GENIE LOGICIEL ® N°

92 MARS 2010 -

COSYSMO: A Systems
Engineering Cost Model

RicaArRDO VALERDI

AND BARRY W.

BOEHM

Abstract: Building on the synergy between Systems engineering and Software Engineering, we have develo-
ped a parametric model to estimate systems engineering costs. The goal of this model, called COSYSMO
(Constructive Systems Engineering Cost Model), is to more accurately estimate the time and effort associated
with performing the system engineering tasks in complex systems. This article describes how COSYSMO was
developed and summarizes its size drivers and effort multipliers. We conclude with an example estimate to illus-

trate the usage of the model to estimate Systems engineering cost.

Key-words: systems engineering, cost estimation, model, complex systems

1. INTRODUCTION

The management of Systems engineering tasks in
large projects, both commercial and military, has
become increasingly important especially as sys-
tems become larger and more complex. To reduce
the danger of cost and schedule overruns, orga-
nizations must coordinate and manage a diverse set
of activities throughout the total systems life cycle.
Similarly, large projects cannot succeed without
applying good Systems engineering practices and
principles in such a way that unify systems and
software engineering efforts [3]. The advantages
of integrating the two disciplines are clear, but
little work has been done to weave them together
in a manner that synergistically capitalizes on
their joint strengths.

Some research has been done to qualify the
complex relationship between software and Sys-
tems engineering and to describe the crucial role
of software in future systems [3]. This study
concluded that large Software Engineering pro-
jects cannot exist without considering their lin-
kages with the Systems engineering effort.
Current Systems engineering estimation tech-
niques like Cost As an Independent Variable
(CAIV), Design To Cost (DTC), and Total Life
Cycle Costing (TLCC) embrace activity-based
costing techniques. As such, they do not fully
address the linkages with software engineering.
This creates cost estimates that can be off by an
order of magnitude because tasks that require the
interaction of engineering disciplines are excluded.

2. MODEL DEVELOPMENT
COSYSMO is part of a trend to improve cost esti-
mating accuracy and increase domain understan-
ding that can potentially lead to increased
productivity [4]. The model estimates the effort
and duration of such projects based on a variety of
parametric drivers that have been shown to have
an influence on cost. It uses standard processes for
engineering a system [1] as a basis for Systems
engineering activities and system life cycle pro-
cesses [6] to describe the phases in which these
activities are performed.

Using a model development process similar to
its predecessor, COCOMO II [4], COSYSMO aims
at providing an approach for reasoning about the
systems engineering decisions on a project as
shown in Figure 1.

Analyze Existing
{iterature
1 Perform
B- -' §4 \
Identify Relative
Significance "\
3 Parform Expest-
Judgment, Delphl "Ny
4 Gather Project Data
snll 5 Determine Bayesian
] A-Posteriort Updato
Gather more data;
refine model

l-—6-

7

Figure 1: Seven Step Modeling Methodology

GENIE LOGICIEL

The first step involved investigating related
literature on how existing cost models addressed
Systems engineering effort. What we found was
that most of the modeling work done to date relied
on heuristics or rules of thumb to cost Systems
engineering activities (e.g., allocate 15% of total
program effort to systems engineering). Alterna-
tively, most of the firms we interviewed during
this fact-finding period did bottoms-up costing
that relied on engineers to provide task level esti-
mates based upon their experience. These esti-
mates were validated based on past experience
and then summed to form the top-level estimates.
Little was done to factor into these estimates the
synergy, dynamics, or confusion that occurs on
large projects as teams are formed and organiza-
tions energized to do the work. As a result, mana-
gers often put little confidence in these estimates.

The second step pursued was to perform a
behavioral analysis. We asked experts from the
U.S. aerospace industry to help us identify the
parameters which they felt Systems engineering
costs were most sensitive to and the range of varia-
tion. We received a wide range of inputs, but
could achieve only limited consensus primarily

© 92 MARS 2010

because of the assortment of definitions of Sys-
tems engineering terminology. In order to have a
shared definition of Systems engineering we adop-
ted the ANSI/EIA 632 standard so that all orga-
nizations would relate to the same Work
Breakdown Structure.

While our analysis showed that the number
of requirements was an indicator of the size of
the systems engineering effort, they were a neces-
sary but not sufficient predictor. Another para-
meter involved was the effort needed to understand
the interface requirements and the operational
concept document. However, determining the
weight of these other indicators was not so
straight-forward a task. We found that the domain
in which systems engineering was performed
influenced the selection of these parameters (e.g.,
sensor systems were driven by the number of sen-
sor modes while command and control systems
were driven by the number of operational modes)
as did the organizations performing the task. The
COSYSMO size drivers are listed in Table L.
These are equivalent to metrics used to determine
the size of software projects such as software lines
of code or function points.

Number of System Requirements

The number of requirements taken from the system specification. A requirement is a statement of
capability or attribute containing a nommative verb such as shall or will. It may be functional or system
service-oriented in nature depending on the methodology used for specification. System requirements can
typically be quantified by counting the number of applicable shall’s or will’s in the system Or marketing
specification.

Number of Major Interfaces

The number of shared major physical and logical boundaries between system components or functions
(internal interfaces) and those external to the system (external interfaces). These interfaces typically can be
quantified by counting the number of interfaces identified in either the system’s context diagram and/or by
counting the significant interfaces in applicable Interface Control Documents.

Number of Unique Algorithms

The number of newly defined or significantly altered functions that require unique mathematical algorithms
to be derived in order to achieve the system performance requirements.

Number of Operational Scenarios

The number of operational scenarios that a system is specified to satisfy. Such threads typically result in
end-to-end test scenarios that are developed to validate the system satisfies its requirements. The number
of scenarios can typically be quantified by counting the number of end-to-end tests used to validate the
system functionality and performance. They can also be calculated by counting the number of high-level
use cases developed as part of the operational architecture,

Table I: COSYSMO Size Drivers

Requirements Understanding
The level of understanding of the system requirements by ail stakeholders including the systems, software,

hardware, customers, team bers, users, etc. ..

Architecture Understanding

The relative difficulty of determining and managing the system architecture in terms of IP platforms,
standards, components (COTS/GOTS/NDV/new), connectors (protocols), and constraints. This includes
systems analysis, tradeoff analysis, modeling, simulation, case studies, etc...

Level of Service Requirements
The difficulty and criticality of satisfying the Key Performance Parameters (KPP). For example: security,
safety, response time, the “illities™, etc...

Migration Complexity
The complexity of migrating the system from previous system components, databases, workflows, etc, due
to new technology introductions, planned upgrades, increased performance, business process reengineering

elc...

Technology Risk
The relative readiness of the key technologies for operational use.

Dacumentation to Match Lifecycle Needs
The formality and detail of documentation required to be formally delivered based on the life cycle needs

of the system.

and Diversity of installations/platforms
The number of different platforms that the system will be hosted and installed on.

Table II: COSYSMO Effort Multipliers - Application Factors

GENIE LOGICIEL

© 92 MARS 2010 -

Stakeholder Team Coh

Leadership, frequency of meetings, shared vision, approval cycles, group dynamics (self-directed teams,

Personnel Capability

project engineers/managers), IPT framework, and effective team dynamics.

Systems engineering’s ability to perform in their duties and the quality of human capital.

Personnel Experience/Continuity

technology, domain, etc...

The applicability and consistency of the staff over the life of the project with respect to the customer, user,

Process Capability

Maturity per EIA/IS 731, SE CMM or CMMI.

Multisite Coordination

Location of stakeholders, team members, resources (travel).

Tool Support

Use of tools in the System Engineering environment.

Table Ill: COSYSMO Effort Multipliers — Team Factors

In parallel with the behavioral analysis, we
proceeded to identify the effort multipliers that
experts felt significantly impacted Systems engi-
neering cost and schedule. These are shown in
Tables II and I1I. As in the COCOMO II model
[Boehm et al 2000], such effort multipliers are
used to modify the amount of effort to reflect pro-
duct, platform, personnel, and project factors that
have been shown to influence cost and schedule.

As our fourth step, we conducted a Delphi
exercise to reach group consensus and validate
our initial findings. The Wideband Delphi tech-
nique has been identified as being a powerful tool
for achieving group consensus on decisions invol-
ving unquantifiable criteria [2]. We used it to cir-
culate our initial findings and reach consensus on
the parametric ratings of the size drivers and effort
multipliers. The COSYSMO Delphi survey was
designed to (1) reach consensus from a sample of
Systems engineering experts, (2) determine the
distribution of effort across effort categories, (3)
determine the most influential predictors of Sys-
tems engineering size, (4) identify the cost dri-
vers to which effort was most sensitive to, and
(5) help us refine the scope of the model elements.
Part of the Delphi process involved multiple dis-
tributions of the surveys to arrive at the values
that experts could converge on. The model that
evolved as a product of this Delphi effort is of the
following regression equation form:

PM s = A-(Size)* -TIEM,

Where:

PMyg = effort in Person Months (Nominal
Schedule)

A = calibration constant derived from histo-
rical project data

Size = determined by computing the weighted
sum of four size drivers (requirements, inter-
faces, algorithms and operational scenarios)
E = represents economy/diseconomy of scale;
default is 1.0

n = number of cost drivers (14)

EM, = effort multiplier for the iy, cost driver.
Default value for all effort multipliers is 1.0.

We then developed a method for developing
rating scales for the effort multipliers, as shown in
Table IV. The polarity of each individual effort
multiplier determined the direction of the rating
scale. For instance, the requirements understan-
ding effort multiplier is positively phrased and
therefore has a rating scale with effort savings for
higher rating levels. Alternatively, the level of
service requirements effort multiplier is negati-
vely phrased and has a rating scale with increasing
values (effort penalty) for higher rating levels.

The Effort Multiplier Ratio (EMR) is the ratio
between the highest value and the lowest value
in each rating scale. For example, in the case of

Very Extra

Low Low Nominal { High Very High High EMR
Requi (1Y di 1.87 1.37 1.00 0.77 0.60 342
Architecture Under 1.64 1.28 1.00 0.81 0,66 262
Level of Service Requirements 0.62 0.79 1.00 1.36 1.86 2.98
Migration Complexity 1.00 1.26 1.65 1.93 1.93
Technology Risk 0.67 0.82 1.00 1.32 1.75 2.84
Documentation 0.78 0.88 1.00 113 1.28 1.64
2and ity of i {lati platf 1.00 1.23 1.52 1.87 1.87
% of recursive levels in the design 0.76 0.87 1.00 1.21 1.47 1.83
Stakeholder team cohesion 1.60 122 1.00 0.8¢ 0.65 231
Pergonnei/team capability 1.60 1.22 1.00 0.81 0.65 23
P et experi { inuity 1.48 1.22 1.00 0.82 0.67 an
Process capability 1.47 1.1 1.00 0.88 0.77 0.68 248
Muitisite coordination 1.3% 1.18 1.00 0.90 0.80 0.72 193
Tool suppert 1.39 1.18 1.00 0.85 0.72 193

Table IV: Rating Scales for COSYSMO Effort Multipliers [7]

GENIE LOGICIEL ® N°

92 MARS 2010

of recursive levels in the design [T
Prooess capabilty
Personnel experienceloontinuity

Stakeholdes team cohesion

Architecture Understanding
Teohnology Risk
Level of Sevice Requitements |

Requitements Understanding [ToR TErm oot o mon TR T TR

TR

the 450 decomposed requirements can
be allocated as follows: 200 easy, 200
nominal, and 50 difficult.

The 5 interfaces provided by the
customer must also be allocated into
complexity levels. After comparing
/| the system specification to similar sys-
tems built by your organization, it is
determined that 2 of the interfaces are
easy and 3 are difficult. Similarly, the
5 algorithms are reviewed and assi-
gned a complexity level of difficul.

0.00 0.50 1.00 1.50
Effort Multiplier Ratio (EMR)

2.00 250

3.00 351
These quantities are the COSY-

Figure 2: Relative Impact of COSYSMO Effort Multipliers [Valerdi 2005]

requirements understanding the value for Very
Low and Very High is 1.87/0.60 = 3.12. The
results in Table IV are shown in graphic form in
Figure 2 to illustrate their order of importance
using EMR values. The most influential drivers of
Systems engineering effort are requirements
understanding, level of service requirements, and
technology risk.

These parameters form the basis of the fifth step
of gathering historical data from companies that col-
lected Systems engineering effort information on pro-
jects. Steps six and seven — refining the model using
a Bayesian statistical approach and refining the model
based on usage experience — are ongoing activities
that have helped identify potential improvements to
COSYSMO [7]. The ultimate objective was to imple-

ment the COSYSMO tool so that companies could

begin estimating systems engineering effort. For more
information on COSYSMO and available tools for
download visit: Attp://cosysmo.mit.edu.

3. EXAMPLE ESTIMATE
The following example is designed to demonstrate
the use of COSYSMO. It is based on a real scena-
rio from the U.S. aerospace industry.

Your customer has provided a system specifi-
cation that contains 200 requirements, 5 interfaces,
and 5 algorithms for a new system based on a newly
developed technology. The first step is to decom-
pose' the requirements provided by the customer
down to the appropriate level for systems enginee-
ring. After decomposition, it is determined that the
200 requirements provided by the customer yield
450 requirements at the systems engineering level.

The next step is to allocate the decomposed
requirements into the available complexity levels
in COSYSMO. Through additional dialog with the
customer, a review of the system specification, and
discussion with experts in your organization that
have worked on similar systems it is determined that

SMO model size drivers. At this stage,
an initial systems engineering person-
month estimate can be obtained based solely on the
systems engineering size drivers. However, additio-
nal information about the program is available that can
be used to adjust the estimate. In particular, three
things are known to be unique about this project. The
first is that the contractor has done similar projects and
therefore has a high degree of requirements unders-
tanding. Second, it is determined that a critical tech-
nology used in the project is relatively immature and
requires a significant degree of research & develop-
ment to make it usable. This translates to a high tech-
nology risk. Third, the contractor responsible for this
project has relatively mature systems engineering
processes and has obtained a CMMI (Capability Matu-
rity Model Integrated® [5]) rating of 3. This translates
to a high process capability.

Together, these three characteristics of the pro-
ject being estimated can be captured in the
COSYSMO cost drivers by rating the following
three effort multipliers: requirements understan-
ding, technology risk, and process capability. This
additional project information also provides deeper
insight into the project’s potential performance and
possible risk factors that may introduce schedule or
cost variation.

In summary, the information obtained from the
system specification — supplemented by additional
dialog with the customer and discussion with experts
familiar with similar efforts — provided the necessary
information to populate three of the four size dri-
vers in COSYSMO. The familiarity and process
maturity of the contractor combined with an assess-
ment of the technology risk provided the necessary
information to rate three of the fourteen cost dri-
vers. The resulting Systems engineering estimate
provided by COSYSMO is 195 person months as
shown in Figure 3.

For purposes of this example, it is assumed
that the project being estimated includes the stan-
dard systems engineering life cycle phases per

GENIE LOGICIEL ® N° 9

MARS 2010 -

[- - - —
i

200 easy,
1 200 nominal,
1 50 difficult
1 Requirements
1 2 easy, 3 difficult
1 Interfaces
1 5 difficuit
1 Algorithms

Size

Effort

Drivers

- = = = = = = = 4 Multipliers

195
Person
Months

.
! High Requirements Understanding | - of systems
I'High Technology Risk 1 Calibration engineering
; High Process Capability ! effort
Figure 3: Example COSYSMO Estimateb
ACKNOWLEDGEMENTS

ISO/IEC 15288 and a standard systems enginee-
ring Work Breakdown Structure per ANSI/EIA
632. Individual organizations may wish to tailor
this predetermined scope based on their own defi-
nition of Systems engineering.

4. CONCLUSION

As systems are built, engineering disciplines don’t
act alone. Instead, they interact in order to solve
the customer’s real problem. Estimating how
much these tasks cost is equally important. To
reduce the danger of cost and schedule overruns,
the total engineering effort must be orchestrated,
coordinated, and managed throughout the total
system development life cycle.

The intent of this paper was to provide insight
into the development of COSYSMO, its parameter
definitions, and an example estimate. Our efforts
have confirmed that Systems Engineers and Pro-
gram Managers desire models that they can use in
developing accurate estimates of Systems enginee-
ring effort. Our contribution, COSYSMO, repre-
sents such a model. Its parametric formulation differs
from others currently available which are heuristic-
based. Being based on actual project data enables
engineers and managers to use COSYSMO to justify
forecasted expenditures and reduce risk.

We have had tremendous support in our efforts
but still have a number of significant challenges
ahead of us. We hope to continue collaborating with
systems engineering practitioners to produce an
accurate and flexible model. Their insights and sug-
gestions have helped us solidify concepts and make
the terminology we use more acceptable. We plan to
continue reporting the status and progress of our
efforts as we pursue model development with the
intent to make an impact in the fields of cost esti-
mation and systems engineering.

The authors would like to thank the Consortium
Members of the MIT Lean Advancement Initiative
and the Corporate Affiliates of the USC Center for
Systems and Software Engineering for supporting the
development of COSYSMO. Especially The Aeros-
pace Corporation, BAE Systems, Boeing, General
Dynamics, L-3 Communications, Lockheed Mar-
tin, Northrop Grumman, Raytheon and SAIC.

5. REFERENCES

[1] ANSI/EIA-632-1988 Processes for Engineering
a System. New York, NY: American National
Standards Institute, 1999.

[2] B. W. Boehm: Software Engineering Economics,
Prentice-Hall, 1981.

[3] B. W. Boehm:/ntegrating Software Engineering
and Systems Engineering, The Journal of
NCOSE, Volume I, No. 1, July-September 1994,
pp. 147-151.

[4] B. W. Boehm, C. Abts, A. W. Brown, S. Chu-
lani, B. Clark, E. Horowitz, R. Madachy, D. J.
Reifer, and B. Steece: Software Cost Estimation
With COCOMO II, Upper Saddle River, NJ:
Prentice Hall, 2000

[5] Capability Maturity Model Integration - CMMI-
SE/SW/IPPD/SS, V1.1. Pittsburg, PA, Carnegie
Mellon - Software Engineering Institute, 2002

[6] ISO/IEC 15288:2002(E), Systems Engineering —
System Life Cycle Processes, First Edition, 2002.

[7] R. Valerdi: The Constructive Systems Enginee-
ring Cost Estimation Model (COSYSMOQ), PhD
Dissertation, University of Southern California,
May 2005.

Norte

1 It is important to distinguish between decomposed
and derived requirements. For purposes of
COSYSMO, we focus on decomposed require-
ments because they are a better proxy for systems
engineering effort.

