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Abstract

Magnetic resonance diffusion imaging provides an exquisitely sensitive probe of tis-
sue microstructure. Owing to the microscopic length scale of diffusion in biological
tissues, diffusion imaging can reveal histological architecture irresolvable by conven-
tional magnetic resonance imaging methods. However, diffusion imaging methods to
date have chiefly been based on analytical models of the underlying diffusion pro-
cess. For example, diffusion tensor imaging assumes homogeneous Gaussian diffusion
within each voxel, an assumption which is clearly invalid for the vast majority of the
brain at presently achievable voxel resolutions.

In this thesis I developed a diffusion imaging method capable of measuring the
microscopic diffusion function within each voxel. In contrast to previous approaches
to diffusion imaging, the method presented here does not require any assumptions on
the underlying diffusion function. The model-independent approach can resolve com-
plex intravoxel tissue structure including fiber crossing and fiber divergence within a
single voxel. The method is capable of resolving not only deep white matter inter-
sections, but also composite tissue structure at the cortical margin, and fiber-specific
degeneration in neurodegenerative pathology. In sum, the approach can reveal com-
plex intravoxel tissue structure previously thought to be beyond the scope of diffusion
imaging methodology. '
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Title: Associate Professor of Radiology, Harvard Medical School







Acknowledgments

I would first and foremost like to express my deep gratitude to my advisers Jack Bel-
liveau and Van Wedeen. My many discussions with Jack and Van provided invaluable
advice on scienée and life. Jack encouraged me to have a scientific dream and with
Van helped me realize that dream. I would also like to express my deep thanks to my
thesis readers Anders Dale and David Cory for their support and helpful comments.
I am also indebted to my unofficial cosupervisor, John George of the Los Alamos Na-
tional Lab, Biophysics Group. John provided invaluable advice on the conductivity

project not to mention the breathtaking aerial tours of the Los Alamos canyons.

I feel fortunate to have been at the Massachusetts General Hospital Martinos
Center during a period of tremendous growth. The Center, under the inspirational
leadership of Bruce Rosen, provided a fantastically vibrant environment in which to
come of intellectual age. I particularly valued my interactions with Bruce Fischl, Tim
Davis, Vitaly Napdov, Nikos Makris, David Kennedy, Roger Tootell, David Salat,
- Ken Kwong, Eric Halgren, Tim Reese, Robert Weisskoff, Ona Wu, Rick Hoge, Bruce
Jenkins, Rick Dijkhuizen, Krastan Blagoev, and Diana Rosas. I would also like to
thank Greg Sorensen for helping to implement many of the methods developed here
in the clinic. Thanks are also due to Rick Hbge, Vitaly Napdov, and Krastan Blagoev
for proofreading the thesis. Their comments were invaluable. Needless to say, any

remaining mistakes are my own.

Thanks to my friends: Jesse Quinn, Vitaly Napadov, Paul Murphy, John Carney,
Matthias Gruson, Jeff Girshman, Pablo Redondo, Ed Moffett, Melinda Papowitz,
Neil Katz, Scott Packard, Sham Sokka, David Rosenberg, Marc Burock, Ngon Dao,
" Seth Birnbaum, Ciamac Moallemi, Patrick Purdon, Sari Levanen, Alex Barnett, Liz
Canner, and Nouchine Hadjikhani. Thanks everybody for the welcome diversions,

the support, the road trips, and trouble making excursions too numerous to mention.

I never would have been able to have finished the document you are now reading
were it not for the unwavering lové and support of my family: my father, Ronald

r]‘."uch, my Ihother, Gail Tuch, my sister, Becky Tuch, my girlfriend, Mette Wiegell,




and my as yet unna.med son. My father gave me the precious gift of caring about
thinking, and my mother, the gift of thinking about caring. My sister taught me the
how to cafe about the spirit, and Mette taught me the nature of true love. As for my
expected son, I_ am sure he has a thing or two he plans on teaching me. This thesis

is dedicated to them.




Support

I would like to thank the generous financial support from the organizations which
made this work possible. The work presented in this thesis was supported by the
Sol Goldman Charitable Trust, an NIH grant (5RO1 NS 38477-02), and a Human
Brain Project/Neuroinformatics research project grant (MH 60993-04) to Los Alamos
National Laboratory and Massachusetts General Hospital which was funded jointly
by the National Center for Research Resources, National Institute of Mental Health,

National Institute of Drug Abuse, and the National Science Foundation.







Contehts

1 Introduction

1.1
1.2
1.3
14

Introduction . . . . . . . . .. e
Motivation . . . . . . . . e e e e e e
Outline . . . . . . . . e

Original Contributions . . . . . .. ... .. ... .. ... ......

2 A Brief History

21
2.2
2.3
24

2.5

Brownian Motion . . . . ... ... . o Lo
Diffusion NMR . ... .. .. R [P
Diffusion MRI . . . . . . . . ... .
Diffusion Tensor MRI and Beyond . . . . . . . .. .. .. ... .. ..
2.4.1 Diffusion Anisotropy . . . . .. . .. ... L

242 The Tensor Model . . . . . . . . . . . . . . . ... ....

References . . . . . . . o . e

3 Principles of Diffusion Physics

3.1
3.2

Preface . . . . ... ... ... .... e e e
Diffusion Physics ......
3.2.1 Molecular Hydrodynamics of Diffusion . . .. ... .. .. ..
3.2.2 Diffusion Propagator . . . ... ... ... ..... B
3.2.3 Diffusion Equation . . .. ... ... .. ... L.
3.2.4 Free Diffusion . . e

3.2.5 Restricted Diffusion. . . . .. .. . ... ‘. e e .

21
21
22
22
24
25
25
27

28

29
29
30

31




3.2.6 Spectral Decomposition . . . . ... ... ... .. .. 42
3.2.7 From the Ensemble-Average Propagator to Microgeometry . . 43

3.2.7.1 The Structure Factor from the Long-Time Limit . . 44

'3.2.7.2  The Return-to-Origin Probability and the Spectral Sum 45

3.3 Discussion . . . . . ... e e e e e 46
34 References . . . . . . . . . e 48
Principles of Diffusion NMR and MRI 53
41 TOErOQUCHON « « « « o o o e e 53
4.2 Diffusion NMR . . . . . . .. . ..o 54
4.2.1 The Bloch-Torrey Equations . . . . . ... ... ... o 54
4.2.2 Pulsed Gradient Spin Echo Experiment . . . . . . . .. .. .. 90
4.2.2.1 The Stejskal-Tanner Equation . . . . . . ... .. .. 57

4.2.2.2 The Fourier Relationship . . .. .. ... ... ... 57

4.3 Relation to Microgeometry . . . . . . . . .. .. ... 60
4.3.1 The Pore Autocorrelation from the Long Time Limit . . . . . 60
4.3.2 The Return-To-Origin Probability and the Spectral Sum . .. 61
4.3.3 FreeDiffusion . . . . . . . . . ... oo 62

44 Diffusion MRI . . . . . . . . . . . e 62
4.4.1 Diffusion-Weighted Imaging . . . . . . . .. .. .. ... ... 62
4.4.2 Diffusion Tensor Imaging . . . . . . . ... ... ... ..... 62
4421 Background . . . . ..o .62

4.4.2.2 Diffusion Tensor Reconstruction . . . . . . .. .. .. 63

4.4.2.3 Diffusion Tensor Eigensystem . . . . ... ... ... 64

4424 Scalar Measures . . . .. ... . ... ... ... .. 67

4.5 DISCUSSION . . . . v vt e e e e e e 69
4.6 References . . . . . . . . e e e e 70
Cross—Propefty Relations / Conductivity Tensor Mapping 73
5.1 Preface. ... .. e e e e 73

5.2 Abstract . . . .. .. D T e 74




5.3 Introduction . ..............................

54 Model . . . . ... e
5.4.1 Cross-Property Relation . . .. .. .- . ... ... ......
542 Bounds . .............. e e e e e

5.5 MethO(;ls ..................................
551 MRIMethods . . . . . . .. .. . ... ... .. .. ...,
5.5.2 Comparison to Invasive Measurements . . . . ... ... ...

5.6 Results. . . . . . .. . .

5.7 DIiSCUSSION . . . . . v v e e

58 References . . . . . . . . . . e

Thalamic Parcellation

6.1 Preface. . .. . . . . . ... V. .
6.2 Abstract . . . . . . .. e
6.3 Introduction . . .. ... ... ...
6.4 Methods . . . . . . . . . e

6.4.1 Data Acquisition . . . .. .. ... ...

6.4.2 Automatic Segmentation Procedure . . . . . . ... ... ...

6.4.3 Center-of-Mass Comparison . . . . ... ... .. ... ....
6.5 Results. ... ..................... R I
6.6 DISCUSSION . . . . . v v v v e e
6.7 Acknowledgments . . . . .. .. ...
6.8 References . . . .. ... ... TS

Multi-Tensor Imaging

7.1 Preface. . . . . . . . . PR
7.2 Introduction . . . . . . . ...
7.3 Model . . .. ..
7.4 Experimental Methods . . . ... ... ... ... . ... .. ...
7.4.1 MRI Methods e e e
7.4.2 Multi-Tensor Reconstruction . . . . . . . . ... PR :

91
91
91
92
94
94
95
97
97
105
107
108

115
115
116
118
119
119
119




86

Results . . . . . . . . . . e e e e 120

7.5
751 RawData . ... .. ... . . ... ... 120
7.5.2 Multi-Tensor Reconstruction . . . . . . .. ... ... ... 120
7.5.3 Comparison to Tensor Model . . . .. ... .......... 123
76 DISCUSSION . - « o o o ot e e e 123
7.7 Appendix . . . . ... 125
7.8 References . . . . . . . . . . ... o P 128
Diffusion Spectrum Imaging 131
81 Preface. . . . . . . . .. 131
8.2 Abstract . . . . . . ... 132
83 Introduction . . . . . . . . ... ... L. 132
83.1 Q-Spacelmaging . . .. .. ... ... ... .......... 133
- 8.3.2 Modiﬁcations to Q-Space Imaging Experiment . . . . . . . .. 135
. 8.3.2.1 Twice-Refocused Balanced Echo Sequence . . . . . . 135
8.3.2.2 Effectively Constant Gradient . . . . . .. .. .. .. 136
8.3.2.3 Modulus Fourier Transform . ... ... e 138
8.3.2.4 Radial Projection Transform . .. .. ... ... .. 140
84 Methods . . . .. ......... e 142
85 Results. . . ... . . .. 145
8.5.1 Healthy Volunteers . . . . . . .. .. ... ... .. ...... 145
852 Patients . .. . .. ... ... 148
DISCUSSION . - « « v v e e e e e 154
87 References . . . . . . . . ... 158
Connectivity Mapping 161
9.1 Preface. .. ... B 161
9.2 Introduction . . . . . . . . . .. ... Lo 162
9.2.1 Tractography . . .. . ... . .. ... ... ... ... ... 163
9.2.2 Diffusion Spectrurﬁ Imaging . . ... ... ... .. .. .... 164
9..2.3 Generalized Streamline Tractography . . . . . e 167




9.24 Volume Segmentation . . . . . . . . ... ... ... ... ... 169

9.2.5 Connectivity Matrix . . ... ... ... ... ... ...... 170
9.25.1 Model . ... .... e, . 170

9.252 Algorithm . . .. .. ... .. ... . ... .. ..., 174

93 Methods . . . .. ... . 175
931 Imaging . ... ... ... ... .. ... ... 175
9.3.2 Connectivity ............................ 176

» 9.3.2.1 Generalized Streamline Tractography . . . . . . . . . 176
9.3.2.2 Volume Segmentation . ... ............. 176

9.3.2.3 Connectivity Matrix . . . ... ... ... ... ... 177

933 Results. . .. ... ... . ... ... ... .. 178
9.3.3.1 Tractography afid Volume Segmentation . . . . . . . 178

9.3.3.2 Connectivity Matrix . . . ... ... ......... 181

9.34 Discussion . . . ... ... ..., 184

94 References . . . . .. .. ... 186
10 Q-Ball Imaging 191
10.1 Introduction . . . . . . .. ... 191
10.2 Theory . . . . . .. ... e 193
10:2.1 Fourier Relation . . . . . ... .. ... . ... ... . ... .. 193
10.2.2 Orientation Distribution Function . . . . . . ... .. . .. .. 193
10.2.3 Reciprocal Space Funk Transform . . . . . ... ... ... .. 194

10.3 Methods . . . . . .. .. .. 197
10.3.1 Imaging . . ... e, 197
10.3.2 Reconstruction Algorithm . e 198

104 Results . . . . ... .. 199
10.5 Discussion . . . . ... ..., 201
10.6 Appendix .. ....... [P 204
107 References . . . . ......... .. ... ... ... e . 206




11 Conclusions

11.1 Summary

11.2 Open Problems . . . . . . . . . . .. . . e

11.2.1 Experimental . . ... ... ...................
11.2.2 Theoretical . . . . . . . . . . . . .

11.3 References
A Notation

B Abbrevations

.................................

207
207
208
208
210
213

215

219



List of Figures

4-1

4-2
4-3

4-4
4-5

5-1

5-2

6-1
6-2

6-3

6-5
6-6

Pulse diagram for the PGSE experiment . . . ... ... ... ....
Schematic diagram of the spin phase distribution during the PGSE
experiment . . . . . . ... L
Diffusion tensor image of frontal white matter . . . . . . ... .. ..
Iéoprobability ellipsoid for a Géussian diffusion function . L ‘. .

Examples of scalar images derived from DTT . . . .. . ... ... ..

Theoretical cross-property relationship between the conductivity and
diffusion tensor eigenvalues . . . . . . ... .. ... ... .. ... ..
Experimental relationship between the conductivity and diffusion ten-
sor eigenvalues . . . . ... ... e

Axial electrical conductivity tensor map of the human brain derived

from the linear cross-property relation . . . ... ... ... ... ..

Mid-thalamic diffusion tensor images of 4 subjects ...........

Comparison between diffusion tensor image of the thalamus and a his-

tological slice . . . . .. . . . ... ...

Automatic segmentation results . . . .. . ... ... ... .

- Surface rendering of the thalamus . . . . .. ... ... .. ......

Segmentation results from individual subject . . . . . ... ... ...
Comparison between center-of-mass coordinates obtained from histo-

logical atlas and diffusion tensor segmentation . . . . ... ... ...

81

83

84

98

99
100
101
102

Gradient directions for the high angular resolution diffusion experiment 119




Spherical polar plots of the ADC in the fascicle base of the frontal gyri 121

7-2
7-3 Comparison of single-tensor and two-tensor fits to diffusion signal . . 122
7-4 Error of the tensor model as a function of the oblateness of the apparent
tensor .. . ... L L . 123
7-5 Single voxel showing disagreement between the ADC function and the
two-tensor fit . . . ... ... L 125
8-1 Pulse sequence diagram for the effectively constant gradient twice-
refocused balanced echo (cgTRBE) experiment . . . . . ... ... .. 135
8-2 Diffusion in a constant magnetic field gradient . . . . . . . . ... .. 137
8-3 Keyhole Cartesian sampiing scheme . . . . . ... ... .. ..., . 142
84 Schematic diagram of the ODF reconstruction scheme . . . . . . . . . 144
8-5 Subject A: Two sagittal diffusion spectrum images of the brainstem at
the level of the pontine decussation . . . . . ... ... ... ... .. 146
8-6 Diffusion propagator taken from a single voxel in the brainstem . .. 147
8-7 Subject B: Comparison of DSI and DTI of the brainstem . . . . . . . 147
8-8 Subject B: Comparison of DSI and DTI at a three-way fiber crossing 148
8-9 Subject A: Two sagittal slice diffusion spectrum images of motor cortex 149
8-10 Subject A: Zoomed view of a single slice from Fig. 89. . .. ... .. 150
8-11 Subject C: Axial DSI of the occipital pole . . . . ... ... ... .. 151

8-12 Subject D: Sagittal DSI of patient one year post cingulotomy for OCD 152

8-13 Subject E: Coronal DSI of patient with a resected oligodendroglioma 153

8-14 Subject F: Sagittal DSI of patient with temporal lobe tumor . . . . . 153
8-15 Subject G: Axial DSI of patient with a chronic thalamic infarct . . . 154
8-16 Subject H: Axial DSI of patient with chronic left occipital stroke . .. 155
9-1 Robust curvature penalty function. . . . . . . ... .. ... ... .. 168
9-2 Tractography of the antero- and mediodorsal thalamic nuclei . . . . . 178
9-3 Tractography of the pontine decussation . . . .. ... ... ..... 179
9-4 Pfojectibns from the rostral pons . . . .. ... ... I 180




9-8

10-1
10-2
10-3

10-4

Tractography of the corona radiata, the cingulum, and the corpus cal-

losum . . ...
Volume segmentation of the corona radiata, the corpus callosum, the
cingulum bundle, and the projections of the ciﬁgulum .........
Example simulated annealing run for the path between primary motor

and primary sensorimotor cortices . . . . . . .. ... ... ... ...

Connectivity matrix for all test points . . . . . e e

The Funk transform . . . . ... .. ... .. ... .. ........
Gradient directions for the q-ball imaging experiment . . .A ......
Comparison of DSI and g-ball images from the intersection of the cor-
pus callosum with the coronaradiata . . . . . ... ... .......

Q-ball image from the temporallobe . . ... ... ... ... .. ..

182

182
183







List of | Tables

6.1
6.2

8.1

9.1

‘Mean fiber orientations of the individually segmented nuclei . . . . . 103
Thalamic nuclei and output projections . . . . e 104
Protocols for DSI experiments . . . . . . . . .. ... ... ...... 142
Points selected for connectivity matrix calculation . . . . . . S Vi




20

References




b cmemc oy om -

Chaptér 1
Introduction

“Ts there something finished? And some new beginning on the way?”

- Carl Sandberg, Falltime

1.1 Introduction

While water appers static to the naked eye, at microscopic resolutions the water -
molecules are in constant random motion. The erratic motion of the molecules in a
liquid or gas is a phenomenon termed Brownian motion after the Scottish Naturlist
who first observed the phenomenon in pollen grains suspended in water. It was not
until Albert Einstein studied the problem, however, did it become clear that Brownian
motion is dﬁe to the thermal agitation of the water molecules.

Imagine for a moment that we could tag one of the water molecules inside of the
brain and chart its migration. We would see that the path taken by the water molecule
is shaped by the microscopic structure of the brain tissue. We might see, for examplé,
that the water molecule cannot readily penetrate cells and tends rather to diffuse along
the cells. Or we might observe that the water molecule is confined within particular

compartments. The path of the water molecule therefore reflects the structure of its

microscopic environment, The basic idea of magnetic resonance diffusion imaging is

to measure the diffusion of water molecules and use these measurements to probe the

uhderlyin‘g structure of the tissue.
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1.2 Motivation

Magnetic resonance diffusion imaging provides an exquisitely sensitive probe of tis-
sue miérostructure. Owing to the microscopic length scale of diffusion in biological
tissues, diffusion imaging can reveal histological architecture irresolvable by conven-
tional magnetic resonance imaging methods. However, diffusion imaging methods
to date have chief been based on analytical models of the underlying diffusion pro-
cess. For example, diffusion tensor imaging assumes homogeneous Gaussian diffusion
within eéch voxel, an assumption which is clearly invalid for the vast majority of the
brain at presently achievable voxel resolutions.

In this thesis I developed a diffusion imaging method capable of measuring the
miéroscopic diffusion function within each voxel. In contrast to previous approaches
“to diffusion imaging, the method does not require any assumptions on the underlying
diffusion function. The model-independent approach can resolve complex intravoxel
tissue structure including fiber crossing and fiber divergence within a single voxel.
The method is capable of resolving not only deep white matter intersections, but
also cofnposite tissue structure at the cortical margin, and fiber-specific degeneration
in neurodegenera,ﬁive pathology. Moreover, the ability to disentangle fiber crossing
renders computational reconstruction of white matter pathways, the so-called white
matter tractography problem, for more tractable. In sum, the approach can reveal
complex intravoxel tissue structure previously thought to be beyond the scope of

- diffusion imaging methodology.

1.3 Outline

This thesis is divided into three parts. In Part I (Chapters 2-4) we briefly review
the history of diffusion nuclear magnetic resonance (NMR) and magnetic resonance
imaging (MRI) (Chapter 2), and provide the requisite background on diffusion physics
(Chapter 3) and diffusion NMR and MRI (Chapter 4).

The techniques introduced in Chapters 3 and 4, specifically the diffusion tensor

o ——— e e T O ‘ = ——
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imaging (DTI) method, are applied in Part II which consists of Chapters 5 and 6. In
5 we derive a relationship between the water diffusion tensor measured by DTI and
the spatial statistics of the underlying tissue microstructure. The relation is used to
provide a connection between the water diffusion tensor and the more general family
of transport tensors in biological tissue, with a particular emphasis on the electrical
conductivity tensor in brain tissue.

In addition to providing insight into transport in tissue, the diffusion tensor can
resolve anatomy not seen on conventional MRI. Chapter 6 uses the DTI method to
resolve the nuclei of the thalamus, a structure which displays no internal contrast
on conventional MRI. Using an automatic segmentation algorithm, we validated the
DTI results against a published histological atlas.

While the tensor paradigm employed by DTI provides a constructive framework
for diffusion imaging when the fibers are strongly aligned with a voxel, the tensor
model is incapable of resolving multiple fiber populations within a voxel such as
may arise from fiber crossing or fiber divergence within a voxel. Prompted by the
detection of sigﬁiﬁcant secondary structure in the thalamus with DTI, we developed
a set of diffusion imaging methods capable of resolving multiple fiber populations
within a voxel, architecture irresolvable by the tensor model. The development of
these methods forms the basis of Part III which consists of Chapters 7-10.

In Chapter 7 we develop a diffusion imaging reconstruction scheme which can
describe a ‘ﬁnite_ mixture of Gaussian diffusion processes. However, the Gaussian
mixture modeling approach requires an iterative reconstruction scheme and suffers
from possible model misspecification. In Chapter 8 we develop a diffusion imaging
method termed diffusion spectrum imaging (DSI) which is capable of resolving the
three-dimensional spin displacérnent probability density function without the need
for any assumptions on the analytical form of the underlying diffusion process.

Chapter 9 considers the problem of reconstructing the white matter connectiv-
ify of the brain from DSI. We develop three separate approaches to the connectivity
problem: streamline tractography, vblume segmentation, and connectivity matrix in-

ference. The approaches operate in different spaces, respectively, in path space, in
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the anatomical volume, and on the cortical surace, and therefore offer relative an-
alytical and practical adva.ntages. For exampl,e he tractography and connectivity
matrix approaches provide reconstructions of the individual white matter pathways,
but, additionaly, the ability to express the connectivity matrix solutioﬁs on the corti-
cal surface provides a register for inter-subject averaging. Moreover, the probabilistic
framework of the connectivity matrix program facilitates hypothesis testing on the
connectivity structures within a between subjects.

The DSI method presented in Chapter 8 requires extremely high spatial resolution
of the‘diffusion function. In Chapter 10 we develop a diffusion imaging reconstruction
scheme based on the Funk transform which like the DSI method is model-independent,
but has the further advantages of not requiring high diffusion spatial resolution and
allowing for direct reconstruction of the spin displacement orientation distribution
functibn on the projective space. The development of what we call the g-ball imaging
method gives an appealing narrative closure as it builds on the spherical sampling
scheme we began with in Chap. 7, and exploits the principle presented in Chapter 8
that the directional contrast-to-noise of the diffusion function is contained in a narrow

spatial frequency band.

1.4 Original Contributions

The most significant original contributions of this thesis are (i) the development of
a practical experimental method for spin displacement imaging of the human brain
in vivo (Chap. 8), and (ii) the demonstration that this method can resolve complex
intravoxel tissue structure such as fiber crossing within a single voxel. The method
opens a whole new class of tissue structural properties for investigation by diffusion
imaging.v In particular, the method enables the detection of selective white matter
fiber loss and rearrangement in white matter disease. 1 hope that spin displacement
imaging will ultimately provide better diagnosis of neurodegenerative disease and help

elucidate the connectivity structure of the human brain.




Chaptér 2

A Brief History

“The moments of the past do not remain still...”

Marcel Proust, “The Sweet Cheat Gone,” Remembrance of Things Past

2.1 Brbwnian Motion

In 1828 the Scottish Natufalist Robert Brown published a pamphlet entitled ’A Brief

account of microscopical observations ...".

In this pamphlet Brown recorded that
pollen grains of Clarkia pulchella suspended in water under a microscope exhibited
a peculiar “rapid oscillatory motion” (1). Brown initially believed that such motion
was particular to the male sexual cells of plants, but wés later startled to observé that
pollen of plants suspended in alcohol for almost eleven months exhibited the same
erratic motion: a “very unexpected fact of seeming vitality being retained by these
’'molecules’ so long after the death of the plant.” Further studies with not only other
organic substances but chips of glass, granite, particles of smoke, and rocks “of all
ages” revealed such motion to be a general property of small particles suspended in
solution.

The erratic particle motion observed by Brown would remain unexplained until
the dawn of the kinetic theory of matter in the third quarter of the nineteenth cen-
tury. Piongered by Maxwell, Boltzmann, and Claussius, the kinetic theory of matter

introduced the radical concept that the heat of a liquid or gas is mediated by the
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constant random thermal motion of the molecules in the medium. The kinetic theory
would inspire Weiner to declare in 1863 that the particle motion observed by Brown
could not be due to convection currents in the fluid, but was rather due to collisions
between the particles and the surrounding molecules of the fluid. The molecular ki-
netic explanation for Brownian motion was reiterated some years later in 1877 by two
Jesuit priests, Fathers Delsaulx and Carbonnelle, but it was not until G.L. Gouy in
1888-9 showed that Brownian motion is more rapid for smaller particles and never
reaches equilibrium that the problem of Brownian motion assumed a place among the

‘classical problems of physics.

Albert Einstein, appa.rently unaware of any of the previoué observations of Brow-
nian motion,! was motivated to provide an experimentally testable hypothesis for the
kinetic-molecular theory of matter when in 1905 he showed how the random thermal
motioﬁ. of the molecules in a liquid or gas could be iniparted to larger particles. He
predicted that the motion of these larger particles could be observed under the mi-
croscope (2,3) and could therefore provide an experimentally testable hypothesis for
the kinetic theory. Einstein’s theory accounted for the dependence of the effect on
the temperature and viscosity of the solution, and the size of the suspended parti-
cle, and thereby provided a set of experimentally téstable predictions for the kinetic
theory of matter. The same formulation Waé also developed independently by the Pol-
ish mathematician Marian Smoluchowski in 1905-06 albeit with a different approach
(4). Einstein’s theoretical studies were experimentally confirmed by Jean Babtiste
Perrin (5) who measured the dependence of Brownian motion on temperature and
particle size. By demonstrating that colloidal particles obey Einstein’s formulation,
Perrin was able to calculate Avogadro’s number and obtain direct verification for the
kinetic-molecular theory of gases, a finding which earned him the Nobel Prize for
physics in 1926.

While Brownian motion is a microscopic phenomenon it gives rise to a macroscop-

ically observable phenomenon known as diffusion. On a microscopic level, diffusion

Tn a letter to Michele Besso in J anuary 6, 1948, Einstein wrote that he had “deduced [Brownian
motion] from mechanics, without knowing that anyone had already observed anything of the kind”.
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arises from th microscopic intermingling of the molecules as the result of Brownian
motion. While we are familiar with the diffusion of a substance in another host
substance, the physics of diffusion makes no essential distinction between the two.
Hence, the theory of diffusion can be applied to the diffusion of a substance in its
~own medium, for example the diffusion of water in water. This phenomenon is re-
ferred to as self-diffusion or, with some abuse of terminology, simply diffusion. In
the following we briefly review the historical origins of diffusion measurements with
nuclear magnetic resonance and the development toward magnetic resonance imaging

of diffusion in vivo.

2.2 Diﬂ'usion NMR

Shortly after the initial discovery of the NMR phenomenon by Bloch (6,7) and Purcell
(8), Hahn published his seminal paper (9) on the NMR spin echo in which he noted
that the random thermal motion of the spins would reduce the amplitude of the
observed spin echo signal in the presence of a magnetic field inhomogeneity. Carr and
Purcell (10) shortly after developed a set of equations for relating the echo amplitude
attenuation to discrete jumps of the spins. Torrey (11) subsequently developed a
continuum description based on the magnetization diffusion equation, the so-called
Bloch-Torrey equation.

In their' classic paper on the spin diffusion experiment, Stejskal and Tanner (12)
developed the methodology and theory of the pulsed gradient spin echo experiment
which made possible direct measurement of the diffusion function and opened the
window for quantitative measurements of molecular diffusion coefficients. Early work
on diffusion in restricted spaces was performed by Woessner (13), Stejskal and Tanner
(12,14,15), and Cotts (16,17). The late nineteen seventies and early eighties saw the
beginning of diffusion NMR applied to a wide range of biological samples (18-23).
Using the diffusion propagator formalism (14,24), Cory (25) demonstrated that the
size of a diffusion compartment can' be directly inferred from the observed diffusion

fﬁnction; a discovery which enabled quantitative morphometry of the pore spaces in
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porous media.

In 1991 Callaghan experimentally demonstrated and provided an elegant theoret-
ical explanation for the diffusion-diffraction phenomenon (26) in which the spin echo
signal is observed to decrease non-monotonically as a function of the applied diffu-
sion gradient magnitude. The diffusion-diffraction phenomenon provided a valuable
bridge between diffusion NMR and other imaging methods such as inelastic neutron
scattering and x-ray crystallography where diffraction effects are commonly observed
(27). The late nineties witnessed the application of diffusion NMR to a wide range of
complex fluid motions including vortex and shear flow, an evolution which is described

in an excellent review by Callaghan (28).

2.3. Diffusion MRI

In 1973 the chemist Paul Lauterbur, then at the State University of New York at Stony
Brook, published a groundbreaking paper (29) entitled “Image formation by induced
local interactions: Examples erﬁploying nuclear magnétic resonance”. Lauterbur’s key
insight was to superimpose a magnetic field gradient on the static uniform magnetic
field. Owing to the Larmor principle, different parts of the sample would have different
resonance frequencies, and thus, a given resonance frequency could be associated with
a given position. Using a technique called backprojection which he borrowed from

' computerizéd x-ray tomogfaphy, Lauterbur produced an image of a pair of test tubes

immersed in a vial of water. He continued to image small objects, including a tiny

crab scavenged by his daughter from the Long Island beach near his home.
Meanwhile across the Atlantic at the University of Nottingham, Peter Mansfield
had developed a magnetic field gradient scheme called echo-planar imaging (EPI)
which did not require repeated excitation-sampling cycles, effectively reducing the
required imaging time to tens of milliseconds (30). The EPI method was first imple-
mented in practice in 1984 (31) and on high magnetic field whole body scanners in
1987 (32). The fast imaging times provided by EPI facilitated the development of

diffusion MRI which is inherently sensitive to patient motion. =
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Shortly following the first descriptionk of diffusion imaging by Taylor and Bushell
(33), Denis LeBihan obtained the first diffusion images on a whole-body system (34,
35). The clinical importance of diffusion imaging became apparent when Michael
Moseley’s group in San Francisco (36) reported that diffusion imaging can detect
ischemic tissue within minutes after stroke in an experimental animal model. Prior,
no other imaging technique with the exception of positron emission tomography had
been able to discriminate ischemic versus normal tissue at the acute time period after
stroke onset. In years following, diffusion imaging has emerged as the standard for

diagnosis of early cerebral infarct.

2.4 | Diffusion Tensor MRI and Beyond

2.4.1 Diffusion Anisotropy

Diffusion anisotropy refers to the dependence of the apparent diffusion on the direc-
tion in which it is measured. In general, anisotropy arises in materials with strongly
aligned microstructure such as fibrous biological tissues, or polymers, or nematic lig-
uid crystals. In such materials the diffusion is more restricted perpendicular to the
grain of the material than along the axis of the grain. The presence of anisotropy
provides a contrast mechanism for detecting the alignment of the material microstruc-

ture.

Cleveland (19) was the first to measure anisotropic diffusion in a biological sample,
in this case excised skeletal muscle, with diffusion NMR. It was not until 1990 however
that images of diffusion anisotropy were obtained in vivo by Moseley in the cat spinal
cord (37) and Doran and Chenevert in cerebral white matter (38,39). The study of
diffusion anisotropy in biological ti_ésues became systematized with the introduction

of the diffusion tensor model by Basser (40).
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2.4.2 The Tensof Model

In 1994 Peter Basser (40) introduced the diffusion tensor model to diffusion imaging.
The tensor model provided a systematic analytical framework for describing diffusion
anisotropy in tissue and entrenched Gaussian diffusion as the dominant model for
diffusion imaging of anisotropy. In particular, the identification of the diffusion tensor
major eigenvector with the dominant fiber orientation enabled the fiber orientation
mapping program. \

While the Gaussian diffusion model posited by DTI greatly simpliﬁés the analy-
sis and interpretation of diffusion imaging experiments, the assumption of Gaussian
diffusion obscures many phenomena. For example, the tensor model is incapable of
describing restricted diffusion, diffusion heterogeneity, or surface relaxation to name
but a few examples. The dévelopment of a model-independent diffusion imaging
paradigm which can resolve these phenomena represents one of the major goals of

" this thesis.
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Chapter 3
Principles of Diffusion Physics

“As water is in water.”

William Shakespeare, Antony and Cleopatra

3.1 Preface

In this section we describe the physical principles governing diffusion in materials
with a particular focus on biological tissues. We introduce the diffusion propagator
formalism and discuss how properties related to the microgeometry of the material
can be inferred from the diffusion propagator. The diffusion-structure relations we
present here will be explored more fully in the following chapter on diffusion NMR

and MRI.

While this section seeks to present a standard background on diffusion physics rele-
vant to NMR we have included a number of new results where appropriate. Eqns. 3.13,
3.14 represent, to our knowledge, the first time that the complete surface boundary
conditions for diffusion with relaxing, partially permeable barriers have been writ-
tén down. Furthermdre,. we offer a proof of the positive-definiteness of the diffusion
propagator which makes possible the diffusion spectrum imaging and g-ball imaging

methods presented in Chaps. 8 and 10.
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3.2 Diffusion Physics

Molecular spin diffusion is, simply stated, the random thermal motion of spins. Ow-
ing to the microscopic length-scale of diffusion in tissue, the diffusion process provides
an exquisitely sénsitive probe of tissue microstructure. However, in order to relate
the observed diffusion signal to the underlying tissue microstructure, it is helpful to
have an understanding of how the diffusion signal is influenced by the tissue geometry
and properties. In the present section we introduce the diffusion propagator formal-
ism which provides a remarkably povgerful framework for describing and predicting
diffusion behavior in compleﬁc materials such as biological tissues. |

The particle most commonly measured in biological applications is the proton
and its most common host is the water molecule. Notwithstanding the work on other
nuclei and other metabolic hosts, we will focus this discussion on the behavior of
water protons, which, for sake of convenience, we simply refer to as spins. It should
be borne in mind, however, that much of the framework developed here is generally

applicable to other metabolic species.

3.2.1 Molecular Hydrodynamics of Diffusion

How is the diffusion behavior we observe with NMR related to the underlying molec-
ular hydrodynamics? Let us begin by considering how the statistics of the spin
displacemeht gives rise to the diffusion coefficient and, in the case of anisotropic
materials, the diffusion tensor. If we consider the spin position r’ at time 0 and
the subsequent spin position r at time 7 then the diffusion coeflicient D is given by
Einstein’s relation (1)

D= 617 (RTR) (3.1)

where R = r — r’ is the relative spin displacement as a function of time 7, and (...)
is the average over the spin ensemble. For a given diffusion time 7, the diffusion

coefficient defines a characteristic length scale

¢=+6Dr | (3.2)
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which is referred to as variously the Einstein length, the diffusion length, or the mixing

length.

In cases where the medium is anisotropic, the Einstein relation easily generalizes
to the diffusion tensor

D= 6% (RRT). (3.3)

where the diffusion tensor D is a three-dimensional rank-2 tensor. According to
Onsager’s hypothesis (2) the diffusion tensor is symmetric (D = DT). Refs. 3 and 4

argue that the diffusion tensor is also positive definite.

While the Einstein relation relates the diffusion tensor to the spin position, the
diffusion tensor can also be related to the spin velocity through the spin velocity

autocorrelation tensor ¢(7) (5,6)
o(1) = v'vTl. (3.4)

where v is the spin velocity. The spin velocity autocorrelation tensor is related to the

diffusion tensor through the Green-Kubo relation (6-8)

1 [ | | '
D= /O (b(r))dr (3.5)

The normalized scalar velocity autocorrelation

~

o(1) = vIv//(vTv) (3.6)
is often used to define a correlation time (9)

Ty = /oo QS(T)dT (3.7)
0

which characterizes the decay rate of the velocity autocorrelation function and the
time-scale of the transition from the molecular dynamic, or non-Markovian,'regime
where memory effects dominate to the hydrodynamic, or Markovian, regime where

ﬁlemory effects are negligible.
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The velocity autoéorrelation function is an oscillatory decreasing function of time
subject to the constraint that —1 < #(7) < 1 where the decay rate is characterized by
the correlation time. The decay of the velocity autocorrelation function to approxi-
mately zero defines the transition from the molecﬁla,r dynamic region, where memory
effects are significant, to the hydrodynamic region, where memoi"y effects are negli-
gible. These two regions are also referred to as the non-Markovian and Markovian
regimes (6).

In free solution, the hydrodynamic transition has a molecular time-scale. However,
in porous media such as biological tissue spins take much longer to thermalize because
the length-scales of the spatial heterogeneities are typically much larger than the
molecular scale. Hence, time-dependent diffusion coefficients in porous media (10,11)
typically reflect not a molecular time-scale phenomenon, but rather the fact that the
spin distribution has not yet fully sampled the hetejrogeneous environment. |

The Einstein and Green-Kubo relations provide an essential connection between
the diffusion tensor D which is a macroscopic property, and the the spin velocity
v which is a microscopic property. The time integral and the ensemble average
remdve the details of the velocity distfibution from the observed measurement of D,
but the diffusion tensor nevertheless captures a great deal of information about the
microscopic environment. We will return to the diffusion tensor in Sec. 4.4.2.3 when

we discuss the eigenstructure of the diffusion tensor.

3.2.2 Diffusion Propagator

As we will see in the later sections, the diffusion tensor framework can only describe
a very limited class of diffusion phenomeha. Specifically, the diffusion tensor only
fully characterizes what is variously called Fickian, Case I, or Gaussian diffusion.
Such diffusion excludes a vast range of phenomena which are commonly observed in
in vivo such as restriction, heterogeneity, dnomalous diffusion, and finite boundary
permeability.

The diffusion propagator for‘malism, on the other hand, offers a far more robust

descriptive framework which is capable of characterizing all of the phenomena men-
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tioned above. The diffusion propagator P(r,r’,7) gives the probability of a spin
traveling from position r’ to r in the diffusion time 7 (12-14). For example, if one
were to release a spin at position r’ and time 0, the propagator gives the probabil-
ity of finding that spin at position r at time 7 (15). The PDF is also referred to
as the diffusion Green’s function, the van Hove self-correlation function (16), or the
conditional displacement probability density function (cPDF). |
Given that the diffusion tensor only fully describes a very special cése of diffusion,
namely, pure Gaussian diffusion, the reader is encouraged, whenever possible, to think
of the underlying diffusion process in terms of the propagator. Whereas the diffusion
coefficient (or diffusion tensor) framework greatly simplifies experimental acquisition
and interpretation, the diffusion coefficient model obscures as much as it reveals. For
example, the diffusion coefficient model cannot describe heterogeneity effects, true
restriction, ;.noma,lous diffusion, and a host of other phenomena. The propagator
formalism, however, is naturally suited to describe these effects. The propagator
framework also supports a major theme of the later chapters of this thesis which is
~ to conceptualize diffusion not as an intrinsic property but rather as a reflection of the

underlying microstructure.

3.2.3 Diffusion Equation

The relationship between the observed diffusion propagator and the underlying mi-
crostructure is ultimately governed by the diffusion equation and the attending bound-
ary conditions. By understanding how the tissue microstructure enters into the dif-
>fusion equation and the boundary conditions we can obtain an understanding of the
relationship between the observed diffusion propagator and the underlying structure.
In order to derive the diffusion equation and the boundary conditions we begin by
introducing the spin probability density flux j(r) which describes the flux into a unit
area at position r and time 7. The flux is related to the spatial gradient of the

diffusion propagator by Fick’s first law (17,18)

i(r) = —-D()VP(r,r,7) o | (3.8)




40 CHAPTER 3. PRINCIPLES OF DIFFUSION PHYSICS

where the gradient is taken with respect to r, and D(r) is the diffusion tensor at

position r. The continuity theorem

%P(r’ I‘,, T) = _V.](r) - p(l‘)P(I‘, r,’ T) (3'9)

states that the time rate of change of the spin displacement probability is equal
to the probability lost to spin flux j plus the probability lost to bulk relaxation p.
Substitution of Fick’s first law (Eqn. 3.8) into the continuity theorem (Eqn. 3.9) gives

the diffusion-absorption equation

% - V(D(r)V) + p(r)] P(r,r',7) = 6(r — r')é(7) (3.10)

where the right-hand side is for a d-function initial condition. The diffusion équation

without the absorption term is sometimes referred to as Fick’s second law for diffusion

(17).

3.2.4 Free Diffusion

If there is no absorption (p — 0) and no additional boundary conditions, i.e., no
diffusion barriers, then the diffusion is said to be free. In such case the diffusion

equation (Eqn. 3.10) is solved by the Gaussian propagator Pg
Po(R,7) = (D|(4nr)’)2exp (-RTD'R/(4))  (311)

where D is the diffusion tensor, R = r — r’ is the relative spin displacement, and |.|
is the determinant. In an isotropic media with diffusion coefficient D the Gaussian

propagator simplifies to
Ps(|R|,7) = ((4nDr)*)""? exp (—|R[*/(4Dr)) (3.12)

The Gaussian propagator provides a connection between the diffusion tensor and the

diffusion propagator only for an unrestricted, homogeneous diffusion process. In the
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following section we describe the more general case in which the propagator has no

simple analytical form.

3.2.5 Restricted Diffusion

In materials with restricting, permeable, or rela.xiﬁ_g walls @he diffusion equation (3.10)
is subject to additional surface boundary conditions. Writing the surface boundary
conditions requires some care though. Let us label theﬁ variables on the outside of the
surface With a plus sign (+) and those on the inside of the surface with a minus sign
(-), bearing in mind that this is an artiﬁcial distinction. The flux from outside of the
surface into the inside is labeled j.(r) and j_(r) for the vice versa. The flux across a

given compartment is

ju(r) = {— [n(r)TDi(r)V + ,ui(r)] Pui(r, v, T)}reﬁ'E (3.13)

where n(r) is the surface normal to the diffusion barrier at position r, u(r) is the
surface relaxation at position r, and 9 is the diffusion compartment bouhdary (19).
The spins do not accumulate at the boundary so we have the continuity condition
J+(r) = j-(r).

The surface boundary condition gives the flux conditions at the surface of the
diffusion éompartments but does not include the effects of finite surface permeability, a
condition thich is commonly encountered in biological tissue since the cell membrane
is partially permeable. If we assume that the diffusion barrier is thin relative to the
diffusion length then the surface permeability boundary condition (20-22) can be
written |

P (r,x',7) — P_(r,v',7) = =P ji(r). (3.14)

where P is the surface permeability. This boundary condition is sometimes referred to
as Fick’s first law of membranes. It was first used in the context of diffusion NMR by

Tanner (22).! In the limit of impenetrable barriers (P — 0) the inside and outside of

* 1In recognition of Tanner’s original insight, Powles (21) coined this equation, somewhat tongue-
in-cheek, the leather boundary condition.
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the diffusion compartments are completely isolated. Consequently, there is no surface
flux j+(r) =j_(r) = 0, and P, and P_ are independent.

Given the diffusion equation and the surface boundary conditions it is possible
to obtain analytical descriptions for the diffusion behavior in a large number of toy
models. However, given the complexity of limited information available on biological
media, it is often difficult to construct accurate analytical models with any predictive
value. The following sectié-ﬁs\'j 1a’3;3"'f1'1e framework for methods which are capable of
describing properties of the tissue geometry without need for any specific realization

of the tissue geometry.

3.2.6 Spectral Decomposition

The propagator has the spectral decomposition
P(r,r',7) = Z U (1) (r')eEnT (3.15)

where {u,} are the orthonormal eigenfunctions of the propagator (23,24). The or-

thonormality condition can be written

/un(r)u;(r) dr = émn (3.16)

The diffusion propagator is real and symmetric for a pure diffusion process (no co-
herent motion) so all of the eigenfunctions are real everywhere: ;. (r) = u,(r) for all
r.

Note that from the spectral decomposition one can easily prove the Chapman- -

Kolmogorov theorem

/P(r, r',7)P(r",r,n) dr = P(x" v, 7 + 7). (3.17)

We can also use the spectral decomposition to show that all of the eigenvalues E, are
real and consequently the propagator is positive definite. Substituting the spectral

decomposition into the diffusion equation gives the Helmholtz eigenvalue equation
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parameterized by the eigenvalues E,
[V(D(r)V) + E,] ua(r) = 0. (3.18)

From the eigen\'ralue equation above we see that since all of the eigenfunctions are
real all of the eigenvalues F, are real as well. In the spectral decomposition the
eigenvalues appear in the expone_ntial, and hence the diffusion propagator is positive
definite. The reality of the eigenvalues can be seen a physical consequence of the fact
that all of the eigenmodes of the diffusion propagator decay monotonically with time.
We will return to the positivity of the propagator later in Chap. 8 when we discuss

the diffusion spectrum imaging method.

3.2.7 From the Ensemble-Average Propagator to Microge-

ometry

The observed diffusion propagator represents a spatial sum over the microscopic en-
vironments existing in the voxel, where the resolution of the voxel is defined by the
macroscopic spatial encoding as allowed by the available signal-to-noise ratio. We
refer to this averaged propagator as the ensemble-average propagator (EAP) defined

as the propagator averaged over all initial positions

P(R,T) = /P(r,r’,r)p(r’)dr’ (3.19)

where R = r — 1’ is the relative spin displacement (13,14), and p(r’) is the initial spin
density. The EAP P(R, T) expresses the average probability of a spin displacement
R. It should be clear from the context and the notation, two position arguments
for the unaveraged propagator and one for the average propagator, whether we are
referring to the unaveraged or averaged propagator.

The following section describes how various microgeometric properties of the ma-
terial can be derived from the EAP. Such relations are key because they allow us

to infer properties of the underlying microgeometry without the need to invoke an
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analytical representation of the geometry. The limiting conditions required by the
models, such as equilibrium, are rarely fully realized in biological applications, but
the diffusion-structure relations nevertheless provide a great deal of insight into the
principles goverr_ling diffusion in complex materials. ’

Borrowing from the porous medium literature, we will use the terms pore space
and grain space to denote, respectively, the space accessible and the space inaccessible
to the spins. We realize that this distinction is somewhat ill-fitting in biological
tissues which tend to consist of a complex mixture of diffusion environments sepa;rated'
by partially permeable barriers, but the distinction lets us describe thé effects of

restriction in a simple manner.

- 3.2.7.1 The Structure Factor from the Long-Time Limit

Given the EAP what can we infer about the underlying microgeometry of the tissue?
If the diffusion boundaries are closed, unrelaxing, and completely impermeable, then
in the long time Ergodic limit (7 — oo) the propagator will assume the shape of the

pore space x(r), specifically,
P(r,r',7 — 00) = x(r' + r)p(r'). (3.20)

If we identify the initial spin density p(r’) with the shape function x(r’) then sub-

stituting the above relation into the definition of the EAP (Eqn. 3.19) shows that in

the long time limit described above, the EAP will take on the shape of the average -
spatial autocorrelation of the pore shape, (14,25)

P(R,7 — c0) = Z /x(r + ') x(r')dr’ | (3.21)

pores

= F [Z If[x(q)]IQ]

pores

- where F is the Fourier transform, and the sum is taken over the isolated pores. This

striking result allows for direct inference of the average structure function from the
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EAP. However, it should be borne in mind that in biological applications the full
equilibrium condition is rarely satisfied due to the finite permeability of cell mem-

branes, surface relaxation, and the high connectivity of the pore space.

3.2.7.2 The Return-to-Origin Probability and the Spectral Sum

The retﬁrn-to—origin (RTO) probability ©(7) expresses the average probability that
a molecule will return to its starting position (26,27). The RTO probabilty can be

derived from the propagator as follows

o(r) =/P(r’,r’,7')p(r’)dr'. | (3.22)

Substituting the eigenmode expansion for the diffusion propagator we have

o) = ¥ / (1t (Y~ E" ' (3.23)
= Y B | (3.24)

where the last equation follows from the fact that the eigenfunctions form an or-

thonormal set.

Eqn. 3.24 is referred to as the spectral sum or the spectral partition function and
is extensively studied in the field of inverse spectral analysis. Inverse spectral analysis
is concerned \-Nith the inference of the geometry of a domain from the eigenspectrum
of an operator on that domain, also known as the classic problem “Can one hear the
shape »cr>f a drum?” (28). Building on work from Sleeman and Zayed (29), Mitra (27)
showed that the spectral sum is related to the surface-to-volume ratio of the pore
interface
| o(r) = (LLTD% 1+ —‘é—%i—:\/ﬁ -~ B <Ri1 + Ri2> + 5‘“&] %‘:DOT + 0(73/2)]

' ' ‘ (3.25)
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where S, is the surface area of the pore interface, V, is the volume of the space
excluded to diffusion (the grain space), Do is the free diffusion coefficient, R; and
R, are the local principal radii of curvature of the pore interface, and (...) is the
average over the interface. The above relationship can also be defined in terms of the

fime-dependent diffusion coefficient (23,30)

D(r)/Dy = 1— é%—%\/DOT +0(Dr). (3.26)

This expression was experimentally validated by Latour (31) and has been used, ei-
ther in this form or in a variation thereof, to directly measure the surface-to-volume

ratio in a variety of materials (26,31-33).

3.3 Discussion

In this chapter, we showed how the diffusion tensor is related to the underlying
velocity distribution of the spins. This provided an essential connection between the
molecular hydrodynamics of the spins and the macroscopic diffusion tensor. The
diffusion propagator formalism was introduced and we showed how the propagator is

governed by the diffusion equation.

We stated that in the case of free diffusion the diffusion equation is solved by a
Gaussian propagator. This seems to present a contradiction however because where
"could diffusion anisotropy come from if not restriction. The paradox can be resolved
by noting that the Gaussian model can also be seen as arising from a low spatial fre-
quency approximation to the diffusion propagator. Considering the isotropic case for

notational simplicity, the Fourier transform F(k,T) of the propagator has a cumulant

| Fk'v,'r ikR)™). N
o()-pEm o

n>0

expansion (34)
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where the cumulant averages are defined as (35)

e = (R) (3.28)
)e = (R?) - (R)?

(R = (R®) - 3(R)(R) +2(R)*
Je = (BY)— 4(R°)(R) — 3(R%)? + 12(R)(R)? — 6(R)*

(o)
[

The odd terms which arise from flux asymmetry vanish on averaging for a pure
diffusion process. The cumulant expansion truncates with the quadratic term in
the case of free diffusion since the higher order cumulants vanish for a Gaussian
distribution. Retaining only the first cumulant level leads to the Gaussian diffusion
function. Henéé, the Gaussian function can be viewed as arising from either free
diffusibn or a low spatial frequency approximation to a restricted propagator. In
Chaps. 8 and 10, we will explore the structure of the propagator in the high spatial
frequency regime where the Gaussian model is no longer valid. ,

In the following chapter, we discuss how the various functions which we introduced
in this chapter, such as the diffusion tensor and the EAP, can be measure‘d with NMR

and incorporated into an imaging paradigm.
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Chapter 4

Prihciples of Diffusion NMR and
MRI

If water is too clear, it will not contain fish.

Chinese Proverb

4.1 4Introduction

In this chapter we describe how the diffusion phenomena which we introduced in the
previous chaptér can be measured and imaged with, respectively, diffusion NMR and
MRI. We begin with the classical Bloch-Torrey equation for molecular diffusion and
then introduce the pulsed gradient spin echo experiment which enables quantitative
diffusion measurements. Upon introducing the basic methodology we derive the key
Fourier reciprocai rélationship between the spin echo magnitude and the ensemble-
average diffusion propagator. Lastly, we discuss how thesé techniques are applied to

generate diffusion-weighted and diffusion tensor images.
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4.2 Diffusion NMR

4.2.1 The Bloch—Torfey Eqﬁations

The Bloch equations provide a valuable framework for describing many phenomena
in NMR (1). In the rotating frame and in the absence of any radiofrequency (rf) field

the Bloch equations can be written

%m+ = —iyr(t)"g(t) — m4 /T (4.1)

where m, = m; + im, is the complex magnetization vector, -y is the gyromagnetic
ratio, r(t) is the spin position as a function of time t, g(t) = |VB(t)| is the applied
magnetic field gradient, 75 = 1/p is the spin-spin relaxation time, and p is the bulk
relaxation rate. The Bloch equations were modified by Torrey to include the effects

of molecular diffusion and flow to give the Bloch-Torrey equation (2)

%er = —iyr(t)Tg(t) — my /Tp + V(D(r)Vmy) — Vvm, (4.2)

where D is the diffusion tensor which we encountered in the previous chapter and v

is the flow vector. The following derivation essentially follows the treatments given

- by Refs. 3 and 4.

- The Bloch-Torrey equation can be solved by making the substitution (5)
mi(r,t) = elifp() exp(-alt) (43)
— exp |7 [ 0)7e(®) dt | exp(-olt) (44)
- exp [_h/o r(t)Tg(t) dt'] A(t) exp(—t/T3) (4.5)
where . : | '
olt) = [ x(t)7e(t) (46)
0

is the spin phase as a function of time, and (.) denotes the ensemble average. In order

to produce an echo at-the echo time ¢ = TE we have the condition that foTE g(t) dt =
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0. Consequently, at the echo center we have m,(r, TE) = A(TE) exp(—TE/T3).
Let us define an ’effective gradient’ g*(¢) which incorporates the phase inversions

from the rf pulses. Substituting Eqn. 4.3 into the Bloch-Torrey equation gives

a0 = ([ o) at)

Defining the matrix

T

D ( /0 e () dt’) A(tj. (47)

B~ ( [ () at) (| () at | (48)

which is referred to as the B-matrix (4), leads to the simple relationship

9 At) = Te(B())D)A(Y). . ()

where Tr(.) is the matrix trace. We will return to the B-matrix in more detail when

we discuss the diffusion tensor imaging method in Sec. 4.4.2. Solving for A(t) gives

(6)

A(t) = exp [ / Tr(B(¢')D) dt] exp [z7 / / T(t"g(t") dt” dt'] (410)

The above equation can be used to calculate the attenuation due to Gaussian diffusion
and coherent flow for any gradient profile g*(). The following section describes the
pulsed gradient spin echo sequence which allows for direct, quantitative measurement

of the diffusion coefficient.

- 4.2.2 Pulsed Gradient Spin Echo Experiment

The pulsed gradient spin echo (PGSE) experiment pioneered by Stejskal and Tan-
ner (5) is the classical method for measuring diffusion with NMR. The general idea of
the PGSE experiment is to excite the spin system with a 7/2-pulse, encode the spin

position with a time-constant magnetic field gradient of duration 4, invert the spin
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phase with a m-pulse, apply a second magnetic field gradient with equal intensity and
duration to the previous gradient and at a time A after the first gradient pulse, and
then acquire the echo at time TE (Fig. 4-1).

If a given spin moves, say, by dif-

fusion, between the time of the first Ttiz T a(?q
and second gradients then the phase & ] 1
of the spin will not return to its origi-
nal orientation. Due to the increased L »
disorder of the spin phase distribution A

— TE

the spin echo signal, which is propor-

tional to the mean phase difference,
’ Figure 4-1: Pulse diagram for the PGSE exper-
iment.

which there was no gradient. Hence, the decrease in the spin echo magnitude will

will be smaller relative to the case in

reflect the amount of diffusion which occurred between the two diffusion gradient

pulses (Fig. 4-2).

Figure 4-2: Schematic diagram of the spin phase distribution during the PGSE experiment
depicted shown in Fig. 4-1. The pi/-pulse excites the spin spin system. The diffusion
gradient imparts a phase to the spins proportional to their location along the gradient. The
7-pulse inverts the spin phases. A second diffusion gradient pulse is applied at time A after
the first gradiexit and the echo is acquired at time TE. '
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4.2.2.1 The Stejskal-Tanner Equation

The spin echo attenuation for the PGSE experiment can be calculated using Eqn. 4.10
from the previous section. The effective gradient for the PGSE sequence is (5)

&°(t) = —8(8) + 6t — 6) + 8t — A) — Ot — A — 6) (4.11)

where 0(t) = 6(¢t > 0) is the Heaviside step function. Substitufion of this effective
gradient into Eqn. 4.10 gives o

my = exp(—7°6°gT Dg(A — §/3)) exp(—ydAgTv) exp(—TE/Tg) (4.12)

which is the famous Stejskal-Tanner relation (5). The time constant 7 = A — §/3
defines an effectivediffusion time where the §/3 correction is due to the diffusion

which occurs during the time in which the gradients are on.

4.2.2.2 The Fourier Relationship

The Stejskal-Tanner equation allows us to relate the observed diffusion signal to
the underlying diffusion coefficient or diffusion tensor a.ssﬁming that the diffusion
is purely Gaussian. The Gaussianity assurﬁption can be easily violated however if
the sample contains any restriction, due for example to finitely permeable walls,
surface relaxation, or diffusion compartment heterogeneity. While biological diffusion _
imaging studies commonly assume that the diffusion is Gaussian there is a body of
experimental evidence which indicates that this assumption is not valid, principally
due to the reasons cited above.!

The present section describes a broader interpretive framework which allows us

to measure the ensemble-average diffusion propagator (EAP) (3.2.7) from a series of

1The prevalance of the Gaussianity assumption in blologlcal diffusion imaging, depsite strong
ev1dence to the contrary, is analogous to the ubiquity of the normal distribution of errors in statistics.
As Lippmann stated, “Everybody believes in the exponential law of errors: the experimenters,
* because they think it.can be proved by mathematics; and the mathematicians, because they believe
it has been established by observation” (7). These words could equally well apply to the situation
in diffusion i 1mag1ng
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PGSE experiments independent of any assumptions on the form of the underlying
diffusion process. The PGSE signal E is simply a superposition of the transverse

magnetizations, each with a phase ¢
E = Ey{e*¥) (4.13)

where Ey = E(0, ) is the spin echo signal in the absence of any applied gradient, (...)
denotes the ensemble average, and ¢ is the spin phase. The ensemble average of any
general ﬁmction f(p) of the phase ¢ can be written explicitly in terms of the phase
probability distribution

L

($) = [ 1(0) dP(e) = / F(@)P(p) di (4.14)

where P(¢p) is the probability of a spin phase . In the limit of infinitely narrow
pulses the effective gradient (Eqn. 4.11) from the Stejskal Tanner experiment is

g"(t) = g(6(0) — 4(A)) (4.15)

where g is independent of time. The spin phase ¢ given by Eqn. 4.6 is then

@ = ~6g7(r(0) — r(4)) (4.16)
= ~yogl(r' —r) (4.17)
= +g’R (4.18)

~ where ' is the spin position at the time of the first gradient, r is the spin position
at the time of the second gradient, A is the time between the two gradiehts, and
R = r’ —r is the relative spin displacement. It is convenient to define the displa,cerﬁent )
reciprocal vector q = 7dg so that we have simply ¢ = qTR. As we will see in
the following section the reciprocal vector q plays the important role of the Fourier

reciprocal vector to the relative spin displacement vector R.

The narrow pulse condition requires that the diffusion length associated with the
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diffusion gradient duration (see Chap. 3) be considerably less than the pore size of the
medium (8). For example, the diffusion mixing length of water atvroonll temperature
is approximately 1ym in 1ms. Hence, in order to satisfy the narrow pulse condition
for a 1um pore, the diffusion gradient cannot be longer than 1ms. In Chap. 8 we will

look at diffusion NMR. outside of the narrow pulse regime.

Owing to the linearity of the Larmor relation, the probability of a phase difference

@ is proportional to the probability of a spin displacement R. Hence,
P(p,7) = P(R, 7). (4.19)
Eqn. 4.13 can then be written (3,9)

E(a,7) = F / P(R, 7)ed"® 4R (4.20)
— BF[P(R,7)] (4.21)

where P(R,7) is the ensemble-average diffusion propagator (EAP) (10) which we
introduced in Sec. 3.2.7, and F is the Fourier transform with respect to the relative
spin displacement vector R. By expanding R = r’ — r, the above equation can also

be written in terms of the absolute spin positions as
- E(q,7) = EO/P(r',r, 7)p(r)e’ )y’ dr (4.22)

where P(r’,r, 7) is the diffusion propagator (3.2.2) and p(r) is the initial spin density.

Eqn. 4.20 clearly illustrates the Fourier reciprocél relationship between the PGSE
signal and the EAP (3). This relationship is key and forms the basis of all diffu-
sion imaging experiments. In particular, the Fourier relationship allows for direct

reconstruction of the EAP by inverse Fourier transform of the spin echo signal

P(R, T)

' E;? / E(q, ’r)e_"“""TR dq | (423)
= Ey'F ' E(q,7)]




60 CHAPTER 4. PRINCIPLES OF DIFFUSION NMR AND MRI

where the inverse Fourier transform F ! is taken with respect to the reciprocal vector
q. Reconstruction of the EAP by inverse Fourier transform of the spin echo signal |

forms the basis of what is variously called g-space or diffusion displacement imaging

(3).

4.3 Relation to Microgeometry

In Sec. 3.2.7 we showed how the EAP is related to a variety of microstructural features.

Here, we recast those relations in terms of the PGSE signal.

4.3.1 The Pore Autocorrelation from the Long Time Limit

Substitution of the spectral decomposition (3.15) into the Fourier relation (Eqn. 4.22)
gives |

E(q,7) = Eo Y |Flua(r)]e 5. (4.24)

The above equation illustrates that for a pure diffusion process the spin echo signal
is positive everywhere. This is a direct consequence of the positive-definiteness of the
diffusion propagator. ‘

The positive definiteness of the diffusion propagator, and consequently the posi-
tivity of the spin echo signal, can be seen as a physical consequence of the fact that all
the diffusioﬁ eigenmodes decay monotonically with time. Note for the propagator to
be pdsitive definite, it is not sufficient that the propagator simply be monotonically
decreasing radially. For example, the functions of the form P(R) = aexp(—b|R|"*),
which are all monotonically decreasing with |R|, only have a positive Fourier trans-
form for n < 2, and only have a Fourier transform which is finite at the origin for
n > 1. |

It is important to note that the positivity and reality of the echo signal only holds
: fdr the ensemble-average diffusion function and not the unaveraged diffusion function.
For example, let us consider the siniple case of a one-dimensional compartment with

impermeable walls. At long times, the diffusion function is a boxcar, the Fourier
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transform of which is a -sinc function which is not positive everywhere. However, if
we consider the average over all starting positions the diffusion function is a triangle,
the auto-correlation of the boxcar, the Fourier transform of which is the sinc-squared
function which is positive everywhere. Hence, the averaging of the diffusion signal
over the voxel is required to ensure that the echo signal is positive. We will exploit
this result in Chaps. 8 and 10 when we discuss the diffusion spectrum imaging and

" g-ball imaging methods.

If the diffusion function is fully evolved then in the long-time Ergodic limit all of

the eigenvalues E, are zero and the spin echo signal is

E(q,7 > ) = Ep Y |Flua(r)]? (4.25)
= > |1Fx(@)? (4.26)
= > ISP (4.27)

where S is called the structure factor of a pore. This equation pi‘ovides the power-
ful results that in the fully evolved limit the spin echo signal is the average power

spectrum of the pore shape (3).

4.3.2 The Return-To-Origin Probability and the Spectral Sum

The return-to-origin probability (Sec. 3.2.7.2) is simply the total integral of the spin

echo signal over reciprocal space (11):

o(r) = (21) / B(q, ) dq (4.28)

. The above relation allows us to djréctly measure the spectral sum without the need

to take the Fourier transform of the experimental spin echo data.
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4.3.3 Free Diﬁ'usion,

We saw in Sec. 4.2.2.1 that for free, anisotropic diffusion the spin echo signal is simply

E(q,7) = Ege” ™D (4.29)

where D is the diffusion tensor. For isotropic diffusion the Stejskal-Tanner relation
trivially simplifies to

E(q,7) = Eoe®P (4.30)

Le Bihan (12) coined the term b-value for the scalar quantity b = v262¢%(A — §/3) =
q*(A—6/3). Eqns. 4.29 and 4.30 form the basis of, respectively, the diffusion-weighted

- and diffusion tensor imaging experiments which we discuss in the next sections.

4.4 Diffusion MRI

4.4.1 Diffusion-Weighted Imaging

The scalar Stejskal-Tanner relation (Eqn. 4.30) contains two unknowns, namely, the
- unattenuated echo signal Eq and the diffusion coefficient D. Hence, the diffusion co-
efficient can be quantitatively estimated from at least two measurements of the signal
each with different b-value magnitudes. If we take the natural log of the spin echo sig-
nal then thé diffusion coefficient can be obtained from a set of diffusion experiments
by standard linear regression methods. Diffusion-weighted imaging cannot however
describe the anisotropic Gaussian diffusion which is observed in fibrous biological

tissues. In such cases the DTI experiment is called for.

4.4.2 Diffusion Tensor Imaging
4.4.2.1 Backgroﬁnd

Biological tissues with regularly ordered microstructure such as skeletal muscle, spine,

tongﬁe, heart, the eye lenS, and cerebral white matter exhibit 'a_nisotropic water dif-
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fusion when measured by diffusion NMR or MRI (4,13-18). In the previous chapter
we described how in such a.nistfopic materials the diffusion function can be described
by the anistropic Gaussian (Eqn.3.11). The anisotropic Gaussian is parameterized by
a diffusion tensor D, the eigensystem of which reflects the orientational structure of

the underlying material.

The diffusion tensor can be measured with a technique called called magnetic
resonance diffusion tensor imaging (DTI) (4) which measures the apparent water
self-diffusion tensor under the assumption of Gaussian diffusion (see Chap. 3). Based
on the eigenstructure of the measured diffusion tensor it is possible to infer the orien-
tation of the diffusioﬁ compartments within the voxel so that, for example, the major
eigenvector of the diffusion tensor parallels the mean fiber orientation (4), and the
minor'eigenvectvzor thé;_normal to the mean plane of fiber dispersion (19). The present
section describes how the diffusion tensor can be quantitatively reconstructed from a
set of PGSE acquisitions and how the diffusion tensor can be analyzed in terms of its

eigensystem.

4.4.2.2 Diﬁ'usior_l Tensor Reconstruction

To begin, the diffusion tensor is a three-dimensional, symmetric rank-2 tensor and
therefore Has 6 unique coefficients: the 3 diagonal elements and the 3 off-diagonal
elements of the tensor. Consequently, at least 7 image acquisitions are required to
-reconstruct the diffusion tensor: 6 to obtain the 6 unique tensor elements and 1 to
estimate the unattenuated signal magnitude Ey. The tensor reconstruction can be

formulated as a linear inversion problem (20) as follows.

Due to the symmetry of the diffusion tensor, the diffusion tensor contains 6 unique
elements: the 3 diagonal and the 3 off-diagonal elements. Let us denote these elements
as d = {d;} where 7 € [1,6]. These elements are assigned to the diffusion tensor
qoefﬁcientsvaccording to d; = Dzz, dy = Dgy = Dys, d3 = Dy, = Dy, dy = Dy,

ds = Dy, = Dy, and dg = D... For a set of n experiments obtained with g, i € [1,n]
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we can define the n x 7 B-matrix (20)

2q3q} aigs 1

[T

aq 2¢ia 2413 a3

9 2 2 9 2 2 2 2 2.2 2,2 1
B | W4 % P0G Gh 266G 6% T (4.31)

L] %)

qret 24979y 29793 9397 29393 93¢z 1

where 7 = A — §/3 is the effective diffusion time. Note that n needs to be at least 7
in order to obtain a sufficiently determined reconstruction. The condition number of
the B-matrix defines the stability of the reconstruction.

Let us define the set of measured spin echo signals in terms of the measurement
vector s = {E(q’,7)}. Taking the natural logarithm of both sides of Eqn. 4.29 then
gives the simple relation —log(s) = B(d¥ — log Ep)7. The Gaussian noise-model

maximum likelihood estimate (MLE) for the diffusion tensor is then (20)
D = -P[(B'S'B)"'B"E " log(s)] (4.32)
where the partition operation P is defined as

di dy ds
Pldl=| do dy ds (4.33)
N\ ds ds dg

and X is the noise covariance matrix associated with log(s). Fig. 4-3 shows a diffusion
tensor image of frontal white matter obtained with the Gaussian MLE. Note that in
practice the noise is Rayleigh distributed and not Gaussian distributed. Consequently,

the Gaussian MLE will be biased if high q-values are used because the Rayleigh and

Gaussian distributions differ significantly at the tails.

4;'4.2.3 Diffusion Tensor Eigensystem

4 Here, we discuss the eigensystem of the diffusion tensor and the structural information

which can be gleaned therefrom. The diffusion tensor can be ‘d.ecomposed into the
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Figure 4-3: Diffusion tensor image of frontal white matter reconstructed from the Gaussian
MLE. The cuboids depict the local diffusion tensor within each voxel. The axes of each
cuboid are oriented in the direction of the tensor eigenvectors and are scaled by the corre-
sponding eigenvalue. This visualization scheme is discussed in more detail in Sec. 4.4.2.3.
The cuboids are also colored according to the direction of the major eigenvector with red
indicating mediolateral, green anteroposterior, and blue superoinferior. The display of the
cuboids was thresholded according to the FA metric in order to highlight the white matter
anatomy. (21) v

eigensystem

D = RARY : (4.34)

where R = (e1 ez e3)is a column matrix of the orthonormal diffusion tensor eigen-
vectors e,, and A = diag(A; s )\3) is a diagonal matrix of the diffusion tensor
elgenvalues {A.}. The eigenvectors e, eg, e3 are often refereed to, respectively, as the

‘major, medium, and minor eigenvectors.
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The diffusion tensor eigensystem can be conceptualized in terms of the diffusion
isoprobability surface which represents the surface on which a spin at the origin will
diffuse to with equal probability. For a Gaussian diffusion process the isoprobability
~ surface is a three-dimensional ellipsoid. The isoprobability ellipsoid represents the
surface on which the Gaussian diffusion function has a constant value, i.e., x’Dx =

const.

The axes va the isoprobability ellipsoid
are oriented in th,_e direction of the.tensor ‘ Ve
eigenvectors and have lengths proportlonal‘
to the diffusion dlstance along the corre-

sponding eigenvectors (Flg 4-

" Since the

diffusion distance is proportional to the square
root of the diffusion eigenvalues this is equiv-

alent to scaling by the square root of the Figure 4-4: (Left) Isoprobability ellipsoid
for a Gaussian diffusion function. The
» ellipsoid gives the surface on which the
biomedical applications it is conventional to Gaussian diffusion function has constant

o - probability. (Right) The axes of the el-
scale the ellipsoid axes not by the diffusion lipsoid are oriented in the direction of

diffusion tensor eigenvalues. Note that in

the diffusion tensor eigenvectors and have
lengths proportional to the square-root of
root of the diffusion tensor eigenvalues) but the diffusion tensor eigenvalues.

distance (which is proportional to the square-

by the diffusion distance squared (which is proportional to the eigenvalues them-
selves). Sdaling by the diffusion distance squared enhances the visual anisotropy
contrast but sacrifices the convenient interpretation of the ellipsoids as isoprobability ‘

surfaces. This discrepancy is a common source of confusion.

While the ellipsoidal representation has a convenient physical interpretation in
terms of the isoprobability surface, for visualization purposes it is sometimes desirable
- to display the diffusion tensor as another geometric icon. For example, in Fig. 4-3 we
displayed the tensors as rectangular cuboids in order to better emphasize the local
fiber direction. Elsewhere, authors have chosen polygonal cylinders ( 19) in order
to d1fferent1ate the major eigenvector from the medium and minor elgenvectors or

sumply line segments to convey only the major eigenvector.
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In general, any georhetric primitive (e.g., a sphere for an ellipse, a cube for a
“cuboid, or a unit cylinder for a cylinder) can be mapped into the diffusion tensor
coordinate system as follows. Let us define the vertex coordinate matrix X for the
geometric primitive, where X is a row-matrix of the primitive’s vertices. The vertex

coordinate matrix then maps into the tensor eigensystem according to
X' = XRTA™ (4.35)

where X' is the mapped vertex coordinate matrix, R and A are as defined in Eqn. 4.34,
and n = 1 for scaling proportional to the eigenvalues, and n = 1/2 for scaling pro-

portional to the square root of the eigenvalues.

4.4.2.4 Scalar Measures

Various rotationally invariant scalar measures of the diffusion tensor can be extracted
in order to summarize the geometric properties of the tensor eigensystem, facilitate
visualization on a two-dimensional plane or, enable univariate statistical comparisons
between subjects or groups of subjects. For intersubject comparisons the scalar maps
have the additional advantage of not requiring registration of the diffusion tensors
which requires some care. While many such scalar measures have been defined in the
literature we will present those which we refer to in this thesis: the tensor trace, the

fractional anisotropy metric, and the prolateness/oblateness metrics.

Trace

The trace T of the diffusion tensor is simply the sum of the eigenvalues

T=> A=) Dy, (4.36)

where )\, is the vth eigenvalue. The trace provides a measure of the total diffusion
within a voxel. Curidusly, the trace of the diffusion tensor is observed to be constant

aLcross normal brain tissue (22), an observation which we provide a theoretical expia—
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nation for in Chap. 5.

Fractional Anisotropy

The fractional anisotropy (FA) metric is a measure of the orientational coherence
of the diffusion compartments within a voxel (22). Fibers that are strongly aligned (for
example, in compact white matter fascicles) exhibit high FA whereas fibers that are
more weakly aligned (for example, in regions of fiber intersection) exhibit a relatively
- lower FA. Additionally, the FA metric can be effected by the degree of diffusion

resitriction perpendicular to the fiber direction.

The FA metfic is defined as

_ 3 22,0 = (W))?
FA = \@\/ Y ’(4.37)

where (),) is the mean eigenvalue. The FA metric has the advantage of being auto-

matically normalized to the unit interval and not requiring any sorting of the eigen-
values. Additionally, the FA metric is relatively insensitive to noise compared to
other anisotropy metrics (22). For these rea.Sons, the FA metric has become the most

widely used measure of diffusion anisotropy in biological tissues.

Prolateness/Oblateness Metrics

Prolate geometry refers to an elongated tensor éigensystem with a high difference
between the first and second eigenvalues. The prolate metric is defined as d;p =
A1 — A2. In comparison, oblate geometry refers to a planar, sheet-like eigensystem
which is captured by the oblateness metric do3 = Ay — A3 (19). The sheet metric is
higher in regions of fiber crossing within a plane, and is helpful for identifying regions
of intravoxel orientational heterogeneity (19). Examples of the various scalar images

are shown ih Fig. 4-5.
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Figure 4-5: Examples of scalar images derived from DTI, including (a) the trace, (b)
fractional anisotropy, (c) the fiber (prolateness) metric 512, and (d) the sheet (oblateness)
metric 023. ’

4.5 Discussion

In this chapter we introduced the key Fourier relationship between the diffusion signal
and the EAP for the PGSE experiment. We related the EAP measured by the g-
space imaging experiment to the microgeometry functions which we introduced in
the previous chapter. Upon introduction of the diffusion tensor imaging paradigm,
we introduéed diffusion tensor eigensystem and discussed the various scalar measures

which can be derived from the tensor eigensystem.




70 References

46 Refergnc,es s

o

[1] A. Abragam. Principles' ‘of hﬁc.lggf:;}ﬁagnetism. Clarendon Press, Oxford, 1961.

[2] H.C. Torre}_r. Bloch equﬁg :
1956.

\;Igt}; diffusion terms. Phys. Rev., 104:563-565,

[3] P.T. Callaghan. Principles of nuclear magnetic resonance microscopy. Oxford,

Great Britain, 1993.

[4] P.J. Basser, J. Mattiello, and D. Le Bihan. MR diffusion tensor spectroscopy
and imaging. Biophys. J., 66:259-267, 1994.

[5] E.O. Stejskal and J.E. Tanner. Spin diffusion measurements: spin echoes in the -

presence of a time-dependent field gradient. J. Chem. Phys., 42:288-292, 1965.

[6] D.W. McCall, D.C. Douglass, and E.-W. Anderson. Self-diffusion studies by
means of nuclear magnetic resonance spin-echo techniques. Ber. Bunsengeé.

Physik. Chem., 67:336, 1963.

[7] E.T. Whittaker and G. Robinson. Normal frequency distribution. In The calculus
of observations: a treatise on numerical mathematics, chapter 8, pages 164-208.

Dover, New York, 4 edition, 1967.

| [8] L.Z. Wang, A. Caprihan, and E. Fukushima. The narrow-pulse criterion for
pulsed-gradient spin echo diffusion measurements. J. Magn. Reson. A, 117:209-
219, 1995. |

[9] E.O. Stejskal. Use of spin echoesd in a pulsed magnetic-field gradient to study
anisotropic, restricted diffusion and flow. J. Chem. Phys., 43:3597-3603, 1965.

[10] J. Karger and W. Heink. The propagator representation of molecular transport

in microporous crystallites. J. Magn. Reson., 51:1-7, 1983.

(11} P.P. Mitra, L.L. Latour, R.L. Kleinberg, and C.H. Sotak. Pulsed-field gradient
NMR measurements of restricted diffusion and the return-to-origin probability.

J. Magn. Reson. A, 114:47-58, 1995.




4.6.

REFERENCES 71

[12]

[13]

[14]

[15]

- [16]

[17]

(18]

[19]

[20]

21]

D. Le Bihan. Molecular diffusion nuclear magnetic resonance imaging. Magn.

Reson. Q., 7:1-30, 1991.

G.G. Cleveland, D.C. Chang, and C.F. Hazlewood. Nuclear magnetic resonance
measurements of skeletal muscle. Anisotropy of the diffusion coefficient of the

Aintracellular water. Biophys. J., 16:1043-1053, 1976.

M. Ries, R.A. Jones, V. Dousset, and C.T. Moonen. Diffusion tensor MRI of the
spinal cord. Magn. Reson. Med., 44:884-892, 2000. ’

V.J. Wedeen, T.G. Reese, V.J. Napadow, and R.J. Gilbert. Demonstration of
primary and secondary muscle fiber architecture of the bovine tongue by diffusion

tensor magnetic resonance imaging. Biophys. J., 80:1024-1028, 2001.

T.G. Reese, R.M. Weisskoff, and V.J. Wedeen. Diffusion NMR facilitated by
a refocused Eddy-current EPI pulse sequence. In Proc. Int. Soc. Magn. Reson.

Med., volume 6, page 663, Sydney, Australia, 1998.

L. Garrido, V.J. Wedeen, K.K. Kwong, U.M. Spencer, and H.L. Kantor.
Anisotropy of water diffusion in the myocardium of the rat. Circ. Res., 74:789—

793, 1994.

C. Pierpaoli, P. Jezzard, P.J. Basser, A. Barnett, and G. Di Chiro. Diffusion
tensor MR imaging of human brain. Radiology, 201:637—648, 1996.

M.R. Wiegell, H.B.W. Larsson, and V.J. Wedeen. Fiber crossing in human brain
depicted with diffusion tensor MR imaging. Radiology, 217:897-903, 2000.

P.J. Basser, J. Mattiello, and D. Le Bihan. Estimation of the eff_ebtive self-
diffusion tensor from the NMR spin echo. J. Magn. Reson. B, 103:247-254,
1994. |

P.J. Basser and .C. Pierpaoli. Microstructural and physiologiéal features of tissues
elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. B, 111:209-
211, 1996. ‘ '




72 References

[22] C. Pierpaoli and P.J. Basser. - Toward a quantitative assessment of diffusion.

anisotropy. Magn. Reson. Med., 36:893-906, 1996.




Chaptér 5

Cross-Property Relations /
Conductivity Tensor Mapping

“He will turn himself into every kind of creature that goes upon the earth, and will
become also both fire and water; But you must hold him fast and grip him tighter
and tighter, till he begins to talk to you and comes back to what he was when you

saw him go to sleep.”

- Homer, Odyssey

| 5.1 Preface

In the previous chapter we showed how the diffusion tensof can be reconstructed from
a set of pulsed gradient spin echo experiments, each with a different diffusion gradient
direction. The eigenstructﬁre of the diffusion tensor sheds considerable light on the
microstructure of the underlying material, and hence may also provide insight into
other transport phenomena which are also functions of the tissue microenvironment.
Here, we describe a framework for relating disparate transport tensors through the
statistics of the underlying microstructure. In particular, we focus on the relationship
between the diffusion and electriéal bonductivity tensors, but it should be noted that

the cross-property framework is readily extendible to other transport tensors.
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5.2 Abstract

Knowledge of the electrical conductivity properties of excitable tissues is essential for
relating the electromagnetic fields generated by the tissue to the underlying electro-
physiological currents. Efforts to characterize these endogenous currents from mea-
surements of the associated electromagnetic fields would significantly benefit from the
ability to measure the electrical conductivity properties of the tissue non-invasively.
Here, using an effective medium approach, we show how the electrical conductivity
tensor of tissue can be quantitatively inferred from the water self-diffusion tensor
as measured by diffusion tensor magnetic resonance imaging. The effective medium
model indicates a strong linear relationship between the conductivity and diffusion
tensor eigenvalues (respectively, o and d) in agreement with theoretical bounds and
experimental measurements presented here (o/d ~ 0.844 % 0.0545S-s/mm®, r? =

0.945). The extension to other biological transport phenomena is also discussed.

5.3 Introduction

Excitable tissues such as nerve and muscle mediate communication through elec-
trical currents. These endogenous currenfs are capable of generating electromag-
netic fields sufficiently large to be measured outside of the body using, for exam-
ple, electrd/magnetoencepha.lography (E/MEG) in the case of the brain or elec- '
tro/magnetocardiography (E/MCG) for the heart (1). The three-dimensional spatial
distribution of the underlying currents can be estimated from the measured electro-
magnetic fields through a model-based inversion procedure which, in combination
with the measuring method, is referred to as electromagnetic source imaging (ESI).
The modeling component in ESI, the so-called forward model, requires solving
the quasi-static Maxwell equations in a resistor model of the anatomical region of
iﬁterest., for example, the head or sternum. The underlying current distribution can
then be estimated by analytical or numerical inversion of the forward model. This

method has been employed to localize the electrophysiological generators associated
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with cardiac and neura,i activity in various states of health and disease, but the
accuracy of the reconstructions depends sensitively on the accuracy of the conduc-
tivity values assumed for the tissue. Modeling studies have shown for example that
the external electromagnetic fields, specifically, the local field potentials measured
by electroencephalography/ cmdioéfaphy (and, to a lesser extent, the magnetic field
recorded by magnetoencephalography / cardiography), are highly sensitive to the elec-
trical conductivity inhomogeneity and anisotropy of tissue (2-7). Hence, the lack
of knowledge regarding the true electrical conductivity of the tissue can result in

significant mischaracterization of the underlying currents.

Efforts to develop an imaging modality to quantitatively measure the electrical
conductivity of tissue non-invasively have been largely thwarted by anatomical and
blophysmal barrlers the organ of interest can be shielded by highly resistive barriers
such as the bony tissue of the skull, and the tissue can exhibit significant reactance,
anisotropy, and microstructural heterogeneity. The difficulties associated with imag-
ing biological conductivity in vivo can be appreciated by considering the limitations of
electrical impedance tomography (8): the technique exhibits poor spatial resolution
past resistive interfaces, particularly at the low frequencies of physiological interest;
contains an ill-posed inverse problem; and requires delivering current to the tissue.
Other methods suffer from additional shofccomings: magnetic resonance Hall effect
imaging (9) relies on propagation of ultrasound into the tissue, and is not quanti-
tative; and magnetic resonance current density imaging requires applying external

currents sufficiently large to produce magnetic field contrast visible by MRI (10).

We have previously proposed that the electrical conductivity tensor of tissue can
be quantitatively inferred from the water self-diffusion tensor as measured by diffusion
tensor magnetic resonance imaging (DTI) ( 11-13). DTT employs an pulsed-gradient
spin echo to measure the self-diffusion tensor of water in the tissue (13). The hypoth-
esized relationship between electrical conductivity and water self-diffusion in tissue is
prompted by the observation that, while there is no fundamental relationship between
the two transport modes in free solution, in a structured medlum such as tissue the

two processes are related through mutual respect for the boundary conditions imposed
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by the tissue geometry. The possibility of a connection between the conductivity and
diffusion tensors can be further motivated by reports that the two tensors exhibit

comparable anisotropy (on the order of 10) in cerebral white matter (14,15).

Connections between phenomenologically distinct transport processes, so-called
cross-property relations, have been derived, either exactly or in the form of bounds,
for a broad range of transport and mechanical properties (16-18) of porous media, yet
the framework has not been applied widely to biological tissues. Previously, we have
studied the conductivity-diffusion cross-property in brain tissue using Monte Carlo
‘simulations and a self-consistent effective medium approxirﬁation (11,12,19), but an
exact formulation remained open. Here, using an effective medium framework, we
derive a rigorous relationship between the conductivity and diffusion tensors with-
out need for any assumptions on the tissue geometry, and employing a few Iimiﬁed
assumi)tions on the c:ell membrane properties. Significantly, the model indicates a
strong linear relationship between the conductivity and diffusion tensor eigenvalues,

in agreement with theoretical bounds and experimental measurements reported here.

54 Model

The relationship between a general transport tensor, for example, the conductivity or
diffusion ténsor, and the underlying microstructure of the medium can be obtained
from a perturbation expansion in the statistical correlations of the microstructure.
Originally developed by Brown for two-phase isotropic media (20,21) and later ex-
tended to two-phase anisotropic media by Sen and Torquato (22), the statistical
correlation expansion, also referred to as a contrast moment expansion, provides a
framework for relating distinct transport tensors through the statistics of the medium
microstructure. The two-phase model éonsisting of an inclusion phase embedded in a
host phase is particularly amenable to describing biological tissues as the extracellu-
lar space can be taken as the host 'phase and the intracellular space as the inclusion

phase.
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5.4.1 Cross—Property Relation

To derive the cross—property‘ relation between the coﬂductivity and diffusion tensors
in brain tissue the approach we adopt here is to estimate the statistical moments
of the microstructure from the observed diffusion tehsfir, and then derive the con-
ductivity tensor from the estimated moments. We'assume in the following that the
cell membrane is freely permeable to water and impermeable to charge-carriers on
the experimehtal time-scale (~50ms). Following Sen and Torquato (22), the effective
transport tensor A, denoting either the effective electrical conductivity tensor o or
the diffusion tensor D, for a two-phase anisotropic medium of arbitrary topology is
given by |

[o<]

(¢:8(%, A))? B7H(A, A U) = iB(Mi, Ae) — > ADF™ (A, Ae) (5.1)

n=2
where ¢; is the inclusion (intracellular) volume fraction, U is the identity tensor, and
A; and A, are, respectively, the inclusion (intra—) and host medium (extracellular)
transport coefficients; for example, in the case of diffusion d; is the intracellular
diffusion coefficient and d, is the extracellular diffusion coefficient. Similarly, o; is
the intracellular conductivity value and o, is the extracellular conductivity. The

dimensionless contrast factors 0 and B are defined as

r—y . .
lz,y) = — T2y (5.2)
and ‘
B(X,Y)=(X+2Y)}(X-Y). (5.3)

The rank-2 tensors AY contain the microstructure information and are defined as
integrals over the n-point probability functions S?, which give the probability of
finding n points within the inclusion (intracellular) phase. Exact expressions for AY

are available in Ref. 22. |

By setting Agi) =‘—¢iU, the first term on the right-hand side of Eqn. 5.1 can be
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embedded in the sum to Agive

(#:8)°B7 (A, 0. U0) = = > ADBE (5.4)

n=1

where we have defined J6)) =_3,6():\,—2,U/\ve). The sum in the right-hand side of the above
equation can be made implicit by defining the concatenation Cct) = (Agi) | Ag) |...),
and, similarly, Gy = (3\U | giU | ... )T. Eqn. 5.4 then becomes

(:8,)’ B (A, A.U) = —CYG,. (5.5)

We can obtain a least-squares estimate C® for C® based on the observed diffusion
tensor D by identifying A with D in Eqn. 5.5 and then multiplying from the right by
the right-handed Moore-Penrose pseudoinverse G = GT(G,GT)~! ! yielding

CH = —(¢:8,)?B~Y(D, d,U)GS. (5.6)
Identifying A in Eqn. 5.5 with o and equating C® and C® gives
2B~ Y(o,0.U) = 2B7(D, d,U)G}G,. | (5.7)

Solving algebraically for GI G, we obtain

+ ﬂa(ﬂd_l)
GiGe =g \ms=1)® (5:8)

Finally, solving for o yields
o =ao.B7(F,U). (5.9)

1The need to take the pseudo-, as opposed to the canonical, inverse highlights the point that
different geometries can give rise to the same effective transport. For example, a suspension of
spheres may have the same bulk diffusion as, but a different conductivity from, a matrix of randomly
oriented cylinders with a different suspension volume fraction. The geometric degeneracy can be
ameliorated to some degree by regularization of the pseudoinverse to respect the available theoretical
bounds. :
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where : .
_Baf B-1 ) -1
F= 3, (—W —7 B~*(D,d.U). (5.10)

The two equations above relate the conductivity and diffusion tensors solely in
terms of the infra— and extracellular transport coefficients, independently of the mi-
crostructural statistics AY and the cell volume fraction @i. We also observe that
the above relationship implies that the conductivity and diffusion tensors share the
same eigenvectors. Note that we have not made any assumptions yet on the type of
transport tensors involved so that Eqn. 5.10 applies generally to the broader class of

transport tensors including hydraulic permeability, acoustic conductivity, etc.

The equivalence between the conductivity and diffusion tensor eigenvectors allows
us to express the cross-property relation solely in terms of the conductivity and dif-
fusion tensor eigenvalues, repspectively, o, and d,, which we do in the following. The
cross-property relation can be simplified by noting that at the quasi-static frequencies
of physiological interest (< 1kHz) (23) the intracellular space is effectively shielded by
the high resistivity of the cell membrane. The intracellular conductivity can therefore

be taken as negligible. Substituting o; = 0 into Eqn. 10 gives

3(du’— de)(,@d + 2)
(403 — 502 —2) + d.(8603 — TBa +2) |

v = O¢ . 11
o, =0 1+du (5.11)

The above equation indicates a fractional linear reltionship between the conductiv-
ity and diffusion tensor eigenvalues. The relationship is highly linear however since ‘
de(863 — 704 + 2) will tend to be much larger than d, (463 — 53, — 2), paricularly for
small intracellular diffusion values. We can obtain an an explicit linear approximation

to Eqn. 5.11 be taking a series expansion in the intracellular diffusion

T, d.,' dgd, 2 9
o, = d_e l:d,, (E + 1) + 3d2 - gd,jl + O(dz) (512)

Note that both the linear approximation (Eqn. 5.12) and the exact fractional linear
relationship given by Eqn. 5.11 satisfy the necessary conditions o, « o, and oy/0e —

dy/de as d; — 0, with the latter limit providing the upper-bound o, /0, < d,/d,. For
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sake of interest, this bound can be compared to the Milton bound between the bulk

elastic modulus K and conductivity K/Ke £ 0 /o, of an isotropic material (24).

5.4.2 Bounds

We can test the feasibility of the conductivity-diffusion cross-property relation pre-
dicted by Eqn. 5.11 by comparing the relationship to the variational Hashin-Shtrikman
(HS) bounds (25), which are the tightest bounds possible without taking into consid-
eration any specific geometric properties of the tissue medium. 2 The HS bounds are

specifically

wyl_ A 20etM)
o Do(l = ) + (1 )] ST SN2 0l + Nt 1. (5.13)

Identifying A with d and o and eliminating ¢. we obtain the folowing greatest and
least upper bounds on the conductivity eigenvalue, respectively, Ogu and 0}y, in terms

of the diffusion eigenvalue

Ogu di(Sdu + dz) — de(d,, + 3di) (5.14)

Ol =

(5.15)

Comparison of the above bounds with the predictions from the cross-property rela-
tion shows that the cross-property relation holds even up to intermediate values of
intracellular diffusion (Fig. 5-1). In order to experimentally test the cross-property
* relation, p‘articularly the prediction of strong linearity made by Eqn. 5.12, diffusion
tensor measurements were obtained and compéred to reported invasive conductivity

measurements in corresponding anatomical regions.

2]t is interesting to note as an aside that the tightness of the HS bounds at low ¢, explains the
experimentally observed conservation of the trace of the diffusion tensor {n brain tissue (14).
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Figure 5-1: Theoretical cross-property relationship between the conductivity and
diffusion tensor eigenvalues normalized by the corresponding extracellular transport
coefficient. The family of dotted curves gives the cross-property relationship for values
of, from left to right, d;/d. = {0.1,0.3,0.5,0.7}. The shaded regions indicate the the
greatest and least upper bounds predicted by the HS bounds (25).

»5.5 -Methods

5.5.1 MRI Methods

Axial, balanced echo (26) diffusion tensor measurements of 4 subjects were taken at
1.5T (GE Signa) with TR/TE/7=3000/93/30ms, b=577.3s/mm?, 16 averages. 38
slices were obtained with a 40x20cm? field-of-view (256 x 128) giving 1.56 x 1.56 x
3mm? voxels. The diffusion gradient (g = 14.14mT/m) was applied in the directions

of the 6 non-opposed edge-centers of a cube in k-space as described elsewhere (27).

5.5.2 Comparison to Invasive Measurements

The diffusion values were sampled in cortex, the parasagital sulcus, the anterior inter-
nal capsule, subcortical white matter, and the cerebellum. The locations were selected
based on the locations of reported invasive conductivity measurements (15,28-32).

The diffusion values were taken from either the laboratory frame or eigenframe de-
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pending on the reference frame in which the original invasive conductivity values were
measured. If the full conductivity tensor was not specified, then the directions paral-
lel and perpendicular to the fiber tract were taken to be, respectively, the directions
of the major and minor eigenvectors. If the orientation of the conductivity measure-
ment was not specified for a gray matter location, then the average eigenvalue of the
diffusion tensor was used for comparison. The conductivity values were obtained from
various species but should still reflect the overall trend in the conductivity-diffusion

relation. .

5.6 Results

The full fractiénal linear relationship (Eqn. 5.11) was fit to the conductivity and
diffusion data, as was a linear _relationship of the form o, = k(d, — d.) for comparison.
The former yielded o, = 1..52:I:0.2518/m, d, = 2.0440.506um?/ms, and d; = 0.117%
0.0972pm?/ms. The uncertainty in the estimates for o, and d. was principally due to
the strong linear behavior in o, /d.. The linear fit yielded k£ = 0.844 £ 0.0545S-s/mm?
(p < 107°) and d, = 0.124 £ 0.0540um?/ms (p < 0.05) with r? = 0.945. The linear
relation provided a good approximation to the conductivity and diffusion data and
could not be distinguished from the full fractional linear model based on the present
data (Fig. 5-2). The linear relationship was used to generate the conductivity tensor
image of thé brain shown in Fig. 5-3.

The conductivity data fell into three distinct clusters due to the sampling of
the conductivity values in (i) gray matter and in white matter (ii) parallel and (iii)
perpendicular to the fiber tract. In order to determine if the linear relation could
describe the behavior within these individual tissue classes, the linear model was
also evaluated within the individual classes. The conductivity and diffusion values
were not found to be significantly correlated (p > 0.05) within the tissue clé,sses,
indicating that the observed linearity followed primarily from the behavior across
the tissue classes. It was not clear from the limited data available if the variability

within the tissue classes was due to true disagreement with the model or experimental
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Figure 5-2: Experimental relationship between the conductivity and diffusion ten-
sor eigenvalues (mean+SEM). The conductivity values were obtained from reported
invasive measurements and the diffusion values from diffusion tensor MRI in the cor-
responding anatomical regions. The solid line depicts the linear fit, and the dashed
lines the upper and lower confidence intervals on the linear fit. The conductivity val-
ues were taken from the average over cortex (blue circle, Ref. 28); (red circle , Ref. 31),
the average subcortical white matter perpendicular to the tract (blue inverted trian-
gle, Ref. 28), somatosensory cortex in three perpendicular directions (yellow circle,
Ref. 30), the parasagital sulcus (light blue circle, Ref. 29), the subcortical white mat-
ter beneath the parasagital sulcus measured perpendicular to the tract (light blue
inverted triangle, Ref. 29), the cerebellum parallel (’gﬂpéen triangle) and perpendicular
(green inverted triangle) to the dominant fiber orientation (Ref. 32), and the anterior
internal capsule parallel (purple triangle) and perpendicular (inverted purple triangle)
to the tract (Ref. 15).

uncertainties such as anatomical heterogeneity, trans-species variability, and possible

misspecification of the measurement orientation.

5.7 Discussion

We have derived a rigorous cross-property relation between the electrical conductivity
and water self-diffusion tensors in b_l;ain tissue by relating the two transport processes

ﬁhrough the statistical moments of the tissue microstructure. The cross-property re-
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Figure 5-3: Axial electrlcal conduct1v1ty tensor map of the human brain derived
from the linear cross-property relation. The region of interest is highlighted in the
T2-weighted image showri at top left. The conductivity tensor within each voxel is
represented by a three-dimensional ellipsoid. The axes of the ellipsoid are oriented
in the direction of the conductivity tensor eigenvectors and are scaled by the corre-
sponding eigenvalues. The length of the axis relative to the isotropic tensor (1S/m)
(bottom right) gives the quantitative conductivity value. The color of the ellipsoid
reflects the orientation of the principal eigenvector according to the red-green-blue
sphere (top right) with red indicating medio-lateral, green antero-posterior, and blue
supero-inferior. The brightness of the tensor is scaled by the degree of anisotropy.
Note the strong anisotropy in the optical radiation (green), the tapetum (blue), and
the U-fiber between the middle occipital and temporal gyri (red).

lationship was found to respect theoretical bounds for a large range of intracellular
diffusion values, and successfully captured the salient experimental observations: (i)
a strong linear relation between the conductivity and diffusion eigenvalues, and (it)
a signficant diffusion intercept at zero conductivity. The persistence of diffusion at
Zero conduct1v1ty can be understood by considering the followmg scenario. If the

extracellular volume fraction is less than the percolation threshold (i.e., the extracel-
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lular space volume fraction at which the extracellular space is no longer topologically
connected) the conductivity will vanish, but the diffusion will survive in the intracel-
lular space and the disconnected extracellular pores. The surviving diffusivity at the
percolation threshold will be on the order of the diffusion values d; and d. derived
here. Interestingly, these values are consistent with the ‘slow’ diffusion component
ds = 0.168um®/ms observed at short diffusion times (33) which has been postu-
lated to be the intracellular diffusion component. Furthermore, the value derived
here for the extracellular conductivity is consistent with reported meaurements for
the conductivity of cerebrospinal fluid (¢ = 1.79S/m, Ref. 34) and (o, = 1.54S/m,
Ref. 35, 36).

The quantitative conductivity tensor maps provided by the cross-property model
promise to improve the dccuracy of electromagnetic field modeling in tissue with ap-
plication to a range of bioelectromagnetic technologies including ESI, transcranial
magnetic stimulation, and ca,rdiaé defibrillation. The cross-property framework will
find particular application in the forward model for ESI, where the empirical conduc- ‘
tivity values will benefit both the accuracy and resolution of the source estimates. In
particular, the inclusion of conductivity inhomoegeneities in the forward model will
provide a basis for distinguishing sources inside or outside of the inhomogeneity.

The ability to quantify the currents based on the empirical conductivity measure-
ments will furthermore allow for fusion of data from electric and magnetic imaging
modalities.” As the electric and magnetic fields are sensitive to different source con-
figurations and locations, the combination of modalities will help to further resolve
the true underlying current distribution (37). Lastly, the cross-property framework
is extendible to other transport and mechanical properties of tissue including ther-
mal and acoustic conductivity, elastic stiffness, hydraulic permeability, and photon

diffusion.

This chapter was published in Ref. 38; which evolved from previous work published in Refs. 11,
12,39. We have also performed a sensitivity analysis of the effects of conductivity anisotropy on
human EEG and MEG measurements (40) using methods developed in Ref. 41.
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Chaptér 6
Thalamic Parcellation

“Why, cut it off, piece after piece, And throw the tough cortex away....”
Allen Tate, >Homz'ly

6.1 Preface

In addition to providing insight into transport processes in tiésue, diffusion tensor
imaging can reveal anatomical structure irresolvable by conventional MRI. Here, we
show that the nuclei of the thalamus, a midbrain structure responsible for relaying
signals between the periphery and higher cortex, can be resolved from the charac-
teristié fiber orientations of the individual nuclei. The detection of secondary planar
structure iﬁ the thalamus will motivate the following chapters on resolving composite

fiber structure with diffusion imaging.

6.2 ’Abstract

The thalamic nuclei have cohfrentionally been identified by their distinct cyto / myelo-
architecture on histology. Diffusion tensor magnetic resonance imaging (DTI) offers a
non-invasive altefnative to histology by measuring the fiber orientation and the orien-
tational coherence within each imaging element. Here we show that DT can resolve

the major nuclei based on their characteristic fiber orientations. Locations for the
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nuclei obtained by automatic segmentation of the DT agreed strongly with reported
histology. The ability to resolve thalamic nuclei non-invasively on a per subject basis
will allow for morphometrics of specific nuclei, more accurate neurosurgical planning,

~ and improved anatomical localization of functional activation in the thalamus.

6.3 Introduction

The thalamus is the central relay station for the brain, mediating communication
between sensory, motor and associative brain regions. The functional compartmen-
talization of the thalamus is reflected in the division of the thalamic architecture
/into distinct functionally-specific nuclei. The nuclei have conventionally béen delin-
eated by their characteristic cyto- and myeloarchitectural appearance on histology
(1-4). The number of thalamic nuclei reported with histological methods varies with
the method employed, although most cyto/myeloarchitecture stains identify fourteen
major nuclei, with several subdivisions of the individual nuclei, some established by
additional chemoarchitectural stains.
Thalamic changes have been implicated in a large number of diseases, including
schizophrenia (5-7), , Parkinsons disease (8-12), chronic pain syndrome (13), Mul-
tiple Sclerosis (14) and Wallarian degeneration (15)). Parkinsons disease, Multiple
Sclerosis and chronic pain syndrome can also be treated by surgical ablation or elec-
tric stimulétion (16) of the involved nucleus. The presurgical planning of these cases
often use generic thalamic atlases to target the pertinent nucleus (17-20). Given the
large degree of int,ersﬁbject variability (3) in the location and size of the thalamic nu-
clei, such generic atlases may be highly inaccurate. Functional studies (fMRI, PET,
SPECT) have also documented disease-related changes in functional activation of the
thalamus (21-26). However, due to the lack of a precise anatomical reference, these
© studies are generally not able to localize the activation to a specific nucleus within
the thalamus.
The ability to resolve thalamic nﬁclei by non-invasive imaging would enable quanti-

tative morphometrics of the thalamic changes in the abovementioned diseases, provide
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more accurate neurosurgical planning, and offer improved anatomical localization of
functional activation. Radiological identification of individual thalamic nuclei is not
currently possible, however, as present imaging methods such as CT and conventional

MR do not provide the necessary image contrast to differentiate the nuclei. Magnotta

et al. (27) have shown that gray matter-nulled, inversion recovery T1-weighted MRI

can identify the medialdorsal (MD) nucleus and the lateral portion based on the dif-
ferences in white matter content, but further substructure was difficult to resolve.
Furthermore, the T1 contrast between the nuclei was relatively small, with MD lower

and the lateral portion higher in T1 signal (28).

Previously, it has been proposed that the thalamic nuclei can be distinguished by
their characteristic fiber orientation, (29-31) a hereto unexploited distinction between
the thalamic nuclei. This approach was motivated by the hypothesis that fiber ori-
entati;;)ns are relatively aligned within a nucleus due to fact that the cerebrocortical
 striations within a given nucleus all target the same region of cortex. Conventional
MRI provides no information on the fiber orientation. However, diffusion tensor
magnetic resonance. imagiﬁg (DTI) can resolve the dominant fiber orientation within
each image element (32-38) by measuring the self-diffusion (i.e., Brownian motion)
properties of the water molecules within the tissue. In tissues with strongly aligned
microstructure such as brain or muscle (39—43), diffusion is observed to be anisotropic
(i.e., orientationally dependent) which is due to the diffusion barriers presented by

cell membranes and/or macromolecules.

The direction of greatest diffusion measured by DTI parallels the dominant ori-
entation of the tissue microstructure within each voxel. For example, the directiori of
greatest diffusion in cerebral white matter correlates strongly with the mean longi-
tudinal direction of the axons. Diffusion anisotropy of white matter has furthermore
been observed to depend on fiber heterogeneity (38,44) and to increase with myelina-
tion (32,45-49). In contrast, the diffusion tensor in cortical gray matter45 has been
shown to be isotropic and the same was thought to be true for subcortical gray mat-
ter structures. However, unlike other subcortical gray matter structures the thalamus

contains both unmyelinated nerves and myelinated nerves. The unmyelinated nerves




94 | CHAPTER 6. THALAMIC PARCELLATION

consist of intrathalamic rélay and connections between the basal ganglia and the brain
stem nuclei. The myelinated nerves are the thalamocortical striations, which provide
sufficient difquion restriction to be visible by DTI. Hence, we sought to test whether
fiber orientation maps measured by DTI could distinguish the thalamic nuclei. |
Using DTI we observed significant clusters of common fiber orientation in re-
gions corresponding to the anatomical locations of the nuclei. Visual comparison
with histological atlases (3, 50) showed correspondence between the location of the
orientation clusters and the classically defined nuclei locations. In order to more accu-
rately assess the diffusion tensor results we segmented the diffusion tensor data using
a modified k-means algorithm (51), and compared the center-of-mass coordinates of
the segmented nuclei with previously reported center-of-mass coordinates obtained
from a Talairached histological atlas (31). The diffusion tensor segmentation showed
strong‘ ag‘ree;nent with the histological data, providing support for the accuracy and

robustness of the diffusion tensor method and the segmentation.

6.4 Methods

6.4.1 Data Acquisition

Diffusion tensor MRI was obtained in healthy normal volunteers on a 1.5 T Siemens
Vision Scaﬁner at the Danish Research Center for Magnetic Resonance, Hvidovre
Hospital, Denmark. The volunteers consented in accordance with the procedures of
the Danish Ethical Committee. For each subject, data were acquired for 12 cohtiguous
slices covering the whole thalamus and oriented either axially or coronally. We used a
single-shot SE-DWI-EPI sequence, with TE=101ms, TR=4s, Matrix size=128x128,
FOV=230mm, slice thickness=3mm. The diffﬁsion—encoding parameters were ¢ =
28.9 ms, A = 51.9 ms and diffusion time 42.6ms, gradient strength 12 mT/m, which

gave an approximate b-factor of 550 s/mm?

, calculated analytically taking prepa-
ration and imaging gradients into account (562). One null image and six diffusion

weighted images were obtained with the diffusion-encoding gradients directed along
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the following axes (+1,1,0), (+1,0,1) and (0,£1,1). The SNR obtained in the non-
averaged unattenuated diffusion weighted image was about 15, resulting in a SNR for
the 36 times averaged DW images of approximately 90. The images were realigned to
compensate for eddy-current induced morphing in the phase and readout directions,
although eddy-currents were only detected in the phase direction. Images with mo-
tion artifacts were excluded. The eigensystem of the diffusion tensor was calculated

on a voxel by voxel basis (52).

6.4.2 Automatic Segmentation Procedure

The thalamic nuclei were clustered separately for each hemisphere using the k-means
clustering algorithm(52). In general, the k-means algorithm requires four specifica-
tions: -(i) the number of clusters, (ii) a distance metric; (iii) initialization of the cluster
centroids, and (iv) a convergence criterion.

Number of clusters. The number of nuclei (clusters) was set a priori to n = 14
per hemisphere based on preliminary visual inspection (29). |

Distance Metric. The distance between voxels was defined as a linear combination
‘of the Mahalanobis voxel distance and the Frobenius tensor distance. More specif-
ically, the position-diffusion-tensor distance Ej; between a voxel j and a centroid k
was taken as a linear combination of the voxel position distance and the diffusion

tensor distance, i.e.,
Ejr = ||x; — mg||lw, +7|[D; — T&l| | (6.1)

where x; is the location of voxel j, my is the mean voxel location for cluster £, W
is the covariance matrix for the voxels in cluster &, v is a weighting factor to specify
the trade-off between the diffusion tensor distance and the voxel distance, D; is the
diffusion tensor for voxelj, and T}, is the mean diffusion tensor for cluster k. The norm
on the voxel location is the Mahalanobis norm defined as ||x||lw = (xTW~!x)/? and
the norm on the diffusion tensor is the Frobenius norm defined as I|F|| = [Tr(FTF)]'/2,

where Tr is the trace of tensor F. The Mahalanobis distance was used, as opposed to
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an unadjusted Euclidean norm, in order to prevent geometric bias towards spherical
clusters. The covariance matrices W, were recalculated at every iteration. The

- weighting factor « was chosen a:priori for each subject using the formula
y=ay |xll/ID;ll (6.2)
J

with the factor a set to 1/4.

Initialization of the cluster centroids. The n centroid locations were initialized
along each side of a line segment passing from the posterior tip of the thalamic
hemisphere through the center-of-mass to the anterior tip within the plane spanned

by the first and second eigenvectors of the voxel location covariance matrix.

Convergence criterion. The clustering routine was iterated until no centroid

moved more than 0.1mm.

Nuclei identification. Following Niemann (31), 12 nuclei (17 in total including
subdivisions) were assigned to the clusters. The nuclei, including the subdivisions
in square brackets, were AV, MD, LD, LP, VA, VL [VLa, VLp|, VPM, VPL, CM,
Pu [PuA‘, PuM, PuL], LGN, MGN, respectively. The nuclei were assigned to the
14 clusters per hemisphere based on the location, shape, size and orientation of the
segmentation cluster. If a cluster was assigned to a nucleus, which contained subdi-
visions but. the assignment to a particular subdivision could ﬁot be made, then the
cluster was assigned to the undifferentiated nucleus. For example, if a cluster be-
longed to VL but could not be assigned definitely to VLa or VLp it was assigned to
VL. If a cluster subsumed 2 anatomical nuclei then the cluster was assigned to both
nuclei, and the center-of-mass and volume statistics were attributed to both nuclei.
If multiple clusters were consistent with the same nucleus, then all of the clusters
were assigned to that nucleus. In that éase, the center-of-mass (COM) and volume
sﬁatistics were taken from the cluster which agreed most strongly in morphometry
and 1ocat10n with the nucleus used by Niemann (AV, CM, LP MDmc MGN, PuA,
VLa and VPLa, respectively). ' ‘
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6.4.3 Center-of-Mass Comparison

Eight nuclei (AV, CM, LP, MDmec, MGN, PuA, VLa and VPLa) of the thirteen
reported nuclei COM coordinates from Niemann (31) were used for the center-of-
mass comparison. Of the five remaining nuclei, the red nucleus and the subthalmic
nucleus were outside the area considered in this paper; the habenular nucleus and
the ventromedial nucleus were deemed too small for detection with our present spa-
tial image resolution, and the parafascicular nucleus was considered as part of the
centromedian-parafascicular nuclei complex. The center-of-mass (COM) coordinates
for the segmented nuclei were registered to Talairach space using the AC-PC plane
as a landmark and then scaled in the Talairach frame to account for AC-PC distance
variability as was done in Niemann (31). The corrected Talairach coordinates were
~then pooled over the subjects (N = 4). The corrected COM coordinates reported
by Niemann were obtained by digitally scanning the published data (31) and like-
wise pooling over the subjects (N = 2). The agreement between the segmentation
and the Niemann COM coordinates was assessed with a multivariate anova test at a

significance level of 0.05.

6.5 Results

The mean yolume of the thalamus determined from the structural images was 7108 &
918mm? (per hemisphere), and the mean distance from the anterior commisure to
the posferior commisure (ACPC) was 28.4 + 3.3mm. The volume of the left thala-
mic hemisphere was 7141 + 530mm? and the right hemisphere 7073 £ 457mm?®. The
diffusion tensor data were visualized as cylindrical icon fields against a background
color-coded according to the direction of the sheet-normal vector (the third eigen-
vector) (44) (Fig. 6-1). The mean fractional anisotropy (FA) (39) over the thalamic
volume was 0.364 + 0.007. ’ |

| The diffusion tensor images showed clusters of corﬂmon fiber orientation corre-
sponding to the direction of the corticothalamic and thalamocortical striations within

each nucleus. The sheet-normal direction also exhibited clustering that did not always
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Figure 6-1: Mid-thalamic diffusion tensor images of 4 subjects (a,b,c,d). Images a-c are
axial slices and image d is a coronal slice at approximately mid-thalamic level. The cylinders
depict the diffusion tensor within each voxel. The axes of each cylinder are oriented in
the direction of the principal eigenvector of the local diffusion tensor. The length of the
axes are scaled by the product of the corresponding eigenvalue and the square-root of
the fractional anisotropy metric (39). The cylinders are colored by the direction of the
principal eigenvector according to the red-green-blue sphere shown at bottom right with
red indicating mediolateral, green anteroposterior, and blue superoinferior direction. The
background slice is colored by the direction of the third eigenvector, an indicator of the
sheet-normal direction, which describes the intra-voxel spread of fiber orientations in terms
of planar architecture (44). Note that the clustering of the mean fiber direction (32,33,53,54)
does not completely coincide with the clustering of the sheet direction.

coincide with the clustering suggested by the mean fiber direction. The location of the
fiber orientation clusters defined by both the fiber and sheet directions corresponded

generallyi with the location of the nuclei provided by histological atlases (Fig. 6-2).

Each of the 14 segmentation clusters (Figs. 6-3 and 6-4) was assigned to anatom-
ical nuclei according to the criteria described in the Methods section (Fig. 6-5). The
location, size, and shape of the segmented nuclei were consistent with Morel’s stereo-
tactic atlas (2). The relative location of the clusters within an individual thalamus
was consistent between subjects, but the cluster locations and morphometry varied
between sub jects. The mean orienfation of fibers within each nucleus showed high

correlation between subjects (Table 6.1). The agreement between the segmentation
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Figure 6-2: Histological comparison. (a) Diffusion tensor image (Fig. 6-la) compared
with a histological slice (b) from Van Buren et al (3) at a similar anatomical level. Note
the correspondence between diffusion orientation clusters and histologically defined nuclei
borders.

and the Niemann (31) center-of-mass (COM) coordinates was assessed with a multi-
variate anova test (Fig. 6-6). For six (AV, CM, LP, MGN, PuA and VPLa) out of
the 8 nuclei (AV, CM, LP, MD, VLa, MGN, PuA and VPLa) specified by Niemann
we were not able to reject the null hypothesis (at a 0.05 significance level) that the
COM coordinates were the same in the DTI and histological segmentations. For the
nuclei that successfully agreed with Niemann’s segmentation, the p-values were AV
(p = 0.526), CM (p = 0.623), LP (p = 0.481), MGN (p = 0.357), PuA (p = 0.436)
and VPLa (p = 0.433).

From Table 6.1 it can be appreciated that the diffusion orientations of the in-
dividual nuclei correspond to their respective corticothalamic and thalamocortical
striations (Table 6.2). For example the medial dorsal (MD) nuclei has an antero-

posterior direction corresponding to the direction of its projections to the frontal
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Figure 6-3: Automatic segmentation results (a-d) for the left and right thalamic hemi-
spheres of the 4 subjects respectively. The ¢ liisters are color-coded by the principal eigen-
vector of the mean diffusion tensor within each cluster (colorsphere in the lower right corner).
The slices are artificially expanded by 11 mm for the axial data sets (a-c) and 19 mm for
the coronal data set (d) in order to facilitate visualization.

association cortices through the anterior limb of the internal capsule. Likewise the
ventrolateral (VL) nucleus exhibit anteroposterior direction although with a super-
 oinferior tendency (more blue color), corresponding to the direction of the striations
to the premotor and primary motor cortices through the anterior imb of the internal

capsule.

The ventroposterior nucleus, often subdivided into two nuclei - the ventral pos-
terolateral (VPL) and ventral posteromedial (VPM), exhibited almost the same orien-
tation. Both nuclei receive input from the spinal cord, the brain stem and the medial
lemniscus and project to primary somatic sensory cortex. The two nuclei differ, how-
ever, in their target areas, body and head respectively, in addition fo projections to
the insula cortex from VPM. This is reflected in the orientations of the two nuclei
with both nuclei showing superoinfei‘ior and mediolateral orientation corresponding
to the striations through the posterior limb of the internal capsule. Where VPM
was identified, the nucleus showed orientations more mediolateral than those of VPL

confirming the additional projection to the insula cortex.

Of the intralaminar nuclei, the centro median (CM) and the parafascilus nuclei
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Figure 6-4: Surface renderings of the automatic segmentation result from Fig. 6-3(a). The
clusters are color-coded by the principal eigenvector of the mean diffusion tensor within each
cluster. The two renderings show a superior view (a) and an inferior view (b), respectively.

(PF) complex was identified. The -nuclei which belong to the class of diffuse pro-

jecting nuclei regulate the cortical activity by accommodating input from the brain
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D CMPf VPM/ puM PuM
. PuA L
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Figure 6-5: Fourteen segmented nuclei for left thalamic hemisphere of subject a. The
segmented nucleus is colored by the principal eigenvector and the remainder of the thalamus
is colored gray. As for Fig. 6-3, the slices are artificially expanded to facilitate visualization.

* stem, basal ganglia, and spinal cord to respectively, the motor cortex and putamen
(CM), and the prefrontal cortex and the caudate nucleus (PF). Both nuclei displayed

orientations in the superoinferior and slightly anterior direction.

The largest thalamic nuclei, the pulvinar nucleus, facilitates bidirectional connec-
tions td the parietal, temporal and occipital association cortex. These projections
oceur lateral to the optic radiation and spread out to the cortical areas via the poste-
rior thalamic peduncle. In accordance with these projections, the observed primary
orientation of the pulvinar was médiolatera,l, which distinguished it from all other

thalamic nuclei.
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Figure 6-6: Comparison between COM coordinates obtained from Niemann (open bar)
and the DTI segmentation (shaded bar). (a) Anteroposterior direction, (b) mediolateral
direction and (c) superoinferior direction, respectively.

Subject 1

Subject2

Subject 3

Table 6.1: Mean fiber orientations of the individually segmented nuclei from each subject.

Color representation red mediolateral, green

anteroposterior and blue

superoinferior.

If several classes were assigned to one nucleus, the nucleus box shows multiple colors.
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6.6 Discussion

Using DTI we were able to identify and automatically segment the major nuclei of
the thalamus. The diffusion tensor segmentation results agreed strongly with a pre-
viously published histological study conducted by Niemann et al. (31) for the AV,
CM/Pf and LP nuclei. For example, the COM coordinates for the AV nucleus ob-
tained from the automatic segmentation procedure agreed with those of the Niemann
study at a 0.05 significance level with a p-value of 0.5261. However, the MD.and VLa
nuclei showed non-significant correlation at the 0.05 significance level. The relatively
weaker agreement for these nuclei is most likely due the following factors. The nuclei
mentioned above are nuclear complexes which contain the subnuclei reported by Nie-
mann. The COM comparison was performed between these nuclear complexes and
the Niemann subnuclei which represents an anatomical discrepancy. For example,
Niemann specified the COM for VLa which we compared to the COM for the full VL
complex which consists of both VLa and VLp. This is further borne out by the fact
that the COM locations for VL and VLa agreed more strongly in the superoinferior

direction than in the anteroposterior and mediolateral directions.

The discrepancy may also be due to intersubject variability in the location of the
nuclei (3). Moreover, intersubject variability in the overall volume and morphometry
of the thalamus may introduce a bias in the scaling correction. Following Niemann
the COM coordinates were scaled in all Talairach dimensions by the AC-PC distance
in order to reduce the intersubject variability. However, scaling all dimensions by
the AC-PC distance will not in general account for the full variability of the thalami.
This is reflected, for example, in the stronger agreement in the AP dimension for the
COM locations. The error due to intersubject variability can also be appreciated by
considering that nuclei closer to the AC-PC plane were more strongly validated than

nuclei further from the plane (55).

- The difference between the segmented and histological COM coordinates may also
be due to the material distortions introduced by extraction and fixation of the tissue

for the histology. This point is supported by the stronger agreement between the
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thalamic volumes measured here (7108+918mm?) and the reported volumes obtained
from MRI in living subjects (8.65 = 0.95cm®, (Collins, D.L. et al. Proceedings of
Human Brain Mapping pg. 702 (1998))) as opposed to fixed (6625mm?, Ref. 56)

tissue specimens.

Despite the above differences, we were able to reliably segment and validate many
of the major nuclei. For example, in all subjects we identified the AV, MD, LP, VA,
VL [VLa, VLp], VPL, CM, Pu [PuA, PuM, Pul], LGN, and MGN nuclei from the
14 segmented classes and in three of four subjects the LD and VPM nuclei were also
identified. Of these, the nuclei chosen by Niemann et al. for COM analysis (AV, CM,
LP, MDmc MGN, PuA, VLa and VPLa, respectively) were successfully validated for
all but the MDmc and VLa nuclei. All the segmented nuclei exhibited mean fiber
orlentatlons which were consistent between subjects and correlated with the onenta-
tion of their known corticothalamic and thalamocortlcal projections. In general the
anterosuperior portion of the thalamus showed anteroposterior directed fiber popula-
tions, the lateral portion showed superoinferior and mediolateral directions and the
posterior portion of the thalamus showed mediolateral directions. The orientation
of each segmented nucleus varied as a function of the specific cortical target of the

nucleus.

To our knowledge, this is the first report of anatomically significant diffusion
anisotropy in a human gray matter structure. The observed anisotropy in the thala-
mus is mosAt likely due to the thalamocortical and corticothalamic projections which
are myelinated, and not the shorter, mostly unmyelinated interthalamic, striétal,
and brainstem projections. The attribution of the observed anisotropy to the tha-
lamocortical /corticothalamic projections is motivated by the agreement between the
observed fiber directions and the directions of these projections. These projections
pass through the internal capsule and the corona radiata, from which they detach
into the thalamic peduncles in an orderly fashion. Most of the projections connect to
the thalamus at the rostral and caudal poles as well as along the dorsal surface. How-
ever, based on the present data we cannot rule out the possibility that unmyelinated

structures contributed to the observed diffusion anisotropy.
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The ability to identify the thalamic nuclei could be of importance for the diagnosis
of diseases with thalamic involvement. Of special interest would be long-term effects
and possible subsequent reorganizations of the thalamic nuclei in order to adapt to
novel environments, as was recently shown to occur in monkeys (57). A combination
of diffusion tensor imaging and functional MRI could help elucidate the functional

relations within and between the thalamic nuclei.
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Chaptér 7
Multi-Tensor Imaging

“Enter several strange shapes, bringing in a banquet; and dance about it with gentle
actions of salutation; and, inviting the King, etc., to eat, they depart.” '

William Shakespeare, The Tempest

7.1 Preface

Magnetic resonance diffusion tensor imaging (DTI) can resolve the dominant white
matter fiber orientation within a voxel provided that the fibers are strongly aligned.
However, a giveﬁ voxel may contain a distribution of fiber orientations due to, for
example, fiber crossing, splaying, or twisting within the voxel. Such intravoxel ori-
entational heterogeneity is irresolvable bjr DTT due to the assumption implicit to the
tensor model of a single diffusion ma.ximﬁm per voxel. Here, we sought to test whether
a geodesic, high b-value diffusion gradient sampling scheme employing on the order
of a hundred gradient directions could rebsolve multiple fiber orientations within a
voxel. In regions of fiber crossing the diffusion signal exhibited multiple significant
local maxima/minima as a function of diffusion gradient orientation, indicating the
presence of multiple intravoxel fiber orientations. The standard tensor reconstruc-
tion was unsuitable given the apparent multi-modal character of the diffusion signal,
50 rather the signal was modeled by a discrete mixture of Gaussian diffusion pro-

cesses in slow exchange, and the underlying tensors were solved for using a gradient
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descent scheme. The multi-tensor reconstfuction resolved multiple intravoxel fiber
populations corresponding to known fiber anatomy.

The present chapter and the chapters following represent a transition from the ten-
sor model which we employed in Chaps. 5 and 6 to a more general diffusion paradigm.-
This transition will be fully realized in the next chapter (Chap. 8) where we introduce
the diffusion spectrum imaging method, a completely model-independent approach
to diffusion imaging. Given that the two previous chapters were based on the tensor
model which we now seek to dismantle it is reasonable to ask what the domain of
validity of the tensor model truly is.

Recall from Chap. 3 that the tensor model, which is synonymous with the Gaussian
model, represents a low-spatial frequency approximation to the true diffusion fuﬁction.
Specifically, the tensor model is exact up to third cumulant level in spatial frequency.
Howe\}er, when we wish to describe more complex phenomena such as intra-voxel
fiber crossing it is necessary to image the entire diffusion function and not simply
its Gaussian best-fit. The tensor results from the previous chapters sflould thus be
viewed as based on a coarse spatial frequency approximation to the true diffusion

function which we seek to resolve more fully in the following two chapters.

7.2 Introduction

Tissues with regularly ordered microstructure such as skeletal muscle, spine, tongue,
heart, and cerebral white matter exhibit aﬁisotropic (that is, directionally-dependent)
water diffusion due to the preferred orientation of the diffusion compartments in the
tissue (1-7). The direction of preferred diffusion, and hence the direction of preferred
orientation in the tissue, can be resolved with a method called magnetic resonance
diffusion tensor imaging (DTT) (2) which measures the apparent water self-diffusion
tensor under the assumption of Gaussian diffusion. Based on the eigenstructure of
the measured diffusion tensor it is possible to infer the orientation of the diffusion
compartments within the voxel sorthat, for example, the major eigenvector of the

diffusion tensor parallels the mean fiber orientation (2), and the minor eigenvector
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the normal to the mean plane of fiber dispersion (8).

Notwithstanding the success of DTI for resolving the mean fiber orientation in
tissue, the tensor model is incapable of resolving multiple fiber orientations within an
individual voxel. This shortcoming of the tensor model stems from the fact that the
tensor possesses only a single orientational maximum, i.e., the major eigenvalue of the
diffusion tensor (9,10). At the millimeter-scale resolution typical of DTI the volume of
cerebral white matter containing such intravoxel orientational heterogeneity (IVOH)
may be considerable given the widespread divergence and convergence of fascicles
(11,12). The abundance of IVOH at the milliméter scale can be furthef appreciated
by considering the ubiquity of oblate (pancake—éhaped) diffusion tensors in DTI, a
hypothesized indicator of IVOH (7,8).

Given the obstacle IVOH, particularly fiber crossing, poses to white matter trac-
tography algorithms (13-15) we sought to determine whether high angular resolution,
high b-value diffusion gradient sampling could resolve such heterogeneity (9). High
b-values were employed because at the lower b-values conventionally employed by
DTI there is insufficient contrast between the fast diffusion component of one fiber
and the slow diffusion component of another fiber to effectively resolve the two fibers
(10). Using high angular resolution, high b-value diffusion gradient sampling we wére
able to detect diffusion signals with multiple, discrete maxima/minima as a function
of gradient orientation, indicating the presence of multiple underlying fiber popula-

“tions. In order to resolve the underlying fiber orientations, the diffusion signal was
modeled as arising from a discrete mixture of Gaussian diffusion processes in slow
exchange (a mixture of tensors). The distribution of tensors within each voxel was
solved for using a gradient descent algorithm, revealing multiple intravoxel fiber ori-
entations corresponding to known ﬁber anatomy, and consistent with the neighboring

fiber anatomy.
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7.3 Model

Assuming Gaussian diffusion, the diffusion signal from a single compartment is given

by the tensorial Stejskal-Tanner relation

E(qx) = exp (—qf Dqx7) (7.1)

where E(qyi) is the normalized diffusion signal magnitude for the diffusion gradient
wave-vector qi = Y8gx, 7 is the gyromagnetic ratio, 4 is the diffusion gradient dura-
tion, gy is the kth diffusion gradient, 7 is the effective diffusion time, and D is the
apparent diffusion tensor ('16). To movdé-l multiple compartments, if we assume that
(i) the inhomogeneity consists of a discrete number of homogeneous regions, (ii) the
regions are in slow exchaﬁgé, i.e., separated by a distance much greater than the dif-
fusion mixing length, and (iii) the diffusion within each region is Gaussian, i.e., fully
described by a tensor, then we can express the diffusion function as a finite mixture

of Gaussians

E(qx) = Z fiexp (—qiD;jqxr) (7.2) |

where f; is the apparent volume fraction of the voxel with diffusion tensor D;. The
objective then is to find a a set of n tensors »{Dj} and corresponding volume fractions
{f;} which best explain the observed diffusion signal. The Gaussian mixture formu-
lation is convenient because it is capable of describing IVOH and retains much of the

economy of the tensor model.

The traditional method for solving Gaussian mixture problems of this type is the
expectation maximization (EM) algorithm (17, 18). However, the EM algorithm is
highly sensitive to local minima and requires a model of the probability that an ob-
served signal arose from a given tensor. Given the limitations of the EM algorithm
we employed a gradient descent scheme with multiple restarts to solve the mixture
model. The gradient descent algorithm solves for the eigenvectors and volume frac-
tionsu which give the highest correlaﬁion between the predicted and observed diffusion

signals. The eigenvalues of the individual tensors can be specified a priori or restricted
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to a particular range in order to prevent the algorithm from overfitting with unphysi-
ological (e.g., negative) eigenvalues. The details of the mixture model decomposition

algorithm employed in this study are described in the Appendix.

7.4 Experimental Methods

7.4.1 MRI Methods

Axial diffusion images of a healthy
adult male were taken at 3T (GE Signa) |
with TR/TE/7 = 2200/140/50ms, b =
1.077ms/u?, 8 averages, and 3.125 x 3.125
% 3.1lmm? voxels. The diffusion pulse
sequence consisted of a twice-refocused

balanced echo with a pair of 180’s, the

pair situated to minimize Eddy current

) distortions (5). The gradient ampltidue
Figure 7-1: Gradient directions for the high

angular resolution diffusion experiment. The Wwas g = 10mT/m, and the gradient di-
directions were obtained from the 126 vertices

of a 5-fold tessellated icosahedral hemisphere. rections were obtained from the 126 ver-

tices of a 5-fold tessellated icosahedral
hemisphere (Fig. 7-1). For each experiment, images with no diffusion weighting were
also obtained in order to normalize for non-diffusion signal attenuation. The SNR

was ~65 in the unattenuated image and ~35 in the attenuated image.

7.4.2 Multi-Tensor Reconstruction

The data were decomposed with the mixture model described in the Appendix. The
mixture model was solved with the conjugate gradient descent algorithm (19) and
ﬁultiple restarts to prevent the algorithm from settling on local minima. The eigen-
values were specified at (A1, Az, A3) - (1.5,0.4,0.4)u?/ms. If the predicted diffusion

signal from a single tensor agreed with the observed diffusion signal with a Pearson
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correlation coefficient of p > 0.95 then the number of fibers was set to N = 1 and
N = 2 otherwise. The fits for N = 3 fiber populations were found to be unstable
and hence are not reported. For comparison, single tensor fits were also obtained
without the gradient descent algorithm by pseudoinverting the b-matrix as described

in Ref. 20.

7.5 Results

7.5.1 Raw Data

Diffusion signals exhibiting multiple maxima/minima as a function of gradient orien-
tation were observed in anatomical regions containing fiber crossing and diQergence.
Specifically, referring to Fig. 7-2, multi-modal diffusion signals were observed where
the callosal fibers, turning into the forceps minor, pass the anterior extension of the
anterior limb of the internal capsule. Similarly, multi-modal diffusion was seen where

the fibers diverge into the superior temporal gyrus.

7.5.2 Multi-Tensor Reconstruction

The multi-tensor decomposition revealed fiber population mixtures which could not
be visualized in the original major eigenvector map (Fig. 7-3) nor in the ADC function
polar plots (Fig. 7-2). For example, from the anterior limb, the fibers are shown to
curve medially to reach the cingulate gyrus, and, with the callosal radiation, diverge
laterally into the inferior frontal gyrus, a.ntero-laterally into the middle frontal gyrus,
~ and anteriorly into the superior frontal gyrus (Fig. 7-3). Additionally, relative to
the tensor model, the mixture estimates gave a stronger antero-posterior course to
the anterior limb fibers. The reorientation followed from the ability of the mixture
model to account for the medio-lateral fiber component in the callosal striations to

the inferior frontal gyrus.
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Figure 7-2: Spherical polar plots of the ADC (negative log of the normalized diffusion
signal) in the fascicle base of the frontal gyri (left), and the divergence of the optic radiation
into the superior temporal gyrus (right). The ADC function was rescaled to {0,1} per
voxel in order to maximize the visual angular contrast. Note that the the peaks of the
ADC functions do not give the orientation of the underlying fibers in vozels containing
heterogeneity. Multiple peaks simply indicate the presence of IVOH. The color indicates
the normalized ADC value according to the scale shown at top-right. In the image at left,
note the homogeneous diffusion in the corpus callosum (cc), the anterior extension of the
anterior limb of the internal capsule (aic), and the projections to the inferior frontal gyrus
(ifg). In contrast, multi-modal behavior is observed where the fibers diverge into the superior
(sfg), middle, and inferior (ifg) frontal gyri, where the fibers curve into the cingulum (cg),
and where the fibers from the corpus callosum intersect those from the anterior internal
capsule. At right, homogeneous diffusion is observed in the optic radiation (or), tapetum
(tp), and superior longitudinal fascicle (slf), but heterogeneous diffusion is seen where the
fibers diverge into the projections to the superior temporal gyrus (stg) and the insula (in).
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Figure 7-3: Comparison of the major eigenvector fields from the single-tensor (a) and two-
tensor (b) fits to diffusion signal from the forceps minor (ROI from anterior ROI depicted in
Fig. 7-2). The ROI is taken from the same ROI shown in Fig. 7-2. The vectors are oriented
in the direction of the major eigenvector of the diffusion tensor within each voxel and are
color-coded according to the RGB sphere shown at right with red indicating mediolateral,
green anteroposterior and blue superior-inferior. The multi-tensor decomposition (b) shows
the intersections of the lateral and callosal striations with the anterior extension of the
anterior limb of the internal capsule; and the divergence of fibers to the superior (bright
green), middle (drab green), and inferior (red) frontal gyri. Note also the intersection
between the antero-lateral directed fibers from the external capsule (bright green), and the
superior-inferior directed fibers from the uncinate fascicle (blue)
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7.5.3 Comparisdn to Tensor Model

Recently, it has been proposed that W
IVOH manifests in DTT in the form of 013
oblate diffusion -tensors (4,8), that is, dif-  0.12
fusion tensors with the first eigenvalue 44
comparable to the second and both the

01
first and second significantly larger than

the third. In order to test this hypothe- 0.1 0.2 03 0.4

An (02
sis we compared the non-Gaussianity of Az-Ag (p2ms)
the observed diffusion signal (a measure ’

Figure 7-4: Experimental relationship be-
tween the error W of the tensor model as de-
to the oblateness of the measured dif- fined by Eqn. 7.3 and the oblateness (A2 —A3)

of the best-fit diffusion tensor. The errors bars
fusion tensor. The diffusion tensor was are SEM.

of disagreement with the tensor model)

obtained by pseudo-inverting the b-matrix as descfibed in Ref. 20, and the oblateness
of the diffusion tensor was expressed as the difference between the second and third
eigenvalues, i.e., A — A3 (8). The non-Gaussianity W was defined as the normalized
root-mean-square difference between the experimentally observed diffusion signals s,

and the signals sp predicted from the tensor fit

W = \/ Sp — Se SD - Se) (73)

sT's,

The non-Gaussianity of the diffusion signal was found to increase significantly with
the oblateness of the diffusion tensor (Fig. 7-4), prov1d1ng support for the hypothesis
that oblate diffusion tensors in DTI arise from IVOH.

7.6 Discussion

Using high angular resolution, high b-value diffusion imaging we detected diffusion

signals with multiple local extrema as a function of diffusion gradient orientation.
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The multi-modality was apparent primarily in regions of fiber crossing and splay
such as at the divergence of fibers to the frontal gyri. Mixture model decomposition
of the diffusion signal using a gradient descent algorithm was able to resolve the
underlying fiber populations which corresponded to known anatomy. Moreover, the
mixture decomf)osition gave fiber angle estimates significantly ‘different from those
provided by the tensor model, presumably due to the éonfounding of the latter by
partial volume summation of the multiple underlying fiber directions

The observation of multi-modal diffusion in regions of fiber heterogeneity should
raise questions about the general validity of the tensor model. The tensor model
is adequate to describe the principal fiber direction in well-organized white matter
bundles but may give highly misleading results in regions of fiber heterogeneity. For
example, two fibers separated by some angle will give rise to a major eigenvector
oriented in between the two underlying fiber orientations, a direction inconsistent
with either of the underlying fiber orientations. In regions of IVOH, simply taking
the negative log of the diffusion signal to obtain the ADC as a function of orientation
will not, in general, give a meaningful estimate of the underlying fiber distribution.
For example, in Fig. 7-5, the disagreement between the ADC function polar plot and |
the fiber directions can be readily appreciated.

High b-values were employed in the present experiment in order to provide suffi-
cient IVOH cbntrast, a requirement recently described in a theoretical report (10). In
practice, the discrimination power of the mixture model will depend on the b-values
employed for the diffusion experiment. In particular, the sensitivity to IVOH will be
low at the relatively low b-values (b < 0.7ms/u?) conventionally employed by DTI
because there is insufficient contrast between the low diffusion component from one
fiber and the high diffusion component from another fiber with a different orientation
(10). The sensitivity to IVOH will increase with increasing b-value but eventually
decrease with the associated decrease in SNR. Preliminary data and numerical simu-
lations (unpublished data) suggest that a b-value on the order of 1ms/y?) is sufficient
for resolving at least two fiber populations, but higher b-values will provide greater

; heterogeneity sensitivity. In general, the optimal sampling scheme will depend on
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the underlying diffusion function and the details of the reconstruction algorithm. A

recent study by Frank (21) used spherical harmonics to interpret the diffusion signal

obtained by high angular resolution sampling, but did not provide any details on how

to invert the signal to obtain the underlying fiber orientations.

The white matter fascicles comprise approx-
imately a quarter of the total human cerebral
white matter volume (11,12). The high angular
resolution diffusion imaging method provides a
tool for resolving the remaining volume of white
matter volume (presumably more by fiber num-
ber) characterized by complex arrangements of
fibers. The technique promises to directly ben-
efit the white matter tractography problem ( 15,

22-25) where fiber crossing presents a substan-

tial obstacle (13-15). Specifically, the ability to

resolve fiber heterogeneity will allow the tract so-
lutions to navigate through fiber intersections in
deep white matter and at the subcortical margin.
Further, tréct solutions can be initiated in het-
erogeneous regions as opposed to the current re-
quirement to initiate the tracts in well-organized
fascicles with high anisotropy. Lastly, the ap-
proach may help characterize selective fiber loss
in diseases associated with white matter degen-

eration.

7.7 Appendix |

Figure 7-5: Single voxel taken from
Figs. 7-2 and 7-3 at the crossing of
the callosal striations with the pro-
jections to the superior frontal gyrus.
The grayscale polar plot shows the
negative log of the diffusion signal as
function of diffusion gradient orien-
tation (the ADC function) and the
cuboids the principal eigenvectors of
the two tensors which best fit the
diffusion signal. Note the disagree-
ment between the direction of the
ADC function and the eigenvector
estimates.

The objective of the mixture model decomposition is to find a set of n tensors {D,}

and corresponding volume fractions {f;} (where j € [1,n]) which best fit the ob-
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served diffusion signal F(qy) which has been sampled over {qx}. In order to encour-
age physiological solutions, we fix the diffusion tensor eigenvalues to specified values

- (A1, A2, A3). The error function to be minimized is

X = Z(E(Qk)_E(Qk))2 (f-4)

k

2
=2 (Z fiEs(ax) — E(Qk)) (7.5)

where E(.) is the predicted diffusion signal based on the multi-tensor model, E‘,( D)=
exp (—qfD;qx7) (Eqn. 7.2) is the predicted diffusion signal from compartment 7,
and E(.) is the observed diffusion signal. In order to insure that the volume fractions
are properly bounded (f; € [0,1]) and normalized (3=, fi = 1) the volume fractions

are calculated through the softmax transformation

exp;
fi= i

= epn (7.6)

The tensors D; are parameterized in terms of the Euler angles o} where i € {1,2,3}.

The gradient in the Euler angles is

. OR; oRT |
=_Z(E ))f, s (Qk)dr ( —ZA;RT + R;A, )qkr (7.7)
oa; 7 ot
where R, is the column matrix of eigenvectors and A; is the diagonal matrix of
eigenvalues for diffusion tensor D;. The gradient in the volume fraction parameters
is |

% _ (Ze);zgym ; {(E dk) Qk)) Z;(l — 6ij) (E-(Qk) _ E (Qk)) expr(;,] |
7.8

where §;; = 1if i = J and 0 if ¢ -7& j. The mixture model can then be solved by

conventional gradient descent algorithms (19) using the gradients described above.
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This chapter is in press (26) and is based on a published abstract (9). .
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Chapter 8
Diffusion Spectrum Imaging

“O place! O form!”

William Shakespeare, Measure for Measure

8.1 Preface

In the previous chapter we showed that high angular resolution diffuéion imaging

was capable of resolving multiniodal diffusion behavior in regions of intravoxel fiber
| crossing. In voxels containing significant non-Gaussianity, we modeled the observed
diffusion signal as arising from a finite mixture of Gaussian diffusion processes in

slow-exchange. However, as described in the previous chapter, the Gaussian mixture

- model approach has a number of significant shortcomings including the need for an

iterative reconstruction scheme, the possibility of model misspecification, the ability
to describe only a discrete distribution of fiber orientations, and the inability to
capture non-Gaussian behavior such as may arise from restricted diffusion, diffusion
heterogeneity, finite membrane permeability, or surface relaxation. . |

Here, we present a more general diffusion imaging method termed diffusion spec-
trum imaging (DSI). DSI is related to the g-space imaging approach which we intro-
duced in Chap. 4 but differs in a number of key respects. As with q-spa.ce imaging,
DSI does not assume an analytical form for the diffusion process, such as Gaussianity

as was assumed by diffusion tensor imaging (DTI) (Chap. 3) or multi-Gaussianity as
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was assumed by the tensor mixture modeling approach (Chap. 7). However, the DSI
method differs from q-space imaging in a number of experimental and interpretive

respects which we explain in detail.

8.2 Abstract

Magnetic resonance imaging of the endogenous water in cerebral white matter can
resolve subvoxel histological structure. The water diffusion function is measured
with a novel magnetic resonance method called diffusion spectrum imaging. The
water displacements are encoded with a set of conventional diffusion-weighted images,
and the microscopic three-dimensional diffusion function within each voxel is then
reconstructed by Fourier transformation of the modulus of the diffusion signals within
each voxel. Diffusion spectrum images of the human brain show correspondence
between the directions of enhanced diffusion and the directions of the underlying
fiber populations. The diffusion sf)ectrum imaging method aliows for resolution of
complex fiber structure, such as intravoxel fiber crossing and divergence, previously

irresolvable by magnetic resonance imaging.

8.3 Introduction

M@gnetic resonance diffusion imaging provides an exquisitely sensitive probe of tis-
sue microstructure. Owing to the microscopic length scale of diffusion in biological
tissue, diffusion imaging can reveal histological architecture irresolvable by conven-
tional magnetic resonance imaging methods. However, diffusion imaging methods to
date have assumed a simple analytical form for the underlying diffusion process. For
example, apparent diffusion coefficient mapping and diffusion tensor imaging (DTT)
assume homogeneous, Gaussian diffusion within each voxel. Similarly, finite mixture
models such as intra/extracellular exchange models and multi-tensor models assume
a discrete mixture of Gaussian diffusion processes in slow exchange. The ability to

measure diffusion without recourse to an analytical model would open a broad range




8.3. INTRODUCTION 133

of phenomena for study by diffusion imaging, including intravoxel fiber crossing, re-
stricted diffusion, diffusion compartment morphology, and wall relaxation to name
but a few examples.

Model-independent diffusion imaging can be achieved with a technique variously
called spin displacement imaging, dynamic NMR microscopy, diffusion displacement
imaging, or g-space imaging (1). Q-spa;ce imaging, the term used here, measures
the microscopic, three-dimensional spin displacement probability density function
within each macroscopic volume element (voxel). While q-space imaging has been
applied to the study of inanimate materials such as liquid crystals and polymer melts,
the technique has not been applied widely in vivo due to a number of formidable
experimental barriers. The obstacles include contamination to the phase of the echo
signal from biological motion, eddy current distortions caused by the high gradients
required to obtain sufficiently high spatial resolution of the diffusion function, and
the relatively weak gradients available on clinical scanners.

Here, we describe a novel diffusion irrligging method termed diffusion spectrum
imaging (DSI) which eliminates or minimizes all of the abovementioned barriers to
g-space imaging invivo. By measuring the microscopic diffusion function within each
voxel in a model-independent fashion, DSI can efficiently resolve multiple fiber ori-
entations within a voxel. By contrast, DTTI which assumes Gaussian diffusion is only
capable of resolving the mean fiber orientation with a voxel. The ability to resolve
complex intravoxel fiber structure with DSI opens a whole new domain of microscopic

brain anatomy for investigation by magnetic resonance imaging.

8.3.1 Q-Space Imaging

~ In his seminal paper on the nuclear magnetic resonance (NMR) spin echo, Hahn
noted that molecular diffusion in the presence of a magnetic field gradient would
reduce the magnitude of the observed echo signal (2). Quantitative measurement of a
molecular diffusion coefficient was not made possible however until the introduction of
the pulsed gradient spin echo (PGSE) experiment by Stejskal and Tanner (3). Stejskal
and Tannef showed that the spin echo magnitude E(q, 7) from a PGSE experiment is
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directly related to the spin displacement probability density function (PDF) P(R, T)

by a Fourier relation

E(q,7) = E / P(R,7)e "™ dR (8.1)
= EoF|P(Ar)]

where Ey = E(0,7) is the signal in the absence of the applied diffusion gradient,
R = r — r’ is the relative spin displacement from the initial position r’ of the‘spin at
the time of the first gradient to the position r of the spin at diffusion time 7, q =Yg
is the spin displacement wave vector with v the gyromagnetic ratio, ¢ the diffusion
gradient duration, and g the diffusion gradient wave vector (see Chap. 4). The PDF
P(R,T), which is also referred to as the ensemble-average diffusion propagator (4),
expresses the mean probability over the voxel of a relative spin displacement R in
the experimental diffusion time 7. The Fourier relationship between the spin echo
magnitude and the PDF allows for direct reconstruction of the PDF by inverse Founer

8
transform of the diffusion signal with respect to the displacement wave vector

PR,7) = E' [ Blane ™ dg (82)
= Ey FE(a,7))

The spatial resolution of the diffusion function is given by 2/qmax, and the field-of-
view by 2/Aq where Aq is the spacing of the reciprocal space sampling grid. From

the above relation one can easily derive the return-to-origin (RTO) probability (5,6)

P(0,7) = /E(q, T) dg (8.3)

which reflects the degree of diffusion restriction (Chap. 4). At short diffusion times
‘the RTO probability can be used to derive the surface-to-volume ratio of the pore
space (5,6, Chap. 3).

Q-space imaging employs the Foﬁrier relation above to reconstruct the PDF from

the diffusion signal. The g-space imaging method has been employed to measure the
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characteristic restriction sizes, pore morphology, surface-to-volume ratios, and surface
relaxation properties of a broad range of inanimate materials, yet the approach has
not been extensively applied to biological tissue in vivo because of three significant
barriers: the contamination of the phase of the echo by biological motion, the eddy
currents induced by large magnetic field gradients, and the relatively weak pulses
available on scanners large enough for living animals. In the following, we describe
the experimental and conceptual modifications to the g-space imaging experiment

which we implemented in order to make g-space imaging feasible in vivo.

8.3.2 Modifications to Q-Space Imaging Experiment

Here, we describe how the g-space imaging experiment can be modified to overcome
the obstacles previously encountered in implementing the method in vivo. The mod-
ifications include both experimental changes and interpretive shifts which taken as a '
whole constitute the method which we refer to as DSI. The following sections specif-
ically describe the necessary modifications and the resulting effects on the observed

diffusion function.

8.3.2.1 Twice-Refocused Balanced Echo Sequence

Q-space imaging is conventionally

A
(18]
A
A
»
53
Qa

l performed with a PGSE pulse sequence

5, 0y which consists of a narrow diffusion

s N J :
Ul 0, o, gradient on each side of the refocusing
—— TER2— m-pulse (Fig. 4-1). The diffusion gra-

dients tend however to induce eddy

Figure 8-1: Pulse sequence diagram for the ef-
fectively constant gradient twice-refocused bal- ,
anced echo (cgTRBE) experiment. The 7-pulse duce magnetic field gradients which

pair can be situated to optimally refocus the eddy
currents at acquisition. :

currents in the bore which in turn pro-

interfere with the imaging gradients
(7-10). The interaction of these gra-

dients with the imaging gradients produces deleterious image disfortions.
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The eddy current distortions are particularly problematic for the strong diffusion
gradients required to spatially resolve composite diffusion signals which is the princi-
~ pal aim of this endeavor. The eddy current artifact can be effectively canceled with a
twice—refocused :balanced echo sequence which consists of a pair of 7-pulses separated
by TE/2 (Fig. 8-1) (11). Assuming that the eddy current decay is characterized by a
single time constant, the w-pulse pair can be positioned to refocus the eddy currents

at readout, effectively eliminating the eddy current distortions (11).

The PGSE experiment was further modified by applying an effectively constant
gradient (A ~ &) as opposed to the pulsed gradients more typically used by PGSE
experiments. By ’effectively constant’ we do not mean that the gradient is held con-
stant, but rather that the gradient is effectively equivalent to a constant gradient
when the ph.asé inversions from the 7-pulses are taken into account. We refer to this
sequeﬁce as- the constant gradient twice-refocused balanced echo (csTRBE) experi-
ment (Fig. 8-1). The benefit of the effectively constant gradient is, of course, the
ability to achieve significantly stronger wave vectors, and consequently higher spa-
tial resolution of the diffusion function. The effect of the constant gradient dn the

observed diffusion function is discussed in the following section.

8.3.2.2 Effectively Constant Gradient

The effectively constant gradients employed by the égTRBE experiment (Fig. 8-
1) violate the so-called narrow pulse condition typically cited as a requirement for
spin displacement imaging (13). Specifically, it is commonly stated that the diffusion
gradients must be sufficiently narrow so that the diffusion during the application of
the gradients is negligible. The condition is usually formulated as requiring that the
diffusion mixing length associated with the diffusion gradient time must be small
relative to a characteristic pore size (1) although much more stringent conditions
hé.ve been proposed (13).

How does the effectively constant gradient employed the cgTRBE sequence affect

the observed diffusion function? For sake of comparison, under narrow pulse condi-
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tions the PGSE experiment measures the probability of a spin displacing R in time
A. The constant gradient experiment, on the other hand, measures the probability
of a spin displacing from its mean position over time 0 to TE/2 to its mean position
over time TE/2 to TE (12) (Fig. 8-2). Following Mitra (12), we will refer to this
function as the center-of-mass (COM) propagator. This effect can be spelled out in

more detail as follows.

The COM spin position around a time-

point £ is

2 ' t+TE/4
"~ TE Ji—1r/4

Tem (%) r(t)dt' (8.4)

where r(t) is the spin position as a func-
tion of time. The COM propagator is then
simply P(Rcm, 7) where

Rem = rem(TE/4) — 1en(3TE/4)  (8.5)

Figure 8-2: Diffusion in a constant mag-
netic field gradient. The dashed line de-
picts a sample diffusion path between times
t = 0 and t = 7 where 7 is the diffu-
sion time. A conventional pulsed gradi-
ent (Stejskal-Tanner) spin echo experiment
with infinitely sharp pulses measures the
diffusion from the location of the spin at

is the COM relative spin displacement. Note
that for Gaussian diffusion, the COM ef-
fect is appropriately accounted for by the

§/3 correction to the effective diffusion time

time t = 0 (solid dot) to the location of
the spin at time ¢t = 7 (solid dot). The
constant gradient experiment measures the
diffusion from the mean location (star) be-
tween times t = 0 and ¢ = 7/2 to the mean

(Sec. 4.29). For restricted diffusion, the net
effect of the finite pulse width is to produce
an apparent diffusion function which is arti-

ficially constricted in the direction perpen-

location between times t = 7/2 and t = 7.

Adopted from Ref. 12. dicular to the restriction barriers (12). If

the diffusion is restricted, this might have the beneficial effect of sharpening the
peaks of the propagator although we do not test this hypothesis here. The principal
disadvantage of the finite pulse duration however is that it precludes quantitative;

model-independent morphometry of the diffusion space. Howéver, while the effec-
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tively constant gradients potentially constrict the diffusion function, they do not
produce any rotation of the diffusion function. Hence, the COM propagator can
still be characterized accurately in terms of its orientational structure. The orienta-

tional structure is described by the spin displacement orientation distribution function

(ODF) which we define in Sec. 8.3.2.4.

8.3.2.3 Modulus Fourier Transform

Spin displacement imaging of the brain has proven problematic in the past due to the
contamination of the phase of the diffusion signal by biological motion which in the
brain is principally due to cardiac pulsation (14). Taking the Fourier transform of the
modulds of the signal, as opposed to that of the full comple;c signal, removes the phase
efror, but we need to ask what, if any, information is lost in doing so. We show that
for a puré diffusion process the modulus Fourier transform and the complex Fourier
transform are equivalent and hence no information is lost in taking the modulus, as
opposed to the full complex, Fourier transform. This striking result entails that any
ensemble-averaged diffusion function can be perfectly reconstructed from its power

spectrum.

We can prove that the modulus Fourier transform and the complex Fourier trans-
form are e(iuivalent by showing that the diffusion signal is real and positive or all
wave vectors. That is, in order to show that Ej'F1[E(q)] = |Ey ! |F Y|E(q)]] it
is sufficient to show that E(q) =|E(q)| for all q. The reality of the diffusion signal

follows easily from the symmetry of the diffusion propagator (P(R,7) = P(—R,T)).

We now wish to show that the diffusion signal is positive as well.

While the Bochner theorem informs us that if the charateristic function (equiva-
lent here to the Fourier transform due to symmetry) is positive everywhere then the
direct space function is a distribution, the goal here is, conversely, to determine if

all ensembley-averaged distributions arising from the diffusion equation have a pos-

itive Fourier transform. We begin by noting that the propagdtor has the spectral
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decomposition

P(r,r',7) Zun(r un(r)e BT (8.6)

where the eigenfunctions {un} are an orthonormal set of solutions to the Helmholtz
equation parameterized by the eigenvalues E, (15,16). Substituting the spectral

decomposition into the diffusion equation

% - V(D(r)V) + p(r) | P(x,¥',7) = §(r — ')8() (8.7)

gives the eigenvalue equation
[V(D(r)V) + E,) un(r) = 0. (8.8)

From the above equation we see that since all of the eigenfunctions are real all of
the eigenvalues E, are real as well and hence the propagator is positive definite. The

diffusion signal is

| Bla7) = B Y Flunal) e (5:9)

which is real since all of the eigenvalues E, are real. Hence, the diffusion signal is
equal to its modulus (E(q,7) = |E(q,7)|) for all wave vectors. Consequently, no
information is lost in taking the modulus, as opposed to the full complex, Fourier

transform.

It is important to note that the positivity énd reality of the echo signal only holds
for the ensemble-average diffusion function but not generally for the unaveraged dif-
fusion function. For example, let us consider the simple case of a one-dimensional
compartment with impermeable walls. At long times, the diffusion function is a box-

car, the Fourier transform of which is a sinc function which is not positive everywhere.
However,. if we consider the average over all starting positions the diffusion function
is a triangle, the auto-correlation of the boxcar, the Fourier transform of which is
the s1nc—squared function which is positive everywhere. Hence, the averaging of the

diffusion. s1gna1 over the voxel is required to ensure that the echo signal is pos1t1ve
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The positivity and reality of the echo signal for any pure diffusion process entails
that any non-zero phase observed in the signal has a source other than diffusion, and
so the diffusion function can be accurately reconstructed as the Fourier transform of
the modulus of the echo signal. Using the modulus Fourier transform has additional
practical significance since it eliminates phase shifts due to changing eddy current or

frequency shifts during the encoding process.

8.3.2.4. Radial Projection Transform

The DSI experiment ultimately yields a six-dimensional image resulting from the
three spatial dimensions of the anatomical image plus the three spatial dimensions
of the diffusion function. In order‘to visualize the diffusion function within each
voxel, we project the diffusion function on to the sphere by integrating ’over the
radial coordinate of the diffusion function. The transformation is referred to as the
radial projection transform and to the resulting function as the spin displacement
orientation distributib_n function (ODF).! The ODF representation sacrifices all of
the radial information but retains the relevant directional information.

The ODF expresses the probability of a spin displacing into a differential solid
angle about a fiber direction u. In the complex materials literature u is sometimes
referred to as the microscopic director, or simply the director. For a given propagator

P(R,7) the ODF is obtained via the radial projection

wiw) = [ Plou,r) do (8.10)

where u is a unit normal vector, p is the radial coordinate in the diffusion space |
coordinate system, and we have dropped the time argument. In practice the integral
cannot be taken out to infinity and is rather taken to the linear field-of-view ppay
of the PDF. Note that the COM effect from the constant gradients will change the
height and width, but not the position of the peaks on the sphere.

!The projection of a Cartesian probability distribution, in this case the diffusion function, on
* to the sphere is a construction which is commonly encountered in the field of directional statistics
(17,18).
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The experimental and interpretive modifications described above enable imaging
of the ODF within each voxel. We show that such images of the human brain demon-
strate correspondence between the orientational maxima of the ODFs and those of
the underlying fiber orientation density at éach voxel location. In regions of intravoxel
orientational heterogeneity, such as regions of fiber crossing or fiber divergence, the

ODFs show clear multimodal structur consistent with the underlyin anatomy.
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8.4 Methods |

Figure 8-3: Keyhole Cartesian sam-
pling scheme for a 11 x 11 x 11 grid.
The scheme contains 691 points. All
of the experiments presented here used
all of or a subset of the sampling grid
shown here.

Diffusion spectrum images were acquired on
3 healthy volunteers (Subjects A-C) and 5 pa-
tients (Subjects D-H). The data were acquired
at 3T using a single-shot echo-planar MRI ac-
quisition and the cgTRBE sequence describe
above. For each experiment, the m-pulse pair
was positioned to minimize the eddy currents at
readout. The diffusion gradient sampling points
were obtained from a three-dimensional keyhole
Cartesian grid. The keyhole grid consisted of
the points in reciprocal space on a n X n X n
Cartesian grid which lay within a sphere of di-
ameter n. Fig. 8-3 shows the keyhole sampling
scheme for a 11 x 11 x 11 grid. All of the exper-

iments used all of or a subset of the sampling scheme shown in Fig. 8-3. To achieve a

desired gmax the grid was scaled linearly in g so that the outermost point had a mag-

nitude of gmax = 40mT/m. The specific sequence parameters and slice prescriptions

for each subject are summarized in Table 8.1.

slices TR/TE/A/6(ms) Dimax gmax/Dg  g-space grid

(s/mm?) (um~!)  dimensions

. slice voxel resolution
Subject . i
orientation  (mm)

A sagittal 4x4x4 8
B coronal 4x4x4 3
C axial 3x3x3 1
D sagittal 4x4x4 9
E coronal 3.5x3.5x3 6
F coronal Ix3x3 3
G axial Ix3x3 3
H axial Ix3Ix3 3

gated/140/65/60 2.0 x 107 0.67/0.17 9x9x9 258
gated/140/65/60 2.0 x 104 0.67/0.17 9x9x9 258
gated/120/55/50 1.7 x 104 0.67/0.13 11x11x11 437
2700/144/67/62 1.7x 10* 0.66/0.13 11 x 11x 11 437
2000/144/67/62 1.7 x 10* 0.66/0.13 11x11x 11 587
1500/144/67/62 1.7 x 104 0.66/0.13 11x 11x11 691
gated/144/67/62 1.6 x 10* 0.66/0.13 11x11x11 500
gated/144/67/62 1.6 x 10 0.66/0.13 11x11x11 500

‘Table 8.1: Protocols for DSI experiments. Subjects A-C are healthy volunteers, and
D-H are patients. For TR=gated, the acquisition was triggered to 2 R-R cardiac
cycles. N is the number of sampling points in the keyhole sampling scheme.

The 5 patient subjects were as follows.

Subject D: 27 year old male scanned 1 year post anterior cingﬁletomy for obsessive
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compulsive disorder (OCD). The patient was successfully treated for OCD by the

cingulotomy.

Subject E: 42 year old female scanned one month post resection of a left frontal
lobe oligodendroglioma. Patient had recurrent or residual tumor in the contralateral

hemisphere.
Subject F: imaged for a temporal lobe tumor.
Subject G: 35 year old female with a right chronic thalamic infarct.

Subject H: 64 year old female with chronic left occipital stroke. Remaining long term

symptoms of visual motion perceptual errors.

For subjects A-C,G, and H, the acquisitions were synchronized with late-diastole

by ECG trigger to minimize effects of brain motion (14).

For each voxel the diffusion signal values were placed on a n x n x n grid accord-
" ing to the points from which the values were sampled. The corners of the grid where
no values were obtained due to the keyhole truncation were set to zero. For each
voxel the PDF was then reconstructed by taking the three-dimensional fast Fourier
transform of the the data grid for that voxel. The ODF for each voxel was cal-
culated by integrating over the radial coordinate (using cubic interpolation) of the
PDF. The ODF was evaluated for the m = 752 vertices of a 5-fold tesellated dodec-
ahedron. For visualization purposes the ODFs were scaled to [0, 1] within each voxel
and displayed as spherical polar plots. The ODF reconstruction scheme is outlined
schematically in Fig. 8-4. For sake of comparison we also calculated the diffusion
tensor for each voxel using a least-squares fit to the diffusion data (19). For each
subject we also calculated the retufn—to—origin (RTO) probability image as the sum

over all the diffusion-weighted images (5, 6).
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C)

unnormalized normalized
ODF ODF

Figure 8-4: Schematic diagram of the ODF reconstruction scheme for a single voxel. Row
(a) shows the 'raw’ data depicted as two-dimensional sections through the three-dimensional
data volume. Three-dimensional fast Fourier transform of the modulus of the the raw data
leads to the three-dimensional PDF (b), similarly depicted as two-dimensional sections
through the three-dimensional volume. Integrating over the radial coordinate of the PDF
(denoted proj,.) gives the unnormalized ODF (c). The color-coding reflects the orientation
of the peaks in the lab frame as described in the Results section. Lastly, in order to increase
the visual contrast the ODF is normalized to [0, 1] (d).
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8.5 Results

8.5.1 Healthy Volunteers

Diffusion spectrum images of the brainstem of a normal volunteer are shown in Figs. 8-
5, and 8-6. Fig. 8-5 shows the intersection of cerebellar pontine fibers (cpf) with the
corticospinal tract (cst) at the level of the pontine decussation. The cpf are seen to
pass through various points of the cst with variable density. In Fig. 8-5, we can also
resolve the intersection of the superior cerebellar peduncle (scp) w1th the cst as the
scp fibers join the cst. Fig. 8-6 shows the diffusion propagator from a single voxel at
the intersection of the cpf and the cst. The propagator is clearly bimodal, reflecting
the diffusion peak from the cst and the diffusion peak from the cpf.

The composite structure of the brainstem can also be seen in Fig. 8-7 which
‘compares a coronal DSI and a DTI from a normal volunteer. In the DSI, bimodal
diffusion is clearly seen where the cpf intersect the cst. By comparison the directional
estimates provided by DTI are heavily confounded due to the the partial volume
averaging of these fiber directions.

The diffusion spectrum images were also able to resolve crossings of more than
two fiber populations. For example Flg 8 8 shows the 1ntersect10n of the dlvergmg
striations from the corpus callosurn (ccs) the corona radlata (cr), and the superior
longitudinal fasciculus. We observe a clear three—way_!(;rossmg where these popula-
tions intersect. In comparison, the tensor reconstructions in this regidn are heavily
confounded. o | |

In additign to complex structure in deep white matter intersections, we also ob-
served composite fiber structure at the subcortical margin. Figs. 8-9 and 8-10 show
two sagittal slice diffusion spectrum images from motor cortex. In Fig. 8-9 we see
the intersection of the superior longitudinal fasciculus (slf) with the ascending corona
radiata (cr). The voxels at the subcbrtica.l margin also show multimodal behavior
consistent with a projection to the‘cortical surface and a population parallel to the
» _cortical surface, possibly intracortical connections. This multimodal structure can be

visualized clearly in Fig. 8-10.

e
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Figure 8-5: Subject A: Two sagittal diffusion spectrum images of the brainstem at the
level of the pontine decussation.. The two sagittal slices were taken from the ROIs (yellow
rectangles) shown in the anatomical images at left. The closest slice is lateral relative to the
further slice. The anatomical images and the grayscale background show the RT'O proba-
bility. The spherical polar plot within each voxel depicts the normalized ODF (the radially
projected PDF) within that voxel. The ODFs are colored according to the red-green-blue
sphere shown at bottom-left with red indicating mediolateral, green anteroposterior, and
blue superoinferior. The brightness of the peaks is also scaled by the height of the peaks.
The red fiber population consists of cerebellar pontine fibers (cpf). The blue population
is the corticospinal tract (cst), and the bluish-green population is the superior cerebellar
peduncle (scp). Note the bimodal diffusion behavior where the cst intersects the cpf, and
where the scp joins the cst.
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Figure 8-6: Diffusion propagator (top-right) from a single voxel (yellow circle) containing
the intersection of the cpf with the cst. The three-dimensional propagator is visualized as
three transparent orthogonal cross-sections. -

‘

Figure 8-7: Subject B: Comparison of DSI and DTI of the brainstem. The DTI is depicted
as a cuboid icon field, with each cuboid scaled and oriented according to the local diffusion
tensor eigensystem. The anatomical image at far left is a RTO probability image. The
ROI (yellow square from anatomical image and white square from DTT) of the DSI shows
the intersection of the.cst (blue) with the cpf (red). In comparison the DTI is heavily
confounded. S
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Figure 8-8: Subject B: Comparison of DSI (left) and DTI (right) at the three-way crossing
of the striations from the corpus callosum (ccs), the corona radiata (cr), and the superior
longitudinal fasciculus (slf). The images were taken from the ROI (yellow square) shown
in the RTO probability map at left. Note the strongly confounded fiber estimates from the
diffusion tensor reconstruction.

Cdmposite fiber structure at the subcortical margin can also be seen in Fig. 8-
11 which shows an axial slice of the oc_cipj_tal pole at 3mm resolution. The green
curves demarcate an intermediate zo_'ﬁj’e between the unidirectional deep white matter
and the complex subcortical whltem ter. Peri-sulcal white matter shows bimodal
diffusion consistent with intersection of éorticofugal fibers and U-fibers transverse to

&3

the sulcus, or possibly intracorti¢al connections.

2.

P

8.5.2 Patients

The DSI of the clinical subjects are shown in Figs. 8-12 through 8-16. In Fig. 8-12
we see selective degeneration of the cingulum in the region of the cingulotomy burn
(T2 bright region). The intersecting corpus callosum and corona radiata fibers, by
éomparison, are relatively intact. Moreover, we observe residually intact cingulum
fibers in the region of the burn.

Fig. 8-13 shows DSI of a patient with a resected fronal lobe oligodendroglioma.
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Figure 8-9: Subject A: The closest slice is lateral relative to the further slice. The anatom-
ical images and the grayscale background show the RT'O probability. The green fiber popu-
lation at bottom-right is the superior longitudinal fasciculus (slf) and the blue population is
the corona radiata (cr). The cr can be seen to project to primary motor (M1) and primary
somatosensory (SM1) cortex. Note the intersection of the slf with the cr at bottom-right.

Also note the bimodal diffusion at the cortical surface (yellow arrows).
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R inbir i oo st st

Figure 8-10: Subject A: Zoomed view of a single slice from Fig. 8-9. Note the multimodal
diffusion at the cortical surface. The ODF's show a fiber population (blue) consistent with
the projections from the cr, and a fiber population (green) oriented approximately parallel
to the surface.
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Figure 8-11: Subject C: Axial DSI of the occipital pole. The green curves demarcate an
intermediate zone between the unidirectional deep white matter and the complex subcortical

white matter. Peri-sulcal white matter show bimodal diffusion (yellow arrows).
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Figure 8-12: Sagittal DSI of patient one year post cingulotomy for OCD. The anatomical
image is shown at top-left. The background grayscale image is the T2 image. The cingulum
fibers (cing, green) are absent in some voxels (yellow arrow) within the burn (T2 bright
region) and also anterior to the burn. The intersecting corpus callosum fibers (cc, red) and
corona radiata (cr, blue) are seen to be intact. Residual cingulum fibers are also observed
within the cingulotomy burn.

In comparison to the unaffected side which shows a clear intersection of the corpus
callosal striations with the corona radiata, the side with the tumor shows va,trophy
of the callosal striations with some residual fiber structure from the corona radiata.
Additionally, the edematous tissue shows increased diffusivif,y and a lateral fiber di-
rection which is not apparent on the unaffected side. This fiber structure may be
due to selective enhancement caused by the edema, or possibly a mass effect in which
the tumor has displaced thé callosal striations into a more purely lateral course. A

similar lateral fiber enhancement is seen in Fig. 8-14.

Fig. 8-15 shows an axial DSI from a patient with a chronic thalamic infarct.
The healthy side of the thalamus shows élea.r bimodal diffusion. The largest peak
corresponds to the thalamocortical striations and the weaker peak is most likely due
 to intrathélamic connécﬁions or partial voluming with other striations. By contrast,
‘ the side with the infarct shows marked loss of the weaker diffusion peak. Loss of

ﬁ‘ber structure in stroke is also seen in Fig. 8-16 which shows a DSI of a patient
with a chronic stfoke in the left ocbipital lobe. Whereas the optic radiation in the

unaffected side is intact, the optic radiation in the side containing the stroke shows
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Figure 8-13: Subject E: Coronal DSI of patient with a resected oligodendroglioma. The
image is posterior to the resection site. The side contralateral to the resection shows the
intersection of the striations from the corpus callosum (cc, red) with the corona radiata (cr,
blue). On the ipsilateral side, the callosal striations are absent alt_hough the cr fibers are
partially intact. Enhanced lateral fiber structure (red, yellow a,rrow),' most likely due to
either selective edema enhancement or mass effect, is also observed. '

Figure 8-14: Subject F: Sagittal DSI of patient with temporal lobe tumor. The increased
diffusion in the edema is seen to enhance the apparent fiber structure of the corona radiata
and corpus callosum. There is also selectively oriented mediolateral diffusion seen within
the edematous tissue. o
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complex fiber. structure is seen in the area, of, ingggtion (red box)

massive Wallerian degenera;
fiber bundle, |

8.6 Discussion

By measuring the microscopic three-dimensional diffusion function within each macro-
scopic voxel, DSI can resolve complex intravoxel tissue structure such as fiber crossing

or fiber divergence within a single voxel. Histologically, such complex fiber structure
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Figure 8-16: Subject H: Axial DSI of patient with chronic left occipital stroke (Subject H).
Image shows Wallerian degeneration of the left optical radiation (yellow arrow).

Practical implementation of the DSI method required a number of experimental
and conceptual modifications to the conventional spin displacement imaging exper-
iment. Specifically, the diffusion function was reconstructed by taking the Fourier
transform of the modulus of the diffusion signal as opposed to that of the full complex
signal. We showed that the two transforms are equivalent for any ensemble-averaged

diffusion process.

Moreover, in order to obtain sufficient spatial resolution of the diffusion function
we employed effectively constant gradients as opposed to the pulsed gradients more
conventionally employed by spin displacement imaging. The constant gradients yields
an apparent center-of-mass diffusion function which artificially constricts, but does
not reorient, the diffusion function. Lastly, in order to capture and visualize the salient
orientational contrast the diffusion functions were analyzed and visualized in terms
of the radial projection of the diffusion function on to the sphere. The resulting spin
displacement ODF provides an objéct which should be possible to directly validate

with tracer measurements.
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In regions of intravoscel fiber crossing 'apd divergence we observed multimodal
diffusion functions consistent with the underlying heterogeheous fiber anatomy. In
addition to observing multimodal diffusion in deep white matter intersections, we ob-
served multimodal diffusion at the subcortical margin. The composite diffusion seen‘
at the subcortical margin may be due to contributions from both white matter pro-
jections oriented normal to the cortical surface and intracortical connections oriented

parallel to the cortical surface.

The conjecture that the observed surface-parallel component is due to intracortical
connections is consistent with previous reports that gray matter appears anisotropic
on DTI in kitténs (20), but the anisotropy disappears later developmentally, puta-
tively due to the formatian of intracortical connections. Hence, it may be possible
that subcortical anatomy appears relatively isotropic on diffusion tensor imaging, not
due to the lack of any inherent diffusion restriction, but because of the orientational
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