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Abstract

This thesis provides an in-depth study of optical filters made using integrated Bragg gratings
and Bragg resonators. Various topologies for making add/drop filters using integrated grat-
ings are outlined. Each class of devices is studied in detail and the theoretical tools needed
for designing the add/drop are developed. First-order filters using Bragg resonators do not
meet WDM add/drop filter specifications. Consequently, schemes to design higher-order
filters are derived. The relative advantages and disadvantages of the various possiblities
are outlined. Preliminary integrated Bragg grating devices, in InP, were designed using
the tools developed. The fabricated devices were measured. The measurements revealed
low-loss structures with a < 0.1 cm- 1 and high-Q Bragg resonators with Q > 40, 000. Mea-
surements on higher-order inline coupled Bragg resonator filters showed flat-top and fast
roll-offs. The results of the measurements and comparison with the theory are presented for
the various devices. The results reveal that Bragg grating based devices offer tremendous
potential for use as add/drop filters in WDM systems.

Thesis Supervisor: Hermann A. Haus
Title: Institute Professor Emeritus
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Chapter 1

Introduction

1.1 Evolution of Optical Networks

The last decade has seen an explosive growth in network traffic fuelled largely by the

development and rapid expansion of the internet. As the numbers of users and services

offered on the internet has continued to grow exponentially, data-traffic has exceeded voice-

traffic and continues to increase at a large rate [1]. The need to provide end users with

fast access to data has been forcing telecom service providers to upgrade the capacity and

transmission speeds of networks. Optical networks are the network of choice and enormous

amounts of new fiber have been installed both terresterially and under-sea. Optical fibers are

an excellent transmission medium with incredibly low loss, 0.2 dB/km, and huge bandwidth

in excess of 50 THz [2]. Since maximum electronic rates are limited to 40 GBits/s, efficient

use of fibers requires concurrent transmission of independent data streams.

Wavelength division multiplexing (WDM) has become the de facto method of accessing

the enormous bandwidth of existing fiber optic networks, enabling dramatic increases of

aggregate transmission speeds. WDM achieves this by multiplexing n independent channels

operating at distinct wavelengths and modulated with their own data, on to a single fiber,

thereby giving an n-fold increase in throughput of data. The channel wavelengths and

the spacing between them have been defined by the International Telecommunion Union

[3] and lie on what is referred to as the ITU grid. Channel spacings for most existing

systems are 200 GHz and 100 GHz. However, there has been a push toward 50 GHz-spaced

WDM systems [4]. WDM channel counts have progressively increased with 16, 32 and 64

channels systems commercially available. Typically, the bit-rates of the individual channels
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Figure 1-1: Evolution of optical networks from linear topologies to more networked architectures.

Linear topologies use full-spectral resolvers Add/drop filters that select a single WDM

channel are more useful devices for ne tworked architectures

are maintained at the peak speeds possible. Systems at 2.5 Gbits/s (OC-48) and 10 Gbits/s

(OC-192) are available, with 40 Gbits/s (OC-768) under development [1]. Whereas other

multiplexing technologies such as time division multiplexing and code division multiplexing

do exist, they are somewhat futuristic and WDM remains the dominant technology [2].

Most WDM systems to date have been long-haul point-to-point links (see Fig. 1-1).

The long-haul networks form the backbone communication layer connecting smaller net-

works across geographies. The constituent channels are multiplexed at the transmitting

end and then completely separated at the receiving end by terminal equipment employing

full spectral resolving optical Mux/DeMux filters. There is, however, a trend towards more

sophisticated network architectures driven in part by the need for regional and metropolitan

optical networks [5, 6]. These networks typically consist of multiple interconnected nodes

in various topologies. Figure (1-1) shows a ring-topology but the most general case would

consist of a arbitrary meshed network of interconnected nodes. At each node one or more

data channel may be accessed and processed or re-routed, allowing architects the flexibility

they need in designing regional access networks.
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Figure 1-2: Generalized spectrum of an add/drop filter defining the various figures-of-merit used

to gauge performance.

1.2 Add/Drop Filters

A key component needed for WDM regional networks is the Add/Drop filter. Unlike a

full spectral resolver, the add/drop filter enables the extraction or addition of a single

channel from a stream of WDM channels propagating on a fiber, without disrupting any

of the other channels. Figure (1-2) shows the spectrum of a general add/drop filter and

defines the various figures-of-merit used to gauge its performance. The specifications of an

add/drop filter are determined by its intended use. Since any attenuation of signals degrades

performance a minimum insertion loss is preferred. Another key requirement of add/drops

is that the dropped signal be restricted to the desired drop channel; contribution from

additional channels not only disturbs the on-going signals but more importantly acts as noise

source for the selected channel. Consequently, cross-talk should be minimized or alternately

add/drop filters must have high channel isolation. Most systems require a channels isolation

in excess of 25 dB. This channel isolation must be achieved within the channel spacing that

can typically be 200, 100 or 50 GHz. Of course as the channel spacings get narrower

the cross-talk or channel isolation requirement becomes more challenging to achieve. The

passband width of add/drop filters is typically defined as the frequency separation between

the 0.5 dB, 1 dB or 3 dB points. The passband width must be wide enough to select all

the information contained in the channel. Typical bit-rates of existing WDM system are

either 2.5 Gbits/s or 10 Gbits/s. At a minimum the pass-band must be this wide: 2.5

1.2 Add/Drop Filters



GHz or 10 GHz, depending on the system. However, due to system drift considerations,

both of the laser sources and filters, designers prefer passbands that are wider than the

minimum required width. Even so, a wider passband cannot be achieved at the expense

of channel isolation. Typically, the passband width is a percentage of the channel spacing

with most devices having bandwidth of anywhere from 25% to 40% of the channel spacing.

Flat passbands with no ripples are ideal but ripples of 1-2 dB may be acceptable. In

transmission, the dropped channel must be suppressed in excess of 25 dB so that the on-

going remnant of the drop-signal not interfere with signals added later in the network at

the dropped channel wavelength. The polarization state of the light on an optical fiber is

not predictable and subject to constant change. Consequently an add/drop filter should

ideally be polarization independent, that is, the spectral response be the same for TE and

TM input. A polarization dependent loss of 0.5 dB is tolerable. The add/drop filters

performance and wavelength stability must be insensitive to environmental changes. This

is mostly a packaging issue. Commercial devices must also meet the Bellcore reliability

standards. In addition, for multi-channel devices the response from channel to channel

must be uniform.

The three predominant technologies [7] currenly available for add/drop filters are: di-

electric thin-film filters (DTFs), fiber-bragg gratings (FBGs) [8], and arrayed waveguide

gratings (AWGs) [10]. Arrayed waveguide gratings are fabricated on a planar integrated

substrate whereas the other two technologies use discrete components. Dielectric filters are

the predominant filters for 200 GHz channel-spacing WDM systems. Although available for

100 GHz spaced channel applications, it is difficult to make 50 GHz spacing dielectric fil-

ters. FBGs on the other hand are available for 200 GHz, 100 GHz and 50 GHz applications.

Since they are a reflection based devices, an add/drop filter using FBGs requires two optical

circulators to separate the input and output signals. Optical circulators are expensive and,

as a result, FBGs are costly. Moreover, it is difficult to achieve large passband widths using

FBGs and thus this technology may not be well adapted to 40 Gbits/s bit-rate systems.

Both FBGs and DTF filters serially drop wavelengths if used as Mux/DeMux filter and

are mostly suitable for low channel counts of 8-16. Higher channel counts lead to unac-

ceptable insertions losses. Typically, the devices are packaged to be environmentally stable

which may include temperature compensation techniques. However, it is difficult to actively

tune or reconfigure DTFs and FBGs, other than by using temperature. This mechanism is
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Figure 1-3: Fiber Bragg Gratings and Dielectric Thin Film filters are some of the commonly used

components in Add/Drop Filters

slow and may be a limiting factor for future systems that will require rapidly tunable or

reconfigurable add/drop filters.

AWGs, unlike the other two devices, are integrated filters typically fabricated in a silica-

based material system [11]. They simultaneously resolve all the WDM channels and are more

suitable as full spectral resolvers rather than add/drops. Add/Drop application requires

two back-to-back AWGs; an inelegant approach with large insertion loss. AWGs because

of their parallel approach naturally support high channel counts from 16 to 64. They are

available for 200, 100, and 50 GHz channel spacings [12]. They do, however, have higher

insertion losses. Moreover, packaging these devices is difficult and costly. Consequently

AWGs are quite expensive. Since AWGs are integrated on planar substrates it is possible

to integrate them with other components such as switches and lasers to form more complex

devices. However, since silica is an optically passive material, integration with active devices

such as lasers and switches requires heterogenous integration of different material systems.

This is very challenging and expensive. AWGs can also be made tunable by the use of

heaters that alter the refractive index of the waveguides. This mechanism is slow and, as

before, faster tuning strategies are prefered.

1.2 Add/Drop Filters
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A>

Figure 1-4: A schematic of an integrated Bragg grating showing the physical corrugation etched

on the waveguide; the device may include a top cladding layer that is not shown.

1.3 Integrated Bragg Gratings

As networks evolve towards sophisticated architectures, with more intelligence in the net-

work nodes, there is a push towards integrated optical devices that offer greater func-

tionality. Integration offers the potential for producing tunable, low-cost, compact and

manufacturable devices.

Integrated Bragg gratings are frequency selective devices that can be used as the basic

building block in add/drop filters. Like AWGs, integrated Bragg gratings are fabricated

on a planar substrate with the two main choices of materials systems being Silicon-based

and InP-based. Unlike FBGs, where the gratings are produced by a UV-induced photo-

refractive index change of the core of the fiber, integrated gratings are formed by etching a

physical corrugation on a waveguide, Fig. (1-4). Integrated gratings are specified in terms of

waveguide geometries and grating etch depths. These geometries are defined by fabrication

processes that are controllable and allow greater freedom in designing the properties of

integrated Bragg grating structures. The integrated gratings structures are much smaller

than fiber-optic based devices, thus packing more functionality into less space. Unlike FBGs

the separation of the input and output signals can be performed by integrated techniques

which by-pass the need for expensive discrete components such as circulators and isolators.

Gratings fabricated in InP-based material systems can be readily integrated with active

devices such as lasers and detectors to form complex sub-systems. Moreover, gratings in InP

Ii-



can be made tunable by using active techniques such as current injection (13] and reverse-

biasing [14]. These control mechanisms are much faster than temperature tuning [15] and

are thus promising for next generation rapidly re-configurable add/drop filters. Furthermore

the integrated devices offer the potential for mass-production with many devices being made

on each planar substrate thereby reducing cost of the devices.

1.4 Outline of Thesis

This thesis provides an in-depth study of optical filters made using integrated Bragg grating

structures. Various topologies for making add/drop filters using integrated gratings are

outlined. Each class of devices is studied in detail and the theoretical tools needed for

designing the add/drop filters are developed. The relative advantages and disadvantages of

the various possiblities are outlined. Preliminary integrated Bragg grating devices in InP

were designed, fabricated and measured as part of the thesis work.

Chapter 2 introduces basic waveguide mode concepts and waveguide couplers. This

chapter is intended to introduce the notation which is used in subsequent chapters and is

not meant to be an exhaustive study of waveguides.

Chapter 3 derives the Coupled Mode Theory in space equations needed to analyse inte-

grated Bragg structures. A generalized transfer matrix method for solving these equations

is developed. Apodized gratings, chirped gratings, Bragg resonators and their spectra are

analysed. These are the basic building blocks of all the devices that follow. The alter-

nate Coupled Mode Theory in time representation of resonators is introduced and related

to equivalent circuits. The chapter concludes with a discussion of Mach-Zehnder based

add/drop filters using these structures along with design considerations.

Chapter 4 introduces the second class of optical filters that are possible using Bragg res-

onators. These devices are formed by side-coupling Bragg resonators to optical waveguides.

A first-order add/drop filter made using this topology is discussed in detail. The design

parameter choices and constraints are outlined. Higher-order filters are motivated and a

topology to use Bragg resonators to form higher-order filters is derived. Equivalent cir-

cuit techniques are used to enable higher-order filter optical parameter selection by refering

to standard LC-ladder circuit tables. Limitations of this topology motivate the following

chapter.

Chapter 5 discusses an alternate topology which uses coupled Bragg resonators side-
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coupled to two waveguides to form add/drop filters. This topology allows "traveling-wave"

device behavior to be reproduced by using degenerately coupled standing wave resonators.

A scheme to design higher-order add/drops capable of complete power transfer is derived;

optical parameter selection is again reduced to looking up standard LC-ladder circuit tables.

Chapter 6 presents the measurement process and results on a preliminary set of fabri-

cated devices. The measurement data is used to extract optical parameters of the devices

and compared with designe values. Comparison between Coupled Mode Theory and the

data is also presented.

The thesis ends with a conclusions and future-work section.
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Chapter 2

Waveguides and Couplers

The most basic device used in integrated optics is a dielectric waveguide. Its function is

analogous to that of wires in integrated electronic circuits guiding optical energy to the

various locations on the photonic chip. Dielectric waveguides have been studied extensively

and are the subject of many books [17, 18, 19]. No attempt is made here to reproduce that

work; instead this chapter focusses on introducing some basic waveguide theory concepts

and notation which is used in later chapters.

2.1 Waveguide Modes [18]

A dielectric waveguide in most general terms is an axial system which is defined by a

dielectric cross-sectional distribution, e(x, y) or equivalently an index distribution n(x, y).

For a purposes of analytical considerations a waveguide is assumed to be uniform in the

axial direction, defined to be the z-axis. A waveguide generally consists of a region of

high index surrounded by regions of lower index. Many possible configurations exist but

cross-sections of two of the most common waveguide geometries are shown in Fig. (2-1).

These are the channel and rib waveguide geometries. A channel waveguide has a central

core region surrounded by bottom and top cladding regions. Typically the cladding regions

have the same index. A rib waveguide has a cross-sectional profile as shown in Fig. (2-1).

The region of high index is either n 2 or n 3 and often the top-most cladding layer is air.
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(a) (b)

Figure 2-1: Two commonly used waveguide geometries: (a) buried channel waveguide, (b) rib

waveguide.

2.1.1 Normal Modes

The electric field, E, and the magnetic field, H, solutions in the guide which stay bounded

for infinite x and y in the absence of a source and have an e- 3 z dependence are called the

normal modes or eigen-modes of the waveguide. They satisfy Maxwell equations:

)3ET - jVTEz = -wlpiz x HT (2.1)

L3HT - jVTHz = wpiz x ET (2.2)

VT (iz x ET) = jwipHz (2.3)

VT- (i4 x HT) = -jupEz (2.4)

where the subscripts T and z represent the transverse and longitudinal components respec-

tively. iz is a z-directed unit vector. The coordinate system is defined in Fig. (2-1) and 3

is the eigen-value or propagation constant of the mode. Since the guides are assumed to

be uniform in the z direction, the field profile remains constant to within a phase factor

along the axis of the waveguide. The entire z dependence for a axially uniform waveguide

is encapsulated in the phase factor e-iz. Forward traveling modes have Re{f3} > 0 and

backward traveling waves have Re{f#} < 0.

All waveguides support an infinite number of independent normal modes. Typically

these modes are labelled according to some property of the modal solution which is waveg-

uide dependent. For instance in a slab waveguide the mode labels may correspond to the

number of electric field zero crossings in the core of the guide. In general we can label the
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normal modes using an abstract index n which spans a set M with infinite members. Due

to a z-mirror symmetry assumed for an ideal waveguide a forward travelling mode (n) can

be transformed to a backward traveling modes (-n) and the relationship between them is

as follows:

mode (+n) : {STn(x, y), +zn(x, y), 'HTn(X, y), +-zn-(X, y) e-jz (2.5)

mode (-n) : {En(X, y), -Ezn(x, y), -- n (x, y), +zn(x, y) }e jZ (2.6)

Normal modes of dielectric waveguides fall into two sets: one set has a finite number

of elements, which could be zero, with discrete values of the propagation constant 03,; its

members are called discrete or guided modes. Guided modes carry finite power and are

confined in space such that the fields decay to zero as x and y tend to infinity. They do not

carry time-averaged power out of the waveguide radially. Guided modes have a physical

meaning individually and are the modes of the dielectric waveguide that are most useful

in transporting power from one point to another with minimal loss of power. The other

set of normal modes have infinite elements with propagation constants /3 which span a

continuous range rather than a discrete set of points; its members are called continuous or

radiating modes. Radiation modes have a finite value at (x, y) -- oc and do carry infinite

power individually. They also carry power radially out of the waveguide and contribute to

loss. Individually radiating modes do not correspond to physical excitation but integrals

over the continous range of radiation modes can produce physical fields. This is obvious

in the case of plane waves, e-jk r which are the normal modes of a homogeneous dielectric

medium "waveguide". The values of the propagation vector, k = (kxi,, kyiy, kziz) span a

continuous range with kf2 varying from -oo to +oo. Even though individually these modes

do not carry finite power they can be summed up to create field distributions with finite

power.

The number of discrete or guided modes depends on frequency. Typically a discrete

mode vanishes below a special frequency called the cut-off frequency which is characteristic

to the mode. On the other hand radiation modes exist at all frequencies as they span a

continuous 3 range.The most general solution to Maxwells equations in any part of the

waveguides limited by two cross-sectional planes is a linear combination of all the forward

traveling and backward traveling normal modes and is given by [18].

E(x, y, z) EAn Sn(X,Y) e113nZ + BXn (2.7)

H(x, y, z) nE[ 1 'n (X, y) J 1 n (x, y)

2.1 Waveguide Modes [18] 33
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where E(x, y) and R(x, y) are the z-independent part of the field and can have x, y or z

components, i.e S(x,y) = {Ex(,y),Ey(x,y), Ez(x,y)} . An and B, are the coefficients of

the forward traveling and backward traveling waves and can be uniquely determined by

matching boundary conditions at the two cross-sectional planes. The relation between the

(+n) modes and the (-n) modes is defined by eqs. (2.5) and (2.6).

2.1.2 TE, TM and hybrid modes

Normal modes with Ez = 0 are called TE or transverse electric modes. Likewise modes

with H, = 0 are called TM or transverse magnetic modes. Slab waveguides for example

can have strict TE and TM modes such that the field E or 'H is polarized exclusively in

the y direction. Generally dielectric waveguides do have non-zero E, and H, and support

hybrid modes. However, often it occurs that at least one of the components dominates and

the modes can be considered quasi TE or TM.

2.1.3 Completeness of normal modes

The principle of completeness of normal modes states that any two component distribution,

VT(X, y) can be expanded or represented as a linear combination of the transverse electric

(or magnetic) field of the normal modes of the waveguide system, i.e

VT(X, y) = an ETn(X, y) (2.8)
nENA

or:

VT (X, y)= bn Tn(X, y) (2.9)
nEjV

In a sense this is generalized "Fourier" representation of an arbitrary distribution VT(X, y)

in terms of a complete basis set of functions; in this case the basis set is the set of eigen-

modes of the waveguide system. It should be pointed out that VT(X, y) has no a priori

relationship to the waveguide.

Completeness of the normal modes of a waveguide is a very important property that

allows us to use perturbation techiques to analyze non-ideal waveguides which are not

uniform in the axial direction. The fields in the non-ideal waveguide are expanded in terms

of the modes of the ideal waveguide system as in eq. (2.7). The unknown coefficients An(z)

and Bn(z) are now assumed to have a z dependence which is caused by the perturbation.

By relating the coefficient to the perturbation, differential equations can be written down
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2.2 Coupling between Waveguides

in terms of the coefficients and the perturbation. In fact we will utilize this technique in the

following chapter to derive the Coupled Mode Theory that models the behavior of Bragg

gratings.

2.1.4 Orthogonality relations

Another interesting property of normal modes is that they obey an orthogonality relation-

ship. In its most general form this relation is:

J Em(x, y) x Hn(x, y) -i, dx dy = Nmm n (2.10)

where Nm is an arbitrary function of m and determines the normalization of the modes.

J,, is the generalized Dirac delta function. The above orthogonality relationship is always

valid whether the guides are lossy, have gain or are lossless. However, in the case of lossless

guides the normalization can be written as

II Em(x, y) x R *(x, y) - iz dx dy = 2Pm Jmn (2.11)

For the case of a truly guided mode (m) with a real propagation constant 0"m, Pm is the

power carried by the mode. Moreover for the special case of the fields being TE modes, i.e

E, = 0 the orthogonality conditions simplifies to

2wy fJ &ETm(x, y) - rn8(x, y) dx dy = 2Pm mn (2.12)

A corresponding expression exists for TM modes in terms of the transverse )RT(x, y) field.

Note that the normalization factor is arbitrary and we may choose the following convenient

normalization for the orthonormal TE normal modes:

JJTm(X, Y) -Er(x, y) dx dy = (mn (2.13)

Using the above orthogonality relationship we can find the generalized Fourier coefficients,

an, of the expansion in eq. (2.8). They are

am JJ VT(x, y) -Srm(x, y) dx dy (2.14)

2.2 Coupling between Waveguides

When two waveguides are fabricated next to each other as shown in Fig. (2-2) the fields in

one guide extend via the evanescent tails to the other and can excite a mode in the adjacent
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Figure 2-2: Two coupled waveguides; coupling occurs via evanescent tails of the waveguide modes.

guide. Figure (2-3) shows an overlay of the first guided modes (the guides are assumed

single-moded at the wavelength of operation) on the waveguide structure. We see that the

evanescent tails of the mode of guide 1 extend into guide 2 and vice-versa. These fields

in guide 1 are associated with a polarization current density which can excite a mode in

guide 2. If power is launched in guide 1 it eventually transfers completely to the guide 2

provided the propagation constants of two guides are identical. If the propagation constants

are mismatched the power transfer is incomplete [20, 21].

Electric fields in any medium defined by a dielectric distribution, E(x, y) obey the fol-

lowing wave equation in the absence of a source.

V + + W2 Iie(x, Y)) E(x, y, z) = 0 (2.15)

The fields in the the coupled waveguide structure must obey the wave equation which

simply follows from Maxwell's equations in the absence of a source. The waveguide coupling

problem can be solved using the technique alluded to above which involves coupling the

normal modes of the unpertubed waveguide structures [21]. Consider the case of the two

planar waveguides coupled to each other. Figure (2-3) shows the dielectric profiles of the

individual waveguides in the absence of the coupling. The are denoted by Ei(x) and E2(x)

for waveguides 1 and 2 respectively. The electric fields in the unperturbed structures are

denoted by E 1 (r) and E 2 (r) respectively and are given by:

Ei(r) = A'iE1(x,y)e--iz (2.16)

E2 (r) = A'E 2 (x,y)e-iO2z (2.17)

In the absence of the perturbation provided by the presence of the adjacent guides, the

Waveguides and Couplers
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Figure 2-3: Dielectric distribution of the unperturbed waveguides and coupled-waveguide struc-

ture.

fields obey the wave equation

VS 1(x, y) + (w2lE1(x, y) - /2)E (x, y)

V2 E2 (x, y) + (W2112(x, y) - t2)&2(x, y)

=0

=0

(2.18)

(2.19)

where the amplitudes A' and A' are constants. The unperturbed waveguides modes prop-

agate undisturbed along the z-direction.

The field in the composite coupled structure must obey eq. (2.15) with c(x, y) = E3(X, y).

We assume the total field solution, E(x, y, z) is a combination of the modes of the unper-

turbed structure.

E(x, y, z) = A'i(z) E1(x, y)eijliz + A'(z)E 2 (x, y)e-jO2z
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where the amplitude coefficients A'(z) and A'(z) are a function of z. This is necessary to

allow for the fact that the perturbation enables transfer of power from one waveguide to

the other. Substituting the above in eq. (2.15) with E(x, y) = c3 (X, y) we find that:

{V2 E(x,y) + (w2pEi(Xy) _ 02)Ei(x, y)} A(z)eijf1z +

{VS 2 (X, y) + ( X2 ,2( ,y) - 32)S 2(x, y)} A2(z)e-fl2z +

w2 y(63(X, y) - ci(x, y)) A'(z) - 2jwol dA 1 E (x, y)e-ioiz +

W2 P(E3(X, y) - 2(X, Y)) A2(Z) - 2jw 2 d2 }62(x, y)e-/02z - 0 (2.21)

where we have assumed that
d2A' dA (222

dz 2  < Oi (2.22)

This assumption merely states that the perturbation caused by the presence of the adjacent

guide is relatively small so that the changes in field amplitudes occur over distances much

larger than the propagation wavelength. The first two terms in eq. (2.21) are zero as

the unperturbed fields obey their respective wave eqs. (2.18) and (2.18). We multiply eq.

(2.21) by E* (x, y) and integrate over the cross-section. Using the normalization condition

we obtain the following equation:

[dAi + jMiA'] e-jo1z
dzI

A similar equation follows if we multiply eq.

cross-section.
d2 + jM2A'] ej2z

hdz

where

M(1, 2) =[63(X)

(2,1)

Sjp12A'2eJ2Z = 0 (2.23)

(2.21) by SE(x, y) and integrate over the

+ jiP21A'e-Jz = 0

E(1, 2)()] 1(1, 2)(X)12 dx

(2.24)

(2.25)

(2.26)

(2.27)

P12 = J [E3(x) - E1(x)] E2(x)E*(x) dx
D 2

P21 = f- [E3(X) - E(2)(W)] Ei(x)E2*(x) dx

and where Di indicates an integral over the cross-section of guide i. This follows from the

fact that (E3 - Ei) is only non-zero across the core region of guide j = i. Note that when

the two guides 1 and 2 are identical then P12 = P*. In fact it can be shown that even if

the guides are dissimilar the above relation holds true [20]. We can see how this may be
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true by considering the integrals for P12 and P21. Notice that these integrals are taken over

different cross-sections. If the guides are not identical then the products of the field values,

E1E2*, and E28j* at the cross-sections of the two guides are different such that P 12 =12 still

holds true. In fact power conservation requires this relationship between t112 and /p21. By

defining new quantities A 1 (z) and A 2 (z) to represent the total z-dependence,

A1(z) = A'(z)e~13 1z (2.28)

A 2 (z) = A'(z)e-j2z (2.29)

the coupled mode equations can be rewritten as

dA 1  j11A1 + jMiAi + jP12 A 2 = 0 (2.30)
dz

dA2 + j 2 A 2 + jM 2A 2 + jp2lA1 = 0 (2.31)
dz

Furthermore M(1,2) is a second-order term and significantly smaller than pij. To first-order

it can be ignored and the equations modelling the behavior of two coupled waveguides can

be rewritten as:

dA = -jiAi - jpA2  (2.32)
dz

dA 2  -j' 2A 2 - j/1A1 (2.33)
dz

where we have used the fact that P12 and /121 are real. If modes are launced in each of the

guides at z = 0 with amplitudes AI(0) and A 2 (0) then the solution of the above equations

is given by [20]:

Al(z) = A,(0)( cos'3oz + J.02 sin 3oz - P A2(0) sin 0/z . e-i[(31+02)/2] 2.34)

A 2 (z) = [j A,(0) sin Oz + A 2 (0)( cos 0oz + J 200 si n 00z) e-i[(01+02)/(z35)

where

0= +|P2 (2.36)

This discussion above is intended to motivate a derivation of the Coupled Mode equations

describing waveguide couplers. For an exhaustive and rigorous treatment of the subject the

readers are referred to [22, 23, 24]
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Chapter 3

Bragg Gratings

In the previous chapter we saw that a dielectric waveguide can support TE and TM guided

modes. These modes are orthogonal to each other and if excited in an ideal waveguide with-

out imperfections, propagate along the guide undisturbed with their characteristic group

velocities and propagation constants, 0m, without interacting with one another. However,

practical waveguides are not without imperfections. The imperfections can be in the form

of index inhomogeneities, rough surfaces, non-uniform widths of the guide, etc. These im-

perfections can result in the guided modes of a waveguide interacting and exchanging power

with each other [17]. Thus, it is possible for energy from one mode of the guide to couple

to another mode propagating in the same guide. In many cases this is not desirable. For

example, if guided modes couple power to the continuum radiation modes, it results in

waveguide losses. However, coupling between modes is not always an undesired effect. In

fact, in some structures perturbations are intentionally introduced so as to couple modes.

One class of such devices are the distributed feedback (DFB) structures or Bragg gratings.

Bragg gratings are produced by periodic perturbations in the refractive index [25] along

the length of the guiding structure. In integrated optical devices this periodic variation is

typically produced by etching a corrugation on a dielectric waveguide as shown in Fig. (3-

1). Other techniques to make gratings include using photo-sensitive uv effects to produce

periodic variations in the material index. These techniques are more common in optical

fibers and produce weaker gratings [8]. Gratings couple the forward and backward travelling

waves of the same mode, when appropriately designed. This is due to coherent reflections

from adjacent dielectric interfaces. Mathematically gratings are most conveniently described

by Coupled-Mode Theory (CMT) which uses perturbation theory. The equations describing
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/

Figure 3-1: An integrated Bragg grating in InP and its dimensions. Top cladding InP layer not

shown.

the behavior of the optical modes in the DFB grating will be derived using perturbation

theory. Gratings are the basic building block of all the devices to follow in the dissertation

and their behavior will be discussed in detail. Spectral response of uniform, apodized,

chirped and phase-shifted gratings will be calculated.

3.1 Coupled Mode Equations

Figure (3-1) shows a schematic of an integrated Bragg grating. All the Bragg grating

devices were fabricated in an InP material system by etching a periodic corrugation on the

top surface of the InGaAsP core. The waveguide was then overgrown (not shown in the

fig.) with an InP cladding layer to form a channel waveguide. Bragg gratings made by

physically etching a corrugation in a guide, as opposed to using photo-refractive effects,

have stronger reflection characteristics than a UV-induced grating of an equivalent length.

Before we derive the Coupled-Mode equations describing a Bragg grating, let us gain some

insight by considering what happens to the optical wave in the region of the corrugations.

Across the cross-section of the corrugations the optical waveguide mode is presented with

a region of alternating refractive index. Consequently, we expect part of the mode to be

reflected at each interface between a tooth and a trench. The amount reflected is related

to the difference between the index of the core and the cladding regions. In the limit when
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a grating consists of regions of alternating dielectric slabs the reflection at a given interface

at normal incidence is given by the familiar expression:

n2 - ni(3.1)
n2 + ni

where F is the reflection coefficient. At the immediately adjacent interface, the reflection

coefficient is -F as the indices are reversed. If the distance between the two interfaces is

exactly a quarter of the optical wavelength, such that the round-trip traversal phase is 7r,

the reflections from adjacent interfaces add in phase. At this wavelength, called the Bragg

wavelength, AB, we expect a strong reflection from the grating. This simplistic reasoning

suggests that the Bragg grating is a frequency sensitive reflector which couples the forward-

propagating and backward-propagating waveguide modes. To quantify this coupling and to

exactly determine how the response of the grating varies with frequency we will resort to

an approach which treats the corrugations as a perturbative effect and derives a simple set

of equation characterizing the Bragg grating [21].

The electric field in the integrated Bragg grating obeys the wave equation

V2E = 2E 02ptotV2E = puo 0 &E2 + ____2 (3.2)

It is convenient to separate the total polarization density, Ptot, into two parts, namely the

polarization of the unperturbed waveguide, PO, and the polarization produced due to the

perturbation, Ppert. Thus,

Ptot ± PO + Ppert (3.3)

where

Po = EoXeE(r, t) = [e(r) - c,]E(r, t) (3.4)

and E(r) is the dielectric constant of the unperturbed waveguide.

As mentioned in the previous chapter, the modes of the unperturbed waveguide form a

complete orthonormal set. Any field distribution in an arbitrary waveguide structure can be

expanded as a superposition of the modes of the unperturbed waveguide. The orthonormal

set consists of all the guided modes, TE and TM and the continuum of radiation modes.

To be specific, we treat the case of a TE distribution. Extension to an arbitrary guided

distribution is straightforward but unnecessarily complicates the notation and thus will not

be attempted. The electric field Ey in the perturbed structure, i.e grating, is written as

a superposition of the modes of the unperturbed guide [24]. For notational simplicity we
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will assume that the radiation modes are discrete and included in the summation of eq.

(3.5). Even though this assumption is not strictly valid, we will see shortly that it does not

affect the result of the derivation. Consequently, the electric field, E., in the Bragg grating

structure can be written as

E,(r, t) = I A'm(z)E7(x, y)ei(wt--3mz) + B'm(z)EF'(x, y)ej(wt+mz) + c.c. (3.5)

The first term in the summation represents the forward-propagating mth mode of the un-

perturbed waveguide; the second term represents same mode travelling in the opposite

direction. The weighting coefficients A'm and B'm are functions of z to account for the fact

that the perturbation itself has a z-dependance.

Recall that Eg(x, y)ej(Ptf mz) are solutions of the unperturbed waveguide and hence

obey the following equation:

V2E8m(x, y) - /m 2 Em(X, y) = -w 2 P,(r)E~m(x, y) (3.6)

where

a2v2 IS + z

v2 a2 a2

Using (3.3) and (3.4), we can rewrite (3.2) as

a2E _2E 
2 P pert

VTE + -z -26t 2 -o 2

Substituting the expression for the electric field distribution, (3.5), in the above equation,

we find

eft{ Em A (VT - 13m2 + W 2 [o(r))EY(X, y)ei-jmz

+ Em B'- (V - 3m2 + w 2 [tO(r))E&m(x, y)ej 3 mz

+ m (,92 Am - 2j3m Am ),ym(x, y)e-jmz

+ m (,2 B + 2j,3~m9Bm)gm(x, y)ejmz}

= d [Ppert]y (3.7)

The above equation can be simplified considerably by realizing that the first two sum-

mations are zero according to (3.6). Thus far no approximations have been made. The
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above equations are exact provided we assume that the modes of the unperturbed guide

form a complete set. We now make our first approximation. Since the perturbation is

small, we assume that A'm and B'm are slowly varying functions of z. This is a reasonable

assumption since in the limit that the perturbation tends to zero we expect A'm and B'm

to become constants; i.e the fields in the summation are eigenmodes of the unperturbed

structure and propagate indefinitely along the waveguide without any change. Using this

"slow" varying approximation, we conclude that [21]

a2 A'm < A'
2 < m z'

and
a2 B'm < 3MoB'm

Oz 2  « 9 Z

These inequalities simply state that A'm(z) and B'm(z) change very slowly over distances on

the order of a single optical-mode wavelength. This assumption is consistent with treating

the corrugation as a perturbation, which means that it can not have large effects on the

optical field over short distances. Taking this into account, we can rewrite (3.7) as

z A'm _ ___B'm ejm 2m_

ejt -/3m &m J-jz m(x,y) + c.c = Apo a2 [Ppert]y (3.8)

We use the orthonormality of waveguide modes to isolate a single mode from the summation.

In this chapter we use a slightly different normalization condition for the fields. Instead of

normalizing the power in the mode to unity we choose the integral of the square of the E

field to be unity. This choice yields a particularly simple form for the coupling coefficient,

as we will see later.

EN(xy) 01(x, y)ddy = 5tm (3.9)

as found in chapter 2. (61m is the Kronecker delta function.) Multiplying both sides of (3.8)

with £F (x, y) and integrating over x, we obtain

dA'S ej(Wt-Osz) - dB's (wt, 3 .z) +c~ C./C PO2 0"O
dA'} _)[Ppertly& Sy(x, y)dxdy (3.10)

The above equation relates the forward and backward propagating sth mode to the pertur-

bation polarization current density. We have not yet discussed how Ppert is related to the
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perturbation. The corrugations along the guide can be described by a dielectric perturbation

AE(r) such that the total dielectric constant Etot is given by

ftot = C(r) + AE(r) (3.11)

In general AE may be purely real, imaginary or complex. For our purposes AE may be

considered purely real. Note that since Ae is a scalar, we see that these type of structures

can only couple TE to TE and TM and TM modes [21]. It is not possible to couple TE to

TM with a Bragg gratings. We know that

EtotE = c0E + Ptot

where Pt0t is the total polarization defined in (3.3). Using (3.3), (3.4) and (3.11) in the

above expression, we find that

Ppert = AE(r)E

Use of eq. (3.5) and the above expression yields

dA'S ej(wt-3sz) - dB'S ej(wt+,z) + c.c =
dz dz

jW]~eJ ffo AE(r)SY9(x, y)Ey7(x, y) [Em A'(z)eijmz + B'(z)ejmz] dxdy (3.12)

AE(r) is a periodic function of z which can expanded in a Fourier series as:

AE(r) = AE(x, y)E ane A
n

where

A (x,y) = { 2 --if IX d

0 |xi > dg

and A is the wavelength of the perturbation. Use of the above expression in (3.12) results

in

dA's e-jfsz _ dB's ej,z - _jk f AE(XY)S(X, ) M (Xy ) xdz dz 2/38 ]]00 C

z an E A', (z)e-j(O- - ')z + BIm(z)e( m )z dxdy

where we have divided out the common time dependence, eiwt. The term on the right hand

side acts as a driving term for the propagating modes A', and B',. Only the term which is

phase matched to those on the left side will effectively couple to them. Thus, if there is a
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term on the right hand side of the form e-j1Z where / ~ it will strongly couple to the

forward travelling mode, A',(z) and we can ignore the contribution due to those terms for

which 3 is not approximately equal to i3. [21] To be specific, let us assume that

7r
o =Os (O)1

so that
27r

i3s(wo) - -K -13s@'o)

For this case the term on the right hand side which effectively couples power to the

forward propagating mode is m = s and n = -1. Similarly the term which effectively

drives the backward propagating mode is m = s and n = 1. Writing out the equation for

the modes separately, we obtain:

dA's Fjko2 I [fys AX Y dy 2 2j(O,-!)z

dz 20s a- dxdyj BIse( A (3.13)

dB' [jk2 al E 2dxdy A'se- 2 ( s-)z (3.14)

We define the following coupling coefficients

KAB j -k- a-1 A EY)[& y)]2dxdy (3.15)

KBA j k2 al (XI y)]dxdy (3.16)

Using these definitions of coupling coefficients (3.13) and (3.14) can be rewritten as

dA's = KABB'se2j(3 ,-')z (3.17)
dz

dB's = BAAse-2j(-z(3.18)

dz

Implicit in the above derivation is that A's and B', correspond to guided modes. The above

discussions suggest that the only coupling is that between the forward and backward propa-

gating guided mode s. This is the most dominant coupling. In general, however, s could be

radiation modes phase-matched by the grating to a guided mode. In ignoring other terms

in the summation we have not taken into account this kind of coupling which contributes to

radiation loss from gratings. To express the above equations in the conventional coupled-

mode form, we define two new quantities A(z) and B(z) which are related to A',(z) and

B's(z) as follows

a(z) A(z)ei-joz = A's(z)e--Jfz (3.19)

b(z) B(z)ejoz = B's(z)eijsZ (3.20)

3.1 Coupled Mode Equations 47



Reference Plane 2 Reference Plane 1

A=
2 neff

Figure 3-2: Reference planes for defining the grating strength parameter, r

The total z-dependence of the modes is expressed by either side of the above equations and

denoted by the lower case variables, a(z) and b(z). Substituting for A', and B', into (3.17)

and (3.18) we get

dA(z) = -j6A(z) + KABB(z)
dz

dB(z) = j6B(z) + rBAA(z)
dz

where
ir

6 = 3, (3.21)

Expanding 3 (w) around w, we find that

df3
#s~wo) = 3(oo)w+wo - )W=Wo

= ( -wO)
V

9

where we have used the fact that the group velocity, V9 = -. The above expansion assumes

that dispersion effects in the guide are negligible and can be ignored, that is <

Consequently,

V
9

and is the "frequency" parameter of the system. Note that the definitions of rAB and rBA

have Fourier coefficients, a±i. These coefficients depend on where we define the reference

plane for the series expansion. Consequently the phase of KAB and KBA depends on our

choice of the reference plane. Two obvious choice of planes are marked in the Fig. (3-2).

For the choice of plane 1, from the symmetry of the waveform we know that

a, = -a_ 1 and R{a±} = 0
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For this case, then KAB and KBA from eq. (3.15) are purely real and equal to each other.

KAB = KBA K

and the coupled mode equations become

dA = -jSA + B (3.22)
dz
dB = j6B+A 

(3.23)
dz

Likewise if plane 2 is chosen, from the symmetry of the waveform we have

a, = a_1 and {ai} = 0

In this case rAB and 1 BA are imaginary and are of opposite signs; i.e they are complex

conjugates of each other.

1 AB = KBA = 5K

KAB and KBA are complex conjugates of each other. For an arbitrary reference plane, power

conservation requirements can be used to show that KAB and KBA are always complex

conjugates of each other, i.e

KAB = KBA

and in the most general form the coupled mode equations are given by

dA = -j6A + KB (3.24)
dz
dB = j6B + *A (3.25)
dz

For the choice of reference plane 1, substituting the above result in eq. (3.15) we find

that

K JJAn2(X, y) [E, (XY)] 2 dxdy (3.26)
A neff f J

where

A2(Xy) 2Ac(x,y)
EQ

i.e

n2(n 2- n 2) |J < deAn 2(XY){ 0 2 I d
0 \x| > dg

The integral is limited to the cross-section of the grating. For a first-order square wave

oscillation of the index, the coupling coefficient K is given by

K = IAn2 i' (3.27)
A neff



where F is the overlap integral of the power in the field over the cross section of the grating.

Having derived the coupled mode equations for the distributed feedback structures, we turn

to solving them and studying the response of a passive Bragg grating.

3.1.1 T-matrix Formalism

The coupled mode equations describing the Bragg grating are set of two first-order coupled

differential equations with constant coefficients. These equations are very simple to solve

analytically. However, we will cast the equation in matrix form as an eigen-value problem.

The reason for this approach is that it is very general and is suitable for structures discussed

later in the thesis which are described by more complicated 2N x 2N equations. The coupled

mode equation cast in matrix form are:

d A(z) -j K A(z) A(z) (3.28)
dz B(z) * J B(z) M B(z)

which is the eigenvalue problem

MA =yA. (3.29)

where -y are the eigenvalues and the vector A represents the field-amplitudes and is given

by

.. A(z)
A(z) =

B(z)

The most general solution of eigenvalue problems is given by [26]:

A(z) = S A(z) - (3.30)

where S is a matrix with the eigenvectors of M as its columns. A is a diagonal matrix with

the exponentiated eigenvalues of M, e2Q, along its diagonal. -Yi is the ith eigenvalue and 5is

the vector of weighting coefficients which indicates how much of each eigenvector is excited.

c is determined from the boundary conditions. Thus if A(z) is known at z = z, using eq.

(3.30), the weighting coefficient vector c is given by:

C= [ A(zo) ]-'[ ]1 ZA(z,) (3.31)

Combining the above equation with eq. (3.30) we find that A(z) is given by

)= SA(z) [A(zo)] 1 [- A(z,) (3.32)

A (z) T (z, zo) A(zo) (3.33)
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Thus if we know the forward and backward propagating field amplitudes, A(z), at location

z = z, the transfer-matrix T(z, z,) allows us to calculate the field amplitudes A(z) at any

other location.

N Coupled Structures

In general an arbitrarily coupled system of N waveguide structures is described by a 2N x

2N matrix, M describing the interaction between each of the N forward and backward

propagating waves. The transfer-matrix, T(z, z,) in this case is given by

T(z, z,) = S A(z) [X(z) ]-1[9]-1 (3.34)

with

S C

I
V1

I

e~z

I
V2

I

... V2N

I )
A(z)

(3.35)

(3.36)

e'2N z

where S has the 2N eigenvectors of M as

exponentiated eigenvalues of M along its di

forward and backward propagating fields ar

A(z,) =

its columns and A is a matrix with the 2N

agonal. If the mode amplitude values of the N

e known at any z-plane, for eg. at z = z, i.e

A 1 (z,)

AN(zo)

Bi(z,)

BN(ZO)

the transfer matrix T(zi, z,) can be used to determine the

by

A(zi) = T(zi, z,)A(z,)

field amplitudes at z = zi simply

(3.37)
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If a system is made of n piece-wise constant sections the transfer matrices can be cascaded

such that

A(zn) = T(zn, zn-1) -T 2(z2, zi)Ti(zi, z,) A(z,) (3.38)

T T(z, z,) A(z,) (3.39)

and the combined transfer matrix is the product of the transfer matrices of the n regions.

Figure (3-3(a)) shows this transformation schematically. This simply follows from the con-

tinuity of the field amplitudes at the interfaces between adjacent regions.

Typically, all the 2N field amplitudes are not known at a single z-plane. Rather the

boundary conditions are specified as inputs to the system, i.e Ai (zn) and Bi (z,) are known as

shown schematically in Fig. (3-3(b)). All the same, the transfer matrix approach can be used

to solve the problem. To solve this problem we must convert the tranfer-matrix, T(zn, z,)

to a scattering matrix, ST(Zn, z,). This is a relatively straightforward. As mentioned before

the transfer matrix relates the field amplitudes at z z, to those at z = zn, i.e

A(Zn) T, T2 A(z,,)
-. (3.40)

B(Z) T3 T4 B (z,)

The bold-faced quantities are the inputs to the system that are known. We can convert

the matrix so that the unknowns are expressed in terms of the known quantities. This is a

straightforward operation and the result is:

A(z,) T, T2 A(Zn) (.1

B(zn) T3T, T4 - T 3T1 T2  B(z0 )

with

STT (zzT2 _ (3.42)ST (Z Z (T3T11 T 4 - T 3 T 1 T2

For a N coupled structure system T 1 , T 2 , T 3 , T 4 are N x N block matrices contained

within 2N x 2N tranfer matrix, T(zn, z0 ). For a simple Bragg grating device Ti are just

numbers.

The general formalism discussed above can be used to solve an arbitrary system of N

coupled structures provided we can write down the matrix M describing the system and

the inputs to the system are know. This approach will be used repeatedly in the following

chapters.
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Figure 3-3: Schematic transformation across a n-section structure composed of N coupled waveg-

uides.
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3.1.2 Bragg Grating Response

We now apply this formalism to the case of a Bragg grating that is excited from one side.

The matrix, M has been derived earlier and is given by:

-j6
M = (3.43)

( * j6

The eigenvalues of this matrix can be found easily and are:

1Y=Y-7Y = I/I2 2 (3.44)

Similarly the eigenvectors of M are found easily and are given by:

V1= . , V2 = . (3.45)
25+,1 5+,Y2

Thus, using eqs. (3.35) and (3.36) we find that

e-Yz 0
A(z) = .

0 e-72z

Use of eq. (3.34) yields the transfer matrix, T:

cosh[y(z - z,)] - L sinh[y(z - z,)] * sinh[7-(z - z,)]
T (z, z,) = yl

Tz sinh[-y(z - z,)] cosh[7(z - z0)] + L sinh[-y(z - z,)]-Y l
(3.46)

For an input from the left side only i.e A(z,) = A, we can easily find the field ampli-

tudes at any other location in the grating by converting the transfer matrix, T(z, z,) to a

corresponding scattering matrix, ST(Z, ZO) using eq. (3.42). In this case we find that

B(z,,) -*sinh(-yL)
1P'(z") = (3.47)A(z,) cosh(yL) + L sinh(yL)

A__z__) 1
T (zo) A~z, (3.48)A(Z) cosh(-yL) + I sinh(-yL)

where L = Zn - z, is the length of the grating. The response is shown in Fig. (3-4(a)).

As expected based on the previous discussion a Bragg grating reflects light strongly over
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Figure 3-4: Frequency spectrum of a uniform Bragg grating.

a certain frequency range. The reflection peaks at the Bragg wavelength, i.e A = AB or

alternately 3 = 0. This is exactly the wavelength for which the the tooth and trench of a

grating are spaced by A/4 and the reflections from adjacent interfaces are precisely in phase.

At the Bragg wavelength the reflection and transmission are given by

17(z") = * tanh(Jr,|L)(Kf
1

T(z,)
cosh(JsfL)

(3.49)

(3.50)

We note that the strength of the reflected power depends on the jL product. This makes

good sense; r, is a measure of the strength of the reflection from a single interface between

the teeth and trenches of the grating. The total reflection is the cumulative reflection from

all the interfaces and thus depends on the length L of the grating. The stopband of the

grating is defined as the frequency range over which -y is real, i.e

6SB = ±r.

In terms of frequency the width of the stopband is given by

AWSB = 2
1v g (3.51)

In the frequency range within the stopband of the grating the eigen-values 7(1,2) are real

and the field amplitudes A(z) and B(z) decay or grow exponentially along the length of the
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Figure 3-5: Field amplitude variation along a grating at 5 0.

grating. Figure (3-5) shows the field amplitude as a function of distance along the grating at

the Bragg wavelength for a semi-infinite grating extending beyond z > 0. From eq. (3.24)

it is obvious that at 6 = 0 the field amplitudes are given by [20]:

A(z) = Aoe-I'z (3.52)

B(z) = K1 Aoe~Iz (3.53)
K

The other positive eigenvalue, 7 = +r, is not needed for a semi-infinite grating. Its inclusion

would lead to a solution that blows up at infinity. However, for a semi-infinite grating in

the region z < 0, the solution is given by:

A(z) = Acel'-1 (3.54)

B(z) = Acelrlz (3.55)

Outside the stopband the eigenvalues are purely imaginary and the fields can propagate in

the grating region and the reflection drops considerably. Thus as expected the grating is

a frequency sensitive mirror which couples the forward propagating and backward propa-

gating waves. Figure (3-4) shows the transmission response of the grating. From power
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3.1 Coupled Mode Equations

0

-5

-10

0-15

0
-20

-25

-30
-100

Reflected Power

IPA

Is, a,

aA:'

Isa A A %

A1 fg

AtN is *2

_1L 0 ~ 1 5 AA

0 100
Frequency (GHz)

200

Figure 3-6: Uniform Bragg grating response plotted on a logarithmic scale reveals high side-lobe

levels. The side-lobes decay slowly and results in high crosstalk levels from the adjacent

channel shown in the dotted line.

conservation the transmitted power and the reflected power are related by the following

equation:

IT 2  1 ] 12.

Outside the stopband we see that the transmission is almost completely restored.

Side-lobes in Grating Response

On a linear scale the Bragg grating response shows that it acts as a good reflector filter.

However, it is useful to view it on a logarithmic scale. This is shown in Fig. (3-6). We

can see that outside the stopbands the reflection sidelobes come back up quite high and

that the roll-off of these sidelobes is fairly slow with "frequency", 6. These sidelobes are

a problem if the Bragg grating is to be used as a reflection filter since the high side-lobes

means that the rejection outside the stopband is not adequate. To understand the source

of these sidebands, consider the eq. (3.25)

dB
= d jB(z) +r*A(z)
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The solution of this equation can be found by completing the form and is given by

B(z) = e"6z A(z')K(z')e~i6z'dzl (3.56)

This is an exact solution of eq. (3.25). However, A(z) is also unknown and we have to

solve coupled mode equations simultaneously. In the limit when we can assume that A(z)

does not deplete significantly and is to first order constant A0 , the above equation can be

rewritten as

B(z) = ei6 zAo {j K(z')e-iz'dz'

This non-depletion approximation is valid when the grating strength is "weak" and the

grating is "short" so that the incoming wave A(z) does not suffer significant change. In this

limit the quantity within the parenthesis looks like a Fourier transform and we note that

the reflected wave B(z) spectrally is the Fourier transform of the grating strength function

K(z). Thus for a uniform grating with a small sL product, the reflected wave must look

like a
sin(5L/2)

B(-L) = oL /2

where L is the length of the grating. This is confirmed by solving the coupled mode equations

eqs. (3.24) and (3.25) exactly using the tranfer matrix approach. The results are shown in

Fig. (3-7) for gratings with increasing r. As the rL product increases the spectral shape of

the reflected wave deviates from the sinc function as the non-depletion approximation does

not hold. For the sine function, the first sidelobe occurs when 6L ± t9 and the height of

the sidelobe is e 0.22L. Thus as rL increases we expect the sidelobe level to rise. This is

evident by looking at Fig. (3-7). For small rL products the ratio of the main lobe to the

first sidelobe is = 0.22. However, the maximum height that the main lobe can attain is 1.0

and thus as rL increases the height of the sidelobes increases relative to the main lobe.

3.2 Apodized Gratings

As we have seen in the preceding section a Bragg grating is a frequency sensitive mirror

which can strongly reflect wavelengths within its stopband. In principle, it appears that

a uniform Bragg grating can be used in WDM systems for filtering out a desired channel.

WDM systems typically require that the dropped channel is suppressed at least 20 dB to

25 dB relative to the on-going channels. At the Bragg wavelength, AB or equivalently at
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Figure 3-7: Uniform Bragg grating response for increasing

reflected power.

nL reveals effect on sidelobes and peak

6 = 0, the transmitted power is given by eq. (3.48). A

that

peak suppression of 25 dB requires

iL > 3.5.

Typical WDM systems have data channels spaced by 100 GHz. For filtering purposes its is

required that the 1 dB bandwidth of the add/drop filter cover 20% to 40% of the channel

spacing. For a uniform Bragg grating of KL = 3.5 product, the 1 dB bandwidth is given by

= t1.12
K

Using eq. (3.21) we can rewrite the above expression in terms of frequency

AfldB = 1.12,c
7rng

(3.57)

where ng is the group index of the guided mode. Using typical ng values for a Bragg grating

made in an InGaAsP/InP material, assuming AfldB = 30 GHz, we find that the grating

strength needed is , 10. The reflection spectrum for a uniform grating with rL = 3.5 is

shown in Fig. (3-6). We can see from the figure that the reflection spectrum has very high

sidelobe levels that decay slowly so that at the suppression of the next adjacent channel is

less than 20 dB. Suppression ratios of less than 20 dB are unacceptable for WDM channels.

Reflected Power
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3.2 Apodized Gratings



Typically the crosstalk from adjacent channels must be less than 25 dB. Thus the two

requirements of (a) suppressing the selected channel by more than 20 dB (b) keeping the

crosstalk from adjacent channels lower than 25 dB are difficult to meet with a uniform

Bragg grating. The KL product resulting from condition (a) results in high sidelobes which

make it impossible to meet condition (b) without reducing the AfldB-

We saw in the previous section that in the weak ,L regime, the grating response is given

by the Fourier transform of the r(z) function. For a uniform grating with ii(z) = , over

the length L of the grating, the response is a sinc function with certain height sidelobes. If

i.(z) had a triangular profile i.e

KO(1 + Z) if :L < Z < 0
AK(z) = L 2 - z

KO (I _ 2z) if 0 < Z < L

from Fourier transform relationship we recognize that the reflection spectrum would be

a (sinc) 2 and hence lower sidelobes. Thus, if i(z) has a profile or windowing function it

reduces sidelobes in the grating spectral response [27, 28]. This is reminiscent of windowing

functions used in signal processing for reducing sidelobes of digital filters [29, 30, 31]. By

having a non-uniform grating with a varying K(z) the grating sidelobes can be suppressed.

Gratings with a varying i(z) are called apodized gratings. From signal processing theory,

we are aware of several apodization or windowing functions like the "Hanning", "Hamming"

windows to reduce sidelobes (see Fig. (3-8)). To solve a grating with a varying i,(z) we do

a piece-wise analysis where we break the grating into n pieces and assume that the grating

strength is constant over each piece. This technique is a valid way of analysing apodized

gratings provided we use a large enough number of pieces, n. Typically this approximation

models the physical strucure very well since the fabricated structure is a concatenation of

piece-wise constant segments. In the previous section we saw that the transfer matrix, T is

a function of K, eq. (3.46). Moreover for a grating made of n sections the complete transfer

matrix is the product of the transfer matrices of the individual sections, i.e

Tzn, zo) = , , ) 3(3, Z3, Z2 2 (2, Z2, ziT 1(i, zi, z,) (3.58)

The transfer matrix method discussed above was used to calculate the apodized grating

responses shown in Fig. (3-9). The length of gratings used were such that

,(z')dz' = 3.5
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Figure 3-8: Apodized Bragg grating windowing functions to taper the grating strength, r'.

Comparison with uniform grating response, we see that the sidelobes have dropped con-

siderably. The different windowing functions have different sidelobe properties which are

discussed in detail in various signal processing books, [29]. We see that if gratings are to be

used as reflection filters in WDM systems to drop channels it is necessary to apodize the

gratings.

3.3 Chirped Gratings

In the above section we saw how it may be useful to change the grating strength along the

length of Bragg grating. Sometimes it is useful to chirp the period of the gratings along

their length. Chirped gratings are used for dispersion compensation [8, 32, 9]. Chirping

may also be used as a way to expand the width of the stopband of a grating while keeping

K constant. Once again, the approach used to solve a chirped grating will be to divide

the grating into n piece-wise regions of constant period, Aj. In each of these regions, the

coupled mode equations describing the wave interaction are

dA
dA -jjA+ rB (3.59)

dB jojB + r,*A (3.60)
dz

where from eq. (3.21)
6=

-i-# (0;=# -~- (3.61)
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Figure 3-9: Apodized Bragg grating responses for various windowing functions applied to the grat-

ing strength, n.

The transfer matrix for each of these segments is again given by eq. (3.46) where the

appropriate value of Ji is used. Thus the transfer matrix, Tj (Ai, zi, zi_ 1), of the ith region is

implicitly a function of the grating period Ai via 6,. In the previous section we have seen that

the total transfer matrix is the product of the transfer matrices of the individual regions.

This follows from the continuity of the field amplitudes across the boundary between the

piece-wise constant regions. The quantities that must be continuous across the boundaries

are total z-dependence of the fields [eqs. (3.19), (3.20)], a(z), b(z) and not A(z), B(z). i.e

ai(z) Aj(z)e-j(P-)iz

bi(z) Bi(z)ej(,3-)iz (3.62)

For gratings with constant periods but varying magnitude of K(z), continuity of A(z) and

B(z) assures the continuity of a(z) and b(z). This is not the case when either the grating

period changes or equivalently the phase of r. varies with z. Continuity of the total field

amplitudes at the interface, zi between region i and i - 1 yields

a (zi)

bi(zi)

= Ai(zi)e-ji = aj_ 1(zi) = Aij_(z)e- At~j

= Bi(zi)eiK7Zi = Bi-1(zi) = Bi_1(zi)e Aii1

(3.63)

(3.64)
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Rewriting the continuity condition in terms of A. and Aji 1 we get

Ai (zi) A ^ i- Aj * 0
j A2(-)-1- 1 e A z

Bi (zi) 0 eAi A-1)Zt

Ai(z ) = j_1(zj)Aj-1(zj)

From the previous section we already know how to relate Ai 1 (zi)

transfer matrix, Ti-1(Ai_ 1, zi, zi_1) given by eq. (3.46), i.e

to Aji_(zji-) using the

j_1 (zi) = Ti-1 (Ai_1, zi, zi-1)A 1 (zi_1) (3.67)

Subsitituting this in eq. (3.66) we get

(3.68)

Generalizing this to the n regions of different period, Ai we get.

Ai(zi) = {Tn(An)PnjTn1_i(An_1)... P 2T 2 (A2 )P 1T1(A 1 ) I A1 (zn) (3.69)

Thus the total transfer matrix for a chirped grating with n piece-wise constant regions is

given by

T(n zo) n(An, Zn, Zn-.)Pn-i(zn-i ( n-1(An-1, n-1, Zn-2) . P (zi (A1,zi, zO)

(3.70)

where
- e -iAi 1)Z

Pi (zi) =
0

(3.71)
0

1~(L 1 )2,
e ^i ^*-j

and T2 (Ai, zi, zi-1) is given by eq. (3.46) with the appropriate value of 6i substituted in the

equation. The previous two sections show how the tranfer-matrix formalism can be applied

to nonuniform Bragg gratings. For additional information on modeling of non-uniform

gratings the reader are refered to [33]

3.4 Bragg Resonators

Bragg gratings reflect light strongly within their stopband. The electric fields decay expo-

nentially along the length of the grating as propagation is "forbidden" within the stopband.

Any transmission within the stopband is due to "tunneling" of the light through the grat-

ing. Outside the stopband light can propagate through the grating and the transmission

Ai 1 (zi)

Bi 1(zi) I (3.65)

(3.66)

3.4 Bragg Resonators

Ai(zi) = Pj_17j_1(Aj_1, zi, zj__1)Aj_1(zj-1)



X0

4 neff

Figure 3-10: Quarter-wave shifted Bragg grating stores forms an optical resonator.

rapidly returns to near unity. It is, however, possible to modify the grating structure so

as to introduce a resonant transmission state exactly in the center of the stopband, i.e is

at the Bragg wavelength, 6 = 0. This is done by introducing a precise A/4-wave shift in

the grating. The resulting structure acts as an optical resonator locally "trapping" the

electromagnetic energy in the vicinity of A/4-wave shift. In the following sections we will

examine this structure and the applications to which it can be applied.

3.4.1 Single quarter-wave shift in Bragg grating - Bragg resonator

Figure (3-10) shows a Bragg grating with a precise phase-shift of a quarter of the optical

wavelength introduced in its center. A quarter-wave shift means that the reflections from

the interfaces immediately to the right of the phase-shift are exactly out of phase with those

to its the left. This reversal of phase destroys the coherence of the reflection from the grating

interfaces and modifies the field distribution such that there is complete transmission at the

Bragg wavelength. One way to understand this is by considering two semi-infinite gratings

extending in the opposite direction. The reflection coefficent, F, of the grating in the region,

0 < z < oo is given by eqs. (3.52) and (3.53)

F(z = 0+) = B(z) = -- Z = 0+ (3.72)
A(z) ,

Likewise for the other semi-infinite grating in the region --o < z < 0, F is given by eqs.

(3.54) and (3.55):

F(z = 0) = B(z) z =_ (3.73)
A(z) n

An introduction of a quarter-wave shift between z = 0+ and z = 0_ matches F(z = 0+) to

F(z = 0_) as F changes to -F across a A/4-wave shift section [20]. This 7r phase shift is

Bragg Gratings64
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evident when we take into account the complete z-dependence of the fields with their eJ Az

factors, eqs. (3.63) and (3.64).

To calculate the spectral response of a A/4-wave shifted grating we again use the transfer

matrix method. The A/4-wave shifted grating naturally divides into two piece-wise constant

regions on either side of the phase-shift. Across the A/4-wave shift the phase of the grating

strength r, changes by 7 to account for the phase-shift. Thus if

r'(z > 0) = +r

then

s(z < 0) = -K

The total transfer matrix is given by eq. (3.38)

T =T 2 (--x, -L 2 , 0) T(/-, 0, L1) (3.74)

where L, and L 2 are the lengths of the gratings on either side of the A/4-wave shift. With

the transfer matrix, 1, known the spectral response can be found as before by converting to

a scattering matrix, ST. The spectral response for different length A/4-wave shifted gratings

is shown in Fig. (3-11). The spectrum was calculated assuming equal lengths on either side

of the A/4-wave shift. The total length, L = L 1 + L 2 . As expected we see a distinct resonant

transmission state exactly in the center of the stopband at 6 = 0. The transmission sharply

peaks to unity and is then suppressed within the stopband. It recovers as for a uniform

grating outside the stopband. The corresponding reflection response is shown in the same

figure. Note that the bandwidth of the transmission state depends on the total length of

the grating. We can understand this by considering the field distribution in the A/4-wave

shifted grating at 6 = 0. Using eqs. (3.44) we know that the general solution to the CMT

equations on either side of the phase-shift is given by [20]

A(z) = A+e-KIz + A-el-Iz (3.75)

B(z) { A+e-iKz - A_ elItrz (3.76)

Since the grating is only excited from z = -L 2 , B(z = L 1 ) = 0 and hence

A = A+e-2|IkL1

The forward propagating wave at z = L, is given by

A(z = L 1) = 2A+e-L1 (7

65

(3.77)
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Figure 3-11: Spectral response of a A/4-wave shifted Bragg grating or Bragg resonator.

The power escaping through this port is simply given by the square of the field amplitude,

A(z = Li). This follows from the normalization condition, eq. (3.9). Thus

P(z = Li) = 41A+I 2e 2 1,l1 (3.78)

The total energy, W, stored in the A/4-wave shifted Bragg grating is given by integrating

the energy per unit length, <w>, across the grating. <w> is given by[20]:

<W> = -{A12 + B12}Vg
(3.79)

Hence the energy stored is

W =j <w> dz j -(|A(z)|2 + |B(z)12 ) dz = 21A±1 2

-oO V9 Vg~r'|
(3.80)

where the energy in the actual structure is approximated by an infinite length grating

structure. The approximation is valid as the fields decay rapidly on either side of phase-

shift and very little energy is stored in the wings of the structure.

The actual field distribution at 6 = 0 in the A/4-wave shifted Bragg grating is shown

in Fig. (3-12). The fields were calculated numerically using the transfer matrix method.

However, for this simple structure they can be analytically calculated by matching boundary
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Figure 3-12: Field distribution at Bragg wavelength, or 6 0, in a Bragg grating resonator.

conditions and requiring continuity of fields at the A/4-wave shift. Note, that fields are

peaked about the A/4-wave shift and decay on either side. The fields are localized and and

the phase-shifted Bragg grating acts as an optical resonator storing electromagnetic energy.

This resonator communicates to the "outside" world through either port. It leaks energy

through either side via its exponential tails. If the Bragg resonator is made infinitely long

and excited, the field are completely trapped inside there is no loss of power. Spectrally this

means that the resonance has a zero linewidth or an infinite quality factor, Q. Conversely

if the grating has a finite length there is loss of power and the resonance acquires a finite

width. The shorter the grating the more loss there is from the resonator and the broader is

the resonance linewidth. It is easy to relate the linewidth of the resonance to the lengths on

either side of the A/4-wave shift, L, and L 2 . From resonator theory [34, 35, 20], we know

that the quality factor, Q, of any resonant structure is defined as the energy stored in the

resonator divided by the power lost per unit cycle:

w _o

Q =( W - -w (3.81)
(P/w,) Au)

where W is the energy stored. P is the lost power and wo is the resonance frequency. Aw

is the linewidth of the resonance. Using eqs. (3.78) and (3.80) we know that

P = P(z = L1 ) + P(z = -L 2) = 4|A+ 2e 2 IaL, + 4|A+| 2e- 2IIL2 (3.82)

W 21A+12  (3.83)
Vg I|
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Figure 3-13: Schematic of a general resonator system described by CMT-time formalism.

Hence
Aw -21 I'lvg (e 2 1.iL, + e-2 IIL2) (.4=O 2WrO (e4 -1N (3.84)
wo wo

As expected from the physical arguments, the linewidth of the resonance does in fact depend

on the length of the grating sections.

3.4.2 Coupled Mode Theory in Time description of Bragg resonator [20]

Thus far we have used CMT-space to solve the problem of the Bragg resonator. There

is an alternate approach, Coupled Mode Theory in time (CMT-time), that is general and

is applicable to any kind of resonator system. CMT-time describes the resonant mode

behavior in terms of the resonant frequency, w,; decay terms which model loss from the

resonator system; this loss may either be internal loss or loss from the resonator system to

the outside world; and input coupling terms E which model how effectively power can be

coupled into the resonator, [20, 36]. A general resonator system, shown in Fig. (3-13) can

be described by the following equation.

da _ . 1 1 1\
- = WO - - - - - 1-) a + K1s+1 + K 2s+2 (3.85)
dt Tj 1  Ti2 To

a is the resonant mode amplitude and is normalized such that la12 is the total energy stored

in the resonator. wo is the resonance frequency. -- represents the escape of power from the

either side resonator to the outside world. - represents the internal loss of the resonator.
TO

In the absence of any internal loss mechanism the only way the resonator loses power is by

coupling from either side to the "outside" world. With inputs si = 0, the above equation

can be used to show that

dla12 2 ( + -- |a =2 - l j 12. (3.86)
dt 711 712 )T1

The energy, |a12, in the resonator decays as e - as expected. 1/Tl is simply the sum of

the escape mechanisms. If there were internal resonator loss, 1/Tl would be given by

1- = + 1 + 1 (3.87)
Ti 7, 1 Ti 2 TO
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where 1/r is the internal resonator loss term. As stated above ri are the input coupling

terms. Physically we expect the coupling to be related to how strongly the resonator

interacts with the external world which is described by 1/1T. Power conservation and time-

reversibility can be used to relate the two quantities and we find [20] that

r2 - (3.88)

This expression is proved in Appendix 1. Likewise it is rather straightforward to relate

the incoming waves s+j to the corresponding outgoing waves, s-i. As shown in [20], power

conservation yields

sji = -s~ i-+ - a i = {1, 2} (3.89)
Tli

We are now in a position to calculate the response of the resonator near resonance. As before

we consider the case when the resonator is excited from the left side only at a frequency w

i.e

8+1 - ejwt

S+2 = 0

In this case it can be shown easily that

s~'( - -U))+ 1S+1 T12 (3.90)
T 11 i T1 2

2
S-2 'r11r12 (3.91)

The above expression give the transmission and reflection from a general resonator when

it is excited from one side. To be able to apply these expressions to the specific case of a

Bragg resonator case we need to relate 1/Tli to the Bragg resonator parameters, r., Li. This

follows immediately from the definition of the Q of resonators. From eq. (3.81)

W _ O
(P/wo) Aw

Using eq. (3.86) it follows that that the power escaping the resonator is given by

P _ cia12  -2 (-- + -) 1a12 2 -a12. (3.92)
dt Ti 1 T12 Ti

Using this in above equation we find that

W _ a12 
_ O_ , WO

Q P== P -- =w (3.93)(P/wo) P/wuo 2 Aw
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Figure 3-14: Bragg resonator spectrum calculated using CMT-space and CMT-time. The overlay

shows that CMT-time predicts the response of the resonator well only near resonance.

Far from resonance the responses deviate significantly and only CMT-space is reliable.

Comparison with eq. (3.84) yields:

- = Irve~2 jLj (3.94)
Tli

The above expression allows the use of eqs. (3.91) and (3.90) to compare the spectral

response of a Bragg grating resonator of arm lengths L, and L 2 calculated from CMT-time

with that calculated from CMT-space. Figure (3-14) shows the overlay of the two responses.

It is obvious from the figure that the CMT-time faithfully reproduces the response of the

Bragg grating resonator in the vicinity of the resonance, i.e near 6 = 0. Moreover, eq. (3.91)

shows that near resonance the transmitted spectrum is a Lorentzian with the characteristic

S-2 1

s+1 1+ "W-W0 )r10

The above expression is for a resonator with equal arm lengths. We see that the bandwidth

of the transmission spectrum is related to the total power escape term 2/TI0 . The Lorentzian

response has the characteristic roundtop and a roll-off of 20 dB/decade. Further away,

from resonance the two responses, calculated from CMT-time and CMT-space, increasingly

deviate. This is most obvious near and outside the stopband where Bragg resonator response

70 Bragg Gratings
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with CMT-space is completely different from CMT-time. In this frequency range CMT-

space is accurate. This should be expected as the CMT-time is a phenomelogical description

of resonators and only describes behavior near resonance. This allows the simple eq. (3.85)

to be written down which is analytically tractable. This equation is an absolutely general

description of any resonator and does not account for Bragg grating behavior far from the

resonance state. CMT-space equations (3.24) and (3.25), on the other hand, were derived

specifically to model the detailed behavior of Bragg gratings and are thus an accurate

description over a wide frequency range.

The CMT-time approach offers over CMT-space is its simplicity in solving the response

near resonance. It provides an analytic handle on the problem which otherwise needs to

be calculated numerically using the transfer-matrix method. Whereas, this advantage may

not be so obvious in the case if a simple Bragg grating resonator, we will see that it is

extremely useful for analysing more complicated structures. Moreover, as we will see in the

following section CMT-time allows us to derive an equivalent circuit for the Bragg grating

resonator using L's, C's and R's. We will see in later chapters that equivalent circuits are

an indispensable tool in designing add/drop filters using Bragg gratings.

3.4.3 Equivalent Circuit of a Bragg Grating Resonator

The previous section showed how CMT-time can be used to describe a general resonator

system and then applied it to the case of a Bragg resonator. Another resonator system that

we are very familiar with is an L, C, R circuit connected to transmission lines. The L-C-R

system is also described by eqs. (3.85). A rigorous derivation of this is given in [20]. Consider

the L-C circuit attached to a transmission line as shown in Fig. (3-15). On resonance, we

know that the impedance of the parallel L-C branch is infinite or in other words it is

an open circuit. Thus any power incident from the left passes through completely. This

behavior is similar to that of a Bragg grating resonator that allows complete transmission on

resonance. To draw an equivalence between a Bragg grating resonator described by CMT-

time eqs. (3.91) and (3.90) and the L-C circuit of Fig. (3-15) we calculate its response.

From standard transmission line theory, we know that

S -yn (3.95)
1+ Yn

T =1 +17 (3.96)

3.4 Bragg Resonators
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Figure 3-15: Bragg grating resonator and its equivalent circuit.

where Ya, is the total admittance looking from the left of the L-C branch and is given by

Y_ 1 (397Yn = 1 + IjWC + 1- 1 + 2j(w - u),) ;. (3.97)
YO YO jwL Y

the approximation holds true near resonance. Substituting into eqs. (3.95) and (3.96) we

find that

-2j(w - w,,)
F =. (3.98)

1 + 2j(w - wo)c

T = (3.99)
1 + 2j(w - wo)c

The CMT-time response of a Bragg grating resonator with equal lengths L =L L, so

that Ti1 = T12 TI, is given by

s_1 i _ -j(U) - L,) l (3.100)
s+1 1+ j(W - WO)Tj

s-2 _ 1 (3.101)
s+1 + J(W - WO)Tj

where
1 1 +1 2 =
TI-._ 4|PI Tg e~2 ||Lo

i Tli TI2 Tjo
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Figure 3-16: n Coupled Bragg Grating Resonators

Comparison between the above sets of equations we find there is a one-to-one correspondence

provided we draw the following equivalence

Y0 1
- - = 2jrjvge-2IILG (3.102)C 7,1

This expression allows us to relate the Bragg resonator parameters, r, and LO to the circuit

parameters. With this equivalence, writing down the transmission and reflection response

of a Bragg grating resonator becomes trivial. In the simple case of a single Bragg grating

resonator the value of the equivalent circuit is not so obvious. However, equivalent circuits

are a recurring theme in this thesis and we will see that they are invaluable in optical

filter design. Figure (3-15) shows a Bragg grating resonator and its equivalent circuit. The

reference planes defining the beginning and end of the Bragg grating resonator are marked

in the figure.

3.4.4 Multiple Quarter-wave Shifts in Gratings - Coupled Bragg res-

onators, [36]

Consider the structure shown in Fig. (3-16) which shows a integrated Bragg grating with

multiple quarter-wave shifts. We can use the intuition developed in the preceding section

to understand how this device will behave. Conceptually we can divide the device with

three A/4-wave shifts into three Bragg resonators. This is marked in the figure by the

3.4 Bragg Resonators
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Figure 3-17: Equivalent Circuits of Inline Coupled Bragg Grating Resonators that can be used to

make inline Higher-order Filters.

reference planes. Notice the reference planes end on a tooth edge and result in a gap of

half a grating period or a A/4-wave section between each of the three Bragg resonators.

From the equivalent circuit derivation of the previous section we can immediately draw

the equivalent circuit for this device. It is shown in Fig. (3-17) and consists of three L-C

circuits connected by A/4-wave segment transmission lines. The A/4-wave segments follow

from the definition of the reference planes of a single Bragg resonator. The equivalent

circuit picture shows the three coupled resonators. Each resonator couples it to its adjacent

neighbor via its ends. The equivalent circuit picture reduces this coupling to familiar L-C

circuits and transmission line segments. Using impedance transformation across A/4-wave

segments, we can redraw the equivalent circuit to yield a standard LC-ladder circuit The

LC ladder-circuit is a very well-studied circuit for which filter design tables exist. That

is, there are look-up tables available which give values of Li and C needed to get desired

spectral responses like Butterworth, Gaussian, Elliptical, etc. filters. From the previous

equivalent circuit derivation we know that

= 21rl~vge--2 lLi (3.103)ci
where Li are the lengths of the individual Bragg resonators. Immediately we notice the

benefit of using equivalent circuits. It reduces a relatively complicated structure into a well-

known circuit and allows uses of standard filter design tables to engineer desired spectral

responses. For instance to design a three Bragg grating resonator system such that the

transmission spectrum is a maximally flat Butterworth filter response, the normalized values

of Li and Ci needed are:

C = C3 = 1 (3.104)

C2 = 2 (3.105)
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Figure 3-18: Third-order Butterworth filter response using inline coupled Bragg grating resonators.

We can use eq. (3.103) to translate these values into the lengths, Li for the individual

Bragg resonators for a given , value. Figure (3-18) shows the response of third-order

Butterworth filter of Fig. (3-16) calculated using CMT-space. We can see that the response

is indeed maximally flat and rolls-off N times faster, where N is the number of Bragg grating

resonators, than a single A/4-wave response which is shown by the dashed-dotted line. This

is characteristic of higher-order filters made using coupled resonators. We see here that the

equivalent circuit approach provides a simple way to design a complex coupled resonator

system such that it has the desired spectral response near resonance. CMT-space can be

used to verify the filter response. The transfer-matrix, T in the CMT-space formalism

follows by dividing the device into 4 regions between the A/4-wave shifts. T is given by:

T = T4 (K, z4, z3) T 3 (- K, z3, z2 ) T 2 (K, z2 , zi) T 4 (--K, z1 , 0) (3.106)

Across each A/4-wave shift the r, undergoes a 7r phase-shift.

3.5 Mach-Zehnder Bragg Grating Filter

The above sections show that both the Bragg grating and a Bragg resonator act as a

frequency selective device allowing a frequency range to be selected from a wider band

signal. The Bragg grating does this by reflecting light within the stopband. The Bragg

resonator, on the other hand, is a transmission filter which allows light near resonance
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Figure 3-19: Strategies for separating the input and output using Bragg grating filters

at the center of the stopband to be transmitted whilst reflecting everywhere else in the

stopband. To be used as add/drop filters, there is a need to physically separate the input

signal from the dropped channel output and the throughput channels. Figure (3-19) shows

two possible schemes for separating input and output. The techniques require either an

isolator or a circulator. These are discrete optical components which must be added on to

the integrated grating-based device and are quite expensive. A totally integrated approach

is preferred both for cost reasons and also because it is a more elegant approach.

One possible integrated techique of making add/drop filters using Bragg gratings is

shown in Fig. (3-21). The Bragg grating structure is integrated into the two arms of a bal-

anced Mach-Zehnder with 3 dB couplers. At the first coupling section the multi-wavelength

signal is split equally into the two arms. The dropped channel wavelength is reflected by

the gratings and as it returns through the first coupler it recombines at the dropped port.

The throughput channels on the other hand continue through and as they pass through the

second coupler they are recombined at the throughput port. The dropped/throughput chan-

nel specturm is the reflection/transmission response of the grating. To get better side-lobe

levels the Bragg gratings in the Mach-Zehnder may be apodized.
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Figure 3-20: Integrated Mach-Zehnder add/drop filter made using Bragg gratings in the two bal-

anced arms of the interferometer.

In the case that the Bragg gratings in the arms of the Mach-Zehnder are replaced by

Bragg resonators, either a single resonator or multiple coupled inline resonators, the position

of the dropped and throughput channels is reversed. In this case the dropped/throughput

channel spectrum is the transmission/reflection response of the Bragg resonator system.

If multiple Bragg resonators are used the transmission response can be shaped as seen in

section (3.4.4) to yield a Butterworth, Chebychev etc. response. Use of Bragg resonators

instead of gratings in the balanced arms of a Mach-Zehnder offers the advantage of obtaining

the desired spectral response by just choosing the spacings between the A/4-wave shifts

appropriately. The gratings do not need to be apodized if Bragg resonators are used as

the channels within the stopband are reflected strongly. The integrated Mach-Zehnder

add/drop filter allows the input signal to be physically separated from both the dropped

signal and the throughput signal.

The spectral response of the Mach-Zehnder can be calculated quite readily using CMT-

space and transfer matrices. The device naturally breaks into three regions: From the

previous discussion of waveguide couplers and Bragg gratings, we can easily write down the

coupled mode equations for the coupler and grating sections. The forward and backward

waves in the top and bottom arms are denoted A 1, B1 and A2, B 2. M,1 and Mc2 denote

the interaction matrices of the coupling regions. Mg is the interaction matrix describing
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Integrated Mach-Zehnder add/drop filter made using inline coupled Bragg resonators

in the two balanced arms of the interferometer. The position of the throughput and

drop ports are interchanged relative to a Mach-Zehnder add/drop filter using Bragg

gratings.
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(3.108)

where 6i's are the "propagation" constants of the two guides and as before are given by

27r
= 2 ;

A9
(3.109)

A9 is the grating period. ai is the loss in the guides and Y12 represents the coupling between

the two guides. A similar interaction matrix, M, 2 can be written from the second coupler

region.

Likewise, the equations describing the interaction between the forward and backwards

waves in the grating section are given by

-01i - al

0

=i

\0

=M1 A

d

A 1

A 2

B 1

B 2

0

-052 - ae2

0

K;

i1

0

i + ai

0

0
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J 6 2 + a2

A1

A 2

B1

B 2

(3.110)

(3.111)
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Having written down the interaction matrices in each of the three regions, the transfer

matrices can be written down readily. The transfer matrices for the coupling regions, Tci

and Tc2 are given by:

T{ci,c 2}(z, zo) = S{cl/c 2} A{ci,c2}(z) [A{ci,c2 }(zo)]- 1 [S{ cl 2}11 (3.112)

where we have used eq. (3.34) derived earlier. Likewise, the grating section described the

transfer matrix Tg is given by

Tg(z, zo) = Sg Ag(z) [Ag(zo)]-l [Sgf-l (3.113)

where Sj contains the eigenvector of the interaction matrix Mj as its column vectors and

1A is a matrix with the exponentiated eigenvalues of Mj along its diagonal. Mj is one of

the three interaction matrices Mci, Mc2 or Mg. In this case the complete transfer matrix

representing the Mach-Zehnder is given by

T = Tci Tg Tc2. (3.114)

As before by converting to a scattering matrix and using the inputs to the device we can

calculate the spectral response of Mach-Zehnder device.

3.5.1 Design Considerations

The key component in the design of a Mach-Zehnder is the Bragg grating. The Bragg

grating must be engineered such that its spectrum meets the specifications for add-drop

filters needed for WDM networks. Currently deployed WDM systems currently use channel

spacings, Af,, of 50, 100 and 200 GHz. WDM experiments with channel spacings of 25

GHz are being reported [37, 38]. The 1-dB pass bandwidth, AfldB, of add-drop filters is

generally specified in terms of a percentage of the channel spacing with

AfldB ( 25% - 50%)Af,

being typical values for currently available devices. In addition to this another requirement

on add-drop filters is that the cross-talk or channel isolation of the adjacent channels must

be in excess of 25 dB. Furthermore, the dropped channel suppression must also be around

25 dB. These specifications on the spectrum of the device translates to grating parameter

constraints. As discussed in section 3.2 the 1-dB bandwidth of a straight grating is given

by

AfldB = 1.l2Kc (3.115)
7rng
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Figure 3-22: Spectrum of a Mach-Zehnder add/drop filter with Apodized Bragg grating in the two

balanced arms.

Using the above expression to design a 1-dB bandwidth which is 40% of the channel spacing

we find that

K= 6.5 cm-1

n = 12.9 cm- 1

K= 25.8 cm-1

A f, = 50GHz

Af8 , = 100GHz

Afs, = 200GHz

We used group index, ng, values corresponding to the InP material system which the choice

material system for all the devices we fabricated. The requirement that the dropped channel

suppression be around 20-25 dB requires that KL ~ 3.5. Using this we find that the lengths

of the gratings for the various channel spacings are:

L = 5.4 mm

L = 2.7 mm

L = 1.3 mm

Afe, = 50GHz

Afe, = 100GHz

Af 8, = 200GHz

Fabricating long coherent Bragg gratings is challenging. Gratings in excess of 3 mm are

quite difficult to make. Thus we see that integrated add-drop filters using Bragg gratings

in the armos of a Mach-Zehnder is unrealistic for WDM channel spacings of 50 GHz or less.

Given the fabrication constraints, the Mach-Zehnder configuration may be best suited for

wider channel spacing WDM sytems of 200 GHz. In section 3.2 we also saw that the side-

lobes of Bragg gratings directly impact the cross-talk or channel isolation requirements.

0

0

0I-

-100 -50 0 50
Frequency (GHz)

100 150

(3.116)

(3.117)

(3.118)

(3.119)

(3.120)

(3.121)
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3.5 Mach-Zehnder Bragg Grating Filter

It was pointed out that straight Bragg gratings may be unable to meet the cross-talk

specification. As a result apodized Bragg gratings are needed. Since, the apodized gratings

have a lower average grating strength, K, even longer grating lengths are needed. However,

it is still possible to design add-drops for 100 GHz channel spacing. Using the techniques

developed in earlier section, an apodized Mach-Zehnder device suitable for a 100 GHz WDM

channel spacing was designed. The spectral response is shown in Fig. (3-22). The filter has

a 30 GHz 1 dB passband width, drop suppression in excess of 20 dB and channel isolation

in excess of 60 dB.

The Mach-Zehnder add-drop filter performance is critically dependent on the alignment

of the gratings in the two arms. If the start of the two gratings is misaligned by half an

optical wavelength, A, the effect is identical to the introduction of a phase difference in one

arm. It results in the destructive interference at the drop port and all dropped channel

power being returned at the input port. This requirement of precise alignment presents a

fabrication challenge. Techniques have been developed to ensure alignment of the Bragg

gratings in the two arms [39].

Finally the 50%-coupler region also impacts the overall Mach-Zehnder performace. Any

deviation of the power splitting ratio from 50% results in an effective insertion loss increase

of the device. Also any wavelength dependence of the coupler produces wavelength sensitive

performance. Wavelength insensitive couplers have been proposed to account for this [40,

41].

The Mach-Zehnder with Bragg grating in its arms has been studied extensively elsewhere

[42]. Section (3.5) is not meant to be an exhaustive study of this device. Rather it presents

a basic overview of the device, the basic tools needed to calculate its spectrum and some of

the design considerations involved in making a Mach-Zehnder based add-drop filter.
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Chapter 4

Side-coupled Bragg Resonators

In the previous chapter, we discussed at length how to model Bragg gratings and Bragg

resonators. A Mach-Zehnder interferometer with integrated Bragg grating structures in

the two arms is one possible configuration that can be used as an Add/Drop filter. For

typical WDM channel spacing, Mach-Zehnder interferometers with Bragg gratings require

low grating strength, , structures. Moreover, the dropped channel suppression requirements

result in rather long structures as the gratings can be several millimeters. Alternate possible

topologies exist that use Bragg resonators coupled to waveguides to form Add/Drop filters.

These devices, as we will see rely, on resonant transfer of power from a multi-channel "bus"

waveguides to coupled Bragg resonator structures. Devices of this class need not be of low

grating strength, r,. This leads to smaller, more compact devices which is desireable.

4.1 Resonant Optical Reflector (ROR) [43]

Figure (4-1) shows a Bragg grating resonator side-coupled to waveguide. The arms of the

Bragg resonator on either side of the A/4-wave shift are assumed to be very long. As we

saw in the previous chapter the fields in a Bragg resonator decay exponentially. Thus,

for the Bragg resonator of Fig. (4-1) we can assume that no power can leak out from

either end; in addition we assume that the resonator has no internal loss mechanism. In

chapter 2 we saw that two adjacent waveguides can couple to each other via the modes'

exponential tails. Here too the mode in the resonator guide can couple to the mode in the

waveguide. As a result the Bragg resonator can lose power to the outside world via coupling

to the adjacent waveguide. Mathematically we can represent this system of two coupled
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Figure 4-1: Bragg grating resonator side-coupled to a waveguide.

structures by CMT-space equations:

d A 1 _

dzl - -j 1A1 - jpA2  (4.1)dz
dA 2  - -j31 A1 - j62 A 2 + rB 2  (4.2)
dz

dB - jo1B1+jpuB 2  (4.3)
dz

dB2  - rA2 + j tB1 + j6 2 B 2  (4.4)
dz

where A 1 , A 2 and B 1, B 2 are the forward and backward travelling waves, respectively, in

the waveguide and the Bragg resonator. 6i is defined as before by eq. (3.109) and is the

normalized frequency parameter.

Awi (
V9~

Alternately, it can be thought of as the "propagation constant" of the respective waveguide

or Bragg resonator guide. [L as in chapter 2 is the coupling coefficient and represents power

transfer between the two guides. The transfer matrix method can be employed to solve the

above equations. The coupled structure naturally breaks into two regions on either side of

the A/4-wave shift. The total transfer matrix, T is given by:

T = T 2 (-I, Al z 1 , z2) T,(r, [, z2, z3 ) (4.6)
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Figure 4-2: Schematic of the coupled Bragg resonator-waveguide system.

where across the A/4-wave shift n reverses sign. The transfer matrix method can be used to

solve for the spectrum of this device. Alternatively, it can be used to calculate field values

along the length of the device at a given frequency of Ji.

CMT-space equations describe the coupled system in terms of the counter-propagating

waves. They are somewhat numerically involved. The alternate, CMT-time, approach is

analytically more tractable and represents the system of Fig. (4-1) as a resonator coupled

to the outside world (see Fig. (4-2)). The system is described by the following equation:

da 1
2 = j(w 0 - -)a, + i(s+1 + s+2 ) (4.7)

dt 're

As before a, is the resonator mode amplitude and normalized such that it laol 2 is the energy

in the resonator. wo is the resonant frequency. The resonator coupling to the adjacent

waveguide can result in power being transferred into the adjacent waveguide. This power

loss from the resonator the guide is represented by 1/Te. Thus we can expect 1/re to be

related to the CMT-space coupling parameter p. s+1 and S+2 are the incoming waves that

can excite the resonator and are normalized such that 1s+,12 is the power carried by them.

s+1 and s+2 are related to A1 and B 1 . s-i are the corresponding outgoing waves. Finally ti,

not to be confused with the CMT-space grating strength parameter, K, is the input coupling

coefficient; it expresses the degree of coupling between the resonator and the input waves

s+i. By symmetry this coefficient is the same for both input waves. Time reversibility and

power conservation arguments can be used to give the following expression [20].

L = 1- (4.8)
ITte

It should not be surprising that i', is related to the power loss term 1/Tre; how strongly the
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fields can couple into the resonator must depend on how strongly the resonator interacts

with the outside world. The outgoing waves are related to the incoming waves by

s.1 = S+2 - -a. (4.9)
~e

= sa - -a (4.10)
S-2 S+1_ V'Te

These expressions follow from power conservation. If the resonator is not excited, eqs. (4.9)

and (4.10) simply state that the input waves pass through undisturbed. Using the above

equations, we can readily calculate the response of the coupled structure when excited only

from one side, i.e when

s+1 = ejwt (4.11)

s+2 = 0; (4.12)

We find that

s-1 - -1/Tr413
1Te (4.13)

S-2 j(-WO) (4.14)
S+1 (Wo - WO ) - T~

We see that that on resonance, all the incoming power is reflected and transmission drops

to zero. Beyond resonance, the transmission recovers to near unity. The reflection spectrum

has a characteristic lorentzian response indicative of a single-pole or single resonator system.

Figure. (4-3) shows the overlay of the spectral response calculated from CMT-time with

that calculated using transfer-matrices and CMT-space. As expected CMT-time is only

accurate near resonance where eq. (4.7) is valid. Far from resonance we have to rely on

CMT-space to yield accurate results.

We can understand the behavior of the coupled Bragg resonator-waveguide system from

physical reasoning. The incoming wave on the waveguide couples via the transverse mode's

exponential tail to the Bragg resonator. Near resonance the resonator supports a mode.

The light from the waveguide excites this mode. From the previous chapter, we know that

near resonance the fields in the Bragg resonator are localized near the A/4-wave shift and

decay exponentially on either side. Since the arms of the Bragg resonator are very long no

power leaks through its ends. However, the fields in the Bragg resonator can couple back to

the waveguide. The resonant mode consists of both forward and backward travelling waves
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resonance, J = 0.

calculated from CMT-time and CMT-space on

and couples in both directions onto the waveguide. The coupling from the waveguide to the

resonator and back to the waveguide results in a 1800 phase shift of the fields such that the

fields add out-of-phase in transmission. Consequently at resonance all the light is reflected.

The sharp reflection response of this device gives it the name resonant optical reflector. Off

resonance but within the stopband of the grating the Bragg resonator does not support

a propagating mode and thus no light can couple from the waveguide to the resonator.

Outside the stopband the grating effect is neglible and standard broadband waveguide-

to-waveguide coupling occurs beween the input waveguide and the resonator guide. The

fields inside the resonator and waveguide on resonance are shown in Fig. (4-4). They were

computed using CMT-space and transfer matrices assuming that 6 = 62 = 0. Note that

beyond the A/4-wave shift the fields in the waveguide decay to zero. This is due to the

out-of-phase addition of the coupled fields from the resonator.

CMT-time allowed us to analytically calculate the response of the resonant optical re-

flector (ROR) near resonance (eqs. (4.13) and (4.14)) in terms of the resonant frequency

and decay term, 1/re. However, we have not related this term to the optical parameters, I,

and r,. We alluded earlier that Te must be related to p. To relate Te to the optical parame-
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ters we follow an approach identical to that in sections (3.4.1) and (3.4.2) and calculate the

Q of the resonator where

_ W Woe

(P/w,) 2

As before W is the energy stored in the resonator and P is the power lost by the resonator

due to coupling to the adjacent waveguide. To calculate Q we need analytical expressions

for the fields in the ROR at resonance. We numerically calculated these fields on resonance

using CMT-space and T-matrices. This method does not lend itself readily to an analytical

approach. However, there is an alternate approach which estimates the fields by using

a source-free, time reversed, steady-state construction (SFTRSS). This approach is well

described in [43] and we will only quote the final results here. The fields in the resonator

and the waveguide on resonance when the the ROR is excited from the left side on the bus

waveguide are:

1A = B 1 = (- e) z < 0; (4.15)2

A, = B1= e-eZ z > 0; (4.16)

K K
A 2 = -B 2 =-j-e"z z < 0; (4.17)

P

A2 = -B2 = - e- z > 0; (4.18)

These field values can be compared with the exact field solution calculated from CMT-

space. This is shown in Fig. (4-4). The power coupled into the adjacent waveguide and the

energy stored in the resonator can be used to give the Q of the resonator and hence Te, [43]

1 2 /L)2 KV
- - - =4 (4.19)

= 2 v . (4.20)
Te

Having related Te to the optical parameters p and K allows to write down simple analytical

expressions for the ROR spectrum using CMT-time in terms of the physical parameters of

the system.

4.1.1 Equivalent Circuit of the ROR

Consider the circuit shown in Fig. (4-5) consisting of a series L-C branch across a transmis-

sion line of characteristic impedance Y. On resonance, the series L-C branch shorts out the

transmission line so that all the incoming power is reflected. This behavior is similar to the

89
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C

Y -Zo
L

Figure 4-5: Equivalent circuit of a Resonant Optical Reflector

ROR which reflects completely on resonance. However, to prove an equivalence between the

circuit response and the ROR spectral response the reflection and transmission coefficients

of the circuit must be compared with the CMT-time expressions, eqs. (4.13) and (4.14).

From transmission line theory the reflection coefficient IF and the transmission coefficient

are given by

S 1-yn (4.21)
1 + Yn

T = 2 (4.22)
1 + Yn

where Y, is the normalized impedance looking from the left of the series L-C branch and

is given by

Y 1Y -- Y + (4.23)
YO 2j AwLY

Using the above equations we find that

£ -1/4 LY0
j = -114LYO (4.24)

T = (4.25)
jw+4LY,

We see that the above equations are identical to the CMT-time expression, eqs. (4.13) and

(4.14) provided we make the following correspondance:

'Te ( 4LY (4.26)

Use of eq. (4.20) allows us to relate the circuit parameters to the optical parameters, i.e

LY 0 = - .g(4.27)
8 r ve P

We will see shortly that equivalent circuits are very valuable tools in filter design.
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Figure 4-6: A single side-coupled receiver resonator coupled to a waveguide to form an SCR.

4.2 Side-coupled Receiver (SCR)

A slight variation of the resonant optical reflector is the device shown in Fig. (4-6). As

before a Bragg resonator is side-coupled to a bus waveguide, except that one arm of the

resonator is short such that power can leak out of this port. The CMT-space equations and

T-matrices describing this system are identical to those for a ROR and given in the previous

section. The CMT-time equation, however, must now include a decay term which models

loss of power from the resonator due to it leaking out of the shorter arm. The CMT-time

equation describing this system is:

da0  1 1
= j(WO - )ao + ! (s+1 + 8+2) (4.28)

dt Te Ti

where 1/Ti is the decay term that models power leakage from the short arm of the Bragg

resonator. All other quantities in the equation are as decribed in the previous section. A

schematic of the single side-coupled Bragg resonator is shown in Fig. (4-7) Loss from the

ends of a Bragg resonator was previously calculated in section (3.4.2). Ti is given by eq.

(3.94)

Ti= v e- 2 g (4.29)
i
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Figure 4-7: A CMT-time schematic of a single Bragg resonator side-coupled to a waveguide to

form an SCR.

where L9 is the length of the shorter arm. vg as before is the group velocity in the Bragg

resonator guide. As before the backward travelling waves, s-1 and s-2, on the waveguide

are given by eqs. (4.10) and (4.9)

s_1 = s+2 - -ao (4.30)
Te

S-2 = s+1 - -ao (4.31)

Note that the outward propagating waves on the waveguide only depend on -e - the coupling

mechanism of the resonator to the outside world. Based on the intuition developed from

the preceding section we can guess what will be the response of this system when excited

from a signal from the bus. The wave on the bus will excite the resonator mode which

will: (a) couple back to the waveguide as in the case of a ROR cancelling some of on-going

transmission on the bus waveguide; (b) leak out of the shorter arm of the resonator. We,

therefore, expect incomplete reflection on the bus waveguide and some power leakage via

the "open" arm of the resonator. These two power decay mechanisms will compete with

each other. Figure (4-8) shows the spectrum of this device calculated using CMT-space.

The length L, the coupling y and the grating strength n were taken to be typical values.

As expected we see that some of the power is reflected on the bus waveguide and some is

transmitted while the remaining power leaks through the shortened arm of the resonator.

As the length of resonator arm is varied so that 1/r changes the amount of power received in

the resonator changes. There is a trade-off between the power reflected and transmitted in

the waveguide and that transfered to the resonator. We can solve the CMT-time equations

to determine the exact response. Solving the equations we find that [36]

Side-coupled Bragg Resonators92



4.2 Side-coupled Receiver (SCR)

Transmitted Power in Waveguide

-1 0 1

1

0.8

0.6

0.4

0.2

2 -2

Reflected Power in Waveguide

-1

Power transfered to Resonator

-1 0 1 2

Figure 4-8: Spectral response of a side-coupled receiver (SCR).
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4.2 Side-coupled Receiver (SCR)

S 1 - 1 T(4.32)
s+1 J(U) - WO) + Te+ T1

8-2 -(4.33)

s+1 j -0) + +A

To calculate the power transfered to the resonator we used power conservation. The in-

coming power must be equal to the sum of the power reflected and transmitted in the bus

waveguide and that transfered to the resonator. Thus,

P_ = 1s12 _ 2 - IS-212; (4.34)

on resonance, i.e w = wo using the above expressions we find

1 2 1 2

P= - I Te - ' Is+112 (4.35)
Pr{ 2}Te 7-

where we have used the power normalization of the waves s±. By maximizing P, with

respect to rl we find that

Ti = Te (4.36)

The above expressions allows the length, L, of the shorter arm of the receiver resonator to

be related to the grating strength, s and the coupling parameter, p.

1 K
L = -- ln( ) (4.37)

In this case 1/4 of the power is reflected on the bus waveguide, 1/4 is transmitted on the

bus waveguide and 1/2 of the incident power is transferred to the resonator on resonance.

Figure (4-9) shows the spectrum of the side-coupled receiver. As expected half the power

is transferred to the resonator at resonance. The power coupled into the resonator has a

lorentzian response and this device acts like a filter transferring power in a certain frequency

range into the receiver port while letting other frequencies through. However, this device

has the shortcoming that not all the power is transferred to the receiver resonator and that

some of the incident power is reflected on the bus guide.

4.2.1 Equivalent Circuit of the SCR

The equivalent circuit of the ROR gives us an excellent clue as to what is the equivalent

circuit of the SSCR. The SSCR is similar to the ROR except that it has a source of loss

via its shortened arm. This loss of power from the resonator can be modelled by adding a
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C

Y pL ZO

R

Figure 4-10: Equivalent circuit of a single resonator side-coupled to waveguide to form a Side-

coupled Receiver.

resistor, R in the series L-C branch of Fig. (4-5). Thus the equivalent circuit of the SSCR

is as shown in Fig. (4-10) Y is the admittance looking from left of the series branch is

Y 1 1
Yn = R = _( -L+ YO) (4.38)Y YK R + 2jAw L

Using eqs. (4.21) and (4.22) we can calculate the response of the SSCR equivalent circuit:

-1

4LY R

jAwf +y (439

T = 2L (4.40)
3 w+ IL~ + R

Comparison of the above equations with the CMT-time expressions given by eqs. (4.32)

and (4.33) show that the two are equivalent if we draw the following correspondence:

re <+ 4LY (4.41)

T 2L (4.42)
R

The first correspondence is the same as that for a ROR. The second correspondence relates

the resistance, R to the loss from the resonator. We saw that maximum power transfer to

the resonator occured when -r, = r. Using the above equations this translates to

R = 2Z,

which is what we would expect by simply considering the equivalent circuit of the SSCR

and maximizing power into R.
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Figure 4-11: An add/drop filter capable of complete power transfer to the receiver port.

4.3 First-order Add/Drop Filter

In the previous section we saw that a single Bragg resonator side-coupled to a bus waveguide

acts as a receiver filter. At and around resonance it transfers power from the waveguide

to the receiver resonator. The most that can be transferred is half the incident power. A

quarter of the incident power is reflected and a quarter is transmitted on the bus waveguide.

If we had a way to cancel out the reflected power on the bus and to re-direct the on-going

transmitted power back into the receiver resonator, we would create an Add/Drop filter

capable of complete power transfer. One way to do this is to couple the on-going light to

a resonant reflector - i.e a side-coupled Bragg resonator with long arms [44]. If this Bragg

reflector is out-of-phase with the receiver resonator then the light it reflects will cancel

the light reflected from the receiver resonator. Moreover the on-going power from the

receiver resonator would get redirected back towards it. Consider the system of Fig. (4-11)

which shows a bus waveguide side-coupled two Bragg resonators; one is a receiver resonator

(with one short arm) and the other is Bragg reflector resonator. The two resonators are

quarter-wave shifted with respect to each other, thereby introducing the appropriate phase-

shift needed for complete power transfer. For fabrication purposes the quarter-wave shift

4.3 First-order Add/Drop Filter
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Figure 4-12: A transfer-matrix analysis of an Add/Drop Filter.

between the two resonators can be ensured by aligning the teeth on the receiver resonator

with those on the reflector resonator in the region of overlap. The system of Fig. (4-11) is

described by the following CMT-space equations:

dA - -j 1 A1 - j P 12 A 2  (4.43)
dz

d Ad 2  - 12A1 - j6 2 A2 + , 2B 2  (4.44)
dz

d Ad 3  -jt13A, - j6 3A3 + K3B 3  (4.45)
dz

dB2 - jK1B 1B1 p1i2B 2  (4.46)
dz

d2  = x 2 A 2 + j p 12B1 + j32B 2  (4.47)
d z

dB3  - K3 A3 + jp 1 3 B1 ± j+3 B3  (4.48)
dz

where A 1 , A 2 and A 3 are the forward traveling wave in the bus waveguide, the receiver

resonator and the reflector resonator respectively. Bi are the corresponding backward trav-

elling waves in the three guides respectively. P 12 and pL13 are the coupling constant for

the bus-receiver resonator and the bus-reflector resonator sub-systems. As before, Ji is the

normalized frequency parameter or the propagation constant and is given by:

5% = 0,1 - )3o

Transfer matrices can be employed once again to solve the spectrum of this device. The

device breaks up into 5 regions indicated in Fig. (4-12); each region is represented by

a transfer matrix Tj(pt12 , p13, K2, 3, zi, zi_1) with the appropriate input parameters. The

total transfer matrix T is given by
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Figure 4-13: Spectrum of the Add/Drop filter with un-optimized optical parameters.
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T2(0, [p13, 0, -K3, Z2, zi) - j(0, p13, 0, +N3, Zi, zo) (4.49)

The transfer matrix, T can be used to calculate the spectrum of the device or the field values

along the length of the Add/Drop filter for any frequency. Figure (4-13) shows the spectral

response of the Add/Drop filter for typical optical parameter values in InP material systems.

Ni were assumed to be equal. The coupling parameters /12 and p23 were chosen to be typical

values; however their values were not chosen to be equal. The coupling coefficients,pab, are

determined by lateral spacing between guides which can be lithographically controlled. We

notice an enhancement of the light transferred to the receiver resonator output port. We

see that the transmitted power on the bus drops to zero. The input power is either reflected

on the bus or transferred to receiver resonator.

1

0.8

0.6

0.4

0.2 F

0'
-2

- -

994.3 First-order Add/Drop Filter



J4

Receiver Resonator

+3 +4
/ S. 3  -S 4

Bus

S,1 -- - +2 1/_e2

S.1 -- .2

Refletor Resonator I

Figure 4-14: Schematic representation of the Add/Drop Filter.

4.3.1 CMT-Time Analysis of the Add/Drop Filter

To determine the optimal optical parameters for the Add/Drop filter we rely on CMT-time

which provides an analytically tractable formalism for calculating the spectral response.

Using the CMT-time description of the ROR and SSCR we can write down the equations

for the Add/Drop filter:

dal = j - )al + l (s+1 + s+2) (4.50)
dt Tel Ti

da2 = J(W -1 ) a2 + r 2 (s+3 + s+4) (4.51)
dt Te2

where al and a2 are the amplitude modes in the receiver and reflector resonators respectively.

1/TeI and 1/Te2 represent the loss of power from the receiver and reflector resonators via

coupling to the adjacent bus waveguide. As before

1
STel

L2= LTe2

s+{1,2} are the input waves on the bus that can excite the receiver resonator; s+{ 3 ,4 } are

the input waves on the bus waveguide for the reflector resonator. s-i are the corresponding

ouput waves as indicated Fig. (4-14) The light from the receiver resonator is coupled via

the bus waveguide to the reflector resonator. s- 2 , the output wave for the receiver resonator

system serves as the input, S+3 to the reflector resonator. Similarly S-3 is related to s+2-

Side-coupled Bragg Resonators100
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These relationships are as follows:

S+3 -JS-2 (4.52)

S+2 = -jS-3 (4.53)

These j factors are simply the e factors needed to account for the quarter-wave shift

between the two resonator systems. As before s-i are related to s+j according to the

following equations.

S_1 = S+2 - -al (4.54)
STe l

S-2 =S+1 - 1 -a (4.55)
VTe l

8-3 = S+4 - 1 -a 2  (4.56)
Te2

S-4 =S+3 - -a 2  (4.57)
Te2

Using the above expressions we can calculate the mode amplitudes in both the resonators

when the system is excited from the left side, i.e s+1 = eJ"t and 8+4 = 0. We find that

D 2 L1 +K2( 1)
a, = 1 s+1 (4.58)

D1 D 2 + T
T1 Te2

Dlti2 +1( Tl )
a 2 = -J D + _ 1 (4.59)

Te ',2

where D 1 and D 2 are shorthand notations for

1 1
Di= j(w - w) + --- (4.60)

Ti Tel
1

D2= j(W - W 0) + (4.61)
Te2

These can be used along with the other equations above to calculate the power transmitted

and reflected on the bus as a function of frequency

S_4 . DIL' + D 2  1
= - 1- I(4.62)

s+1 D1 D2 + ( Te)Te2

s 1 D IE2 - D2 -_ 2
Telre2 (4.63)

s+1 D1 D 2 + (TI )

Exactly at resonance the expression simplifies to

S-4 0 (4.64)
s+1

S-1(121 1 Tel - (4.65)
s+1 D 1 D 2 + 1
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It is obvious from the above expression that the requirement of no power being reflected on

the bus translates to the condition that

TI (4.66)

Since on resonance the transmitted power on the bus is always zero, the above condition

guarantees complete power transfer to receiver resonator. Compare this condition with that

required for maximal power transfer in the case of SSCR, eq. (4.36). SSCR. The power

transferred to the receiver resonator is given by

PR = 2 ja 12 (4.67)
Ti

that is the rate of decay of the modal energy in the receiver resonator via the shortened

arm. Substituting for a, using eq. (4.58) and using the condition of eq. (4.66) for maximum

power transfer to the receiver resonator, we find that

4 jAw + 2  2
PR = [ Te2 (4.68)

where Aw = w - w0 . At Aw = 0 as expected PR = 1. The above expressions simplifies

considerably for the special case when Tel = Te2 to

2
1

PR= + ____ (4.69)

Figure (4-15) shows the spectral response of the first-order Add/Drop filter optimized for

complete power transfer with Tel = Te2. The deviation of the received power, PR, from

unity is due to the small power loss via the longer arm of the receiver resonator. PR can be

brought arbitrarily close to unity by lengthening this arm to reduce power leakage. Note

that for this case the response of the Add/Drop filter is a lorentzian, given by eq. (4.69).

Far from resonance the spectrum has a characteristic roll-off of (1//w)2 with frequency .

Even in the general case described by eq. (4.68) the power received in receiver resonator

rolls of with the same dependency far from resonance. This is characteristic of first-order

filters.

4.3.2 Equivalent Circuit of First-order Add/Drop Filter

The equivalent circuit of this Add/Drop filter, shown in Fig. (4-16), follows immediately

by concatenating the equivalent circuit of the SSCR with that of the ROR; the quarter-

wave transmission line segment is needed to take into account the phase-shift between the
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Figure 4-16: Equivalent Circuit of the first-order Add/Drop Filter.

two Bragg resonators [44]. At resonance the series L-C branches short out. Transforming

the short corresponding to the ROR across the quarter-wave shift results in the output

transmission line being open circuited. On resonance, the circuit simplifies to a resistor, R

hanging at the end of a transmission line. To maximize power into the resistor it is obvious

that is must be matched to the characteristic impedance, Zo, of the transmission line, iLe

R = Zo (4.70)

From correspondence between the equivalent circuit and CMT-time parameters given by

eqs. (4.41) and (4.42) it follows that

R =Zo -- > el (4.71)

I (172

This is the same result as that derived from the CMT-time analysis. We see that the equiva-

lent circuit yields this result with almost no algebraic manipulation. Moreover, it is obvious

from the equivalent circuit that there is no transmission on the bus waveguide on resonance.

Not only is the equivalent circuit an excellent tool for selecting the optimal parameters for

the Add/Drop filter but it also helps to obtain a better physical understanding as to how

the device works. It takes a distributed device and provides a lumped element model for

which our intuition is better.

4.3.3 A closer look at the Add/Drop filter spectrum

We have used CMT-time to optimize the Add/Drop filter response at and near resonance.

However far from resonanc e must rely on CMT-space to calculate the response of the

Add/Drop filter. CMT-time equations are an approximate set that are only valid near res-

onance; moreover, they are completely general and are applicable to any resonator system;
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Figure 4-17: Overlay of CMT-space and CMT-time response for a first-order add/drop filter tha

tis optimized for power transfer to the receiver resonator.

CMT-space equations, on the other hand are specific to Bragg gratings and resonators.

They accurately model the behavior of Bragg resonators over a wide frequency range.

Figure (4-17) shows a spectral plot, plotted on dB scale of the transmitted port and the

dropped channel or receiver port calculated with CMT-space. Overlayed is the CMT-time

response. Expectedly, we see that the two responses deviate further from the resonance.

Whereas CMT-time predicts a continous roll-off with frequency, of the power transferred

to the receiver resonator of the CDF, the CMT-space response flattens within the stop-

band of the grating. To understand this floor we recognize that there are two competing

mechanisms which either enable or inhibit power transfer from the bus waveguide to the

receiver resonator. The transfer of power from the bus to the resonator occurs due to the

regular waveguide-to-waveguide coupling accounted for by the coefficient, P12. The degree

of coupling is related to the /112 L, product where L, is the total length of the receiver res-

onator. This coupling mechanism is fairly frequency independent. However, off resonance

but within the stopband the Bragg grating resonator does not support a propagating mode.

Since, a propagating resonator mode does not exist off resonance power transfer from the

bus to the resonator is inhibited in this frequency range. The degree of suppression of this

transfer is related to the rKLc. For an infinite length grating, the power from the bus would
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Figure 4-18: CLin is shown for increasing p12/' ratios.

only couple to the Bragg resonator exactly and only on resonance within the stopband.

However for a finite length grating some power does couple off resonance and within the

stopband. Not surprisingly, the amount that couples into the resonator off of resonance but

with the stopband is given by [43, 45]

CLin ~ (4.72)

where CLin is the coupling level within the stopband off resonance. Fig. (4-18) shows the

CLin for different p12/n ratios.

The deviation between CMT-space and CMT-time is even more apparent beyond the

stopband. The CMT-space calculated received signal level restores considerably, whereas

the CMT-time signal continues its roll-off. The level of the received signal recovers because

in the frequency range outside of the stopband the grating ceases to be effective as a reflector

and supports propagating modes. In this frequency range the Bragg grating resonator ap-

pears just like an ordinary waveguide. The result is that the normal waveguide-to-waveguide

mechanism dominates and the power coupled from the bus to the receiver port approaches

the level, CLout given by

CLOut = sin2 ([12Lc) (4.73)

Similarly, for the transmitted signal we see that the CMT-time predicts the response

generally accurately within the stopband but that beyond the stopband the transmitted
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level drops. This drop is due to the same reason which results in CLout level; waveguide-

to-waveguide coupling dominates outside the stopband resulting in power transfer from the

bus to the receiver resonator and a corresponding drop in the transmitted power.

4.3.4 Design Considerations

The CLin and CLout levels both place restrictions on the bandwidths of the first-order add-

drop filters that can be designed using Bragg resonators in the configuration of Fig. (4-11).

From eq. (4.69) we know that the 3 dB bandwidth, AW3dB in the case that [112 = [123 [Y

is given by

AJ3dB = = 8I ()(4.74)
Tel

Defining a quantity, Nr, which is the stopband of the grating expressed in terms of a multiple

of 3-dB filter bandwidth

Nr= 2 rvg (4.75)
AW3dB

we find that

(4.76)

As mentioned earlier adjacent channel cross-talk or isolation must be better than 25 dB to

meet WDM system requirements. This imposes the condition that

10log(CLir) ; -25 dB (4.77)

Using the definition of CLin given by eq. (4.72) we find that the above condition requires

that

Nr > 80. (4.78)

In other words the stopband must be at least 80 3-dB filter bandwidths wide if the crosstalk

from the adjacent channels is to be less than 25 dB. For a given grating strength, rc, the

above constraint places an upper bound on the maximum allowable 3-dB bandwidth for the

first-order add/drop filter. The length, L, of the shorter arm of the receiver resonator in

the add/drop filter is determined by the relationship

1 _2

- = -(4.79)
T Tel

e -rL = 1 (4.80)
VNr

4.3 First-order Add/Drop Filter
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where we made use of eqs.(4.20) and (4.29). The above expression can be used to give

pL = ln( Nr) (4.81)

For Nr > 80 we find that pL < 0.122. Using the eq. (4.80) and insisting that the power

leaking out the longer arm of the receiver resonator is at least 30 dB down we find in this

case that the total length, L, ~~ 4L. Using this we determine the condition on the coupling

level outside the stopband, CLOut:

CLg = 10 log (sin2 4/iL) -6.5 dB (4.82)

The coupling level outside the stopband is at least -6.5 dB in the case that adjacent channel

crosstalk within the stopband CLin at least -25 dB. Since, CLOut limits the adjacent channel

isolation, an immediate constraint imposed on first-order add/drop of this kind us that the

adjacent WDM channels must all lie within the stopband of the grating.

4.3.5 K Considerations

As we saw above, for the channel isolation to be at least 25 dB or alternatively JCLinl >

25 dB, N, > 80. Thus, to have a first-order filter with a reasonable size bandwidth the

stopband must be large. This translates into a large grating strength K. Ideally we prefer

K to be large. However, there are two considerations. One is related to inherent difficulties

in fabricating high K gratings. Gratings are made by etching a periodic structure on top a

waveguide. High grating strength structures require deep etches. These etches are further

complicated by the fact that the gratings are on top of tall waveguide structures. In addi-

tion to the difficulty of etching, another fabrication challenge which is equally daunting is

overgrowing the top cladding material. Even the case of air-clad rib guides has its issues

of polarization sensitivity and difficulty of making high r, structures due to reduced mode

overlap with the grating regions. Overgrowing over structures with a lot of relief is difficult

and a poor growth can lead to high loss structures.

Even if fabrication challenges can be overcome, another limitation exists for high K

structures. It is well known that finite length Bragg gratings couple to radiation modes. This

coupling to radiation modes exists even for perfectly fabricated gratings and contributes to

loss. Furthermore, this loss increases with r,. Thus high r, gratings inherently have more

radiation loss that can be limiting. Consequently, we must work with gratings that have

moderate K. The grating strength of all fabricated devices discussed in this dissertation was
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chosen to be on the low side for ease of fabrication and was ~ 60 cm- 1 . We follow up the

topic of loss in gratings via radiation in chapter 6.4.1.

Consider the case of a first-order filter designed to have a 10 GHz 3-dB bandwidth and

an chanel isolation of 25 dB. Using the minimum needed N, = 80 and typical values for

group velocity in InGaAsP/InP based material system eq. (4.75) yields that K = 270 cm-.

It is very difficult to fabricate a Bragg grating with this value for r. without having excessive

loss. Consequently we see that it is difficult to fabricate a first-order filter with a 10 GHz

bandwidth and a channel isolation of 25 dB. A more realistic value of n that is achievable

and has reasonably low loss is in the range of about 100-150 cm 1 .

4.3.6 (p/r,) and M Considerations

(p/,) effects two quantities; one is the 3-dB filter bandwidth and the other is the coupling

level or channel isolation within the stopband. These relationships are expressed mathe-

matically by eqs. (4.74) and (4.72). We see that a larger (ft/) results in a larger filter

bandwidth but at the same time it worsens the channel isolation. For a given r, there is a

trade-off between the channel bandwidth and the adjacent channel isolation. If we assume

a r, of 150 cm- 1 and an adjacent channel isolation of 20 dB we find that the maximum 3-dB

bandwidth of the filter is - 18 GHz.

Once the (p/ti) ratio is chosen based on bandwidth and channel isolation considerations

and r, is known, the coupling coefficient, ft is determined. There is an upper bound on

how large a value [t can realistically take; the limitation is fabrication related. P depends

exponentially on the separation between the two guides. The closer the guides the higher

the p. This is evident by looking at the expression for it given by eqs. (2.27) where the field

overlap has an exponential dependence on separation between the guides. There is, however,

a physical constraint that limits how close two waveguides can be fabricated without fusing

them. This sets an upper bound on the ft.

Another issue to consider is that when p increases the simple coupling of mode equations

described by eq. 2.31 and 2.31 are no longer valid. The first-order corrections represented

by M 1 ,2 as given by eq. (2.26) must be included. Inclusion of these terms in the modelling

of Bragg gratings-based filters shows a deterioration of device performance. Finally, if P

gets too large the coupled mode equation formalism is not accurate as it is impossible to

treat the presence of one guide as a perturbation to the dielectric distribution of the other

4.3 First-order Add/Drop Filter
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guide, [22].

4.3.7 A0 Considerations

A first-order filter consists of a bus waveguide and two Bragg resonator guides. Associated

with each guide is a propagation constant /i which is accounted for in CMT-space formalism

via the parameter, Ji = 0i - 0,. In the calculation of spectra of all the devices considered

thus far, it was assumed that the propagation constants in all the guides were equal. That

is Ji = J or alternately Ai = _ 3i - #j = 0. The performance of these devices critically

depends on Aij. Fig. (4-19) shows a plot of the dropped channel spectrum in a first-order

filter for increasing values of 4312 = A323 AO. We note that spectrum of the dropped

channel is distorted as A0 increases. Not only does the spectrum get asymmetrized but

the peak power picked up at the dropped port decreases. This is because the coupling

from the bus waveguide to the receiver resonators is reduced due to a propagation constant

mismatch. Corresponding to the decrease in the dropped port power output is an increase in

transmitted power (not shown in the figure). If however, the difference in the propagation

constants between the bus and resonators is small relative to the grating strength, i.e

A,/c < 0.1, the add/drop response is acceptable. Designing two identical waveguides to

have the same propagation constant is a relatively straightforward task. The challenge in

keeping A0 small, however, lies in designing two dissimilar waveguides (the resonator and

bus waveguides) to have similar propagation constants. The technique to achieve low A,3 in

dissimilar waveguideas has been discussed at length in [45]. The technique, however, relies

on knowing the refractive index of the core to a high degree of precision. What complicates

the issue further is the fact that the core index is highly sensitive to the growth process.

Moreover, there may even be variations in the core index across the wafer. Designing low

Afl devices in the absence of precise knowledge of the core index can limit the ability to

make add/drop filter using side-coupled Bragg resonators. It may be necessary to have an

active control mechanism which can "tune" the propagation constants into a synchronous

regime. This could potentially be achieved by modifying the index of refraction of the

waveguide core to get synchornous coupling between the bus and resonator waveguides.

This tuning of the refractive index can be achieved by a variety of methods including

current-induced index change [13, 46], field-induced refractive index change [47, 48] or by

temperature-induced changes [49]. While this requirement makes the fabrication of these

Side-coupled Bragg Resonators
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Figure 4-19: Effect of AO on the dropped power in a first-order add/drop filter for increasing A3/r

ratios. The spectrum is asymmetrized and the dropped power level drops.
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Figure 4-20: Side-coupled Bragg grating resonators in a "stack" configuration driven from an ad-

jacent bus waveguide.

devices challenging, having a control mechanism to vary A0 may provide an interesting way

to switch the add/drop filters on or off by tuning the guides in and out of sync.

4.4 Higher-Order Side-Coupled Filters

In the previous section we saw how side-coupled Bragg resonators can be used to construct

an Add/Drop filter capable of completely transferring power in a specific frequency range

to the receiver resonator output port. We calculated the spectrum of the dropped channel

port of this first-order system and saw that near resonance it had a lorentzian response.

Lorentzians are characterized by rounded-tops and a I1/Aw12 power roll-off with frequency

far from resonance. Yet further away from the resonance but within the stopband we saw

that CMT-time no longer accurately models the spectrum of the add/drop filter. We rely

on CMT-space which shows that the residual coupling within the stopband creates a floor,

CLin which limits the channel isolation. Ideally we would like a filter response which has a

flat pass-band and a fast roll-off with frequency such that adjacent channels are suppressed

to the desired level. Moreover, we would like to design filters where the floor within the

stopband drops does not limit channel isolation and has a functional dependence that it is

a stronger function of (p/Ir). Likewise, a design which reduces CLout is also desireable.

Pass-band shape and widths considerations along with adjacent channel suppression

requirements for the typical WDM channel spacings necessitate filters with roll-offs greater

Side-coupled Bragg Resonators112



than I1/Aw12. This cannot be achieved with first-order filters and we turn to higher-order

multipole devices. In addition to faster roll-offs, higher-order filters offer the advantage of

allowing spectral shaping in the passband to obtain Butterworth, Gaussian, Chebychev like

responses. Furthermore, we will see that they also result in improved CLi, and CLout levels.

From circuit theory we know that higher-order filters can be made by coupling together

multiple energy storage elements. A Bragg resonator is such an energy storage element.

Based on this intuition we speculate that higher-order filters must involve coupling to-

gether several resonators. In fact, we saw this earlier in section (3.4.4) where higher-order

transmission filters were made by in-line "series" coupling of several resonators.

One way to make an nth order Add/Drop is to have n adjacent DFB resonators which

are evanescently coupled to one another with the last resonator side-coupled to a bus as

shown in Fig. (4-20). The side-coupled configuration of resonators will be referred to as

a "stack". Another approach is to cascade n quarter-wave shifted resonators which are

then side-coupled to the bus. The advantage which the "stack" configuration offers over the

cascade is that it results in relatively compact devices. This is desirable, not only because it

saves "real-estate" on the chip, but also because it leads to better out-of-band performance.

4.5 CMT-time description of Coupled Resonators

It is easy to generalize the CMT-time description of a single Bragg resonator to the case of

the resonator stack system shown in Fig. 4-20. The only thing that needs to be accounted for

in this case is the lossless coupling between adjacent resonators. Each of the n+ 1 resonators

couples to it's immediate neighbors and this coupling is given by CMT-time parameter _L.

/-. is closely related to the CMT-space coupling parameter pi and the relationship between

them is derived in Appendix B. The arms of the first n resonators are assumed long enough

so that negligible power escapes from their ends. The last resonator, of course, has one

shortened arm which acts as the output port of the device through which power can be

4.5 CMT-timne description of Coupled Resonators 113
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Figure 4-21: Side-coupled Bragg grating resonators in a "stack" configuration driven from an ad-

jacent bus waveguide.

tapped-out. The coupled mode equations describing this system are:

dan 1
dt = (wn - )an + j_an_1

dan_1
da- = .n-1an_1 + jIpan + j _an-2
dt

(4.83)

da1  .

dt = w1a1+ JJp 2a2+j/ 1 a0

da0  1da, = j(W, - - )a,, + iplai + -r(s+1 + S+2)
dt =Te

where ai is the mode amplitude of the (i + 1)'t resonator and is normalized such that jail2

is the energy in that mode. Notice that the decay terms are only associated with the first

and last resonators. The first resonator can lose power to the input bus waveguide via

coupling to the outgoing waves s_1 and s-2 with an associated - decay rate; likewise the

last resonator loses power via the shortened arm as expressed by the decay rate, -L. All the

other resonators are lossless. The source terms rs+1 and Es+2 describe the coupling of the

first resonator to the bus, where s+1 and s+2 represent counter-propagating input waves on

the bus. s j is normalized such that 1s±,2 represents the power in the respective input or

output waves. As we saw before

1 (4.84)
T e
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and that the reflected waves s-2 and s-1 are related to incoming waves by

s_1 = 8+2 - -ao (4.85)
T~e

8-2 = S+1 - -ao (4.86)
V Te

The coupled mode equations, (4.83), can be solved quite readily for ao. We find that

I(s+1 + s+2)
ao - 2 (4.87)

j( - wo) + +

j((--n)+ 7

which may be rewritten in a more familiar continued fraction form as

ao = w - w ) + I'i(S+ 1 + S±2) 1 (4.88)

.(~22 2___ _2__ __ g2__

for the case that n is odd. When n is even, we find that ao is given by

ao = !S(s~ + 8+2) (4.89)
jAw - w0 ) + I +1

L2 (j(w-wn)++)~ 2-2

With the denominator denoted by D, ao is written concisely as

a0 =- (s+1 + s+ 2 ) (4.90)
D

From eqs. (4.85) and (4.86) one may derive the reflection and transmission coefficients, F

and T respectively, for the case that the bus is fed only from one end, i.e S+2 = 0.

F -- = -- 1 (4.91)
S+1 D7-,

T .-2 1 _ 1 (4.92)
s+1 D-r,

Since the resonator stack is assumed lossless, the power tapped off the last resonator at

the output port, Pr, is given by the difference of the input power and the reflected and

transmitted powers on the bus, i.e

Pr = 1s+112 _ IS_, 2 - 1s-212 = Is+112 + (4.93)
D-r, D*, ID|2T2
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Figure 4-22: Equivalent circuit of the side-coupled resonators as viewed from the bus ports.

4.6 Equivalent Circuit of a Higher-Order Receiver Stack

Consider the circuit shown in Fig. (4-22). The impedance, Ze, across the transmission line

represents the net effect of the stacked resonators that is sensed across the signal waveguide.

Near the resonance frequency, w,, of the LC circuits Ze is given by

11Ze (w = w,, + Aw) = 2jowLoe + 1 1- (4.94)
2jAu)Cie +2jw --

2j~w2,+"2jAwLne+Re

for the case that n is even and by

1
Ze(w = w, + Aw) = 2jAwOLoC + 2JLe iA+ (4.95)

2j~L2,--2jswCne+G,

for the case that n is odd. This choice of the circuit thus leads to Ze having the form of a

continued fraction. To be specific, henceforth we will write down expressions for the case

that n is odd, (i.e even number of resonators). The corresponding results when n is even

are easily derivable.

The reflection and transmission coefficients are computed by using standard transmission

line theory. Y represents the total admittance as seen looking into the transmission line
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(see Fig. (4-22) and is given by

1
Yt =Yo +

Ze

The reflection coefficient, IF, is given by

YO - Y 1
Yo +Yt 1 + 2YoZe

(4.96)

(4.97)

The transmission coefficient, T, is given by

T = 1- 1
1 + 2YZe

(4.98)

(4.99)

Comparing the above expressions with equations (4.91) and (4.92), we see that the equations

are similar in form provided we draw the following correspondence

DT ( 1 + 2YoZe (4.100)

Therefore, for equivalence between these expressions, the forms of DTe and 1 + 2YoZe must

be the same. Note that

(4.101)1 + 2YoZe = 1 + 4jAWL 0 eYo + j Cie
Y':' 4jAwL 2 eY0 +--

has a continued fraction form identical to D-e which is given by

DT= 1+ j(o - Wo)Te +

L2w-w_) 1 1
1±2n

provided wi = wo, i.e all the Bragg resonators have the same resonance frequency. This is

assured if the resonators have the same grating periodicity and phase shifts. In fact there is

a term by term correspondence between these two expressions which provides the mapping

(4.102)
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between the circuit and the optical resonator parameters.

4LeYo +- Te (4.103)

-- (4.104)
2I Te

4L 2eYo 2 (4.105)
A2

3e +- (4.106)
YO Y _ A 2Te

-Y [ n e 4 E 2 (4 .1 0 7 )
2 Yo 2 2p 2gTe

which can be rewritten in a simple way as

Te 4LOeYo (4.108)

p2 2 L- (4.109)
El 2-,L-oCie

2 1
p2 2 1 (4.110)

22 24L2e Ce

2 ,_1 (4.111)
-13 2 L2eC3e

I2n Cne (4.112)
Ge

This proves that the circuit shown in Fig. (4-22) is indeed the equivalent circuit of the

coupled resonator system as viewed from the signal bus. The power loss in the conductance

Ge, PGe, represents the loss in the output port of the resonator stack or in other words the

received power, Pr.

If the structure is excited by an incident wave from the left then part of the power is

transmitted into the output transmission line of the equivalent circuit of Fig. 4-22, and part

is reflected back. The maximum power that can be transferred to the load Ge at resonance,

when all resonators are chosen to have the same frequency, Wk = wo for k = 1, 2, ... n, is half

the incident power. This occurs when Ge is adjusted to be equal to 2Y and follows from

standard transmission line theory. The same result can be obtained from eqs. (4.85) and

(4.86) using eq. (4.90), and assuming that the outgoing signal bus is matched, i.e s+ 2 = 0.

Maximation of the received power, Is+112
- s_112 - Is-212 , on resonance with respect to 1
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Figure 4-23: A standard LC ladder circuit.

gives 1 In this case one finds that Is_1 2 = 12I2 = for u = w,,; a quarter of the

incident power is transmitted along the signal bus and a quarter is reflected on resonance.

4.7 Relating to a standard LC ladder circuit

The purpose of deriving the equivalent circuit of the stacked resonator system is to facilitate

filter design by utilizing the extensive work already done on LC ladder circuits [50, 52, 53].

However, the circuit of Fig. 4-22 does not have a standard LC ladder configuration. Fig.

4-23 shows a "standard" LC ladder circuit for which tables are readily available that allow

specific spectral responses to be designed for power dissipated in the load, G,.

The approach followed is to relate the equivalent circuit of Fig. 4-22 to the standard

LC ladder of Fig. 4-23. Thereby we will obtain a mapping which relates the tabulated

inductance and capacitance values of the standard circuit to the impedance values of the

equivalent circuit of the resonator stack. Since we will be referring repeatedly to the two
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circuits we label the equivalent circuit of the coupled resonator system (Fig. 4-22) as circuit

(A) and the standard ladder circuit (Fig. 4-23) as circuit (B).

Circuits (A) and (B) have different configurations and it is, therefore, not possible to

draw a strict equivalence between the voltages and currents at all the ports in the two

circuits. However, as we shall see, there is a correspondence between the power, PG.,

dissipated in Gs, (circuit (B)) and the power, PGe, dissipated in Ge, (circuit (A)). Since

we are interested in designing for a specific received power, P, or equivalently PGe, relating

PG, and PGe will be sufficient for our purpose.

The power dissipated in Ge is simply given by (see Fig. 4-22)

PGe = -RefVI,*
2

where
1

(Y+ 1 )
Vr = 0

Z 2V+
ZO + 1

ZeYo
= 2 V+l+y~

1 + 2Y Ze
Vr

Ze

Thus, 2
1 ZeYo 21(1

PG, -22 1+ 2YO Ze 2 Ze Z*

which can be rewritten as

1 1 _I~l2 l 413
PG1-y 2
e 2 1 + 2Y Ze 1 + 2Yo Ze* 11 + 2Yo Ze|2

Compare with eq. (4.93). Again eq. (4.100) follows.

Consider now Fig. 4-23 which shows circuit (B). Z, denotes the impedance of the LC

ladder which is driven by the same source as circuit (A). Near resonance, Z. is given by

1
ZS = 2jAu)LO, + jw,+ 1 1 1

2jAwL
2s+-- 2jAwCns+Gs

The power dissipated in the load conductance, Gs, PG, is given by

PG , = Re{VsIs*}
2

where

V = - z 2V+
Zo + ZS

is vs
Zs
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Figure 4-24: A third-order receiver stack.

Using the above, we find that

1 Z 0
PGs = 2 z+ 2 V+ J

* 2 Zo +Zs 2 Zs Zs*

which can be rewritten as

IV1 1 2

PGs 12y + (4.114)
P I+I 1+Yr Zs 1+Yo Zs* 11+Yo ZI2}

We see that PG. of eq. (4.114) is equal to PGe of eq. (4.113) if we make the following

correspondence

Zs : 2Ze (4.115)

In other words, the powers dissipated in the load conductances of circuits (A) and (B) are

related through an impedance scaling.

4.8 Designing Higher Order Filters

Consider the three coupled resonator system shown in Fig. (4-24). The equivalent circuit of

this system is shown in Fig. 4-25. Let us assume we wish to design the system such that the

power tapped of the second resonator, P, has a Butterworth spectral response. As shown

in the previous section designing for a specific P, is equivalent to choosing the appropriate

L, C values to obtain the desired response for PGe. The equivalence between PGe and the

4.8 Designing Higher Order Filters
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Figure 4-25: A third-order receiver stack.

power dissipated in the load termination of a standard LC ladder circuit (Fig. 4-23), PG,

allows us to use circuit (B) along with eq. (4.115) to design for PGe. For a Butterworth

response, we know that the normalized values (Y = 1) of the inductance and capacitance

of the standard circuit are

Los

cis

=1

= 2

=2s

R I

Lo1
-> Loe - Lo 1

2 2

Cie = 2 Cis = 4

Le Los 1
=> Le = 2 2

_ 1
=> Re- 2

2 2

(4.116)

(4.117)

(4.118)

(4.119)

where we have used the correspondence of eq. (4.115) to get the values for Le and Ce from

the standard ladder circuit values. Using the correspondence, De <-- 1 + 2YoZe (for the

case when n is even) we can relate the circuit parameters to the CMT-time coupling and

decay parameters:

Te - 4LoeYo

2 1

2 ) 21/

72

C21e

(4.120)

(4.121)

(4.122)

(4.123)
2L 2e

Re

no

Z
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Figure 4-26: Spectrum of the third-order receiver stack designed to yield a Butterworth response.

Only half the power is transferred on resonance; a quarter is transmitted and a quarter

reflected on the bus waveguide.

In turn, T and p. are be related to the the CMT-space parameters. From the earlier sections

we know that

1 g I/12 2
- 2= ve

Te

Moreover,

_p -= i,±i+1}vg (4.124)

It is shown in Appendix B that the CMT-time coupling parameter Y. is related to the

CMT-space coupling parameter pi,j+1 through a scale factor vg, which is the group velocity

of the Bragg resonator guides. CMT-space parameters are directly related to the physical

4.8 Designing Higher Order Filters
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dimensions of the grating resonators and the spacing between them [44, 20]. Thus the

equivalent circuit approach allows us to design for specific spectral pass-bands by looking

up standard filter design tables and then translating these into physical dimensions via the

correspondence above. Figure (4-26) shows the spectral response of a third-order receiver

stack shown in Fig. (4-24) designed using the method detailed above. The device parameters

were chosen to yield a maximally flat Butterworth response with a 3 dB bandwidth of 15

GHz. Notice that the adjacent channel cross-talk is always less that 20 dB. It is interesting

to compare this to the response of a first-order filter. We saw in section 4.3.3 that a 18

GHz filter with a 20 dB channel isolation required a n = 150 cm- 1 . Morevoer, the channel

isolation of 20 dB was limited to within the stopband. This higher-order filter was designed

using a grating strength of r, = 60 cm- 1 . Moreover the channel isolation is always better

than 20 dB - both within and outside the stopband. The stopband corresponding to a

r = 60 cm- 1 is about 170 GHz. Thus we see that for a given , value, higher-order devices

have broader and flatter passband widths, faster roll-off and better CLin and CLOut levels.

Higher-order filters if designed appropriately are not constrained within the stopband of the

gratings. This is a tremendous advantage over first-order filters.

The filter of Fig. (4-24) would have been suitable for a WDM system with a channel

spacing of 50 GHz. However, since there is incomplete power transfer to the top receiver

resonator some of the dropped channel power continues down the waveguide bus. This is

evident in the transmission spectrum where the dropped channel power is only suppressed

by 6 dB on resonance. This, of course is unacceptable in WDM systems. The dropped

channel must be suppressed in excess of 20 dB in the bus waveguide. As explained earlier

we can never transfer more than half of the incident power to the output port using a

a single side-coupled standing-wave resonator. A quarter of the power is reflected and a

quarter is transmitted on the signal waveguide.

The difference between the equivalent circuit of the stack and the standard LC circuit

suggests how we can attempt to create a system capable of complete power transfer. In the

standard LC ladder we know that is possible to transfer all the incident power, on resonance,

to the load G,. The difference between two circuits is the section of the transmission

line on the right hand side of Fig. 4-22 (compare with Fig. 4-23). On resonance, this

section appears as a conductance Y in parallel with the load conductance, Ge, splitting the

incoming power. Some of the power is dissipated in Ge and appears as the useful received

Side-coupled Bragg Resonators
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Figure 4-27: Higher-order reflector made by using closed Bragg resonators in a stack configuration.

power while some is "dissipated" in Y and corresponds to the transmitted power on the

bus. If we could transform the system to "eliminate" this section we would potentially

achieve full power transfer. One way to achieve this is to present an open circuit at the

transmission line terminals on the right. This occurs if the resonator stack is followed by

a reflector. Ideally, this reflector should provide positive unity reflection over the channel

bandwidth and zero outside of the band. In this case the equivalent circuit of the stacked

resonators transforms into the standard LC circuit for which we know the inductance and

capacitance values needed for complete power transfer. In the next section we look at how

we may design Bragg reflectors appropriate for this purpose.

4.9 Higher-Order Bragg Reflectors

In the previous section we saw that a reflector is needed for complete power transfer to the

receiver port. A single pole reflector may be realized by a closed resonator (quarter-wave

shifted resonator made of long gratings) coupled to a signal guide [43]. At resonance, all of

the incident wave is reflected. For higher-order filters it is obvious that we need higher order

reflectors. This is because we desire that only the signal within the channel bandwidth be

reflected. Generalizing to the case of a single pole reflector, for a higher order reflector

we use a system of side-coupled closed resonators evanescently coupled to the signal bus.

A natural choice is the stack configuration shown in Fig. (4-27). This system looks very

4.9 Higher-Order Bragg Reflectors
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Figure 4-28: Higher-order reflector made by using n inline closed Bragg resonators side-coupled to

a bus waveguide.

much like the higher-order receiver stack shown in Fig. (4-20). However, unlike the stacked

receiver, the last resonator of the reflector stack does not have a truncated Bragg resonator

arm. We can use the formalism derived earlier to determine the spectral response of the

stacked reflector if we utilize the fact that = 0. From (4.91), using (4.87) we find that

the reflection coefficient, F is given by

s+1 D-e

r = +1(Eo2e+ -1(4.125)
1 + -wo)-re + -- 2

j((--2)+--) -'

Note the above expression has zeros (as well as poles). Thus, there are certain input

frequencies at which there are no reflections. In fact for a system with an even number of

resonators, there is a zero at the Bragg wavelength. To be specific consider the case of two

resonators coupled to a bus. In this case the reflection coefficient is given by

-j(w W) (4.126)
j(W - wO) [1 + j(w - wo)re] + 2Te

The zero at the Bragg wavelength or w = wo is obvious. In fact it can be shown that for the

stacked configuration of Fig. (4-20) with n resonators, the reflected response has n -1 zeros
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Figure 4-29: Higher-order reflector made by using in-line closed Bragg resonators side-coupled to

a bus waveguide.

and n poles. Moreover, the zeros lie within the outermost poles and thus it is not possible

to obtain a constant strong reflection over any sizeable bandwidth. Furthermore, the roll

off of the reflected signal with frequency is decreased due to the presence of the zeros. As

a result, contrary to what might have been expected, the stack configuration of Fig. (4-27)

is not an appropriate choice for a higher order reflector.

An alternative scheme to obtain a higher order reflector is shown in Fig. (4-28). It

employes in-line closed higher-order resonators side-coupled to a bus waveguide. The idea is

that the spectral response of the resonators can be designed by using the coupling techniques

of section (3.4.4). By keeping the outermost resonator arms long, the total system is closed

and can only couple power to the adjacent waveguide. As in the case of a single closed

resonator coupled to a waveguide, we expect reflection at and around the resonance. This

idea is applied to the case of the case of two resonators as shown in Fig. (4-29). The

spectrum of the device is shown in Fig. (4-30). Note the reflected signal is constant over a

reasonable bandwidth. The response is a Butterworth. A more compact device which also

yields a Butterworth response for the reflected signal on the bus is shown in Fig. (4-31). It

consists of two DFB resonators, separated by a quarter-wave shift and placed on opposite

sides of the signal bus. Although this reflector does not have the ideal reflector response

(positive unity with no phase change), the magnitude of the reflection is constant over the

4.9 Higher-Order Bragg Reflectors 127



128 Side-coupled Bragg Resonators

Reflected Power in Waveguide

-50 0
Af (GHz)

50

1

0.8

a- 0.6

50.4
I.

0.2 F

100
U-

-100

Transmitted Power in Waveguide

-50 0
Af (GHz)

50 100

Figure 4-30: Spectrum of a second-order reflector of Fig. (4-29).

Figure 4-31: Second-order reflector made by side-coupling closed Bragg resonators on opposite

sides of a bus waveguide.
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Figure 4-32: Higher-order reflector made by using inline closed Bragg resonators side-coupled to

a bus waveguide.

channel bandwidth. It may be used as a first approximation to the ideal reflector.

Consider a stacked resonator system followed by the reflector of Fig. (4-31), as shown

in Fig. (4-32). This system is designed to yield a second-order Butterworth response at the

receiver port assuming that it is followed by an ideal reflector. The equivalent circuit for

such an ideal system is the standard LC ladder circuit. Figure (4-33) shows the spectrum

of this device when it is excited from the bus. First of all note that it is possible to transfer

nearly all of the power to the receiver. This is different from the receiver stack where the

best we can do is half the incident power. Thus our intuition of using a reflector following

the receiver stack and changing the design parameter to yield complete power transfer is

shown to be true. Moreover, the shape of the received signal is nearly maximally flat near

the resonance (as in a Butterworth) is fairly constant before it falls off. The deviation of the

received response from a Butterworth is due to the fact that phase of the actual reflector

used varies across the channel. Even so we note that the receiver port response is very flat

and falls off sharply with frequency. This filter has a 3dB bandwidth of about 6 GHz and

30 dB bandwidth of 20 GHz.
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4.10 Appendix

4.10.1 Coupling of Resonator to Bus

In the subsequent discussion we shall treat the coupling of a single resonator to an adjacent

waveguide. Using perturbation theory, coupling to the other resonators can be introduced

later. The resonator mode a, is excited by incident waves s+1 and S+2 in the bus:

da= jwoao - -ao + - (s+1 + S+2) (4.127)
dt re

ao 12 is normalized to be equal to the energy in the resonator. First we consider the case

of initial excitation of the resonator which looses power via 81 and 8-2. Clearly the

energy decay rate is 2/Te. The amplitudes of the outgoing waves can be found from energy

consideration:

Is_112 + |s-212 2lao 2  (4.128)
Te

where s-1 and S-2 have been normalized so that their absolute squares are equal to the

power carried by these waves. Since the two waves have equal amplitudes by symmetry we

find

Is_112 = 8-2 2  ao12 (4.129)
Te

Next consider the time reversed situation. The outgoing waves become the incoming waves,

s+1 and S+2, and the amplitude ao grows at the rate of 1/e. From eq. (4.127) we have

that

ao = .L(s+1 + S+2) (4.130)
j(w - WO) + ' 410

Moreover, since

i(W - WO) 1 - (4.131)
Te

we have

Iaol= 2 (4.132)

In the time reversed situation the incoming waves have the same magnitude as the outgoing

waves in the original decay process and thus

s+11 = s+21 = lao (4.133)
rWe

Using eqs. (4.132) and (4.133) we find that

!S 1 (4.134)
We
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In this way we have determined the coupling coefficient, r, in terms of the decay rate 1/Te.

The outgoing waves depends linearly on the incoming waves and the mode amplitude

ao:

8-2 = s+1 + cao (4.135)

s-1 = S+2 + cao (4.136)

In the absence of ao ao = 0, S-2 = s+1 and s_1 = S+2 as must be the case. The coefficient

c can be found from power conservation. Clearly, the rate of increase of the energy of the

mode is equal to the net power delivered to the resonator, i.e

dao12 = Is+112 + s+212 _ IS2 S-212 (4.137)

Using eq. (4.127) we get

dlao12  -2 Ia.| 2 + r(s+1 + s+ 2)a* + 5*(s*1 + s* 2)ao (4.138)
dt -, 0Te

Use of eqs. (4.135), (4.136) and (4.138) in eq. (4.137) yields

C = - . (4.139)

In this way we find for the mode of the first resonator:

daO I
t j O - 1 ) ao + (S+1 + 8+2) (4.140)

with the additional relationship between the incident and reflected waves:

S1= S+2 - -ao (4.141)

S-2 = s+1 - ao (4.142)
Te

If the coupling to resonator (1) is included, then (4.140) changes to

daO I- - ao + jltai + (S+1 + 8+2) (4.143)
dt Te ne

and eqs. (4.141) and (4.142) remain unchanged.

Side-coupled Bragg Resonators



Chapter 5

Add-Drop Filters using Different

Topology: Push-Pull Filters

In the previous chapter we saw how Bragg resonators can be side-coupled to a bus waveguide

to create a variety of optical filters. We saw that at least two Bragg resonators were

needed to create the lowest-order add/drop filter capable of completely dropping a selected

WDM channel. We also saw that n Bragg resonators side-coupled in a stack configuration

could be used to create higher-order receiver filters capable of transfering half the incident

power to the drop port. As in the case of a first-order filter, it can be shown that 2 n

resonators are needed to create an n'h-order filter capable of complete power transfer. The

n additional resonators needed serve as the higher-order reflector and follow the n-resonator

receiver stack; they enable complete power transfer of the selected WDM channel to the

drop port. Higher-order reflectors using Bragg resonators are difficult to make. In the case

of a 2nd-order add/drop filter described in the previous chapter, we had to rely on some ad

hoc techniques to design the 2nd-order reflector needed for complete power transfer. The

techniques for making higher-order reflector could not be easily generalized for nth-order.

The optical parameters needed to design the n-resonator receiver stack are determined by

using the equivalent circuit approach detailed in the previous chapter. However, no such

convenient techniques exist for designing higher-order reflectors using the Bragg resonator

topologies discussed thus far. Ideally we would like to use a coupled Bragg resonator system

in some configuration where we know exactly how to determine all the requisite coupling

parameters between the 2 n resonators to design an nth-order add/drop filter capable of

complete power transfer of the selected channel to the drop port. In this chapter we discuss
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Figure 5-1: Add/Drop filter using ring resonator.

such a topology. The topology is inspired in part by examining a ring resonator add-drop

filter. We will see that the behavior of ring resonators which are travelling-wave devices

can be reproduced by using Bragg resonators even though they are standing-wave devices.

Filters made using this new topology are labelled as push-pull filters because of the nature

of the interaction between the coupled resonator pairs that simulate a traveling wave.

5.1 Add-Drop filter made single mode resonators

It has been well known that a ring resonator side-coupled to two waveguides as shown in

Fig. (5-1) can be used as an add-drop filter [55, 56]. The top or bus waveguide serves as

the input port and carries the multi-channel input. The bottom or access waveguide allows

the signals on the bus waveguide to be accessed via the ring resonator. The principle of

operation of a ring resonator add/drop is relatively straightforward. The evanescent tail of

the guided mode in the bus waveguide excite the ring resonator mode in the region where

the bus is close the resonator. The mode of the ring resonator circulates in the clockwise

direction and couples to both the top and bottom waveguides. However, the light couples

out of phase to the signal on the bus waveguide and as a result the dropped channel gets

transferred to the access guide propagating in the reverse direction. The reversal of phase

relative to the bus guide is due to the fact that evanescent coupling in each direction is

associated with a 900 phase shift. Hence, the light coupling from the input bus to the

ring resonator and back to the input bus is out of phase. Consequently all the light in the

resonator ends up at the drop port. The frequency selectivity of the ring resonator add/drop

134
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Figure 5-2: Single-mode resonator side-coupled to two adjacent waveguides.

filter comes from the fact that the ring resonator only supports those wavelengths that with

a 27rm phase-shift complete a roundtrip of the ring.

CMT-time equations can be used to describe a general single-mode resonator coupled

to two guides as shown in Fig. (5-2):

da (. 1 1 1\
=a Oo -1 1 a + !1s+1 + 2 s+2 + ! 3s+ 3 + L4s+ 4  (5.1)

dt To Te T'e

a is the resonator mode amplitude and normalized such that 1a12 is the energy in the mode.

wo is the resonant frequency, 1/r is the decay rate due to internal resonator loss, l/T,

1/r' are the amplitude decay rates associated with loss from the resonator to the bus and

the access waveguides, respectively. As in the previous chapter, ti and r'2 are the input

coupling coefficients associated with the forward and backward propagating modes in the

bus guide, and !& and !4 are similarly defined for the access guide.

By power conservation, the outgoing waves are [57]:

s = e-jda (s+2 - ia) (5.2)

s-2= e~d (s+1 - Lda) (5.3)

s-3 = e~5O'd (S+4 - 4a) (5.4)

S_4 = e-jQ'd (s+3 - rj*a) (5.5)

where 3 and 0' are the propagation constants in the bus and the access guides, respectively.

These equations are similar to those in the previous chapter. Equations (5.2)-(5.5) show that
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if the resonator is not excited then the incident waves appear at the output undisturbed,

with a phase shift that is due to the finite distance d between the reference planes, for

simplicity taken to be the same in both waveguides. In the previous chapter it was assumed

that reference planes were chosen such that this phase term was an integral number of

27r's and was thus omitted. In the most general case it should be included, as above. The

coupling coefficients, Ki are found in the appendix following a treatment similar to [20].

Their squared magnitudes are equal to the respective decay rates into the waveguides due

to power conservation and their phases are related to the phase mismatch between the

waveguide and resonator modes and the choice of reference planes. So we can write:

; e i=1...4 (5.6)

with 1/e1,3 and 1/Te2,4 defined as the power decay rates in the forward and backward

direction, respectively. They are related to the amplitude decay rates 1/Te and 1/T' via

power conservation:

1 1 2
- + - = - 2(5.7)

Tel Te2 Te

1 1 2
- + - = ,(5.8)

T3 Te4 Te

Oi are the respective phases; they were assumed to be unity in the previous chapter but are

included here to be most general.

Eq. (5.1) describes an arbitrary single-mode resonator coupled to bus and access waveg-

uides. We choose port 1 as the input port and assume that the resonator is only excited

from this port, i.e we set s+ 2 , s+ 3 , and s+4 to zero. If s+1 has a ej" time dependence, then

we find from 5.1 at steady state:

a11 ejo1 s+1
a = + 1 + 1 (5.9)
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Substituting a from (5.9) into eqs. (5.2)-(5.5), we get the filter response of the system:

1 ei( 10-- 2)
s-- R = -e-j,3 1 +ere (5.10)
s+1 j( -w 0 )+ + +1

1
S-2 T = e-jd 1 - Te1 (5.11)
s+1 )+ + + I

S-3~ -j e(O1--04)
DL = -e j'd Ter4 (5.12)

+j( -0) + + (51

' ei(Ol1-03)8-4 - DR = -e~-jo'd . e=1e (5.13)
s+1 j (o - WO ) +0 Te ,

where R is the reflection from the input port, T is the transmission through the bus, and

DL, DR represent the transmission (channel dropping) into the left and right ports of the

access guide, respectively. Equations (5.10)-(5.13) are completely general and describe the

behavior of a single-mode resonator side-coupled to two guides. No assumption is made

about whether the resonator is a traveling wave resonator or a standing wave resonator.

We can now apply the above formalism to the case of a traveling wave resonator used in

this configuration.

In the case of a a traveling wave mode, such as that supported by the ring resonator

of Fig. (5-1), the power flows continuously in only one direction in the resonator. The

forward traveling mode of the bus waveguide excites the clockwise propagating mode of

the ring. Since this mode is uni-directional it immediately follows that the backward decay

rate, 1/Te2 in the bus waveguide and the forward decay rate, 1/e3 in the access waveguide

are zero, i.e 1/Te2 = 1/Te3 = 0 From eqs. (5.7) and (5.8) it follows that

1/rel = 2/e, 1/Te4 = 2/T'

We find using eqs. (5.10) and (5.13) that in this case give R = DR = 0, over the entire

bandwidth consistent with the stated decay rates being zero. At W = w0, the incident

power in the bus in the forward direction is transferred to the access guide in the backward

direction limited only by the loss. This confirms the argument given from physical reasoning

about the behavior of a ring resonator add/drop filter. If, in addition:

1 = 1 + - (5.14)
Te Te To



Add-Drop Filters using Different Topology: Push-Pull Filters

Input- 
Bus Guide

R - -- T
1/re2  1lre1

Bragg Resonator

1 /re4 1/r.
D . - DR

Access Guide

Figure 5-3: Bragg resonator side-coupled to two adjacent waveguides.

then, at resonance, (5.11) and (5.12) give T = 0 and DL 12 = (1 - re/ro), so the input

signal power at w, is completely removed from the bus and is dropped into port 3 of the

access guide reduced by a fraction re/ro due to loss. Thus, the system operates as a channel

dropping filter.

5.1.1 Standing-wave Resonator

Consider now the case of a standing wave single-mode resonator like a Bragg resonator

coupled to the bus and access guides as in Fig. (5-3). We would like to see if it is possible

to use a Bragg resonator in this configuration as an add/drop filter. As mentioned earlier,

the response of any single-mode resonator is governed by eqs. (5.10)-(5.13). However, unlike

a traveling wave resonator, the Bragg resonator mode consists of a pure standing wave; there

is no net power flowing in either direction in the resonator. As a result the resonant mode

decays equally into the forward and the backward propagating waveguide modes. In other

words, 1/Tel = 1/re2 and 1/Te3 = 1/re4. From eqs. (5.7) and (5.8) it follows that

1 _ 1 _ 1
Tel Te2 Te

and
1 3 1 _ 1

Te3 Te4 Te
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KI = K2 = K etc. and eqs. () exactly reduce to the generalized form of the familiar equations

of chapter 4 which describe a resonator side-coupled to a waveguide. As in the case of a

traveling wave resonator, the power into the access guides is maximized if eq. (5.14) is

satisfied. In this case using eqs. (5.10)-(5.13) we find that

|R| 2 = jTJ2 = 0.25 (5.15)

DL 12 = DR 12 = 0.25(1 - Te/To). (5.16)

At best, for the case of zero internal resonator loss, half the input power at frequency w,

remains in the bus and is equally distributed into ports 1 and 2. The other half, is equally

distributed into access guide ports 3 and 4.

Clearly, a single-mode standing wave resonator is not adequate for channel dropping

as it leaves half the incident power on the bus guide as reflections and transmission. This

is very different from a single-mode traveling wave resonator side coupled to the bus and

the access guide which can fully transfer a channel at the resonance frequency, from the

bus to the access guide. The results of the single standing wave resonator configuration of

Fig. (5-3) is reminscent of that of a SSCR of the previous chapter. In the previous chapter

we noted that two resonators were needed to obtain a add/drop filter capable of complete

power extraction of the dropped channel from the bus guide. In the next section we show

that it is possible to achieve the response of a single-mode traveling-wave resonant add/drop

filter of Fig. (5-1) by using a double-mode standing-wave resonator.

5.2 Symmetric standing wave channel add/drop filter

We now consider a resonant structure with two standing wave modes that is placed between

the bus and access guides as shown in schematic representation in Fig. (5-4). The resonator

is assumed to have a symmetry plane perpendicular to the waveguides, at z = 0. It supports

two modes which are symmetric and antisymmetric with respect to this plane. With the

reference planes defined at z = ±d/2, the phases of the coupling coefficients differ by

even (odd) multiples of 7r in the case of the symmetric (antisymmetric) modes. Thus,

the forward and backward incident waves couple into the symmetric mode in phase and

into the antisymmetric mode out of phase. The symmetric mode has amplitude a, and

antisymmetric mode has amplitude aa. Using the analysis of the previous section simplified
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d -

Bus Waveguide

s+1 S+2

I frs1Pe

Double-mode
Resonator

Access Waveguide
z=O

Figure 5-4: Schematic of a double-mode standing-wave resonator side-coupled to two adjacent

waveguides.

for the case of symmetric structure, we have:

da8  1 1 1
d = S - - a. + Ii(s+1 + 8+2) + W(s+3 + 8+4) (5.17)
dt (i e, e., To.,)

da JWa 1 , a. + a(8+1 - 8+2) + W(s+3 - 8+4) (5.18)
Te a Te I

where Ws,a, are the resonant frequencies 1/Toe,a are the decay rates due to loss, 1/Tes,,

1/ Tsa are the rates of decay into the signal bus and the access guide, respectively, and

rs,a, W,a are the input coupling coefficients associated with the bus and the access guide,

respectively. The amplitudes of the outgoing waves are found by generalizing equations

(5.2)-(5.5) to the case of two excited modes:

s_1 = e- i (s+2 -!i*a, + K*a) (5.19)

S-2 = e i/ 3 d(s+1 -!j*a,, - ;a) (5.20)

s-3 = ejod (S+4 - _e*a + *aa) (5.21)

s4 = e-3'd (S+ 3 - _*a - *aa) (5.22)

In analogy with (5.6), the input coupling coefficients can be written as:

1 eosa 1 'a (5.23)
-s~ Te,a s Fa e. a
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With s+1 as the input signal at frequency w, we find the filter response at the four-ports of

the system, as defined in the previous section:

1

Tes T +

1
Tea

Te +e T+

1

1
-I e(o,-O )

Ta5 e T

T+ I a To+

Te . ei(o,-O')
- e- -

±

J(WJa+~ +1
Tea Te

( j( ) -4'+

Tea Tea

1 j (0,, -0' )

+(W -L)+L+L±+f1 j(W-Wa) + 1 +-4+
Tas Tas T

0 5 Tea ra
Toa)

The two resonant modes are degenerate if they have equal frequencies and equal decay rates:

LOs = Wa WoG

TO = TOa = O

Tes = Tea = Te

re = e =Te'

(5.28)

(5.29)

(5.30)

(5.31)

Under these conditions, (5.24) gives R = 0 over the entire bandwidth of the resonator and

equations (5.25)-(5.27) become:

T = e-ijd( 1
2
Ta

j( -wo +I +
(5.32)1

j((0s+0a)-(0'+0',)-_'d)DL = 2

D j (O+Oa)-e( -(+ d)
DR - e 2 /'d

2

(T -
Ta)O Ta TL+ L

2

Ta- +a

AO = (Os - Oa) - (0'8 - 0a/)

At the resonance frequency wo, from (5.32) the transmission through the bus is:

1 1 1
T Te e'r' Te± ±o

1 1 1
T. Ta" Tr0

R = e- j0 d

T = e-j 1

(5.24)

DL = ei" (

DR

1 (5.25)
T0a )

(5.26)

(5.27)

where

sin
(2

cos

(5.33)

(5.34)

(5.35)

(5.36)
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Note that if the decay rates satisfy (5.14) we find, as in the case of a traveling wave resonator

discussed in section 5.1.1, that the input signal power is completely removed from the bus

and transfered to the access guide reduced by a fraction Te/To due to loss. Under this

condition, the bandwidth of the Lorentzian response is determined entirely by the coupling

to the bus waveguide and its peak is set by the ratio re/To. This behavior is very different

from the case of a single-mode resonator where half the incident power remained on the bus

guide. As we can see in (5.33) and (5.34), the distribution of the dropped signal power into

the left and the right port of the access guide is determined by the phase difference AO:

(a) If AO = 2n7r, where n is an integer, then DL = 0 for all frequencies so the channel is

dropped in the forward direction. This means that if the resonator has a horizontal

symmetry plane as well, i.e. parallel to the waveguides, the symmetric and antisym-

metric modes have the same symmetry (even or odd) with respect to this plane. An

example for this case is a composite system made up of two identical standing wave

resonators as we will see in the next section.

(b) If AO = (2n + 1)7r, then DR = 0 for all frequencies so the propagation in the access

guide waveguide is only in the backward direction. This means that if the resonator

has a horizontal symmetry plane as well, the symmetric mode has even (odd) and

the antisymmetric mode has odd (even) symmetry with respect to this plane. An

example for this case is a ring resonator, if we consider its traveling wave modes as

superpositions of degenerate symmetric and antisymmetric standing wave modes that

are excited with a 7r/2-phase difference.

(c) In any other case both DR and DL are nonzero.

Thus, in agreement with ref. [60]-[62], we found that in order for a resonant system

to operate as a channel dropping filter employing standing wave modes, the excitation of

two degenerate modes is necessary. The superposition of these modes with the appropriate

phase relation gives the behavior of a traveling wave mode.
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5.3 Symmetric system using two identical single-mode res-

onators

According the previous section a symmetric resonator system with two degenerate modes

coupled to bus and access waveguides can function as an add/drop filter capable of ex-

tracting the entire desired channel power from the signal bus. One way to implement a

double-mode symmetric resonator system is by using two identical resonators that are cou-

pled to each other; each resonator has as single standing-wave mode in the frequency range

of interest. Bragg resonators can be used for this purpose and Fig. (5-6) shows two coupled

Bragg resonators placed between the bus and the access guide waveguides so that the total

system has a symmetry plane at z = 0. Normally, the mutual coupling of the two resonators

would split the resonant frequencies, lifting the degeneracy. However, it can be shown that

the coupling of the resonators to the waveguides can be designed to cancel the effect of

frequency splitting due to the mutual coupling between the resonators. Consequently its

possible to reestablish the degeneracy.

We can either choose to describe the system of coupled Bragg resonators in terms of the

modes of symmetric and antisymmetric supermodes, a, and aa of the composite coupled-

resonator system as in the previous section; conversely we can use the mode amplitudes, aL

and aR, of individual resonators. The two approaches are identical; in fact the normalized

sum and difference of the individual resonator modes, aL, aR define the symmetric and

antisymmetric modes, a8 , aa. The mode amplitudes of the resonator on the left and on

the right of the symmetry plane are denoted by aL and aR, respectively. The resonant

frequency, decay rates and coupling constants for the left resonator are defined as in section

5.1.1 and for the right resonator are found by mirror symmetry.

The resonator on the left is excited from the left by s+1 and s+3 and from the right by

the outputs of the right resonator. The resonator on the right is excited from the right by

S+2 and S+4 and from the left by the outputs of the left resonator. The distance from the

left (right) reference plane of the resonator on the left of the symmetry plane to the left

(right) reference plane of the resonator on the right of the symmetry plane is denoted by 1,

as shown in Fig. (5-5), and for simplicity is the same in both waveguides. The equations
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Bus Waveguide
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1/1Tk j 1/j ' ___

Access Waveguide +-- S4

Figure 5-5: Two identical coupled single-mode resonators side-coupled to bus

uides. This system is identical to that of Fig. (5-4).

and access waveg-

for the mode amplitudes of the two resonators are:

daL

dt
= w - - i , i aL - aR

+ eOls+ + 3rle02 e-3 (S+2 e - aRJ
Te Te Te/

+ e3 3 s+3 + e04 e- s+4 -

Te-

=~~ ()0 aR - jaL
Te- Te TO

e-j03 aL

+ -jo e'S±2+ e302 e-3 ' Is+i - -o 'aRJ

e Te /~
(5.38)

where y is the mutual coupling coefficient between the resonators and is real by power

conservation. For the decay rates we have used the fact that a standing wave mode decays

equally into both directions in the waveguide as discussed in section 5.1.1. Expressions

analogous to (5.2)-(5.5) have been used for the outgoing waves of the left (right) resonator
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that appear as inputs to the right (left) resonator. In equations (5.37) and (5.38) we can

see that, in addition to the direct coupling expressed by y, the two resonators are also

indirectly coupled through the waveguides. We define the amplitude of the symmetric and

antisymmetric modes of the total system as:

a =aL + aR

aL - aR
aa = v2

(5.39)

(5.40)

which, due to (5.37) and

d as 1
dtIaaJ

(5.38), satisfy:

= ~ L~ L-Te T ) 21 aaJ

1 1 1- -+--(1 cos) + -(icosO')
To Te Te

2 -01 + a Cos 0
2 01 +02-3 2 O

+ -e 2 (S+1± 8
Te jsin

2 j0+04-0'1) 
Cose

+ -es( 2) f (s+3 ±
e ~ jsrn '

as

aa

+2)

8+4)

where

Comparing (5.41) with equations

{ :

# = 01+ 01-02

' =/1+03-04

(5.17)-(5.18) we have:

1
=Wo T- p - -sino -

1. j
Ssin'

1 _ 1 _ 1

To Toa TO

2 ej(1+02-1) 22

a Te Js2n I

Z e2(O3+0'1) cos-

e j sin'

}
(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)
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I! s,aI2 (5.48)

= a Is,aI1 (5.49)

From (5.46) and (5.47), we can see that the symmetric and the antisymmetric excitations

couple into the system with a r/2 phase difference. In the special case that q and 0' are

even (odd) multiples of w, only the symmetric (antisymmetric) mode is excited, leading to

the behavior of the standing wave resonant system described in section 5.1.1, with decay

rates 2 /Te and 2/T' into the bus and the access guide, respectively, and 1/T due to loss.

The conclusions derived for the filter response of the symmetric system shown in section

5.2 apply to this system as well: The system can operate as a channel add/drop filter

if its symmetric and antisymmetric modes satisfy the degeneracy conditions (5.28)-(5.31).

The decay rates due to loss are already equal as seen in (5.45). From equation (5.44), the

condition for frequency degeneracy is satisfied if:

1 1
[ - -sin - I sin' = 0 (5.50)

- Te Te

From equations (5.46)-(5.49), the conditions for equal decay rates are satisfied if:

cosO = 0 (5.51)

cosc' = 0 (5.52)

Therefore, there are two degrees of freedom in designing this system: Knowing the prop-

agation constants 0, and 0' and the phase differences 01 - 02 and 93 - 04 we must choose

the distance d so that the symmetric and antisymmetric modes have decay rates equal to

those of the individual resonators, 1/e, 1/T'. Then, by varying the coupling between the

waveguides and the resonators, we must make 1/7e and 1/r' such that the splitting of the

resonance frequencies due to direct coupling between the two resonators is cancelled.

The signal power at resonance is completely removed from the bus if the degenerate

decay rates satisfy the maximum power transfer condition (5.14). In this special case the

bandwidth of the Lorentzian response is then set by Te and the peak power at the output

ports of the access guide by the ratio Te/To.

As discussed in section 5.2, the direction of the channel dropping is determined by the

phase difference AO = (0, - 0,) - (9[s - '). Here 0s, and 0',, are the phases of the coupling

constants defined in (5.46) and (5.47), respectively. From equations (5.46) and (5.47), we

can see that:
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s { if sino > 0
Os - Oa = !Y (5.53)

2 if sin# < 0

7f if sinq' > 0
_', - (5.54)

7r if sin' < 0

Therefore AO = 0, if the degeneracy conditions are satisfied with # - = 2n7, where

n is an integer, and the channel is dropped in the forward direction, i.e in port 4. If

0- # = (2n + 1)7r, then AO = ±r, and the channel is dropped backwards, i.e in port 3.

In this particular case it is possible to satisfy (5.50) even if the resonators are not directly

coupled (_p = 0) provided that 1/Te =/T'. The design of the filter is simplified when the two

resonators are individually symmetric. With the reference planes defined symmetrically on

either side of each resonator as in section 5.2, the distance 1 is equal to the distance between

the individual symmetry planes. In addition, we have 01 -02 = 0 (tir) and 03 -94 = 0 (±7r)

if the mode supported by each resonator is symmetric (antisymmetric). So the conditions

for degeneracy become:
1 1

f -F sin(1) -F -sin(3'l) = 0 (5.55)
Te Te

cos(01) = cos(O'l) = 0 (5.56)

We can see that in this case, the choice of I depends on the symmetry of the individual

modes that make up the symmetric and antisymmetric modes of the system. For example,

in the case that Te = T. and 3 = 0', we can see from equation (5.55), that the resonance

frequencies are degenerate only if 1 = (n + 1/ 4 )Ag for symmetric individual modes and only

if 1 = (n + 3 / 4 )Ag for antisymmetric individual modes, where Ag = 27r/3 is the guided

wavelength.

5.3.1 Add/Drop filter using two coupled Bragg resonators

As we saw in the above section two identical resonators can be coupled to each other to

yeild a system with symmetric and antisymmetric modes. These modes are typically at

different frequencies. However, by balancing the direct coupling between the resonators

with the couplying via the waveguides the degeneracy can be restored. Consider a system

which employs two coupled Bragg resonators. The condition for degeneracy require that

the two resonators are separated by and odd multiple of quarter-wave lengths. This is

147



Add-Drop Filters using Different Topology: Push-Pull Filters

Input
Bus Guide

R T

Bragg Resonator

DL - DR
Access Guide

Figure 5-6: Two coupled Bragg resonators side-coupled to bus and access waveguides to form a

push-pull add/drop filter.

automatically guaranteed for in line Bragg resonators as we saw in the previous chapter.

The other condition required for degeneracy is that

1 + 1 (5.57)

The CMT-space equations describing the system of Fig. (5-6) is

A,(z) -j0i -jp112 0 0 0 0 Al(z)

A2 (z) -j/12 -J02 0 0 K -jpt23 A2 (z)

d A 3 (z) 0 -jp23 -63 0 0 0 A 3 (z) (5.58)
dz Bi(z) 0 0 0 ji jp12 0 Bi(z)

B 2 (z) 0 K 0 jI12 j62 jP23 B 2 (z)

B 3 (z) 0 0 0 0 jpL23 j 3 B 3 (z)

d
-- A MA (5.59)
ctz

where A1, A 2 and A 3 are the forward traveling waves in the bus, Bragg resonator and access

waveguides respectively. Bi are the corresponding backward traveling waves. p12 and P23

are the CMT-space coupling parameters describing the evanescent coupling between the bus-
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1, -- -X-- L L2  Bus Guide Xi, X3, - -

T

Bragg Resonator

D Access Guide DR
T3 T2 T1

z3  Z2 z1 zo z

Figure 5-7: Schematic showing the transfer-matrix sections of two coupled Bragg resonators side-

coupled to bus and access waveguides to form an add/drop filter.

resonator and resonator-access guide pairs. They are related to the CMT-time parameters,

1/re and 1/T' and are not to be confused with the CMT-time coupling parameter p which

represents the direct coupling between the two Bragg resonators. The CMT-time and CMT-

space parameters are related by the following equations derived in chapter 3.

S= ,ge-L (5.60)

=2rvg /-p12 )2 (5.61)
Te (K1 _p/122

1- 2 rvg 
(5.62)

Te K

where L is the distance between the A/4-wave shifts of the Bragg resonators. The condition

of degeneracy, eq. (5.57) imposes one constraint on the, 112, P23 and L. The condition of

maximum power transfer given below

1 1 - 1 (5.63)
Te Te T0

imposes another. For this condition we know that the response of the add/drop is given by

j(w -JJ)
ITI = j- 2W)+ - (5.64)

2

IDRI = j (W - (5.65)
3(0- o)+ 2

RI = IDLI = 0 (5.66)

Complete power extraction from the bus is achieved. This power ends up in the right drop

port scaled down by the internal resonator loss. If this loss, associated with 1/r is zero
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Figure 5-8: Spectrum of first-order push-pull add/drop made using

side-coupled to bus and access waveguides.

two coupled Bragg resonators

we get complete power transfer of the dropped WDM channel to the access guide. From

eq. (5.66) it is clear that the bandwidth of the add/drop filter is determined by 1/T. For

a given 3 dB bandwidth of the add/drop filter response the constraints imposed by eqs.

(5.57)and (5.63) allow the use of eqs. (5.60), (5.61) and (5.62) to uniquely determine the

needed CMT-space parameters provided we know that grating strength V. of the Bragg

resonators.

Once the CMT-space parameters [12, [123, r, and L are known we can again make use

of tranfer matrices, given by eq. (3.34), to solve the above structure for a given input. The

total transfer matrix, as suggested by the schematic of Fig. (5-7) is given by

T= T 3 (+K, P12, A23, Z3, Z2) T 2 (-r, , P121 P23, Z2, zI) T 3 (+, , /112, P23, z1 , zo) (5.67)

Figure (5-8) shows the spectrum of the device of Fig. (5-6) designed for maximum power

transfer. It was assumed that the resonators were lossless. We do see some power in the ports
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Figure 5-9: A scheme to reduce to reduce cross-talk levels outside the stopband due to normal

waveguide-waveguide coupling by bending the bus and access guides away from the

coupled resonators.

R and DR but it is quite low. The power lost in these two ports is not so critical. It should

be low enough that the on-going channel power, T, on the bus is not depleted significantly.

Note that the dropped channel, DR is Lorentzian in shape and rolls-off with frequency.

However beyond the stopband of the grating - for this device with a . = 58.5 cm- 1 the

stopband width is about 173 GHz - we see that the dropped channel level starts to rise. The

reason for this is that outside the stopband of the Bragg gratings, propagating modes are

supported and normal waveguide-waveguide evanescent coupling results in power transfer

from the bus to the access guides. This power transfer outside the stopband is troublesome.

It leads to noise from the adjacent channels. Typically cross-talk from adjacent channels

should be lower than 25 dB. However, as we see here the cross-talk levels rise as high as 10

dB. Normal waveguide-waveguide power transfer depends on p12LT, p-123LT products where

LT is the total length of the coupled Bragg resonator system and given by

LT = L1 + L + L 2

where the lengths are defined in Fig. (5-7). The length L is determined by the degeneracy

condition and cannot be changed. If the lengths L 1 and L 2 could be shortened it would

reduce the waveguide-waveguide coupling due to a smaller (pijLl,2) product. The only con-

sideration is that both these grating sections must be long enough to avoid power leakages

from the resonators' ends. Since power loss is exponentially dependent on the rLi product.
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Li must be on the order of a few inverse K lengths. If the L, and L 2 are not long enough

it would translate to incomplete power extraction and transfer to the access guides. To

reduce (p[ijL1,2) product while keeping lL( 1,2) large enough we adopt the technique shown

in Fig. (5-9) where the bus and access guides are bent out of the way of the resonators

after a shorter distance. This way the waveguide-waveguide coupling is reduced whilst still

avoiding leakage losses from the end of the resonator. An improvement in the adjacent

channel cross-talk is evident by looking at spectrum of this device in Fig. (5-10)

Although the schematic implies that the waveguides are bent sharply out of the way, in

practice the bends would have to be gradual enough to avoid high bend losses. For a filter

of given 3 dB bandwidth there is a limit to how much we can gain using this technique.

Broad bandwidth filters necessitate large coupling coefficients Upi which in turn exacerbates

the out-of-band coupling problem. As a result in practice there is an upper bound to

the maximum bandwidth that can be achieved using first-order add/drop filters in this

configuration.

The device discussed in the this section is a first-order add/drop filter with a Lorentzian

response. In order to achieve improved transfer characteristics such as low crosstalk from

other channels and flattened resonance peaks, higher order filters are needed. In the next

section the CMT-time is simply extended to the case of higher order filters consisting of

multiple resonator pairs. The resonators are treated as lumped elements and the resulting

continued fraction expressions provide a one-to-one correspondance with standard L-C filter

design. An equivalent circuit is thus derived and a rough layout of the structure is based

on handbook filter designs of circuit theory. A similar approach has already been used for

cascaded resonators in [55] and [36]

5.4 n'h Order Filter

A higher-order filter is made by generalizing the scheme described above. Instead of using

one pair of resonators placed between two waveguides, n pairs of resonators are evanescently

coupled to each other as shown in Fig. (5-11). The resulting system behaves as an nth order

filter that is capable of completely transfering the input power from the bus to the access

guide waveguide. The nth order filter can be described in terms of coupled symmetric and

antisymmetric modes of the pairs of resonators:
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Figure 5-11: n-coupled pairs of Bragg resonators side-coupled to each other with the first and last

pair side-coupled to the bus and access waveguides. The resulting system forms an

nth-order push-pull add/drop filter.
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da =ai, ]Os + n (s+1 + S+2) - Ji, a28  (5.68)
dt = \jWs-Tes / 83-l ~

da28da2= 302sa2s - 3 lis als - 3 1 2s a3s (5.69)
dt

da(n-)s

dt (n-1)sa(n-1)s - 3P(n-2)s a(n-2)s - /(n-1s ans (5.70)

dans (JWns - - (n-1)s a(n-1)s + Es(s+3 + S+4) (5.71)
dt T')

daia (1i
dt = iWla - - ala + Ea(S+i - 8+2) - j-tla a2a (5.72)
dt 7-ea

da2a jW2aa2a -- 3 la ala - J 2a a3a (5.73)
dt

da(n-1)a -n-2aan)

dI j (n-l)aa(n- -(n-2)a - - _(n-)_ ana (5.74)

dana = na - ana - j t(n-l)a a(n-l)a + t ((S+3 - S+4) (5.75)

where aiS and aja represent the symmetric and antisymmetric mode amplitude of the

ith resonator pair normalized to the energy in the mode, respectively. Likewise wis and wia

represent the resonance frequency of the ith resonator pair, 1/Tes,a 1/Trs,a are the decay rates

associated with the power lost by the symmetric or antisymmetric modes to the waveguides

adjacent to the first and last pair of resonators, and fa is the coupling between the

symmetric modes and the antisymmetric modes respectively of the ith and (ith+ 1) resonator

pair, real by power conservation. We note that the symmetric modes do not couple to the

antisymmetric modes and vice versa. The coefficients Ks,a and s,a associated with the

coupling to the bus and the access guide, respectively, are found by power conservation to

have the form:

1Sa ="'a 1 se ' (5.76)
res,a es,a

The outgoing waves are described by:

S_1 = S+2 - a* a1s + * ala (5.77)

S-2 = s+1 - s* al. - K* ala (5.78)

s- 3 = s+ 4 - s K* ans + '* ana (5.79)

S-4= 8+3 - K* ans - -* ana (5.80)
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Figure 5-12: nth-order push-pull add/drop filters; the first and last pair of coupled Bragg res-

onators are side-coupled to bus and access waveguides to balance direct coupling

with coupling via waveguides to assure degeneracy of symmetric and antisymmetric

modes. the intermediate n - 2 resonator pairs are uncoupled to ensure degeneracy.
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5.4 nth Order Filter 157

In the following analysis we will assume for simplicity that the coupling coefficients are real.

This can be accomplished by proper choice of the reference planes. A detailed analysis on

how the phase of the coupling coefficients affects the filter response can be found in [571.

For the case that the system is excited only from one side of the bus, i.e: 8+2 = 8+3 =

S+4 = 0 and s+ 1 has a ei"W time dependence, we can find the mode amplitudes ais,a using

the systems of equations (5.68)-(5.71) and (5.72)-(5.75):

J (n-l)s -)s -i(n- 1), a(n-1)s
ans ="W . 1 =3(o - o -) + D.

(5.81)

-1 (n-2)s a(n-2)s
2

j(W - W(n-1)s) +
I-es

-/I(n-3)s a(n-3)s
2

j(L - W(n- 2 )s) + (n-2)s

(-1s

(5.82)

ais = _ sS+1

112s
2-i
jU wwns2 7

(5.84)

where Di, is defined as the denominator associated with the expression for ais. Note that

the different Di, are continued fractions of different order. Identical expressions exist for

the antisymmetric mode amplitudes, aja, where the subscript s is simply replaced by the

subscript a, everything else remaining the same. Using (5.81)-(5.84) and (5.76) in (5.77)

and (5.78) we get the reflected and transmitted waves on the bus guide:

s-2

8+1

s_1

s+1

1 1
=1 - - 1

DisTes Diarea

1 1

(5.85)

(5.86)=e -+
- D1SeS Diarea

-il-t(n-2)s a(n-2)s

D(n-1)s

-lg(n-3)s a(n- 3 )s (5.83)

D(n-2)s
a(n-2)s =

j~o -013)+ --I +
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Solving for a,, and an, we find

J/1( 1) t~(n-2)s 8+(1___ ____

ans = _() )() ).( )---( )( ; -) (5.87)
Dns D(n-1)s D(n-2)s D 2 s Dis

3 /t(n-l)a 3L(n- 2 )a ) P(n- 3)a -ia (5+1ana = ( )() )..- ( ) ) (5.88)
Dna D(n-1)a D(n-2)a D2a Dia

Use of the above yields the response at the remaining output ports:

8 -3 - (n I) ( -( - ) ) _V T I -

s+1 Dns D(n-))s D2 Dis

( )(n-2)a '1A
+ ( a)(_ - ) (_ - )( ). (5.89)

Dna D(n-)a D2a Dia

and

1
S-4 - (n-1)s (n-2)s -s T. ess

8+1 Dns D(n-1)s D2s Dis

-i3Y -3ii(n-1)a (n-2)a T3P

- _( _ )( )_- -) ) (5 .9 0 )
Dna D(n-1)a D 2 a DIa

We consider the case where the resonators are designed such that the symmetric and anti-

symmetric modes are all degenerate at frequency w0, i.e

Wis = Wia - Wo i=1 2 ... n

and the decay rates of the symmetric and antisymmetric modes of the first and last pair of

resonators are the same, i.e

Tes = Tea Te Tes =Tea Te

The degeneracy condition for a pair of resonators adjacent to a waveguide can be satisfied

by balancing the direct coupling between the resonators with the indirect coupling via the

waveguide and by choosing the distance between the resonators to be an odd multiple of

a quarter guided wavelength. For the resonator pairs that are not next to a waveguide,

(i.e i = 2, 3 - - -n - 1) the degeneracy can be achieved by placing the two resonators of each

pair sufficiently far apart so that they are essentially uncoupled. The coupling between

the symmetric modes and antisymmetric modes of adjacent pairs of resonators can also be

made equal, i.e

Lis Lia -[Ii i=1,2...n



5.5 Equivalent Circuit

This is possible if there is no cross coupling between resonators on either side of the sym-

metry plane that belong to different pairs. The above relationships imply that

Dis = Dia = Di i = 1,2 ... n

For this highly degenerate case, it is obvious, using eqs. (5.85) and (5.89), that the signal

reflected on the bus and that dropped in port 3 of the access guide guide are identically

zero over the entire bandwidth of the resonance, i.e

s_ =S-3 = 0 (5.91)

Also,
S-2 -1- 2 (5.92)
S+1 DIFe

and

s_4 -(JL _ i\ -JL±-2\.. -(J1j\( e= -2 j n ) (5.93)
s+1 D J Dn-1 D2 1

We note that the leading frequency term in the product DnD_ 1Dn-2 - - D1 is (-j)n(, -

wO)'. Thus for high frequencies, the magnitude of s-4 rolls off approximately as

S-4 , LA .. Ln-i 1Te

S+1 (W - WO)

as expected for a nth order filter. It is possible to design the system to transfer the signal

completely to the access guide guide on resonance. Moreover, it is possible to shape the fre-

quency response of higher-order filters. In this case the spectral response can be engineered

by choosing the appropriate coupling between adjacent resonators and the decay rates of

the pairs of resonators next to the bus and access guide guides. In general, the selection

of the appropriate amount of couplings between resonators for a higher-order filter, with

n > 2, to achieve a desired spectral response is a tedious and non-trivial task and becomes

increasingly harder as the order increases. If we are somehow able to map the coupled res-

onator system to a standard circuit used for implementing higher-order filters this task is

reduced to looking up tabulated values of impedances to figure out the appropriate optical

couplings and decay rates.

5.5 Equivalent Circuit

An equivalent circuit attempting to model the behaviour correctly at all four ports of the

coupled resonator system must be a four port device. Such a circuit description would be
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Figure 5-13: Proposed equivalent circuit of the nth-order push-pull filter of Fig. (5-12)

difficult to work with. Instead, we concentrate on the port of primary interest, namely the

access guide port s- 4 and derive a partial "equivalent" circuit which models the behavior

of this port correctly. We are justified in following this approach as, in the degenerate case

which is the case of interest, we already know the response at two ports, s_ 1 and S-3 to be

identically zero over the bandwidth of interest and are really only interested in engineering

the spectral response of s_4.

The purpose of deriving the equivalent circuit of the stacked resonator system is to facilitate

filter design by utilizing the extensive work already done on L-C ladder circuits [50]-[53].

Consider the ladder circuit shown in Fig. (5-13) consisting of alternating sections of series

and parallel L-C circuits. This is a standard circuit used for designing higher-order filters.

Zi is the impedance of the circuit looking into the ladder and Y 2 is the admittance of

the ladder circuit beyond the first series L-C sub-circuit. Likewise Z 3 is the impedance

looking beyond the first parallel L-C sub-circuit. In a similar fashion we define additional

impedances and admittances, Zi and Yi with diminishing number of elements in them. The

160
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choice of this notation will become clear shortly. Near resonance

Z, 2 iAwL1+ 2jAwC2

Y2 2jAwC 2 + 2jAwL 3

Z3 2jAwL 3 + 2jAwC4

Yn 2jAwCn + G

1

±2iAwL++i

+ + -+ 1

2jaw~n _ +2j dwCn+G1

+ -- +

2jAwLn-1 + 2jAuCn+G

For definiteness we have assumed that the order of the filter n is an even number. We would

follow similar procedures in the case of odd n. Moreover the impedances and admittances

are expanded near the resonance frequencies of the L-C circuits which are assumed to be

equal, i.e LiC = w, for all i with Aw = .--w0 . The power, Pd, dissipated in the conductance

G of the last parallel L-C branch is given by

Pd - Re{VdId}
2

where Vd and Id are the voltage and current respectively across the conductance G. V may

be found using the voltage divider relationship repeatedly. We find

1 1 1

Vd = 2V+( Z1  (_2 ) .. Y
ZO + Z1 Z1 Z3 Zn_1

(5.98)

and

Id = Vd G

Hence,

21V+12 G
(Z 0 + Z1)Y 2 Z3Y4 .. .Yn| 2

(5.99)

(5.100)

which can be normalized to

(GZo)12
Pd 2 2|V+|Y 0

(1 " 2)Y ZO )(4 )--- (Yn Zo)

(5.101)

so that each factor in the fraction is dimensionless. The power captured by the access guide

guide is given by
1 2 2 2 2 2

1s-412 - IIeA1 -n-hEn Is+112 (5.102)
1 D1D2D3 -. -Dn_ 1 Dn 12

(5.94)

(5.95)

(5.96)

(5.97)
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which can be rewritten as:

Y2 P2 P2
2 n-2 1

1s8_4 = L E2 In+1 (5.103)

(Dle)(D2  )(D 3 ,)(D 4  )- n (D -

again so that each factor in the fraction is dimensionless. Comparing the above expressions

for Pd and Is4 12 we see that they are similar in form provided we draw the following

correspondence.

1+ Z, < DiTe (5.104)

1
Y2 Z <--D (5.105)

Z3 _ ITe

2

<--+ D3 2T (5.106)
zo Y2

Yn Zo - Dn-- 2 2 2~- 17
K-1 s_ Tee

E 2 2 pY2 1
GZO <- - -n-2 (5.108)

It appears that there are too many constraints present for a mapping between Pd and Is4I2

to exist but we will see that the mapping enforced by the first equation encompasses the

others and the remaining equations are redundant. This is obvious if we consider the special

relationship that exists between Di and Di+j and between Zi and Yi+1. Specifically, we

note that

1 2
D, = J() - wo) + -- + -1 (5.109)

Te D2
1

ZI = 2j(w - wo)LI + - (5.110)
Y2

as is obvious from equations (5.93),(5.94) and (5.95). It follows that

Dire = 1 + j(u - w,)7- + D (5.111)

Zi2Li 1
1+ = 1+j(W-Wo) + 1 (5.112)

zo Zo Y2Zo

Thus, the correspondence in equation (5.105) is satisfied.

1
Y2Zo < D2YTe

_IT



Similar reasoning can be used to show that the correspondence expressed by eq. (5.106) is

contained in equation (5.105). By extension it follows that all other correspondences are

contained in equation (5.105). For an equivalence to exist, the form of Dire mutst be the

same as that of 1 + 4'L. We note that

+ L = 1 +1 21 + (5.113)
Zo Zo jAw2C2 Z 0 + 2L3

Zw . 2L_ 1 _ 1
+2iz2=wCnZo+GZ 0

has a continued fraction form identical to

Dire = 1 + j(P - Wo)Te + ( + (5.114)

L2L~ 1, 2 q

In fact there is a term by term correspondence between the two expressions which provides

a mapping between the circuit and the optical resonator parameters. This proves that

the postulated circuit of Fig. (5-13 is indeed the equivalent circuit representation of the

access guide port of the coupled resonator system. Consider equation (5.103); on resonance,

' = wo, it is obvious that

_ _ 2
Is-4| = 2 2 2 Is+iI

1 3  n-1 e e

Complete power transfer is then possible on resonance if

2 2 P2

2 5 -n 2 = (5 .1 15 )
1-3 _ TeTr'

or equivalently if we use the correspondence implied by eq. (5.108) when G = Y. This

should be obvious if we consider the equivalent circuit. On resonance the series L-C branches

are shorted and the parallel L-C branches are open. The load G is directly connected to

the source and perfect transfer is only possible for a matched load. For odd n the condition

for complete power transfer on resonance would be:

2 2 2 ,P2 ,

2 -- -n-2 Te= 1 (5.116)
El 3 n-1 Te

In the following section we will design a 4th-order Butterworth filter using mappings pro-

vided by the equivalent circuit.
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Figure 5-14: Third-order filter of made using three pairs of Bragg resonators with first and last

pair side-coupled to bus and access guides

5.6 Example: 3rd-Order Filter

As an example of a higher order filter, we consider the coupled resonator system shown

in Fig. (5-14) consisting of 3 pairs of resonators side-coupled to their nearest neighbors.

All the pairs are designed so that their respective symmetric and antisymmetric modes are

degenerate at frequency we, and the decay rates, Te, and coupling coefficients, Ly are assumed

to be the same for the symmetric and antisymmetric modes i.e.

Wis,a Wo

Tes,a Te

es,a

is,a

For n = 3, eqs. (5.114) and (5.113) give

1
DiTe = L+j( - wo)r +. 1  (5.117)

L'2 L±2 1'

Z12Li 1
1+- = 1+j(w-wo) j j )CZ+ 1 (5.118)

Zo Zo ( - )2C2Zo + j(W ) 2L

NIL
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Using the correspondence given by eq. (5.105) we find the following mapping between the

circuit parameters and the optical parameters.

Te _ 2L (5.119)
zo

1
-Te 2C2 Zo (5.120)

Te 2L3z- - (5.121)

2 Te R
-R (5.122)

' Zo

These mappings can be rewritten as

Te 2L (5.123)
zo

1
2pL<-+ (5.124)

-2 2VLiC2
1

2 <-- 3  (5.125)22 2 C-2L 3
2L3

' R (5.126)

For the nth-order filter the couplings between the resonators are given by

1
L. <- ) I i odd (5.127)-2 V2T, Ci +1

1
2. C 1  i even (5.128)

-2 2Ci--i +1

with i = 1, 2 ... n. To design a higher-order filter we look up filter design tables which give

the values of inductances and capacitances needed to obtain the desired spectral response.

Using the above mappings we obtain the coupling and decay parameters needed. Eqs.

(5.60), (5.61) and (5.62) relate the CMT-time parameters to the CMT-space parameters.

Note that the coupling coefficients can be found by inspection from the equivalent circuit

once its inductances and capacitances have been chosen. This technique was used to design

a 3rd-order Chebychev filter. The response at the various output ports of the coupled

resonator system is shown in Fig. (5-15). The right access guide port has the characteristic

Chebychev response. The device has a 3 dB bandwidth of 11 GHz. The adjacent channel

crosstalk is below 25 dB. In transmission, the dropped channel is suppressed in excess of 25

dB.
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0 100 200
Af (GHz)

Right Port of Access Waveguide

0 100 20

0 100 200
Af (GHz)

of Fig. (5-14)

166



167

Appendix

In order to calculate the coupling coefficients involved in the four-port system of Fig. 1

we examine the coupling to one waveguide at a time starting with the bus waveguide and

following a treatment similar to [20]. This approach is valid if we assume weak coupling.

Under the same assumption the spatial variation of the waveguide mode amplitudes can be

described by coupled mode equations of the form:

d
-b±(z) = -Fjtb±(z) + Ia(z)a (5.129)
dz

where b+(z) is the amplitude of the forward/backward waveguide mode in the bus, #3 is

the propagation costant and Ka(z) describes the distributed coupling to the resonator. For

reference planes located at z = zi and z = z 2 we have:

bi(zi) =s±1 (5.130)

b±(z2) SF2 (5.131)

The rate of change of the waveguide mode power along z is equal to the power coupled per

unit length to the polarization current due to the index perturbation that the resonator

mode experiences in the presence of the waveguide. The assumed electric field distribu-

tion in the waveguide is b+(z)e+(x, y) + b_ (z)e'(x, y) where ± (x, y) is the unperturbed

forward/backward mode profile normalized to unit power. In the resonator the assumed

electric field distribution is a(t)er(x, y, z) where e'(x, y, z) is the uncoupled resonator mode

field normalized to unit energy. Using Poynting's theorem at steady state we have:

Ib±12 = -j Jdxdy(n2 - nr)&r -e*ab* + c.c. (5.132)

where n(x, y, z), nr(X, y, z) are the index distributions of the total system and the resonator,

respectively. In this equation we have neglected a z-dependent self-coupling term

-j 4ffdxdy(n2 - nr)e - e*ab*

that modifies the propagation constant. From (5.129) we have:

d lb-4-2 = n~ab* + c.c. (5.133)
dz

Comparing (5.132) and (5.133) we have:

(Z) = T-j dxdy(n2 - n) ) * (5.134)

5.6 Example: 3,d-Order Filter
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We integrate (5.129) using the boundary conditions (5.130) and (5.131) and equation (5.134)

to find the amplitudes of the outgoing waves as:

s_1 =e-(22-z) (+2j 2+ dz ddy(n2 - n )2 -*e(z-i) a (5.135)

s-2 = e-j(z2-zi) ( - zdz Jdxdy(n2 - n) * e-j(z-z2)a (5.136)

The input coupling coefficients 1,2 can be found by power conservation. Neglecting the

loss, the rate of change of the energy in resonator mode must be equal to the difference

between the incoming and outgoing power.

dia12 = 1s+1 2 + 1s+22 - s_112 
- 1s-212 (5.137)

Also, from equation (5.1) with 1/T' = 0 and &3 = & = 0, and have:

da12 2 Ja12 + (!iss+la* + c.c.) + (!S2 s+2 a* + c.c.) (5.138)d-aIt Te

Substituting (5.135) and (5.136) into (5.137) and comparing with (5.138) we have:

= 1 zdz Jfdxdy(n2 _ n e+ (z-z)

2 - z2 dz ffdxdy(n2 - nr 3, _ei(zz2)

and
2

I!l 12+ 122 2
Te

With z2 - = the outgoing waves can be now written as:

s_1 = e-jo (s+2 - Kla)

S-2 = e'j' (s+1 - r,*a)

The same analysis yields analogous expressions for the input and output coupling coefficients

related to the access guide waveguide.



Chapter 6

Measurements and

Characterizations

Thus far, the thesis has focussed on design and modelling of integrated Bragg grating

resonator devices. We have discussed in depth what kinds of devices are possible; how they

are designed and what are their constraints and limitations. We now present measurements

that were made on a host of preliminary devices. The purpose of this chapter is two-fold; it

describes a measurement process that is suitable for high-index material based integrated

optical devices and it presents the results. The results are used to extract optical parameters

like the grating strength, r,, the group index,ng, and the bandwidth, Aw, of the various

devices. These are then compared to the theoretical design values to gauge the fidelity of

the design and fabrication process. Discrepancies are explained.

6.1 Fabricated Devices

Fig. (6-1) shows the hierarchy of devices that were fabricated on the test chip. They

range from simple waveguides to higher-order side-coupled integrated Bragg gratings based

filters. The reason to fabricate increasing complex devices was to enable the identification of

failure mode if a device did not work. All devices were comprised of three basic components:

(1) waveguide (2) Bragg grating and (3) Bragg resonators. The design of the each of these

components in the transverse cross-section was the same from device to device. The physical

specifications and design of the waveguide, Bragg gratings and Bragg resonators is shown

in Fig. (6-2).
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Figure 6-1: Hierarchy of devices that were fabricated on the optical chip.

A channel waveguide with an InGaAsP core and a InP cladding was used. InGaAsP was

grown epitaxially on an InP substrate; the refractive index of the core, n,,, based on the

growth was estimated to be about 3.29. A layer of InP, indicated by the semi-transparent

layer on top, Fig. (6-2)) was then overgrown to form the top cladding for all the devices.

The index of the cladding region was estimated to be 3.166. The dimensions of the guide

were chosen to yield a single-moded structure. An important consideration of the design

involved choosing the waveguide width appropriate to yield a propagation constant identical

to that of the grating guides.

The physical dimensions of the Bragg gratings and resonators are as shown in Fig. (6-2).

The grating period, Ag = 244 nm, was chosen such that the center wavelength, A, of the

filters was 1557 nm. The relationship between the grating period and center wavelength is

Ag =A 0
2neff

where neff is the effective index of the grating guides. The grating etch depth was chosen

to be about 220 nm. This depth was chosen to yield a moderate grating strength, r ~ 60

cm- 1 . One reason for designing devices with a moderate n was to limit radiation losses

from gratings; another reason was ease of fabrication. Deep vertical etches with smooth

walls are non-trivial and overgrowth of a uniform top cladding layer presents even more
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Figure 6-2: Waveguide, Bragg grating and Bragg resonator. These three components were used in

making all the devices shown in Fig. (6-1)

challenges. If the overgrowth is not smooth or incomplete it can lead to high losses due to

scattering at the interface between the core and the cladding. These considerations led to

the design of moderate grating strength structures.

Notice that the width of the grating guides is larger than that of the simple waveguide.

This was chosen such that the propagation constant of the grating guide and the simple

waveguide were equal. Since the average effective index in the region of the grating is

lowered relative to the core index, a wider guide is needed to compensate for this and

result in a propagation constant equal to a guide without a grating. As mentioned in

section 4.3.7 the performance of the side-coupled devices relies critically on having identical

propagation constants. Designing dissimilar guides to have equal propagation constant

was discussed in detail in [45]. This design is very sensitive to the starting core index,

n.,, and any variation of the nco from its assumed value can result in designs where the

propagation constants of the grating and bus guides are mismatched. This makes the design

of side-coupled devices quite challenging. As can be expected the fabrication of these

devices is a very involved and challenging task. The fabrication process of these devices

6.1 Fabricated Devices 171
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Rill 220 nm

Figure 6-3: SEM of an Bragg resonator prior to overgrowth of the top cladding layer of InP. The

precise quarter-wave shift is clearly visible. The measured dimensions are very close

to the design specifications.
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Figure 6-4: SEM of the overgrown InP top cladding layer. The grating teeth are preserved and

clearly visible; the overgrowth is complete and without any major defects; a slight

softening of the grating teeth is visible but is not expected to affect measured results

by much.

uses a combination of x-ray masks and optical masks. The x-ray masks that were created

using a scanning e-beam ligthography tool were used for defining the fine gratings features

including the precise phase-shifts; the contact optical masks were used to define the courser

waveguide features. The fabrication process [63] was the result of development over years

intended to overcome significant challenges and the various aspects of it are discussed in

two separate PhD dissertations [64, 65] . The readers are referred to these dissertations

for a detailed review of the fabrication process. Figs. (6-3) and (6-4) shows the scanning

electron micrographs of the fabricated structure. The quarter-wave shift is clearly visible in

the figure. Its important to note that the shift is not a missing tooth but is rather a precise

phase-shift which reverses the phase of the grating beyond the shift. The other figure shows
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Figure 6-5: A schematic of the measurement setup used to characterize the devices.

the result of overgrowth of the top cladding above the gratings. We see that the profile of

the gratings is maintained though slightly "softened". Overgrowth is a high-temperature

process and it requires care to ensure that the gratings profiles are maintained and not

washed away. We can see that the overgrowth is smooth and complete. The overgrowth

was performed at Lucent Technologies by Dr. C. Joyner's group.

6.2 Measurement Setup and Process

6.2.1 Setup

The setup used to conduct the measurement is shown in Fig. (6-5 (a)). The input source to

the devices is a tunable laser which is connected to a polarization controller. The purpose

of the polarization controller is to set the input polarization state of the light feeding the

devices so as to be able to individually measure the TE and TM response. The polarization

controller can be bypassed to compare the unpolarized response with the polarized input

response. This will allow the birefringence of the devices to be estimated. The light from

the polarization controller is fed into a lensed fiber via a 10/90 power splitter. The purpose

of the splitter is to serve as a power monitor enabling any power drifts of the tunable laser

source to be normalized out as the wavelength is scanned . The light from the 10 % arm is

1736.2 Measurement Setup and Process



fed into channel B of the power meter. The lensed fiber has a 140' conical tip which acts like

a lens squeezing the mode of a standard fiber by about 80 %. Since the waveguide modes

are considerably smaller than the 10 pm mode field diameter of a standard single-mode

fiber, the lens fiber is necessary to ensure good coupling between the input fiber mode and

the individual on-chip devices. At the output the light is captured from the guides using

another lensed fiber placed in close proximity to the output facet and is fed into channel A

of the power meter.

Other options to extract the light from the chip are also available. An alternative

to using the output lensed fiber is to use a lens objective to focus the light onto a large

area photodetector via an iris as shown in Fig. (6-5 (b)). The purpose of the iris is to

eliminate stray light travelling through the substrate. We will see in the following sections

that stray light acts as a noise floor and limits the accuracy of the measurements. If the

guided modes need to be visually inspected the photodetector can be replaced with an IR

camera connected to a TV monitor. By comparing the alternate options it was determined

that a lensed fiber at the output provided the best discrimination between guided light

and noise and was thus the method of choice. The input lensed fiber, the optical chip and

the output lensed fibers are all placed on separate piezo-electrically controlled stages which

enable precise alignment of the optics. The whole setup is on a vibration isolated optical

table as misalignments on the order of a micron can render the measurements inaccurate.

6.2.2 Process

Ideally we would like to control the polarization state of the input light by inserting a

polarizer between the lensed fiber and the optical chip. However, since the focal length

of the lensed fiber is on the order of 20 pm its impossible to insert a polarizer between

the fiber and the chip. As a result, the polarization state of the input laser light to the

chip is set by using an HP Polarization Controller. This is done prior to performing the

measurements. The light from lensed fiber is passed through a polarizer, while the chip is

not in place. The polarizer is adjusted to the state orthogonal to the desired state, (TM for

TE input), and the polarization controller waveplates are adjusted to minimize the power

in this polarization state. The power is measured using a large-area photodetector. Once

light in this state is minimized we are assured the input laser light is primarily polarized

in the desired state. Since the lensed fiber and the fiber patch-cords leading up to it, are
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Figure 6-6: Setting the input polarization state.

not polarization maintaining fibers there is some concern about the stability of the this

polarization state which is susceptible to changes in temperature, stress, etc. of the fiber.

Stability measurements were performed over a matter of many hours to a couple days and it

was found that the polarization state of the input is very well maintained provided the input

fiber was not disturbed violently. Since all device measurements were done within a few

hours of adjusting the polarization controller, we are fairly confident that the polarization

state of the input was maintained.

With the polarization state set, the polarizer and the photodetector are replaced by the

chip and the output lensed fiber. The fiber positions are carefully adjusted to excite a guided

mode in the desired device. This procedure requires some level of skill and experience. The

fibers are first placed visually in position with the help of a high-powered optical microscope.

Final adjustments are made so as to maximize the power in channel A of the power meter.

Following the alignment, wavelength scans were made on the devices using the tunable laser

source. The powers in Channels A, B and the laser wavelength were recorded. Typically

scans over both a narrow wavelength range with a fine step size and a wide wavelength

ranges with a courser step size were made. The results for the various class of devices are

presented below.

6.3 Waveguide

Several straight waveguides were fabricated on the device chip. The waveguides serve as

monitor devices enabling the loss per unit length, a, and the group index, ng to be estimated

from measurements. Both a and ng are important optical parameters that need to be

ascertained before a comparison between the theoretical and measured responses for the

other devices can be made.

The chip input and output facets did not have an anti-reflection (AR) coating and thus a
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Figure 6-7: Characterizing waveguide loss and group index

Fabry-Perot cavity is formed between the two cleaved facets, shown in schematically in Fig.

(6-7) . We expect to see power oscillations as we scan the wavelength. These oscillations

correspond to the Fabry-Perot resonances. Once a guided mode had been excited in the

waveguide, the wavelength of the input laser was typically scanned over a 1 nm range with

a step size of 0.01 nm. The expression for the transmitted power, PT can be derived rather

easily and is given by

PT - C( 4 - R)2 e-2al (6.1)
(1 -R e--2od 2 + 4R e-2cd sin2( olg

where 1 is the length of the chip, / is the propagation constant and a is the loss per unit

length of the waveguide. C is the coupling efficiency from the lensed fiber into the waveguide.

R is the power reflectivity from the chip facets; it is difficult to calculate analytically. A

rigorous treatment requires taking into account all the guided and radiation modes of the

waveguides as they are scattered into plane-wave modes at the chip facet. A reasonable

estimate for R can be made with help of a simplified plane-wave analysis and is given by

the familiar expression

R ir)f )2 (6.2)
neff + nair

where neff is the effective index of the guided mode and related to the propagation constant,

/ = (27rneff)/A. The free spectral range, AfFSR, or the periodicity of the Fabry-Perot

resonances is given by

c
AfFSR =2n (6.3)

Optical Chip
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Figure 6-8: Wavelength scans of various waveguide devices reveal the Fabry-Perot cavity modes

setup between the non-AR coated chip facets.

The above expression is in terms of frequency; it can readily be rewritten in terms of

wavelength and is given by

(6.4)AAFSR = 2 n

where AO is the center wavelength of the measurements. The length of the devices was

measured using a microscope with a translation stage that gave the coordinate readings

relative to the cross-hair marked eye-piece. By measuring the AAFSR from the data for the

various waveguides the group index, n,, can be extracted. Figure (6-8) shows the trans-

mission plots for various devices. The abscissa corresponds to the normalized transmitted

power (normalized relative to drifts in the absolute laser power) and the ordinate is the

wavelength.

As expected we see periodic power oscillation as we scan the wavelength. The minimum
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Guide 1 Guide 2 Guide 3 Guide 4 Guide 5

ng 3.448 3.448 3.484 3.484 3.442

a (cm-1) 0.6238 0.5787 0.4307 0.5475 1.013

Table 6.1: Tabulated values of the group index, ng and the loss parameter, a for the various guides.

and maximum excursion points are marked with a dot in the plots. The AAFSR was

calculated by averaging over many periods. Using eq. (6.4), ng can be readily calculated.

The results for the various waveguides are shown in Table (6.1). As mentioned earlier, the

chip reflectivity, R, is difficult to calculate analytically. Typically for laser designs, which

use the same InP/InGaAsP material system, R is estimated to be between 0.28 - 0.35. As

a first approximation we can use ng in eq. (6.2) to estimate the facet reflectivity. Using the

average ng from Table (6.1), we find that R ~ 0.31.

To calculate the loss per unit length, a eq. (6.1) is used. All quantities other than the

coupling efficiency C are known. C can be estimated but the analysis is rather involved.

Instead, we adopt an approach which allows a to be calculated without knowledge of C.

By taking the ratio between the maximum and the minimum transmitted powers, given by

the equation below, C can be eliminated.

PTmax _ (1+ Re-2al) 2

PTrin (1 - Re-2a) 2

By averaging (PTmax/PTmin) over several periods and inverting the above formula a can be

readily calculated. The values for the various waveguides are tabulated in Table (6.1). For

the straight waveguides, the primary sources of a are: (1) the intrinsic material loss of the

InP/InGaAsP system; (2) scattering losses from the roughness in the walls of the waveguides

caused by imperfections in the fabrication process. For the bandgap of the material system

used, we do expect very low material losses. We see that a is a rather small number which

is an indication that the fabrication process produces very little sidewall roughness and is

rather clean. This is also evident by looking at SEMs of the devices after etching the guides.

6.4 Uniform Bragg Grating

Three uniform Bragg grating reflectors or distributed Bragg reflectors (DBRs) of increasing

grating length were fabricated on the chip set. Measurements were made to verify the
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Figure 6-9: Transmission measurement of uniform Bragg grating; DBR device 1.

behavior of the DBRs. From theory, we expect that as the wavelength is scanned across

the stopband of the gratings there will be a strong reflection from the gratings and a

corresponding decrease in the transmitted power. Outside the stopband, the transmission

should recover. Moreover, as seen from the chapter 6.4.1 we expect the gratings to couple

the forward-propagating guided mode to backward-propagating radiation modes on the low

wavelength side. Consequently, we expect decreased transmission on the low wavelength

side of the stopband.

Following alignment of the input and output lensed fibers, numerous scans were per-

formed on the DBRs. For most devices, several cases were examined: (a) Unpolarized light

response. (b) TE Polarized light response. (c) TM Polarized light response. For each of

these cases, scans were performed on a narrow and wide wavelength scale. The results are

shown in Fig. (6-9). As can be seen from the figure we observe the expected behavior. The
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Figure 6-10: Transmission measurement on uniform Bragg grating; DBR device 2

DBR

KTE (cm- 1 )

KTM (cm- 1)

KUP (cm- 1)

Device 1

49.5009

54.8778

47.4412

Table 6.2: Grating strengths, K, corresponding to

of uniform Bragg grating devices.

Device 2 Device 3

55.9571 58.8169

- 58.8169

48.5790 58.8149

TE, TM and unpolarized input measurements

transmission is fairly constant but drops steeply in the stopband. It recovers rapidly on the

other side of the stopband. The width of the stopband is related to the grating strength, K

by eq. (6.6).

(6.6)AASB = *
7
rn,

The group index, ng has already been estimated from the waveguide Fabry-Perot scans.

By measuring the stopband width from the data, eq. (6.6), can be inverted to yield r,.

The stopband widths, AASB and the corresponding grating strengths, K for the DBRs are

tabulated in Table (6.2). The results found from measurements match up very well with

the design value of K ~ 58.5 cm- 1 .
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Figure 6-11: k-vector addition shows phase-matched coupling to radiation modes away from reso-

nance.

6.4.1 Radiation

It is well known that integrated Bragg gratings lose power out of the waveguide. One

mechanism of loss is related to fabrication surface imperfections [66]. If the surface of a

Bragg grating is rough, it is possible to scatter light out of guided modes into the cladding or

substrate. However, even a grating that has no imperfections but is of finite size loses power

out of guided modes into cladding and substrate [70]. This coupling to unguided modes

results in unwanted losses. The coupled mode theory discussed earlier in chapter 3 does

not predict these loses. Radiation from Bragg gratings has been studied quite extensively

and several approximate methods of varying levels of accuracy and difficulty for estimating

losses exist [67]-[69]. In chapter 3 we derived the coupled mode equations (eqs. (3.24) and

(3.25)) which model a Bragg grating. We saw that the effect of a Bragg grating was to

couple the forward traveling guided mode to the same mode propagating in the reverse

direction. In deriving the equations it was argued that the dielectric perturbation with a

wavelength, A, and a grating k-vector, kg = 27r/A only phase-matched the forward traveling



mode E,(x), with a propagation constant /38 (w,) = w ~ 7r/A, to the same mode traveling

in the reverse direction, i.e

s - kg (6.7)

The k-vector addition in Fig. (6-11) shows this coupling between a 0,' forward-traveling

mode and a -,3, backward propagating mode at the Bragg wavelength, AB. The cou-

pling to other modes Em (x) with propagation constants /3 m which were not phase-matched

near the Bragg wavelength, AB was omitted. The result is that according to the CMT

equations, all interactions in a Bragg grating are limited to the coupling between the two

counter-propagating modes; all power can be accounted for in the interactions between

them. However, we know that gratings do scatter light out of guided modes into unguided

modes which results in radiation losses. Since this interaction was ignored in deriving the

CMT equations of chapter (3), naturally they do not predict radiation losses.

The approximation that there is negligible coupling to other modes including, radiation

modes, is generally good; particularly near the Bragg frequency, w,. However, further away

from resonance, especially on the low wavelength or high frequency side, it does not hold so

well. In fact on the low wavelength side it can be shown that Bragg gratings phase-match

the guided mode Es(x)e-jOsz to backward-traveling radiation modes ER(x)e-ij3 Rz

,3,(A < AB) - kg i OR (6.8)

This is shown pictorially in Fig. (6-11). Radiation modes have /
3R < 27rne/A indicated by

the shaded region in Fig. (6-11) where nej is the cladding index. As the wavelength becomes

smaller 3 = 2 7rneff/A increases in magnitude such that beyond a certain frequency the

addition of the grating k-vector kg to /, results in phase-matched coupling to backward-

traveling radiation modes with propagation constant in the vicinity of 13R. Consequently,

we expect decreased transmission on the low wavelength side. This is also apparent in the

wide wavelength scans shown in figs. (6-9), (6-10) and (6-12) for the three DBR structures.

On the basis of the coupling mechanism described in the chapter 6.4.1, we would expect the

radiation losses to be fairly constant on the low wavelength side. However, the data shows

increased radiation loss in the wavelength range from 1542 nm ~ 1551 nm. This preferential

coupling to modes cannot be explained by coupling to radiation modes alone. It indicates

the presence of some mode or modes with a relatively strong overlap with the guided mode

and a modal index in the 2.85 - 3.17 range. Since coupling between guided and radiation

modes is not very strong due to the strong mismatch between their modal shapes, the larger
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Figure 6-12: Transmission measurement on uniform Bragg grating; DBR device 3.
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Figure 6-13: Transmission measurement on quarter-wave shifted grating; QWS-BR device 4.

loss in the above wavelength range suggests that these modes are probably some kind of

guided modes; either they are slab modes which exist due to gradation in the index of the

overgrown InP or they are higher order modes of the same guide.

6.5 Quarter-wave Shifted Bragg Grating Resonators (QWS-

BR)

Five quarter-wave shifted grating structures were fabricated on the chip-set. However, a

inspection of the mask revealed that the first three had large defects in the grating regions

rendering them unmeasureable. The other two were measured and the results are presented

below. As explained in chapter 3 , the quarter-wave shift in the center of the grating creates a

transmission resonant state precisely in the center of the stopband at the Bragg wavelength,

AB. Consequently we expect that as the wavelength is scanned, the transmission will be
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6.5 Quarter-wave Shifted Bragg Grating Resonators (QWS-BR)

suppressed strongly within the stopband except at the Bragg wavelength where we expect

high transmission. An inspection of figs. (6-13) and (6-14) reveals the resonant transmission

peaks in the center of the stopband. Measurements were performed with unpolarized and

polarized input light. For the unpolarized input we observe two peaks within the stopband

which correspond to the TE and TM modes. TE and TM modal shapes are slightly different

for the gratings structures. Consequently these modes have different effective indices, nTE
eff

and n jf and resonant Bragg wavelengths which results in peaks at different locations in

the stopband. Also since the two modes have different grating strength K the width of the

resonance and how close it reaches to the zero dB level are different for the two peaks. This

can be seen for both measured quarter-wave shifted devices. For the TE input we see that

only one central peak is evident. The oscillatory nature of the spectral response is due to

the superimposition of the Fabry-Perot modes on the grating response. AR coating the chip

facets should remove these extra oscillations. We note that the resonant peak returns almost

to the zero dB level. This indicates very low loss grating structures. This was expected

based on the loss measurement done on the waveguide. The resonant peak of device QWS-

BR 5 is considerably below the zero dB level. However, this device was designed with a

bandwidth of 300 MHz which is extremely narrow. To some extent the tuning capability

of the laser source is strained to measure this response. Moreover since the designe Q of

this device is so close to the expected radiation QR of the grating structures, the slightest

amount of loss has a significant impact on the height of the resonant transmission peak. The

fact that the peak does not return to zero dB is partly due to loss and partly due to the fact

that the chip is not AR coated and has Fabry-Perot resonances. The section comparing

theory and measurement discusses in detail the loss estimates of these devices. On the

broad wavelength scan we again notice lowered transmission on the low wavelength side

caused due to coupling of guided modes to radiation modes as discussed earlier. Another

interesting point to note is that the resonant peaks are very accurately centered in the

stopband which indicates that the phase shift introduced in the grating is a very precise

A/4 phase shift.
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Figure 6-14: Transmission measurement on quarter-wave shifted grating; QWS-BR device 5.
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Figure 6-15: Transmission measurement on inline coupled Bragg resonators which form the third-

order inline filter; device 3.

6.6 Inline Higher-Order Filters

Four higher-order inline filters (inline HOFs) were fabricated. A higher-order inline filter

has multiple quarter-wave shifts where coupling between the different Bragg resonators can

be engineered to give a desired spectral response. Three of the filters were third-order

filters and the last one was a fifth-order filter with corresponding numbers of quarter-wave

shifts. Higher order filters have a few spectral characteristics that easily distinguish them

from a first-order, single quarter-wave shift structure. Firstly unlike first order filters,

the resonant transmission peaks within the stopband can be shaped. All the inline filters

were designed to yield maximally flat, Butterworth spectral responses in the center of the

stopband. Secondly, the roll-off of the response with wavelength is much faster. For each

added quarter-wave shift the roll-off with frequency increases by 20 dB/decade. Finally

0

1558 1559
infineHOF3: TM

57

57

57

1558.74

187

' ' '

6.6 Inline Higher-Order Filters

0

-10

-20

101E

-5

-10-----------------



TE Input TE Input
0 0

-5 -5

-10 -10

-15. -15

-20 -20

-25, -25
1557 1558 1559 1560 1500 1520 1540 1560 1580

Unpolarized Input TM Input
0 0

-5 -5
010

0 .i -15

Z-20 -25
1557 1558 1559 1560 1557 1558 1559 1560 1561

X (nm) X (nm)

Figure 6-16: Transmission measurement on inline coupled Bragg resonators which form a third-

order inline filter; device 2.

the coupling of the multiple Bragg resonator cavities creates additional resonances at the

edge of the stopband, a feature which clearly distinguishes a higher-order filter from the

first-order, single quarter-wave shift devices.

Two of the four higher order devices yielded good results. These are shown in Fig. (6-

16) and Fig. (6-15). For unpolarized light we see two resonant states within the stopband

as expected corresponding to the TE and TM responses. A very fine scan with a 1 pm

stepsize was performed in the wavelength range of the peaks for inline HOF device 3 and

is shown in the adjacent plot. We see a flattening of the top of the transmission peak.

This is not a resolution-limited flattening as numerous points were taken in the vicinity of

the transmission peak. The dip in the center of the resonant peak is again a Fabry-Perot

artifact and would disappear if the chip facets were AR coated. We will return to this issue

in the following section. In addition to the flattened response at the top, we see another

idiosynchratic trait of higher-order filters; near the edge of the stopband we see additional

resonances. Compare this to the response of the single quarter-wave shifted Bragg resonator

response, Fig. (6-13). For the unpolarized input we see about four additional "spikes", two

for the TE and TM states. For the TE input, we note that the TM peak in the center

of the stopband is suppressed heavily; it drops from about 10 dB below the TE peak to
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about 20 dB below. In addition, we see that the number of resonances near the edge of the

stopband are also halved, as expected for the TE input. As in the case of the DBRs and

QWS-BR-DBRs we notice coupling to radiation modes on the low wavelength side of the

stopband.

6.7 Comparison of Measurement and Theory

In the previous section the measured data from various devices was presented. The data

was used to estimate the optical parameters and we found that

3.4612 (6.9)

a 0.6388 cm- 1  (6.10)

RTE 54.76 cm- 1  (6.11)

RTM 56.85 cm- (6.12)

(6.13)

where the overbar implies an averaged quantity based on measurements on multiple devices.

We will now proceed to use these estimates to compare the measured data against theoretical

predictions. The theoretical predictions are made using coupled mode theory in space which

describes the coupling between backward and forward propagating waves caused by the

grating in terms of the following familiar equations.

dA = -jA+ B (6.14)
dz
dB = j6B+sA (6.15)
dz

(6.16)

Note that coupled mode theory in this form only considers coupling between backward and

forward propagating waves of a single guided mode. It does not take into account coupling

between guided and radiation modes and so we do not expect good agreement between

data and theory on the low wavelength side when we move far enough from the stopband.

In addition to this, the above equations by themselves do not take into account the fact

that the chip is not AR coated. For this we must include reflections from the chip facet

and lengths from the edge of the grating devices to the chip facets. A transmission matrix

formalism is used to incorporate these Fabry-Perot effects and to solve the above CMT

equations. This formalism is discussed in section 3.1.1
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Figure 6-17: Overlay of measured uniform Bragg grating data and coupled mode theory prediction

for TE input. Fabry-Perot effects due to reflection from chip facets were taken into

account.

6.7.1 DBR

Figure (6-17) shows the overlay of measured data and theory. The values of the optical

parameters used in the theoretical simulations are given above. No attempt was made

to optimize these parameter values to give some best-fit result. The values of ng and a

were independantly estimated. Moreover the n values were calculated from a two point

measurement on the dbr spectral response. Despite this we see an excellent fit between

the measurement and the data. Particularly striking is the quality of the fit outside the

stopband where the calculated Fabry-Perot modes line up very well with the measured data.

For the purposes of calculating the Fabry-Perot effect it was assumed that the devices are

precisely centered on the chip so the edges of the gratings are equidistant from the chip
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Figure 6-18: Overlay of measured uniform Bragg grating data and coupled mode theory prediction

for TM input. Fabry-Perot effects due to reflection from chip facets were taken into

account.

facets. Based on the length of the DBR structures, theoretically we predict suppression

within the stopband in excess of -80 dB. However coupling of stray light travelling through

the substrate into the output lensed fiber creates a noise floor. For this purpose a constant

noise floor of -24 dB was assumed and was added to theoretical response for all the devices.

One difference that we do notice between data and theory is the oscillations within the

stopband. These are Fabry-Perot oscillations of the noise floor. In our calculations the

noise floor was assumed to be constant. An inspection of the X-ray mask revealed that DBR

device 3 had defects and unlike the other two devices, it does not have a clean response

within the stopband. Even so the fit at the edges of the stopband and outside the stopband

are very good. Figure (6-18) shows the comparison for the TM response. Again we get

an excellent fit other than the oscillations within stopband which are dominated by Fabry-

Perot modes of the stray light (cladding modes, etc.) and not the guided mode. Outside

the stopband the agreement is excellent;

6.7.2 QWS-BR

Figure (6-19) shows on overlay of the theoretical prediction and the measured data. Once

again, the optical parameters estimated independantly from the QWS-BR spectral response

were simply used as inputs to the simulations. The fit is remarkable. Not only is the response

outside the stopband predicted to a high degree of accuracy. Within the stopband, we see
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Figure 6-19: Overlay of measured QWS-BR device 4 data and Coupled Mode theory prediction

taking into acount Fabry-Perot effects due to reflection from chip facets.

that the Fabry-Perot oscillations are also predicted. The reason why these oscillations are

visible here and not in the DBR theoretical response is due to the fact that the floor for

the QWS-BR device is dominated by the guided mode which is taken into account by the

simulation and not stray light. The length of the qws grating was such that the floor of

the theoretical response was predicted to be near -30 dB (confirm). Once again a constant

noise floor was added but it was not large enough to mask the Fabry-Perot oscillations

of the guided mode. As mentioned earlier, the fact that the resonant transmission peak

does not return to the zero dB level is partly due to waveguide loss and partly due to

the fact that the chip facets are not AR coated. For QWS-BR device 4, an assumed loss

value of 5z in the theoretical simulation resulted in a theoretical peak falling short of the

measured data. Consequently, the a used in the simulation was modified to yield a best

fit. This value was 20 % of the minimum measured loss. This shows that indeed this

device has extremely low loss. The measured Q = A of this device is about 40000. For

QWS-BR device 5 the designed bandwidth was 300 MHz. The loss value used to align

the theoretical peak with the measured data for QWS-BR 5 was the minimum measured

waveguide loss value, min = 0.43 cm- 1 . Because the designed Q of this device was so

1561.5
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Figure 6-20: Overlay of measured QWS-BR device 5 data and coupled mode theory prediction

taking into acount Fabry-Perot effects due to reflection from chip facets.

high the slightest loss produces a correspondingly larger impact on the maximum level that

the resonant transmission peak attains, Fig. (6-20). An interesting point to note is that

the simulations predict the behavior outside the stopband very well for both devices. The

envelope and the modulations within them are well modelled. As mentioned earlier, the

theoretical simulation assumed the gratings to be centered relative to the chip facet. The

fit can be improved further by not making this assumption and adjusting the lengths to

the chip facets to better match the Fabry-Perot modes. Also, the effective index can be

adjusted to better match the modulation depth. However, since the theoretical predictions

using the independently estimated optical parameters gave such a remarkable match to the

data it was deemed unnecessary to adjust the optical parameters in a best-fit fashion.

6.7.3 Inline HOFs

Figures (6-21) and (6-22) shows the comparison of theory and measurements for the higher

order filters. We see again that the data is modelled very well by the simulation both

within and outside the stopband. As expected the simulation predicts the existence of the

additional resonances near the edges of the stopband. For inline HOF device 3, the loss

-- I-.- I
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Figure 6-22: Overlay of measured inline HOF device 2 data and Coupled Mode theory for TE

input. Fabry-Perot effects due to reflection from chip facets were taken into account.

value used to match the peak level of the resonant transmission peak within the band was

20% of the amin. For inline HOF device 2, amin was used in the simulation.

6.8 Side-coupled Device

A variety of side-coupled devices including side-coupled recievers, first-order filters and

higher-order filters were measured. The measurement involved exciting the bus waveguide

at the input and measuring the throughput power. A common feature in all these devices

is that measurement of the transmitted signal on the bus waveguide should reveal a sharp

drop at and near the Bragg frequency. This drop corresponds to power that is either tapped

to the adjacent resonator(s) or reflected on the bus due to interactions with the side-coupled

Bragg resonators. However, this feature was not clearly observed in any of these devices.

The measuement was complicated by the fact that the chip facets were not AR-coated

I I I I I I I I

1556.5
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Figure 6-23: Overlay of measured inline HOF data and Coupled Mode theory for TE input. Fabry-

Perot effects due to reflection from chip facets were taken into account.

which led to Fabry-Perot oscillations. These oscillations made the identification of the drop

in transmitted signal corresponding to coupling to the adjacent resonator(s) hard to detect.

Another reason for not detecting a clear discernible drop in the transmitted signal could

be a mismatch in the propagation constants of the bus waveguide and the Bragg resonator

guides. As mentioned earlier the Bragg resonator guides were made wider than the bus

guides to produce synchronous guides. The widths of these guides were chosen on the basis

of an assumed value of the InGaAsP, nco. However, since nc0 after the growth of the core

region is not well known its possible that the guides are mismatched. We saw in section

4.3.7) that a small A,3 ~ , corresponding to Aneff - 10-3 for the case when K ~ 60 cm- 1

is enough to distort the response of the side-coupled devices significantly. In the presence

of Fabry-Perot fringes the detection of the dropped channel is even more difficult. Figure

(6-24) shows the calculated response of a side-coupled receiver filter with no AR-coating on

the chip facet when there is a propagation mismatch corresponding to Aneff = 2.0 x 10-3.

This is overlayed on a plot of the transmitted signal when the two guides are completely

matched. We see that with a mismatch of this order it is easy to miss the drop in the

transmitted signal. In the measured responses of all the side-coupled devices the Fabry-

Perot oscillations were visible; however, no drop in the transmitted signal corresponding to

interaction with the resonator(s) was clearly discernible. Consequently, we suspected that
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Figure 6-24: Presence of Fabry-Perot fringes exacerbates the AO mismatch issue making it difficult

to detect a resonant drop in the transmitted signal.

the propagation constants of the bus waveguide and the resonator guides were mismatched.

In a few cases of the side-coupled devices we were able to directly excite the resonators and

observed that they did have clear resonance peaks. Hence the A#3 mismatch is the most

likely reason for not having observed a drop in the transmitted power in the bus waveguide.



198



199

Chapter 7

Conclusions and Future Work

Integrated Bragg gratings and Bragg resonators are frequency selective elements that form

the basic building blocks of various optical filters. We have looked at a variety of topologies

in which these elements can be arranged to construct integrated optical add/drop filters .

In this chapter we briefly summarize the salient features, issues and challenges associated

with the use of Bragg gratings and Bragg resonators in the different topologies as add/drop

filters.

7.1 Bragg Gratings and Resonators

7.1.1 Bragg Gratings

Integrated Bragg gratings reflect light strongly within their stopband, centered about the

Bragg wavelength, allowing a band of frequencies to be separated out from a wide-band

signal. The width of the frequency band, AWob, that is reflected is related to the grating

strength, r,, and the group velocity, vg, of the grating guide. The grating strength, r,, is,

therefore, determined by the requirement on the width of the reflected band. In InP material

systems where the group index, nr - 3.5, a grating strength, r, - 35 cm 1 corresponds

to a AWsb ~ 100 GHz. The peak reflected power or equivalently the peak transmission

suppression in gratings is related to the rL product where L is the total length of the

grating. For a transmission suppression in excess of 25 dB, the rL product must be on the

order 3.5. This constraint of rL - 3.5 determines the length of the grating structure.

Uniform Bragg grating have high side-lobes, as we saw earlier. These side-lobes decay

rather slowly and can lead to unacceptable cross-talk levels from adjacent WDM channels.



Bragg Grating Apodized Bragg Grating

Bragg Resonator Inline Higher Order Filter

-1111111 IIII IhhhhII-11111 1111111 IhIIIII

Apodized Grating Add/Drop Filter

Coupled Resonator Add/Drop Filter

E E, IE III III IIIII/-+A

Figure 7-1: Bragg gratings and resonators form building blocks of add/drop filters. Both gratings

and resonators can be put in the arms of a balanced Mach-Zehnder interferometer to

form add/drop filters.

Therefore, if Bragg gratings are to be used in reflection it is necessary to apodize the

gratings. The grating strength, K(z) must be tapered at its ends to reduce the side-lobe

levels. Several apodization windowing functions can be used to reduce cross-talk levels.

Given the current WDM channel spacings and required channel bandwidths, a uniform

grating is unable to meet all specifications and apodizing the gratings becomes essential.

Apodization reduces the average K of the grating structure; this means that grating lengths

get longer in order to maintain (sL) - 3.5. For narrow WDM channels spacings of 50 GHz

or less, the gratings can become several millimeters long. Fabricating long grating may be

challenging due to introduction of chirp or accidental phase-shifts. As a result the use of

Bragg gratings in reflection may be better suited to wider WDM channel spacings like 100

or 200 GHz.
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7.1.2 Bragg Resonators

Bragg resonators, unlike gratings, have a resonant transmission state exactly in the center

of the stopband. All frequencies within the stopband are strongly reflected; only the res-

onant transmission state at the Bragg wavelength propagates through. Consequently, the

resonator forms a frequency selective element in which the desired channel is accessed in

transmission. All the channels off resonance but within the stopband are reflected. How-

ever, outside the stopband the grating is no longer effective as a reflector and all frequencies

outside the stopband are transmitted. As a result an inline Bragg resonator can only be

used as a frequency selective element in systems where all the WDM channels are within

the stopband of the grating. This constraint that all WDM channels are restricted to the

grating stopband requires large grating strengths, K, if high number of channels are to be

accomodated. Large K gratings are difficult to fabricate and can suffer from high radiation

losses.

Single Bragg resonators, near resonance, have Lorentzian responses with the associated

roll-off with frequency. For most WDM applications, given the requirements on channel

bandwidths, the roll-off of first-order Lorentzian filters is not adequate to meet cross-talk

specifications. Consequently higher-order filters are needed. These can be achieved by inline

coupling of multiple Bragg resonators as seen in Fig. (7-1). The coupling between these

resonators can be chosen using the design methods discusses earlier to get appropriately

flat-top, large bandwidth filters which have sufficiently fast roll-offs with frequency. Since,

away from resonance, transmission within the stopband of the grating is heavily suppressed

there is no need for apodization of gratings if Bragg resonators are used; there are no side-

lobe issues to deal with inside the stopband. However, as mentioned above the use of inline

Bragg resonators in add/drop filters restricts the WDM channels to within the stopband.

Thus, use of coupled Bragg resonators offers the challenge of making high K gratings which

do not suffer from high radiation losses to accomodate sufficient WDM channels.

Mach-Zehnder Add/Drop Filter

The use of Bragg gratings or resonators in the balanced arms of a Mach-Zehnder provides

an integrated approach to separating the input from the output and throughput channels.

Either apodized Bragg gratings or coupled inline Bragg resonators can be used in the Mach-

Zehnder configuration as shown in Fig. (7-1); each approach has its limitations as discussed



above. A key requirement on Mach-Zehnder based devices is that the two gratings or res-

onators must be perfectly aligned to each other to within a fraction of the optical wavelength,

A. Misalignment on the order A/2, for a Bragg grating (resonator) based Mach-Zehnder,

will introduce a 7r phase mismatch that will reverse the add and throughput (drop) ports

and cause the drop (throughput) port to appear at the input port. Smaller misalignments

would make the two arms unbalanced and cause the throughput (drop) channels to appear

in both the add and throughput (drop) branches. Likewise the drop (throughput) channel

would appear partially at the input port. Thus, misalignements effectively produce inser-

tion losses and mix the outputs at the ports. They must be restricted to being much less

than the optical wavelength, A. The 3 dB coupler regions of the Mach-Zehnder must be

designed such that they split the power evenly over the entire WDM wavelength range. This

requires designing wavelength-independant couplers which have been described in detail in

[41]. Managing bend losses for the coupler sections may require large bends. For weak

index contrast, moderate grating strength, rK, structures Mach-Zehnder devices tend to be

fairly large and bulky and can range from several millimeters to a centimeter measured

end-to-end.

7.2 Side-coupled Bragg Resonator and Push-Pull Filters

7.2.1 Side-coupled Bragg Resonator Filters

We saw in chapter 4 that Bragg resonators can be side-coupled to a bus waveguide to

form a receiver filter. However, complete power transfer requires two resonators where the

second resonator, placed with a A/4-shift relative to the first, serves as a reflector forcing

complete power transfer to the receiver resonator. The simplest first-order side-coupled

add/drop filter, thus, requires two Bragg resonators staggered on opposite sides of the bus

guide. Near resonance it has a characteristic Lorentzian response. Again, for typical WDM

specifications, first-order filters are not adequate to meet specifications and one must design

higher-order filters. A systematic way to to design higher-order side-coupled receiver filters

using equivalent circuits was derived earlier. However, as in the case of a first-order filter,

a reflector is needed for complete power transfer. Higher-order filters capable of complete

power transfer require higher-order reflectors. There is no systematic way to design higher-

order reflectors using coupled Bragg resonators and one must rely on ad-hoc techniques
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7.2 Side-coupled Bragg Resonator and Push-Pull Filters
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Figure 7-2: Bragg resonators side-coupled to a bus waveguide can be used as add/drop filters.

Alternately coupled pairs of Bragg resonators can be side-coupled to one another and

two waveguides to form push-pull add/drop filters.

for this topology. Figure (7-2) shows a side-coupled add/drop filter with the two Bragg

resonators on the right side forming the higher-order reflector. In general an nth-order filter

requires 2n resonators to achieve complete power extraction of the dropped channel.

A limitation of using side-coupled Bragg resonator add/drop filters is that WDM chan-

nels are again constrained to be within the stopband. The reason, as before, has to do with

the fact that the grating outside the stopband is not an effective reflector. Consequently,

normal waveguide-to-waveguide coupling causes transfer of power from the bus guides to

the resonator guides outside the stopband. This causes a reduction of throughput channel

power if they lie outside the stopband. Moreover, the transfer of these channel powers to the

drop port constitutes cross-talk to the dropped channel. Consequently, the WDM channels

are restricted to the grating stopband.

Another issue that needs to be contended with in designing Bragg resonators side-

coupled to waveguides is designing dissimilar waveguides with identical propagations con-

stants. We discussed in section 4.3.7 the impact 0-mismatch has on the performance of

these devices. This applies to first and higher-order devices. What complicates the issue

further is the absence of precise knowledge of the refractive index of the waveguide core.

Mismatch in the propagation constants, A0, on the order of the grating strength , can
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destroy device performance. This problem is more severe for low or moderate r, devices but

is alleviated for high r, structures due to the increased margin for error, i.e IA1 < r.

7.2.2 Push-Pull Filters

Push-pull filters use degenerately coupled Bragg resonators sandwiched between bus and

access waveguides to form add/drop filters. As in the case of side-coupled filters, higher-

order push-pull devices are needed to meet WDM specifications. Push-pull filters, however,

offer the benefit of complete power transfer of the selected channel to the access guide for

arbitrary filter orders. A systematic way to design the complete 2n resonator system to

yield full-transfer higher-order filters was derived. This is a considerable advantage over

using the side-coupled scheme where we have to rely on ad hoc techniques to the design the

needed higher-order reflector. However, as in the case of the side-coupled Bragg resonator

filters, WDM channels may be constrained to the grating stopband. This constraint can be

alleviated to some degree by bending the bus and access guides away from the resonators

as we discussed in section 5.3.1. The propagation constant mismatch, A/3, between the bus

and resonator guides remains an issue for push-pull filters as well.

Another general observation about side-coupled or push-pull filters is that obtaining

wide bandwidth filters may be challenging. Channel bandwidths are increased by lowering

the external Q of the system. This requires stronger side-coupling between adjacent guides

and resonators. The coupling, however, is limited by how close waveguides can be reliably

fabricated. Moreover, higher side-coupling tends to deteriorate device performance outside

the stopband.

7.3 Future Work

In chapter 6 we saw that on the short wavelength side gratings coupled guided modes

to radiation modes. Coupled Mode theory in space (CMT-space) of Bragg gratings, as

discussed in chapter 3 however, does not predict this radiation. The reason is that CMT-

space only treats coupling between the two fundamental guided modes. It ignores interaction

between any other modes by arguing the the grating pertubation does not provide phase-

matched coupling between them. On the short wavelength side, however, as seen in section

6.4.1 there is phase-matched coupling between the forward-traveling guided modes and the

backward-traveling radiation modes. To predict this coupling all the modes of the system
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7.3 Future Work

including radiation modes must be included. We are currently developing a transfer-matrix

method that takes all guided and the first N radiation modes into account and solves the

scattering from an abrupt junction between the tooth and the trench. By concatening

the abrupt junctions matrices with the intervening propagation matrices, it is possible to

accurately model Bragg gratings taking into account interaction between all modes.

As we seen in the discussion above, making large r, gratings is highly desireable when

using Bragg resonator systems. Large r, gratings have strong radiation losses. Creating a

strong grating without strong coupling to radiation modes remains a challenge that needs

to be overcome. Work is in progress to achieve this aim.

Control of Afl remains a limitation which must be overcome. The problem lies in

designing matched dissimilar guides in the absence of the precise values of the material

indices. One way to overcome this constraint is to have a f control mechanism that can

tune the guides into synchoronous mode allowing add/drop filtering. Tuning the 3 out of

synch would turn off the add/drop filter. Ways to achieve this tuning by index control via

current, fields and temperature are being explored.
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