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ABSTRACT

The field of MEMS has matured significantly over the last two decades increasing in both

complexity and level of integration. To keep up with the demands placed by these

changes requires the development of computer-aided design and modeling tools

(CAD/CAM) that enable designers to reduce the time and cost it takes to produce

working prototypes. An ideal scenario is one in which a designer is able to quickly

model and simulate an entire microsystem - sensors, actuators and electronics -- with the

certainty that their results will match that of physical prototypes. This vision of design

requires the existence of system level models of MEMS devices that can capture the

complex non-linear coupling between multiple physical domains, yet be sufficiently fast

and compact in form to insert into a system dynamics simulator. In this thesis I explore

techniques of automatically constructing such models from meshed representations of

device geometry.

These dynamical models are known as "reduced-order" models or "macromodels." They

are characterized by few degrees of freedom (DOF), and a small set of state equations.

Our process for constructing macromodels is built upon two well-established

methodologies - normal mode superposition and Lagrangian mechanics. This is referred

to as the "CHURN process" and was originally developed by Gabbay et al. to create

models of electromechanical devices with two electrodes under conditions satisfying

linear mechanics. In this thesis I significantly extend this process to model multi-port

magnetostatic devices, multi-port electrostatic devices, and geometrically non-linear

mechanical devices exhibiting stress stiffening. I also address one of the key concerns in

building macromodels -- the required degree of sophistication, and the extent of

involvement, of a designer in the model construction process. I propose and implement

several heuristic techniques that automate the model generation process. I also apply

these techniques to a fabricated microelectromechanical high frequency filter and present

verification of our modeling results.

Thesis Supervisor: Stephen D. Senturia
Barton L. Weller Professor of Electrical Engineering and Computer Science
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1 Introduction

The field of MEMS has matured significantly over the last two decades increasing in both

complexity and level of integration [1][2][3]. MEMS development has also moved out of

university and government research facilities into the laboratories of companies

attempting to commercialize microfabrication technologies [4] [5] [6]. To keep up with

the demands placed by these changes requires the development of computer-aided design

and modeling tools (CAD/CAM) that enable designers to reduce the time and cost it takes

to produce working prototypes [17]. An ideal scenario is one in which a designer is able

to quickly model and simulate an entire microsystem - sensors, actuators and electronics

-- with the certainty that their results will match that of physical prototypes. Verification

of ideas and optimization of designs could then be done on inexpensive, but powerful,

computer workstations instead of iterating through the slow and expensive task of

fabricating test devices. This vision of design requires the existence of system level

models of MEMS devices that can capture the complex non-linear coupling between

multiple physical domains, yet be sufficiently fast and compact in form to insert into a

system dynamics simulator [7][8]. In this thesis we explore techniques of automatically

constructing such models from meshed representations of device geometry.

These dynamical models are known as "reduced-order" models or "macromodels." They

are characterized by few degrees of freedom (DOF), and a small set of coupled ordinary

differential equations (ODEs) as state equations. They are also accurate to full three-

dimensional meshed simulations. Our process for constructing macromodels is built

upon two well-established methodologies - normal mode superposition [16] and

Lagrangian mechanics [9]. A significantly truncated set of normal modes (eigenvectors

of the linear mechanical equations of motion) is used to express the positional state of a

device and thus reduce the DOF. Differentiable and analytical representations for the

kinetic and potential energies of the system in these truncated modal coordinates are then

computed and used in Lagrangian equations of motion. These form the macromodel state

equations. They capture the coupling between the various physical domains of the device
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by describing the energy flow between these domains. Although the resulting state

equations are fast to integrate in a system simulator, the model generation process

requires the computationally expensive task of performing several single energy domain

meshed simulations to create the analytical energy representations. This is a one-time

cost incurred when a model is created that must be balanced against the benefits of a

compact and fast macromodel.

This above process, referred to as the "CHURN process", was originally developed by

Gabbay et al. [18] to create models of electromechanical devices with two electrodes

under conditions satisfying linear mechanics. In this thesis we significantly extend this

process to model multi-port magnetostatic devices, multi-port electrostatic devices, and

geometrically non-linear mechanical devices exhibiting stress stiffening.

One of the key concerns in building macromodels is the required degree of sophistication,

and the extent of involvement, of a designer in the model construction process. An

automated means of macromodel creation is highly desirable. We propose and

implement several heuristic techniques that minimize the degree of designer interaction

in the model generation process. We also apply these techniques to a fabricated

microelectromechanical high frequency filter and present experimental verification of our

modeling results.

This thesis is organized into six chapters, one reference section, and two appendices.

Chapter 2 introduces Gabbay's CHURN process and presents the prerequisite

background for the remaining chapters. Chapter 3 explains how we extend CHURN to

model multi-port magnetostatic devices. Chapter 4 explains why CHURN fails to

capture the geometric mechanical non-linearity of stress stiffening, and proposes an

alternative modeling scheme for creating an accurate macromodel. Chapter 5 details

several heuristic techniques for automating the macromodeling process, and presents

simulation and experimental results for a microelectromechanical high frequency filter.

The conclusions of this thesis are then presented in Chapter 6.

9



1.1 Background
There are numerous techniques for constructing reduced-order models, or macromodels

for MIEMS, and it is our intent in the following sections to briefly introduce these

techniques to place the work in this thesis into context. For a more comprehensive look

at reduced-order models, we refer the reader to the review in [42].

There have always existed semi-analytical, ad hoc, models of MEMS devices [45][46][3].

State equations for these models are typically hand derived by a designer who has an

intimate understanding of the physics of a particular device. However, there have

recently emerged several approaches for the systematic, computer-aided, construction of

reduced-order models that require less sophistication and involvement on the designer's

part. They generally fall into two categories -- lumped element approaches and basis

function approaches.

1.2 Lumped element approaches

There is a large class of MEMS devices that can be decomposed into a set of

interconnected functional elements such as masses, springs, dampers, and capacitors.

These elements are typically spatially discrete and easily identified from layout

descriptions of devices (see Figure 1). Models for each functional element of a device

are put together at the system level to form a complete macromodel description. These

elements are often referred to as "lumped-elements" and can be modeled directly in the

appropriate physical domain [49] or by using equivalent circuit elements [47]. This

approach has the advantage that once parametric models exist for the various elements,

putting these together at the system level to make highly complicated devices becomes

relatively quick and straightforward. This type of modeling is particularly useful when a

fabrication process is well defined and design variations are constrained to changes in

device layout. A designer is also able to derive an intuitive understanding of a device's

functionality directly from the system level schematic description of the interconnected

device - analogous to a circuit designer deriving meaning from a circuit schematic. The

disadvantage with this lumped-element approach, however, is that it is difficult to model

the numerous devices that cannot easily be decomposed into functional components. In

addition, modifications to device geometry other than those due to layout can require

significant overhead, as models of the lumped elements must be re-derived every time.

10



1.3 Basis function approaches

Basis function approaches to macromodeling begin with the large set of nonlinear state

equations of a meshed representation of a MEMS device, and use numerical techniques to

reduce the model order. Our modal basis function approach falls under this category. A

general form of the system's state equations may be written as follows [41]:

(1) d(t) = f(y(t), ii(0)
dt

where y(t) is a vector of states of length N (often greater than a thousand), f(y(t), ii(t))

is a non-linear vector-valued function, and ii(t) is an input vector of length p. The

system's states y are not necessarily the desired form for the output of the system, so an

additional transformation may be required to compute the output.

Even though the system has a large set of states, an appropriate reduced set of states may

be able to capture the system dynamics with negligible loss of accuracy. Consider the

following projection onto a reduced state space:

(2) q(t) = q,(t x = [V ]4(t)

where qi (t) is the i'' state variable, 4(t) is the reduced state vector of size m, expected to

be much smaller than N. V2 is a basis vector, and [V] is a matrix of these basis vectors

which we select to be orthonormal. We use this projection to transform equation (1) to a

reduced set of m state equations:

(3) V T 
7dY(t) _ d4(t) -= T f((t),ii(t))

dt dt

These equations may be used to calculate 4(t), and therefore through equation (2) 9(t).

The success of the above technique is obviously dependent on the choice of the basis

vectors V1 . There are several methods of calculating a useful basis, including utilizing

Krylov subspaces [11], singular value decomposition of state trajectories [12], and
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neural-network principle component analysis [43]. In this thesis, we happen to use linear

modal analysis [20] to compute a basis set.

Even though the number of state equations is reduced, the nonlinear function f(y(t)) is

still costly to compute. Efficient techniques for computing this term are required to make

a macromodel truly compact and fast. Recently, several approaches have been proposed

based on Taylor expansions [11] and piece-wise linear approximations about a trajectory

[41]. In this thesis, we use a fast analytical representation of the force derived from a

series of quasi-static meshed simulations [13][14][15].

Basis function techniques have the advantage that they can be applied to a large class of

MEMS problems and are not typically restricted in geometry. The models, however, are

most often "black-box" in nature, as designers have no intuitive feel for the basis

functions used to reduce the order of a model. We suggest that modal basis functions

might bridge this issue because many designers have prior experience with modal

analysis, and even design devices with mode shapes in mind[2][3][21][22].

1.4 Network (system) representation

Regardless of how a macromodel is constructed, at the system level, it is represented as a

network element that interacts with other network elements via electrical and mechanical

"ports." A schematic description of a microelectromechanical band-pass test circuit is

illustrated in Figure 2. It shows how various electronic, electromechanical, and

mechanical components (macromodels) can be interconnected to form a complete

description of a system. Components interact through "ports" that are defined by pairs of

variables whose product is either energy or power. Electrical ports have either charge

and voltage or current and voltage as through and across variables respectively.

Mechanical ports have either force and amplitude or force and velocity as through and

across variables respectively. The system simulator calculates dynamics by integrating

component state equations while ensuring that shared across variables (voltage,

displacement, or velocity) are consistent throughout the system and through variables

(force, charge, or current) are conserved external to the components. The underlying

state equations for the macromodels must be compact and fast to integrate because a

simulator often has to handle a large number of components.

12
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2 The CHURN process

This chapter introduces the CHURN process [18] for constructing modal basis function

based macromodels from meshed device representations. The work in this thesis extends

CHURN in several different directions, so the theory behind the basic modeling process

is a prerequisite for discussing our new contributions.

We begin with a brief definition of the meshes that are used to represent device geometry

in this thesis. We then introduce the linear mechanical normal modes that are the basis

functions in our modeling approach and also present some of the useful properties of

these modes. The next two sections explain how normal modes can reduce the order of a

model through a superposition of a truncated set of modes. Following this we show how

the Lagrangian may be used to derive equations of motion in "modal coordinates".

2.1 Meshes

The finite element method (FEM) and boundary element method (BEM) solvers we use

in this thesis perform simulations on discretized representations of device geometry

known as "meshes." These meshes take many forms, but for the purposes of this thesis

they are described by the positions of their nodes, with each node having three

translational degrees of freedom (DOF). Thus, a mesh having N/3 nodes, has N DOF that

must be specified to define its position. Mathematically, the DOF are specified in a

single vector, y , of length N, that will herein be called the "position vector."

2.2 Linear mechanical normal modes

The normal modes that are used throughout this thesis are the eigenvectors of the linear

mechanical equation of motion (this is a linearized and Fourier transformed version of

equation (1) under zero input conditions):

(4) (-w 2[MINxN + [K]NxN) =o
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where 9 is the frequency, [M]NxN , is the mass matrix, and [K]NxN is the stiffness matrix

associated with the mesh. A mode shape, Oj, specifies each eigenvector, along with a

frequency eigenvalue, wo. (p is the positional state of the mesh in a particular mode

shape. Each mode also has a scalar "modal mass," mi, and "modal stiffness," ki. In

practice, when the modes are computed based on a mesh, an additional shape vector,

,eqm, is also generated. This represents the shape of the mesh after it is allowed to relax

due to any internal stresses.

mesh.

The mode shapes are then calculated about this relaxed

The normal modes (non-degenerate) are orthogonal over both the mass and stiffness

matrices:

(5) M]NxN jM i

(6) [K]NxN (, Pik

where So, is the kronecker delta function (o =lfor i = j, and Sj = 0 for i # j).

We define here the "modal matrix", [P]NxN, that consists of column vectors of the mode

shapes.

(7) [P]NxN = [0 1 .ON]

We also define the generalized mass matrix, [mG NxN, and the generalized stiffness

matrix, [kG ]NxN

(8)

(9)

[IMG ]NxN NxN ]XN

[kG ]NxN [xN [K]NxN nxN

These two matrices are diagonal because of the orthogonality conditions in equations (5)

and (6). The diagonal entries are the modal mass and modal stiffness of the modes.
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2.3 Modal co-ordinates

Given the mode shapes, another equivalent mathematical means of specifying the

position of the mesh is to use a superposition of the linear mechanical normal modes

according to:

N

(10) = 9,qm + qj@p = Yeq, + [P]NxN 4Nx
i=1

where Yeqm is the equilibrium position of the mesh after relaxation due to any internal

stresses, qj are scalar, non-dimensional mode amplitudes, Nxlis a vector of length N

specifying all the mode amplitudes, (p is the mechanical "mode shape", and [P]NxN is the

"modal matrix" consisting of column vectors of the mode shapes. The mesh position is

uniquely defined by either specifying the vector, f , or equivalently, specifying the

vector, 4Nxl. Thus, 4 Nxl provides an alternative "modal co-ordinate" system for the mesh

position.

At this point it is important to point out that although the mode shapes were calculated

from a linear mechanical analysis, it is perfectly valid to continue using modal

superposition to specify the position of the mesh when the mechanical system becomes

non-linear. The vector 4
Nxl acts purely as an alternative co-ordinate system to 5, and is

independent of the underlying physics of the mesh.

2.4 Model order reduction

The modal co-ordinates are very useful because the sum in equation (10) does not need to

include all N modes to accurately approximate the positional state of the mesh. In fact,

only a small set of low order modes, m, typically less than five, is required. This method

of truncating the sum, and hence reducing the DOF dramatically, is well established for

analyzing dynamic mechanical systems [16].

(11) ~e, +Y qYqi = Yeqm + [P]Nxm 4ml
i=1
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[P]Nxm is the truncated modal matrix, and 4,1 is the truncated modal amplitude vector.

For ease of notation, [P]Nxm will be written as [P], and 4,1 will be written as 4, for the

remainder of this thesis.

Anathasuresh [20] demonstrated that the higher order modes had negligible effect on the

response of electromechanical systems and constructed models based on a reduced

number of modes. He projected the equations of motion for an electrostatic system

(12) [AM ]NxN Y = fel4rostatic ( mex anical (

onto the truncated modal co-ordinates to reduce the number of equations of motion from

N to m.

(13) [p]T [M/']NXN [pk = [p]T FeZrsai (5, iJ + [p]j - A1nci(13) [ ]'[M NxeTe ctrostatic FmechanicalW

eecrostatic (3 ii) is the electrostatic force, and Fmechanical (y) is the elastic response force on

each mesh node. The inertial term on the left side of equation (13), reduces to [mG ]xm q,

where [mG ]mxm is the generalized modal mass matrix which is diagonal. The modes are

therefore decoupled from each other in this inertial term. In addition, for the special case

when the mechanics are linear, the mechanical forces, are also decoupled and given by:

(14) [P]xn pNxI anca [p] T [ K]NxN -[p] T [K]NxN[P]4 = KxkG ]mxm

[kG mxm is the diagonal generalized modal stiffness matrix. The projection onto the

modes, not only reduces the number of equations of motion, but also simplifies the

inertial and stiffness terms, significantly speeding up the solution time for this model over

one with the full DOF.

The disadvantage with the above model (equation (13)) is that it requires explicit

computation, using a mesh, to calculate the electrostatic forces when the equations of

motion are integrated in time. In addition, when the mechanics are non-linear, the

mechanical forces also require an explicit computation on the mesh. This makes the

17



above model inappropriate for insertion into system level simulators that model the

interaction of the electromechanical system with electronics. A compact, self-contained

model that does not depend on meshed simulations during integration is required for

these simulators.

Ideally, the mechanical and electrostatic forces should be expressed directly in modal co-

ordinates, be fast to compute, and have a compact representation that is easily inserted

into system simulators. An analytical representation of the forces would fit these criteria.

2.5 Lagrangian

The Lagrangian, L(q, q, t), is a powerful tool for modeling the coupling between

conservative energy domains. It keeps track of the energy flowing between different

energy domains in a system (kinetic, elastic, electrostatic, magnetic), and has the

advantage that it is not tied to any particular co-ordinate system [40]. As we will show,

the Lagrangian is a convenient means of deriving equations of motion for a system, and a

path to obtaining compact, fast, analytical representations of non-linear forces.

(15) L(Q, ,t)= T(4, ,t)- U(4,qt)

T(4,4,t) and U(4,4,t) are the kinetic and potential energy of the system respectively.

The Lagrangian is a scalar function of the generalized co-ordinates, 4, the generalized

velocity, 4-, and the time, t. The m equations of motion of the reduced system are

derived from Lagrange's equations:

(16) d-( =0
dt a4i) aq,

These equations do not require a projection of forces into generalized co-ordinates, but do

require knowledge of the system's kinetic and potential energies expressed in these co-

ordinates. Although any generalized co-ordinates could be used with the Lagrangian, the

use of modal co-ordinates, 4, enables several useful simplifications including the

reduction of model order using a truncated modal superposition as we saw in section 2.4.

18



2.6 Kinetic energy, potential energy, and forces

The kinetic energy of the system has a simple analytical representation in modal co-

ordinates

(17) T(4, q, t)= Mi

where the "modal mass," mi , is the i'h diagonal entry in the modal mass matrix, [MG ]mxm

In general, the potential energy, U(4,4,t), is the sum total of the energy domains in the

system [28].

(18) U(4,4,t)= JUd(qqt)
each energy
domain d

For an electromechanical system, the potential energy consists of elastic and electrostatic

terms. In this case the Lagrangian equations of motion (16) reduce to

(19) = - ela U,,,,ti, _ U electosta tic
dt a4) aq, aqi

where Ueastic and Uelectrostatic are independent of modal velocity and time. The term on the

left is the inertial force, and the terms on the right are the elastic and electrostatic forces.

As we saw previously, for compactness and computational efficiency, it is desirable to

have an analytical representation of these forces. This is possible, if the kinetic and

potential energies themselves are differentiable, analytical representations.

In the previous section, the kinetic energy was expressed in just such a form, so the

inertial term can readily be calculated.

d aT
(20) d aT) = mAq

dt a4,1
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In addition, for the special case when the mechanics are linear, the elastic potential

energy also has a simple analytical representation in modal co-ordinates

(21) Uliea (4, q, t)= i -k 2
elastic i=1 2

where ki, known as the "modal stiffness," is the il' diagonal entry in the modal stiffness

matrix, [kG]mxm and is also equal to miw7. Combining this elastic energy with the

calculated inertial term, the equations of motion become:

(22) mi4i = -kiqi - aUeectrostatic

aq,

It remains, therefore, to find a differentiable analytical representation of the electrostatic

potential energy to complete this model. If the mechanics were non-linear, equation (21)

would not hold and the same would have to be done for the elastic potential energy as

well. Gabbay [28] developed a methodology to compute just such analytical

representations.

2.7 Analytical energy representations

Gabbay's "CHURN" methodology for computing differentiable analytical

representations for the potential energy is based on fitting functions to a set of FEM or

BEM simulations performed on a mesh. In Anthasuresh's methodology, meshed

simulations are always required to compute forces. CHURN shifts the computational

cost of performing meshed simulations to the one-time construction of a reduced-order

model, after which forces are computed from fast, compact, analytical representations.

The CHURN methodology is depicted in Figure 3. A bounded region of mode space,

which is the expected operating range of a system, is sampled in potential energy through

a series of meshed simulations. These representative samples are then fitted to a

multivariate polynomial to obtain a differentiable analytical representation of the

potential energy valid within this operating space, with accuracy comparable to meshed

simulations.

20



(23) Us (ql,.-., qm):= '' al ... iq..91 q' i
i1 =0 i,,=o

R is the order of mode qi, and a ... is a fitting co-efficient of the polynomial. This

methodology is not restricted to the use of polynomials - rational polynomials, or other

types of functions can also be used. Details of the procedure for obtaining a

representative sample, and performing a fit are given in [28].

2.8 Electrostatic co-energy

Although the methodology outlined above is intended to be quite general, its

implementation is dependent on the particular energy domain in question. In the

electrostatic case, it is the capacitance that is found as an analytical representation using

CHURN and not the electrostatic energy directly. This energy and its partial derivative

are then computed from the capacitance.

_1 Q2

(24) Uelectrostatic -1
2 C(q 1,... qm)

a Uelec,,o,,ac _ 1 Q2 a i
(2)aqj Q1 2 aq, C(qi,---..qm) -

In practice, Gabbay chose to use the electrostatic co-energy [31] to model this domain for

reasons of convenience. The co-energy, U*ectrostatic and its partial derivative are given by

(26) Uiectrostate =V 2C(q,- -q,, )

(27) Uectrostatic 1 2 C(q,---q,) - aUe ,ectrostatic
aqi V,4 2 aq, aq

In the Lagrangian equations of motion, the partial derivative of the energy is replaced

with the partial derivative of the co-energy including the change of sign.

(28) mij 1 = -kiqi + "ectrostatic

aqi V,4
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2.9 CHURN macromodel construction

Gabby [28] implemented a systematic semi-automated process to create macromodels of

electromechanical systems for insertion into system simulators. This implementation

referred to as the "CHURN process," is outlined in Figure 4.

A designer begins by constructing a mesh for a device under study. This mesh typically

has thousands of nodes, and hence, thousands of degrees of freedom. A truncated set of

m modes are then selected, and normal mode superposition is used to reduce the order of

the model without sacrificing accuracy as we saw in section 2.4. The procedure for

selecting relevant modes is discussed in detail in [28]. It involves performing a full 3-D

coupled simulation using the Co-Solve EM tool [29], and analyzing the results to

determine which modes are most excited. A designer is ultimately responsible for

selecting the relevant modes.

Based on this reduced set of modes, analytical representations are found for the kinetic

energy, elastic strain (elastostatic) energy, and electrostatic co-energy. The energy

functions for each domain are computed separately. Equation (17) is used to compute the

kinetic energy. The CHURN methodology in section 2.7 computes an analytical

representation (rational polynomial) for the capacitance, which is used in the electrostatic

energy or co-energy. For systems approximated by linear mechanics, equation (21) is

used to compute the elastostatic energy. For systems with non-linear mechanics, Gabbay

proposed to use the CHURN methodology to compute polynomials representing strain

energy. However, as we will see in Chapter 4, this approach was unsuccessful.

Therefore, without any modification, Gabbay's CHURN process is restricted to model

linear mechanical systems.

Finally, given analytical representations of the system energies, the equations describing

the macromodel are derived (equations (29)). The first set of equations defines the

capacitance, the charge, and the rate of charge flow in the system. The second set of

equations is the Lagrangian equations of motion. The charge, mode amplitudes, and

modal velocities form the system's state variables.
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C(q 1 ,---, qm) = frationa ,poynomia (q1,---, qm)]

(29) Q C(q1,- --, qI)V

I1 =Q

1 2 aC(qj,- --, q,)m141 = -klq, +-V)
2'ag

2 q,

These equations are implemented in the SABER/MAST [34] hardware description

language that is a precursor to VHDL-AMS [35]. This is a language that enables the

description and simulation of analog mixed signal (AMS) systems and includes the

description of state equations encompassing multiple energy domains.

2.10 Extending CHURN

The CHURN process that we present in this chapter is applicable to any conservative

physical domain. In the following chapter we show how this process is adapted for

modeling magnetic MEMS devices.
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3 Magnetics

There now exists a small but growing number of microactuators and microsensors that

operate in the magnetic energy domain. Examples of these devices are magnetometers

[21], scanning mirrors [22], gyroscopes [23], flexural plate wave devices [24], and relays

[25]. We perceive a need arising among designers of this group of devices for tools that

make the task of modeling and design both easier and faster. The essential physics of

these devices lies in the coupling between the magnetic and mechanical energy domains.

There already exist commercial finite element tools that have the capability to model this

interaction [27], but the designer often finds that the coupling must be handled manually,

or through specifically written scripts. In addition, it is desirable to model the dynamics

of a device, including any interaction with supporting electronic components. The task of

performing a mechanically dynamic coupled simulation, required for system level

modeling, is too slow with a FEM or BEM solver.

In this chapter we extend the CHURN process to create macromodels of magnetic

devices. Our formulation, based on the magnetic co-energy, is applicable to model the

Lorentz force (see Figure 5) and forces in devices with linear permeable materials. This

chapter begins with an overview of the modeling strategy. The derivation of forces from

the magnetic co-energy is then presented with an explanation of how an analytical

representation of the co-energy is computed. Finally, we present results for a device used

as an example of realistic Lorentz force devices that are actuated by external magnetic

fields.
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3.1 Adapting the CHURN process

In Chapter 2 we saw how the CHURN process coupled the electrostatic and mechanical

energy domains together in a reduced-order model through the Lagrangian. We propose

a similar process to model magnetic forces, replacing the electrostatic co-energy with the

magnetostatic co-energy, as shown in Figure 6. The Lagrangian equations of motion, for

a reduced set of modal co-ordinates, form the basis of this macromodel's state equations:

(30) mij = -kiqi + magnetostatic

aqi_

As with electrostatics, it remains, therefore, to find a differentiable analytical

representation of the magnetostatic co-energy to complete this model

3.2 Magnetic co-energy

Before going further, it is instructive to derive the magnetic co-energy and how a

magnetic "modal force" is calculated from this co-energy. Consider a device with two

electrical ports, and modeled using just one mechanical mode, qI. The network energy

storage element in Figure 7 is a useful representation of this device in which each port is

defined by pairs of variables whose product (energy) is conserved. The through and

across variables for the electrical ports are current, i1 , and flux linkages, A,, respectively.

The through and across variables for the mechanical port are modal force, fl, and modal

amplitude, q1 , respectively. The ports govern energy flow in and out of the device

according to

(31) dUmagnetostatic = .Vi1+2 2 + f, dq,
dt dt

where Umagnetostatie is the stored magnetic energy, vi is the voltage across the electrical

ports and is equal to the rate of change of flux linkages, .
dt
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Figure 7 Network storage element representation of a conservative magnetic device
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port).
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Multiplying through by dt , and substituting for the voltage we obtain

(32) dw, = i1 dA +i 2 dA2 + fldql

We now define the magnetic co-energy as

(33) U*agnetostatic (i1A + i2 2 Wm

and use the following identity

(34) d(i2 +i2A 2 )= ( di, + A2di2 )+(iId + i2dA2 )

to recast equation (32) as

(35) dU *aneo, tic = A di + A 2di 2 - f 1dq 1

Now, the change dUagnetostatic is also given by

(36) dUaneo*,ai
Sm*agnetostatic

ail
au* au*

+ magnetostatic + magnetostatic

ai2 aq,

In order for equation (35) and equation (36) to be consistent, the flux linkages and force

must equal:

(37) A2 =

_ Umagnetostatic

i1,i

(38) f = -,magnetostatic

aq, 11 ,2 q

Equation (38) is a convenient way to calculate the generalized force, fl, if the magnetic

co-energy is known. Thus, it remains to find the co-energy. One means of doing this is

by integrating equation (35)

(39) U*neotatc = f (di + A2d- f 1dq)
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Since the system is conservative, the co-energy is independent of the integration path.

Therefore, consider integrating the terms fldql first, with all currents in the system set to

zero. The force f, is zero in the absence of currents and fields from permanent magnets,

so the contribution of the integral f fldq is also zero.

The next step is to integrate the terms 21 dij, and 2
2di2 . To perform this integral it is

convenient to express the flux linkages 2A in terms of the currents ii using the inductance

matrix [L] associated with the system

(40) =
A2 L21 L22 _i2

Each of the inductance entries is a function of the positional state, qj. Keeping in mind

that equation (39) is a path integral, the magnetic co-energy now evaluates to

(41) ULagnetostatic = 2 LI (q, )i + 42( 1 )ii 2 + L22 (q1 )222

One possible path is to move along each current "axis" sequentially, increasing i1 to its

final value, then i2 . Using this form of the co-energy, the force f, in equation (38)

becomes

(42) 1 aL1 (q) .2 aL12 (q 1).. 1 aL22 (q1) 2

A 2 aq, aq, 2 aq1

The problem of finding an analytical representation for the force f, therefore reduces to

finding an analytical form for the inductance L .

3.3 Model construction

The task of finding an analytical function for the inductance is exactly analogous to

finding an analytical function for capacitance in the CHURN methodology. The general

procedure for obtaining the inductance function is shown in Figure 8. This function is
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obtained by fitting data from a set of full 3-D meshed simulations. The simulations are

performed using a FEM/BEM tool, which calculates the n-port inductance matrix,

associated with a given mesh. Our implementation uses MemHenry [29], a tool

dedicated to inductance calculations for conducting loops of "wire", in the absence of any

magnetic material. For devices containing linear permeable materials, an alternative

solver such as AMPERES [26] may be used for calculating inductance matrices. The

simulations are repeated for a set of different positional states to generate data for a

fitting algorithm. The next step is to fit each entry in the inductance matrix, using the

generated data, to an analytical representation. In keeping with the original CHURN

process, a multivariate rational polynomial was selected, although it is possible to use

polynomials and other types of functions.

2R 2 ... Rmaj .j q1 2... q,.
(43) L =0 0 =0

LIM SI S2 S.n

i1=0i 2 =0 im=0

Li, is the inductance seen between ports 1 and m. a and b are fitting coefficients. The

resulting analytical inductance functions are as accurate as the 3-D meshed simulations

from which they were derived.

The next step is to construct an analytical representation of the magnetic co-energy

function in equation (41) using the inductances Lm. Since the inductance functions are

rational polynomials, it is possible to take the analytic partial derivative of the co-energy

and hence obtain the forces fi given in equation (42).

3.4 Results

The methodology described in the previous sections is demonstrated using a device

representative of typical Lorentz force actuated MEMS. The Lorentz force is generated

when a current flows in a direction perpendicular to a magnetic field. Figure 5 shows the

force, dF , acting on a small straight segment of current of length dl, exposed to a

magnetic flux density B. The Lorentz force on this small segment is the cross product
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Idl x B. The device, depicted in Figure 9, is an elastic beam forming one side of a

square, conducting loop. The device is placed in a homogenous z-directed magnetic

field. The beam experiences a Lorentz force along its length and deforms. Since our

methodology is based on representing a magnetic system using an inductance matrix, it is

not possible to readily insert the boundary condition of a z-directed magnetic field

without modifying the formulation.

To circumvent this problem, we surround the device with a cylindrical shell that creates a

z-directed field. The magnetic field inside a long cylindrical shell is given by:

(44) HZ = Ko

The system is now, electrically, a two-port element with port one belonging to the square

loop, and port two belonging to the shell. The current entering the shell controls the

magnetic field.

With this in place, the next step is to construct the macro-model. We simplify this

example for clarity by using only the fundamental mode (qj) and the first harmonic

mode (q 2 ) of the elastic beam. For small deflections we expect only the fundamental

mode to be excited.

Figure 10 shows the fitted inductance L12 as a function of the fundamental mode

amplitude. Figure 11 shows the static deflection (y direction) of the beam for varying

external magnetic fields. Our results compare well with those of a finite difference

model of the beam in a magnetic field.

Figure 12 shows the deflection of the beam (y direction) as a function of the primary

current with no external magnetic field. This is due to a "self-force" and acts to enlarge

the current loop. This effect is negligible for typical Lorentz force devices because the

current densities necessary for actuation are impractical. However, this "self-force" is

significant in devices with magnetically permeable material, and our demonstration

indicates that our methodology might be applicable to this class of devices.
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Figure 9 This is an example of a Lorentz force device. The elastic beam, shown as the
bottom segment of the conducting loop, has a Young's Modulus of 130Gpa. The
cylindrical shell has a slot cut out of it to form port 2 and generates an axial magnetic
field (z-direction). Current Ij flows into porti and 12 flows into port 2.
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Figure 10 Mutual inductance, L12, as afunction of the fundamental mode amplitude.
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As with the CHURN methodology, once the initial effort is made to construct the macro-

model, further analysis is very fast. Static analysis, such as a the deformation shown in

Figure 11, takes only a few seconds to perform in MATLAB while retaining high

accuracy. Dynamics simulations are also very fast, as force calculations require only a

function call to the analytic force representations.

3.5 Non-linear permeable materials

Modeling other types of magnetic devices is a natural extension of the work we have

presented in this chapter. The co-energy formulation is still applicable to devices that

have non-linear permeable materials as long as the magnetic energy domain is still

conservative (no hysteresis). The most common material non-linearity is the saturation

of magnetic flux. If the magnetic system is described in terms of an inductance matrix,

saturation leads to a current dependence of the inductance that is not captured by our

polynomial representation. Thus, although a co-energy formulation is still valid, we must

modify the CHURN process to create an alternative representation that captures the

current dependence accurately.

3.6 Summary

This chapter discusses the extension of the CHURN process to the magnetic energy

domain. The magnetic co-energy is derived based on the inductance matrix and the

CHURN methodology is modified to compute analytical representations of the self- and

mutual- inductances.

A cylindrical shell simulating an externally applied magnetic field is introduced to model

practical Lorentz force devices within the magnetic co-energy formulation. Results based

on an example representative device are also presented.

In the future, it may be possible to extend the magnetic co-energy formulation further to

model non-linear permeable material devices as long as the current dependence of

inductance is taken into account.
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Figure 11 Maximum deflection of the elastic beam as a function of the axial magnetic
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Figure 12 Maximum deflection of the elastic beam as a function of the loop current Ii,
with no external field. The beam bends to increase the area of the loop independent of
the direction of the current. The current required to achieve this actuation is
excessively large. This "self-force" is not used to actuate real Lorentz force devices.
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4 Stress stiffened mechanics

The macro-models presented in the previous chapters have all assumed, for simplicity,

that the mechanical forces are linear in mode amplitude. Only the electrostatic and

magnetostatic forces were modeled as non-linear using the CHURN process. There are,

however, many devices that exhibit non-linear mechanical forces [38], particularly when

the amplitude of motion is on the order of a structure's cross-sectional dimensions.

Gabbay [28] attempted to extend the CHURN process to encompass non-linear

mechanics, but he found that his models were inaccurate.

In this chapter we focus on one particular type of mechanical non-linearity, referred to as

stress stiffening, that is common in MEMS devices. We begin by explaining the cause of

this non-linearity, and then examine why the CHURN process fails to capture its effects

accurately. Mehner's [19] modification of the CHURN process to capture stress

stiffening, for a restricted class of devices, is then presented as a prelude to our more

general approach using modal forces. We present the algorithm for our "modal-force"

methodology and also a justification for its success. In addition, we present in Appendix

C a detailed derivation, based on singular perturbation methods [30] [50], that explains

CHURN's failure and our "modal-force" methodology's success. We conclude this

chapter with a presentation of our results for a clamped-clamped beam example and also

for an asymmetrically supported plate actuated by an off-center electrode.
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Figure 13 Polysilicon beam suspended 2pan above a ground electrode. The beam and
electrode are identical in width, length and thickness (0.5pm). The polysilicon beam
has a Young's modulus of 165Gpa, and a Poisson's ratio of 0.23.
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4.1 Stress-stiffening

Stress stiffening occurs in a variety of MEMS devices when clamped structures bend to

create displacements on the order of or greater than their cross-sectional thickness. This

type of non-linearity is solely a function of the geometry of the device as it deforms and

is not the result of any intrinsic non-linear material property such as Young's modulus.

The clamped-clamped beam in Figure 13 exhibits stress stiffening. A beam of

polysilicon, clamped on both its ends, is suspended above a ground electrode. When a

voltage difference is applied between the beam and the ground electrode, the beam

responds by bending [37] and also stretching along its axis (axial strain). For small

amplitudes of motion, the axial strain component is negligible, and the mechanics of the

beam can be described, in a discretized form, by a linear stiffness matrix as in Chapter 2:

(45) F,j= K y

- - N - .. NxN _ _-N

where Fe is a vector of the electrostatic forces, [K]NxN is an N by N stiffness matrix, and

y is a vector of length N representing the positional state of the discretized beam with N

degrees of freedom. Multiplying the above equation by [P]'N , where [P]'N is the modal

matrix (see Chapter 2), we can derive an equivalent representation in terms of linear

mechanical mode amplitudes, qj, the modal stiffness, ki, and the electrostatic forces in

modal co-ordinates fei:

fe I k, q,
(46)

[feNiN E NxNN

We note here that because the modal stiffness matrix is diagonal, there is no coupling

between modes in the linear system. A mode, qj, can only be excited by a corresponding

electrostatic force fei.
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When the amplitude of motion of the beam is on the order of its thickness or larger, the

axial strain component is no longer negligible. The electrostatic forces must now not

only bend the beam, but also stretch it, leading to a stiffer structure. The stiffness

increases with the amplitude of motion, so the mechanical system is no longer linear, and

equations (45) and (46) do not hold.

In addition to the increased stiffness, there are also two other important consequences to

the axial strain, which leads to coupling between modes. The first is that the cross-

section of the beam shrinks due to Poisson contraction [37], and the second is that the

beam excites modes that reduce its curvature and hence minimize the axial strain [19].

We refer to these effects as "relaxation" because the corresponding motions allow the

beam to "relax" to a lower energy state. These effects couple modes together

mechanically which means that it is possible to excite a mode qi without a corresponding

electrostatic force fez.

Given that the CHURN process is well suited to deal with non-linear forces and coupling

between modes, it would be appropriate to try the process on the mechanical energy

domain. Gabbay [28] did just this, replacing capacitance calculations with strain-energy

calculations as shown in Figure 14, then finding mechanical forces from a strain energy

function:

(47) fmech _ mech

aq,

Unfortunately, the process failed to capture the non-linearity accurately. In Figure 15 we

plot the mode 1 displacement for the beam as a function of applied voltage and compare

it to the linear mechanics macro-model and the CHURN based nonlinear mechanics

macro-model. The linear mechanics macro-model does not capture the additional

stiffness of the stress stiffening in the real device, whereas the CHURN macro-model

produces a model that is much stiffer than the real device.

Gabbay attributed the inaccuracy of the CHURN macro-model to its inability to capture

the relaxation of the device as it stretches. This is because the CHURN process

constrains the beam to motions only in the chosen modes, which are not the modes in

which relaxation occurs. In Appendix C we demonstrate, in much greater detail, how

modal coupling leads to the failure of the CHURN process [30].
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Figure 14 CHURN process adapted for elastostatic energy domain. Umech is the
elastostatic energy calculated using a mechanical FEM solver, such as MemMech [29].
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Figure 15 Plot comparing results offully meshed Co-Solve EM simulations to linear and
non-linear CHURN based macro-models. The linear macro-model has larger
deflection at the same voltage than the full FEM simulation, while the non-linear
macro-model has smaller deflections. The stiffness of the mechanical structure is not
captured accurately in both reduced-order models.
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4.2 Poisson contraction

Poisson contraction is one of the mechanisms of relaxation that is not captured by the

CHURN process due to constraints. To understand the effects of constraining Poisson

contraction, it is convenient to separate the axial stretching component from the bending

component of the beam deflection. Consider the beam shown in Figure 16 with an

applied axial stress, q-, and unconstrained in the y and z directions (stresses cy and or are

both zero). The beam responds with a strain in the x direction, Ex, but also strains in the y

and z directions, e, and e, due to Poisson contraction. The general response of the beam

to stresses o-, a- and o, is given by:

E -V -V a-

(48) E = -V 1 - V ,E
_ _-V -V J _O-Z

For a given change in length 8L in the x direction, the strain is --. The corresponding
L

5L L
applied stress is E-, and strains in the y and z directions are both - v -. Now,

L L

consider the same change in length 8L in the x direction, but constraining Poisson

contraction by preventing relaxation in the y and z directions (constraining ex and L) to

L (l-v)
zero). Solving equation (48), the required x directed stress is E - 2 . This is

L (1-2v2 -v)Thsi

greater than the unconstrained stress by (1 V) . For Polysilicon, which has a
(1-2V2 _V)

Poisson ratio of 0.23, the constrained beam requires a 16% greater stress than the

unconstrained beam for the same strain. Hence, the constrained beam is stiffer than the

unconstrained beam.
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Figure 16 Block of material with isotropic Young's modulus, E, and a Poisson ratio of v.
The block has dimensions of length, L, width, w, and thickness, h. Stress in the x, y, and
z directions are -x, y, and oz respectively. Strains in the x, y, and z direction are ex, e,
and ez respectively.
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Figure 17 Side view of block, with x directed stress. (a) No imposed constraints on the

motion. Poisson contraction takes place. (b) Zero strain constraint imposed in the y
and z directions.
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4.3 Relaxation strategies

Gabbay [28] proposed that allowing some degree of relaxation at the nodes in the finite

element mesh, while still retaining a good approximation of the modal superposition,

would reduce the error in stiffness. For the clamped beam example in the previous

sections he explored two constraint strategies. First, he constrained only the surface

nodes (all surfaces) according to modal superposition, allowing the remaining internal

nodes free to relax. Second, he constrained only the nodes on the bottom surface of the

beam (facing the ground electrode) according to modal superposition, allowing the

remaining nodes free to relax. The results are shown in Figure 18 It is clear that both

strategies reduced the error in the stiffness. The second strategy, with the least

constrained nodes, did better than the first but still failed to capture the stiffness of the

beam accurately.

Mehner [19] took the relaxation strategy further and implemented a successful solution

for a restricted, but useful, class of MEMS devices. He looked at devices that had a

dominant direction of motion (in the case of the beam, the z direction), and in addition

had a clearly defined neutral surface. He constrained only the nodes on the neutral

surface, according to modal superposition, but only in the dominant direction. That is,

the nodes along the neutral surface had their z position constrained, but were free to relax

in the x and y directions.

Both the strategies above deviate from strict adherence to modal superposition. The

position of a device is no longer strictly constrained to the original set of m modes. The

degree of constraint controls the success of these strategies, and is dependent on the

specific geometry of a device. This motivates us to find a more general approach for

finding an accurate strain energy function.
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Figure 18 Plot comparing results of fully meshed Co-Solve EM simulations to macro-
models utilizing different relaxation strategies. The CHURN based NL strain energy
macro-model has the largest deviation from the Co-Solve results. The model with only
surface nodes constrained according to modal superposition shows improvement, and
further improvement is seen by the model with only its bottom surface constrained.
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Figure 19 N mechanical port energy storage elements. (a) N-m modes are constrained to
zero amplitude. (b) N-m modal forces are constrained to zero amplitude.
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4.4 Strain energy functions

Consider the two N port strain energy storage elements in Figure 19. The modal force,

f1, flowing into the port and the modal amplitude, qj, across the port, defines each port.

Without any constraints, these elements represent the stored energy in a finite element

mesh with N degrees of freedom. Each element, though, has N-m imposed constraints.

Element (a) has N-m modes constrained to zero modal amplitude, and element (b) has N-

m modes constrained to zero modal force, f . Given the constraints, the stored energy in

each of the elements, Ua (q,'''., q.m) and U,(q,- - -, qm), can be uniquely identified by only

m modal amplitudes, {ql... qm }. These are two examples that illustrate how constraints

are used to reduce the order of a system (assuming, of course, that the constraints are

appropriate to the real system).

The constraints on element (a) are exactly those that are applied when modal

superposition is used to reduce the order of a system. Motion is restricted to m selected

modes, with the remaining modes constrained to zero amplitude. This is an

approximation for a device that displays significant excitation in only m modes. The

CHURN process allows us to find the stored energy of the system, Ua(qi,''' qm), given

these constraints

The accuracy of the macro-model in Figure 19 (a), however, is dependent on the validity

of the constraints, and it was shown in the previous section how they did not reflect those

of the real system well.

If the real device was linear, and displayed significant excitation in m modes, it implies

that only the corresponding m modal forces were significant. Thus, another

approximation to this device is to explicitly set the remaining modal forces to zero. That

is, constrain modal forces instead of modal amplitude. Only forces {fi,- --,f, now act

on this constrained system as in Figure 19 (b). For the linear device, the modal force

constraints produce the same results as modal amplitude constraints. However, when

modes are coupled together, there is a significant difference.
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Consider the equilibrium state for the two elements in Figure 19 when external forces

.fi,-- -, f,, } are applied, and the element is non-linear with modal coupling. Element (a)

has constrained modes, so the modal forces adjust themselves to maintain this constraint.

{f,-,fm,}-{fl,--, fm,, f ,{--,fM ,q'm.' r9nqm+: 07,9 qN 0}

In the final state, a small virtual displacement Sq, in one of the higher order modes (

i>m), means that the constraint force f1 does work f1 qL. Thus, this element is not at an

energy minimum with respect to the higher order modes and is not fully relaxed.

Element (b) has constrained modal forces, so the modal amplitudes adjust themselves to

maintain this constraint.

{f1,''', fm}->{fi,', fm, fm+i = 0,' N 01, {qI,"qm -, qm+l,."-, qN}

The same virtual displacement, ojqi(i > m), in this case does no work as the modal force

fi is zero. All other modal forces, ff,-- -,f, }, also do no work over this displacement

(see Appendix B). Thus, this element is at an energy minimum with respect to the higher

order modes and allowed relaxation to take place.

The above result suggests that the strain energy for element (b) is a better approximation

to that in the real device because Poisson contraction and other forms of modal coupling

are allowed to occur through relaxation.

Finding the strain energy for element (a) is relatively simple using the CHURN process.

Recall that the CHURN process had four main tasks

1) Pick configuration {qj,...,qm}

2) Generate the mesh shape with this configuration and associated

constraints.

3) Caluclate strain energy

4) Fit strain energy data with an analytical function.

48



The shape of a device, for a given configuration q.,..q,m } is trivial to calculate using

modal superposition. However, for element (b), the shape for the same configuration

{q,... qm } is not as simple because the higher order modes have a contribution. Ideally,

we should have a technique of specifying a configuration and calculating the associated

shape directly with the zero force constraints. From this point of view, it appears that the

relaxation strategies of Gabbay and Mehner were attempts at such a technique. However,

their use of a modified modal superposition, combined with nodal relaxation, neither

guaranteed a particular configuration, q-...--,q,}, nor zero force constraints. They were

only approximations that worked for a restricted class of problems.

We adopt a different strategy that does not utilize modal superposition. We can specify

the configuration of element (b) by either specifying mode amplitudes q... -,qm }, or

equivalently modal forces .f., -, fm }. There is a one to one correspondence between

these amplitudes and forces, albeit non-linear. Figure 20 shows how we use modal forces

to generate a strain energy function. We calculate the linear reaction forces at each mesh

node, Fi, associated with displacing the structure into mode shape (i. We then apply a

superposition of these modal forces as a load on the device and calculate the resulting

displacement and strain energy. Note that this guarantees the zero modal force constraint

on the higher order modes. To determine the mode amplitudes q-...--,q,} that

correspond to the modal forces {.,---,f. } we project the resulting shape back onto the

modes:

- - )T M ]NxN (i

(49)o [M ]NxN (Oi

(50) y=eqm +1 q(oPi+
j=1

where we make use of the fact that modes are orthogonal over the mass matrix.

Here, E is the contribution of the higher order modes associated with relaxation. We

repeat the above procedure to build up a data set of strain energy for various modal force,

or equivalently modal amplitude configurations, finally fitting the results to a polynomial

in mode amplitudes.
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constraints on higher order modes.
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4.5 Energy domain coupling

Recall that our reduced-order modeling methodology coupled multiple energy domains

together and derived its equations of motion using the Lagrangian:

(51) L(q,4,t) = T(q, 4,t)-U(q,4,t)

where T(q,4,t) is the kinetic energy of the system, and U(q,4,t) is the sum of the

potential energies of all the energy domains in the system. The CHURN process

generated energy (or co-energy) functions that were inserted into the Lagrangian. The

modal co-ordinates were consistent between energy domains, so the state {qj,...,qn}

referred to the same shape in each energy domain, as it was always generated by strict

modal superposition. However, as we saw in the previous section, the shape for the

modal-force based model associated with state {qj,...,q,"} is different by an error, E.

Ideally, all the energy domains should use the same state variables, associated

constraints, and shapes.

There are, however, benefits to continuing use of strict modal superposition on non-

mechanical energy domains. The kinetic energy of the system is easy to calculate when

the motion in the higher order modes is constrained.

(52) T 4

In addition, computing the position of the mesh, given a set of modal amplitudes is

trivial.

(53) yYeqm + q(i

Mehner's work [19] demonstrates that for small positional deviations, 6, in the higher

order modes the electrostatic potential energy will change negligibly. His successful

results also demonstrate that the kinetic energy obtained by equation (52) does not

contribute a significant error to the equations of motion. Hence, for ease of

implementation, we continue to employ the CHURN process to generate the electrostatic

co-energy function, use the modal-force methodology to generate the strain energy

function, and use equation (24) to compute the kinetic energy.
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4.6 Implementation

The CHURN algorithm presented in Chapter 2, for creating macro-models was adapted

to include the modal-force based strain energy function. An overview of the modified

algorithm is shown in Figure 21. The data generation for both the electrostatic and

elastostatic energy domains was implemented in MEMCAD [29] using MemCap and

MemMech respectively. Polynomials for the strain energy function and rational

polynomials for the electrostatic co-energy were fitted using the Levenberg-Marquardt

[38] algorithm in MATLAB [32]. Finally, the equations of motion were implemented in

the system level simulator, SABER [7].

Construct Meshed
Device Model

Reduce System
Complexity
(CHURN)

Kinetic Energy Function Elastostatic Energy Electrostatic Co-Energy
(CHURN) Function Function

(Modal-force) (CHURN)

Construct Macromodel
State Equations

(CHURN)

Figure 21 Modified CHURN macro-model generation algorithm. The shaded box
represents the modification for creating an accurate strain energy function using modal
forces.
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4.7 Clamped-clamped beam

Our first example is the clamped-clamped beam described previously in this chapter. We

compare three reduced-order model solutions with 3D meshed, simulations performed in

MEMCAD (Figure 22). The CHURN process produces a macro-model that is stiffer than

the real structure. The linear mechanics macro-model, in contrast, is less stiff than the

real structure. Our macro-model follows the MEMCAD simulations well, and is within

5% of the MEMCAD solution at 90% of the "pull-in" [33] voltage when the beam is well

into the stress-stiffening regime.

The generation of the data set for this example, and other devices, involved selecting a

representative set of sample points in the mode space. The CHURN process has an

algorithm for selecting such a set of points. Unfortunately, this algorithm must be used

with caution in the modal-force formulation. We cannot sample a given point in mode

space directly; we can only specify forces necessary to displace a structure to the required

shape. Since the relationship between forces and displacement is unknown to begin with,

the algorithm breaks down. Our solution is to approximate the given forces by assuming

a linear system, and then adaptively improving the approximation as the data set

increases in size. Currently this is done manually, but the task could be automated in the

future.
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Figure 22 Plot of mode 1 amplitude vs. applied voltage. Results from 3D FEM coupled
simulation performed using MEMCAD's Co-Solve EM simulation tool are compared to
three Macromodels.
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Figure 23 Asymmetrically supported plate. The actuation electrode is located 6um
below the bottom of the plate. The plate and its supports have a Young's modulus of
165Gpa, and a Poisson's ration of 0.23.
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4.8 Asymmetrically supported plate

In this section we demonstrate the modal force methodology on an asymmetrically

supported and actuated plate (Figure 23). The plate has supports of different lengths and

thickness, and an off-center actuation. The example shows that the methodology is

applicable to a more general structure, one without significant symmetry, and in

particular, without a clearly defined neutral plane.

The first six elastic modes were used to model this device. 200 mechanical simulations,

and 200 electrostatic simulations were performed to generate data sets for the elastostatic

energy and the electrostatic co-energy functions. However, both functions used

polynomials with approximately 90 fitting coefficients. This indicates that the number of

simulations required in the data sets could significantly be reduced. The minimum

number of data points that are required to accurately construct the energy functions is a

topic for further investigation.

The time taken for the construction of the macromodel was approximately 10 hours on a

SUN Ultra 30 workstation running at 200Mhz. Simulations performed using the

macromodels in the system level simulator, SABER, took less than 10 seconds to

complete.

Figure 24 is a plot of the first mode amplitude against the applied voltage. Stress-

stiffening is significant at 200V and we observe the divergence of the linear model from

the MEMCAD solution. The force model, however, is accurate to within 1% at 200V.

Figure 25 shows the response of modes 2,3 and 4 to the applied voltage. The force model

is within 5% of the MEMCAD solution at 200V when the deflection is on the order of

1pm, the thickness of the thinnest supporting beam.

We make a note here that the macromodel was significantly inaccurate at very small

amplitudes (<10nm). We believe this is a result of errors in the method of projecting

shapes back onto the modes during the data set construction. The current projection

method cannot resolve small amplitudes in modes if one of the modes has large

amplitude.
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4.9 Summary

In this chapter we explored the issue of stress stiffening in MEMS devices. Stress

stiffening occurred when clamped structures exhibited displacements on the order of or

greater than their cross-sectional thickness. The original CHURN process was unable to

capture this non-linearity accurately, creating models that were significantly stiffer than

real devices. A mathematical explanation of this failure was presented in Appendix C.

We showed how constraints imposed during the modeling process led to the additional

model stiffness. These constraints, the result of the truncated modal superposition

approximation, did not accurately reflect the real constraints on the system. The real

system was not constrained to zero amplitude in the higher order modes.

We suggested that zero force constraints on the higher order modes were a better

approximation. These force constraints still enabled model order reduction through the

use of a truncated set of modes, but allowed the necessary relaxation in the higher order

modes. We implemented this approach in the MEMCAD framework and presented

successful results for a clamped-clamped beam, and an asymmetrically supported plate.

We also showed that the modal force methodology was compatible with the CHURN

process for other energy domains. Thus, models could be created using the CHURN

methodology for magnetic and electrostatic forces, and using the modal force

methodology for the non-linear mechanical forces.
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5 Automation

This chapter explores the issues relating to applying modal reduced-order models to

practical problems of interest in MEMS. The focus is placed on electromechanical

systems, but the techniques developed here could be applied to magentomechanical, or

other types coupled systems.

A MEMS designer is typically interested in obtaining a dynamic reduced-order model

with the least degree of manual interaction in the model generation process. It is the final

model, and not the mechanism of model generation that is useful to a designer. In

Gabbay's CHURN process, the designer is involved in selecting the relevant modes,

defining maximum and minimum mode amplitudes for each mode, selecting polynomial

order for energy functions, and specifying typical actuation voltages for an initial coupled

simulation. One objective in this chapter is to present heuristic techniques that eliminate

or minimize the degree of designer intervention in the model generation process.

We begin this chapter by extending the CHURN process to model multi-electrode

devices. We then present our approach to automatically selecting relevant modes, and

finding modal amplitude bounds for these devices. An approach to eliminating full 3D

Co-Solve EM coupled simulations is described, followed by an explanation of our

implementation of the generation of a capacitance function. Finally, we apply our model

generation algorithm is applied to model a real, microfabricated high frequency filter, and

compared the results to measured data. The aim of this exercise is to demonstrate the

validity of our macromodeling methodology and also provide a practical example of

constructing a macromodel. An example of its ability to model more complex filters is

also presented.

5.1 Multi-electrode systems

Realistic MEMS devices have several electrodes for the actuation and sensing of motion

in its mechanical components. The original CHURN process, however, is limited to two
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electrode systems because the electrostatic co-energy and forces in that formulation are a

function of a single capacitance.

(54) U* =-1CV2
2

(55) = av2

It is relatively straightforward to extend the co-energy formulation to handle the multiple

self- and mutual- capacitances of a multi-electrode electrostatic device. These

capacitances describe the relationship between the charge and potentials on the device

electrodes. Consider the four electode electrostatic system in Figure 26

Q, C1 1 C12  C13 ~V1~
(56) Q2 C21 C22 C23 V2

LQ 3 _  _C 3 1 C 3 2 C 33 jV 3 _

Qj is the charge on the ith conductor, Cij is the capacitance between i' and jth conductors,

and Vi is the potential of the i th conductor. The co-energy for this system is:

3 31

(57) U* = -CjkVjVk
j=1 k=1 2

The electrostatic forces for modal co-ordinates q, follows from the co-energy and is:

331 aC
(58) f= 1 jk VV

j=1 k=1 2 aqj

To obtain analytical representations for the above forces, the CHURN process is

modified to generate analytical representations for each entry in the capacitance matrix.

As the process iterates through the data generation, a capacitance matrix is calculated and

stored, instead of a single capacitance. Polynomials for each entry in the matrix are then

fit to this data. Since the capacitance matrix is symmetric, only the entries in the top half

require fitting in practice.
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5.2 Mode selection

The task of selecting the relevant modes for model order reduction increases in

complexity for multi-electrode systems. In the CHURN process, a designer is required to

determine which modes are relevant, guided by the results of a single Co-Solve EM

coupled simulation. This simulation is intended to be a representative example of device

operation and the results are presented as an ordered list of mode amplitudes:

Voltage = 30V

Mode Amplitude

3 -1.6334500
1 0.0026733

20 0.0000033

Table 1 Example modal excitations for a Co-Solve EM coupled simulation. Only the
mode amplitudes for the top 20 modes are computed for this list. Experience shows that
only the low order modes (under mode number 10) are required to accurately model
typical MEMS devices.

The designer now decides how many modes, going down from the top of this list, to use

in the macromodel. For an mth order model, the top m modes are selected.

We first extend this mode selection procedure to the more complex multi-electrode case.

Unlike systems with two independent electrodes, it is not only the spatial location and

geometry of the electrodes that primarily determine mode selection, but also the pattern

of voltages applied to these electrodes. To illustrate this point, consider the example in

Figure 27. When Vi and V2 are equal, only the symmetric modes of the beam are excited,

but if V2 is zero, additional anti-symmetric modes are also excited. This indicates that

multiple Co-Solve EM simulations are now required to guide a designer in selecting

modes, and in addition, the simulations should be chosen to be representative of the

typical voltage excitation patterns of the device when it is in use.
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We perform separate Co-Solve EM simulations for each voltage excitation pattern

specified by a device designer, and the resulting modal amplitudes are tabulated (Table

2). We select the m modes with the highest absolute modal amplitudes across all the

simulations for use in the macromodel. Another possible selection criterion is to take the

root mean square of mode amplitude across the simulations and pick the m highest

values.

Mode Excitation Excitation Excitation Maximum
pattern 1 Pattern 2 Pattern 3 Amplitude

1 0.0026733 0.2026733 -1.0023723 1.0023723
2 1.4334500 0.6334500 -0.3456823 1.4334500

20 0.0000033 0.0004533 0.0000413 0.0004533

Table 2 Example modal excitations of Co-Solve EM simulations for designer specified
excitation voltage excitation patterns.

It is desirable to automate the mode selection procedure and completely eliminate the role

of the device designer in selecting typical excitation patterns. We have implemented

such an approach. We treat the system as if it were linear and find an effective "impulse

response" by applying a small voltage to each electrode in turn, keeping the remaining

electrodes grounded. One Co-Solve EM simulation is performed for each of these

excitation patterns, and the modes are then selected from this group. The designer is now

only responsible for selecting the model order, m.

The main issue with this technique is that it is not guaranteed to pick out the set of m

modes that most accurately model the device under typical operating conditions. When a

device is operated only in a particular excitation pattern that isolates certain modes, the

modes excited by other excitation patterns are not as relevant to the macromodel. In the

example in Figure 27 (a), only the symmetric modes are required to model the device, but

our "impulse response" methodology is likely to select both symmetric and anti-

symmetric modes. However, such modal isolation is not typical in MEMS, and in the

event that a device is expected to operate under such conditions, there is always the

option of returning to the manual selection of voltage excitation patterns.
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5.3 Mode amplitude bounds

In CHURN, once the relevant modes are selected, a designer is required to specify a set

of mode amplitude bounds. For example, for a device modeled with two modes, q, and

q2, a designer specifies the maximum absolute amplitude of each mode, qj max and

q2  . These bounds define a box in mode space (see Figure 28) within which the

device is expected to operate. CHURN generates an accurate electrostatic co-energy

function by taking representative samples of the capacitance within these bounds. In

selecting the modal bounds, a designer is guided in part by the amplitudes of the modes

in the Co-Solve EM simulation that was performed to select the relevant modes.

A designer, although unlikely to intuitively know specific modal bounds within which a

device is expected to operate, is likely to know a maximum expected amplitude of

deflection of the device (a gap height, for example). We use a heuristic algorithm to

automatically define bounds for the mode amplitudes based on a maximum expected

deflection, dmax.

An ordered list of the m selected maximum mode amplitudes is first generated from

Table 2. These amplitudes, after they are scaled such that the first amplitude in the list is

dax , form our modal bounds. The amplitudes from Table 2 in essence act as a guide to

the relative excitation of the various modes to each other. An additional criterion that

jqj <dmax is also added to bound the region. Table 3 shows the bounds that result

from this algorithm when applied to the example data in Table 2 (two modes are

selected). The region in which the device is expected to operate is shaded in Figure 29.

Mode Maximum Scale to Scale to dmax

Amplitude unity (modal bounds)
2 1.4334500 1.0000000 1 _d_ _
1 1.0023723 0.6992726 - 0.7dma

Table 3 Calculation of modal bounds based on a maximum displacement, dmax.

63



A

F
Figure 28 Operating range as it is defined in CHURN.
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Figure 29 Operating range for the modified CHURN process. Bounds are a function of
the maximum expected deflection, dna, specified by a designer.
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5.4 Polynomial fitting

One of the least explored issues in this thesis concerns the task of creating energy

functions by fitting polynomials or rational polynomials to sampled data. Although we

have found success in using these functions, several questions remain to be answered in

future work. What is the minimum number of samples necessary to create an accurate

energy function? Is there a robust error estimate that may be used to qualify the fit, and

more importantly, qualify the accuracy of the calculated forces? Are there better and

more robust analytical representations than standard polynomials, or rational-

polynomials?

Gabbay used rational polynomials to represent the capacitance function in his models.

This was based in part on the notion that the function should have a form that captures

the non-linearity expected from the capacitance. This expected non-linearity is

exemplified by a set of parallel plate capacitors where the capacitance takes the form

(neglecting the contribution of fringing fields):

(59) C =
do -x

where A is the area of the plates, and do is the nominal distance between the plates, and x

is the displacement of a capacitor plates away from do. Gabbay noted that x corresponds

most with the mode amplitudes, and thus, justifies having a polynomial in the

denominator of the fitting function. In our work, however, we have successfully used

standard multivariate polynomials to model the capacitance. Standard polynomials are

particularly effective for modeling the capacitance when devices operate below the "pull-

in" threshold. For the parallel plate capacitor, this threshold is not exceeded when the

device amplitude is below a third of the gap. Figure 30 illustrates a third and fourth order

polynomial approximation to the capacitance in equation (59). In Figure 31 we plot the

error in the electrostatic force computed from the two polynomial approximations.
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A 3 rd order multivariate polynomial is used as a default for fitting capacitance functions

and is sufficient to capture the non-linear capacitance accurately for the examples we

present in the following sections. Our implementation does, however, allow a designer to

specify any order for the multivariate polynomial, or a rational polynomial, when the

default setting is insufficient. We note here that the convergence of the Levenberg-

Marquardt algorithm became unreliable for fits of multivariate polynomials above 4 th

order. A singular value decomposition based routine [38] was effective in these cases.

One issue of great significance that is not addressed in this thesis is the rapid growth in

the number of coefficients required in our multivariate polynomials, or rational

polynomials, as the polynomial order or number of modes increases. The general form

for the multivariate polynomial is

R R

(60) U ,= ... a.i " . .. q
ij=0 i.-=0

and the number of coefficients in this polynomial, n, is given by

(61) nc = (RI + 1)(R 2 +1). -(R, +1)

Table 4 illustrates the growth in n, quite clearly. Over three thousand terms are required

for a fourth order multivariate polynomial with five modes. Assuming that the number of

sample simulations required to fit this polynomial grows at the same rate, the

computation time to perform these samples becomes impractical. For example, it is not

unusual for a single capacitance computation to take over a minute to perform. If one

simulation is performed per coefficient, the total computation time will be over fifty

hours for a forth order polynomial with five modes.

Number of modes 3rd order polynomial (ne) 4t order polynomial (ne)

2 16 25
3 64 125
5 1024 3125

Table 4 Growth in the number of polynomial coefficients as the polynomial order and
number of modes increases.
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Although for many of the MEMS problems of interest we find that polynomials with

fewer than two hundred coefficients is sufficient for an accurate model, it is imperative to

find ways to reduce the rate of growth in computation time to make our modeling process

more generally applicable.

For simplicity, if R, = R2= ... R, = R , n, grows as R' . It is the cross-terms in the

multivariate polynomial that lead to this exponential increase. Are all these cross-terms

necessary to capture the potential energy accurately? This is certainly dependent on the
n

non-linearity of a particular energy domain. For example, only terms of the form q,

qiqj, and qiqj (i and j are numbers from 1 to m, and n is any power from 0 to Ri) are

required to accurately capture the elastostatic energy of the asymmetric plate example in

section 4.8. For such a pared down (reduced) multivariate polynomial, the number of

terms is given by

m
(62) nc =1+mR+-(m-1)+m(m-1)

2

This grows linearly with the polynomial order, and as O(m2) in the number of modes -

much slower growth than the full polynomial. For a fourth order reduced multivariate

polynomial with five modes, only 51 terms are required as compared to 3125 terms of the

full multivariate polynomial. Mehner [19] also recognizes that the particular non-

linearity exhibited by stress-stiffening does not require a full multivariate polynomial and

implements a polynomial based representation requiring fewer terms.

Finally, it may also be possible to construct models requiring less computation time by

reducing the "volume" of mode space that must be captured by the model. Even in a

state space spanned by a reduced set of modes, the observable trajectories of a particular

system might lie within a tightly confined region within this space (see Figure 32). If this

is true, and this subspace may be identified, models requiring less computation could be

constructed. Rewienski et al. [41] propose a promising technique that identifies such a

subspace and constructs a reduced-order model based on a piecewise-linear

representation of this subspace.
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Observable trajectories

q2

Figure 32 Observable trajectories in a two-dimensional state space.

5.5 Implementation

The modified CHURN process presented in this chapter is implemented in the

MEMCAD [29] framework. Figure 33 is an outline of our software implementation. The

clear boxes represent information that a user must provide through a graphical user

interface (GUI). A user must provide the meshed description of a device, a model order

(number of modes), and maximum operating amplitude of deflection. The software will

then perform the remaining tasks automatically producing a SABER/MAST [34]

macromodel file at the end. In the event that the automatic settings are insufficient, the

user has the option of adjusting several model criteria. The user can select modes

manually, select modal operating ranges, polynomial types for function fitting, and

polynomial order. The majority of the code is written in the Glish [29] scripting

language, with some modules written in C/C++.
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Figure 33 Overview of the implementation of the modified CHURN process.
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5.6 High-frequency band-pass filter

The techniques presented in the previous sections are applied to a polysilicon high-Q HF

band-pass filter [3]. The band-pass filter, shown in Figure 34, consists of two resonators

formed by mechanical beams, coupled together by a crossbar (spring coupler). Without

the crossbar the two resonators have identical resonant frequencies. The crossbar couples

the two resonators and splits this degeneracy by creating a symmetric and an anti-

symmetric mode. The distance from the anchors of the crossbar determines the

frequency separation of these two modes and hence the bandwidth of this filter.

The filter is modeled with the mesh shown in Figure 35. There are two significant

differences in geometry between the filter and the meshed representation. The mesh does

not capture the conformal nature of the polysilicon layer, including non-ideal anchors that

enhance the compliance of the structure. Instead, an effective resonator length is used to

model the additional compliance. This simplifies the mesh, and also makes it possible to

lump the effect of process variations on resonant frequency into this effective length.

Bannon et al. [3] also point out that there are depletion effects in the non-degenerately-

doped polysilicon layer. The effect of a depletion region is modeled using an effective

gap height greater than the measured value of 1300A. The procedure in [3] of extracting

these effective parameters from data on resonant frequency versus bias voltage for a

simple single resonant beam test structure using an analytical model is followed.

Measured values are used for all remaining dimensions. The measured and simulated

device values are presented in Table 5.
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Figure 34 SEM photograph of a polysilicon high-Q HF resonator [3]. (SEM
photograph courtesy of Clark T.-C. Nguyen)

Figure 35 Mesh representation of the microelectromechanical resonator in Figure 34.
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Measured Simulated

gRes Beam Length 40.8gm 43.532pm

pRes Beam Width 8pm 8pm

Structural layer thickness 1.9gm 1.9gm

Coupling beam location 4.08pm 4.48gm

Coupling beam length 20.35gm 20.35gm

Coupling beam width 0.75gm 0.75gm

Electrode to gRes gap 1300A 1985A

Electrode width 20gm 20gm

Young's modulus 150GPa 150GPa

Polysilicon density 2300kg/m3  2300kg/m3

Filter DC-bias 35V 35V

Table 5 Measured and simulated device values.

The macro-model is built using the automated multi-electrode CHURN process described

in the previous sections with two modes, and maximum device motion amplitude of

300A. The simulated filter center frequency is within 0.5% of the experimentally

measured value of 7.8 1MHz. It is not possible to improve on this accuracy using

extracted parameters from a test structure, as there exist device-to-device variations [3].

Experimental data for the filter must be directly used to obtain a closer match. In

practice, a second model is built with an effective length close to the first and the change

in center frequency is found. Since these two data points are close together, a linear

interpolation is used to obtain the correct effective length and center frequency for a final

third model. Each model takes approximately three hours to build on a SUN Ultra 10

workstation with 1 GB of memory. The testing circuit used to obtain simulated

frequency response curves is shown in Figure 36. Results from the simulations are

shown in Figure 37. These system level simulations took just a few seconds to complete.
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Figure 36 System level model of the HQ-filter testing circuit used to obtain the frequency
response curves shown in Figure 37.
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Figure 37 Simulated and measured curves for the frequency response for filter.
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5.7 Complex filters

One significant advantage of our approach over hand-built models is the ability to extend

it easily to more complex filter designs. As an example, we propose and model a three-

resonator filter design (Figure 38). Frequency characteristics for the pass-band of this

device are shown in Figure 39. Our model captures the non-linear, large-signal behavior

of the device, including the important spring softening effect used to control the filter

center frequency. This model required thirty minutes for a user to create a mesh, and

approximately seven hours for the automatic model generation.

1

Figure 38 Mesh representation of a three-resonator filter design.
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Figure 39 Simulated spectrum for the three-resonator filter. One can see the addition of

a third peak within the pass-band for the filter. This filter was not optimized to

minimize insertion loss or smooth out the pass-band.
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5.8 Summary

This chapter discussed many of the issues involved in applying the CHURN process to

practical situations in MEMS modeling. We first extended the CHURN process to model

multi-electrode electrostatic devices that are more typical of the MEMS devices in use

today. To this end, a general co-energy formulation was derived based on the

capacitance matrix of a device. The electrostatic forces were then calculated from this

co-energy.

Multiple electrodes also introduced several complexities in creating a reduced-order

model that were not encountered with devices having two electrodes. The algorithm for

selecting mode and mode amplitude bounds required multiple Co-Solve EM simulations,

and a new selection criterion.

Heuristic algorithms were also introduced that automated the mode and mode amplitude

selection. This reduced the degree of user involvement in the model construction

process. For the automated case, a user (designer) was required to specify only the order

of the model (number of modes), and maximum amplitude of deflection.

Additional work remains to be done on the selection and fitting of the multivariate

polynomials used in our modified CHURN process. The growth in the number of terms

in the polynomial was exponential and meant that the model construction time would

become impractical when the number of modes, or polynomial order became large.

The modified CHURN process was implemented in the MEMCAD framework with a

GUI for interaction with a designer. The models were written in the MAST language for

insertion into the SABER system level simulator.

Finally, we constructed models of a fabricated high frequency microelectromechanical

filter and compared simulation and experimental results. Some of the issues involved in

modeling practical MEMS devices, such as approximating complex device geometry,

were also discussed.
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6 Summary and conclusions

This thesis explores techniques of constructing dynamic reduced-order models that

enable the simulation of MEMS devices within the context of complete systems: sensors,

actuators and electronics combined. We demonstrate these techniques on devices that

employ non-linear electrostatic, magnetic and mechanical forces. We also explore the

practical issues relating to the construction of our models including aspects of automating

the model generation process. In addition, we compare experimental and simulation

results from a fabricated microelectromechanical high frequency filter as a validation of

our modeling methodology.

We adopt, in this thesis, a well-established modeling strategy of partitioning the physics

of MEMS devices into conservative and non-conservative (dissipative) energy domains.

We introduce effective techniques to capture conservative device behavior separately

from a device's dissipative processes. These partitioned domains are then combined at

the system level to form a complete description of a device. Our work builds upon the

CHURN process, introduced by Gabbay, to model two independent electrode

electromechanical devices exhibiting linear mechanical forces and non-linear electrostatic

forces.

We demonstrate how CHURN is extensible to other physical domains using magnetic

devices as an example in Chapter 3. We derive a magnetic co-energy formulation for

Lorentz force and linear permeable material devices. The devices we model have

inductances that are solely a function of mode amplitudes. However, there are many

devices that do not fit this criterion, yet may be modeled using a co-energy formulation.

Devices that exhibit magnetic flux saturation in the permeable material are a good

illustration of this point. The inductance under saturation becomes a function not only of

mode amplitudes, but also of the currents in the system. Devices that exhibit frequency

dependent inductances or hysteretic behavior require alternative modeling strategies

because the magnetic system is no longer conservative in nature. Thus, forces cannot be

derived from a magnetic co-energy in these cases.
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We then address the failure of the CHURN process to capture the geometrically non-

linear effect of stress stiffening in Chapter 4. CHURN macromodels exhibit stiffness

greater than the devices they model. The cause of this additional stiffness is established

as the zero mode amplitude constraints on "higher-order" modes imposed by truncated

modal superposition. These constraints prevent the device from relaxing naturally

through Poisson contraction and therefore suppress the modal coupling essential to the

device behavior. We show, using singular perturbation methods, that under certain

conditions it is still possible to describe the device motion using a reduced set of "low-

order" modes. The dynamics of the "higher-order" modes and the applied forces on these

modes must be negligible. Under these conditions, we use a methodology that probes the

mechanical behavior of the device using "low-order" modal forces to generate a strain

energy function, while imposing zero modal force constraints on the "higher-order"

modes. These force constraints allow relaxation in "higher-order" modes while still

enabling model order reduction. Successful modeling results based on this force

methodology are presented for a fixed-fixed beam and asymmetrically supported plate.

Finally, we explore heuristic techniques of automating the model construction process in

Chapter 5. We show how modes and modal bounds may be selected automatically from

a set of Co-Solve EM simulations for multi-electrode electromechanical devices. This

leaves a designer to specify only the model order and maximum displacement at the start

of the modeling process. We model a high frequency microelectromechanical filter and

show favorable comparison of experimental and simulated results. This example also

illustrates some of the issues encountered in modeling real MEMS devices where device

geometry, dimensions, and physics must typically be approximated. Often, multiple

iterations are made through the model generation process to account for, or explore the

implications of these approximations. If the time required to generate these models is not

relatively short (on the order of minutes or hours), our modeling techniques become

impractical. Keeping this in mind, the exponential growth in the polynomial

representations of energy in the CHURN process is a cause for significant concern. We

have suggested domain specific methods of reducing the growth in model size, such as

the elimination of cross-terms, but we have not presented a general strategy to overcome

this problem. Perhaps an alternative representation to polynomials, such as a piece-wise
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linear approximation around a trajectory as suggested by Rewienski will provide a

successful solution.

One significant issue that remains to be addressed is the incorporation of dissipative

mechanisms, such as damping, into our modeling process. We introduce damping

elements at the system level that interact with our conservative model through the

device's mechanical ports. We may generate these damping models separately using any

technique appropriate for a particular dissipative mechanism. These mechanisms vary

considerably in their complexity. Damping in resonant devices operated in vacuum, for

example, can often be captured through linear dashpots for each mode. On the other

hand, compressible squeeze film damping (CSQFD) exhibits high non-linearity for large

amplitude motion[51][52]. Unlike the conservative processes we encountered in this

thesis, CSQFD is dependent on both the mode amplitudes and mode velocities.

Constructing a model by sampling the doubled state-space spanned by these variables as

we do in the CHURN process quickly becomes impractical. Several successful

approaches at building damping models depend on time series data from a few dynamic

finite element simulations (FEM)[12][41]. Fully coupled FEM simulations are slow, but

it may be possible to speed up these simulations by replacing part of the FEM with a fast

CHURN based model of the conservative physics of a device. The CHURN model will

then couple with a FEM representation of only the CSQFD. In the future, fast techniques

of generating reduced-order models of dissipative processes must be developed to

complement the models generated by the CHURN process.

The techniques we present in this thesis have demonstrated significant success in

modeling various types of MEMS devices, including those that employ electrostatic,

magnetic and non-linear mechanical forces for actuation and sensing. We implement

tools that automate the construction of macromodels and verify our modeling

methodology through comparison with experimental results. Our approach, along with

other reduced-order modeling methodologies, bring the vision of accurately modeling

entire microsystems - sensors, actuators and electronics -- on a computer workstation, a

step closer to reality.
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Appendix A Multi-port force formulations

A. 1. Magnetic co-energy formulation

We derive here the magnetic co-energy formulation for calculating forces for a general

Lorentz force device modeled with n electrical ports and m mechanical modes (see Figure

40). The ports govern the energy flowing in and out of the device, and the rate of change

in potential energy of the device is

(63) dUmagnetostatic = iv+ fk
dt =1 k1 dt

d L1Multiplying through by dt, and substituing v3 = , equation (63) becomes
dt

n m

(64) dUmagnetostatic = $id2A + I fkdqk
j=1 k=1

We now define the magnetic co-energy as

n

(65) U*,agnetostatic = i - W
j=1

and use the following identity

(66) d (I i jA j) = j id Aj + I Aj dij
j=1 j=1 j=1

to recast equation (64) as

n 
m

(67 ) dUnmagnetostatic = Ajdi1 - I fkdqk
j=1 k=1

Now, the change dU*n,,o,,at is also given by
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dU* ,= $ to U"""Iimagnes 
j=1t

+ U agnetostatic dqk
k=1 ak

In order for equation (67) and equation (68) to be consistent, the flux linkages and force

must equal:

(69)

(70)

a= U*agnetostatic
ai.

fk =- Umagnetostatic

aqk

Equation (70) is a convenient way to calculate the generalized force fk if the magnetic

co-energy is known. Thus, it remains to find the co-energy. One means of doing this is

by integrating equation (67)

(71) U magneosatic= Kn

l Aidi
j=1

Since the system is conservative, the co-energy is independent of the integration path.

Therefore, consider integrating the terms fkdqk first, with all currents in the system set

to zero. The force fk is zero in the absence of currents, so the contribution of the integral

J fkdq, is also zero.
k =1

The next step is to integrate the terms A dii . To perform this integral it is convenient to

express the flux linkages A, in terms of the currents ii using the inductance matrix [L]

associated with the system

(72)

iL

86

(68)

M
-I fkdqk

k=1
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Each of the inductance entries is a function of the positional state, q. Keeping in mind

that equation (71) is a path integral, the magnetic co-energy now evaluates to

(73)
*n n Li

Umagnetostatic = L,,r s
r=1 s=1 2

One possible path is to move along each current "axis" sequentially, increasing il to its

final value, then i2 and so on up to i, . Using this form of the co-energy, the force fk in

equation (38) becomes

(74)
1 aL

f r = - 2 a1 r
,=1 s=1 2 aqk

The problem of finding an analytical representation for the force fk reduces to finding an

analytical form for the inductances Lrs (q,, q,.

A.2. Electrostatic co-energy

The generalized electrostatic forces have a very similar derivation.

final results here for reference:

U =magnetostatic

We only state the

n " I
E j>--C,,VV5
r=1 s=1 2

and

n " 1 aC

fk -- -2 I -Y VrV,
r=1 s=1 2 aq,

where Crs are the entries in the capacitance matrix of the system.

87



V 1 0

V 2 o

0

0

0

in

Vn o

dq
dt

dq2

dt

0

0

dq, 0

dt

0 fm

Figure 40 Network representation of a Lorentz force device with n electrical ports, and
modeled with m mechanical ports.
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Appendix B Modal force constraints

In Chapter 4 we demonstrated a methodology for calculating an accurate strain energy

function using modal forces. We show here that modal forces do not directly constrain

the motion of the higher order modes and thus allow the relaxation necessary to capture

an accurate strain energy function.

The force on the mechanical system in the modal force methodology (Figure 20) is

(75) F=Fqm + fi
jki

The modal force vectors, Fl, are derived from the mode shapes, (p, through the linear

stiffness matrix, [K]NxN .

(76) FJ = [K]NxN i

When the modal forces {fU1 ,--- f,, } are applied to the mechanical system, it settles into its

equilibrium state {q,... q, }. For small excursions away from this equilibrium state in a

particular mode qj, where i m, the system must do work against the corresponding

modal force:

AUmechanical - k
Fi=Aqj

. fr[[K]NxN (pi Aqfk

However, for small excursions in mode qj, where i > m, the system does no work

against the modal forces {f 1 --- f }.

(78) A Umechanical =(Aqi 1 1KAqj fi(pT[K]NxN(oj 0

because the mode shapes (, are orthogonal over the stiffness matrix and i # j. This

means that the mechanical system is unconstrained by the modal forces, and hence

relaxed in the higher order modes.
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Appendix C Modal coupling to higher-order modes

In this appendix we demonstrate how modal coupling between lower and higher order

modes lead to errors in the CHURN process. In addition we show that it is possible to

describe such a system using only low order modes if certain important conditions are

satisfied.

Here we use the terms "low order" and "high order" modes loosely. Low and high do not

refer to the frequency order of the modes. Low order modes specifically refer to the

modes that are selected for use in the macromodel, and high order modes are the

remaining modes of the system. For a mesh with N degrees of freedom, there are m low

order modes, 4 1,, and (N-m) high order modes, 4
high*

The equation of motion in modal coordinates for the system as a whole is given by

(79) [mG ]NxN Nxl [lineariezed NxN 4Nxl + eNx

where [mG] is the N by N diagonal generalized modal mass matrix, 4 is the vector of

modal amplitudes, [klinearized] is the linearized modal stiffness matrix about operating

point 4 , and fe is the vector of electrostatic forces acting on the modes. This equation

may be re-written to highlight the low and high order mode contributions.

m N-m

090

+ 2  +
0 Mhi-h d krn10  lowig-low hiwi-ijgh hiiJh

-t hig

(80)
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where the mass matix, [mG], is composed of two submatrices, Lm,o] and [mhigh , the

modal amplitudes are expressed in terms of the low and high order mode amplitudes,

410 , and 4 high , respectively. The stiffness matrix is composed of four submatrices:

[k10 w-l] captures the stiffness and interaction of the low order modes, khigh-high

captures the stiffness and interaction of the high order modes, [klow-high I and [khigh-low

capture the coupling between low and high order modes. Finally, the electrostatic force,

fe, is composed of the forces acting on the low and high order modes, flo,, and fhigh*

d 2
Under the conditions that the dynamics of the higher order modes, 2Yih,

dt h
and the

electrostatic forces acting on these modes, fhigh , are negligible, we can simplify equation

(80) significantly using the techniques of singular perturbation methods [50].

m N-m

N-mt

Mlo 0
--------

0 rnhigh

d2ow

d 2 0

klow-Iligkk ow klow-high

khigh--lowl' high-high

low

4high

+
high

(81)

The first m rows of equation (81) describe the dynamics of the low order modes

(82) [m1 I] dt2 q = -[m10 10o]q1 0I - [kow-high ]qhigh +AM

while the remaining (N-m) rows describe the coupling between low and high order

modes

(83) 0 = -[khigh-low k w [high-high high

The above equation may be solved to express the high order mode amplitudes in terms of

low order mode amplitudes.
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(84) 4high = Lkhigh-high ]-1 Lkhigh-low ]4low

Thus, qhigh is given by the product of the compliance of the high order modes,

[khigh-high -, the coupling between high and low order modes, [khigh-low , and the

amplitude of the low order modes, 4w.. We can use the result in equation (84) to express

equation (82) solely in terms of the low order modes.

(85) [mlow] ,2 , ={-(k 10 _1 ]+ klow-high ]khigh-high I high-low ]ow + flow

Equation (85) shows that even when the coupling between low and high order modes is

significant, the state of the system may be described by only the set of low order modes.

Any reduced order model must however capture the modal coupling represented here by

the term klowhigh ][khigh-high Yi [khigh-low]. The CHURN process fails to capture this coupling

because it explicitly suppresses the higher order modes, therefore violating equation (84).

In Chapter 4 we utilize an alternative approach to capturing the modal coupling to higher

d2
dtorder modes. Consider equation (85) in its static limit when dt2 qlo = 0.

(86) ([k10w_0 ] - klow-high ]khigh-high P high -low ]low = low

Our intent is to capture the relationship between the applied forces and the modal

amplitudes. We do this by applying forces, flow, and measuring the mechanical

response, 41 , to determine the term [ki._,, ] - Ikowhigh khigh-high P [khigh-low In practice,

however, we cannot do this directly in modal co-ordinates because our mechanical

solvers operate in the finite element "nodal" co-ordinate system. They solve the

following equation:

(87) [Knerized ]NxN Nx1
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where y is the position vector in Chapter 2, [Klinearized NxN is the linearized "nodal"

stiffness matrix about operating point y, and FNxl is an applied nodal force vector. We

apply a superposition of modal forces as a load on the mechanical system

(88) Nx I F
i=1

where ki is a modal stiffness and F1 is a modal force given by [K]NxN oi (see Chapter 4).

Equation (87) is then solved for the mechanical response, y. Following this, we project

y onto the modes to obtain the response in modal co-ordinates.

(y - eqm Y [M ]NxN Oi(89) q = [MNXNt

[M] NxN is the "nodal" mass matrix. This solution is identical to that obtained by solving

equation (79) under static conditions and hence by extension equation (86). We show

this by pre-multiplying equation (87) by the transpose of the modal matrix ,[P1NxN*

(90) [p]xN [Klinearized ]NxN [p]NxN Nx1 [p]T [p]T KNxN i
Nx i Nx i=1 fo

The above equation reduces to

(91) [klinearized ]NxN Nx=lo

which is equation (79). Again, this in turn may be transformed into equation (86) as we

have shown earlier. Since we are interested in the relationship between the low-order

modes and the applied forces, we only have to calculate the projection of 9 onto these

modes using equation (89).
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