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Doctor of Philosophy

Abstract

We describe a DNA computing system called programmed mutagenesis. prove that it
is universal, and present experimental results from a prototype computation. DNA is
a material with important characteristics, such as possessing all the information nec-
essary for self-reproduction in the presence of appropriate enzymes and components,
simple natural evolution mechanism, and miniature scale, all of which make it an at-
tractive substrate for computation. For computer science, using single DNA molecules
to represent the state of a computation holds the promise of a new paradigm of com-
posable molecular computing. For biology, the demonstration that DNA sequences
could guide their own evolution under computational rules may have implications as
we begin to unravel the mysteries of genome encoding.

Programmed mutagenesis is a DNA computing system that uses cycles of DNA an-
nealing, ligation, and polymerization to implement programmatic rewriting of DNA
sequences. We report that programmed mutagenesis is theoretically universal by
showing how Minsky's 4-symbol 7-state Universal Turing Machine can be imple-
mented using a programmed mutagenesis system. Each step of the Universal Turing
Machine is implemented by four cycles of programmed mutagenesis, and progress is
guaranteed by the use of alternate sense strands for each rewriting cycle.

We constructed a unary counter, an example programmed mutagenesis system,
and operated it through three cycles of mutagenesis to gather efficiency data. We
showed that the counter operates with increasing efficiency, but decreasing overall
yield. The measured efficiency of an in vitro programmed mutagenesis system sug-
gests that the segregation of the products of DNA replication into separate compart-
ments would be an efficient way to implement molecular computation. Naturally
occurring phenomena such as gene conversion events and RNA editing processes are
also discussed as possible manifestations of programmed mutagenesis-like systems.

Thesis Supervisor: Professor David K. Gifford
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

DNA Computing has attracted interest since Adleman's original paper [2] because of

its potential for high performance parallel computation. Adleman [3], and others have

proposed that the intrinsic power of processing large numbers (108) of molecules in

parallel may permit DNA computers to solve previously intractable problems. There

have been a number of models proposed for DNA-based computing since Adleman's

original publication. We will discuss in detail five main categories of these models

after we introduce two important notions.

The first is the notion of transition space. A transition space of a given oligonu-

cleotide sequence si is the section of the sequence space around s1 such that any

sequence si within the transition space of s1 can bind to and interact with si, and

no sequence sj outside of the transition space of s, can bind to and interact with

s1 . Figure 1-lA illustrates the definition of the transition space. We first introduced

transition space in 1998, under the name Hamming space [28].

Accordingly, as illustrated in Figure 1-1B and C, allowed transitions are those

that rewrite a string si to a string s iff sj is in the transition space of si.

All DNA computing systems rely on the notion of transition space. Some, like

Adleman's original system [2], use the notion implicitly. The sequences in such a

system are chosen such that the DNA oligonucleotides will not interact. Thus, the

sequences are chosen such that no sequence si is in the transition space of any other

sequence si. However, the design challenge for such systems is most often formulated

13



sequence 1

sequence 2 will bind to and interact with sequence 1

permitted transition distance

bTI T3

T2 T4

Transitions in sequence space

C ,-- ~ .

Disallowed transition in sequence space

Figure 1-1: Schematic representation of transition rewrite systems.
Part A shows transition space of the sequence 1, including sequence 2 in that transi-
tion space, which will bind to and interact with sequence 1.
Part B illustrates allowed transitions in sequence space. T1 through T4 are allowed
because they accomplish transitions between sequences which each lie in the transi-
tion space of the sequence they rewrite.
Part C illustrates a disallowed transition in sequence space. Second sequence does
not lie in the transition space of the first sequence in the figure.
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simply as "choose sequences that do not interact." It could be argued that better un-

derstanding of the underlying principle of the transition space would help researchers

in designing such systems.

Programmed mutagenesis systems use the notion of transition space explicitly.

In programmed mutagenesis sequences are designed such that if a sequence si is

supposed to interact with a sequence s2, but not a sequence s 3, then s2 , but not 83 is

in the transition space of si. Thus, programmed mutagenesis systems can be referred

to as transition rewrite systems.

The second notion we introduce is the notion of a composable system. We call a

computing system composable when a first computation results in a single molecule

that can be used directly by a second computation as input without modification. The

notion of a composable system is important, because invariants maintained in such

a system would generally make its behavior more predictable since the format of the

molecules in the system would be maintained throughout computation. In addition,

such a system would cut down on the number of experimental manipulations required

between steps of computation. Programmed mutagenesis systems are composable

because both the input and output from a computation can be represented as a single

strand of DNA. Programmed mutagenesis is the first composable system to be proven

universal. A universal computational system is a system capable of performing any

deterministic computation, that is a computation that given the same input always

produces the same output.

Composable systems are an important class of DNA computing systems because

it can be argued that composable systems are more likely to be autonomous, i.e. sys-

tems that can operate without human intervention during computation. Autonomous

systems are desirable because any intervention increases the potential for experimen-

tal error. The source of such errors may be both human error and inherent error rate

of the intervening processes. Programmed mutagenesis is an autonomous system,

since it proceeds without human intervention between the cycles of computation. An

additional interesting property of programmed mutagenesis is that all the machinery

necessary to implement it is present in a cell.

15



In the remainder of the chapter, we will discuss the variety of approaches to

DNA computing that have been proposed. These can be subdivided into four main

categories.

1.1 Generate-and-search approaches

The generate-and-search approach, also referred to as combinatorial search approach

was introduced by Adleman in 1994 [2]. This approach relies on generating a set

of witness DNA molecules. Each witness molecule encodes a single solution to the

problem being solved. Filters are applied to the set of witness molecules to select only

those molecules that satisfy a given set of constraints, and are, therefore, solution

molecules. Witness molecules are self-assembled out of the input oligonucleotides

that represent various pieces of the problem, such as vertices and edges in a graph.

This was the first experimental demonstration of any computational system based

on DNA, but this approach is not universal. It is also not composable, since the

input to a computation is a set of DNA oligonucleotides, and the output is a single

molecule, assembled out of these oligonucleotides. Generate-and-search approach is

not universal [71]. A related method, called the sticker-based model, which uses

sequence-specific separation by hybridization as a central mechanism, is universal

[51].

Combinatorial search relies on the idea that the immense storage density of DNA

allows the use of brute-force search methods to solve NP-complete problems. For

example, Lipton [39] suggests using combinatorial search approach to break the DES

encryption code.

This approach has a number of experimental drawbacks [26, 29], although recent

advances have been made in removing the need for human intervention between every

step of the algorithm. A small instance of the satisfiability problem was solved on

a gel-based computer [9], with separations performed using probes covalently bound

to polyacrylamide gel. In this experiment, DNA was retained within a single gel and

moved via electrophoresis. This is an important step towards autonomous combinato-
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rial search algorithms. However, some of the problems associated with the separation

procedure, as well as the problem of the loss of material as the computation proceeds

undoubtedly persist in this implementation.

Most proposed implementations for the generate-and-search systems focus on

molecules in solution. However, much work has been done to lay the foundation of

surface-based computing. This approach involves the manipulation of DNA strands

that have been immobilized on a surface [56]. Much work has been done in establish-

ing the basic characteristics of such systems [41], as well as in carefully establishing

the experimental criteria for successful word designs in such systems [18, 40]. The-

oretical problem of word design arising from this approach, but extended to other

areas of DNA computing, was also investigated [43]. It is interesting to note that

parameter d- distance in mismatches between the code words used in the above work

is remarkably similar to the simplified idea of transition space. Several algorithms to

solve particular problems in NP have been proposed within surface-based framework

[16, 46]. Morimoto and colleagues [46] also conducted some experiments to investigate

the viability of their algorithm.

Surface-based chemistry has a number of advantages over solution-based chem-

istry, such as simplified handling of samples and reduced rate of loss of material

through the stages of the computation. However, the major drawback of surface-

based chemistry is the reduced density of information possible in such a system as

compared to solution-based systems.

1.2 Splicing Systems

Splicing systems were pioneered by Tom Head [23] in 1987. The basic premise of the

splicing systems is that when two strands of DNA are cut, generating four fragments

(x1 , x 2 and y, and Y2), the pieces are recombined strictly in a crosswise manner

(resulting in strands x 1y 2 and y1x2 ). This is in contrast with the known biological

reality, and no mechanism presently exists to enforce such a restriction.

When splicing systems have finite sets of axioms and rules that define splicing, the
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systems are limited to generating regular languages [47]. If both of these sets remain

finite, the only way to increase the computational power of the system is to introduce

certain control mechanisms. A control mechanism is a mechanism which allows for

only certain splicing rules to be active under certain circumstances. Splicing systems

utilizing a number of such control mechanisms have been shown to be universal [12].

However, the control systems proposed require researcher's intervention and are vul-

nerable to experimental error. Furthermore, these mechanisms might prove difficult

to implement in a laboratory. The splicing systems are composable, since the oper-

ations in the system simply recombine the cut pieces of the molecules in a crosswise

manner.

The only experimental confirmation of the splicing systems was a small-scale ex-

periment using two restriction enzymes and a ligase [36]. The system investigated

generated the splicing language predicted by the corresponding dry splicing system.

However, the extent to which this particular experimental approach can be general-

ized and remain autonomous is limited by the number of restriction enzymes which

can be made to work in a common buffer. Any buffer used in such a system also

needs to accommodate the ligase.

Several variants of the splicing systems have been introduced, including cut-

ting/recombination (CR) schemes [17] and a number of systems arising from restricted

use of the splicing operation [49]. CR-schemes differ from traditional splicing systems

in that in these schemes cutting can occur independently from recombining the cut

pieces. It is not clear, however, how to biologically enforce such a separation between

cutting and recombination. In addition, these systems presuppose input filters for

the test tubes for the redistribution of the contents of the test tubes after a period of

cuttings and recombinations. Thus, CR systems are not autonomous. Restricted use

of splicing operation, although not biologically inspired, provides for an interesting

new look at the language theory, allowing for new characterizations for families in the

Chomsky hierarchy and for closure properties in general.

P-systems, one of the possible control systems for splicing systems has been re-

cently introduced by Gheorghe Paun [48] as a model for computation based on mem-
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brane structures. The basic premise is to use membranes as a filter for objects with

specific properties when transferring them into an inner compartment, or out into

surrounding compartment. Various P-systems using splicing or cutting and recombi-

nation rules have been shown to be universal, but it is not clear how to implement

membrane control mechanisms biologically.

1.3 Systems Based on Self-assembly

The biological basis for computation via self-assembly of two-dimensional DNA struc-

tures was laid by the work of Seeman and colleagues, who constructed and analyzed

double crossover molecules [37], and, later, triple crossover molecules [32]. Double

crossover molecules are DNA structures containing two Holliday junctions connected

by two double helical arms. Types of double crossover molecules are differentiated by

the parallel or antiparallel orientations of their helix axes relative to each other, and

by the number of double helical half-turns between the two crossovers, which could

be even or odd.

A wide variety of language classes can be generated by self-assembly, depending

on what kind of structures are used and in how many dimensions the assembly pro-

ceeds. Self-assembly of oligonucleotides into linear duplex is limited to generating

regular languages, while branched DNA assembled into dendrimer structures is lim-

ited to generating context-free languages [73]. However, if hairpins are allowed, linear

assembly can generate context-free languages [15]. Recently, it has been shown that if

more complex linear tiles (termed string tiles) are assembled linearly, surprisingly so-

phisticated calculations can be performed. In fact, linear self-assembly of string tiles

can generate the output languages of finite-visit Turing machines [69]. A number of

algorithms for solving particular problems via self-assembly have also been proposed

[34, 63].

Self-assembly of two-dimensional DNA structures was shown to be universal by

Winfree [70] in 1995. Winfree also achieved experimental confirmation of the basic

assembly operation of heterogeneous tiles [73, 72]. Winfree proposed to use ligation
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after self-assembly to produce a single reporter strand of DNA. This reporter strand

would be used for reading the output of the self-assembly computation. It has also

been proposed to use a single-stranded scaffold strand of DNA as an input molecule.

The viability of assembling multiple tiles around such a scaffold was demonstrated

[33]. Even if both an input scaffold and an output reporter strand are used, it is

still not clear that a self-assembly system can be composable. This is because as

the reporter strand weaves its way through the tiles assembled for computation, it

changes directions, and thus, records the presence of some tiles in forward orientation,

and some in reverse. Thus, it is not clear whether a reporter strand can then be used

as a scaffold strand for a new computation.

A challenge in the experimental implementation of this approach might be that

larger computations, which include more different varieties of tiles, will require longer

time intervals for each step of the assembly because self-assembly relies on the cor-

rect tile assembly followed by the correct computational structure assembly. Further,

minimizing the error rate also requires longer time intervals per assembly step. Re-

cently, the first experimental demonstration of computation by self-assembly [42] has

been produced. This is a significant advancement in DNA computing because it

demonstrates the first DNA-only universal computational system which requires only

ligase to create an output molecule. It is possible that a composable implementation

of a self-assembly systems may still be proposed. However, no currently proposed

self-assembly system, including the one experimentally implemented to date, is com-

posable. In addition, for larger systems with greater number of tiles there also exist so

far unresolved concerns regarding the possibility that locally assembled substructures

may interfere with the formation of global structures [50], [68].

1.4 String-Rewrite Systems

Programmed mutagenesis is an example of a string-rewrite system for DNA com-

puting. DNA naturally lends itself to a string rewrite model because the sequence

of bases in DNA can directly be used to encode a string. DNA strand replication

20



provides the ability to copy as well as the opportunity to introduce sequence specific

changes into a newly synthesized molecule.

Since there is no known way to reliably internally mutate an existing DNA se-

quence using DNA polymerase, all DNA-based string-rewrite systems must include

rewrite rules to be incorporated into the newly synthesized DNA strand. Thus, the

main challenge in implementing any DNA-based string-rewrite system is to ensure

the specificity of rewrite rules. This specificity is dependent on a particular imple-

mentation, as well as on the general restrictions posed by thermodynamics of the

DNA-DNA and DNA-enzyme interactions.

String-rewrite systems can be subdivided into those where the rewrites occur by

extension at the 3' end of the molecule and those where the rewrites are internal. Hair-

pin systems are an example of the former class of systems. Programmed mutagenesis

is an example of the latter class.

Autonomous string systems based on hairpin formation were introduced by Hagiya

et al. [20]. In these systems each molecule works not only as a data carrier but also

as a computing unit. The system has been termed "whiplash", because extensions

of a molecule are achieved by a series of hairpin formations followed by 3' extension,

followed by breaking of the old and formation of the new hairpin. Some interesting

experimental systems based on this principle have been constructed [30], [52]. It

was shown that, combined with parallel overlap assembly, whiplash PCR can solve

NP-complete problems [53], but theoretical universality of the system has not been

demonstrated. These systems are also not composable, since the starting molecule

represents the collection of the transitions allowed in the system (rewrite rules) sep-

arated by "stopper" sequences, that is sequences which can not be copied because

the reaction mix lacks a nucleotide necessary to copy the segment, followed by the

starting state, while the result molecule contains, in addition to all the information

present on the start molecule, the entire history of computation, as well as the final

state. The format of the starting and final molecules is not the same, since the final

molecule only has stopper sequences in the original rule part of the molecule. In

addition, since all the rules needed for computation are present in the molecule, it
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is difficult to see how a final molecule could be used to initiate a new computation,

since presumably all the rules present on the molecule have been exercised and have

led to a halt state.

Programmed mutagenesis is an example of an internal string-rewrite system for

DNA computing. All such systems are composable, because the format of a molecule

does not change during computation. However, not all such systems are autonomous.

Systems requiring separation are obviously not autonomous. Both Beaver [5] and Kari

et al. [27] have also proposed to use systems based on internal string-rewriting. While

both of these models were proven to be theoretically universal, both have drawbacks:

1. Beaver's model proposes to use the substitution operation, that is rules of the

form xyz -+ xuz. This model, however, requires separations after each substi-

tution step to guard against the possibility of a rule performing a mixture of

substitution and deletion, such as rewriting the sequence xyyz on the template

into the sequence xuz, or insertion, such as rewriting the sequence xz on the

template into the sequence xuz. Since separation operations are required, this

model is also vulnerable to experimental error.

2. Kari et al. [27] proposed to use insertion/deletion ("insdel") systems to imple-

ment universal computation. While the insdel systems represent a theoretically

interesting computational model, new techniques will be required to implement

them in practice. With current techniques there are two problems with the

proposed rules for the insdel systems. First, there is no way to control the

length of the deleted sequences in the insdel systems. The deletion rules in the

insdel systems are of the form xzy -+ xy, which with the currently available

techniques have to be implemented by an oligonucleotide encoding sequence xy.

This oligonucleotide would bind any occurrence of the contexts x and y, and

would, therefore, delete any sequence embedded between these contexts. Thus,

if the template read xzyy, the rule xy would, with about equal probability, delete

sequences z and zy.

Second, there is no way to prevent insertion rules in the insdel systems from
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performing substitutions. For example, an insertion rule of the form xz -*

xyz, represented by an oligonucleotide encoding the sequence xyz, and given a

template xzzzz would be approximately equally likely to perform an insertion

(rewriting the template into xyzzzz), or any of the three possible substitutions

(rewriting the template into xyzzz, xyzz, or xyz).

An interesting implementation of a read-once string rewrite system was recently

introduced by Benenson et al. [6]. The system relies on restriction enzyme-based

rewrite rules to execute transitions of a finite state machine. A finite state machine

can only process its input once and in order. Thus, when constructing a molecular

finite state machine, one does not need to be concerned with implementing internal

rewrites. It is not clear how to extend the methodology used in [6] to create molecules

with internal rewrite events needed to implement string rewrite systems capable of

reading and rewriting the same area of the input molecule multiple times.

1.5 Other Paradigms in DNA Computing

There are several other paradigms under research in the area of DNA computing.

These paradigms can not be easily compared to those discussed above. Therefore, we

only briefly mention these areas of research here.

Yurke and colleagues are interested in building molecular nanomachines. They

have recently constructed DNA tweezers [60] and DNA scissors [45]. Both of these

structures are self-assembled, and their operation ("opening" and "closing") is con-

trolled by additional strands of DNA.

Jonoska and colleagues are researching the possibility of solving computational

problems with DNA molecules by physically constructing 3-dimensional graph struc-

tures [24] or thickened graphs [25]. While these ideas are intriguing, no experimental

study of their feasibility has been undertaken as of yet.

Several groups have looked into the idea of computing with cells. Collins and

colleagues are developing a theory and an experimental protocol for constructing ar-

tificial gene networks that can regulate temporal expression of multiple genes. As
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a first step, several toggle switches were constructed [19]. Elowitz and Leibler have

constructed a synthetic network of transcriptional regulators operation of which re-

sults in periodic expression of a fluorescent protein [14]. Weiss and Knight used the

Lux operon of Vibrio fischeri to engineer intracellular communication mechanisms

between living cells [65]. Wakabayashi and Yamamura propose to use the pheromone

response system of Enterococcus faecalis to construct a pheromone-dependent DNA

transfer system [64].

The remainder of this thesis is organized as follows. In Chapter 2, we introduce the

computational paradigm of programmed mutagenesis and discuss its formal model, as

well as a unary counter- an example experimental system. In Chapter 3, we present

the proof of universality of programmed mutagenesis by demonstrating a direct en-

coding of the smallest known Universal Turing machine in DNA under the formal

model presented in Chapter 2. We also discuss how the methodology used to create

this particular encoding can be used to create encodings for other special purpose

and Universal Turing machines. In Chapter 4, we present experimental results of

operating the unary counter and discusses these results in terms of the feasibility of

using programmed mutagenesis techniques for various applications. Finally, in Chap-

ter 5, we discuss the results presented in the thesis, as well as examine some naturally

occurring phenomena and the computational themes apparent therein.
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Chapter 2

Programmed Mutagenesis and

Unary Counter

2.1 Overview of programmed mutagenesis

Programmed mutagenesis is a DNA computation method that implements the sequence-

specific rewriting of DNA molecules. Programmed mutagenesis is an in vitro mutagen-

esis technique based on oligonucleotide-directed mutagenesis [4]. Like oligonucleotide-

directed mutagenesis, programmed mutagenesis does not mutate existing DNA strands,

but instead uses DNA polymerase and DNA ligase to create copies of template

molecules with engineered mutations at sequence-specific locations. Every time a

programmed mutagenesis reaction is thermal-cycled, a rewriting event occurs. Be-

cause the technique relies on sequence-specific rewriting, multiple rules can be present

in a given reaction at the same time, with only certain rules being active in a given

rewriting cycle. Furthermore, the system's ability to accommodate inactive rules al-

lows it to proceed without human intervention between cycles. We have previously

demonstrated the experimental practicality of the key primitive operations required

for implementation of programmed mutagenesis systems [28].

There are two main classes of possible designs for the DNA-based string-rewrite

systems:
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" Decoupled systems, where the sequences of the initial and final strings in each

rewrite rule have no similarity or dependence relation between them. Insdel

systems discussed in Chapter 1 are an example of a decoupled system.

" Coupled systems, where the sequence of the final string of each successfully

executed rewrite rule is strictly dependent on the sequence of the initial string

being rewritten. Programmed Mutagenesis is an example of a coupled system.

Coupled and decoupled systems have different sources of sequence specificity.

Sources of specificity for both systems include the thermodynamics of DNA hybridiza-

tion, and secondary structure considerations. In the coupled systems, additional

specificity comes from the relation between the sequences of strings being rewritten,

and, equally important, from the relation between the sequences of the strings which

should not interact. In particular, in programmed mutagenesis systems rewrite rule

specificity is in part determined by the number and geometry of mismatches. The

geometry of mismatches strongly influences the specificity of the rewrite rules. Other

factors involved include temperature of the reaction, concentrations of templates and

primers, and enzyme specificity. All these parameters contribute to the dimensions

of transition space around a given sequence.

Certain DNA computing systems are known to be restricted in the types of com-

putations they can perform. For example, the generate-and-search methods discussed

in Chapter 1 are useful for certain types of combinatorial problems, but these DNA

computing methods can not be used to implement general computation [71].

We address the open question of the computational power of a programmed mu-

tagenesis system in Chapter 3 by constructing an encoding of the smallest known

Universal Turing machine, Minsky's 7-state 4-symbol Universal Turing machine [44]

in the programmed mutagenesis model. A Turing machine is an abstract model of a

programmed computer. A Universal Turing Machine is a machine that is capable of

simulating any Turing machine, given the description of that machine and the input

to the machine [61]. A Turing machine is a string-rewrite system because operation

of the machine can be described by a set of quintuplets of the form (old state, sym-
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bol scanned, new state, symbol written, direction of motion), i.e. as quintuplets in

which the third, fourth, and fifth symbols are determined by the first and second.

We provide a constructive reduction of a particular Universal Turing machine to pro-

grammed mutagenesis, and show how to encode the tape of a Turing machine into a

DNA molecule.

2.2 Unary counter

An example programmed mutagenesis system that implements a unary counter is

shown in Figure 2-1. The template (I) contains an encoding of a series of symbols

XZZZZZ embedded in a noncoding region. The machine is called a unary counter

because we can think of the counter as being incremented every time the system is

thermo-cycled. We say that the number of symbols other than Z (i.e. X and Y) in

the coding region minus one is the current count in the counter. Thus, template I

carries the count of zero, since it contains one symbol other than Z. Every mutagenic

cycle rewrites another Z into either X or Y, incrementing the counter by one.

The entire region is cloned into a plasmid using Eco RI and Hind III restriction

enzymes. The outer primer MLP (machine left primer) is part of the noncoding region

and the outer primer MRP (machine right primer) is a part of the plasmid sequence.

Each symbol used in the system (X, Y, and Z) is encoded by a 12-nucleotide long

sequence of DNA. The actual encodings used for these symbols are shown in Figure 2-

2. The bases at which encodings are mismatched are indicated. X and Y both differ

from Z by two mismatches and from each other by 4 mismatches. The system was

designed such that any oligonucleotide binding with two or fewer mismatches would

be able to bind, extend, and be ligated to, and any oligonucleotide binding with more

than two mismatches would not be able to interact with the template. Mismatch

locations were designed to minimize the opportunity for inappropriate binding and to

negate the ability of an oligonucleotide bound with four mismatches to be ligated to.

This was possible because of the requirements on the alignment of the oligonucleotides

introduced by enzymes used in this experimental system.
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Figure 2-2: Encodings of the symbols used in implementing the unary counter machine in Figure 2-
1. All sequences are given in the 5'-to-3' orientation, and mismatch locations are indicated.

Each oligonucleotide able to anneal in the system is expected to be extended by the

polymerase to the end of the available template or until a product of another extension

is encountered. When one strand is extended to encounter another oligonucleotide

positioned on the template, a ligation event is expected to occur. Ligation is not 100%

efficient, and results of failed ligations are expected and are termed characteristic

bands of a particular cycle. Such characteristic bands, as well as full-length products

are illustrated in Figure 2-1.

Mutagenic oligonucleotide M1 participates in creating a first cycle product (II)

that contains a different sequence than the first cycle template (I). This change per-

mits mutagenic oligonucleotide M2 to bind to product II in cycle two, producing

another new product III that incorporates M2. Product III contains a sequence that

permits oligonucleotide M1 to bind in a yet another location in the third cycle yielding

product IV.

Thus a sequence of related novel products (II -+ III -+ IV) is created in a specific

order. Outer primers and ligation are used to create full-length products, and all

of the enzymes used in the system are thermostable which allows the system to

be thermal cycled for progress. The practical feasibility of the underlying specific
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annealing, polymerization, and ligation operations are examined in the context of a

multiple-cycle experiment in Chapter 4.

The challenge in creating an encoding for any programmed mutagenesis system

lies in the need to find a set of DNA sequences that has the right mismatch matrix

which satisfies the constraints imposed by the desired transition space configuration.

It is not a priori obvious that sufficiently complex relationships can be designed.

Moreover, to encode target machines, it is often advantageous to expand the encoding

to generate a larger mismatch matrix, but one whose requirements can be satisfied

by real DNA sequences. In Chapter 3 we discuss in detail how to create a mismatch

matrix with requirements that can be satisfied by a set of real DNA sequences.

2.3 A formal model of programmed mutagenesis

As described above, programmed mutagenesis relies on a transition space constraint

based on mismatches in rewrite rules to sequence the steps of a program. The number

of mismatches is not the only factor determining whether a given rule may bind to

and rewrite a given sequence of DNA, but it is the most influential. The transition

space constraint is reinforced by three biochemical factors. These three factors are the

destabilizing effect of mismatches on duplex stability, polymerase effects, and ligase

effects. Under the conditions in our experimental system, for example, polymerase

and ligase can not function if mismatches are too close to their action sites. Other

factors influencing oligonucleotide's ability to bind a given sequence of DNA, extend

a given sequence, or serve as a suitable template for a ligation reaction include mis-

match geometry, type of mismatch, enzymes and buffers used, and other biochemical

parameters. At the present time it is impractical to try to model in a formal com-

putational model all the parameters influencing the efficiency of binding, extension,

and ligation of DNA rewrite rules, in part because insufficient information exists to

construct a reliable model. More importantly, mathematical insight would be difficult

in an overly detailed model. Therefore, our formal model below uses the number of

mismatches to compute an approximation of the transition space of a sequence. We
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consider the number of mismatches to be the sole determining factor for the ability

of a primer (rewrite rule) to bind a given DNA sequence, extend, and to be ligated

into a longer strand. In creating an encoding we also take into account requirements

of the polymerase and ligase enzymes as to the location of mismatches with respect

to the active sites of these enzymes. Thus, we implicitly account for the transition

space requirements generated by the use of these particular enzymes. We discuss

the biochemical parameters contributing to the dimensions of the transition space in

Chapter 4.

An important observation about programmed mutagenesis is that the rules become

part of the template for the next cycle. Thus, the rules do not take the familiar form of

antecedent -+ consequent, but rather the rules in solution are consequents, searching

for their antecedents. In fact, this property is inherent in the underlying biological

technique of oligonucleotide-directed (or site-directed) mutagenesis.

The critical role of the transition space constraint in a programmed mutagenesis

system now becomes apparent. The consequent of a rule has to be within the transi-

tion space of the antecedent of that rule. Equally importantly, the consequent should

not be within the transition space of any sequence on the template that is not an

antecedent in a rule for which it is the consequent. It is, therefore, intuitive that in

modeling a Turing machine we need to explicitly place state onto the tape (and into

the rules). Under such an encoding the transition space constraint is reinforced by

both the state and symbol encodings. The decision of exactly how to place the state

on the tape is an essential part of this proof and is explained in detail in Chapter 3.

We will formally model programmed mutagenesis as a DNA-based string rewrite

system in which a single strand of DNA is rewritten in a sequence-specific manner

with the use of a set of DNA rewrite rules to produce a single strand of DNA as output.

Our formal model of programmed mutagenesis describes rewrite rules that are either

41 or 28 bases long. Also part of the model are the following four assumptions:

1. For a rule of length 41, the allowed mismatch distance is 4 mismatches.

2. For a rule of length 28, the allowed mismatch distance is 3 mismatches.
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3. Any DNA sequence for which the distance in mismatches to its target on the

template is above the specified number of mismatches will not bind and extend.

4. If only one rule can bind to a spot, that rule executes. If more than one rule can

bind to a spot, equal percentages of each rule execute (thus creating parallel

branches of computation). Thus, a copy operation occurs only if there are no

rules that can affect a rewrite.

It is possible to formulate alternative formal models of programmed mutagene-

sis that use rules of different lengths and different distance constraints. We have

experimentally found above length and distance constraints to be reasonable.
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Chapter 3

Programmed mutagenesis systems

are universal

We begin this chapter with a formal definition of a Turing machine and a description of

the particular universal Turing machine we model. We discuss challenges in encoding

a Turing machine in DNA in Section 3.2, give a proof outline in Section 3.3, give the

distance metric of the encoding in Section 3.4, demonstrate our encoding scheme in

Section 3.5, explain the rewrite rules themselves in Section 3.6, discuss correctness of

the encoding in Section 3.7, and, finally, discuss how the methodology used to create

this particular encoding can be used to create encodings for other special purpose

and universal Turing machines in Section 3.8.

3.1 Turing machines and an example of a universal

Turing machine

There are several equivalent definitions of string rewrite systems [44]. Perhaps the

most well-known string rewrite systems are Turing machines. A Turing machine is

a general model of computation first introduced by Alan Turing in 1936 [61]. The

Turing machine model uses an infinite tape as its unlimited memory and finite number

of states and symbols to encode and compute a problem. A Turing machine has a
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head which can move both left and right on the tape, reading and rewriting only the

symbol it is currently pointing to. The behavior of a Turing machine is governed by its

transition function, which, given the current state and symbol being read, determines

the new state the machine will enter, the new symbol to be written on the tape, and

the direction of motion of the tape head (left or right). The formal definition of a

Turing machine follows.

Definition 1

A Turing machine is the 6-tuple (Q, E, F, 6, qO, qhalt), where Q, E and F are all finite

sets and

1. Q is a set of states

2. E is the input alphabet

3. F is the tape alphabet, which includes the blank symbol

4. 6: (Q x F)-+ (Q x F x {L, R}) is the transition function

5. qo is a start state

6. qhalt is a halt state

A Turing machine begins computation with its head on the leftmost cell of the

input string, and proceeds by following the transition function. If it ever enters qhalt,

it halts. If the head ever reaches the last tape cell on either side, and the transition

function indicates moving off the tape, machine appends a single tape cell with a

blank symbol on it.

An instantaneous description of a Turing machine is its configuration- the current

state of the finite control, the current tape contents, and the current head location.

Figure 3-1 shows how the instantaneous description of a Turing machine progresses

during a single transition computational step. Corresponding DNA representations

are depicted in the bottom portion of Figure 3-1, and are discussed below.

A universal Turing machine is a single Turing machine U, with the property that

for each Turing machine T which computes a Turing-computable function f, there is
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a string of symbols dT such that if the output of T on input x is f(x), then the output

of U on input x dT is also f(x) [44].

The smallest known universal Turing machine was described by Marvin Minsky

[44], and it has 4 symbols and 7 states. In this machine, E and F are identical, with

0 playing the role of the blank symbol as well.

Definition 2

Minsky's Universal Turing Machine (MUTM) is the 6-tuple (Q, E, E, 6, q1 , q3), where

1. Q={qi, q2, q3, q4, q5, q6, q7}

2. E={y, 0, 1, A}, with 0 also acting as a blank symbol.

3. 6 is given by the transition table in Table 3.1(where the state remains the same

unless specified by a number after the /):

q1 q2 q3 _4 q5  q6 q7
y OL OL/1 yL yL yR yR OR
0 OL yR HALT yR/5 yL/3 AL/3 yR/6
I 1L/2 AR AL 1L/7 AR AR 1R
A 1L yR/6 1L/4 IL 1R iR OR/2

Table 3.1: Transition table of the MUTM. Note that HALT state is achieved only if
while the machine is in state q3 it encounters a 0.

An interesting feature of the MUTM is that the halt state is only achieved when

a particular symbol- 0 is encountered while the machine is in state q3- Otherwise, q3

behaves like any other machine state.

It is important to realize that this particular machine experiences exponential

slowdown in speed with respect to the Turing machine it simulates because MUTM

encodes the input to the machine being simulated in unary. Thus, MUTM is not

a practical machine in a sense that we are not likely to want to implement this

particular machine in a laboratory. However, it is a useful theoretical tool. Because

of the limited number of components (states and symbols) in MUTM it is easier to

conceptualize and encode than a larger machine. In Section 3.8 we will discuss how
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to extend the ideas developed for the encoding of this particular machine to a broad

class of other universal and special purpose machines.

3.2 Modeling a Turing machine with programmed

mutagenesis

There is a number of challenges in modeling a Turing machine within the programmed

mutagenesis framework. First, as noted in Chapter 2, the rewrite rules, or more pre-

cisely, the consequents of the rewrite rules executed during a particular cycle become

part of the template for the next cycle, the property which necessitates explicitly

placing the state onto the template and into the rules.

Another important observation about the consequents of the Turing machine rules

is that there are no "read" and "write" parts to them. This means that all we can

say about the encodings of the rules is that the consequent of a rule has to be within

the transition space (radius d) of the antecedent of that rule, and no other sequence.

In other words, we can not define which part of a rule passes the information and

which receives it. In contrast, in DNA it is a lot more intuitive to think of a rewrite

rule as containing the read and write parts.

For example, in the unary counter (Figure 2-1), each rule clearly has a read and

write parts. More precisely, each rule has a read only part and a read/write part.

In fact, the meaning of the rules used in the unary counter can be summarized as

follows:

* M1: if the sequence X is present on the template (read part), followed by the

sequence Z (read/write part),

then rewrite the sequence Z into the sequence Y.

" M2: if the sequence Y is present on the template (read part), followed by the

sequence Z (read/write part),

then rewrite the sequence Z into the sequence X.
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Turing machine rules do not have the convenience of separate read and read/write

parts. Therefore, we begin to see that it may be necessary to introduce intermediate

symbols to allow transitions to occur in a way more natural for DNA rewrite rules.

Thus, we design several DNA rules to execute one MUTM rule. We describe how this

is achieved in Section 3.3.

Turing machine rules are also a many-to-one function, which means that several

antecedents have the same consequent. This property means that said consequent

has to be no more than d away from all its antecedents, and no other sequence. The

problem arises because sometimes a symbol is rewritten to itself, and sometimes to

another symbol. Sometimes both of these cases are antecedents to the same conse-

quent. In the case where two antecedents lead to the same consequent, and one of

these rules involves a symbol that is rewritten to itself, while the other involves a

different symbol being rewritten to a symbol other than itself, the consequent may

be closer to one of its antecedents than to another. Such an event would create prob-

lems because if the symbol on the template is perfectly matched to a symbol in the

rewrite rule, the other part of the rule may bind to something that is farther away

than permitted, but, because of the mismatches "saved" on the symbol, be able to

interact with this wrong site. Thus, it is desirable to have one-to-one rules in our

DNA encoding. In order to achieve this property we design our encoding in such a

way that we have four DNA replication cycles for every MUTM computational step.

Only the first three biological cycles, however, include rewrite events, while the fourth

simply copies the template strand using the outside primer. Furthermore, the rules

act on alternative strands of DNA (3'-to-5' for cycles 1 and 3 and 5'-to-3' for cycle

2), and we use this property to drive the computation forward.

3.3 Proof outline

We have designed an encoding in our model of programmed mutagenesis to directly

simulate the MUTM. There are three key ideas in this construction.

1. In order to explicitly represent the location of the head and the current state on
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the tape, we extend the tape alphabet (which, by Definition 2, is E={y, 0, 1, A})

to include qi/s for every qicQ and every scE. We will further expand the alpha-

bet, but this is the essential decision.

We decided to extend the alphabet rather than insert a separate tape cell for the

state symbol because the latter format would result in having rules of different

lengths for the MUTM rules moving the head to the left and to the right.

This is because the right moving rule would only need to take into account

the tape symbol immediately to its right, while the left moving symbol must

also accommodate the symbol to the left. We have determined that in such

an encoding scheme some of the longer rules would inadvertently bind when a

shorter rule is intended to bind. This would happen if both of the tape symbols

matched those surrounding the current state symbol on the tape. We believe

that this may be an insurmountable obstacle to an encoding which seeks not to

extend the tape alphabet.

2. We introduce scratch space (#) between each two tape symbols. This allows

us to have read and read/write parts of each rule. We use the scratch space to

transmit information by first writing to it the information on the new state and

the direction of movement (using the qi/s cell as the read part of the rule). We

then use the freshly written information as the anchor for the next step of the

rule.

3. We execute each rule of the MUTM by four rewrite rules.

" read the current state and symbol and save the information about the new

state and the direction of the rule in the scratch space; begin the transition

to the new tape symbol;

* finish the transition to the new tape symbol;

" read the new state info (in the scratch space), begin transition to the the

new state/symbol pair;
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* finish transition to the the new state/symbol pair, and return the scratch

space to its original state (#).

The rules are executed over four biological cycles. Only the first three biological

cycles, however, include rewrite events, while the fourth simply copies the tem-

plate strand using the outside primer. Furthermore, the rules act on alternative

strands of DNA (3'-to-5' for cycles 1 and 3 and 5'-to-3' for cycle 2), and we use

this property to drive the computation forward.

Spreading one computational step over four DNA rewrite cycles allows us to

have one-to-one rules, because each antecedent takes a different path to the

consequent. This is achieved by extending the alphabet by a different interme-

diate symbol for each starting state/symbol pair and the symbol the pair is to

be rewritten into as described below. To be precise, we have one-to-one rules

for three out of four steps. Step 2 can be and is executed as many-to-one.

The instantaneous description of the DNA encoding of the MUTM at the begin-

ning of each computational step is the single instance of a state/symbol character on

the tape, indicating the precise head position and the state of the finite control, and

all the other symbols on the tape. We represent states and symbols by nucleotide

sequences and enact state transitions by primer extension reactions. The bottom por-

tion of Figure 3-1 depicts the instantaneous descriptions of the DNA representation

of a Turing machine before and after a single transition depicted in the top portion of

the figure. The four rewrite rules which execute the computational step are indicated

on the transition arrow. All possible transitions within the computational step are

discussed in Section 3.7 and are illustrated in Figure 3-4.

3.4 Distance metric and alphabet extensions

As discussed above, in addition to the 4 tape symbols (y, 0, A, 1) we introduce symbols

qi/s that are 6 mismatches away from s for all qj. Also, if qi/s is to be rewritten

according to the rule (qi, s) -+ (qj, s', L/R), i.e. if the rule rewrites s to s', then qj/s
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Finite control Finite control

E i (qj, s)-> (qj, s', L) A_ qj ;

. t I s"i s I t It T * . t s"s' t t

... ..... [qL][s'i], #,/s#, #

#_/s"][qjL],[s'], [q#/s"][#]

Figure 3-1: Schematic representation of a state transition of the MUTM and the corresponding
DNA representations. Indicated on the arrows are the transition rule of the Turing machine and the
corresponding DNA rewrite rules necessary to execute the computation step.

is also 6 mismatches away from s'.

We now introduce additional symbols needed to complete the proof. We sum-

marize discussion below by presenting the key distances between tape symbols in

Figure 3.2.

* For every transition rule (qj, s)-+(qj, s', L/R), where s may or may not be

the same as s', we introduce a new symbol s'_ 28 bases long, which is 3

mismatches away from qj/s and 3 mismatches away from s'. Because of the

particular method of encoding used here, s'_ is guaranteed to be at least 5

mismatches away from any other qk/s".

" For every rewrite rule (qj, s) -+ (qj, s', D), where De{L, R}, we introduce a new

symbol: qjD, 13 bases long, which is 1 mismatch away from #. Because of the

transition table of this particular machine, it turns out there are only 9 symbols

in this class, corresponding to the following (new state, direction) pairs: (qi,

L), (q2, L), (q2, R), (q3, L), (q4, L), (q5, R), (q6, R), (q7, L), (q7, R). Under the

particular encoding used, any qjD 1 is at least 2 mismatches away from any qjD 2

if i =Lj or D1 $ D 2 .

" For every rewrite rule of the MUTM (qj, s) -- + (qj, s', D), where the next tape

symbol in the direction of D is s", we introduce a new symbol - qj/s", 28 bases

long, which is 4 mismatches away from s" and 3 mismatches away from qj/s".
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(a) s s' s" qi/s qk/t s'_ s'_ s'- 8  tkv _ ~ qj/s" q/s" ~ qk/s"
s 0

> 12 0
s" >12 >12 0
qi/s 6 6 >6 0
qkIt >6 >6 >6 >6 0
s' 9 3 >12 3 >5 0
s' >12 3 >12 >7 >5 >5 0
s_ 9 3 >12 >5 >7 >4 >5 0
tkv >12 >12 >12 >5 >9 >5 >5 >5 0
~qj/s" >9 >9 4 >5 >5 >5 >5 >5 >5 0
qj/s" >6 >6 6 >6 >6 >5 >5 >5 >5 3 0
~qks" >9 >9 4 >5 >5 >5 >5 >5 >5 >5 >5 0

(b) qiDi qjD 2
for i :A j or Di D2

# 0 1 1
qiDi 1 0 2
qjD 2 1 2 0

Table 3.2: Key distances between tape symbols. Table (a) shows distances for elements of size 28.
The distances given are for a rule (qi, s) -+ (qj, s', D), where the next symbol in the direction of D
is s". s, s', s" may or may not be the same. Table (b) summarizes the distances for elements of size
13.

We also guarantee that it is at least 5 mismatches away from any s"_

3.5 Encoding scheme

We now demonstrate the encoding scheme that allows us to hold to the distance

metric above.

We represent scratch space symbols with 9 coding bases surrounded on either

side by 2 spacer bases (CC and GC). We employ a spacer so that no mismatch in

the coding positions is adjacent to the site of action of either polymerase or ligase.

We have found empirically that such a mismatch would prevent the enzymes from

working. A # symbol is a sequence of 9 Gs surrounded by the buffer bases. As

illustrated in Figure 3.2(b), each of the qiD's is different from # in one of these 9

positions, and, therefore, different from each other in 2 positions.

The 28-base long symbols are represented by 24 coding bases surrounded, once
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again, by 2 spacer bases on each side. The relationships between the 28-base long

symbols are represented in Table 3.2(a) and Figure 3-2. Directions of the arrows in

Figure 3-2 represent the direction of rewrite, and all the arrows represent distance of

6 mismatches. As can be seen in Figure 3-2, encoding of symbol 1 is only related to

encoding of A, and has no connection with encodings for either y or 0. We capitalize

on this observation in creating the following encoding scheme.

We designate the odd positions of the coding section as characteristic bases of y,

0, and A. We designate the even positions as characteristic of A and 1. As can be

seen in Figure 3-3, all odd coding bases for y are As, for 0- Cs, and for A- Ts. Even

bases are random, and are the same for y, 0, and A, and different for 1. Thus, y, 0,

and A are 12 mismatches away from each other, as are A and 1, but y and 0 are 24

mismatches away from 1.

If a qi/s is rewritten into an s', we encode it by changing 6 of the characteristic

bases of s into those of s'. For qj/s's that are rewritten to s, we change 6 of the bases

that are not characteristic bases of s. Under our encoding, all of these symbols are

at least 6 mismatches apart.

If qi/s is rewritten into an s', we encode s'-, by changing 3 of the 6 characteristic

bases of s within qi/s into those of s'. For qj/s which is rewritten into an s, we

change 3 of the 6 bases that are not characteristic bases of s within qi/s back into

the characteristic bases of s. Under our encoding there are only 5 pairs of symbols of

this type that are 4 mismatches apart. The rest of the pairs are at least 5 mismatches

apart. We show in Section 3.7 why even the presence of symbols that are 4 mismatches

apart can not lead the system to execute an illegal rewrite.

To encode ~ qi/s, we start with s and change 3 of the 6 bases that are different

between s and qi/s to those of qi/s and a fourth to a base that is different from the

bases used in both s and qi/s. Under our encoding, all of these symbols are at least

5 mismatches apart.

We used the above algorithm to generate 85 symbol encodings for the 28-base

long symbols, and 10 symbol encodings for 13-base long symbols. Note that we do

not need to encode the halt state q3/0 or - q3/0 because of our readout mechanism
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Transitions between the symbols used to encode the MUTM. All arrows represent the
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Figure 3-3: Encodings of and mismatches in the tape symbols of the MUTM.
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described in Section 3.6 below. We wrote a simple program to calculate mismatch

distances between 85 encodings of length 28. The distance matrix generated by this

program, along with the complete list of encodings can be found in Appendix A. We

have also verified that any rewrite rule binding off-frame would be more than the

allowed number of mismatches away from its target on the template.

3.6 Rewrite rules

We now describe the actual DNA rewrite rules needed to implement the MUTM.

First, we have outside primers in the machine that are used to create the full length

product by ligating the result of the outside primer extension to the inner mutagenic

primer. Second, the rules below are shown in the same orientation regardless of

which strand they act on, but we include the 5' and 3' markers. In total, it takes 101

DNA oligonucleotides to implement the 27 rewrite rules that constitute the transition

function of the MUTM.

For every rewrite rule of the TM (qj, s) -+ (qj, s', L), where the next tape symbol

to the left is s", we need the following DNA rewrite rules:

1. 5'[qj L][s'-_,]3'

2. 3'[s']5'

3. 3'[~ qjls"] [qjL] 5'

4. 5'[qj/s"][#]3'

For every rewrite rule of the TM (qj, s) -+ (qj, s', R), where the next tape symbol

to the right is s", we need the following DNA rewrite rules:

1. 5'[s'_][qR]3'

2. 3'[s'] 5'

3. 3' [q R] [~ qjl/s"|5'
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4. 5[#][qj/s"]3'

Note that rules 2 and 3 execute simultaneously. Also, there are only 4 rules of

type 2 (one for each alphabet symbol). And finally, the four rules act over three DNA

replication cycles. The fourth biological cycle consists of simply copying the template

molecule using an outside primer. This transforms the template into the mode where

a rule of type 1 can act on it. The three rewriting cycles plus a copying cycle is

the structure which guarantees that the DNA machine can never go back through

the computational steps of the MUTM. In Section 3.7 we go through all possible

biological transitions within a computational step and demonstrate that while within

the cycles that comprise a computational step some random walk through the states

of the template is possible, the DNA machine can never go back through computation.

Because we do not know before the computation starts how much tape space it

will require, we need rules that will allow us to extend the tape if necessary. We

can achieve this with the use of loopout structures. If we say that our template is

embedded between unique sequences [left - wing] and [right - wing], then for each

[qiR] we need the rule 3'[qiR] [0] [#][right - wing]5'. For each [qjL], we need the rule

3'[lef t - wing] [#] [0] [qjL]5'. These rules insert a blank symbol and a scratch space

into the template in the direction of motion of the rule. The rules extend the template

by one "square", but only when the use of that extra space is required, i.e. when a

(right-) left-moving rule is in the process of being executed but encounters the end of

the template instead of the blank symbol on the (right) left.

We return now to the peculiarity of the halt state of MUTM. As noted in Sec-

tion 3.1, MUTM enters the halt state only when it is in state q3 and is reading the

symbol 0. Thus, in our DNA implementation, a simple way to detect when the com-

putation is complete is to sense the appearance of Oq 3L on the tape with a molecular

beacon. Molecular beacons are hairpin structures with a flourophore and a quencher

on the 5' and 3' ends respectively in which a perfect match for the loop portion of

the molecule forces the hairpin to open, thus separating the flourophore from the

quencher and creating a fluorescent signal [62]. Notice that we do not need to wait

for q3/0 to appear (and in fact we do not even encode this symbol in DNA), because
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Oq 3L can only lead to the halt state. Thus, our readout mechanism employs molecu-

lar beacons to recognize template molecules where the new state is q3 and the next

symbol to be read is 0.

3.7 Correctness

In this section we discuss the transitions in one computation cycle of the MUTM step

by step, and consider which rewrite rules can bind at which stages according to our

formal model. Figure 3-4 illustrates the discussion below by presenting all possible

transitions in a computation cycle. Bold arrows indicate the transitions that carry

the computation forward. We consider here a transition that would be effected by a

TM rule (qj, s) -+ (qj, s', D). Without loss of generality, Figure 3-4 assumes D = L.

" At the first rewrite, all possible qgD's are the same distance away from #, so

only the rules which have the component which is 3 mismatches away from qi/s

will bind. But there is exactly one such rule: the one that rewrites qj/s into

si_, (and # into qjD). The other set of rules of the correct sense (5'-to-3') is

the [qk/s"'] [#1 set. But none of these rules can bind now, since the best they

can do is to match # and rewrite an s" into qk/s". However, even in this case,

the distance is at least 6 mismatches. Of course, the rule that effected the last

transition, that is the rule [qi/s][#] (or [#][qi/s]) can bind here. This would

lead to no rewrite, and the next transition can only be effected by an outside

primer, returning the template to it original state.

* At the second rewrite, the rules that contain the complement of qjD are the clos-

est to the target sequence on the template, and of those only the one containing

the complement of ~ qj/s" is the allowed distance away. Any rule containing

the complement of any qkD for j 5 k would be at least 6 mismatches away from

the target (2 from the scratch space mismatches and 4 from the symbol mis-

matches). And finally, none of these rules can bind to the s'_, spot because the

distance between any - qk/s" and s'__ is at least 5 mismatches. At the same
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time, only the complement of s' can bind to s'_,. The rules containing other

i_'s can not bind because they are of the wrong sense (and thus, it doesn't

matter that 5 pairs of these symbols are 4 mismatches apart). Of course, the

complement of s" can bind to s", thus preventing the rewriting rule from bind-

ing. But all that would achieve is enable the first cycle rule to bind again on

the 3rd cycle, reproducing the second cycle template again.

* On the third biological cycle, we actually have several rules that can bind.

Both the last cycle and the first cycle rules can bind to the same spot- the

complement of qjD. Additionally, other first step rules can bind - those that

have the complements of qgD and of some s't for some k and t = {s, s', s'}.

Notice that no rule containing q1D can bind at this stage, since it would be at

least 5 mismatches away from the template target sequence (2 in the scratch

space and at least 3 in the symbol space). In this situation, if the last cycle

rule executes, the process concludes. If, however, a first cycle rule executes,

we have on the template (if D = L, wlg) sequence [qj][-~ qj/s"][qjL][s'k-]. But

this sequence can only be rewritten by the 2nd cycle rules, thus returning the

template to the previous state.

As demonstrated above, under our model of programmed mutagenesis and encod-

ing scheme no incorrect rewrite is made, and we ensure forward progress. Thus, we

show that above encoding scheme does indeed implement the MUTM, and, conse-

quently, that programmed mutagenesis is a universal model of computation.

3.8 Generalizing the encoding

As we noted above, MUTM is not a practical machine, since it experiences exponential

slowdown. We now consider a question of whether the encoding or the encoding

methodology used for MUTM has broader applications for encoding other universal

or general purpose machines.

The main idea of expanding the alphabet and placing the state symbols onto
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the tape and into the rules certainly applies to encoding all Turing machines in the

programmed mutagenesis framework. We now analyze the other ideas used in this

proof to determine how widely applicable they are.

It is important to note that we can increase or decrease the size of DNA rewrite

rules for other encodings, but such changes need to be realistic, in that the change in

length of the rules should be accompanied by a proportional change in the number of

mismatches (our stand-in for the transition space constraint). This proportionality

relationship is not linear, since as DNA fragments get longer they are able to tolerate

more mismatches with the target sequence and still bind and extend. We do not know

exactly what this relationship is, and suggest that an experimental study should be

undertaken to map out the relationship.

Using the scratch space symbol (#) between the tape symbols allows for a natural

read/write construction of the DNA rewrite rules. Passing information through the

scratch space also contributes to our ability to create a separate path from each

state/symbol pair to the corresponding symbol into which it is being rewritten. In

the MUTM encoding we used scratch space of length 13, which corresponded to the

nine new state/direction pairs and four buffer bases. Each state/direction pair differs

from the encoding of the # symbol in one of the bases - its characteristic base. Thus,

all state/direction pairs differ from each other in two positions - their respective

characteristic bases.

This encoding was natural for MUTM, but may not be as easily implementable

for other machines. Because the difference in the mismatch distance between an

acceptable match and an unacceptable one is only one mismatch, the scratch space

encoding should not be too long. Thus, this method of encoding the scratch space

symbols would not be well suited for machines with a large number of state/direction

pairs. There are, however, heuristics that could be used to keep the length of the

scratch space encoding down. One such heuristic takes advantage of the fact that the

scratch space symbol is never used by itself as a DNA rewrite rule. It is always used

as a part of a rewrite rule which includes a tape symbol.

Some of these tape symbols never appear in rules next to a particular state/direction
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pair. The distances between the tape symbols themselves vary greatly, as can be seen

from the Table 3.2. Some of these distances are far greater than the threshold value for

the allowed distance. Thus, two (or, in principle, even three or four) state/direction

pairs can share the same characteristic base if it can be assured that no DNA rewrite

rule incorporating these state/direction pairs would be able to cause an unintended

rewrite to occur.

Software tools can be developed to help in identifying such state/symbol pairs and

in creating appropriate encodings. While the encoding scheme would not be as intu-

itive and transparent as the one used in the MUTM encoding, many larger machines

can be accommodated if this heuristic is used. It is worth noting that in machines

with larger number of states (and symbols) such non-overlapping state/direction pairs

should be easier to identify, even by inspection.

We now consider our encoding method for the tape symbols. Once again, we

employ four buffer bases, so the effective encoding space is 24 nucleotides. The size of

this fragment can be increased or decreased, but, once again, such changes should vary

proportionally with the appropriate changes in the number of allowed mismatches.

In the particular encoding of the MUTM, we capitalized on the peculiarity of this

particular machine by "splitting" the coding bases into even and odd and designating

the odd bases as the characteristic bases of symbols y, 0, and A, and even bases as

characteristic of A and 1 (Figure 3-3).

The original template has the starting state/symbol pair on it. From that point

on, a state/symbol pair appears on the template because the next symbol in the

direction of the rule is rewritten to it. Thus, we can say that each state/symbol pair

is created, or comes from, the symbol in that pair. Furthermore, when the next rule

is executed, the state/symbol pair is eventually rewritten into a new symbol, which

may or may not be the same as the symbol in the state/symbol pair.

Our encoding places the state/symbol pair half way between the old and new

symbols, at six mismatches away from each. If the old and new symbols are the same,

the state/symbol pair is placed six mismatches away from the symbol by changing the

bases which are not characteristic bases of the symbol. Similarly, the intermediate new
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symbol encodings (s'-,,) are half way between the state/symbol pair being rewritten

and the new symbol.

Clearly, the above scheme is tied closely to both the number of allowed mismatches

and the particularities of the relationships between the symbols in the MUTM. How-

ever, it is worth noting that similar relationships should be easily identifiable in other

machines. Furthermore, in machines with a larger number of symbols the number of

transitions between any two symbols, in general, should be smaller.

In a less "crowded" field, it may be possible to have smaller distances in mis-

matches between two symbols while still maintaining the same mismatch distance

with the intermediate symbol. For example, capitalizing on the fact that DNA alpha-

bet consists of four bases, it could be possible to have a distance of five mismatches

between a state/symbol pair encoding and the encoding of the symbol it is being

rewritten to, but still maintain the three mismatch distance from each of these en-

codings to the intermediate new symbol encoding. Again capitalizing on the fact that

the DNA alphabet consists of four bases, it is possible to have up to four different

symbols share the same set of characteristic bases.

Because of the variety of properties exploited to create this particular encoding

of MUTM, it is not immediately obvious how to describe in mathematical terms the

large class of other universal and special purpose machines which can be encoded

using this technique, or the variations of this technique described above. It appears

likely that machines in which the numbers of states and symbols is on the same order

of magnitude would be better susceptible to this method of encoding because of the

need to balance the number of mismatches and lengths of each part of a DNA rewrite

rule.

As stated above, MUTM experiences exponential slowdown with respect to the

machine it is simulating. An open question remains of whether there is a universal

Turing machine which does not experience such slowdown, and can still be encoded

in DNA within the programmed mutagenesis framework. An ideal machine would

have a manageable number of states and symbols, say less than 15 of each. Such a

machine would still be small enough that relationships between states and symbols
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can be easily discovered, understood, and exploited in constructing an encoding.
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Chapter 4

Experimental Results and Analysis

We have conducted a series of experiments to establish efficiency of the basic op-

erations of programmed mutagenesis in the context of the unary counter machine

depicted in Figure 2-1.

Our preliminary calculations show that programmed mutagenesis systems can

operate at speeds of ~4 x 1013 polymerization operations per second per unit of

polymerase, where an "operation" is polymerization of an entire DNA strand1 . These

systems are also expected to exhibit storage density of ~5 x 10-6/ 3/bit, where a bit is

a computational symbol, not a base of a DNA duplex; and reduced power requirements

of ~1016 strand rewrite operations/J [13].

In this chapter we discus the two-enzyme system we employ which permits pro-

grammed mutagenesis to proceed in a single reaction. We then describe the sources

of rewrite rule specificity and discuss how the sequences used in the unary counter

machine were chosen. Finally, we present experimental data on the efficiency of the

unary counter operation.

'Polymerization rate for Vent DNA polymerase (polymerase used in our experimental system) at
451C (the temperature at which our experimental system was operated) was determined to be - 10
nM dNTPs/min at the enzyme concentration of 2.7 U/ml [31]. Taking the strand length to be 1000
bases, we obtain the number above
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4.1 Enzyme and Buffer Choice

In its native configuration DNA is a double helix, where the two strands are joined

together by the hydrogen bonds between the bases (A, C, G, and T). Bases form stable

pairs A-T and G-C. All other base pairings are considered mismatches. Mismatches

greatly differ in stability, with G-T being almost as stable as a standard base pair,

but all are less stable than the perfect match. DNA strands have polarity. The

phosphate-sugar backbone to which the bases are attached is directed from the 5' to

the 3' position of the sugar ring. New bases are added to the 3' end of the strand and

two strands in the double helix are antiparallel.

The strict A-T, G-C pairings provide the basis for duplicating a DNA strand,

since by looking at one strand we can reproduce the sequence of its compliment.

DNA replication requires a starting point called a "primer" that is a short DNA

molecule which binds to the old strand and creates a stable 3' end from which the

synthesis of the new strand can proceed.

While living cells employ complex enzymatic machinery to "open" DNA helix in

order to begin replication, we use thermal denaturation to achieve the same goal.

Unfortunately, most enzymes are thermally deactivated at the temperature required

for DNA denaturation. Therefore, in order to avoid having to add enzymes during

each step of the computation we employ thermostable enzymes.

We have developed an enzyme system that permits a mutagenic oligonucleotide

to be embedded in a newly synthesized DNA strand [28]. As shown in the first cycle

of Figure 2-1, in this system a mutagenic oligonucleotide serves as a primer for DNA

polymerase on its 3' end, and accepts a DNA ligation event on its 5' end. In our

system these events occur in the same reaction at the same temperature.

The two enzymes that we use in our system are Taq Ligase and Vent Polymerase.

Taq Ligase [7] has the virtue of being the only commercially available thermostable

ligase. Vent exo+ Polymerase [7] does not have 5' -+ 3' exonuclease activity, and does

not unacceptably strand displace at 45'C. In order to prevent 3' -+ 5' proofreading of

mutagenic oligonucleotides we manufacture these with sulfur instead of phosphorus
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linkages on the last four bases. These phosphothioate linkages render the oligonu-

cleotide extendible, but not degradable. Vent exo- Polymerase is similar to Vent,

but lacks the 3' -+ 5' proofreading function and strand displaces more then Vent

exo+.

In order for a two-enzyme system to function, both enzymes must function ef-

ficiently in a single buffer. Taq DNA Ligase requires NAD as a cofactor. We con-

structed a custom buffer by adding 10 mM of NAD to 1oX Thermopol Vent buffer

(hence forth called Vent-NAD buffer). This is the same concentration of NAD as is

present in the Taq Ligase buffer. We then tested the efficiency of Vent exo+ and exo-

DNA polymerases and Taq DNA Ligase in Thermopol buffer, Vent-NAD buffer and

Taq Ligase buffer. Taq Ligase buffer and Vent-NAD buffer allow 100% ligation of the

control Bst I cut lambda DNA, while Thermopol buffer alone allows only incomplete

ligation. However, Taq Ligase buffer does not support efficient polymerization, and

thus we chose 1OX Vent-NAD buffer for all further experiments.

We hypothesized that reducing the rate of strand extension would help increase

the probability of successful ligation events in our system. A molecule of Vent DNA

Polymerase extends DNA in increments of 6-7 bases at a time [31]. It then "falls off"

the template, and searches for another open 3' end to extend. Molecules of Taq DNA

Ligase are also constantly searching for a suitable target. We theoretized that once

polymerase encounters a properly aligned downstream oligonucleotide, there would

be competition between the two enzymes for the ligation site. We thought that it is

possible that even though the polymerase cannot extend the 3' end any further, it

still recognizes the 3' end as a possible site of action. Thus, having an unligated 3'

end next to another strand may enhance the ability of Vent polymerases to displace

the other strand.

We experimentally found that excessive amounts of polymerase reduced the amount

of ligation product in our system. We tested four different concentrations of the poly-

merase (1U, 0.25U, 0.125U, and 0.05U per reaction) and concluded that the highest

efficiency is achieved with 0.25U of polymerase and 40U of ligase per 10 Al reaction

(data not shown).
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4.2 Sources of rewrite rule specificity

As discussed above, specificity of the rewrite rules is determined largely by the tran-

sition space constraints in the system. In addition to mismatch distance constraints,

other sources of specificity are mismatch geometry, processivity of the enzymes, and

thermodynamic parameters such as relative amounts and concentrations of template

and primers in the reaction, salt concentration, time reaction is allowed to proceed,

and reaction temperature. When we began our research, there existed reliable infor-

mation about the thermodynamics of a perfectly matched DNA duplexes [10], [54],

but information about the thermodynamics of mismatched DNA duplexes was less

reliable [1], [66]. Through our early experiments we have acquired empirical data and

developed intuition regarding mismatched duplexes.

With the appearance of BIND [21], we were able to relate our empirical observa-

tions and experiment results to a theoretical prediction. For instance, BIND deter-

mined that in our early experiments there was a very narrow Tm difference between

oligonucleotides binding in a correct spot and those binding inappropriately. This

explained the inappropriate products we were observing in that system.

The DNA sequences for the system we are testing have been selected using the

SCAN program [22] to search a large sequence space constrained by chosen mismatch

geometry.

SCAN chooses sequences that have optimum annealing properties, lack harmful

secondary structure, and do not form primer dimers. We chose fairly strict thermo-

dynamic constraints in order to prevent inappropriate binding of the rule oligonu-

cleotides, as well as any undesirable interaction between primers. Nevertheless, the

search space remained too large, and needed to be further constrained. As mentioned

above, we chose to constrain that space by defining the geometry of mismatches for

the rewrite rules.

The greatest constraint on the oligonucleotide rules search space is placed by the

choice of the geometry of mismatches. Mismatches drastically change the thermody-

namic characteristics of the oligonucleotides. The characteristics depend on:
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1. The particular mismatch used. For example, a C-A mismatch greatly strains

the helical structure around itself, while a G-T mismatch has almost no effect

on neighboring DNA structure [74].

2. The base pairs surrounding the mismatch [67], [54].

3. The position of the mismatch within the oligonucleotide. Mismatch too close

to the 5' end could destabilize ligation, while one too close to the 3' end may

disturb extension. To test our intuition and to collect more empirical data we

designed a number of oligonucleotides. These primers were homologous to the

elements from our early system and had mismatch structure and several other

characteristics of each of the proposed mismatch designs. We used these primers

to test the putative extension and ligation efficiencies of the proposed designs.

We then used SCAN [22] to search for optimal oligonucleotides with the given

mismatch geometry and a common set of thermodynamic constraints. It is

interesting to note that the first design we proposed is the one we implemented

in the laboratory.

4. The positions of mismatches with respect to each other. It is reasonable to

expect that two mismatches right next to each other would have less of an

effect on the stability of the duplex then would those same two mismatches

located some distance away from each other.

The third point deserves further explanation. Polymerase and ligase enzymes

have their own requirements for how stable the site of action needs to be in order

for the enzyme to catalyze a reaction. In our particular system, Taq DNA Ligase is

extremely discriminatory with respect to the required stability of its site of action. In

the experimental conditions under which we operate our system, mismatches within

the first four bases of the 5' end of the primer being ligated to are not tolerated. Vent

DNA Polymerase allows mismatches that are as close to the 3' end as three bases.

However, these are only tolerated if there is no other mismatch in the immediate

vicinity.
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Having spent much time in the laboratory working with our early system, we

acquired certain intuition regarding mismatch geometry. Based on that, we proposed

a design. We also investigated three of its close relatives.

To test our intuition and to collect more empirical data we designed a number

of oligonucleotides. These primers were homologous to the elements from our early

system and had mismatch structure and several other characteristics of each of the

proposed mismatch designs. We used these primers to test the putative extension

and ligation efficiencies of the proposed designs. We then used SCAN [22] to search

for optimal oligonucleotides with the given mismatch geometry and a common set of

thermodynamic constraints.

While the original design of the rewrite rule oligonucleotides proved to work ac-

cording to specifications, our originally chosen left framing sequence proved to have

some homology to the native DNA sequence found on the plasmid into which we

cloned the unary counter, as well as to have an ability to form some internal hairpins.

These properties necessitated choosing a different left framer sequence and recloning

the unary counter machine into a different plasmid.

4.3 Experimental Results

We now turn to the practicality of the primitive operations of a programmed mutage-

nesis system. We have constructed the unary counter machine shown in Figure 2-1,

and have operated it through three cycles to gather efficiency data.

This experiment was the culmination of five years of experimental work. We

developed the unary counter machine through four generations, each time improving

the design based on the lessons learned in the experiments with previous generations

of the machine. We summarize the most important experimental results obtained

before moving on to the most recent efficiency results.

As discussed in Chapter 2, failed ligations result in characteristic products. We

designed the system such that all these characteristic products have unique and easily

distinguishable lengths. We use the appearance of these unique length products to
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judge whether a cycle of mutagenesis has indeed taken place. Because all these

products have unique lengths, and the appearance of characteristic products of cycle

n always precedes the appearance of characteristic products of cycle n + 1, we did

not feel it was necessary to clone and sequence these products to definitively verify

their identity. A more complete study would perhaps undertake this cloning effort in

addition to the characteristic length verification.

4.3.1 Primitive Operations of Programmed Mutagenesis

In order to demonstrate the viability of programmed mutagenesis as a model of com-

putation, we needed to demonstrate experimentally that it is possible to create full-

length product DNA molecules that have embedded rewriting, make later sequence

changes to depend on earlier sequence changes, and have multiple oligonucleotides be

active in close proximity on a template sequence. These three basic components are

present in all programmed mutagenesis systems. All experiments summarized in this

section were performed as previously described in [28].

The ability to create molecules with embedded rewrites is at the key feature of

programmed mutagenesis. The basic step of any string-rewrite computational system

is the creation of a new string based on a template string. In programmed mutagenesis

systems this step is accomplished by incorporating a mismatched oligonucleotide into

the newly-synthesized DNA strand.

To demonstrate that DNA molecules can be created with internal rewriting events

we designed an experiment based on the first cycle reaction of the earlier generation

of the unary counter. This system consists of a perfectly matched upstream oligonu-

cleotide MRP and a mismatched downstream oligonucleotide MI. We experimentally

showed that primitive operations of programmed mutagenesis, extension and liga-

tion of a mismatched oligonucleotide primer, can occur in a single buffer at a single

temperature [28].

The fidelity of a programmed mutagenesis computation depends on the proper

incorporation of mutagenic oligonucleotides. Suppose in a given computation the

question posed is "Does this computation result in s3?" Now suppose that the set of
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rewrite rules for this computation includes s2 -+ s3, but not si -+ s3, or any other

rules which allow si to be rewritten. Suppose further that the correct computation

terminates with the incorporation of an oligonucleotide rule that rewrites the string

into si. Thus, the answer to the question posed for this computation should be "no."

However, if si presents a suitable biological template for the execution of s2 -+ s3

rule, this rewrite rule will be incorporated, and it would appear that the result of

the computation is "yes." In other words, if the rules are not incorporated strictly

sequentially, no claims about correctness of computation can be made.

In case of the unary counter, in order to establish programmed sequential incor-

poration, we needed to show that the second cycle product appears iff the first cycle

has executed successfully. We designed an experiment based on the second cycle re-

action of the earlier generation of the unary counter without the left outside primer.

We have shown that the second cycle rule oligonucleotide binds in the appropriate

location when the first cycle rule oligonucleotide is present in the reaction, and not

at all when there is no first cycle rule oligonucleotide in the reaction. Some nonspe-

cific binding was detected at the temperature below the predicted Tm of the second

cycle rule oligonucleotide in the correct alignment, but the nonspecific binding was

completely eliminated at Tm [28]. We will discuss the influence of concentration of

reaction components, as well as the that of the presence of the outside primers in the

reaction in subsection 4.3.2.

In order to demonstrate the flexibility of programmed mutagenesis we needed to

show that two oligonucleotide rules positioned on the template next to each other

can ligate together and extend to the end of the template. This configuration of

oligonucleotides is expected to occur when one oligonucleotide binds to the previously

rewritten section of the template, while another binds to an adjacent mismatched

sequence to be rewritten, as in the third cycle of the unary counter, for example. It

is reasonable to suspect that if the mismatched oligonucleotide is downstream of the

perfectly matched one, the former may anneal earlier and extend over the binding

site of the latter, thus preventing the latter from working.

We experimentally validated that the system consisting of the perfectly matched
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oligonucleotide immediately upstream of a mismatched oligonucleotide produced full-

length products that included both of the oligonucleotides in the reaction. The test

showed that the upstream oligonucleotide can ligate to the downstream mismatched

oligonucleotide, albeit with a slightly lower efficiency than in the case of two oligonu-

cleotides whose binding sites are separated by some distance [28].

4.3.2 The Role of the Outside Primers in a Programmed

Mutagenesis System

In programmed mutagenesis systems outside primers are intended simply as tools to

enable production of full-length products on all cycles. This function is important,

since often the site of action of the next mutagenic oligonucleotide falls in the area

of template upstream of the currently active mutagenic primer. For example, in the

unary counter, as can be seen in Figure 2-1, in the absence of MRP, the second cycle

mutagenic oligonucleotide M2, would not be able to bind and extend.

Almost from the beginning of our experimental efforts, however, we noticed that

sometimes the outside primers also play another role. They seem to prevent a rule

oligonucleotide of the same sense (binding in the same orientation) from binding in

undesirable locations. In case of the unary counter, we observed that the presence of

MLP in the reaction prevented M2 from binding in the positions where M2 was more

than 2 mismatches away from the sequence on the template. This effect was observed

at a variety of temperatures and concentrations of rule and outside oligonucleotides,

in fact persisting over an order of magnitude range of concentrations.

Experiment design was as follows: each reaction contained -0.2 pM of double

stranded template DNA, Taq thermostable ligase (40 U), Vent thermostable poly-

merase (0.25 U) in 1X Vent-NAD buffer, with the variety of concentrations of inner

rule oligonucleotides and outside oligonucleotides. Concentration of the outer oligonu-

cleotides was always ten times that of the inner rule oligonucleotides. These reactions

were thermal-cycled for 1 minute at 94'C, and 30 minutes at target temperature for

two cycles. We compared reactions containing MLP to those not containing MLP.
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We also compared negative control reactions, those lacking M1, with and without

MLP. Negative control reactions contain the same components as second cycle reac-

tions, with the exception of M1, first cycle mutagenic primer. In the absence of Ml,

no product labeled II in Figure 2-1 is supposed to be produced, and no second cycle

product is therefore possible. We expect negative control lanes to contain no product.

All the negative control reactions discussed in this chapter are set up as described

here.

Since we were interested in the effect MLP seemed to have on the binding of M2,

M2 was 1 2P end-labeled. Since failed ligation events produce characteristic length

bands, which are the same length bands as those produced in the reactions lacking

MLP we could directly observe the effect MLP had on the reactions by comparing

bands present in the lanes containing MLP to those in the lanes not containing MLP.

Figure 4-1 shows result of one representative experiment. This particular experi-

ment was performed at 45"C and contained 0.01 MM of the inner rule oligonucleotides.

As can be seen in Figure 4-1, lanes which do not contain MLP exhibit a number

of bands spaced at regular intervals of about 12 base pairs apart. These correspond

to M2 binding to all the available positions on the template. The bold band of

approximately 112 bps in the cycle 2 lane (cartoon 2 in Figure 4-1) corresponds to

M2 binding in its appropriate spot (with two mismatches), while the fainter bands

(cartoons 4-7 in Figure 4-1) represent binding to all the locations marked by Z in

Figure 2-1 (with four mismatches). Note that all these bands are present even in the

negative control lanes.

In contrast, in the lanes containing MLP no inappropriate binding is detectable.

Cycle 2 lanes exhibit only the 112 bp band (cartoon 2 in Figure 4-1) and the full-length

band (cartoon 1 in Figure 4-1), which is the result of the product of the extension

off of MLP ligating to the 112 bp product. Negative control lanes exhibit no bands

whatsoever.

Estimated Tm of M2 binding with four mismatches is 201C lower than that for

binding with two mismatches. Consequently, equilibrium between bound and unboud

states for M2 binding with four mismatches is shifted significantly towards the un-
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Figure 4-1: The role of MLP in preventing inappropriate binding by M2. Oligonucleotide M2 is
end-labeled with 32 P. Cartoons represent the products contained in the corresponding bands. Each
reaction is repeated twice (labeled 1 and 2). Second cycle (2 "d) and negactive control (NC) reactions
were run in the absence (-MLP) and presence (+MLP) of MLP. Negative control reactions contain
the same components as second cycle reactions, with the exception of M1, first cycle mutagenic
primer. In the absence of M1, no product labeled II in Figure 2-1 is supposed to be produced,
and no second cycle product is therefore possible. We expect negative control lanes to contain no
product.
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bound state, as compared to the equilibrium of M2 binding in its appropriate place

with two mismatches. Thus, the product of extension off of the outside primer occurs

more readily through the possible binding sites, resulting in the observed "cleaning"

phenomenon.

Notice that we can not explain the absence of inappropriate bands in the lanes

containing MLP by the theory that such bands are simply ligated into the full-length

product when MLP is around. This theory does not work for two reasons. First,

we can still observe the 112 bp band in the 2nd cycle lanes containing MLP. If

the oligonucleotide which binds with two mismatches is not ligated to with 100%

efficiency, than it is reasonable to suppose that neither would the oligonucleotides

which bind with four mismatches. Since no incomplete ligation products for the

four-mismatch bindings are observed with MLP, it is reasonable to assume that such

bindings do not occur at detectable levels. Second, if inappropriate bindings were

happening in the presence of MLP, we would see either the characteristic bands for

such bindings or a full-length band in the negative control lanes with MLP. Neither of

these are observable. In addition, as discussed in Section 4.3.1, under the experimental

conditions in our system, Taq DNA ligase does not ligate to a mutagenic primer where

a mismatch is in the first four bases on the 5' end of the primer, as would be the case

for M2 binding with four mismatches (see cartoons 4-7 in Figure 4-1). Therefore, we

conclude that under the conditions tested, presence of MLP prevents inappropriate

binding of M2.

We repeated this experiment at variety of concentrations for 45, 47.5, and 50'C

(data not shown). At 45C, the effect persisted across an order of magnitude differ-

ence in concentrations of primers. It is important to note that the presence of an

outside primer by itself does not guarantee absence of inappropriate binding. For ex-

ample, we found that at target temperature of 45*C, with the concentration of inner

oligonucleotides of 0.05 pM, inappropriate binding still persisted. However, it was

eliminated by raising target temperature of the reaction to 50C (data not shown).
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(a)

(b)

(c)

11 cycle 1"t cycle 1 "t cycle
full length, % characteristic fragment, % ligation efficiency, %

0.OluM rewrite rules 1.06 14.53 6.78
0.02uM rewrite rules 0.53 5.4 8.99
0.03uM rewrite rules 0.46 3.21 11.63

2n cycle 2", cycle full length,
full length, % % of 1"t cycle full length

0.OluM rewrite rules 0.07 6.68
0.02uM rewrite rules 0.07 12.67
0.03uM rewrite rules 0.04 8.76

3 'd cycle 3rd cycle characteristic fragment,
characteristic fragment, % % of 2nd cycle full length

0.OluM rewrite rules 0.07 51.85
0.02uM rewrite rules 0.05 34.96
0.03uM rewrite rules 0.05 66.98

Table 4. 1: Measured and extrapolated efficiency data. Table (a) shows data for cycle 1, table (b)-
for cycle 2, and table (c)- for cycle 3.

4.3.3 Efficiency of the Unary Counter

Figure 4-2 shows all the bands we quantitated to asses the efficiency of the operations

of the unary counter. The experiment was performed at three different concentrations

of the inside and outside primers. Efficiency data gathered in the experiment is

summarized in Table 4.1 and is illustrated in Figure 4-3.

The cycle reactions contained 0.01, 0.02, or 0.03 pM of MI and M2 oligonu-

cleotides, 0.1, 0.2, or 0.3 pM of outer primers respectively, -0.2 pM of double stranded

template DNA, Taq thermostable ligase (40 U), Vent thermostable polymerase (0.25

U), and 1X Vent-NAD buffer. These reactions were thermal cycled for 1 minute at

94"C, and 30 minutes at 451C for the indicated number of cycles. Each reaction was

repeated twice, to minimize the impact of experimental error on the data.

To estimate the amount of products designated by II, III, and IV in Figure 2-

1 we 32P 5' end-labeled M1 (for II and IV) and M2 (for III). Failed ligations yield

products of characteristic lengths (as illustrated in Figure 2-1). The results of the

reactions were run on polyacrylimide denaturing gels, and bands were quantiated on

a phosphorimager.

Figure 4-4 shows the key portion of our experimental data. This data was collected
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Figure 4-2: Operation of the unary counter machine through cycles 1, 2, and 3, plus negative
control (NC). Negative control reactions contain the same components as second cycle reactions,
with the exception of Ml, first cycle mutagenic primer. In the absence of Ml, no product labeled
II in Figure 2-1 is supposed to be produced, and no second cycle product is therefore possible. We
expect negative control lanes to contain no product. Notice that the gel appears as a mirror image
of its normal orientation. Oligonucleotide Ml is end-labeled with 32P in Cycles 1 and 3, while M2 is
labeled in Cycle 2 and negative control. All the bands that were quantitated on the phosphoroimager
are marked and numbered.
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at the middle concentration of the primers.

Because in cycle three the full-length band is a mixture of product IV and a

shortened version of product II (as illustrated by the cartoons 7 and 6 in Figure 4-4,

respectively), it is impossible to directly ascertain that cycle three has occurred, or

what the efficiency of that cycle is, from the full-length product. However, both the

characteristic product of cycle three (cartoon 8 in Figure 4-4) and the coloring of

the characteristic product of cycle two (cartoon 10 in Figure 4-4) are present, and

indicate that cycle three has indeed taken place. We directly quantitated the amount

of product in the characteristic band of cycle three, and estimated the amount of

product IV present by assuming that the ligation efficiency of the third cycle is the

same as that in the first cycle.

Because reactions proceed for the indicated number of cycles, while radiolabeled

oligonucleotides are present in the reactions from the start, it is expected that the

products of earlier cycles will accumulate as the reaction proceeds. Thus, it is ex-

pected and observed that characteristic bands of a particular cycle will be fainter

than the bands which account for the product which has been accumulating in the

reaction through the previous cycles.

We measured the amount of product in each band on the gel and calculated

efficiencies of the latter cycles based on the amount of full-length product produced

in the previous cycle. Because the unary counter operates serially through the cycles,

we have to consider the amount of product II to be 100% of the template available for

the second cycle, and the amount of product III to be 100% of the template available

for the third cycle.

For the middle concentration of primers, where the bands were most pronounced

and clean, the results showed that 5.3 x 10-3 of template I is converted to product

II in cycle one, 1.3 x 10-1 of product II is converted to product III in cycle two,

and 3.5 x 10-1 of product III is converted to the characteristic product of cycle three

in cycle three. In addition, no product III was generated in the cycle two negative

control (NC) reaction in the absence of primer M1 and the presence of M2.

Observed efficiency of the first cycle reactions is fairly low. Consider, however,
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Figure 4-4: Operation of the unary counter machine through cycles 1, 2, and 3, plus negative
control (NC) at 0.02 uM of rule oligonucleotides. Negative control reactions contain the same com-
ponents as second cycle reactions, with the exception of M1, first cycle mutagenic primer. In the
absence of M1, no product labeled II in Figure 2-1 is supposed to be produced, and no second cycle
product is therefore possible. We expect negative control lanes to contain no product. Oligonu-
cleotide M1 is end-labeled with 32 P in Cycles 1 and 3, while M2 is labeled in Cycle 2 and negative
control. Cartoons represent the products contained in the corresponding bands. Band labeled 3 is
the full-length product of Cycle 2 (and the template for Cycle 3), designated by III in Figure 2-1.
Band labeled 8 is the characteristic length product of Cycle 3, produced when the product of exten-
sion of MRP fails to ligate to the product of extension of the mutagenic primer M1 annealed in the
3rd cycle location. Other bands as illustrated.
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that the first cycle unary counter template is embedded in a 3,000 bases long dou-

ble stranded DNA vector. Thus, M1 is competing for its binding spot with a 3Kb

perfectly complementary strand. In order to produce the full-length product on the

first cycle, both MRP and M1 must bind to the same template strand, extend, and

ligate together. Furthermore, in the experiment described here, concentration of the

original template is approximately 10-fold higher than that of the inner rule oligonu-

cleotides. We have found that in the experiments described in Section 4.3.1, where

the concentrations of the original template and rule oligonucleotides were equal, we

obtained an approximately 6-fold higher efficiency of the first cycle reaction than ob-

served here. However, it is important to note that those experiments were performed

without MLP in the mix and on an earlier generation of the unary counter, which

was embedded in a different vector. Thus, detailed comparisons between efficiency

data collected in these two experiments are not possible.

We have shown that the basic operations of programmed mutagenesis, which is a

universal model of computation, are functional, although the efficiency is low. The

major impediment to continued cycling of the machine is that as long as template

I is present, its products will increase exponentially with cycle number. However,

if the Watson and Crick strands resulting from each DNA replication are separated

into different compartments, then the compartment that receives product II will only

contain a single computational state and thus will not repeat earlier computational

steps. In-vivo programmed mutagenesis might be an effective way to computationally

evolve DNA sequences and could potentially assist in sequence specific control of

cellular function.
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Chapter 5

Conclusions

5.1 Summary of Results

It has been long known that mismatched DNA annealing followed by strand replica-

tion can cause the programmed evolution of DNA sequences. We proved that this

process is theoretically universal. We showed that programmed mutagenesis is a

universal model of computation by directly simulating the smallest known Universal

Turing machine.

We demonstrated a constructive way to encode arbitrary computations as DNA

molecules, using a single molecule as the memory and state storage and cycles of repli-

cation for computational progress. For computer science, using single DNA molecules

to represent the state of a computation holds the promise of a new paradigm of com-

posable molecular computing. For biology, the demonstration that DNA sequences

could guide their own evolution under computational rules may have implications as

we begin to unravel the mysteries of genome encoding and natural evolution.

We have also implemented a unary counter, an example programmed mutagenesis

system, and operated it through multiple cycles to collect efficiency data. There is a

number of practical limitations apparent in the unary counter system. Chief among

these is the limitation imposed by the exponential increase in the amount of the first

cycle product. Much attention needs to be devoted to solving this problem, possibly

by finding a way to separate the Watson and Crick strands resulting form each DNA
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replication into separate compartments. While there is no obvious way to perform

such separation in vitro, perhaps by operating the system in vivo separation can be

achieved naturally.

5.2 Naturally Occurring Phenomena and Programmed

Mutagenesis

It is important to note that the applications of programmed mutagenesis technique

do not end with biological computing. In fact, methods we developed would be useful

in basic biological research for applications such as creating targeted mutations for

basic genetics studies, drug design, gene therapy, in-vitro evolution, and a number of

others.

5.2.1 (Deoxy)ribozymes and Programmed Mutagenesis

With the significant progress in creating ribozymes and deoxyribozymes by tradi-

tional in-vitro evolution methods, many classes and subclasses of ribozymes have

been identified. The members of these classes and subclasses share significant struc-

tural features, and rational design can and has been used to build new ribozymes with

designated features and to combine different features in a single ribozyme, thereby

creating novel classes of ribozymes [57]. This process is called rational design. Pro-

grammed mutagenesis could be particularly useful in creating new ribozymes and

deoxyribozymes by rational design.

Conversely, because ribozymes and deoxyribozymes with many desirable prop-

erties, such as self-cleaving [59, 11], self-phosphorylation [38], and self-ligation [58]

can now be constructed with virtually an arbitrary sequence in the active site, it

is tempting to consider how such tools may be used in programmed mutagenesis

systems. There are two interesting applications to be considered.

The first involves the possibility of using deoxyribozyme motif as a readout mech-

anism. That is, the final rewrite of the computation would create a deoxyribozyme
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within the template molecule. The deoxyribozyme performing its function would then

serve as a readout mechanism.

The second application involves using the product of a deoxyribozyme's function,

for example, the piece of DNA spliced off by a self-splicing deoxyribozyme, to initiate

the computation. In this case, the newly created fragment of DNA would act as one

of the rewrite rules. An additional interesting property of such an application is that

by controlling the amount of deoxyribozyme present in the system, we can control the

amount of initially available rewrite rule. If that amount is limited, we, in effect, limit

the amount of first cycle product produced on the subsequent cycles, thus somewhat

limiting the exponential growth of the early cycle product discussed in Chapter 4.

Of course, both of these applications can be used within a single system. A DNA

fragment created as a result of the completion of one computation can then be used to

initiate another computation in the same test tube, thus creating linked, but strictly

sequenced computations.

The RNA world theory has gained much attention in the recent years, especially

with the appearance of the many classes of ribozymes produces by in vitro evolution.

It is possible that if such a world indeed existed, programmed mutagenesis-like events

played an active part in evolving RNA enzymes in such an environment.

Other naturally-occurring phenomena, such as RNA editing and gene conversion

events could also be possible manifestations of programmed mutagenesis-like pro-

cesses.

5.2.2 Gene Conversion and Programmed Mutagenesis

Genetic analysis of the products of crosses in haploid organisms, where all four prod-

ucts of a single meiosis can be recovered and examined led to proposals of the models

of intragenic recombination, such as gene conversion. A spore pair is produced by mi-

tosis from a single product of meiosis. The mendelian model predicts 4:4 segregation

ratios for a cross of two heteroallelic individuals. However aberrant 6:2, 2:6, 5:3, 3:5,

and 3:1:1:3 ratios were obtained in such crosses (less than 1% in filamentous fungi,

but up to 4% in yeast). These ratios gave the appearance that some alleles in the
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cross have been "converted" into the other alleles, by the process that was, therefore,

named gene conversion. In the cases of 6:2 and 2:6 ratios, it appears that the entire

chromatid has been converted, while in the cases of the other ratios, it appears that

only half-chromatids (one strand of a chromatid) were converted.

There are several models for how gene conversion events occur. The first, and

most widely known model is the Holliday model. The key feature of the Holliday

model is the formation of the Holliday structure- heteroduplex DNA formed via the

hydrogen bonding between two cleaved strands and the complimentary strands in the

homologous double helix, followed by ligation. The model further postulates that the

cross bridge created as described above then migrates along the two heteroduplex

strands, the process termed branch migration. The Holliday structure can then be

resolved by cutting and ligating either the two strands that originally participated

in an exchange, or the two strands that did not. The model also states that the

mismatches in the heteroduplex portion of a molecule can be repaired by an enzy-

matic system which excises one of the mismatched bases, replacing it with the correct

complementary base.

As the data accumulated, it became clear that the Holliday model could not ex-

plain the frequencies of occurance of some of the aberrant ratios. It seemed that gene

conversion occurred primarily in only one chromatid. The model proposed by Mesel-

son and Radding creates the Holliday structure from a single single-strand cut in one

chromatid. The model postulates that following a cut, the 3' end of the strand near

the cut is extended by the polymerase, using the existing perfectly-matched fragment

of the strand as a primer, and displacing the 5' fragment of the original strand in the

process. Next, the displaced single strand invades the second nonhomologous chro-

matid duplex, creating a mismatched duplex and forcing the newly displaced strand

of the chromatid into a loop, which is then excised. Ligation then forms a Holli-

day structure, which can be resolved as described above immediately or after branch

migration.

The observation that yeast transformation is stimulated 1000-fold if a double-

stranded break is introduced into a donor plasmid led to the formulation of a third
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model, the double-strand-break model, first formulated by Szostack, Orr-Weaver, and

Rothstein. Unlike the two models described above, this model uses double-strand

breaks to initiate recombination. Digestion of the 5' ends of both cut sites enlarges

the breaks to gaps. The model postulates that the 3' tail of a strand in a gap invades

the uncut duplex of the other chromatid, forcing the displaced strand into a loop,

which is then used as a template to fill in the gap in the cut strand which did not

participate in the strand displacement. At the same time, the 3' end of the invading

strand is extended using the unperturbed strand of the uncut chromatid as a template.

Ligations form two Holliday structures, which can be resolved in one of two ways.

Finally, mismatch repair is employed to yield gene conversion.

Programmed mutagenesis-like events are postulated in two latter models, which

use primer extension and ligation to create DNA structures following a strand break

event. The last model is particularly interesting because it postulates polymerization

events occurring which use partially mismatched fragments of the DNA strands as

primers.

5.2.3 RNA Editing and Programmed Mutagenesis

RNA editing is a process of modification of messenger RNA molecules before transla-

tion. Resulting protein sequence is often dramatically different from the gene sequence

originally transcribed. RNA editing employs short guide RNA molecules (gRNAs) to

mediate the process. These gRNAs are 50-70 nt transcripts which base pair with spe-

cific regions of substrate [8] and edits approximately 30 nt of the final transcript [35].

Editing proceeds by insertion, deletion, or substitution of bases exploiting RNA's

ability to form G:U base pairs. Each gRNA pairs more efficiently with the final prod-

uct than with the original substrate. gRNAs contain an A or a G for every inserted

U residue.

In the process strikingly similar to programmed mutagenesis, editing proceeds 3' to

5' on the mRNA molecule and is dependent on the presence of a full set of overlapping

gRNAs. When editing guided by each preceding gRNA finishes, an anchor sequence

is created which allows the binding of each successive gRNA, much like incorporation
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of the rewrite rule M1 allows for binding and incorporation of the rewrite rule M2

(see Figure 2-1) and vice versa.

If we consider gRNAs as rules in the string rewrite system that is RNA editing,

we notice that just like the rules in the unary counter, these rules contain read and

read/write parts. And just like in the unary counter, processing each preceding rule

(i.e. creating a sequence in the mRNA that pairs with every base of this particular

gRNA's read/write part) creates an area of the template that becomes the read

part for the next rewrite rule gRNA. While the mechanism of editing itself is likely

different in programmed mutagenesis and RNA editing, the key feature of sequential

incorporation of programmed changes is certainly present in both systems.

5.3 Directions for Future Work

As we noted in Chapter 3, MUTM is not a practical machine to implement in a

laboratory because it experiences exponential slowdown. It would be interesting to

find another universal Turing machine which fits criteria for encoding established

in Section 3.8 and which does not experience an exponential slowdown. If such a

machine could be found or designed, developing a programmed mutagenesis encoding

for such a machine would be an important research goal. In addition, implementing a

small instance of a real computation on such a machine would be a big step forward.

Because this would be a universal machine, once it is created, one could run a series

of small calculations in the system by changing only the starting template.

More work needs to be done in order to simplify the design process for programmed

mutagenesis systems. One of the most limiting factors in the present design of the

unary counter is the choice of enzymes and the restrictions it poses on the number and

geometry of mismatches allowed. While we were not able to find a better combination

of enzymes, it is possible that one can be found, as new and modified thermostable

enzymes are introduced every year.

Another possible approach to easing enzyme-posed limitations on the system is to

optimize the reaction buffer. While we have found a buffer which allows both enzymes
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to work efficiently as compared to their native conditions, it may be possible to further

optimize the buffer so as to improve the ligation efficiency, and, thus, decrease the

cycle time.

Much progress has been made in perfecting our understanding of the influence the

mismatches have on the biochemical characteristics of the primers, particularly by the

Santa-Lucia laboratory [55]. However, more data on the mismatch biochemistry is

needed. Data on the influence of the mismatches on the nearest-neighbor interac-

tions in the DNA duplex is of particular importance. Better data on the mismatch

biochemistry would allow us to refine the computer tools and, as a result, to simplify

the design process.

We have empirically observed that the geometry of mismatches is the single most

important element of the design of the programmed mutagenesis systems. However,

at present our understanding of the mechanisms involved is mostly intuitive and

anecdotal. We believe a large study of the influence of the geometry of the mismatches

on the biochemical characteristics of the DNA duplex is in order. The study should

endeavor to elucidate:

1. The precise relationship between the location of the mismatch relative to the

site of action of an enzyme and enzyme's efficiency;

2. The comparative degree of instability introduced by the same mismatches de-

pending on their context and distance from each other and the ends of the

oligonucleotide; and

3. Whether chemically modifying the oligonucleotides, such as replacing phospho-

rus linkages by sulfur linkages, changes their biochemical characteristics in gen-

eral, and in the particular case where some of the mismatches are located in the

modified region of the oligonucleotide.

As we observed in Chapter 4, presence in the reaction of the previous cycles'

templates as the calculation moves forward is the major impediment to increasing

the yields of programmed mutagenesis systems. Investigating in vitro and in vivo
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methods for separating products of each cycle of computation is, therefore, an impor-

tant research goal. In addition to allowing for increased yields of the computation,

separating products would also allow for "marking" of compartments. That is, by

looking at the product of computation contained in each compartment, one could

determine when this compartment was created. If this process occurs in vivo, and

if the products are separated into different cells, one could determine the lineage of

each cell by examining products contained in each cell.

Finally, an interesting research topic would be to design and implement pro-

grammed mutagenesis system with deoxyribozyme components. As described in

Section 5.2.1, deoxyribozymes can be used as both the readout mechanism and to

initiate a computation by providing the first rewrite rule able to act on the template.

Next step in this research area would be to put these two approaches together by

constructing a system where the output of the first computation would provide an

initial rewrite rule for the next computation. This would demonstrate the first exper-

imental instance of a composable biological computing system. In addition, it would

be interesting to explore the potential programmed mutagenesis has in assisting in

the process of rational design of ribozymes and deoxyribozymes.

To date, programmed mutagenesis is the only composable DNA system to be

proven universal. In addition, the basic operations of programmed mutagenesis func-

tion, although an improvement in efficiency is highly desirable. Multiple natural phe-

nomena could exhibit programmed mutagenesis-like behavior. We conclude that pro-

grammed mutagenesis is an important and promising field in DNA computing, with

important theoretical and experimental characteristics deserving of further study.
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Appendix A

Encodings and Distance Matrix

Here we provide encodings of the symbols needed to simulate MUTM as well as the

distance matrix generated for these encodings.

symbol encoding

# CCGGGGGGGGGGC
q1L CCAGGGGGGGGGC
q2L CCGCGGGGGGGGC
q2R CCGGTGGGGGGGC
q3L CCGGGAGGGGGGC
q4L CCGGGGCGGGGGC
q5R CCGGGGGTGGGGC
q6R CCGGGGGGAGGGC
q7L CCGGGGGGGCGGC
q7R CCGGGGGGGGTGC

Table A. 1: Encodings of the 13 bp long symbols
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symbol encoding

y CCATACACAGATAAAGAAATAGACAGGC
0 CCCTCCCCCGCTCACGCACTCGCCCGGC
A CCTTTCTCTGTTTATGTATTTGTCTGGC
1 CCTATGTGTCTATTTCTTTATCTGTCGC
q2/0 CCATACACAGATAACGCACTCGCCCGGC
Y2-o CCATACACAGATAAAGCACTAGCCAGGC
q4/0 CCCTCCACCGATCAAGAACTAGCCAGGC
Y4-O CCCTCCACCGATAAAGAAATAGACAGGC
q7/0 CCATCCCCCGATCACGAAATAGACCGGC
Y7-o CCATACACAGATCACGAAATAGACCGGC
q5/0 CCCTACCCAGCTAACGCAATCGACAGGC

Y5-0 CCATACCCAGCTAAAGAAATCGACAGGC
q7/y CCCTCCACAGCTAACGAAATAGCCCGGC
0 7-y CCCTCCACCGCTAACGCACTAGCCCGGC
qi/y CCCTACCCAGATCAAGAACTCGACCGGC
01_Y CCCTACCCAGCTCACGAACTCGCCCGGC
q2/y CCATCCACAGCTCAAGCAATCGACCGGC
02-y CCATCCCCCGCTCAAGCACTCGACCGGC
q2/A CCTTACACTGTTAATGAATTAGTCAGGC
Y2-A CCATACACAGTTAATGAAATAGTCAGGC
q7/A CCCTTCCCTGCTTATGTACTTGCCCGGC
0 7-A CCCTCCCCCGCTTATGTACTCGCCCGGC
q6/0 CCTTCCTCCGCTTACGCATTTGCCTGGC
A 6 - 0  CCTTCCTCTGTTTATGCATTTGCCTGGC
q2/1 CCTTTGTCTGTTTATCTTTATCTGTGGC
A 2 - 1  CCTTTCTCTGTTTATCTTTTTCTCTGGC
q5/1 CCTATGTCTCTTTTTGTATATGTGTGGC
A 5 - 1  CCTATCTCTGTTTATGTATATGTGTGGC
q6/1 CCTTTGTGTCTATTTCTATTTGTCTGGC
A 6 - 1  CCTTTCTCTCTATTTGTATTTGTCTGGC
q3/1 CCTATCTGTCTATATGTTTTTCTCTGGC
A 3 - 1  CCTATCTGTGTATATGTATTTGTCTGGC
q5/A CCTATGTCTGTATATCTATTTGTGTCGC
1 5-A CCTATGTGTCTATATCTATTTCTGTCGC
q6/A CCTTTCTGTCTTTTTGTATATCTCTCGC
1 6-A CCTTTCTGTCTTTTTCTTTATCTGTCGC
qi/A CCTATGTCTGTTTTTGTTTTTCTCTCGC
1 1_A CCTATGTCTCTATTTGTTTATCTCTCGC
q3/A CCTATCTGTGTTTTTCTTTATGTCTGGC
1 3-A CCTATGTGTGTATTTCTTTATGTGTGGC
q4 /A CCTTTGTGTCTTTATGTTTTTGTGTCGC
1 4-A CCTTTGTGTCTATATCTTTATGTGTCGC
q3/y CCAGACATAAATAGAGACATAGACATGC
Y3-y CCATACACAAATAGAGAAATAGACATGC

Table A.2: Encodings of the 28 bp long symbols
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symbol encoding
q4/y CCATAAACATACACAGAAAGAGAAAGGC
y4-y CCATAAACAGACACAGAAATAGACAGGC
q5/y CCACATACAGAGAAATAAATAAATAGGC

-y5_ CCACACACAGATAAAGAAATAAATAGGC
q6/y CCATACAAAGATAAAAAGACATACAAGC

-y6- CCATACAAAGATAAAAAAACAGACAGGC
qi/0 CCCTCACTCGCGCGCGCGCTCGCACGGC
01-0 CCCTCCCTCGCTCGCGCGCTCGCCCGGC
qi/1 CCGAGGTGGCTATTGCGTTAGCTGTCGC
11-1 CCTATGTGGCTATTGCGTTATCTGTCGC

q4/1 CCTATGGGTCGAGTTCTTTAGCGGGCGC
14_1 CCTATGGGTCGATTTCTTTAGCTGTCGC
q7/1 CCGATGGGGCTAGTTCTTGATCTGGCGC
17_1 CCGATGTGTCTAGTTCTTGATCTGTCGC

qi/y CCATACCCAGATAAAGAAGTCGACCGGC
qi/0 CCCTCACCCGCGCACGCTCTCGCACGGC
qi/A CCTATCTCTGTTTCTGTTTTTGTCTCGC
qi/1 CCGAGGTGTCTATTTCCTTAGCTGTCGC
q2/y CCATCCACAGCTAAAGCAATGGACAGGC
q2/0 CCATACACGGCTCACGCACTCGCCCGGC
q2/A CCTTACGCTGTTTATGTATTAGTCAGGC

~ q2/1 CCTTTGTCTGTCTTTCTTTATCTGTCGC
~ q3/y CCAGACATAGATATAGACATAGACAGGC
q3/A CCTTTCTATGTTTTTGTTTATGTCTGGC

~ q3/1 CCTATATGTCTATATGTTTATCTCTCGC
q4/y CCATAGACATATAAAGAAAGAGAAAGGC
q4/0 CCCTCCACCGCTCAGGAACTCGCCAGGC
q4 /A CCTTTGTCTATTTATGTATTTGTGTCGC
q4/1 CCTATGCGTCTAGTTCTTTATCGGGCGC
q5/y CCATATACAGAGAAATAAATAGAGAGGC
q5/0 CCCTCCCCCGCTAACGCAGTCGACAGGC
q5/A CCTTTGTCTGTATATCTATTTGTATGGC

~ q5/1 CCTATGTGTCTATTTATATATGTGTGGC
~ q6/y CCATACAGAGATAAAGAGATATACAAGC
~ q6/0 CCTTCCCCCGCTGACGCATTCGCCTGGC

q6/A CCTTTCTGTCTTTATGTATTTCTCTAGC
q6/1 CCTTTGTGTCTATTTCTATTTATGTCGC

~ q7/y CCATGCACAGCTAACGAAATAGCCAGGC
q7/0 CCATCCCCCGGTCACGAACTCGACCGGC
q7/A CCCTTCTCTGCTTATGTAGTTGCCTGGC

~ q7/1 CCCATGGGGCTATTTCTTTATCTGGCGC

Table A.3: Encodings of the 28 bp long symbols (continued)
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