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1Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2Department of Radiology, Division of Nuclear Magnetic Resonance Research, Johns Hopkins University School of Medicine,

Baltimore, MD 2120, USA
3Department of Biomedical Sciences, Tufts University School of Veterinary Medicine, North Grafton, MA 01536, USA
4Department of Molecular Medicine, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
5These authors contributed equally to this work.
6Present address: Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA.
7Present address: Department of Anatomy, University of Wisconsin, Madison, WI 53706, USA.

*Correspondence: fgertler@mit.edu
DOI 10.1016/j.neuron.2007.09.008
SUMMARY

Mammalian cortical development involves neu-
ronal migration and neuritogenesis; this latter
process forms the structural precursors to
axons and dendrites. Elucidating the pathways
that regulate the cytoskeleton to drive these
processes is fundamental to our understanding
of cortical development. Here we show that loss
of all three murine Ena/VASP proteins, a family
of actin regulatory proteins, causes neuronal
ectopias, alters intralayer positioning in the cor-
tical plate, and, surprisingly, blocks axon fiber
tract formation during corticogenesis. Cortical
fiber tract defects in the absence of Ena/VASP
arise from a failure in neurite initiation, a prereq-
uisite for axon formation. Neurite initiation
defects in Ena/VASP-deficient neurons are pre-
ceded by a failure to form bundled actin fila-
ments and filopodia. These findings provide in-
sight into the regulation of neurite formation
and the role of the actin cytoskeleton during
cortical development.

INTRODUCTION

The intricate structure of the mammalian forebrain is

formed through orchestrated movement of neurons and

their processes. Neurons born in internal germinal regions

migrate tangentially and radially to occupy more superfi-

cial layers and establish the architectonic framework of

the forebrain (Marin and Rubenstein, 2003). Migrating

neurons possess leading and trailing processes morpho-

logically similar to growth cones (Lambert de Rouvroit

and Goffinet, 2001) that are postulated to develop into

dendrites (Hand et al., 2005; Hatten, 2002; Olson et al.,

2006) and axons (Noctor et al., 2004; Tsai et al., 2005),
Ne
respectively. Subsequent guided outgrowth of axons

forms the fiber tracts essential for cortical function (Sur

and Rubenstein, 2005). Similar guidance molecules are

used by both the leading processes of migrating neurons

and axonal growth cones, suggesting there could be func-

tional similarities between these two structures (Lambert

de Rouvroit and Goffinet, 2001; Song and Poo, 2001;

Yee et al., 1999). Little is known, however, about the

mechanisms underlying the initial emergence of axons

from the neuronal cell body (Luo, 2002).

Neurons are born as spherical cells, yet their biology

requires a highly polarized morphology. Sprouting of neu-

rites—cylindrical extensions tipped by growth cones that

lack the defining features of an axon or dendrite—from

spherical neurons breaks their symmetry (da Silva and

Dotti, 2002). In vitro, cortical neurons form neurites after

1 day in culture, followed by rapid elongation of one neu-

rite to form an axon (de Lima et al., 1997). In vivo, neurito-

genesis is believed to occur shortly after neuronal commit-

ment in the germinal layer; axon formation only occurs

after migration has commenced (Noctor et al., 2004). It

has been suggested that fundamental events in neurite

formation are similar in vitro and in vivo (da Silva and Dotti,

2002); however, little evidence exists to support this, and

the molecular mechanisms underlying neurite formation

remain largely unknown.

Actin regulatory proteins play a key role in neuronal

migration and axonal outgrowth and guidance. Ena/

VASP proteins bind actin and regulate the assembly and

geometry of F-actin networks by antagonizing capping

proteins and bundling actin filaments (Krause et al.,

2003). They are required for filopodia formation in a variety

of cell types, including: Dictyostelium (Han et al., 2002;

Schirenbeck et al., 2006), fibroblasts (Applewhite et al.,

2007; Mejillano et al., 2004), and neuronal growth cones

(Adler et al., 2006; Dwivedy et al., 2007; Lebrand et al.,

2004). In addition, Ena/VASP proteins function down-

stream of attractive and repulsive axon guidance path-

ways (Krause et al., 2003). In mice, past work has
uron 56, 441–455, November 8, 2007 ª2007 Elsevier Inc. 441
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Figure 1. EVL Targeting and Recovery of

Ena/VASP Mutants

(A) Targeting vector containing a neomycin re-

sistance cassette flanked by genomic DNA

from introns 1 and 3 of the EVL locus. Homolo-

gous recombination deleted exons 2 and 3 of

EVL, removing most of the N-terminal EVH1

domain and producing a downstream frame-

shift.

(B) PCR genotyping of tail samples from off-

spring of an EVL heterozygous intercross

(Ee 3 Ee). Wild-type and targeted alleles are

noted.

(C) Western blot analysis of extracts from wild-

type (EE), heterozygous (Ee), and homozygous

mutant (ee) adult mouse brains. Equal amounts

of total protein were loaded and analyzed for

levels of EVL, Mena, and VASP. No EVL protein

was detected in ee lysates, indicating that the

targeted allele eliminated EVL expression. No

measurable difference in Mena and VASP ex-

pression was observed in ee lysates.

(D) MmVvee by MmvvEe crosses yielded viable

MMvvee, MmVvEe, MmvvEe, and Mmvvee an-

imals at P10. Viable mmvvee mutants were

never observed at P10. Asterisks indicate a sta-

tistically significant reduction as determined by

c2 analysis in a given population (p < 0.05).

(E) Embryos were collected at E10.5 and E16.5

from timed matings and genotyped. Near-ex-

pected number of mmvvee embryos were col-

lected at both stages, suggesting that Ena/

VASP proteins were not required for early de-

velopmental events and that mmvvee mutants

died at or near birth.
implicated Ena/VASP proteins in midline crossing of

axons and neuronal migration in the forebrain (Goh

et al., 2002; Lanier et al., 1999; Menzies et al., 2004). How-

ever, the presence of three vertebrate proteins with similar

functions (Loureiro et al., 2002) and overlapping expres-

sion patterns in the neocortex (Goh et al., 2002; Lanier

et al., 1999) precluded complete analysis of Ena/VASP

function during cortical development.

Here we report the first examination of cortical develop-

ment in the complete absence of Ena/VASP. We show that

loss of Ena/VASP causes two defects in neuronal migra-

tion during corticogenesis: a defect in cortical positioning

and a non-cell-autonomous defect in pial membrane in-

tegrity that causes neuronal ectopias. Unexpectedly, we

find that loss of Ena/VASP blocks axon fiber tract forma-

tion in the cortex, and we demonstrate that this defect re-

sults from the failure of cortical neurons to produce neu-

rites. We offer further evidence to suggest that the defect

in neurite formation results from the inability of Ena/

VASP-deficient neurons to make filopodia. Finally, we

demonstrate that neurite formation can be uncoupled
442 Neuron 56, 441–455, November 8, 2007 ª2007 Elsevier Inc
from neuronal migration. Our results define new roles for

Ena/VASP in corticogenesis and offer new insights into

the relationship between axon formation and neuronal

migration.

RESULTS

Generation of Ena/VASP Null Mutants
Vertebrates possess three Ena/VASP proteins: Mena

(mammalian enabled), VASP (vasodilator stimulated

phosphoprotein), and EVL (Ena-VASP like) (Gertler et al.,

1996). Construction and analysis of Mena and VASP

protein null mutants and Mena/VASP double mutants in

mice have been reported (Aszodi et al., 1999; Lanier

et al., 1999; Menzies et al., 2004). We targeted the remain-

ing Ena/VASP locus, EVL (Figure 1A). Animals homozy-

gous for the targeted EVL allele (ee) produced no detect-

able EVL by western blot (Figures 1B and 1C). Mutant ee

mice were viable; gross morphological and histological

analysis of ee mice revealed no obvious defects (data

not shown).
.
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Mutant ee mice were crossed to existing Mena (Lanier

et al., 1999) and VASP (Aszodi et al., 1999) mutant lines,

and viable Ena/VASP triple mutant combinations inter-

crossed. Results from these crosses are shown in

Figure 1D. Triple null (mmvvee) progeny were never ob-

served at P10 (0 of 11 expected). Interestingly, a single

allele of Mena was sufficient to produce viable and fertile

mice, albeit at a significantly reduced frequency. In con-

trast, neither two alleles of EVL (mmvvEE; Menzies et al.,

2004) nor two alleles of VASP (mmVVee, this study, data

not shown) were sufficient for viability. Thus, Mena was

the most critical Ena/VASP protein for development and

survival, though whether this reflected a unique expres-

sion pattern, level, and/or indispensable function of

Mena remains unclear. Mice possessing one allele of

Mena and a second Ena/VASP allele (MMvvee, MmVvee,

MmvvEe) were viable with no obvious defects in brain

morphology (data not shown) and were used as controls

for histological and cell biological experiments.

To determine how far mmvvee mutants progressed

through development, timed matings between triple mu-

tant combinations were established and embryos isolated

at E10.5 and E16.5. Interestingly, 93% (28/30) of expected

mmvvee embryos were collected at E10.5, and 89% (34/

38) were recovered at E16.5 (Figure 1E). Therefore, Ena/

VASP proteins were not required for cell migration during

early developmental events such as gastrulation. Lethality

of mmvvee mice occurred between E16.5 and P0 and re-

sulted from a number of defects, including intraamniotic

hemorrhage, hydrops fetalis, and frequent exencephaly.

Extraneuronal phenotypes will be described elsewhere

(Furman et al., 2007); here we focus on phenotypes affect-

ing cortical development.

Loss of Ena/VASP Causes Cobblestone Cortex
The majority of mmvvee embryos (86%) were exence-

phalic, precluding analysis of brain development. Since

nonexencephalic mmvvee embryos were limiting, we em-

ployed MRI to assay for structural lesions noninvasively.

Diffusion-weighted MRI revealed hydrocephalus ex vacuo

in the mmvvee embryo (Figure 2B, compare to 2A). Hema-

toxylin and eosin (H&E) staining of brain sections con-

firmed defects in ventricle size and total brain matter in

mmvvee brains (see Figure S1 in the Supplemental Data

available with this article online) with no evidence of in-

creased apoptosis, confirmed by TUNEL assay (data not

shown).

Diffusion tensor microimaging (mDTI) permits visualiza-

tion of brain organization, including cortical layering and

individual fiber tracts (Zhang et al., 2005). Strikingly,

mDTI revealed an additional cortical layer outside the cor-

tical plate (CP) in the mmvvee cortex (Figure 2D, blue ar-

row, compare to control in 2C). Subsequent histological

analysis revealed that this additional cortical layer corre-

sponded to neuronal ectopias (Figure 2E, black arrows;

Figure S1), hallmarks of the human congenital malforma-

tion cobblestone cortex (Olson and Walsh, 2002). Ecto-

pias were observed in 5 of 7 nonexencephalic mmvvee
N

brains studied, but never in brains from embryos express-

ing one or more Ena/VASP allele. Ectopias appeared as

stochastic and infrequent (0–10 per brain) intrusions be-

yond the pial membrane (PM) with marked tangential

spread of ectopic neurons within the subarachnoid space

(Figures 2E and 2I; Figure S1). b3-tubulin staining con-

firmed that ectopias were comprised largely of differenti-

ated neurons (Figure 2F).

Known human syndromes—Fukuyama congenital mus-

cular dystrophy, muscle-eye-brain disease, Walker-War-

burg syndrome—and mouse models of cobblestone cor-

tex are associated with defects in PM formation and

integrity (Olson and Walsh, 2002). Laminin is the predom-

inant extracellular matrix (ECM) protein of the PM and is

produced and organized by meningeal fibroblasts (Miner

and Yurchenco, 2004; Sievers et al., 1994). Failure of men-

ingeal fibroblasts to produce and organize laminin prop-

erly has been linked to ectopia formation in mouse models

of cobblestone cortex (Beggs et al., 2003). We cultured

meningeal fibroblasts from mmvvee mutants and found

that, similar to controls (Figure 2G), mmvvee cells se-

creted and organized laminin into fibrillar structures

(Figure 2H). Consistent with this, laminin staining in

mmvvee brains lacking ectopias appeared similar to con-

trols (Figures 4G and 4H). Although breaks in the laminin

matrix were observed at sites of ectopic neuron exit, lam-

inin staining surrounding ectopias appeared normal (Fig-

ures 2I and 2L).

Radial glia processes span the cortex and their endfeet

contact with, and promote organization of, the basement

membrane (Halfter et al., 2002). Disruptions in endfeet

attachment to the PM are observed in multiple mouse

models of cobblestone cortex (Beggs et al., 2003; Halfter

et al., 2002; Niewmierzycka et al., 2005). To assess radial

glia morphology, we stained control and mmvvee cortices

for the radial glia marker nestin. Well-organized, nestin-

positive glia were observed making contact with the PM

in control cortices (Figure 2J). Along the PM, the tufted

endfeet of radial glia were conspicuous (Figure 2J, white

arrow and inset). In mmvvee cortices lacking ectopias,

nestin staining was reduced in areas along the PM

(Figure 2K, white arrow and inset), reflecting a possible de-

fect in endfoot formation and/or attachment. Interestingly,

aberrant extension of radial processes into ectopic

growths was noted (Figure 2L, white arrows). We specu-

late that loss of Ena/VASP disrupts radial glia endfoot mor-

phology and/or function, compromising barrier integrity

and permitting ectopia formation.

Ena/VASP Regulates Cortical Positioning
The extent of neuronal tangential spread within mmvvee

ectopias is distinct from other models of cobblestone cor-

tex and may represent a defect in neuronal migration. Dur-

ing corticogenesis, neurons born in the ventricular zone

(VZ) migrate radially outward to form the CP. The CP is

generated with an inside-out topology, with later-born

neurons migrating beyond earlier-born neurons to form

the superficial layers of the cortex (Marin and Rubenstein,
euron 56, 441–455, November 8, 2007 ª2007 Elsevier Inc. 443
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Figure 2. Loss of Ena/VASP Causes

Cobblestone Cortex

(A and B) Coronal diffusion-weighted MRI of

E16.5 heads. Unlike the littermate control (A),

hydrocephalus was evident in the mmvvee

brain (B) with enlargement of all ventricles

(black regions within brain).

(C and D) mDTI of coronal sections, in which

color represents the restriction of tissue water

diffusion to a single plane: red is anterior-pos-

terior, green is medial-lateral, and blue supe-

rior-inferior. Orientation is denoted by the col-

ored orthogonal arrows. mDTI revealed an

additional cortical layer (blue arrow) above

the cortical plate (CP) in multiple planes of the

mmvvee brain (D).

(E) H&E staining of sagittal sections (5 mm)

through an E18.5 mmvvee head revealed corti-

cal ectopias in the forebrain. Note the marked

tangential spread of ectopic neurons (black

arrows) beyond the initial breach (black aster-

isk) of the pial membrane (black dashed line).

Cortical plate (CP).

(F) b3-tubulin staining (B3 Tub, brown) of sagit-

tal sections (5 mm) from E16.5 mmvvee embryo

heads confirmed that cortical ectopias were

composed largely of differentiated neurons.

Sections were counterstained with hematoxy-

lin (Hem, blue).

(G and H) Meningeal fibroblasts from E14.5

control and mmvvee littermates were stained

for extracellular laminin (Lam, red) and DAPI

(blue). mmvvee meningeal fibroblasts (H)

produced and organized laminin similar to con-

trols (G).

(I) Laminin (Lam, red) and DAPI (blue) staining

of coronal sections (10 mm) from mmvvee

embryos revealed frequent breaks in the pial

membrane (PM, marked with dashed white line) and multiple ectopias (white arrows). Outside of ectopias, laminin staining appeared normal. Lam-

inin-rich blood vessels (BV) were also labeled.

(J–L) Coronal sections (10 mm) from control and mmvvee E16.5 cortices were stained with anti-nestin antibodies to label radial glia (Nes, green) and

anti-laminin to label the PM (Lam, red). In controls, radial glia processes were organized in a parallel array with tufted endfeet terminating at the PM ([J],

white arrow, inset). Outside of ectopias in mmvvee cortices, endfeet lacked tufts and appeared detached from the PM ([K], white arrow, inset). At

ectopias, the PM (dashed white line) was disrupted in mmvvee cortices, and radial glial processes extended into ectopias ([L], white arrows). Lam-

inin-rich blood vessels in the CP were stained in both control and mmvvee sections.

Scale bar for (A)and (B), 1 mm; for (C)and (D), 500mm; for (E), 100 mm; for (F), 100mm; for (G)and (H), 10 mm; for (I), 100mm; for (J)–(L), 100mm; insets,25 mm.
2003). We sought to determine whether loss of Ena/VASP

disrupted CP topology; however, nonexencephalic

mmvvee embryos were severely limited in number. Fur-

thermore, neuronal ectopias in mmvvee embryos altered

CP topology drastically (Figures 2E and 2I; Figure S1),

making it difficult to discern a primary defect in neuronal

migration. Therefore, we generated chimeric embryos

composed of Ena/VASP null (mmvvee) and wild-type

(WT) cells to overcome these obstacles and permit analy-

sis of cell-autonomous defects in neuronal migration.

To construct chimeric embryos, we isolated and cul-

tured mmvvee embryonic stem (ES) cells, and infected

these cells with lentivirus expressing EGFP. Stable,

EGFP-expressing (GFP+) mmvvee ES cell clones were

isolated, expanded, and then injected into WT blastocysts

(Figure 3A). Chimeric embryos were harvested from E16.5

to E18.5. As hoped, mid to high percentage chimeras
444 Neuron 56, 441–455, November 8, 2007 ª2007 Elsevier Inc.
(>50% GFP+ mmvvee cells) were not exencephalic, per-

mitting analysis of forebrain structure and composition.

Gross cortical architecture appeared unperturbed in chi-

meric brains, with GFP+ mmvvee cells distributed broadly

(Figure S2). Interestingly, neuronal ectopias were never

observed in chimeric embryos, even in those in which

the vast majority of cortical neurons were mmvvee in origin

(Figure S2), indicating that the underlying cause of neuro-

nal ectopia formation was likely nonautonomous.

To determine if loss of Ena/VASP affected neuronal mi-

gration and cortical layering, we stained E18.5 chimeric

cortices for the layer-specific transcription factors Tbr1

(layer VI) (Hevner et al., 2001) and Foxp1 (layers III-V) (Fer-

land et al., 2003). For each layer marker, the distribution of

WT (GFP�) and mmvvee (GFP+) nuclei was examined.

Nearly all Tbr1-positive nuclei were located within a 450–

500 nm thick band above the intermediate zone (IZ), the
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Figure 3. Ena/VASP Regulates Intralayer

Cortical Positioning in Chimeric

Embryos

(A) Generation of Ena/VASP-deficient chimeric

embryos. mmvvee embryonic stem (ES) cells

were isolated, infected with lentivirus express-

ing EGFP and sorted for GFP expression.

GFP+ mmvvee ES cell clones were injected

into wild-type (WT) blastocysts, and resulting

chimeric embryos were isolated at various

stages of development. Ena/VASP-deficient

tissues and cells were clearly identified as

GFP+.

(B and D) Coronal vibratome sections (100 mm)

from a chimeric E18.5 embryo were stained for

Tbr1, a marker for layer VI neurons in the

CP (B), or Foxp1, a marker for layers III-V (D).

GFP (green), Tbr1 or Foxp1 (red), and merged

channels are shown from a representative cor-

tical section. Images in (B) contain layers III-V,

VI, and intermediate zone (IZ); images in (D)

contain layers II, III-V, and VI. While no gross

disruption in layer VI (B) or layers III-V (D) for-

mation was observed in chimeric brains,

GFP+ mmvvee neurons concentrated in the

upper regions of layer VI and layers III-V.

(C and E) The position of WT and mmvvee

(GFP+) nuclei in layer VI (Tbr1+) and layers III-

V (Foxp1+) was measured. All nuclei were

measured relative to the bottom of each

layer/s. The results of these measurements are shown as microns from the bottom of the layer/s in a box and whisker format: the ends of the box

mark the upper and lower quartiles, the horizontal line in the box is the median, and the ‘‘whiskers’’ outside the box extend to the highest and lowest

value. Tbr1+ WT and mmvvee neurons were all contained within a 425–450 micron thick layer in the CP, as reflected by nearly identical ‘‘whisker’’

profiles (C). However, Tbr1+ mmvvee neurons were concentrated in the upper region of the layer compared to WT (unpaired t test, p = 0.0006). Sim-

ilarly, Foxp1+ WT and mmvvee neurons were all contained within a 750 micron thick region in the CP (E). Foxp1+ WT neurons were equally distributed

through this region, whereas mmvvee neurons were shifted upward slightly, but significantly (unpaired t test, p = 0.02).

Scale bar for (B) and (D), 50 mm.
expected location of layer VI (Figure 3B). Interestingly,

GFP+/Tbr1+ mmvvee nuclei were shifted outward signifi-

cantly within the band, occupying a more superficial

region of layer IV compared to WT nuclei (Figure 3C). A

similar trend was observed in Foxp1+ nuclei: GFP+

mmvvee nuclei were shifted outward significantly within,

but not outside of, layers III-V (Figures 3D and 3E). Thus,

while Ena/VASP was dispensable for neuronal migration

and CP formation, intralayer neuronal positioning was

altered.

Fiber Tract Formation Requires Ena/VASP
mDTI revealed that, in regions without ectopias, the gross

architecture of the CP was preserved in the mmvvee em-

bryo (Figures 4B and 4D) compared to the control (Figures

4A and 4C). However, the mmvvee embryo IZ lacked mDTI

signal, indicating absence of organized axon tracts (Fig-

ures 4C and 4D; orange arrow points to IZ). Further mDTI

analysis revealed that all cortical fiber tracts were absent

in the mmvvee brain, including all major forebrain commis-

sures and the internal capsule (IC; data not shown). Histo-

logical examination confirmed that cortical architecture,

ectopias aside, was largely normal in mmvvee cortices

(Figure 2E; Figure S1). However, DAPI staining revealed

that the relatively cell-free IZ in mmvvee cortices was sig-
Ne
nificantly thinner than in littermate controls (Figure 4F,

compare to 4E). The IZ is comprised largely of axons

from migrating and established CP neurons; thus, the ob-

served defects could result from a failure either to form or

elongate axons in vivo.

To establish if loss of Ena/VASP perturbed fiber tract

formation, cortical sections were stained for mid-sized

neurofilament protein (NF). NF proteins are abundant in-

termediate filament proteins concentrated in mature

axons and serve as a marker for axonal outgrowth and

maturation (Elder et al., 1998; Friede and Samorajski,

1970). In controls, the NF antibody decorated mature

axons in the IZ and IC (Figure 4G). In striking contrast,

the IZ of mmvvee cortices was nearly devoid of NF+ axons

(Figure 4H), with only a few NF+ fibers near where the IC

should be found. The lack of NF labeling suggested that

mature axons were not formed in mmvvee cortices, result-

ing in a thin and disorganized IZ and preventing cortical fi-

ber tract assembly.

To determine if axons were formed, sections from con-

trol and mmvvee cortices were stained with an antibody

to dephospho-Tau (Tau-1), a specific marker for axons

in situ. In control sections, Tau-1 labeling was strongest in

the axon-rich IZ (Figure 4I). Staining was also observed

in the CP and subventricular zone (SVZ), where individual
uron 56, 441–455, November 8, 2007 ª2007 Elsevier Inc. 445
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Figure 4. Ena/VASP Is Required for Axo-

nal Outgrowth and Fiber Tract Formation

in the Developing Cortex

(A�D) mDTI of coronal sections through E16.5

control (A and C) and mmvvee (B and D) brains.

Tissue orientation is denoted by the colored or-

thogonal arrows in (A and B). Magnification of

the area enclosed in the yellow box (A) re-

vealed a well-defined cortical plate (green ar-

row), intermediate zone (orange arrow), and

ventricular zone (purple arrow) in the control

brain (C). In contrast, examination of a similar

region in the mmvvee brain ([B], yellow box) re-

vealed that the thickness and organization of

the intermediate zone was markedly de-

creased (D).

(E and F) DAPI staining of E16.5 matched cor-

onal sections exposed the thin cell-free inter-

mediate zone (IZ) in mmvvee cortices (F) com-

pared to littermate controls (E). Cortical plate

(CP) and ventricular zone (VZ) thickness was

similar between sections.

(G and H) Anti-neurofilament (NF) immunos-

taining of coronal sections (10 mm) through

the heads of control and mmvvee E16.5 em-

bryos. Labeling control sections (G) with anti-

NF (red) and anti-laminin (Lam, green) revealed

subcortical projections running through the IZ

and into the internal capsule (IC). Strikingly,

cortical fiber tracts were completely absent

from mmvvee brains (H). Limited staining was

observed in the IC that could represent either

descending subcortical axons and/or ascend-

ing thalamocortical fibers.

(I and J) Coronal sections through similar re-

gions of E16.5 control (I) and mmvvee (J)

brains were stained for dephospo-Tau (Tau-

1, red) to label axons and DAPI (blue). Individ-

ual channels and merge are shown. In controls

(I), Tau-1 staining was concentrated in the

axon-rich IZ and observed in the CP as well

as the SVZ, where individual processes/fibers

were observed. In contrast, Tau-1 staining

was concentrated in the substantially thinner

IZ of mmvvee cortices (J), where fibers ap-

peared snarled and disorganized (white aster-

isk). Reduced staining was also noted in the

SVZ.

(K) Cortical frozen sections (10 mm) from chi-

meric embryos at E16.5 were stained with

DAPI, anti-GFP, and anti-NF. Individual channels and merge are shown. NF+ processes were only observed emanating from WT (GFP�) neurons

(white arrows).

Scale bar for (A) and (B), 1 mm; for (C) and (D), 500 mm; for (E) and (F), 500 mm; for (G) and (H), 500 mm; for (I) and (J), 100 mm; for (K), 50 mm.
fibers were observed. In mmvvee cortices, Tau-1 staining

was observed in the rudimentary IZ, where it labeled dis-

organized and snarled fiber-like structures (Figure 4J,

white asterisk). Reduced staining was also noted in areas

of the SVZ, possibly reflecting a failure of radially migrating

cortical neurons to form axons. The defects in Tau-1 stain-

ing were consistent with a failure to form axons properly in

the absence of Ena/VASP.

To examine axon formation at the single-cell level, we

analyzed formation of NF+ processes in chimeric em-
446 Neuron 56, 441–455, November 8, 2007 ª2007 Elsevier Inc.
bryos. While NF+ axonal processes were observed in chi-

meric cortices, close examination revealed that they

lacked GFP expression, indicating that they belonged to

WT, not mmvvee, cells (Figure 4K). In contrast, neighbor-

ing GFP+ mmvvee neurons failed to extend processes in

the same environment (Figure 4K).

Ena/VASP Is Required for Neurite Initiation In Vitro
The defects observed in vivo could reflect a requirement

for Ena/VASP proteins in neurite initiation, axon formation,
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Figure 5. Loss of Ena/VASP Inhibits Neu-

rite Initiation in Cortical Neurons

(A) Stages of cortical neuron development

in vitro. Stage 1 neurons exhibit extensive la-

mellipodia and filopodia-rich periphery with

no processes. Stage 2 neurons possess one

or more minor processes but have not yet ex-

tended an axon, while stage 3 neurons have

extended a single axon.

(B–E) Cortical neurons cultured from E14.5

control and mmvvee littermates for 48 hr, fixed,

and stained for F-actin (red) and b3-tubulin (B3

Tub, green). Shown are representative fields of

cells imaged in phase (B and C) and fluores-

cence (D and E). The majority of control cortical

neurons possessed a well-defined axon (B

and D), whereas most mmvvee neurons lacked

neurites (C and E).

(F) Cortical neurons cultured from E14.5 chi-

meric embryos for 48 hr and fixed. A fluores-

cence image overlaying a DIC image is shown

to identify the GFP+ mmvvee neuron. Most

GFP+ mmvvee neurons lacked neurites,

whereas most wild-type (WT) neurons pos-

sessed a well-defined axon.

(G) Scoring for developmental stage after

48 hr in culture revealed that the majority

(65%) of control neurons were in stage 3, while

the majority (70%) of mmvvee neurons were in

stage 1.

(H) Cortical neurons from chimeric embryos were scored for both GFP expression and stage development. GFP�WT neurons were predominantly in

stage 3 (70%), whereas the majority (75%) of GFP+ mmvvee cortical neurons were in stage 1.

Scale bar for (B)–(E), 20 mm; for (F), 10 mm. Data shown are means ± SEMs.
and/or axon elongation. In culture, cortical neuritogenesis

follows a well defined set of stages (de Lima et al., 1997).

Stage 1 cortical neurons produce extensive lamellipodia

and filopodia around their periphery. Stage 2 neurons

possess multiple neurites, but not an established axon.

Stage 3 neurons extend a single axon from one of their

multiple neurites (Figure 5A). To explore a role for Ena/

VASP in neuritogenesis and/or axonogenesis, we cultured

cortical neurons from mmvvee brains in vitro. Representa-

tive fields of fixed cells isolated from control and mmvvee

cortices are shown in phase-contrast micrographs (Fig-

ures 5B and 5C) and stained for F-actin and b3-tubulin

(Figures 5D and 5E). Strikingly, after 48 hr in culture,

74% of cortical neurons from mmvvee embryos remained

in stage 1, with only 2% reaching stage 3 (Figure 5G). This

was in sharp contrast to control littermates, where only

10% of neurons were in stage 1, and 69% developed to

stage 3 (Figure 5G). Long-term time-lapse analysis of cor-

tical neurons in culture revealed the small fraction of

mmvvee neurons that reached stage 2 all eventually pro-

gressed to stage 3 (data not shown). Thus, the defect in

mmvvee cortical neurons was largely a failure to progress

from stage 1 to stage 2, defined as neurite initiation or neu-

ritogenesis. In contrast, Ena/VASP was not required for

axonal polarization.

To provide a precise comparison of neuritogenesis be-

tween WT and mmvvee mutant neurons, cortical neurons

from chimeric E14.5 embryos were isolated and scored for
Ne
stage development and GFP expression. Shown in

Figure 5F is a representative image of a WT stage 3 neuron

next to a GFP+ stage 1 mmvvee neuron. We observed

70% of GFP�WT neurons in stage 3 after 48 hr in culture.

In contrast, only 10% of GFP+ mmvvee neurons pro-

gressed to stage 3, while the majority (75%) arrested in

stage 1 (Figure 5H). These percentages were nearly iden-

tical to those observed in neurons derived from control

and mmvvee embryos (Figure 5G) and demonstrated

that the neuritogenesis defect was cell-autonomous. The

inability of mmvvee neurons to form neurites in vitro was

consistent with the reduced Tau-1 staining in the SVZ of

mmvvee cortices, where axon development is thought to

initiate (Kriegstein and Noctor, 2004; Noctor et al., 2004).

We concluded that the fiber tract defect in mmvvee corti-

ces results from an inherent block in neuritogenesis. While

the actin cytoskeleton has been implicated in neurite initi-

ation (Chuang et al., 2005), to our knowledge this study is

the first to suggest a direct role for actin regulatory pro-

teins in neuritogenesis.

Loss of Filopodia Precedes Defects in
Neurite Formation
To analyze the role of Ena/VASP in neurite initiation in

greater detail, we collected time-lapse movies of dissoci-

ated cortical neurons from chimeric embryos, thereby

permitting analysis of matched WT and mmvvee neurons

isolated from the same embryo. Over 44 hr in culture, WT
uron 56, 441–455, November 8, 2007 ª2007 Elsevier Inc. 447
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Figure 6. Ena/VASP Is Required for Actin

Bundle and Filopodia Formation in Stage

1 Cortical Neurons

(A) Time-lapse phase microscopy of two disso-

ciated cortical neurons from a single chimeric

brain. The wild-type (WT) neuron differentiated

from stage 1 to stage 3 within 16 hr while the

mmvvee neuron remained in stage 1 after 44 hr.

The final frame of the phase contrast time-

lapse was overlaid with GFP signal confirming

that the neuron that did not elaborate neurites

was GFP+ (mmvvee).

(B and C) Two stage 1 cortical neurons from

a single chimeric brain. Upper panels are

a DIC and GFP overlay showing a GFP– WT

neuron (B) and a GFP+ mmvvee neuron (C).

The bottom two panels show the cells in the

upper panels stained for b3-tubulin and F-

actin. WT and mmvvee stage 1 neurons con-

tained approximately equal amounts of F-ac-

tin. However, WT neurons (B) had many actin

bundles that protruded from the cell edge as

filopodia (white arrow, bottom left panel), while

mmvvee neurons (C) lacked actin bundles and

instead displayed prominent circumferential

actin arcs within the F-actin-rich region (white

arrow, bottom right panel).

(D) Bar graph showing the marked decrease in

filopodia in stage 1 neurons from a single chi-

meric brain after 48 hr in culture (***p <

0.001, two-tailed unpaired t test with Welch’s

correction). Numbers under graphs in (C) and

(D) indicate number of neurons examined.

(E) Bar graph showing a similar decrease in

filopodia number from stage 1 neurons after

48 hr in culture from control and mmvvee litter-

mates (***p < 0.001, two-tailed unpaired t test

with Welch’s correction).

(F and G) Platinum replica electron microscopy

of GFP– WT (F) and GFP+ mmvvee (G) stage 1

neurons isolated from a chimeric brain. In WT neurons (F), actin filaments bundled together from both sides of the base of the filopodium. In contrast,

mmvvee neurons (G) showed little actin bundling resulting in few filopodia and instead had a crosshatched network of actin filaments in the periphery

and concentric actin arcs located more medially (white arrows, top panel).

Scale bar for (A), 10 mm; for (B) and (C), 10 mm; for (F) and (G), 1 mm. Data shown are means ± SEMs.
cortical neurons developed neurites (stage 2) from seg-

mented lamellipodial/filopodial regions along the periph-

ery of the cell, and one neurite eventually grew rapidly to

form an axon (stage 3) (Figure 6A, top neuron). In contrast,

the majority of GFP+ mmvvee neurons remained in stage 1

during this same period, failing to extend neurites

(Figure 6A, bottom neuron, GFP overlay shown in 44 hr

panel). GFP+ mmvvee neurons formed few filopodia

over 44 hr in culture and remained strikingly lamellipodial,

assuming a ‘‘fried egg’’ appearance (Figure 6A).

To analyze this phenotype in more detail, we focused on

neurons at stage 1, just prior to neurite initiation. In con-

trast to controls (Figure 6B), mmvvee neurons lacked actin

bundles and filopodia along the cell periphery (Figure 6C).

Quantification of filopodia number from WT and mmvvee

cortical neurons isolated from an individual chimeric brain

revealed a marked (>5-fold) decrease in filopodia numbers

in stage 1 mmvvee neurons (Figure 6D). A similar decrease

was observed in neurons isolated from mmvvee mutants
448 Neuron 56, 441–455, November 8, 2007 ª2007 Elsevier Inc
compared to those from control littermates (Figure 6E).

Analysis of the actin cytoskeleton ultrastructure with cor-

relative platinum replica electron microscopy showed

that WT neurons formed straight filopodia comprised of

actin filaments that coalesced from the cortical actin

network on both sides of the filopodium (Figure 6F). In

contrast, stage 1 mmvvee neuron actin filament arrays

were crosshatched and lacked actin bundles (Fig-

ure 6G). These results indicated that loss of Ena/VASP

disrupted actin network organization in cortical neurons,

preventing filopodia formation. We speculate that an

inherent defect in filopodia formation in mmvvee stage 1

cortical neurons is the underlying cause of the block in

neuritogenesis.

Axon Formation Can Be Uncoupled from
Neuronal Migration
Shortly after birth, cortical neurons extend migratory pro-

cesses within the VZ, and neuronal migration is driven by
.
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process extension coupled with nuclear translocation

(O’Rourke et al., 1992). The relationship between migra-

tory process formation and axon formation is unclear.

We wanted to determine if Ena/VASP proteins localize to

these migratory processes in vivo. Unfortunately, the cell

density of the cortex precluded analysis of the subcellular

localization of endogenous Mena by immunostaining.

Therefore, we introduced EGFP-Mena into WT embryo

cortices by in utero electroporation and examined its dis-

tribution in migrating cortical neurons. Compared to cyto-

plasmic mCherry, EGFP-Mena was concentrated at the

extreme edge of the leading process and enriched in the

trailing process (Figure 7A).

The localization of EGFP-Mena in migratory processes

combined with the failure of mmvvee neurons to form neu-

rites in vitro and axons in vivo led us to ask whether migra-

tory process formation was perturbed in the absence of

Ena/VASP proteins. To analyze migratory process forma-

tion, we examined the morphology of radially migrating

GFP-expressing mmvvee neurons in chimeric cortices.

We found that many mmvvee neurons were morphologi-

cally similar to GFP-expressing control neurons, possess-

ing both a leading and trailing process (Figure 7C, com-

pare to 7B). Thus, Ena/VASP proteins appeared to be

dispensable for leading and trailing process formation in

migrating cortical neurons despite their localization to

these structures.

We also examined migratory process morphology in

tangentially migrating neurons. A population of tangen-

tially migrating interneurons display ventricle-directed

migration during corticogenesis and can be visualized

with the neuronal marker b3-tubulin (Nadarajah et al.,

2002). We observed b3-tubulin+ neurons in the VZ and

SVZ of both control and mmvvee brains (Figures 7D and

7E), with no apparent difference in number or organiza-

tion. Higher magnification revealed that migratory process

formation and morphology were similar between control

(Figure 7D, inset) and mmvvee neurons (Figure 7E, inset).

Taken together, our results indicated that migratory pro-

cess formation, unlike neurite initiation, does not require

Ena/VASP.

DISCUSSION

In this study, we uncovered essential requirements for

Ena/VASP during cortical development by examining

mmvvee embryos and chimeras containing Ena/VASP

null cells. We found that loss of Ena/VASP causes cobble-

stone cortex, alters cortical positioning, and blocks neu-

rite initiation and concomitant fiber tract formation. While

Ena/VASP function in axon navigation has been well es-

tablished, the critical role for Ena/VASP in neurite initiation

discovered in this study reveals an unexpected function

for Ena/VASP in nervous system development. Together,

our findings define critical roles for Ena/VASP during cor-

ticogenesis while offering novel insight into neuritogenesis

and the relationship between neuronal migration and axon

formation.
Ne
Cortical Neuritogenesis Requires
Ena/VASP Function
The IZ, typically dominated by axonal fibers, was signifi-

cantly reduced in thickness in mmvvee cortices. The few

axonal fibers occupying the IZ were snarled, disorganized,

and immature. In vitro analysis of neuronal stage develop-

ment revealed that loss of Ena/VASP caused a cell-auton-

omous block in neuritogenesis; such a block would prevent

subsequent axon formation during cortical development.

We conclude that an inherent defect in neuritogenesis

abolishes fiber tract formation in mmvvee cortices.

The absence of fiber tracts in mmvvee brains and failure

of mmvvee neurons to make neurites was both striking

and unexpected. These phenotypes are far more severe

than predicted from studies in invertebrates where loss

of Ena/VASP disrupts axon guidance, but does not block

axon formation (Krause et al., 2003). We suggest that this

difference largely reflects the complexity of the mamma-

lian cortex and the role Ena/VASP has evolved in cortical

development. It is important to note that neurons outside

the cortex in mmvvee mutants do form axons, although

they are not guided properly (A.V.K. and F.B.G., unpub-

lished data). Therefore, extracortical neurons likely pos-

sess some intrinsic factor that can compensate for loss

of Ena/VASP or are exposed to some environmental cue

absent from the cortex that bypasses the requirement

for Ena/VASP. It is also important to note that under con-

ditions where mmvvee extracortical neurons form neu-

rites, neuritogenesis is always preceded by filopodia

formation (E.W.D. and F.B.G., unpublished data). It is pos-

sible that invertebrates use a mechanism similar to verte-

brate extracortical neurons to bypass the requirement for

Ena/VASP function during neuritogenesis.

Our results also indicate that all three vertebrate Ena/

VASP proteins play critical roles in neuritogenesis and

axon formation, as fiber tract phenotypes were only ob-

served with complete loss of Mena, VASP, and EVL.

This is consistent with past observations showing all three

vertebrate Ena/VASP proteins—Mena, VASP, and EVL—

are expressed in multiple regions of the developing cortex

(Goh et al., 2002; Lanier et al., 1999), notably the SVZ, IZ,

and CP, areas where neurite/axon formation are believed

to occur (Noctor et al., 2004).

We did observe axons in the IZ of mmvvee cortices, al-

though they were immature and disorganized. In vitro,

roughly 25% of mmvvee neurons were able to advance

to stage 2 or stage 3, indicating that a small percentage

of mmvvee neurons can make neurites and potentially

axons. Thus, a small percentage of mutant neurons are

expected to make axons in vivo. The few axons observed

in the IZ could arise from these ‘‘escapers’’ and be cortical

in origin; alternatively, they may represent thalamic axons.

Regardless, it is clear that loss of Ena/VASP significantly

reduces axon formation in the cortex, blocking IZ expan-

sion and organization.

Cytoskeleton dynamics drive neurite formation, though

signaling pathways and machinery that drive and regulate

the cytoskeleton during neurite formation remain largely
uron 56, 441–455, November 8, 2007 ª2007 Elsevier Inc. 449
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Figure 7. Migratory Process Formation

Is Independent of Ena/VASP

(A) Cortical neuron expressing EGFP-Mena

and mCherry migrating into the cortical plate

(CP) of an E16.5 embryo. The long white arrow

points in the direction of migration. EGFP-

Mena localized to both leading and trailing pro-

cesses (LP and TP, respectively). In particular,

EGFP-Mena was enriched at the tip of the

leading process (right panels).

(B and C) mmvvee neurons expressing gap-

EGFP (a membrane-targeted version of

EGFP) observed migrating through the CP of

chimeric cortices (C) were morphologically

similar to electroporated control neurons ex-

pressing gap-EGFP, possessing leading and

trailing processes. White arrows point in the di-

rection of migration.

(D and E) Coronal sections through the cortices

of E16.5 control (D) and mmvvee (E) littermates

were labeled with the neuronal-specific marker

b3-tubulin (B3 Tub, red) and DAPI (blue). Multi-

ple neurons, most likely tangentially migrating

interneurons, were observed extending migra-

tory processes in the ventricular zone (VZ) of

both control and mmvvee brains. There was

no detectable difference in the number or morphology of neurons in the VZ of control and mmvvee brains. The dashed white line in the high-magni-

fication insets in (D) and (E) marks the border of the VZ.

Scale bar for (A), 10 mm, for insets in (A), 5 mm; for (B) and (C), 10 mm; for (D) and (E), 100 mm, for insets in (D) and (E), 10 mm.
unknown. This study is the first to demonstrate the impor-

tance of Ena/VASP in regulating this critical process in

neuronal development. Mechanistically, Ena/VASP pro-

teins regulate actin filament elongation and bundling

(Bear et al., 2002) and play a pivotal role in filopodia forma-

tion in growth cones (Lebrand et al., 2004). In this report,

we demonstrate that loss of Ena/VASP causes a striking

reduction in actin bundle and filopodia formation in stage

1 cortical neurons. Failure to form filopodia in Ena/VASP-

deficient neurons preceded the neurite initiation defect,

suggesting that lack of filopodia may be the primary cause

of the block in neuritogenesis. The importance of filopodia

in promoting neurite formation is explored further in Dent

et al. (2007).

How might filopodia formation promote neurite forma-

tion? Stage 1 neurons are decorated with dynamic actin-

rich lamellipodial and filopodial extensions. While it has

been postulated previously that these extensions provide

the structural basis for neurite formation (da Silva and

Dotti, 2002; Dehmelt and Halpain, 2004), our work directly

demonstrates that loss of filopodia precedes defects in

neuritogenesis. It is known that actin bundles within filopo-

dia can serve as tracks for microtubule exploration (Schae-

fer et al., 2002). Microtubule binding proteins are also im-

plicated in neurite initiation (Dehmelt and Halpain, 2004);

therefore, a failure in filopodia formation could lead to

a secondary defect in microtubule-dependent functions

required for neuritogenesis. Thus, the function of Ena/

VASP proteins as regulators of filopodia formation in stage

1 neurons suggests these molecules could control the

early morphological changes in neurons required for neu-
450 Neuron 56, 441–455, November 8, 2007 ª2007 Elsevier Inc
ritogenesis. Interestingly, the necessity of Ena/VASP func-

tion in filopodia and neurite formation stands in marked

contrast to its dispensability in another actin-dependent

process, neuronal migration (discussed below).

A New Model for Cobblestone Cortex
We found that loss of Ena/VASP promotes ectopia forma-

tion, one of the first observations that link an actin-binding

protein directly to the etiology of cobblestone cortex. Our

data are consistent with a model in which defects in radial

glia are a primary cause of ectopia formation in mmvvee

cortices, though formal proof will require further experi-

ments in which Ena/VASP is inactivated selectively in ra-

dial glia. Ectopia growth and spread could also be assis-

ted by an intrinsic defect in neuronal migration that

promotes invasion into the subarachnoid space. Thus, ec-

topia formation in mmvvee cortices may reflect the combi-

nation of a non-cell-autonomous defect in PM integrity

and intrinsic defect in neuronal migration.

Though originally described as a neuronal migration dis-

order, a defect in neuronal migration does not appear to

be the primary defect in the pathology of cobblestone cor-

tex. Instead, both human disorders and mouse models of

cobblestone cortex are usually linked to ECM proteins or

molecules directly involved in cell:matrix adhesion (Beggs

et al., 2003; Bielas et al., 2004; Costell et al., 1999;

Georges-Labouesse et al., 1998; Graus-Porta et al.,

2001; Halfter et al., 2002). Ectopias were never observed

in high percentage chimeric cortices, indicating that loss

of Ena/VASP from cortical neurons was not sufficient to

promote ectopia formation. Similarly, no invasion into
.
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the marginal zone in either chimeric or mmvvee (outside of

ectopias) cortices was noted, indicating that when the PM

was intact, neurons remained in the CP. Therefore, while

an inherent defect in neuronal migration could exacerbate

ectopia growth and spread in mmvvee cortices, it is un-

likely to be the primary cause of ectopia formation.

Interestingly, ectopias in mmvvee cortices share some

similarities to ectopias described in conditional FAK mu-

tants (Beggs et al., 2003); most notably, the size of individ-

ual ectopias and the formation of axonal fibers descend-

ing from ectopias. Ena/VASP and FAK localize to focal

adhesions and function in integrin signaling (Aszodi

et al., 1999; Hauser et al., 1999; Parsons, 2003). Ectopia

formation was linked to FAK deletion from radial glia and

meningeal fibroblasts but not from cortical neurons, dem-

onstrating that the primary cause of ectopia formation is

a defect in PM integrity (Beggs et al., 2003). Although we

did not observe a defect in laminin organization from men-

ingeal fibroblasts, it is possible that Ena/VASP functions in

glial endfeet adhesion to the PM, possibly via integrin sig-

naling. (Aszodi et al., 1999; Hauser et al., 1999; Parsons,

2003). Alternatively, loss of Ena/VASP could disrupt end-

foot:endfoot cell-cell adhesion and consequently compro-

mise barrier integrity, a possibility consistent with earlier

work indicating a role for Ena/VASP in cell-cell adhesion

(Scott et al., 2006; Vasioukhin et al., 2000) and our recent

observations (Furman et al., 2007). Further experiments

using a glial-specific Ena/VASP deletion will be required

to determine the precise defects that give rise to the for-

mation of neuronal ectopias.

Cortical Positioning in the Absence of Ena/VASP
In chimeric cortices, Ena/VASP-deficient neurons con-

centrated in superficial regions of a given cortical layer

or layers rather than being equally distributed across the

layer or layers. This intralayer positioning phenotype is dis-

tinct from previously described defects in cortical migra-

tion (Bielas et al., 2004). Retardation of neuronal migration

disrupts lamination in type-1 lissencephaly, whereas fail-

ure to recognize stop cues causes an inversion in cortical

layering in reelin-signaling mutants (Gressens, 2006). Loss

of Ena/VASP did not severely compromise CP formation,

and migration initiation appeared unaffected. Further-

more, outside of ectopias, we found no evidence of mar-

ginal zone invasion in either mmvvee or chimeric cortices,

suggesting that neurons respected classic positioning

signals in the absence of Ena/VASP. This was consistent

with layer boundaries being respected by mmvvee neu-

rons in chimeras.

A previous study found that inhibition of Ena/VASP

function caused aberrant targeting of early-born neurons

to more superficial layers in the CP (Goh et al., 2002).

That study described a more severe positioning defect

than what we observed, a difference that could be attrib-

uted to variations in experimental design and stage of anal-

ysis. However, in both cases a similar trend was observed:

Ena/VASP-deficient neurons targeted to more superficial

regions of the cortex. Further experiments are needed to
Ne
discern whether loss of Ena/VASP alters radial migration

to the CP, termination of migration, or postmigratory sort-

ing once in the CP.

It is worth noting that in cortical lamination mutants such

as reeler, mispositioned neurons extend axons (Bielas

et al., 2004). Thus, it is unlikely that the intralayer position-

ing defect caused by loss of Ena/VASP is responsible for

the profound loss of fiber tracts in mmvvee cortices. In

fact, our results suggest that neuritogenesis defects are

independent of cortical mispositioning defects in mmvvee

cortices (described below).

Migratory Process versus Axonal
Process Formation
Glial-guided radially migrating neurons have a characteris-

tic bipolar morphology: a leading process that points in the

direction of migration and trailing process that follows be-

hind. The importance of the actin cytoskeleton in cortical

neuron leading process function is largely unknown,

though evidence from other neuronal cell types suggests

actin assembly is critical for leading process motility (Ri-

vas and Hatten, 1995). When expressed in cortical neu-

rons, EGFP-Mena was highly enriched at the tip of the

leading process. However, we found that leading process

formation and morphology was unaffected by loss of Ena/

VASP. We suggest that Ena/VASP proteins—similar to

their role in other systems—could regulate leading pro-

cess dynamics and/or adhesion; in fact, the observed

Ena/VASP-dependent intralayer positioning defects could

reflect a defect in leading process function during radial

migration. Future work is needed to elucidate the role of

the Ena/VASP proteins and the importance of the actin

cytoskeleton in leading process formation and function.

Most migrating neurons send out a trailing process, and

it has been suggested that the trailing process becomes

an axon (Noctor et al., 2004; Tsai et al., 2005). Interest-

ingly, radially migrating neurons do not proceed directly

to the CP after genesis in the VZ; instead, they proceed

through a series of stages, at one point arresting in the

SVZ. During this SVZ arrest, neurons enter a multipolar

state whereupon they send out multiple processes. Even-

tually, neurons extend a single migratory process toward

the ventricular surface. Locomotion resumes after neu-

rons acquire a bipolar morphology by extending another

leading process in the direction of the PM. This ventri-

cle-contacting process is retained by most neurons; that

is, what was once the leading process becomes the trail-

ing process and the putative developing axon (Noctor

et al., 2004). Unfortunately, the high percentage of labeled

cells in the cortex of chimeric embryos prevented us from

determining if GFP+ mmvvee cells formed these ventricle-

contacting processes. However, we observed mmvvee

neurons with trailing processes during later stages of mi-

gration and did not detect a defect in neuronal entry into

the CP, suggesting that mmvvee neurons were able to

progress through all phases of radial migration.

If the trailing process develops into an axon, how do we

reconcile this with our observations that loss of Ena/VASP
uron 56, 441–455, November 8, 2007 ª2007 Elsevier Inc. 451
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blocks axon fiber tract formation in vivo and inhibits neu-

rite formation in vitro? It is possible that this trailing pro-

cess, a former migratory process, is formed in mmvvee

neurons since there appears to be no defect in migratory

process formation in the absence of Ena/VASP. However,

without Ena/VASP proteins, this process might fail to de-

velop significantly by growing tangentially within the VZ/

SVZ as observed in WT neurons (Noctor et al., 2004). In

fact, we observed a marked decrease in Tau-1+ fibers in

the SVZ of mmvvee cortices, consistent with this idea. Al-

ternatively, nascent axons may develop independently

from the cell body and grow along the trailing process;

there is no direct high-resolution evidence demonstrating

conclusively that the trailing process itself actually de-

velops into an axon (Noctor et al., 2004; Tsai et al.,

2005). Finally, a large percentage (roughly 40%) of radially

migrating neurons do not extend a migratory process to-

ward the ventricular surface (Noctor et al., 2004), suggest-

ing that axon formation occurs by other means. Ena/VASP

proteins might be critical for these neurons to form neu-

rites independent of the trailing process, though given

the severity of the phenotype in mmvvee cortices, we sug-

gest additional defects (explained above) are also likely.

In conclusion, we have identified an in vivo model for

analysis of neurite initiation. The results presented here

identify Ena/VASP proteins as key factors in the earliest

steps of neurite initiation and define their requirement for

axon formation in the developing cortex. Our findings

also underscore the role of filopodia and the actin cyto-

skeleton in the initial stages of neuritogenesis and con-

comitant axon formation.

EXPERIMENTAL PROCEDURES

Generation of EVL Knockout Mice

A BAC containing the EVL locus (GeneID:14026) was obtained from

Genome Systems. The targeting vector was constructed by subclon-

ing a 1.0 kb genomic DNA fragment upstream of EVL exon 2 and

a 5.0 kb fragment downstream of exon 3 into vector pPGKneobpA-

lox2PGKDTA (a gift from Philippe Soriano). The targeting vector was

electroporated into R1 ES cells. Over 1000 G418-resistant ES colonies

were picked and screened for homologous recombination by PCR.

Five clones were identified, and homologous recombination recon-

firmed by Southern blot. Four of the five clones produced high percent-

age chimeras, but subsequent breeding revealed only one germline

clone—the EVL knockout line used in this study.

Mouse Colony

All animal work was approved by the MIT Committee on Animal Care.

Chimeric mice were initially crossed to C57/B6 mice to determine

germline transmission of the mutated EVL allele. All experiments

described were conducted with mutant mice on a mixed background,

primarily a mix of Balb/c and 129/Sv.

For timed pregnancies, mating pairs were set up in the evening and

checked for vaginal plugs the following morning; day of plug was

deemed embryonic stage E0.5. Plugged females were removed from

the mating pair and sacrificed at the appropriate time.

Generation of WT/mmvvee Chimeras

To facilitate the isolation of ES cells lacking all Ena/VASP proteins,

a conditional allele of EVL was constructed, denoted as Ec. Ec was cre-

ated by flanking exon 2 of EVL with LoxP sites (for further details
452 Neuron 56, 441–455, November 8, 2007 ª2007 Elsevier Inc
regarding construction, please contact the corresponding author). The

Ec allele did not disrupt EVL expression, but exposure to Cre recombi-

nase deleted exon 2 and abolished EVL expression (data not shown).

MmvvEcEc 3 MmvvEcEc timed pregnancies produced mmvvEcEc

blastocysts, from which ES cell lines were established. A Cre-expres-

sion plasmid was transfected into mutant lines, individual colonies

picked, expanded, and genotyped for recombination at the Ec locus.

Only clones in which both Ec alleles had recombined were expanded

(now functionally mmvvee). These ES clones were infected with either

pLL4.4, a lentivirus expressing EGFP under control of the CAG pro-

moter, or pLL4.4 gap-EGFP, a membrane-targeted version of EGFP.

Infections were conducted as previously described (Rubinson et al.,

2003). GFP+ colonies were picked, expanded, and injected into WT

B6 blastocysts to generate chimeric embryos. Chimeric embryos

were harvested at various embryonic stages (E14.5–E18.5), scored

for GFP expression under a dissection microscope outfitted with fluo-

rescence, and prepped for frozen or vibratome sectioning or cortical

cell culture.

In Utero Electroporation

Electroporations were performed on timed pregnant Swiss-Webster

mice at E12.5 as previously described (Shu et al., 2004). One microliter

of DNA solution containing either a 1:1 ratio of pCAX-EGFP-Mena and

pCAX-mCherrry or pLL4.4R gap-EGFP was injected into the lateral

ventricle of embryos through the uterine wall, and electrical pulses

were applied (five repeats of 30 V for 50 ms with an interval of

950 ms). Two to four days after electroporation, embryos were dis-

sected, perfused with 4% paraformaldehyde, and prepared for sec-

tioning.

Antibodies

Western: EVL (1404, 1:5000), Mena (monoclonal, 1:100 for western),

VASP (2010, 1:5000). IHC: NF (2H3, DSHB, 1:200), TAG-1 (DSHB,

1:50-1:100), b3-tubulin (Promega, 1:1000-1:5000), Laminin (Abcam,

1:200-1:500), Nestin (DSHB, 1:100; Molecular Probes, 1:1000), Tau-1

(Chemicon, 1:200), GFP (Molecular Probes, 1:250-1:1000), Tbr1 (gift

from Morgan Sheng, 1:100), Foxp1 (gift from Edward Morrisey, 1:500).

Histology and Immunohistochemistry

Bouin’s fixed tissues were embedded in paraffin, sectioned, and

stained with H&E using standard techniques. Tissues for frozen sec-

tioning were fixed lightly in 4% PFA on ice for 1 hr, washed three times

in cold PBS, soaked in 30% sucrose in PBS overnight at 4�C, embed-

ded in OCT compound (Tissue Tek), and stored at �80�C until sec-

tioned. For IHC, 10 micron cryostat sections were dipped in ice-cold

acetone for 2 min, air-dried for 15 min, rinsed twice in PBS, and

blocked in PBS plus 10% normal goat or donkey serum, 5% BSA,

and 0.05% Tween. Blocking was performed overnight at 4�C or for

1–2 hr at room temperature. Sections were incubated with primary

and secondary antibodies diluted in PBS plus 1% normal serum, 1%

BSA, and 0.05% Tween either overnight at 4�C or for 1 hr at room tem-

perature. Slides were washed three times in PBS with gentle agitation

after each antibody incubation. DAPI staining was performed after

secondary incubation. After staining, all slides were mounted in Fluo-

romount-G (Electron Microscopy Sciences) and imaged.

MRI and mDTI

Before imaging, Bouin’s-fixed embryos were washed in PBS for more

than 24 hr to remove the fixation solution and transferred into home-

built MR-compatible tubes. The tubes were then filled with fomblin

(Fomblin Profludropolyether, Ausimont, Thorofare, New Jersey, USA)

to prevent dehydration. MRI and mDTI were performed as previously

described (Zhang et al., 2005; Mori and Zhang, 2006).

Meningeal Fibroblast Culture and Laminin Production

Meningeal fibroblasts were isolated from E14.5 mutant embryos and

cultured as previously described (Beggs et al., 2003). To examine
.
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laminin production and organization, control and mmvvee fibroblasts

were plated onto acid-washed glass coverslips coated with poly-D-

lysine (1 mg/ml), cultured for 3 days, fixed in 4% PFA, and stained

for laminin.

Cortical Cell Culture

Primary dissociated cortical neurons were prepared from E14.5 mice

and cultured in serum-free medium essentially as described (Lebrand

et al., 2004). Neurons were initially cultured in 5% fetal bovine serum

(FBS) (Hyclone) in Neurobasal Medium (GIBCO) with B27 supplements

and glutamine, and later switched to serum-free medium after 1 hr in

culture. Neurons were plated on coverslips coated with 1.0 mg/ml

poly-d-lysine (PdL) (Sigma) at a concentration of 5000 cells/cm2. Neu-

rons were fixed in warmed 4% paraformaldehyde/0.25% gluteralde-

hyde in Krebs’ solution with 0.4 M sucrose (Lebrand et al., 2004) to pre-

serve the cytoskeleton. Cells were blocked in 10% BSA/PBS and

extracted with 0.2% Triton X-100 in block prior to staining.

Imaging

Tissue immunostaining was imaged on either a Deltavision Spectris

deconvolution system (Applied Precision) or Nikon TE2000 micro-

scope outfitted with a spinning disk confocal head (Yokagawa). Z se-

ries were collected on the Deltavision, and when applicable, decon-

volved using softWoRx (Applied Precision). In some instances,

panels of Z series were collected and stitched together in softWoRx

to form larger images.

Supplemental Data

The Supplemental Data for this article can be found online at http://

www.neuron.org/cgi/content/full/56/3/441/DC1/.
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Neu
vasodilator-stimulated phosphoprotein (VASP) is involved in cGMP-

and cAMP-mediated inhibition of agonist-induced platelet aggrega-

tion, but is dispensable for smooth muscle function. EMBO J. 18,

37–48.

Bear, J.E., Svitkina, T.M., Krause, M., Schafer, D.A., Loureiro, J.J.,

Strasser, G.A., Maly, I.V., Chaga, O.Y., Cooper, J.A., Borisy, G.G.,

and Gertler, F.B. (2002). Antagonism between Ena/VASP proteins

and actin filament capping regulates fibroblast motility. Cell 109,

509–521.

Beggs, H.E., Schahin-Reed, D., Zang, K., Goebbels, S., Nave, K.A.,

Gorski, J., Jones, K.R., Sretavan, D., and Reichardt, L.F. (2003). FAK

deficiency in cells contributing to the basal lamina results in cortical ab-

normalities resembling congenital muscular dystrophies. Neuron 40,

501–514.

Bielas, S., Higginbotham, H., Koizumi, H., Tanaka, T., and Gleeson,

J.G. (2004). Cortical neuronal migration mutants suggest separate

but intersecting pathways. Annu. Rev. Cell Dev. Biol. 20, 593–618.

Chuang, J.Z., Yeh, T.Y., Bollati, F., Conde, C., Canavosio, F., Caceres,

A., and Sung, C.H. (2005). The dynein light chain Tctex-1 has a dynein-

independent role in actin remodeling during neurite outgrowth. Dev.

Cell 9, 75–86.

Costell, M., Gustafsson, E., Aszodi, A., Morgelin, M., Bloch, W., Hun-

ziker, E., Addicks, K., Timpl, R., and Fässler, R. (1999). Perlecan main-
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