
Evaluation of Software Energy Consumption on
Microprocessors

By

Mitra M. Osqui

Bachelor of Science in Electrical Engineering with Highest Distinction and Honors
Purdue University, May 1998

SUBMITTED TO THE DEPARTMENT OF

ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN

ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

OCTOBER 2001

© 2001 Massachusetts Institute of Technology.
All Rights Reserved.

Signature of Author:
Department of Electrical Engineering and Computer Science

A - August 2001

C ertified by: ..

A ccepted by:

OF TECHNOLOGY

APR 16 2002

.LIBRARIES

Anantha P. Chandrakasan
Associate-Professor

Thps's Supervisor

Arthur C. Smith
Chairman, Department Committee on Graduate Students

BARKER

I "'-

EVALUATION OF SOFTWARE ENERGY CONSUMPTION ON
MICROPROCESORS

By

MITRA M. OSQUI

Submitted to the Department of
Electrical Engineering and Computer Science

In Partial Fulfillment of the Requirements for the Degree of
Master of Science in Electrical Engineering and Computer Science

ABSTRACT

In the area of wireless communications, energy consumption is the key design
consideration. Significant effort has been placed in optimizing hardware for energy
efficiency, while relatively less emphasis has been placed on software energy reduction.
For overall energy efficiency reduction of system energy consumption in both hardware
and software must be addressed.

One goal of this research is to evaluate the factors that affect software energy efficiency
and identify techniques that can be employed to produce energy optimal software. In
order to present a strong argument, two state-of-the-art low power processors were used
for evaluation: the Intel StrongARM SA-1100 and the next generation Intel Xscale
processor. A key step in analyzing the performance of software is to perform a
comprehensive tabulation of the energy consumption per instruction, while taking into
account the different modes of operation. This leads into a comprehensive energy
profiling for the instruction set of the processors of interest.

With information on the energy consumption per instruction, we can evaluate the
feasibility of energy efficient programming and use the results to gain greater insight into
the power consumption of the two processors under consideration. Benchmark programs
will be tested on both processors to illustrate the effectiveness of the energy profiling
results. The next goal is to look at the leakage current and current consumed during idle
modes of the processors and how that impacts the overall picture of energy consumption.
Thus energy consumption will be explored for the two processors from both a dynamic
and static energy consumption perspective.

Thesis Supervisor: Anantha P. Chandrakasan
Title: Associate Professor

2

I lovingly dedicate my work to my dear father,
without whom I wouldn't be where I am today.

I will forever be thankful for absolutely everything
he has done for me, which is endless. For all that he
has taught me, for all that he has put within my reach,
and for always being there for me, he truly was the best
father I could have asked for.

I will always miss him very much.

3

Acknowledgments

I would like to thank God for all that I have been blessed with, and all that has been

possible for me, and all that God continues to bless me with, I am truly grateful.

I would like to express my most sincere appreciation to Professor Dr. Anantha P.

Chandrakasan; he is a great professor, advisor, and person. He has provided endless

guidance, support, and patience throughout my whole research work here at MIT. He is

beyond words knowledgeable and this work would not have been completed without his

valuable insightful suggestions and guidance. I had the pleasure of meeting Dr.

Chandrakasan for the first time when I took his class, 6.374 Analysis and Design of

Digital Integrated Circuits, when I first came to MIT. I then had the opportunity to get

acquainted with his laboratory and research group, by taking a couple of research courses

from him. When the time came to begin work on my thesis, there was no doubt in my

mind that I wanted Dr. Chandrakasan to be my thesis supervisor. I have enjoyed working

with him and it has been a rewarding experience. I look forward to starting my doctoral

research with Dr. Chandrakasan in the near future.

Now I would also like to thank my very good colleagues in 38-107. Amit Sinha, for all

his help, valuable suggestions, and endless patience. I also want to thank Manish

Bhardwaj, for also being very patient and always helpful. Rex Min for providing helpful

suggestions by reading part of this thesis and for providing his Digital Camera for the

photos in this work. Alice Wang for also offering suggestions by reading part of this

work. Lastly, Nathan Ickes for his help with the Intel Xscale processor and its setup.

I want to thank Raytheon Systems Company, my employer, who has made my education

here at MIT possible, by awarding me with a full-time fellowship.

4

I would also like to thank Intel for providing the Intel Xscale evaluation board, which has

been essential to this thesis. This work is in part funded under the DARPA Power Aware

Computing Communications Program.

Lastly I would like to thank my dear mother for her endless love, dedication, support and

patience.

Mitra M. Osqui
MIT, August 2001

5

Table Contents

1 Introduction 11

1.0 L ow Pow er T rends ... 11

1.1 B ackground .. 11

1.2 Preface of T hesis ... 13

2 Instruction Level Energy Profiling of the Intel Xscale Processor 15

2.0 Introduction .. 15

2.1 Intel X scale Processor .. 16

2.2 The Setup of the 80200 Evaluation Platform 17

2.3 Experimental Procedure ... 17

2.3.1 Computer Interface with Xscale Evaluation Board 18

2.3.2 Methodology for Measuring Instruction Energy Consumption 19

2 .4 R esu lts 2 1

2.4.1 Data-Processing Instructions (Standard and Extended Instruction) . 22

2.4.2 Multiply Instructions (Standard, Extended, and Xscale Specific Inst.) .. 25

2.4.3 Load and Store Instructions (Standard and Extended Instructions) 29

2.4.4 Miscellaneous Instructions ... 32

2.5 A nalysis of R esults .. 33

2.6 Concluding Remarks .. 40

3 Instruction Level Energy Profiling of the Intel StrongARM SA-1100

Processor 41

3.0 Introduction .. 4 1

3.1 Intel StrongARM SA- 1100 Processor .. 42

3.2 The Setup of the Brutus Design Verification Platform 43

3.3 Experimental Procedure ... 44

3 .4 R esu lts .. 4 5

3.5 Analysis of Results .. 50

6

4 Static Energy Consumption 54

4.0 Introduction .. 54

4.1 Energy Optimization Example .. 55

4.1.1 Energy Optimization of an FIR Filter on the Xscale Processor 55

4.1.2 Energy Optimization of an FIR Filter on the StrongARM Processor 59

4.2 Clock Frequency Variation Considerations 61

4.2.1 Changing Frequency on the Xscale Processor 61

4.2.2 Changing Frequency on the StrongARM SA-1 100 Processor 61

4.2.3 Results of Frequency Variations Xscale and StrongARM 62

4.3 Static Energy Consum ption .. 65

4.4 Low Pow er M odes .. 68

4.5 Concluding Rem arks .. 69

5 Conclusion 70

References 72

A Supplementary Material for Xscale 76

Al Preparation of Xscale for Applying Core Voltage Externally 77

A2 Commands and Batch Files Used for GNU Compiler and Debugger 79

A3 Main Program Excluding Profiling Segment 81

B Programs and Results for StrongARM 83

B 1 setupA R M .s file .. 84

B2 Main Program Excluding Profiling ... 85

B3 Instruction Energy Profiling Result Details 87

C 11-tap FIR Filter for the Xscale Processor 91

7

List of Figures

Figure 2.1: Diagram of Measurement Setup ... 17

Figure 2.2: Close U p Photo of Setup .. 18

Figure 2.3: Energy consumption for the data-processing instructions 23

Figure 2.4: Average energy consumption per cycle for all data-processing inst. 25

Figure 2.5: Energy consumption for the multiply instruction 27

Figure 2.6: Energy consumption for the Xscale specific instructions 28

Figure 2.7: Energy consumption for the load instructions 30

Figure 2.8: Energy consumption for the STR instruction 31

Figure 2.9: Energy consumption for all store instructions 31

Figure 2.10: Energy consumption for miscellaneous instructions 33

Figure 2.11: Scatter plot of the energy consumed per instruction 35

Figure 2.12: Histogram plot of the energy consumed for all instructions 35

Figure 2.13: Scatter plot of the energy consumed per cycle for all instructions 36

Figure 2.14: Histogram plot of the energy consumed per cycle for all instructions 36

Figure 2.15: Plot of the energy per instruction versus cycles taken for all instructions .. 38

Figure 2.16: Plot of the energy per cycle versus cycles taken for all instructions 38

Figure 3.1: Brutus SA- 1100 Design Verification Platform Board 43

Figure 3.2: Diagram of the Setup of the Overall Measurement System 43

Figure 3.3: Close up of the Brutus board ... 44

Figure 3.4: Average energy consumption levels for StrongARM 47

Figure 3.5: Average energy consumption levels for Xscale 47

Figure 3.6: Scatter plot for energy consumption values of all instructions 51

Figure 3.7: Scatter plot for energy consumption values per cycle for all instructions ... 51

Figure 3.8: Plot of the energy per instruction versus cycles taken for all instructions ... 52

Figure 3.9: Plot of the energy per cycle versus cycles taken for all instructions 53

Figure 4.1: Energy consumption values for some instructions (Xscale) 59

Figure 4.2: Energy consumption values for some instructions (StrongARM) 60

Figure 4.3: Energy consumption for various frequencies (Xscale and StrongARM) . 64

8

Figure 4.4: Charge versus run-time (Xscale) ... 66

Figure 4.5: Leakage Current versus Core Voltage (Xscale and StrongARM) 66

Figure 4.6: Total, dynamic, and static current vs. core voltage for Xscale 68

9

List of Tables

Table 2.1 a: The ARM Standard and the Extended Instruction Set 16

Table 2.lb: Xscale Specific Instruction Set .. 16

Table 2.2: Frequency and voltage table for the Xscale core 16

Table 2.3: List of Data-Processing Instructions .. 23

Table 2.4: List of Saturated Addition and Subtraction Instructions 24

Table 2.5: List of Multiply Instructions .. 25

Table 2.6: List of Xscale Specific Instructions .. 27

Table 2.7: List of Load and Store Instructions .. 29

Table 2.8: List of Miscellaneous Instructions .. 32

Table 2.9: Summary of Statistics for Energy Consumed Per Cycle 37

Table 3.1: Frequency and voltage table for the StrongARM SA-1 100 core 42

Table 3.2: Summary of Instruction Statistics for StrongARM vs. Xscale 48

Table 3.3: Switching Capacitance Per Cycle Statistics for StrongARM and Xscale . 49

Table 4.1: Results for the 11-tap FIR filter and optimized forms (Xscale) 57

Table 4.2: Performance versus energy for the 11 -tap FIR Filter (Xscale) 59

Table 4.3: Results for the 11-tap FIR filter and optimized forms (StrongARM) 60

Table 4.5: Energy and Performance Statistics for StrongARM and Xscale 62

Table 4.6: Leakage Current for StrongARM [1] ... 63

Table 4.7: Leakage Current for Xscale .. 65

Table 4.8: Static Energy Consumption Statistics for Xscale and StrongARM 68

Table 4.9: Low Power Mode Statistics .. 69

10

Chapter I

Introduction

1.0 Low Power Trends

Power consumption is becoming a serious issue in wireless portable electronics, since

they run on limited energy resources. Minimization of power dissipation is not limited to

portable devices, as it is desirable to have desktop electronics that consume less energy

and hence are cost effective [1]. As performance requirements grow, current

microprocessors integrate millions of transistors, resulting in a dramatic power

dissipation increase. Microprocessors today dissipate on the order of 10's of watts [2].

Clearly if the circuitry could be optimized to operate with lower supply voltages, energy

would be reduced. There has already been significant effort in reducing energy

consumption of hardware. The next step is to explore methods to minimize energy

consumption through software. This is also very important, since the total energy

consumed by the circuit or system is partly determined by the energy efficiency of the

program running on processors. The focus of this research is to evaluate and present

results of extensive analysis of software energy consumption.

1.1 Background

Previous research has been done to produce faster, more energy efficient code in high-

level languages such as C programming [3-9]. In addition to utilizing the specific

optimization options that are readily available to the processor, more sophisticated

techniques that are more general can be applied by designing a smart compiler that can

optimize code for energy efficiency; this can include the techniques suggested in [6],

such as loop unrolling, software pipelining, and recursion elimination.

11

The goal of this research is to develop a very comprehensive instruction level model for

two processors, Intel Xscale [10-17] and Intel StrongARM SA-1100 [10, 18-23], and

identify potential opportunities for energy savings by evaluating the source of the energy

consumption.

An estimation tool can be developed that will utilize the energy model of the processors

to predict the energy consumed by a given program [24]. The energy consumption

models are of great value alone since these processors are designed for high performance

DSP and embedded applications. Analysis of the Xscale processor and comparisons with

its predecessor (i.e. the StrongARM) will provide interesting insightful results; such as

patterns of energy consumption of the two processors and energy efficiency of the

processors. These results will also be helpful for better processor design and can be used

to design a more energy optimal architecture for executing instructions.

To get a very complete energy consumption model for the processors in question, all

sources of energy consumption must be explored. Both static and dynamic power

consumption will be explored, since they are the primary sources of energy consumption.

In CMOS circuits static power consumption can be attributed to reverse bias diode

leakage and sub-threshold conduction, with sub-threshold conduction now being the

dominating factor. Dynamic power consumption is due to switching currents that result

from charging and discharging of parasitic capacitors. Dynamic power dissipation is

usually the dominating factor contributing to about 90% of the total power dissipated

[25]. Therefore, since dynamic power dominates, this will be explored in greater detail

and we will produce a model that will minimize this type of energy consumption. Power

is proportional to the square of the supply voltage, as given by the following equation

[25-26]:

Pdynamic = UO -> 1 CL Vdd 2f ck

Where CL is the load capacitance, Vdd is the supply voltage, aXo , 1 is the activity factor,

and fc1k is the clock or switching frequency. The energy of a program can be calculated

directly by the following equation:

12

E= Vdd X I X tun

Where E is the energy consumed per program, I is the core current, and t"'n is the run

time. There are techniques that enable accurate and meaningful measurements of the

energy consumption of the processor core [27-32], and these steps will be analyzed and

outlined in detail in section 2.3.2. The Xscale processor uses the GNU compiler [33-37]

and the StrongARM processor uses the ARM SDT v2.11 tool [38-40].

Upon completion of a thorough analysis and understanding of how energy is consumed

during dynamic operation, the focus is placed on static power dissipation that can be

explained with the following relation, where Isubth is the sub-threshold current:

Pstatic = Isubth Vdd

If the circuit is idling for a long time, it can dissipate a significant amount of energy. This

is especially true for portable devices such as cellular phones, where the device spends

significant time in the idle state. Both processors have the capability to be operated at a

range of frequencies with corresponding minimum core voltages requirements; these

different operation points are evaluated for leakage current levels and the use of the idle

modes such as idle, drowsy, and sleep are explored to evaluate their effectiveness in

preserving energy [1, 41].

1.2 Preface of Thesis

This work tries to evaluate and answer some questions related software energy

consumption on the two chosen processors:

> How much energy do various instructions consume?

> How much variation exists in energy consumption across instructions? (i.e., is the

amount of energy consumed per instruction dependent on the functionality of the

particular instruction?)

13

How can a program be more energy efficient with the knowledge of instruction

energy profiling?

> What portion of total energy consumption is attributed to leakage currents?

Since dynamic power consumption dominates, this is explored in greater detail in

chapters 2 and 3. Chapter 2 explores the instruction energy profiling for the Intel Xscale

processor for all instructions. Then the acquired measurements are used to gain insight

into how the processor core consumes energy for various instructions. The next step is to

compare the results obtained for Xscale with the instruction energy profiling of the Intel

StrongARM SA- 1100 processor, which is presented in chapter 3. Based on the results of

these two chapters the key point to be noted is that: The value of the energy consumed

per instruction is directly dependent and proportional to the energy consumed per cycle

for that instruction, where the energy per cycle is relatively constant for most

instructions. Thus energy consumption per instruction is directly proportional to the

cycles taken for the particular instruction to execute.

The comparison of these two processors is taken a step further in chapter 4, by evaluating

the performance and energy consumption of the two processors for a benchmark FIR

filter program. The results and concepts presented in the earlier chapters are utilized to

optimize the benchmark program and show the effectiveness of instruction energy

profiling. Each processor operates at various frequencies and accompanying core

voltages. The benchmark program is tested at the various possible frequencies for both

processors to show the effect of clock frequency and accompanying core voltage change

on the energy consumed per program. Lastly some performance-based comparisons are

also made.

Chapter 4 also evaluates the static energy consumption of the Xscale processor based on

the leakage energy model produced for the StrongARM processor [1, 41]. Again as was

done for dynamic energy consumption, the static energy consumption of both processors

is compared. Finally the idle modes are also evaluated for energy consumption. Chapter 5

summarizes the results.

14

Chapter 2

Instruction Level Energy Profiling of the Intel

Xscale Processor

2.0 Introduction

The goal of this chapter is to get the instruction level energy profile for the Xscale

processor. The 80200 evaluation platform (80200EVB) board is used, in which the core

processor is the Intel 80200 processor (compliant with the ARM Architecture v5TE); it

will be referred to as Xscale.

Each instruction is tested carefully to quantify the energy consumed for that particular

instruction and form. An in depth analysis of the comprehensive results is presented in

this chapter with illustrative plots. In particular, benchmark programs will be used in

chapter 4 to illustrate the effectiveness of using instruction level optimization for energy

efficient programming. There are some specific instructions that are only available on the

Xscale; these instructions are specifically examined to determine the energy consumption

with respect to the other instructions available on standard ARM processors.

A total of 63 instructions were profiled with 17 of them only specific to the Xscale

processor or ARM version 5 and higher. Each instruction is accompanied by a series of

different addressing mode forms; as a result a total of 327 experiments were done to

obtain a very comprehensive energy profile for the instructions. A brief list of the 63

instructions is given in Table 2.1 below; further elaboration is reserved for section 2.4.

15

Table 2.1a: The ARM Standard and the Extended Instruction Set
ADC ADD AND B BIC BL
CLZ CMN CMP EOR LDM(l) LDM(2)
LDR LDRB LDRD LDRBT LDRH LDRSB

LDRSH LDRT MLA MOV MRS MSR
MUL MVN NOP ORR PLD QADD

QDADD QSUB QDSUB RSB RSC SBC
SMLAL SMLA<x><y> SMLAL<x><y> SMLAW<y> SMULL SMUL<x><y>

SMULW<y> STM(l) STM(2) STR STRB STRBT
STRD STRH STRT SUB SWP SWPB
TEQ TST UMLAL UMULL

Table 2.1b: Xscale Specific Instruction Set
MIA MIA<x><y> MIAPH MAR MRA

2.1 Intel Xscale Processor

The Intel Xscale processor is a high performance processor that is loaded with an

impressive list of features [10-17]. This processor is capable of running from 200 MHz to

733 MHz in increments of 66 MHz. The table below shows the clock frequencies and the

corresponding core voltage that should be applied. The voltage values tabulated were

determined by trial and error, and are the minimum required voltages to be applied at

those corresponding clock frequencies. The value of the PLL configuration is used in the

program to set the clock frequency [17, page 8-2]. Note that the two lower frequencies,

200 and 266 MHz, are inoperable on the 80200 board. Since the core clock must be set to

at least 3 times the memory clock and the memory clock is fixed at 100 MHz [42].

Table 2.2: Frequency and voltage table for the Xscale core
PLL Clock Configuration Corresponding Clock Frequency Minimum Voltage

1 200 MHz N/A
2 266 MHz N/A
3 333 MHz 0.850 V
4 400 MHz 0.875 V
5 466 MHz 0.950 V
6 533 MHz 1.100 V
7 600 MHz 1.200 V
8 666 MHz 1.300 V
9 733 MHz 1.400 V

*Note that only a maximum of 2 V can be applied to the core.

16

2.2 The Setup of the 80200 Evaluation Platform

A very simplistic diagram of the overall system is shown below (Figure 2.1). In order to

make the core of the processor accessible for current measurements, a slight modification

is necessary, since there is no actual pin that allows for core access. The preparation steps

for Xscale are outlined in appendix Al.

A

DC Voltage + Xscale Serial Port CPU
supply V Core Connection

Figure 2.1: Diagram of Measurement Setup

The Keithley 2400 sourcemeter [43] is used to provide the DC source to the core and to

measure the current drawn by the core. As Figure 2.2 shows the sourcemeter connections

are directly made to the core. A multimeter is used to get a more accurate measure of the

voltage applied to the core, the terminals of the voltmeter are connected across the Xscale

core lead and ground. Voltage is supplied to the evaluation board through an adaptor that

provides a 12 V constant DC voltage, pointed by an arrow to connection J9. Lastly, the

connection to the computer is achieved through the serial port that is on the board as

pointed to by another arrow in Figure 2.2.

2.3 Experimental Procedure

This section describes the procedure used to perform the measurements. First a brief

discussion of the software used to communicate with the evaluation board and compiler

is given, with reference to online manuals [33-37]. Then the actual methodology used in

measuring the instruction level energy consumption will be discussed.

17

Figure 2.2: Close Up Photo of Setup

2.3.1 Computer Interface with Xscale Evaluation Board

Communication with Xscale is established through the serial port, where Cygwin [33]

provides the software interface. The compiler used is the GNU compiler [34-37];

however, GNU does not operate in a windows operating system. Therefore, Cygwin is

used to provide an environment to run the GNU compiler and debugger; it also provides

an interface with the board. The commands for compiling and running the program on the

board are outlined in appendix A2.

18

2.3.2 Methodology for Measuring Instruction Energy Consumption

The program to be run on Xscale is written in C with inline assembly, where the

instruction to be profiled is inserted in the inline assembly segment. To get a reasonably

accurate measure of the current, two major issues need to be considered. The first one is

that a single instruction can't be tested alone; a loop must be put to get a relatively

constant current reading. Also on average the run time of a single instruction is in the

order of nanoseconds, which makes it impossible to get a current reading of a single

instruction. Thus a large iteration number is needed for the loop, it was chosen to be 200

million loop iterations. The second issue is that several copies of the same instruction

under test must be placed inside the loop rather than just one. This is done to compensate

for the loop effects and thus to get a more accurate current and time reading. Since

assembly code is embedded within the C code and the time measurements can only be

done outside of the inserted assembly, the extra instructions placed to conduct the loop

consume energy and time in addition to the instruction to be tested. As more instructions

are placed within the loop the effect of the loop itself is minimized. Some tests were

performed and it was concluded that in general 100 instructions within the loop was

sufficient to compensate for the loop effects. Including more than 100 instructions gave

only a marginal increase in accuracy and in many cases none.

Generally the testing for each instruction with a particular format lasted for

approximately 40 seconds if the instruction took one cycle to compute. For instructions

that are executed in greater cycle times, the run time increased accordingly. This is of

course a reasonably long enough time for the current to stabilize. In many cases current

reading stabilized in the first few seconds.

Below is a sample piece of the code used for the measurements, it is also used to actually

measure the energy consumption for the add instruction in the immediate addressing

mode form. The instructions that are in bold are instructions used to set up the loop,

which are in effect the instructions that need to be compensated for. Another thing to note

is that all the instructions and accompanying addressing modes and forms are placed in

one main program and each one is tested individually by using the preprocessor directive

19

#ifdef and #endif to selectively choose the instruction to profile. Each single experiment

block (like the one shown below) must be done individually, so lets say the experiment

below is wished to be profiled, then at the beginning of the main code a #define addl

needs to be included to enable this segment. Then upon completion of this experiment,

changing the directive to, for example, the following does the next experiment: #define

add2.

#ifdef add 1

asm volatile

ldr r0,=200000000 I*the loop is executed 200,000,000 times*/
mov ri, #00
mov r2, #00

1:
add rl,rl,#01

.rept 100 /*we are repeating the instruction to be profiled 100x*/
add r2,rl,#O1

.endr

cmp r1,rO
bne lb

"');

#endif

The entire program that does the instruction level energy profiling is about 300 pages,

clearly too long to be included in the appendix. Appendix A3 contains the main program

without the 327 experiment segment blocks (that are like the sample for one block shown

above). Note that the complete program in entirety in located in my MTL account at the

following directory: -mitra/MSThesis/Xscale/InstructionProfiling/inste.c.

The next step to get the actual measurements while the program is being run on Xscale.

Current and voltage readings are monitored and recorded and the following relations

were used to calculate the parameters of interest [27, Chapter 5: Section 5.2.1]. The run

time consumed for a single instruction (Tinst) is calculated using the following relation:

20

Tinst = Tu
N ins, * Niter

Where Tun is the run time mentioned above, Nist is the number of instructions inside the

loop (100), and Niter is the number of iterations (200 million). The cycles per instruction

(CPI) is calculated as follows:

CPI = Tinst / Tclk

Where Tc1k is the inverse of the clock frequency f (MHz). Finally the energy consumed

per instruction (Einst) and the energy consumed per cycle for each instruction (Ecycie) is

calculated using the following relations respectively.

Einst = (Vdd x I x CPI) / f

Ecycle = Einst / CPI

Where I is the current measured with multimeter and Vdd is the voltage supplied to the

Xscale Core. Note that CPI is used rather than run time for energy calculations since it

provides greater level of accuracy. It is important to point out that as this chapter

progresses with the discussion of the results of all the elaborate energy consumption

profiling for the instructions, the goal is to determine the patterns of energy consumption

for these instructions. Given that an elaborate table of instruction timings is available for

Xscale [17, Chapter 14], the focus of the next section will be primarily on energy

consumption patterns and not on timing patterns.

2.4 Results

We are finally ready to dive into the instruction level energy profiling. The Intel Xscale

processor uses the ARM standard instruction set, the extended instruction set [44], and

some Xscale specific instructions [17]. There are a total of 15 categories of instructions

and a total of 327 instructions with various forms and addressing modes. Nine of those

categories belong to the ARM standard instruction set, with 284 instructions including all

addressing mode forms. All of these instructions in this set are available on Xscale and

21

most are available on most architecture versions [44, page A4-113]. This standard

instruction set is extended to provide for enhanced DSP instructions. The extended

instruction set is still part of the ARM instruction set; however, availability is limited to

the ARM architecture versions v5TE (Xscale) and v5Texp [44, page A4-113]. There are

4 categories with 35 different experiments in the extended instruction set that are

profiled. Lastly there are 2 categories with 8 different experiments in the Xscale specific

instruction set that are profiled. The following sections present the results of the energy

profiling for these instructions. Further details of syntax, addressing modes, functionality

of each and every instructions is referred to the following references: [44, Chapters A3-

A5], [44, ppA3-27 to A3-34 and Chapter A10], and [17, pp 2-4 to 2-8] for the ARM

standard instruction set, ARM extended instruction set, and Xscale specific instructions

respectively.

For all of these measurements and experiments the processor is set at a clock frequency

of 533 MHz with accompanying core voltage of 1.1 V. Evaluating the effect of voltage

scaling and frequency variations will be explored in chapter 4.

2.4.1 Data-Processing Instructions (Standard and Extended Instructions)

There are three individual categories of instructions that will be presented here: the 16

data-processing instructions (Table 2.3), the miscellaneous arithmetic (CLZ) instruction,

and the 4 saturated addition and subtraction instructions (Table 2.4). Where the last

category of instructions are from the extended instruction set. These three groups of

instructions are explored together due to their close functionality.

First the standard data-processing instructions are explored, the result of the energy

consumption profiling are summarized by the bar graph shown in Figure 2.3. Even

though this graph is for the ADD instruction, it is to be noted that all the other 15

instructions in this category also consume the same amount of energy in each of the 11

addressing mode categories. Each of the bars represents the instruction with the different

addressing modes labeled on the bar. The x-axis shows the cycles taken to execute the

instruction and the y-axis shows the corresponding energy consumed for each instruction.

22

It is clear that shift by registers take 2 clock cycles while all other addressing modes take

1 cycle to execute.

Table 2.3: List of Data-Processing Instructions

Inst. Description Inst. Description Inst. Description
ADC Add with Carry ADD Add AND Logical AND
BIC Logical Bit Clear CMN Compare Negative CMP Compare
EOR Logical EOR MOV Move MVN Move Negative
ORR Logical OR RSB Reverse Subtract RSC Reverse Subtract with Carry
SBC Subtract with Carry SUB Subtract TEQ Test Equivalence
TST Test I

It is also apparent that the 2-cycle addressing modes consume approximately twice the

energy as the other forms. Figure 2.3 also shows the energy consumed per cycle, where

we see that per cycle the 2 cycle addressing modes consume on the worst-case

approximately 12.8% more energy compared to the 1 cycle addressing modes. The worst-

case variation in energy per cycle for 1 cycle and 2 cycle instructions is 2.7% and 3.4%

respectively.

Energy Consumption for the ADD Instruction

0

9.OOE-10-

8.OOE-1 0-

7.OOE-10-

6.OOE-10-

5.00E-1 0-

4.OOE-10-

3.OOE-10-

2.OOE-10-

1.OOE-10-

0.OOE+00-
1 1 1 2 1 2 1 2 1 2 2

Cycles

l Energy Per Instruction N Energy Per Cycle

Figure 2.3: Energy consumption for the data-processing instructions

23

Next the miscellaneous arithmetic instruction (CLZ) is evaluated; this instruction has

only one addressing mode. The energy consumption of this instruction is roughly the

same as the data-processing instructions with non-register shift addressing modes. The

CLZ instruction takes 1 cycle per instruction to execute; therefore Einst = Ecycie = .366 nJ.

This is on the same order as, lets say, the ADD instruction with immediate mode, where

Einst = Ecycle = .376 nJ.

The last group of instructions to be evaluated is the saturated addition and subtraction

instructions, which are part of the extended instruction set. Table 2.4 provides the list of

the 4 instructions in this category; again these instructions have only one addressing

mode. These instructions take just 1 cycle to execute and on average these instructions

consume Einst = Ecycie = .402 nJ. There is only a worst-case variation of 3% between these

four instructions, which can easily be attributed to measurement variation.

Table 2.4: List of Saturated Addition and Subtraction Instructions
Inst. Description

QADD Performs a saturated integer addition
Performs a saturated integer doubling of one operand followed by a

QDADD saturated integer addition with the other operand.

QSUB Performs a saturated integer subtraction

Performs a saturated integer doubling of one operand followed by a
saturated integer subtraction from the other operand.

The results for all these instructions show that energy consumed per cycle is relatively

constant. To illustrate this point more effectively Figure 2.4 below shows the summarized

results by averaging over the energy consumed per cycle per category for all of the above

mentioned instructions. Based on the average energy per cycle values shown in Figure

2.5 there is a worst-case variation for 1-cycle instructions of 9.8% and an overall worst-

case variation of 14.8%.

24

0

C,

0.

0,

4.20E-10

4.10E-10-

4.OOE-10-

3.90E-1 0-

3.80E-10-

3.70E-10-

3.60E-10-

3.50E-1 0-

3.40E-10 -

3.30E-10-

Average Energy Per Cycle Consumption Values for the Data-
Processing Instructions (Standard and Extened Instructions)

Vcore 1.1 V

f = 533 MHz

1 2 1 1

Cycles

Figure 2.4: Average energy consumption per cycle for all data-processing instructions

2.4.2 Multiply Instructions (Standard, Extended, and Xscale Specific Instructions)

First the standard and extended multiply instructions are explored, where Table 2.5

provides the list of these instructions. The 5 instructions in the extended instruction set

each have either 4 or 2 variations [44, page A10-6]. However, measurements showed the

variations for each specific instruction consumed the same amount of energy. Thus only

one variation for each instruction is shown in the bar charts below.

Table 2.5: List of Multiply Instructions
Instruction Description

Standard Instructions*
MLA Multiply Accumulate
MUL Multiply

SMLAL Signed Multiply Accumulate Long
SMULL Signed Multiply Long
UMULL Unsigned Multiply Long
UMLAL Unsigned Multiply Accumulate Long

Extended Instructions
SMLA<x><y> 16 x 16 + 32 - 32 bit Signed Multiply

SMLAW<y> 32 x 16 + 32 - 32 bit Signed Multiply-Accumulate

25

SMLAL<x><y> 16 x 16 + 64 - 64 bit Signed Multiply
SMUL<x><y> 16 x 16 4 32 bit Signed Multiply
SMULW<y> 32 x 16 + 32 bit Signed Multiply

* Note: The S-bit on these six instructions was set to 1 for all measurements to ensure
consistency in the results [44] and [17, page 14-6].

Figure 2.5 below shows the bar chart of energy consumption values for these instructions.

The interesting point is that the MLA instruction takes roughly the same amount of

energy as the MUL instruction. Therefore, whenever a multiply and accumulate is

required it is clear that it is more energy efficient to use the MLA instruction than to use a

MUL and ADD instruction. The other important fact is that the 3-cycle instructions

consume roughly 50% more energy per instruction than the 2-cycle instructions, which

implies that the energy per cycle must be roughly the same for all these instructions. This

suggestion is indeed confirmed by the energy consumed per cycle also shown in Figure

2.5.

Excluding the three irregular instructions (SMLAW<y>, SMLAL<x><y>, and

SMULLW<y>), which consume somewhat more energy per cycle than the others, there

is a worst-case variation of only 9.2% among the other eight instructions. The average

energy consumed per cycle for all eleven multiply instructions is .451 nJ. The average of

the energy per cycle for all the data-processing instructions from the previous section is

.392 nJ. Thus the multiply instructions consume on average 15% more energy per cycle.

This is mainly due to the fact that the multiply instructions are either 2 or 3 cycle

instructions, as opposed to the data-processing instructions which are mostly 1-cycle

instructions.

26

Energy Consumption for the Multiply Instructions

01-

LU

1.60E-09

1.40E-09-

1.20E-09

1.00E-09

8.OOE-1 0

6.OOE-10

4.OOE-10-

2.OOE-10

0.OOE+00
3 3 3 2 3 2 2 3

Cycles

E Energy Per Instruction M Energy Per Cycle

Figure 2.5: Energy consumption for the multiply instructions

Next the Xscale specific instructions are explored, there are three varieties of multiply-

accumulate instructions listed in Table 2.6. These instructions accumulate the result into

a single 40-bit internal accumulator, which is accessed with the two accumulator access

instructions also listed in Table 2.6. The MIA<x><y> instruction also has 4 variations

[17, page 2-6] and as before the variations consume the same amount of energy.

Table 2.6: List of Xscale Specific Instructions
Instruction Description

List of Multiply with Internal Accumulate Instructions
MIA Multiply-accumulate using 40-bit internal accumulator

One 16-bit signed multiply and result accumulated into a single
40-bit accumulator

MIAPH Two 16-bit signed multiplies on packed halfword data and result
accumulated into single 40-bit accumulator

List of Internal Accumulator Access Instructions
MAR Moves Values from Registers to 40-bit Accumulator
MRA Moves Value from 40-bit Accumulator to Registers

27

The energy consumption values for this set of instructions are shown in Figure 2.6. From

the energy consumed per instruction alone we see that the MIA instruction is a very

energy efficient multiply-accumulate instruction, not only does it perform the multiply-

accumulate operation but also it is capable of accumulating up to 40-bits. Comparing the

energy per instruction for the MIA instruction with the energy per instruction for the

MLA instruction we see that, the MIA instruction is 45.6% more energy efficient. Of

course, this is mainly attributed to the fact that the MIA instruction is a single cycle

instruction, whereas the MLA instruction takes 2 cycles to complete. Figure 2.6 also

shows the corresponding energy per cycle for the instructions. Excluding the MIAPH

instruction from the worst-case variation calculation, since it consumes roughly 20%

more energy per cycle than the lowest energy per cycle value, the worst-case variation in

the energy consumed per cycle for the other four instructions is only 8.7%. This again

supports the claim that the energy per cycle is relatively constant to within an acceptable

margin. There will however be exceptions and instructions that will consume somewhat

more energy than the rest, as will become clear by the end of this chapter. Therefore it is

perhaps better to say that the energy per cycle is roughly constant to within a first-degree

approximation.

Energy Consumption of Xscale Specific Instructions

1.40E-09
V1 1 V f 533 MHz

1.20E-09-'

1.00E-09-

8.00E-10-Z

6.00E-10-1

4.OOE-10-'

2.OOE-10-

O.00E+00-
1 2 1 2 3

Cycles

l Energy Per instruction U Energy Per Cycle

Figure 2.6: Energy consumption for the Xscale specific instructions

28

2.4.3 Load and Store Instructions (Standard and Extended Instructions)

Table 2.7 below lists all the load and store instructions available to Xscale by category.

This section will first explore all the load instructions and then all the store instructions,

with the discussion of both the load and store multiple instructions reserved to the end.

Table 2.7: List of Load and Store Instructions

Instruction Description Instruction Description
List of Load and Store Word or Unsigned Byte Instructions

LDR Load Word LDRB Load Byte

LDRBT Load Byte with User LDRT Load Word with User
Mode Privilege Mode Privilege

STR Store Word STRB Store Byte

STRBT Store Byte with User STRT Store Word with User
Mode Privilege Mode Privilege

List of Load and Store Halfword and Load Signed Byte Instructions

LDRH Load Unsigned LDRSB Load Signed Byte
Halfword

LDRSH Load Signed STRH Store Halfword
___________Halfword _ _ _ _ _ _ _ _

Two-Word Load and Store Instructions (Extended Instructions)
LDRD Loads Doublewords STRD Stores Doublewords

Cache Preload Instruction (Extended Instruction)
PLD Cache Preload

List of Load and Store Multiple Instructions

LDM(1) Load Multiple LDM(1) Use Registers Load
LDM(Multiple

STM(1) Store Multiple STM(2) Use Registers Store
Multiple

Each of the 9 load instructions listed above have various addressing modes; however, the

addressing modes have no effect on energy consumption for each particular instruction.

There is only a very small variance in energy across addressing modes, on the worst-case

only 3%. Thus, Figure 2.7 illustrates only 2 bars for each of the 9 instructions, one for

energy consumed per instruction and the other for the energy consumed per cycle. The

energy values for each instruction is the average across the addressing modes for that

instruction.

29

Again we see the same trend that the energy per cycle is relatively constant. For this set

of instructions the overall worst-case variation in energy consumed per cycle across the 9

instructions shown in Figure 2.7 below is only 7.3%. Where the average energy per cycle

across these instructions is .47 nJ.

Energy Consumption for the Load Instructions

2.OOE-09

1.80E-09 core

1.60E-09-,

1.40E-09

e 1.20E-09-

1.OOE-09-

w 8.00E-10-

6.OOE-10-

4.00E-10-

2.OOE-10

O.OOE+OO
3 3 3 3 3 3 3 4 3

Cycles

El Energy Per Instruction U Energy Per Cycle

Figure 2.7: Energy consumption for the load instructions

On the other hand the addressing mode does influence the cycles taken and consequently

the energy consumed by the store instructions in the first category of Table 2.8 (STR,

STRB. STRBT, and STRT). Figure 2.8 below illustrates this, where even though this

chart is for the STR instruction, all the other 3 instructions in this category also consume

the same amount of energy in each of the addressing modes. Observing the results from

Figure 2.8, we see that unlike the load operation which uses the same addressing modes,

the scaled register pre-indexed and post-indexed addressing modes take 2 cycles and as a

result approximately twice the energy. Figure 2.8 also shows the energy consumed per

cycle for these instructions, where on the worst-case there is only a 3% variation in

energy consumed per cycle.

30

Energy Consumption for the STR Instruction

1.20E-09-

Vcore = 1.1 V
1.OOE-09- f 533 MHz

8.00E-10-

a. ~ 0

6.OOE-10 0 C a

4.OOE-10

2.00E-1O-

0.00E+00r
1 1 1 1 1 2 1 1 2

Cycles

E Energy Per Instruction M Energy Per Cycle

Figure 2.8: Energy consumption for the STR instruction

The energy consumed for the next two store instructions is independent on the addressing

mode for the instruction. Thus Figure 2.9 shows the averaged values over the addressing

modes. Figure 2.9 also shows the averaged energy for the 1 and 2 cycle addressing modes

for the STR instruction. Again it is clear that over all the various store instructions and

addressing modes the energy per cycle is constant.

0)

1.40E-09

1.20E-09

1.OOE-09

8.OOE-10

6.OOE-10

4.OOE-10

2.OOE-1 0

0.OOE+00

Energy Consumption for the Store Instructions

Vcore = 1.1 V

f=533 MHz

1 2 1 2

Cycles
0 Energy Per Instruction U Energy Per Cycle

Figure 2.9: Energy consumption for all store instructions

31

Lastly, the load and store multiple instructions are evaluated. The load multiple

instructions load from memory to the general-purpose registers. Likewise the store

multiple instructions store from the general-purpose registers to memory [44]. Clearly the

energy consumed by this class of instructions is dependent on the number of registers that

is being loaded to or stored from. Both the LDM and STM instructions are tested for

variation of energy consumption based of number of registers. From the results it can be

concluded that, for just one register, 3 cycles are necessary, and an extra cycle is taken

for each added register. This is true for both loads and stores, thus if 3 registers are to be

used it takes 5 cycles to complete the instruction. The energy consumed per cycles

remains relatively unchanged and thus the amount of energy consumed can directly be

attributed to the cycles taken to execute the instruction. On average the energy consumed

per cycle for the LDM and STM instructions is Ecycie = .58 nJ and Ecycie = .51 nJ with

3.8% and 4% variability across addressing modes respectively.

2.4.4 Miscellaneous Instructions

The above three sections described the three major groups of categories of instructions.

Thus this section includes a brief discussion of the instructions that were left out in the

above sections, where Table 2.8 below provides a list of these instructions.

Table 2.8: List of Miscellaneous Instructions
Instruction Description

Status Register Access Instructions
MRS Move PSR to General-Purpose Register
MSR Move General-Purpose Register to PSR

Semaphore Instructions
SWP Swap

SWPB Swap Byte

Branch and NOP Instructions
B Branch

BL Branch and Link
NOP No Operation

Figure 2.10 below shows the energy consumed per instruction and per cycle for all of the

above listed instructions. The energy results are included here for completeness;

32

however, no comparisons based on energy per cycle variations can be made since there is

a great variation in energy per cycle across these instructions. As will be shown in the

following sections, there is an increase in energy consumption per cycle as the execution

cycles get higher. Final note to make is that the energy measured for the branch

instructions are made for a correctly predicted branch. A mispredicted branch gets

execution cycle penalties and thus consumes more energy [17, 14-2 and 14-4].

Energy Consumption for Miscellaneous Instructions

0L

3.OOE-09-

2.50E-09-

2.OOE-09-

1.50E-09-

1.OOE-09-

5.OOE-10-

O.OOE+00-
2 1 2 5 5

Cycles
l Energy Per Instruction N Energy Per Cycle

Figure 2.10: Energy consumption for miscellaneous instructions

2.5 Analysis of Results

In section 2.4 above very detailed energy profiling measurements were presented. This

section uses these measurements to gain greater understanding and insight into how the

processor core consumes energy for various instructions; and hopefully to be able to

present a model that could be used to predict energy consumption values without need for

large table lookups.

33

The results presented here for the most part show that: The value of the energy consumed

per instruction is directly dependent and proportional to the energy consumed per cycle

for that instruction, where the energy per cycle is relatively constant for most

instructions. Thus energy consumption per instruction is directly proportional to the

cycles taken for the particular instruction to execute. Therefore if it is known the number

of cycles taken to execute a particular instruction, then the energy per instruction could

easily be predicted, since the energy per cycle is constant for all instructions.

In an effort to show the validity of the above statement, first some statistics are presented

followed by an illustrative analysis of the results. Figure 2.11 shows a scatter plot of the

energy consumption values for all 327 instructions and accompanying forms. From the

plot it is apparent that there seems to be a pattern for the first 193 instructions; lying

either in the range of .36 - .4 nJ or .8 - .9 nJ, with 34 instructions consuming energy in

between these ranges. The other 100 instructions seem to be more scattered about at

higher energy values, nevertheless scattered in groups. The histogram plot in Figure 2.12

provides more detailed numbers and also supports this observation that most instructions

consume energy in the above noted range.

Observations about the ranges of energy consumption do not tell much about how and

why these ranges are as such. To gain greater insight into how the core consumes energy,

the energy consumed per cycle for the instructions must be analyzed. Figure 2.13 shows

the scatter plot for the energy per cycle for all the instructions and it is relatively flat and

restricted to a small range. A more detailed plot is shown in Figure 2.14, which presents

the histogram plot of the energy consumed per cycle for all the instructions. From this

plot we see that there are some exceptions to the above mentioned theory, i.e. a few

instructions consume up to 1.7 times the lowest energy consuming instructions. This

means that even though instructions within each category tend to consume roughly the

same energy per cycle, an overall look reveals that there are some exceptions.

While all these plots and histograms are informative statistics, they are not very

insightful. More illustrative plots are shown in Figures 2.15 and 2.16, which show Eist-

34

Scatter Plot of the Energy Consumed Per Instruction

2.80E-09
2.70E-09
2.60E-09 Vcore = 1.1 V
2.50E-09 f 533 MHz
2.40E-09
2.30E-09
2.20E-09
2.1 OE-09
2.OOE-09
1.90E-09
1.80E-09

-1.70E-09
21.60E-09
>,1.50E-09
F1.40E-09

1.30E-09
1.20E-09
1.10E-09
1 *.OOE-09+
9.OO-

4.OOE-1 0
7.OOE-1 0
6.OOE-1 0
5.OOE-1+4.OOE-1 07Lada"a 0 W 0-oo0*40
3.00E-10 0
2.00E-10
1.00E-10
0.OOE+00

0 50 100 150 200 250 300

Number of Insturctions Including all Forms of Addressing Mode

Figure 2.11: Scatter plot of the energy consumed per instruction

Histogram Plot for the Energy Consumed Per Instruction

120

100

80

60

40

20

0

Range of Bin Values

Figure 2.12: Histogram plot of the energy consumed for all instructions

35

350

a)

0a)

0

''-

IL

Scatter Plot of the Energy Consumed Per Cycle for All Instructions

50 100 150 200 250 300 350

Number of Insturctions Including all Forms of Addressing Mode

Figure 2.13: Scatter plot of the energy consumed per cycle for all instructions

Histogram Plot for the Energy Consumed Per Cycle

90- Vcore = 1. 1 V

8 = 533 MHz
80

70
a)

40

0
40

a)

r-r30
LL

2 0 -...

a C

10 C! Cn LO, CLn. U-

Range of Bin Values

Figure 2.14: Histogram plot of the energy consumed per cycle for all instructions

36

G)
C.)

C)
a)
0.

0)
a)

w

7.OOE-1 0

6.OOE-1 0

5.OOE-1 0

4.OOE-1 0

3.OOE-1 0

2.OOE-1 0

1.OOE-10

O.OOE+00
0

vs.-cycles and Ecycie-cycles-cycles respectively. From Figure 2.15 we see that the energy

consumption seems to double with twice the cycles and triple for 3 cycle instructions.

Therefore the energy consumed per cycle must be roughly constant for most instruction

types in order for this to be true (Figure 2.16). On average the energy per cycle does

indeed appear to be constant; however, there clearly are some exceptions as pointed out

earlier.

Ecycle is higher for the store and some other instructions. It is to be expected that store

instructions will consume more energy per cycle, as it involves expensive memory

operations. Per cycle the energy consumed for the load and store instructions is on

average roughly 20% and 30% higher than the arithmetic instructions. The comparison is

made with the arithmetic instructions since they comprise the vast majority of the

instructions. Table 2.9 below gives a very detailed summary of various pertinent statistics

for the energy consumed per cycle. Thus showing that the energy per cycle is relatively

constant within each category; however, as a whole there are discrepancies and there are

instructions that consume greater energy per cycle than the rest.

Table 2.9: Summary of Statistics for Energy Consumed Per Cycle

Average Worst-Case Number of Cycles Type of Instructions
Ecycie Variability Instructions Ccetypetof instructions

.377nJ .9% 9 1Arithmetic Instructions,
.377 nJ 6.9% 99 1 NOP, MRS

MIA, MIA<x><y>, QADD, QDADD,
.425 nJ 12.9% 9 1 QSUB, QDSUB
.515 nJ 3.5% 24 1 Store Instructions

419 nJ 7.3% 83 2 Arithmetic Instructions,
MUL, MLA, MRS

SMUL<x><y>, SMLA<x><y>, MSR,
.449 nJ 7.1% 15 2 MAR, SMLAL, UMLAL
.507 nJ 1.6% 7 2 Store Instructions and MIAPH
.602 nJ 4.2% 10 2 Store Instructions and SMLAL<x><y>
.466 nJ 4.4% 45 3 Load Instructions

Load and Store Multiple Inst.,
.507 nJ 5.5% 20 3SMLAW<x>
.487 nJ 1.45% 6 4 LDRD
.528 nJ .38% 2 5 SWPB, SWP

37

Energy Consumption Levels for all Instructions

3.QQE-09
V=1. 1 V

f 533 MHz

2.50E-09 -

2.OOE-09

1.50E-09

1.OOE-09

5.OOE-10

0.OOE+00
N N NNC

Figure 2.15: Plot of the energy per instruction versus cycles taken for all instructions

Energy Consumption Levels per Cycle for all Instructions

7.OOE-1 0

6.OOE-1 0

5.OOE-1 0

4.00E-1 0

3.00E-1 0

2.00E-1 0

1.OOE-1 0

0.OOE+00

Cycles

Figure 2.16: Plot of the energy per cycle versus cycles taken for all instructions

38

ZU

C-)

4)
0-
LU

- --------- =,w4w

Despite the variations and irregularities that exist in energy per cycle measurements, it is

for the most part relatively constant for most instructions within each of the separated

groups listed in Table 2.9 (Figure 2.16). The constant nature of the energy per cycle

regardless of the functionality of the instruction can be attributed to circuit overhead.

Most of the processor's functional units are always on, regardless of the instruction being

run, and therefore are continuously consuming energy. Of course there is some level of

variability in the degree to which component is consuming energy, which leads to the

exceptions pointed out earlier. The variability in energy consumption across various

instructions may be partially due to the extensive clock gating features that exist for the

Xscale processor. As well as the fact that there may be certain instructions that do not

require the use of a certain functional block(s); however, since most blocks (caches,

buffers, and the instruction pipeline for example) are steadily consuming energy, the

effect of variability of instruction functionality is eliminated for the most part. This result

is to be expected since general-purpose processors are specifically designed for

performance and versatility, which is achieved with the use of the buffers, caches, and the

instruction decoding capability.

Finally this section concludes with a small note about instruction timings. There is a

detailed table of instruction timings for Xscale in [17, Chapter 14]. As was explained

earlier in this chapter, all of the instruction timings or latencies for the instructions

explored were measured using run time and clock frequency. The CPI for all the

situations explored was in agreement with the existing timing values. However, the tables

in the noted reference for each instruction provide additional information such as inter-

instruction effects and other issues that affect the cycles taken by the instruction. So this

information will be helpful for estimation of the energy consumed for a complete

program. As far as illustrating the point about relative invariance of the energy per cycle

values, the data collected is more than sufficient. The energy values for other

configurations that exist for some instructions (such as the multiply instructions) can be

easily determined from the energy per cycle numbers and the instruction timing reference

material.

39

2.6 Concluding Remarks

The Xscale processor was introduced with detailed setup procedures used for all

experiments. The interface software program as well as the energy measurement strategy

for the instructions was also outlined. Finally, this chapter has explored through the

instruction set available to the Intel Xscale processor with extensive energy profiling of

each instruction and accompanying addressing modes. Very comprehensive

measurements and results were presented and an in depth analysis and interpretation of

the results were made with illustrative plots. A total of 327 experiments were done to

obtain a very comprehensive energy profile for the instructions with numerous other

miscellaneous experiments. The most important conclusion to be drawn from all these

measurements is that the energy per cycle is generally constant for groups of instructions,

and this mainly due to fixed circuit overhead that exists for all instructions in a general-

purpose microprocessor.

40

Chapter 3

Instruction Level Energy Profiling of the Intel

StrongARM SA-1 100 Processor

3.0 Introduction

The goal of this chapter is to become familiar with the Intel StrongARM SA-1100

processor and more importantly to get the instruction level energy profiling for the

instruction set of this processor. The Brutus SA- 1100 Design Verification Platform board

is used, where the core is the Intel Strong ARM SA-1 100 processor, ARM architecture

v4.

As in chapter 2, each instruction is tested carefully to measure the energy consumed for

that particular instruction and form. Very comprehensive measurements were made and

an in depth analysis of the results is presented in this chapter with illustrative plots. This

processor has only the standard ARM instructions set is available; however there are

some instructions that are specifically unavailable to Brutus, as will be discussed later in

the chapter. Therefore a total of 36 instructions were profiled with a total of 250

measurements to account for the different addressing mode forms. Other miscellaneous

experiments were done as well to demonstrate various other results that are not accounted

for in the above count.

41

3.1 Intel StrongARM SA-1100 Processor

The Intel StrongARM processor is a high performance processor that also has an

impressive list of features [10, 18-23]. Figure 3.1 shows the photo of the Brutus SA-l 100

Design Verification Platform. This processor is capable of running from 59 MHz to 206.4

MHz in increments of 14.7 or 14.8 MHz. The table below shows the clock frequencies

and the corresponding voltage that should be applied. The voltage values tabulated are

the minimum required voltage to be applied to the core at the corresponding clock

frequencies. These minimum voltage values were determined by trial and error. The table

also shows the code value to be used in the set up StrongARM file: setupARM.s

(appendix BI). This assembly program enables the core frequency to be changed

according the code given in Table 3.1, the command that enables core frequency change

is shown in bold in appendix B 1, further details are reserved for chapter 4. Note that only

a maximum of 2 V can be applied to the core.

Table 3.1: Frequency and voltage table for the StrongARM SA-1100 core
Core Frequency Minimum Voltage Code

206.4 MHz 1.650 V GA
191.7 MHz 1.500 V 09
176.9 MHz 1.400 V 08
162.2 MHz 1.300 V 07
147.5 MHz 1.235 V 06
132.7 MHz 1.175 V 05
118.0 MHz 1.127 V 04
103.2 MHz 1.055 V 03
88.5 MHz 0.950 V 02
73.7 MHz 0.900 V 01
59.0 MHz 0.877 V 00

Unlike Xscale, Brutus board has pins that make the core of the processor accessible for

current measurements. Also it is possible to put Brutus on external supply mode with just

a switch; therefore, the voltage applied to the core can be controlled as well. Details of on

board connections and other setup procedures will be discussed in the following section.

42

Figure 3.1: Brutus SA-1 100 Design Verification Platform Board

3.2 The Setup of the Brutus Design Verification Platform

A very simplistic diagram of the overall system is shown below (Figure 3.2). This section

describes the details of the overall setup, and then in the following section the details of

the experiment procedure are outlined.

A

DC Voltage +
Supply :

TP39

Brutus

TP45

Serial Port
Connection

CPU

Figure 3.2: Diagram of the Setup of the Overall Measurement System

43

The setup of the Brutus board is slightly more complicated than Xscale; therefore, the

steps are carefully explained below. The switch pointed by the arrow in Figure 3.3 must

be set to external supply, as is in the photo. An arrow also points to the location where the

gray fan box must be connected to on Brutus (pin J18). Brutus is connected to the

computer's serial port via Brutus's own cable that should be connected to the J23 port on

Brutus; an arrow also illustrates this. An arrow points to the reset switch that is needed

frequently. There also an arrow that points to Brutus's power switch. Finally, the white

arrows on the far right hand side of Brutus point to where the Angel chips are placed; this

is done to be able to use the Angel Debugger Software program.

Figure 3.3: Close up of the Brutus board

3.3 Experimental Procedure

The procedure and methodology used in measuring the instruction level energy

consumption is fundamentally identical to the method used for Xscale, and thus will not

44

be repeated here. The minor modifications that are made to adjust for StrongARM is

mostly in the programming syntax. The entire program that does the instruction level

energy profiling is approximately 650 pages, clearly too long to be included in the

appendix. However, appendix B2 contains the main program without the 250 experiment

segment blocks. The complete program in entirety in located in my MTL account at the

following directory: -mitra/MSThesis/StrongARM/InstructionProfiling/testinst.c. Also

communication with Brutus is established through the CPU serial port, where the ARM

SDT v2.11 [39-40] software package provides the software interface.

3.4 Results

As noted earlier, only the ARM standard instruction set is available to the StrongARM

SA-1100 processor and even within the standard set of instructions there are some that

are not available on Brutus [44-45]. Therefore, a total 7 categories and 36 instructions

with a total of 250 various forms and addressing modes have been examined.

This section presents the summarized results for all the experiments to show that the

hypothesis presented in chapter 2 also holds valid for the StrongARM processor. Unlike

the previous chapter, where the measurements were presented in great detail for Xscale,

the results for StrongARM will not be shown in such detail. This is due to the similarity

in energy consumption patterns that exist between these two processors. Therefore only

general observations with key points are presented. It is worth noting that there are some

minor differences as far as cycles-taken per some addressing modes and so forth;

however, elaboration about these minor differences does not provide additional insight,

and thus is excluded. However, more specific charts including the addressing mode

details for each instruction category is included in Appendix B3 for informative

reference.

Figure 3.4 shows the summary of the energy profiling results for the seven categories of

instructions explained earlier. In order to make a comparison between StrongARM and

Xscale, Figure 3.5 shows the energy results of Xscale for the same instructions and

45

categories that are available on StrongARM. Both these charts are obtained through

grouping and averaging over the energy consumed for the various addressing modes and

in some cases instructions. There is no overlap in the frequency range of the two

processors; however, Xscale can be operated at the frequency so that the core voltage can

at least be the same for both processors. Thus the voltage is fixed at approximately 1.5 V

for both processors. Thus StrongARM operates at 191.7 MHz and Xscale operates at 733

MHz. One immediate conclusion to draw from these two charts is that for most cases

StrongARM consumes greater energy than Xscale. Table 3.2 below shows the energy

consumption values for both processors. The first and second group of columns of the

table provide the measurement results for StrongARM and Xscale respectively. The last

group of columns provide the comparison results, where the numbers listed represent the

factor by which StrongARM consumes energy in comparison to Xscale.

Analyzing the results presented in Table 3.2, leads to the following interesting points. For

the cases where the CPI is the same for both processors, StrongARM consumes from 1.65

to 2 times more energy per cycle than Xscale. There are also instances where the CPI is

larger for StrongARM, which of course is clear that it will consume more energy than

Xscale. However, the interesting and final case to consider, is the case where the CPI for

StrongARM is less than Xscale. Now the question becomes will StrongARM be more

energy efficient for such instructions? For the load and semaphore instructions the answer

is yes, even though per cycle StrongARM consumes more energy, the fact that it takes

fewer cycles to execute the instruction results in the energy per instruction to be .73 times

less than the energy per instruction of Xscale. Likewise for the store, load multiple, and

store multiple instructions the energy per cycle is always higher for StrongARM;

however fewer cycles result in the energy per instruction in StrongARM to be either the

same or only slightly higher than the energy per instruction of Xscale.

However, since StrongARM is energy inefficient in all other cases, Xscale is the

processor of choice for energy efficiency and also performance. The fact that Xscale

takes extra cycles in some instances to compute an instruction does not give it a

disadvantage over StrongARM for computation speed. All measurements for Xscale were

46

Average Energy Consumption Levels

2 1 2 2 1 3 1 1 2 2 2

Cycles

0 Energy Per Instruction N Energy Per Cycle

Average energy consumption levels for StrongARMFigure 3.4:

Average Energy Consumption Values

1 1 2 2 1 2 3 1 2 3 3 5
Cycles

0 Energy Per Instruction N Energy Per Cycle

Figure 3.5: Average energy consumption levels for Xscale

47

CD

4.OOE-09-

3.50E-09-

3.OOE-09-

2.50E-09-

2.OOE-09-

1.50E-09-

1.OOE-09-

5.OOE-10-

O.OOE+00-

5.OOE-09-

4.50E-09-

4.OOE-09-

3.50E-09-

3.OOE-09-

2.50E-09-

2.OOE-09-

1.50E-09-

1.OOE-09-

5.OOE-10-

0.OOE+00-

4)
CJ

at a core operating frequency of 733 MHz, whereas the measurements for StrongARM

were at a core operating frequency of 191.7 MHz. Therefore, Xscale is not only more

energy efficient, but also significantly faster than StrongARM. To illustrate this point

further, the switching capacitance per cycle for each processor is calculated for each

instruction category. This is calculated by making a simplifying assumption that is

explained and justified below. The value of energy consumed per instruction that is

evaluated is the total energy consumed by the processor during execution of that

particular instruction. This is defined by the equation below [1]:

Etotai = Ptota Tinst = Ctotai V dd + Vdd leak Tinst

The first term is the dynamic component, with Ctotal being the switching capacitance and

V the applied core voltage. The second term is the leakage component and will be

ignored for the purposes of this comparison. However leakage current will be explored in

Table 3.2: Summa ry of Instruction Statistics for StrongARM vs. Xscale
StrongARM Xscale Comparison of

f = 191.7 MHz f = 733 MHz StrongARM vs. Xscale

Inst. V Einst Ecycie CPI Einst Ecycle CPI Einst Ecycle
(V) (nJ) (nJ) (nJ) (nJ) (factor) (factor)

Branch 1.44 2.33 1.16 2 .80 .80 1 2.91 1.45
DataP 1.46 1.33 1.33 1 .70 .70 1 1.90 1.90

Processing
Data- 1.46 2.61 1.31 2 1.58 .79 2 1.65 1.65

Processing
Multiply 1.43 2.57 1.29 2 1.48 .74 2 1.74 1.74

Status
Register 1.46 1.32 1.32 1 .66 .66 1 2 2
Access
Status

Register 1.46 3.76 1.25 3 1.69 .85 2 2.22 1.47
Access
Load 1.41 1.71 1.71 1 2.33 .78 3 .73 2.19
Store 1.41 1.7 1.7 1 .86 .86 1 1.98 1.98
Store 1.41 - - - 1.69 .85 2 1.01 2
Load 1.42 3.01 1.51 2 2.67 .89 3 1.13 1.70

Multiple
Store 1.42 3.01 1.51 2 2.64 .88 3 1.14 1.72

Multiple 1
Seapore 1.41 3.36 11.68 2 4.55 .91 5 .74 L.85

48

greater detail in chapter 4. Ignoring the leakage component is justified since the switching

energy is the dominating factor, with a contribution of 90% to the total energy. Leakage

energy counts for only 10% of the total energy consumption [25] it becomes a significant

source of energy consumption during idling modes. Therefore, for comparison purposes

it is safe to ignore the leakage component of energy consumption and concentrate on the

dynamic component. Therefore the approximation to the switching capacitance is

tabulated in Table 3.3 below, where the last column in the table shows the factor by

which StrongARM has greater switching capacitance per cycle.

Table 3.3: Switching Capacitance Per Cycle Statistics for StrongARM and Xscale
StrongARM Xscale Comparison

Inst. Cota CPI Ctotal CPI Ctotal
(nF) (nF) (factor)

Branch .559 2 .386 1 1.45
Data-Processing .624 1 .328 1 1.90
Data-Processing .615 2 .371 2 1.66

Multiply .631 2 .362 2 1.74
Status Register Access .619 1 .31 1 2
Status Register Access .586 3 .399 2 1.47

Load .86 1 .392 3 2.19
Store .855 1 .433 1 1.98
Store - - .428 2 2

Load Multiple .749 2 .441 3 1.7
Store Multiple .749 2 .436 3 1.72

Semaphore .845 2 .458 5 1.8

From all these comparisons with Xscale for the ARM instruction set we can conclude that

Xscale is more energy efficient and is significantly faster then StrongARM. The

improvement of Xscale can be partially attributed to technology scaling. Since a .18

micron process is used for Xscale [46] as opposed to a .35 micron process for

StrongARM [47]. The energy efficiency and superior performance of Xscale over

StrongARM has been explored in detail in this chapter on an instruction level basis. In

the next chapter, comparisons based on a benchmark program will be used to quantify

and evaluate the performance and efficiency of the two processors.

49

3.5 Analysis of Results

In section 2.5 of chapter 2, the results of the intensive energy profiling were analyzed for

Xscale. In addition, a hypothesis was presented about the patterns of energy

consumption. This same hypothesis can be validated for the StrongARM processor, as

will be shown below. Some general observations can be made from the statistics in

Figure 3.6 below. It is apparent that most of the energy values lie within four distinct

regions, 116 instructions consume energy in the range of 1.3 - 1.5 nJ; the second largest

region is in the range of 2.6 - 2.8 nJ, where there are 64 instructions. Again as is expected

load and store instructions draw more current and thus consume somewhat more energy,

as a result 49 instructions lie in the range of 1.8 - 1.9 nJ. Lastly 22 instructions seem to

be scattered about and consuming energy within the range of 3 - 3.5 nJ. Even though the

load and store instructions draw greater current, they are nevertheless single cycle

instructions and likewise the 20 instructions that consume energy above 3 nJ are in

majority 2 cycle instructions. Figure 3.7 below shows the energy consumed on a per

cycle basis, where we see that it is relatively flat, which agrees with the hypothesis. Most

values are scattered within the range of 1.3 - 1.5 nJ, with some scattered around 1.8 nJ.

Greater insight can be gained into how the processor consumes energy from the energy

consumption versus cycles taken plot shown in Figure 3.8. It is clear that 2-cycle

instructions take roughly twice the energy as the single cycle instructions. The

relationship between cycles taken by instruction and corresponding energy consumption

can be more clearly understood, by looking at the energy consumed per cycle versus

cycles taken as shown in Figure 3.9. The energy consumed per cycle is fairly constant

with only minor variations. Some exceptions are the apparent discrepancies in the single

cycle instructions (Figure 3.9, section 2); that seem to take more energy than the others.

There are also to a lesser extent some discrepancies in the 2-cycle instructions that

consume somewhat more energy than most 2-cycle instructions (Figure 3.9, section 4).

These exceptions are mainly due the load and store instructions. The plot of the energy

per cycle is divided in subsections (Figure 3.9), sections 1 and 2 are for 1-cycle

instructions and they have an average energy per cycle of 1.35 nJ with only an 8.6%

50

variability and 1.7 nJ with 4.8% variability respectively. Sections 3 and 4 are for 2-cycle

instructions and they have an average energy per cycle of 1.32 nJ with a variability of

only .5% and 1.51 nJ with 15% variability respectively.

Scatter Plot for the Energy Consumption Values for all Instructions

4.OOOE-09 -

3.500E-09 -

3.OOOE-09

2.500E-09

L 2.OOOE-09

1.500E-09

1.OOOE-09

5.OOOE-10

O.OOOE+00
0

Figure 3.6: Sc

50 100 150 200

Number of Instructions

atter plot for energy consumption

Vcore = 1.5 V
f = 191.7 MHz

250 300

values of all instructions

Scatter Plot for the Energy Consumed per Cycle for all Instructions

G)

0

C.)
0
0.
0)
C)

uJ

2.OOE-09

1.80E-09

1.60E-09

1.40E-09

1.20E-09

1.OOE-09

8.OOE-1 0

6.OOE-1 0

4.OOE-1 0

2.OOE-1 0

0.OOE+00
0 50 100 150 200 250 300

Number of Instructions

Figure 3.7: Scatter plot for energy consumption values per cycle for all instructions

51

Again the same patterns that were observed for Xscale hold true to a greater extent for

StrongARM. As noted earlier there were some extreme cases for Xscale, were the energy

per cycle for a few instructions were up to 1.7 times greater than the least energy

consuming instructions. However, exceptions to this degree do not exist for StrongARM,

thus suggesting that StrongARM has greater adherence to the proposed theory. These

results enforce the concept presented that the energy per cycle will be for the most part

constant regardless of instruction functionality. The reason for this is the same as for the

Xscale processor; circuit overhead is mainly the same for all instructions with only minor

dependency on functionality (case in point load and store instructions which require

external memory access). As shown in [48] 95% of the total energy consumed for

running an instruction on the StrongARM goes to powering the cache, control, global

clock and I/O circuits. This leaves only 5% of the overall energy for the specific

instruction, which of course is a very small portion of the total energy. Therefore, the

independence of the energy consumed per cycle on the particular function of the

instruction is justifiable.

Energy Consumption Values for all Instructions

4.OOE-09 -
Vc. = 1.5 V
f= 191.7 MHz

3.50E-09 -

3.OOE-09

2.50E-09

2.OOE-09

1.50E-09

1.00E-09

5.OOE-1 0

0.OOE+00 -

111111111111111111111111111122222222222222

Cycles

Figure 3.8: Plot of the energy per instruction versus cycles taken for all instructions

52

Energy Consumption Values per Cycle for all Instructions

2.OOE-09 =

1.80E-09 f= 191.7 MHz

1.60E-09

1.40E-09

Z 1.20E-09

1.OOE-09

8.OOE-10

6.OOE-1 0

4.OOE-1 0

2.OOE-1 0

O.OOE+00
111111111111111111111111111122222222222222

Cycles

Figure 3.9: Plot of the energy per cycle versus cycles taken for all instructions

53

Chapter 4

Static Energy Consumption

4.0 Introduction

Up to this point emphasis has been placed on obtaining the instruction energy profiling of

the Xscale and StrongARM processors. The first portion of this chapter attempts to draw

together the important insights gained so far by returning with answers to some of the

questions posed in chapter 1, and then those concepts are applied to a benchmark

program. The second part of the chapter deals with the static energy consumption and

idle modes of the processors.

One of questions relates to how a program can be designed to be more energy efficient

with the knowledge of instruction energy profiling. One of the most important

conclusions drawn from the results of the instruction energy profiling is that the variation

of energy consumption per cycle across most of the variety of instructions is small. This

simple model of instruction energy consumption, not only makes production of energy

optimal code certainly feasible, but also considerably easy. Most performance

optimization strategies already involve reduction in code size, which directly leads to

reduction in cycles taken for the processor to execute that particular program; this results

in energy reduction for the program.

This point is illustrated effectively with an 11-tap FIR filter [49] run on both the Xscale

and StrongARM processors. Initially the benchmark is operated at a fixed voltage and

frequency, with the same parameter values that were used in the instruction profiling.

However, as mentioned in earlier chapters, each processor is capable of operating at a

54

wide range of clock frequencies and core voltages. Therefore, the effect of varying clock

frequency and core voltage on energy consumption is analyzed for both processors.

4.1 Energy Optimization Example

This section goes through an analysis of applying the above suggested optimization

technique to an 11-tap FIR filter. First the optimization is done on the Xscale processor

and then on the StrongARM processor. Again the voltage and clock frequency used for

both processors is the same that was used in chapters 2 and 3 for the instruction energy

profiling.

The optimization results shown in the following sections are only illustrating one

optimization point and that is the multiply-accumulate portion of the FIR filter. The filter

for both processors is entirely optimized as far as minimal instructions and cycles except

for the multiply-accumulate segment were the focus of this section is placed. As the

multiply-accumulate is a very commonly used in digital signal processing programs, it is

worthwhile to place emphasis on it.

4.1.1 Energy Optimization of an FIR Filter on the Xscale Processor

A 11-tap FIR filter was implemented in assembly and embedded into the main C program

that was used for all experiments (included in appendix A3). The assembly code for the

filter is included in appendix C for reference. Note that the program begins by writing

some coefficients into memory, all of this is done outside of the 200, 000 iteration loop,

so the time consumed for this operation is negligible. The filter instructions are as a group

repeated 30 times to compensate for loop effects. Thirty times was considered sufficient

for the filter program as opposed to 100 times of repetition, which was used for single

instructions measurements. Since each one of the thirty filter program sections execute an

approximate number of 450 instructions (this number takes into account inner looping of

a smaller set of instructions), therefore the outer loop effects are indeed compensated.

This filter has been optimized to consume minimal cycles, except for the multiply-

55

accumulate segment, shown in bold in appendix C. Below shows the two original

instructions used to do the multiply-accumulate operation.

mul r9, r7, r8 /* multiply-accumulate segment*/
add r6, r6, r9

Clearly there is a more optimal way of implementing the same function; one way is to use

the MLA instruction instead of a separate ADD and MUL instruction, as shown below.

mla r6, r7, r8, r6

As pointed out in chapter 2, this will clearly provide energy savings, since the MLA

instruction takes 2 cycles to do the function of the MUL and ADD instructions, which

take a combined total of 3 cycles to execute. There is however another alternative, and

that is to use the MIA instruction. If this instruction is used, greater modifications need to

take place. A simple replacement of the multiply-accumulate instructions is not

sufficient, since the MIA instruction uses the internal 40-bit accumulator. Since the MIA

instruction uses the accumulator as opposed to simple registers will cause additional

overhead. Since accumulator access instructions are needed, this alternative becomes

energy inefficient if the result of the multiply-accumulate is less than 40 bits.

The original program is modified in the following way, to make use of the MIA

instruction. Since the alterations to the original program were only minor, the whole

optimized program is not reiterated. Appendix C shows the relevant instructions in bold,

so only those instructions or the location in the program that modifications are required

are mentioned here. The beginning of the program initializes the sum, which in both the

original and first optimized form use a register to store the result:

mov r6,#0 /* initialize sum */

Therefore, this instruction must be replaced with an accumulator initialization instruction

so to use the MIA instruction as shown below:

mar acc0,r5,r6 /* initialize accumulator */

56

The next step is to replace the separate MUL and ADD instructions of the original

program shown above with the MIA instruction shown below:

mia acc0,r7,r8 /* multiply-accumulate into 40-bit accumulator */

Then to store the result of the multiply-accumulate from the accumulator to memory, an

accumulator access instruction must be inserted before the store into memory instruction

(also shown in bold in appendix C), as shown below.

mra r5,r6,acc0
str r5,[r10,#0]

/* move result from accumulator to register */
/* Rewrites back to memory*/

Using the following instruction the sum is reset at the end, before the loop is iterated

again.

mov r6,#O /* initialize sum */

Therefore this instruction needs to be replaced with the instruction to reset the

accumulator as shown below:

mar accO,r5,r6 /* reset accumulator */

The results of the above mention optimizations are illustrated in Table 4.1 below. Where

FIR filter is the original un-optimized program, FIR filter optimized 1 is the first form of

optimization that uses the MLA instruction, and FIR filter optimized 2 is the second form

of optimization that was just described in detail.

Table 4.1: Results for the 11-tap FIR filter and optimized forms (Xscale)
Tfir Etir Trun Nrept Niter Current Voltage Frequency

(sec) J) (sec) (A) (V) (MHz)

FIR Filter
Original: Using 9.333E-06 2.595E-06 56.00 30 2.E+05 0.263 1.057 533
MUL and ADD
instructions
FIR Filter
Optimized 1: 6.OOOE-06 1.818E-06 36.00 30 2.E+05 0.29 1.045 533
Using the MLA
instruction
FIR Filter
Optimized 2: 6.167E-06 1.899E-06 37.00 30 2.E+05 0.295 1.044 533
Using the MIA
instruction

57

From Table 4.1 we see that the original implementation of the filter using separate

multiply and add instructions consumes 42.7% more energy than if the filter were to be

implemented using the MLA instruction (FIR Filter Optimized 1). On the other hand the

FIR Filter Optimized 2 program approximately consumes the same amount of energy as

the FIR Filter Optimized 1 program. Therefore, unless the expected result of

accumulation is greater than 32-bits, using the simpler MLA instruction is sufficient for

an energy optimal program. Otherwise, if the result will require 40 bits, the MIA

instruction is optimal.

Taking a closer look into the instructions used to optimize the filter reveals an interesting

point. It is obvious that replacing the MUL and ADD instructions with the single MLA

instruction would yield energy savings (since the MLA instruction is a 2 cycle instruction

while the MUL and ADD instructions together take 3 cycles). However, the result for the

second optimization is not obvious, since the MIA instruction takes only 1 cycle to

perform the multiply-accumulate (Figure 4.1). This is desirable, as it not only performs

the multiply-accumulate function, but also the accumulator can store up to 40 bits. The

accumulator access instructions, MAR and MRA are however energy expensive, since

they take 2 and 3 cycles to execute respectively (Figure 4.1). Thus the overall program

energy efficiency is clearly dependent on the frequency at which the accumulator is

accessed. In this particular example, the result turns out to be very close to the simple

register using MLA instruction optimization form. Clearly for other programs, results

will vary depending on the use of the register access instructions.

One way to quantitatively represent performance versus energy is fixing the run time

while varying the voltage and frequency. This is done to the original FIR filter that used

separate multiply and add instructions (MUL and ADD) and FIR Filter Optimized 1

which used the MLA multiply-accumulate instruction. Since it is concluded that the most

energy optimal program is FIR Filter Optimized 1. Table 4.2 shows the result of this

experiment, where the frequency is changed to 733 MHz for the original filter

accompanied by an increase in voltage to 1.277 V to make the run time of this filter

comparable to the run time of the optimized filter (as much as practically possible). Thus

58

with the performance of both filters now comparable, energy efficiency could be

addressed more fairly. Therefore it can be concluded that the Optimized filter is 51%

more energy efficient than the original filter.

Table 4.2: Performance versus ener gy for the 11-tap FIR Filter (Xscale)
Tfir Efir Trun Nrept Niter Current Voltage Frequency

(sec) (J) (sec) (A) (V) (MHz)
FIR Filter
Original: Using 6.667E-06 3.703E-06 40.00 30 2.E+05 0.435 1.277 733
MUL and ADD
instructions

FIR Filter
Optimized1: 6.OOE-06 1.818E-06 36.00 30 2.E+05 0.29 1.045 533
Using the MLA
instruction

Energy Consumption Values Per Instruction for Some
Selected Instructions

0D

a'

1.40E-09

1.20E-09

1.00E-09

8.OOE-1 0

6.OOE-1 0

4.OOE-1 0

2.OOE-1 0

0.00E+00
1 2 2 1 2 3

Cycles

Figure 4.1: Energy consumption values for some instructions (Xscale)

4.1.2 Energy Optimization of an FIR Filter on the StrongARM Processor

The same 11-tap FIR filter that was used for Xscale is also used for StrongARM with

some syntax modifications. However, the filter segment implemented in assembly is be

repeated 20 times within the main 100,000 iteration loop, to compensate for loop effects.

Since this program is the same as the one used for Xscale, except for some minor syntax

modifications, it has the same characteristics mentioned previously. Therefore, only the

multiply-accumulate segment will be optimized, shown for Xscale in bold in appendix C.

59

Note that for StrongARM there is only one optimization possibility available, the use of

the MLA instruction instead of the separate MUL and ADD instructions.

Table 4.3 below shows the results of the energy measurements for both the original filter

and the optimized filter. The original filter consumes only 18.7% more energy than the

optimized filter program. Whereas, the same optimization on the same program was

done for Xscale, and it was concluded that for Xscale the original program consumed

42.7% more energy than the optimized program. This is because, the MLA instruction

takes 2 cycles to execute on StrongARM, whereas the MUL and ADD instructions

together consume 3 cycles (Figure 4.2).

Table 4.3: Results for the 11-tap FIR filter and optimized forms (StrongARM)
Tinst Einst Trun Ninst Niter Current Voltage Frequency
(sec) (JL (sec) (A) (V) (MHz)

FIR Filter
Original: Using 2.300E-05 7.195E-06 46.00 20 1.E+05 0.215 1.455 191.7
MUL and ADD
instructions

FIR Filter

OptimizedL: 1.850E-05 6.062E-06 37.00 20 1.E+05 0.226 1.45 191.7
Using the MLA
instruction

LU

3.00E-09-

2.50E-09

2.00E-09-

1.50E-09

1.OOE-09-

5.00E-10

O.OOE+00

Energy Consumption Values Per Instruction for Some
Selected Instructions

Vcore 1.5 V
f = 191.7 MHz

1 2 2
Cycles

Figure 4.2: Energy consumption values for some instructions (StrongARM)

60

4.2 Clock Frequency Variation Considerations

Up until this point both processors have been analyzed at a fixed clock frequency and

corresponding core voltage. This section attempts to take the analysis further by

considering energy consumption at other processor frequencies using the same

benchmark program used earlier. For each processor the most energy optimal program as

determined by the analysis in the previous section is used. The measurement procedure is

the same as was outlined in chapters 2 and 3 for processors Xscale and StrongARM

respectively. However, the procedure for changing the processor frequency is briefly

discussed below for each processor, followed by the discussion of the results of testing

the benchmark program at various frequencies. Finally the two processors are again

compared.

4.2.1 Changing Frequency on the Xscale Processor

Changing the frequency on this processor is simply accomplished through the setup

commands at the start of the main program shown in appendix A3. The specific line of -

code that must be changed to achieve the desired processor operating frequency is shown

in bold in appendix A3, as well as included here below:

#define PLLMULTIPLIER 6 // Clock frequency = 533 MHz

The value defined for the PLL multiplier determines the frequency. Table 2.2 lists the

values of the PLL multiplier and the frequency that it corresponds to. Therefore, simply

changing this value in the main program to the value that corresponds to the desired

operating frequency sets the clock frequency to the desired frequency.

4.2.2 Changing Frequency on the StrongARM SA-1100 Processor

Using the codes given in Table 3.1 for each corresponding frequency changes the

processor frequency. This code must be placed in the setupARM.s file in the immediate

number position of the following instruction, also shown in bold in appendix B 1.

ORR rl, rl, #0x09 ; Sets the frequency to 191.7 MHz

61

Table 3.1 also shows the corresponding core voltage that should be applied for each

frequency.

4.2.3 Results of Frequency Variations Xscale and StrongARM

Two sets of measurements were made for both processors. For the first one, both the

frequency and core voltage are varied, while for the second set of measurements the core

voltage is kept at a constant maximum value and the frequency is sequentially lowered.

For the Xscale processor the four operable frequencies are tested and for the StrongARM

processor all eleven frequency possibilities are tested. The FIR filter program used for

these measurements for each processor is the energy optimal filter program from section

4.1. Figure 4.3 below shows the results of the measurements for both processors on the

same plot. This Figure also supports the fact that Xscale consumes considerably less

energy than the StrongARM processor. Table 4.4 shows statistics about energy

consumption and performance for both processors for six data points that use roughly the

same core voltage for both processors. Thus the comparison will be a fair one, since the

core voltage parameter is fixed. The last two columns in the table show the factor by

which StrongARM consumes more energy than Xscale, and the factor by which

StrongARM operates slower than Xscale respectively. The results presented in the table

below validate that Xscale is a superior processor over StrongARM in terms of energy

consumption and performance. Over the voltage range given in Table 4.5, on average

StrongARM consumes 1.71 times more energy than Xscale and is 4.89 times slower.

These results make Xscale undoubtedly the processor of choice.

Table 4.5: Energy and Performance Statistics for StrongARM and Xscale
StrongARM Xscale StrongARM

Core E Operating E Operating MORE EFIR SLOWER
Voltage FI Frequency E Frequency (factor) (factor)
0.875 V 2.32 pJ 59 MHz 1.28 J 400 MHz 1.81 6.78
0.950 V 2.63 pJ 88.5 MHz 1.51 J 466 MHz 1.74 5.27
1.100 V 3.59 VJ 118 MHz 2.03 J 533 MHz 1.77 4.52
1.200 V 3.90 pJ 132.7 MHz 2.42 J 600 MHz 1.61 4.52
1.300 V 4.73 J 162.2 MHz 2.87 pJ 666 MHz 1.65 4.11
1.400 V 5.55 P 176.9 MHz 3.30 J 733 MHz 1.68 4.14

62

The next discussion involves the second set of measurements, which the voltage was kept

fixed for the various operating frequencies for both processors. This set of measurements

is used to determine the static component of energy consumption. The energy that is

measured and plotted is actually the total energy consumed by the processor for the

execution of a particular program. This total energy includes both the dynamic and static

energy [1]:

Etotai = Edynamic + Estatic = Ctotai V 2core + Vcore Ileak trun

Where Ctotal is the total switching capacitance, Vcore is the applied core voltage, Ileak is the

leakage current, and trun is the run time for the execution of the program. Therefore, it is

clear that as the core voltage is increased the dynamic energy consumption will increase

quadratically with voltage. Since dynamic energy consumption is the dominating factor

in the total energy consumption and the total switching capacitance does not change with

clock frequency [1], the quadratic increase in energy consumption with increasing

voltage is apparent from Figure 4.3 for both processors.

Since the core voltage is kept approximately constant, the dynamic energy consumption

will be constant. The only variation will be due to the leakage current. Thus the static

component of energy consumption can be determined, since the slope of the curve will

directly reflect the leakage current [1]. The leakage energy model and current

measurements have already been previously done for StrongARM [1]. A brief summary

of the leakage results for StrongARM that were done for the same voltages as Xscale are

included here for comparison in the next section.

Table 4.6: Leakage Current for StrongARM [1]
Leakage Current

Core Voltage Measured Model % Error
1.4 V 16.35 mA 16.65 mA -1.84%
1.3 V 13.26 mA 13.8 mA -4.04%
1.2 V 12.07 mA 11.43 mA 5.27%
1.1 V 9.39 mA 9.47 mA -0.87%
1.0 V 7.96 mA 7.85 mA 1.40%

0.90 V 6.39 mA 6.53 mA -1.70%

63

Energy Consumption Values for StrongARM and Xscale for the Optimized 11 -tap FIR Filter

9.OJE-06 r

8.00E-06

7.OOE-06

6.OOE-06
StrongARM I

5.OOE-06

D.0E6 _J1,2 V
.400E-06

2. OE-06

1.OOE-06 -

0.OOE+00
59 73.7 88.5 103.2 118 132.7 147.5 162.2 176.9 191.7 206.4 230 270 300 333 400 466 533 600 666 733

Frequency (MHz)

-+-Varying Freq. and Voltage --- Varying Freq. with Const. Voltage -- *Varying Freq. and Voltage -*-Varying Freq. with Const. Voltage

Figure 4.3: Energy consumption for various frequencies (Xscale and StrongARM)

0 o: -.

CD

o CD

* 0 CD CD

CD

C:L CD C

CDCD

t-t

CD C

CD
P

o ("D D

r

Leakage Current Model for the StrongARM Processor [1]

V
n'r Parameters: Io = 1.196 mA, n'= 21.26, and VT = kT/q = .025 V

leak 0 e Where the thermal voltage is calculated at room temperature.

01

4.3 Static Energy Consumption

This section presents the leakage current results for the Xscale processor and verifies that

it adheres to the same leakage model proposed for StrongARM [1], which was shown in

the previous section. In the previous section it was shown that the leakage current can be

easily determined from the slope of the energy vs. run-time curve provided the core

voltage is held constant. If the energy is normalized by the core voltage, charge is

obtained; therefore, the slope of the charge vs. run-time curve exactly gives the leakage

current. Figure 4.4 below shows the chart for charge versus run-time for the optimized

FIR filter program. The data points for each of the three curves are determined by

running Xscale at the constant core voltage values shown on the right hand side of each

corresponding curve. The dashed lines on each curve are the linear fit to each curve, and

as shown in the Figure it is an almost exact fit. Therefore, the slopes represent the leakage

current at each of those corresponding voltages. The values of the leakage current are

tabulated in Table 4.7 below, where the comparison is made with the results of the

leakage model and the results clearly show that Xscale indeed does adhere to the leakage

model shown earlier. The parameter values for Xscale are: Io = 2.116 mA and n = 17.466.

Table 4.7: Leakage Current for Xscale
Leakage Current

Core Voltage Measured Model % Error
1.40 V 53.23 mA 52.24 mA 1.87%
1.30 V 39.74 mA 41.54 mA -4.54%
1.20V 33.42 mA 33.04 mA 1.14%
1.10 V 26.71 mA 26.28 mA 1.62%
0.95 V 19.13 mA 18.64 mA 2.57%

0.875 V 15.28 mA 15.70 mA -2.72%

65

Charge VS Run Time for the Optimized FIR Benchmark

4.33-06 4.83E-06 5.33E-06 6.OOE-06 6.83-06 8.OOE-06 9.67E-06

Run Time for a Single HR Program

-4-V = 1.4 V -U-V = 1.3 V -- V = 1.2 V V= 1.1 V -e--V = 0.95 V -0-V = 0.875 V

Figure 4.4: Charge versus run-time (Xscale)

Leakage Current VS Core Voltage

60

50

40

30

20

10

0
0.90 1.00 1.10 1.20 1.30 1.40

Core Voltage (V)

Figure 4.5: Leakage Current versus Core Voltage (Xscale and StrongARM)

66

2.85E-06

2.65E-06

2.45E-06

2.25E-06

2.05E-06

1.85E-06

1.65E-06

1.45E-06

1.25E-06

a)
0)
a)

C.)

Figure 4.5 above shows the leakage current plots versus core voltage for both Xscale and

StrongARM. As far as static current consumption is concerned, Xscale consumes more

than StrongARM as the plot illustrates. For these voltage values, 0.90 V, 1.0 V, 1.1 V,

1.2 V, 1.3 V, and 1.4 V Xscale consumes 2.39, 2.4, 2.85, 2.77, 3, and 3.36 times more

leakage current than StrongARM respectively. The ratios should be in increasing order;

however, the small drop at 2.77 is most likely due to experimental error. Note that the

measurements for leakage current for StrongARM were done using a FFT benchmark

program in [1]. However, it has been proven in earlier chapters that to a first order

approximation the energy consumed per cycle and thus likewise the current drawn is

independent on functionality of the instructions. Therefore, the values of the current

(including leakage current) drawn for the benchmark used in [1] does indeed provide a

reasonable comparison with the leakage current measurement results for Xscale using the

FIR filter program.

Since the operating frequency on the two processors is not the same, it is important to

look at the leakage energy consumption. The same FIR filter program used for Xscale

was run on StrongARM to measure the cycles taken by StrongARM to run the same

program as Xscale. The results of the energy measurements are shown in Table 4.8

below.

For the same core voltage is was shown above that Xscale consumes greater leakage

current, where the first column in the comparison category illustrates this. However, it is

important to note that Xscale operates much faster than Xscale, so even though it may be

leaking more than StrongARM, it is leaking for a shorter time, and thus the leakage

energy is less than StrongARM. The comparison column in Table 4.8 illustrates this point

effectively, the three columns in this category is showing the factor by which Xscale is

consuming greater leakage current, lesser leakage energy, and operating faster with

respect to the same parameters of StrongARM. Therefore it has been proven that Xscale

is energy efficient in both dynamic and static energy consumption. Lastly Figure 4.6

shows the total, dynamic and static current consumption for Xscale for the FIR filter

program.

67

Table 4.8: Static Energy Consumption Statistics for Xscale and StrongARM
StrongARM Xscale Comparison
Cycles: 3525 Cycles: 3206

Vcore Leak Eieai Frequency Ileak Eleak Frequency Ileak Bleak Frequency
(V) (mA) (pJ) (MHz) (mA) (gJ) (MHz) (factor) (factor) (factor)
0.90 6.39 .275 73.7 15.28 .107 400 2.39 .39 5.43
1.0 7.96 .272 103.2 19.13 .125 466 2.40 .46 4.52
1.1 9.39 .309 118 26.71 .177 533 2.85 .57 4.52
1.2 12.07 .385 132.7 33.42 .214 600 2.77 .56 4.52
1.3 13.26 .375 162.2 39.74 .249 666 3.00 .66 4.11
1.4 16.35 .456 176.9 53.23 .326 733 3.26 .72 4.14

Total, Dynamic, and Leakage Current VS Core Voltage

600-

500-

,400-

300-

200-

100-

0-
0.875 0.95 1.1 1.2 1.3 1.4

Core Voltage (V)

1 Total Current -'U-Dynamic Current -&-Leakage Current

Figure 4.6: Total, dynamic, and static current vs. core voltage for Xscale

4.4 Low Power Modes

This section explores the 3 idling modes available on the Xscale processor, "Idle,"

"Drowsy," and "Sleep" [17]. Even though in the "Idle" mode the PLL is on, the result of

the current drawn during this mode is independent on the value the clock frequency is set

to (within a 6% worst-case variation), but clearly depends on the value of the core

68

voltage. For both the "Drowsy" and "Sleep" modes the PLL is turned off. The results of

these measurements are shown in Table 4.9 below, where the modes are listed in

increasing power saving order.

Table 4.9: Low Power Mode Statistics
V=1.5 V V=1.35 V V=1.25V V=1.18 V

Low Power P I P I P I P I
Mode (mW) (mA) (mW) (mA) (mW) (mA) (mW) (mA)
Idle 38.3 25.5 25.2 18.7 20.5 16.4 16.6 14.16

Drowsy 16.3 10.8 10 7.37 9.33 7.46 9.13 7.76
Sleep 15.2 10.1 10 7.37 7.34 5.86 5.77 4.89

4.5 Concluding Remarks

This chapter concludes the measurements for this thesis and concludes the evaluation of

software energy on the two chosen microprocessors. From the results of this chapter it

can be concluded that, Xscale is a high performance, energy efficient processor in both

static and dynamic energy consumption. The low power modes of Xscale have also been

explored as well.

69

Chapter 5

Conclusion

Energy efficiency of systems are increasingly becoming an important issue. As the

demand for speed and performance grow, so does the number of transistors used in

microprocessors. Thus directly leading to a dramatic increase in energy consumption. For

instance maximum processor energy consumption has tended to increase by

approximately two fold every four years [2]. The issue of energy efficiency has been

thoroughly explored in hardware design. However, it is also important to minimize

software energy consumption. Since the energy consumed by the hardware components

are in part due to the software being run on the hardware. As a result the goal of this

thesis was to evaluate the energy consumed by software and present a possible technique

for optimal software design.

The software energy consumption of two Intel microprocessors, the Xscale and the

StrongARM, has been explored. Initially, the software energy consumption

measurements were done at the individual instruction level taking into account all the

addressing modes, and then later expanded to a complete program. The results of these

extensive experiments led to the conclusion that the energy consumed per instruction is to

first order part independent on the functionality of the particular instruction. Rather the

energy per instruction depends on the cycles taken by the instruction to execute, since it

has been shown that the energy per cycle is approximately constant for most instructions.

However, some extreme cases were also determined, where the energy per cycle was

higher than most other instructions. For instance the load and store instructions on the

Xscale processor consume roughly 20% and 30% more energy per cycle than the

arithmetic instructions.

70

These results can be explained by understanding how the processor consumes energy

during the execution of an instruction. General-purpose processors are designed for high

performance and versatility. This is achieved at the cost of continuous operation of many

processor components such as caches, buffers, and control sections. This presents an

overhead that can't be avoided. As a result almost all instructions regardless of

functionality consume the same amount of energy. Most of the energy is spent powering

the other components of the processor; however, there is some level of variability in the

degree to which component is consuming energy, which leads to the exceptions pointed

out earlier.

The fact that the energy consumed per cycle is roughly constant directly implies that

optimizing for performance (minimal cycles) can optimize a particular program for

energy. This optimization strategy is shown for an 11-tap FIR filter for both processors

and some interesting results were obtained. For instance on average the StrongARM

consumed 1.71 times more energy and it operates 4.89 times slower than Xscale.

The next step was to evaluate the leakage current and static energy consumption. Results

showed that, Xscale consumes 2.39 - 3.26 times more leakage current than StrongARM

for a voltage range of 0.9 - 1.4 V. This is mainly due to the drop in the threshold voltage

of the transistors in Xscale, which is a result of the technology scaling implemented in

Xscale. On average the leakage current for Xscale is 8.8 % of the total current. However

it is important to note that, even though the leakage current is higher in Xscale, it also

operates on average 4.54 times faster, thus it is leaking for a shorter period of time. As a

result the leakage energy consumption for Xscale is .39 - .72 times less than StrongARM,

for a voltage range of 0.9 - 1.4 V.

In conclusion, the results of all the extensive instruction level energy profiling and

benchmark program testing showed that the Xscale processor consumes significantly less

energy than StrongARM in both dynamic and static energy consumption.

71

References

[1] Amit Sinha, "Energy Aware Software," Master of Science in Electrical
Engineering and Computer Science Thesis, Massachusetts Institute of
Technology, December 1999

[2] Stephen H. Gunther, Frank Binns, Douglas M. Carmean, and Jonathan C. Hall,
"Intel Technology Journal, 1"t Quarter: Managing the Impact of Increasing
Microprocessor Power Consumption," With Specific reference to the section on
"Processor Power Trends." Entire reference found at:
http://developer.intel.com/technology/itj/ql2001/articles/art 4.htm

[3] Tajana Simunic, Luca Benini, and Giovanni De Micheli, "Energy-Efficient
Design of Battery-Powered Embedded Systems" International Symposium on
Low Power Electronics and Design, 1999 Proceedings, pp 212-217.

[4] Application Note 34: Writing Efficient C for ARM, January 1998. This can be
found on the following web site:
http://www.arm.comlarmwww.ns4/html/Application NotesOpenDocument

[5] Chingren Lee, Jenq Kuen Lee, and TingTing Hwang, "Compiler Optimization on
Instruction Scheduling for Low Power," The 13th International Symposium on
System Synthesis, 2000 Proceedings, pp 55 -60.

[6] Huzefa Mehta, Robert Michael Owens, Mary Jane Irwin, Rita Chen, and
Debashree Ghosh, "Techniques for Low Energy Software," International
Symposium on Low Power Electronics and Design, 1997 Proceedings, pp 72 -75.

[7] Ching-Long Su, Chi-Ying Tsui, and Alvin M. Despain, "Low Power Architecture
Design and Compilation Techniques for High-Performance Processors,"
Compcon Spring '94, Digest of Papers, pp 489 - 498.

[8] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and W. Ye, "Energy-
Driven Integrated Hardware-Software Optimizations Using SimplePower,"
Proceedings of the 27th International Symposium on Computer Architecture,
2000, pp 95 -106.

[9] G. Esakkimuthu, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, "Memory
System Energy: Influence of Hardware-Software Optimizations" Proceedings of
the 2000 International Symposium on Low Power Electronics and Design,
ISLPED '00, pp 244 -246.

[10] http://developer.intel.com

72

[11] http://developer.intel.con/design/intelxscale/

[12] http://developer.intel.com/design/iio/docs/iop3 10.htm

[13] Intel 80200 Processor based on Intel Xscale Microarchitecture Datasheet, October
2000, Reference Number 273414-002

[14] Intel 80200 Processor based on Intel Xscale Microarchitecture - Delivers Core
Performance Breakthrough, Product Brief, Order Number 273427-001

[15] Intel Xscale Microarchitecture: Serves Up Breakthrough 1/0, Order Number
273434-002

[16] Intel Xscale Microarchitecture: Technical Summary, found at the following web
site:

http://developer.intel.com/design/intelxscale/XScaleDatasheet4.htm?iid=xscale+leftnav&

[17] Intel 80200 Processor based on Intel Microarchitecture Developer's Manual,
November 2000, Order Number 273411-002,

[18] http://developer.intel.con/design/strong/

[19] http://developer.intel.com/design/strong/sal 00.htm?iid=strongarm+leftnav&

[20] http://developer.intel.coin/design/strong/collateral.htm?iid=strongarm+leftnav&

[21] Intel StrongARM SA- I100 Microprocessor for Embedded Applications: Brief
Datasheet, June 1999, Order Number: 278092-005.

[22] Intel StrongARM SA- 1100 Microprocessor: Specification Update, February 2000,
Order Number: 278105-025

[23] Intel StrongARM SA-1 100 Microprocessor Developer's Manual, August 1999,
Order Number 278088-004

[24] A. Sinha and A. Chandrakasan, "JouleTrack-A Web Based Tool for Software
Energy Profiling," Proceedings of the 38th Conference on Design Automation
Conference, 2001, pp 220 - 225.

[25] 6.374 Analysis and Design of Digital Integrated Circuits, Class Notes by
Professor Dr. Anantha Chandrakasan, Massachusetts Institute of Technology, Fall
1999.

[26] James Kao, Anantha Chandrakasan, and Dimitri Antoniadis, "Transistor Sizing
Issues and Tool For Multi-Threshold CMOS Technology," Proceedings of the
3 4 1h Design Automation Conference, 1997, pp 409-414.

73

[27] Vivek Tiwari, "Logic and System Design for low Power Consumption," Ph.D.
Thesis Dissertation, Princeton University, Chapters 5 & 6, November 1996.

[28] Vivek Tiwari, Sharad Malik, and Andrew Wolfe, "Power Analysis of Embedded
Software: A First Step Towards Software Power Minimization," IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, Volume: 2, Issue:
4, Dec. 1994, pp 437 - 445.

[29] Vivek Tiwari, Sharad Malik, and Andrew Wolfe, "Compilation Techniques for
Low Energy: An Overview," IEEE Symposium on Low Power Electronics,
Digest of Technical Papers, 1994, pp 38 -39.

[30] Mike Tien-Chien Lee, Vivek Tiwari, Sharad Malik, and Masahiro Fujita, "Power
Analysis and Low-Power Scheduling Techniques for Embedded DSP Software,"
Proceedings of the Eighth International Symposium on System Synthesis, 1995,
pp 110 -115.

[31] Vivek Tiwari, Sharad Malik, Andrew Wolfe, and Mike Tien-Chien Lee,
"Instruction Level Power Analysis and Optimization of Software," Ninth
International Conference on VLSI Design, 1996 Proceedings, pp 326 -328.

[32] S. Wiratunga, C. Gebotys, "Methodology for Minimizing Power with DSP Code,"
2000 Canadian Conference on Electrical and Computer Engineering, Volume: 1,
pp 293 -296.

[33] http://cygwin.coim/

[34] GNU Main Page: http://www.fsf.org or http://www.gnu.org

[35] GNU Documentation: http://www.fsf.org/doc/doc.html

[36] GNU Online Manual: http://www.gnu.org/manual/manual.htm

[37] GNU Assembler Documentation:
http://www.fsf.org/manual/gas-2.9.1/html chapter/as toc.html

[38] http://www.arm.com

[39] ARM Software Development Toolkit Version 2.11 Reference Guide, Advanced
RISC Machines Ltd (ARM) June 1997 , ARM DUI 0041B

[40] ARM Software Development Toolkit Version 2.11 User's Guide, Advanced RISC
Machines Ltd (ARM) May 1997 , ARM DUI 0040C

[41] Amit Sinha and Anantha Chandrakasan, "Energy Aware Software," Thirteenth
International Conference on VLSI Design, 2000, pp 50 -55.

74

[42] "Data Sheet: ADI/80200EVB Evaluation Board Documentation," footnote 3, page
12, March 2001: http://www.adiengineering.com/products.html

[43] Keithley Model 2400 SourceMeter User's Manual, Keithley Instruments Inc.,
1996

[44] D. Seal ed., "ARM Architecture Reference Manual 2nd ed.,"Addison-Wesley,
2000.

[45] D. Jaggar ed., "Advanced RISC Machines Architectural Reference Manual: ARM
Architectural Reference Manual," Prentice Hall, 1996.

[46] http://developer.intel.com/design/intelxscale/benchmarks.htm

[47] "Intel StrongARM SA-1 110 Brief Data Sheet," Order Number: 278241-005,
April 2000.

[48] Amit Sinha, "Energy Efficient Operating Systems and Software," Doctor of
Philosophy in Electrical Engineering and Computer Science Thesis,
Massachusetts Institute of Technology, August 2001

[49] Alan V. Oppenhiem, Ronald W. Schafer with John Buck, "Discrete-Time Signal
Processing," Prentice Hall, New Jersey, 1999.

[50] Anantha P. Chandrakasan, Robert W. Brodersen, "Low Power Digital CMOS
Design," Kluwer Academic Publishers, Boston, 2000.

[51] M. Johnson, D. Somasekhar, and K. Roy, "Models and Algorithms for Bounds on
Leakage in CMOS Circuits," IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 18, pp7 14-725, June 1999.

[52] J. M. Rabaey, "Digital Integrated Circuits: A Design Prespective," Prentice Hall,
New Jersey, 1996.

75

Appendix A

Supplementary Material for Xscale

Appendix Al: Preparation of Xscale for Applying Core Voltage
Externally

Appendix A2: Commands and Batch Files Used for GNU

Compiler and Debugger

Appendix A3: Main Program Excluding Profiling Segment

76

Appendix Al

Preparation of Xscale for Applying Core

Voltage Externally

Top and bottom view pictures of the 80200 Evaluation Platform are shown below in

Figures A.1 and A.2 respectively. The board operates with only a 12 V DC supply that

goes to connector J9 on the board, the arrow in Figure A.1 points to the exact location.

This voltage is then divided and voltage is supplied to the core internally, the connection

trace (JP2) can be seen in Figure A.2, as pointed by another arrow.

Figure A. 1: Top view of the 80200 Evaluation Platform with Intel Xscale core processor

77

Figure A.2: Bottom view of the 80200 Evaluation Figure A.3: Bottom view of the 80200
Platform with Intel Xscale core Processor Evaluation Platform with Intel Xscale

core processor with modifications to
provide the core with external supply

Therefore in order to be able to make core current measurements and have the ability to

manually change the voltage with corresponding frequency changes, this trace needs to

be cut and the core will be run on external supply only. The 12 V DC supply will of

course be supplied to provide power for the rest of the board. The result of doing this is

shown in Figure A.3, again an arrow points to the exact location. The brown wire is used

to provide voltage to the core. Note that the other wires that are there are not used for this

experiment and so they are just reconnected to original configuration.

78

Appendix A2

Commands and Batch Files Used for the GNU

Compiler and Debugger

The following command is required for compiling a program in C (it should of course be

in one line):

/xscale-001130/H-i686-pc-cygwin/bin/xscale-elf-gcc -g -Llib -specs=lrh.specs -o

<filename>.elf <filename>.c

This command creates an .elf file, which in turn is used by the debugger (GDB) to run on

the board. The next step is to run the debugger, of course before entering this stage the

board should be started up and the reset button pressed, as outlined in section 2.4.1

above. Also note that every time the debugger is exited the board must be reset. The

following command is used to run the debugger:

/xscale-001130/H-i686-pc-cygwin/bin/xscale-elf-gdb -nw <filename>.elf

After this command line, the GDB prompt is given, and then the following sequence of

commands are needed to run the program on Xscale:

(gdb) set remotebaud 57600

(gdb) target remote COMI

(gdb) load

(gdb) continue

79

After the program is completed then "Ctrl-C" will quit and it is back to the (gdb) prompt,

then entering "q" will quit the debugger (note no quotes are needed). This process could

be repeated again for different programs or modifications can be done to the original file.

Note that it is very important that the board be RESET after the debugger is exited. There

is a simpler way of doing the above explained procedure, by using two separate batch

files: Makefile and xscale.gdb, shown below. Therefore to compile fir.c, the commands

are simply reduced to the following: make fir.elf. The command for the debugger is

likewise reduced to: make fir.gdb which starts running on Xscale, this automatically

starts up the debugger, it is not necessary to explicitly startup the debugger.

1. Makefile

XCC = /xscale-001130/H-i686-pc-cygwin/bin/xscale-elf-gcc
XLD = /xscale-001130/H-i686-pc-cygwin/bin/xscale-elf-ld
GDB = /xscale-001130/H-i686-pc-cygwin/bin/xscale-elf-gdb

PLL=6

all:

%.elf: %.c
$(XCC)

%.o: %.s
$(XCC)

%.o: %.S
$(XCC)

%.elf: %.o
$(XLD)

%.gdb: %.elf
$(GDB)

-g -Llib -specs=lrh.specs -o $*.elf $*.c

-g -c -x assembler-with-cpp -o $*.o -DPLL=$(PLL) $*.S

-g -c -x assembler-with-cpp -o $*.o -DPLL=$(PLL) $*.S

-Ttext OxCO008000 -o $*.elf $*.o

-nw -x xscale.gdb $<

clean:
- rm *.o

- rm *.elf

2. xscale.gdb

set remotebaud 57600
target remote COM 1
load
continue

80

Appendix A3

Main Program Excluding Profiling Segment

//This program tests the entire Xscale instruction set, addressing Modes, and all possible
//formats for each instruction that is available or that can be run on the Intel Xscale
/processor.

//By Mitra M. Osqui for M.S.E.E. Degree
/June 28, 2001

#include <stdio.h>
#include <math.h>
#include <time.h>
#include <stdlib.h>

#define PLLMULTIPLIER 6

#define LED ((volatile unsigned char *) 0x00500000)

char ledtable[] = {Ox7E, / 0
0x30, // 1
Ox6F, / 2
0x79, / 3
0x33, / 4
Ox5B, / 5
Ox7D, / 6
0x07, / 7
Ox7F, I/ 8
Ox6F / 9

#define WRITELED(x) \
do { \

*(LED) = (OxFF A led table[x]); \
} while (0)

#define LEDOFF() \
*(LED) = OxFF

81

void
setupXSCALE(void)
{

unsigned int pll = PLLMULTIPLIER;
asm volatile ("mcr pl14,0, %0,c6,cO,0" : : "r"(pll) I*:*I);
asm volatile ("mrc p14,0, %O,c6,cO,0": "=r"(pll):

WRITELED(pll);
printf("Now running at %.OfMHz:\n", (pll+ 2)*6 6 .6 6 66 6 6);

I

I/ Here the block name must be defined in order to make that block visible to the
//compiler, for instance if the instruction adc with the 1st type of addressing mode is
//chosen for energy profiling "blockname" must be replaced with adc 1.

#define blockname

int mainO {

printf("Setting up Xscale Please Wait\n");

setupXSCALEO;

printf("Done :)\n");

Here is where the profiling segment of the code is placed. There are a total of 347
separate experiment blocks that go in here. The whole program could not be included in
entirety since it was approximately 300 pages; however, a copy of it is located in my
MTL directory: MSThesis/Xscale/InstructionProfiling/inst-e.c.

while(l); //this endless loop is here since the core requires
II a never ending loop

return (0);

}

82

Appendix B

Programs and Results for StrongARM

Appendix Bi: setupARM.s file

Appendix B2: Main Program Excluding Profiling Segment

Appendix B3: Instruction Energy Profiling Result Details

83

Appendix B1

setupARM.s File

AREA Utility, CODE, READONLY

EXPORT setupARM

setupARM

SP!, {r0-rl}
rO, #0x17
0x123456
p15, 0, rl, ci, c, 0
r, rl, #OxlOOO
rl, rl, #0xl
rl, ri, #0x4
rl, rl, #0x8
p15, 0, rl, cl, c, 0;
rO, #0x90000000
rO, rO, #0x20000
rO, rO, #0x14
rI, [r0]
rl, rl, #Oxf
ri, ri, #0x09
rl, [rO]
rO, CPSR
rO, rO, #OxIf
rO, r, #Ox10
CPSR, rO
SP!, {rO-rl}
PC, LR

enables
enables
enables
enables

ICACHE
MMU
DCACHE
write buffer

; Sets the frequency to 191.7 MHz

read the CPSR

STMFD
MOV
SWI
MRC
ORR
ORR
ORR
ORR
MCR
MOV
ADD
ADD
LDR
BIC
ORR
STR
MRS
BIC
ORR
MSR
LDMFD
MOV

END

84

Appendix B2

Main Program Excluding Profiling Segment

//This program tests the entire StrongARM instruction set, Addressing Modes, and all
/possible formats for each instruction that is available or that can be run on the Brutus
//board. This is for the Intel StrongARM processor SA-1 100 Brutus board.

//By Mitra M. Osqui for M.S.E.E. Degree
/Aug 2, 2000

#include <stdio.h>
#include <math.h>
#include <time.h>
#include <stdlib.h>

#define ITER 100000000

int main(int argc, char *argv)
{
timet start_time, endtime;
double difftime;

void setupARM(void);

printf("Setting up Strong ARM...... Please Wait\n");
setupARMO;
printf("Done :)\n");

Here is where the profiling segment of the code is placed. There are a total of 250
separate experiment blocks that go in here. The whole program could not be included in
entirety since it was approximately 650 pages; however, a copy of it is located in my
MTL directory: MSThesis/StrongARM/InstructionProfiling/testinst.c.

* ** ****************************** ************************************ *

85

difftime = difftime(endtime, starttime);
printf("time of %d iterations = %f seconds\n", ITER, diff time);

return (0);
I

86

Appendix B3

Instruction Energy Profiling Result Details

This appendix provides some of the energy profiling details that were left out in the

discussions of chapter 3. First the data-processing instructions and addressing modes are

explored, then we move on to the other instructions. Figure B3-1 shows the energy results

for the eleven addressing modes for the AND instruction. Again this graph is only for one

instruction out of the 16 for this category, but it gives a good representation of the energy

consumption values and patterns for the other 15 instructions as well. Since they consume

to an acceptable tolerance the same amount of energy in each of the 11 addressing modes.

The general pattern of energy consumption is very similar to that of Xscale, the shift-by-

register addressing modes take 2-cycles to execute and thus consume roughly twice the

energy. The pattern across addressing modes is also very similar to the Xscale, with the

difference that the last addressing mode, rotate right with extend, is a 1-cycle instruction

as opposed to a 2-cycle instruction for Xscale. Note that the CLZ instruction is

unavailable to this board.

As noted in chapter 3 all standard ARM instructions are not available to this board,

among them are the four multiply instructions SMLAL, SMULL, UMLAL, and UMULL.

Thus from 6 instructions multiply instructions that exist in this category only 2 of them

are available on Brutus, the MLA and MUL instructions. The energy consumed per

instruction is the same for both instructions, and both instructions are 2-cycle

instructions, thus we have: Eins, = 2.57 nJ and Ecycle = 1.28 nJ.

87

Energy Consumption Levels for the AND Instruction

3.OOOE-09-;
V,,, = 1.5 V
f =191.7 MHz

2.500E-09

2.OOOE-09

1.500E-09 E

1.OOOE-09-

5.000E-10-

O.OOOE+00 r2 --

1 1 1 2 1 2 1 2 1 2 1
Cycles

E3 Energy Per Instruction N Energy Per Cycle

Figure B3-1: Energy Consumption for the Data-Processing Instructions

Now we move on to the load and store category of instructions, where again there are

some instructions out of the standard instruction set that are not available, such as the

following: LDRH, LDRSB, LDRSH, and STRH. Figure B3-2 shows the energy

consumption results for the load and store instructions. Each bar in the figure represents

the energy value averaged over the 9 possible addressing modes, this is done since the

energy variation across the addressing modes is negligible. Both the load and store

instructions take 1-cycle to execute for the StrongARM processor, while on the other

hand the Xscale processor takes 3-cycles to do a load operation and depending on the

addressing modes takes either 1 or 2 cycles to do a store operation. However, as shown in

chapter 3 (Table 3.2), Xscale is still energy efficient.

88

Average Energy Values for the Load and Store Instructions

2.OOOE-09

1.800 -09= 1.5 V, f =191.7 MHz

1.600E-09-

1.400E-09

1 .2 00 E -09

1.OOOE-09 -i
4)

8.OOOE-1 0 -

6.0 00 E -10 -

2.OOOE -1O -'_.000E1+0 V'. |

O.OOOE+OO '

1 1 1 1 1 1 1 1
Cycles

JEEnerg y Per Instruction Energ y Per Cycle

Figure B3-2: Energy Consumption for the Load and Store Instructions

The next instructions to explore is the load and store multiple instructions. As was the

case for the Xscale processor the energy consumed by this class of instructions is

dependent on the number of registers that is being loaded to or stored from. The base

energy consumption for 1 register takes 2-cycles to complete. The same holds true if 2

registers are used, again it is a 2-cycle instruction. However, beyond two registers the

processor takes one extra cycle to execute the instruction per added register. Thus if five

registers are used, it takes 5-cycles to execute the instruction.

The following discussion of the energy consumption values for various addressing modes

and instructions within this category are base energy consumption values, where only one

register is used. The energy consumed per cycle for both load and store instructions are

identical within a worst-case variation of 4.11%. Also addressing mode has no effect on

the energy consumed by these instructions, where the average energy consumed is Eins =

2.98 nJ and Ecycle = 1.49 nJ

89

An interesting observation can be made when the results of StrongARM are compared

with that of Xscale. The base energy consumption (with only 1 register) for Xscale takes

3 cycles to complete either a load or store operation, also if 2 registers were to be used for

Xscale it would require an extra cycle, which StrongARM does not require. Again even

though these differences are pointed out, Xscale would be the processor of choice for

energy efficiency and speed as was shown earlier in chapter 3 (Table 3.2).

Lastly the status register access, semaphore and branch instructions are explored. Figure

B3-3 below shows the energy results for these instructions. From the results we see that 4

out of 6 status register access instructions are single cycle instructions with only two

instructions 3-cycle instructions. The Xscale processor on the other hand has 5 out of 6

instructions that take 2-cycles to execute and only 1 instruction takes 1-cycle to execute.

The semaphore instruction is also shown in the same figure and both instruction types

consume identical amounts of energy and take 2 cycles to execute. On the other hand

Xscale takes 5-cycles to execute the same semaphore instructions. Lastly the only

available branch instruction is B, and this is a 2-cycle operation as opposed to Xscale,

which executes the same instruction in a single cycle. As a final note all energy

comparisons and analysis are once again referred to chapter 3 with specific reference to

Table 3.2.

Energy Consumption Levels for the Status Register Access,
Semaphore, Branch, and NOP Instructions

4.OOOE-09- Vc = 1.5 V

3.500E-09- = 191.7 MH

3.000E-09-

2.500E-09-

2.OOOE-09-
.a-

U 1.500E-09

1.000OE-09

5.OOOE-10-

O.OOOE+00- - -r -
1 1 3 3 1 1 2 2 1

Cycles
El Energy Per Instruction E Energy Per Cycle

Figure B3-3: Energy Consumption for Miscellaneous Instructions

90

Appendix C

11-tap FIR Filter Program for Xscale

asm volatile

xdata: .word 0
.word 0
.word 0
.word 0
.word 0
.word 0
.word 0
.word 0
.word 0
.word 0
.word 5
.word 12
.word 3
.word 6
word 8
.word 25
.word 49
.word 11
.word 2
.word 30
.word 23
.word 18
.word 15
.word 3
.word 1
.word 24
.word 9
.word 35
.word 21
.word 7
.word 0

91

.word 0

.word 0
.word 0
.word 0
.word 0
.word 0
.word 0
.word 0
.word 0

coeff: .word 5
.word 4
.word 10
.word 12
.word 7
.word 31
.word 24
.word 1
.word 6
.word 19
.word 20

yresult:.word 0

ldr rO,=200000
mov ri, #00

ldr rlO,yresult

outerloop:

add rl,rl,#01

.rept 30
ldr r2,xdata

ldr r3,coeff
add r3,r3,#44

/* filter length: 11 */

/*the loop is executed 200,000 times*/
/* loop counter */

/*load starting address of result*/

/* load starting address of xdata */
/* load starting address of coeff*/

/* point to the address of the last element in the array coeff*/

/*
/*
/*

mov r4,#0
mov r5,#0
mov r6,#O

ldr r7,[r2,#0]
ldr r8,[r3,#0]

mov rl l,r2

initialize x counter */
initialize h counter */
initialize sum */

/* load value in element 1st of array x*/
/* load value in last element of array coeff*/

/* make backup of r2*/

92

1*

1*

1*

1*

1:

2:

make backup of r3*/

loop by length of virtual x data */

loop by length of coefficients of FIR filter*/

multiply-accumulate segment*/

mov r12,r3

add r4,r4,#1

add r5,r5,#1

mul r9,r7,r8
add r6,r6,r9

ldr r7,[r 11 ,#4]!
ldr r8,[r12,#-4]!

cmp r5,#1 1
bne 2b

str r6,[rlO,#O]

ldr r7,[r2,#4]!
mov rI l,r2

ldr r8,[r3,#O]
mov r12,r3
mov r5,#O
mov r6,#O

cmp r4,#40
bne lb

cmp rl,rO
bne outer-loop

");

93

/* load next value*/
/* load next value */

/*length of coefficients of FIR filter*/

/* Rewrites back to same location in memory*/

/* point to next value */
/* reset rI*/

/* point to next value */
/* reset r12*/

/* reset sum*/

/*length of virtual x data */

.endr

