The odd part (which is also the imaginary part) of G corresponds to the
first radial derivative of the Radon transform, R'f. The even part (also the real part) of

G corresponds to the Hilbert transform of R'f which is Smith’s intermediate function Go:

G1(\B) = 2620, B) + 7RI B). (4.17)
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Then taking the exterior differentiation with respect to A, we have

1 aGi(\B) 1 8G(\B) 1 _,
mid() B o a0y B on e A (4.18)

Now the real part becomes R”f which is even, the imaginary part becomes odd and it will
not survive the backprojection. It turns out that Tuy’s inversion formula eventually boils

down to the 3D Radon inverse (Eqn. (2.10)).

Smith’s intermediate function requires a ramp-filtering over all the parallel planes in the
Radon space, which can be expressed by

R'f(@(0)-8,0) =H{GCa@N) 8,0} . (4.19)

1=2(\)8

The computation of the global filtering is too costly and is not efficient compared to the

local operations in the previous two cases.

What happens when ®'(\) -3 =07

The exceptional case ®'(\) - 8 = 0 corresponds to the situation where the Radon plane
Lg(»).3,8 meets with the source orbit tangentially. When the X-ray source moves along the
tangential direction of its orbit, there are certain planes that stay still and do not move.
These planes have normal directions perpendicular to the tangent ®'()\). Under such cir-
cumstances, the radial derivative can not be calculated. It happens on a set of planes within
every cone-beam projection. The reason that they are admitted in a strictly mathematical
term is because the family of planes which have normal direction perpendicular to &'()\)
constitute only a zero measure set. However, this suggests that there are sensitivity issues
that need to be further investigated. Since the measurements are not noise-free and data
interpolation also produces error, the discrepancy in the transformed data from consecutive
cone-beam projections on those planes that are not moving will be magnified by AX. For
this reason, we want to avoid those problematic points, and hope, that almost every plane
passing by supp(f) intersects with the source orbit transversally at least once, so that the
Radon derivative not only can be evaluated, but can be done in a stable manner as well.

This is the stability condition addressed by Finch [Finch, 1985].
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4.4 Reconstruction Algorithms

The previous discussion prepares us to obtain, in general, an inverse procedure for cone-

beam reconstruction which can be described as follows:

Cone-beam reconstruction is iteration over:

Step 1: At a source location A, obtain from the cone-beam image the transform

function G1 (), B), or Ga(A,B) or R'f(A,B).

Step 2: Perform an exterior filtering across the projections, that is, filtering over
images of G1, G2 and R'f obtained from consecutive cone-beam projections. This

step yields the second radial derivative of the Radon transform:

1 aIm{Gi(\B))

RI@N)-B.0) = smry s oy (4:20)
RF@0-8,8) = H{Ga@N-BB| (4:21)
RI@0)B8) = gor g (422)

Step 3: Back project the second radial derivative of the Radon transform on a 2D
unit circle perpendicular to each projection line to generate a 3D partial image with
constant values assigned along each projection ray. This step shall be implemented

in a parallel fashion for all the rays emitted from one single point source.

Step 4: The resulting 3D partial image from Step 3 is superposed to the previous

intermediate result.

Step 5: Move the X-ray source and go back to Step 1 till the scanning process

ends.

Theoretical work done by Tuy, Smith and Grangeat each serves as a good starting point
_ their initial treatment of each cone-beam image leads to an intermediate function in the

Radon space. These results shall be viewed as intermediate-staged reconstruction. It takes
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a few more steps to complete the final reconstruction:

o Differentiate or perform filtering between the projections;

e Back project the result along each projection ray to produce a 3D image as a partial

reconstruction;

e Sum over oll the partial results.

The inverse procedure has two distinctive recipes according to where we start. If we begin
with Tuy or Grangeat’s intermediate function, reconstruction is in the form of summation-
differentiation-backprojection — only a few images are required to be collected ahead of time
for a partial reconstruction. Whereas, reconstruction based on Smith’s intermediate func-
tion is not local and is characterized by summation-convolutional-backprojection — where
ramp filtering is performed over the parallel Radon planes passing through the scanned ob-
ject. Since differentiation and convolution are both considered to be a filtering process, we
make no distinction of them by using summation-filtered-backprojection for the purpose of a
unifying treatment. But it is clear that Tuy and Grangeat’s intermediate function requires

only local filtering whereas Smith’s intermediate function requires global filtering.

This inverse procedure carries a significant geometric structure that can be described

through the following diagram:

] 3 summation-filtered-backprojection 3
Euclidean space R P’, the Radon space

g | ™. L7

Bl 2

\ ~ . - .

X£ W =" ~~. _dual form: point and plane _. - a
or o ...a\\ Tt~ __ - -7 %
pf §| E& | T | B
or * 2 g
pf ? Tg 2 /‘ =TT - -~ "~

5 SH-N -7 BRI a

o =/ .-~ dual form: line and plane N et

P S U
i . 5
-,.‘ % 7 i/ , N \\
Fourier transform 2 o 3
Hj,, the homogeneous space - Py, 2D projective subspace of P
or Fundamental Relation

Figure 4-5: Cone-beam reconstruction: forward and inverse procedures, the related
geometric spaces and their dual forms.
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In this process, geometry and algebra cohabit in a lively form. Thay are hand in hand,

however, each renders a separate, interesting thread (see Fig. 4-5).

Geometry:
the homogeneous space H, attached to the source orbit 9(A) the Radon space P*
(fiber space P?) (base space B) (fiber bundle T)
Algebra: :
algebraic transform applied summation-filtered-
to the cone-beam data backprojection
rotational transformations carried
out by the moving frames

Figure 4-6: Cohabited geometry and algebra in cone-beam reconstruction.

Geometry possesses the perceptual power and algebra is the impetus for the vital computa-
tional dynamics. Through Radon, we can almost see the solution through our imaginative
eye. What a grace! As elegant as Radon, Cartan’s moving frames provide us a vehicle to

travel along the source orbit and accomplish the computational task in a clean form.

With the new inversion formula, the complexity of the reconstruction algorithms is reduced.
Assume 7 is the edge size of the volume. Also assume that we have chosen a finite number
of source positions as well as a finite number of normal directions 8 distributed on the
unit sphere. Then for each cone-beam image, we have n? projection rays to process. If
we use Grangeat’s intermediate function, then along each projection ray, a set of 1st-order
radial derivative need to be obtained which takes O(n) time. The resulting algorithm has
complexity O(mn3) where m depends on the number of source positions as well as the

number of orientations 8 used in the 2D backprojection.

4.5 A General Discussion

The idea presented in this chapter can be easily generalized as long as the feature of fiber

bundle remains as the overall structure. The benefit of using the fiber bundle structure is

70




that the base space and the fiber space are relatively independent entities. It allows diversity
in the fiber bundle compositions by thinking of various fiber spaces while confining the X-
ray source on a 1D manifold. It keeps the overall reconstruction procedure unchanged.
For example, the 1D projective fiber space leads us to the fan-beam geometry, (n — 1)D
projective fiber space leads to something that may go by the name nD cone-beam, and
(n—1)D subspace of parallel rays carries us to the parallel-beam geometry. All these different
scanning modalities are variations of the same geometric principle. With slight modification,
our inverse procedure can be applied, the backprojection can still be decomposed in a similar

fashion and lend itself an efficient implementation.

So far, the inverse procedure is characterized significantly in terms of geometry. It has
potential to be used in a more general context of inverse reconstructions related to the
Radon transform. We notice here that the diversity is a remarkable strength of the Radon

transform which makes it all possible for vast generalizations.
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Chapter 5

Choice of Source Orbit on

Sampling Performance

The arrangement of the X-ray source and the detector plane contributes to the sampling
density distribution in the transform space. In this chapter, we present a theoretical analysis

of the sampling condition related to the source orbit.

Good design of the source orbit not only improves the accuracy of the reconstruction but
also helps to reduce the patient’s exposure to radiation because lower X-ray exposure is
needed to reach a desired image quality. So far, little attention has been paid to this

important problem.

We consider two cases: (i) the parallel-beam projection (distant source) where the “working
space” is the Fourier spectrum space, and (ii) the true cone-beam projection (nearby source),
where the “working space” is the Radon space. It is instructive to consider the parallel-beam
projection because the mathematics is simpler and because it provides immediate insight.
The parallel-beam projection is a limiting case (as the source is put at a distance) of the
cone-beam projection. It in turn helps to facilitate and test our fundamental understanding
of the sampling in the cone-beam case. A sinusoidal orbit will be used to illustrate our basic

approach.
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5.1 Sampling in the Transform Space

We enclose the support of f in a sphere of radius Ry, i.e.,
S ={(z,9,2) € R’ | 2 +3* + 2 < R{}, (5.1)

and the center of S lies at the origin.

In our experiment, the X-ray source is moving along a 3D curve parameterized by ®(\)
(A € A). We will restrict ®()) on a cylindrical surface with radius Ry > R; (see Fig. 5-1).
The axis of the cylinder is aligned with the z-axis. The principal direction of the projections

is represented by the normalized vector v(A) = ®()\)/|®(N)].

e

Figure 5-1: Source orbit is confined on the outer cylinder

5.1.1 Parallel-beam Case

In the parallel-beam case, the X-ray source is far away from the object (Ry > R;). The
image plane perpendicular to the principal direction < measures the density integrals along
rays parallel to 4. For the purpose of visualization, each image plane is represented by a
plane with the same orientation but passing through the origin, it is called the projec-
tion plane. Denote by L. the projection plane perpendicular to 4. We also call v the

orientation of L.
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The Fourier projection-slice theorem is an efficient tool for approaching parallel-beam re-
construction. According to the projection-slice theorem, 2D Fourier transform of the mea-
surements on each area detector provides spectral information on a plane in the 3D Fourier
space. This plane in the Fourier domain is called the spectral plane. It passes through
the origin and has the same orientation as the image plane. Denote the spectral plane

perpendicular to < by ﬁ.,. It is clear that L. and ll, are oriented in the same direction.

Denote by £ the orthogonal coordinate transform that rotates the tilted plane to the zy-

plane. £ has the following properties:

d(z,y,2)

o v,y T G2

L1=,T and ‘

The projection-slice theorem can be nicely illustrated by the following diagram:

/
“/;//
/
/
):/
'’y

/
-

3D inverse FT

s (%, 2) (§..8,,8) s

(x;' y1' 0)

k-

Figure 5-2: Illustration of the parallel-beam reconstruction based on the
Fourier projection-slice theorem.

The data available from the parallel projections would cover the entire Fourier transform
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space if and only if the family of projection planes passed by every point on the object
sphere S (note in our definition all the projection planes pass through the origin). The

inverse Fourier transform then can recover f. This is for the continuous case.

In practice, one can take only discrete measurements. According to Nyquist’s sampling
theorem, if the detectors are spaced at a distance d apart, then the frequency spectrum
of the sampled image must be band-limited to (w/d) in order to avoid aliasing effects.
Therefore on each spectral plane, there is a limit to the area where the transform is non-
zero. Within that area (which we can take to be a circular disk for convenience) we assume
the sampling to be uniform. Spectral content in between the samples on a spectral plane

may be estimated by interpolation.

Another discretization takes place along the X-ray source orbit: only a finite number of
projections are conducted. Spectral information that is not on any of the planes corre-
sponding to the available projections needs to be interpolated from the available spectral
data. Different from the interpolation on the 2D spectral planes obtained from each projec-
tion, the spectral interpolation at this stage is performed on the surface of a set of concentric
spheres. Since the sampling conditions on these concentric spheres are different only by a
scaling factor, it is sufficient to study only the sampling performance on the outer surface
of the spectral sphere that is influenced by the source orbit. The ideal scenario for accurate
interpolation and thereby stable reconstruction is that the resulting sampling density dis-
tribution on the surface of the spectral sphere is uniform. It turns out to be far from trivial

to find a source orbit that approximates this ideal condition.

For simplicity, we consider the radius of the spectral sphere to be unit. Denote by S the

spectral sphere. Denote by 6'7 the great circle where f;., meets with 5.

Assume that we start with a particular projection orientation, say «*. The continuous
movement of the X-ray source on a nice and smooth orbit sets éﬂ,* into a rigid rotation.

Such rotation can be conveniently described in the following matrix form:
R()) = (YN, vV, 7' () xv(N)- , (5.3)

It is the orthogonal moving frame that we have encountered in Section 4.1.2.
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It is clear now that the sampling condition in the 3D Fourier space corresponds to the
sampling distribution on the spectral sphere swept by the family of great circles 07 as the

source orbit parameter, A, varies over the indexing set A.

5.1.2 Cone-beam Case

Return to the cone-beam projection case, we find that this time we are dealing with a
even more complicated problem, although the feature of rigid motion remains to be the
underlying mechanism of the transform space covering. In this case it is in the Radon
space. In the case of the parallel projection, all the spectral spheres are concentered at
the origin. They duplicate the sampling pattern from each other and are equivalently
characterized. However, in the Radon space, the Radon spheres are attached to every point
in the object space. From the discussion in Section 4.1.2 we know that each cone-beam
projection confines the backprojection orientations on a great circle on each of these Radon
spheres, and the great circle is perpendicular to the source-to-point line. When the source
moves, the great circle undergoes rigid rotation. However, the rotational pattern of the
great circle on each Radon sphere depends on its location (see Fig. 5-3). As a result, the

sampling condition of the Radon sphere varies from place to place.

o(2)

Figure 5-3: Varying sampling patterns on the Radon spheres.

Ideally, we would like every Radon sphere to be evenly sampled. Since the sampling pat-
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tern of every Radon sphere differs from each other, designing a “good” source orbit which
produces a considerably evenly-sampled Radon sphere everywhere in the object space is a
challenging task. We can tell that the shape of the region under inspection is an important
factor in selecting proper source orbits. The treatment of round and elongated objects

should be different. Intuition might very well provide us some preferred candidates.

It turns out that in both parallel-beam and cone-beam cases, if we restrict ourselves to
study only the roles played by the source orbit on the sampling performance, we need to
solve the same basic problem, that is, how to characterize the sampling density distribution

on a spherical surface swept by a set of great circles resulting from a rigid rotation.

5.2 A Preliminary Discussion on the Source Orbit

We stress here that the curve v = ®/|®| is the projection of the source orbit onto the unit

sphere through the origin. Some sample « curves are illustrated in Fig. 5-4.

11 1 - 14
0.51 0.5 0.5
01 01 0+
-0.5 -0.51 -0.51
1 1
-1 ﬁ/;)‘ -1 ﬁ//o -1 //o
1 0 -1 1 1 0 R 0 1 -1
(a) (b) (c)

Figure 5-4: Some sample source orbits projected (v = ®/|®|) on the unit sphere.

Fig. 5-4 (a) and (b) represent two planar circular orbits at different altitudes — in (a)
we have the orbit in the zy-plane, while it is elevated above that plane in (b). Orbit (c)
illustrates a 3D sinusoidal path on the unit sphere. These are among the easiest orbits
to implement considering mechanical limitations of the gantry motion, such as limited
accelerations on the X-ray tube assembly (the sinusoidal orbit, e.g. requires an accelerating

force that is simply proportional to the distance from the “neutral plane”).
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One way to explain the advantages of a sinusoidal orbit is to compare it to a circular orbit.
It happens in (a) that the set of great circles all meet at the North and South poles as
shown in Fig. 5-5(a), producing unequal sampling with very high density at the two poles
and relatively poor sampling near the equator. To be exact, the sampling density varies
proportionally to secn, where 7 is the latitude on the sphere. It is lowest near the equator,

grows with latitude, and has singularities at the poles.

Characteristic Curve

Characteristic Curve

(@) (b)

Figure 5-5: Rotation of the great circles.

Now we turn to case (b) where the projections are tilted. If « is the elevation of the planar
(circular) orbit above the horizontal plane, then it can be shown that the sampling density

varies as

1
, for [n| < (7/2 - )
cos? o — sin®n (5.4)

0, for |n| > (7/2 — @)

where 7 is the latitude. This reduces to sec, the density for case (a), when o = 0. Here
the density at low altitude is increased from 1 to seca and the point singularity at the two

poles is distributed over two small circles at latitude n = £(7/2 — «) (see Fig. 5-5(b)).

The improved uniformity in density is, however, achieved at the cost of transform infor-
mation within two shielded cones (Fig. 5-6) around the z-axis, which is not available at

all.
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Figure 5-6: The shielded cones.

In order to cover the area on the sphere missing when using orbit (b), we can move the
X-ray source in an up-and-down fashion as indicated in (c). The great circles meet the poles
only when the source is positioned on the equator (which happens only a finite number of
times).

This will provide an improvement in the uniformity of sampling at differenf parts of the
sphere compared to that provided by a circular orbit. The sampling density near the poles
and the equator can be effectively tuned by two parameters: the height of the sinusoidal
curve and the number of times it crosses the central plane. This makes it possible to
obtain a more uniform distribution. While it is likely that the “optimal” orbit is not in this
particular family of curves, it should be noted that a similar discussion can be carried out

for extended family of 3D curves.

5.3 Characteristic Curve

Let the charactéristic curve < be defined as the envelope of the family of great circles Cy

on the unit sphere centered at the origin. C’s are from the family

{C.,Csz‘C,yJ_‘y, —yzl—z—l}. (5.5)
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The characteristic curves of the planar (circular) orbits are rather simple: they are two poles
for orbit (a) and two (small) circles for orbit (b) (Fig. 5-5). In fact, the missing contents
are inside the convex hull formed by the family of 2D planes passing through the great
circles. This convex hull can be described by the characteristic curve and its tangent field.
An example will be given in Section 5.4.2. Now we focus on finding the equation for the

characteristic curve.

Theorem 5.1 The characteristic curve is generated by

' ;
e et (5.6)
[ x|
Proof: It is sufficient to verify that ¢’()), the tangent of ¢()), agrees with the tangent of

the great circles at their intersections. ¢’(\) can be evaluated as follows

!
X '
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The last identity holds because v -+' = 4'-4"” = 0, so the second term in Eqn. (5.7) is zero.

Now, for a fixed orientation 7, Cy is perpendicular to v, together with v x v"” L v we get

¥ xy
<~ €O

(5.9)
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y X
Iy x|’
C. at the intersection with ¢ is perpendicular to both v and ~y x ~', therefore, parallel to

Therefore, the great circle C,, meets ¢ at From the last relation, the tangent of

~ x (v xv'). Moreover, we have for ¢’

"Iy <" — Ll

, , , = Slyx(rxa). (510)
Lle sllyxy = ¢ Lyxy

It follows that the tangent of the great circle Cy and the tangent of ¢ are both parallel to

~ X (v x 4') at their intersection. From the above, we conclude that the family of the great

circles and ¢ are cotangent. Eqn. (5.6) describes the envelope of Cy’s. m

5.4 A Case Study: Sinusoidal Source Orbit

5.4.1 Equation for a Sinusoidal Orbit

Assume that @ is a sinusoidal curve on the cylinder. The curve can be parameterized by the
longitude ) . Let the z-component of ®(\) be ¢3(\) = hRysin(n)), with ARy the magnitude
(the maximum height) of ®()), and n the number of cycles around the equator. We can
use the parameterization ®(\) = Ra(cos \,sin A, hsinn)) and then project this cylindrical

orbit onto the unit sphere using v(\) = ®()\)/|®()\)| (see Fig. 5-7).

z

Figure 5-7: A sinusoidal orbit projected onto the unit sphere.
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The 3D curve () crosses the equator 2n times when the source completes a whole orbit

around the sphere. The curve «()) intersects the equator at A = mn/n, m =0,1,--- ,2n—1.

At these crossings,

mm mmr . mn
7(7) = (0057551n7a0)7
mm . mm mm
7’(7) = (—smT,cos T,:i:hn),
n, M mm . mm
—) = (—cos—,— —,0).
(=) (= cos —=, —sin —=,0)

where the sign of the :hn term is that of cos(mn/n).

5.4.2 Characteristic Curve of the Sinusoidal Orbit

(5.11)
(5.12)
(5.13)

Fig. 5-8 and 5-9 plots ¢ near the South pole for sinusoidal orbits with different magnitudes

h. As the magnitude of the orbits increases, the characteristic curve dilates to cover a larger

area.

0 o
-1 ML . —+ 7, 14 |
1 1 0 a7ty 0 a7

h=0.2 h=0.5

1 1 1
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0 0 0
-0.5 /1 -05 /:1 -0.5 [1
' 0 y
h=0.1

Figure 5-8: Side view of the characteristic curve § with varying magnitude h.
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Figure 5-9: Top view of the characteristic curve ¢ with varying magnitude h.

It has been shown that a cusp appears each time when - crosses the equator and orientation

of the illumination is flipped. Since = is a differentiable curve, from Eqn. (5.6) we know
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that ¢ is differentiable as well. A cusp can only appear when the tangent vector is zero.

This can be easily verified:

Lemma 5.1 The characteristic curve of the sinusoidal orbit ®()\) = Ra(cos A, sin ), hsinnA)

has zero tangent at A = (mm)/n (m=0,1,---,2n —1).

Proof: From Eqn. (5.11) and (5.13), v x¥" =0 at A = (mm)/n (m =0,1,--,2n —1).
Tt quickly follows from Eqn. (5.8) that ¢’ = 0. Hence, the characteristic curve has zero

velocity at the crossings. =

Fig. 5-10 and 5-11 demonstrate the roles played by the number of cycles n. Each time
~(A) crosses the equator, the orientation of the projections is flipped (or mathematically
speaking, the tangent vector ¢'(A) descends to zero and then suddenly changes its direction)

so that we see a cusp on the characteristic curve.

05 0.5 0.5
0 0 0
-05 /1 ~05 /'_ros 4
0 0 0
-1 4 -1+ -1
1 0 -1 ! 1 0 a1 1 0 1
2 cycles 3cycles 4 cycles

Figure 5-10: Side view of the characteristic curve ¢ with different n.
o () _’
1 ! A
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| -05
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0 -1 1
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Figure 5-11: Top view of the characteristic curve ¢ with different n.

The characteristic curve has 2n cusps for even n, agreeing with the number of times the
X-ray source passes the equator. As for odd n, 7 is symmetric with respect to the origin (i.e.

if v is on the orbit, then so is —v) which means that the characteristic curve will retrace
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itself a second time so it generates only n distinct cusps (i.e. half the number of crossings).

At the crossings, the projection planes happen to be vertical and passing through the poles.

To acquire more intuitive understanding of the limiting process as the source approaches its
zero crossings, we can project the characteristic curve onto a horizontal plane H as shown

in Fig. 5-12.

Figure 5-12: Project ¢ onto a horizontal plane H through the origin.

Denote by ¢ the projection of ¢ from the origin onto H. It is easy to verify that the
projections of the great circles (as well as the 2D planes passing by them) are straight lines

tangent to ¢.

Lemma 5.2 While A approaching (mm)/n (m =0,1,--- ,2n—1) from left to the right, the

limiting angle between the unit tangents of the curve ¢ is 7.

Proof: By periodicity and symmetry, we only need to prove for A — 0%. As )\ gradually
approaches 0 from 0~ and 0", it can be checked that the sign of each component in ¢ is
switched from ¢'(—=\) = ({7, $5,0) to §'(A) = (], —¢3,0) (via straightforward calculation of
~ x 4"). And the asymptotic behavior of ¢’ is: ¢ ~ o(A%) and & ~ o()\) as A — 0. We

conclude that the unit tangent goes to the opposite direction after the zero-crossing. m

Lemma 5.3 and Lemma 5.4 lead us to the following:
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Lemma 5.3 The convez hull enclosed by the family of the 2D planes passing by the family

of great circles Cy is empty for n > 1.

Proof: For n > 1, there are more than two cusps as the results of the zero crossings. To
see that the convex hull is empty, we only need to walk counterclockwise along the curve ¢

and keep looking at our left (see Fig. 5-13).

Figure 5-13: Projection of the 2D planes passing by the great circles are tangent to
¢. The union of their left half space fill the entire space.

As we progress, the unit normal changes continuously till we pass through a cusp and the
normal direction suddenly flips to its opposite. Hence the half space on our left will sweep
through the entire space when we complete traveling on the closed curve ¢. It yields an

empty convex hull. =

5.4.3 Sampling Performance of the Sinusoidal Orbit

An important feature of the characteristic curve is its tangent vector. |¢'())] tells us how
fast the great circle is moving on the envelop as the X-ray source moves in its orbit. From
this basic fact we can conclude that the sampling density at the cusps are infinite because

the velocity |¢'| at those points is zero (see Lemma 5.1).

With the sinusoidal source curve, sampling density near the cusps can be effectively reduced
without impacting the sampling performance in other areas of the sphere be varying the
discrete sampling steps on the source curve, i.e., sampling more sparsely near the zero

crossings of the sinusoidal orbit and more densely near the flat portions of the curve. In
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addition, we observe that as h increases, the sampling frequency near the equator improves.
For fixed h, the number of times (2n) that the sinusoidal curve crosses the equator affects

the sampling density near the two poles (see Fig. 5-14).

Tt 88 06 204 w02 © 02 o4 e e 5
=

-1
T8 06 04 oz 0 oz ar er oy 1

Figure 5-14: Characteristic curves: n =35 (left) and n = 25 (right).

empty as long as n > 1.

Interestingly, the sampling performance of a sinusoidal orbit with n, = 1 (Fig. 5-15) is similar
to that of a tilted circular orbit which has singularity at the two poles. In this case, the
characteristic curve shrinks to a tiny area away from the z-axis with three distinctive cusps.
The result is that the sphere is completely covered with high density near the characteristic

curve. Note that the picture in Fig. 5-15 (left) is zoomed in,

A sinusoidal orbit with r, — 1/2 performs somewhat like a circular orbit above the equator.
There is a nonempty convex hull surrounded by the family of great circles which means

some transform information is not accessible.

'
o5 Y . e ) T! 8 98 04 02 o 0z o4 s ng ¥

Figure 5-15: Characteristic curves: n =1 (left, zo0med) and n, = 1/2 (right).
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5.5 Summary and Future Ahead

To conclude this thesis, we overview our short journey. We have expanded three earlier
theoretical results on cone-beam reconstruction. The significant role played by geometry
during the inverse is revealed. It is clear now that the scanning geometry determines the
dual space decomposition as well as the structure of the reconstruction algorithm. A novel
interpretation of the Radon inverse is presented through our reformulation which has the
capability of handling various scanning geometries. Within this framework, a family of
exact, FBP-typed algorithms are arrived following the lead by Tuy, Smith and Grangeat.
Their efficiency and stability vary by the nature of the algebraic transform used to carry

the cone-beam data into the Radon transform domain.

New challenges come along. Particularly, the optimal sampling schemes and related weight-
ing techniques shall be the focus of future research. Our study shows that sampling in
the Radon space is fundamentally different from what we have been dealing with in the
Euclidean space. Complexity arises in the underlying sampling mechanism. A few mathe-
matical devices developed in this thesis can be used to study the sampling performance of
various source orbits. They shall be combined with a specified application and system, as

well as empirical study to produce more fruitful results.

Related and interesting theoretical work on 3D reconstruction by Gelfand [Gelfand, 1986]
and Orlov [Orlov, 1975] are not included in our discussion. Further studies are expected to
draw comparison and possible connection. Another remission lies in the area of the helical
cone-beam CT [Kudo, 1991, Weng, 1993], where the X-ray source is traversing on a helical
source orbit and the detector size is considerably smaller than the scanned object. In such
a system, data is truncated along the longitudinal direction. A mosaic paving is needed
in order to obtain the Radon transform derivative on those planes passing by the object
[Danielsson, 1997]. It brings a even more challenging problem on sampling optimization.

However, the basic reconstruction algorithm remains unchanged.

Blessed by Radon, tomographic research constantly grow while in turn enrich the theory;
Re-animated by human imagination, CT industry continues to try its wings and fly into its

destiny: to make this world a healthier, kinder, and more joyful place to live.
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