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Degree of Doctor of Philosophy in Electrical Engineering

ABSTRACT

Diffusion (DWI) and perfusion weighted (PWI) magnetic resonance imaging (MRI) provide
significant insight into acute stroke and can potentially be useful for clinical decision-making. In
particular, current therapeutic decisions for acute human cerebral ischemia are typically based on
time of symptom onset, limiting the number of patients treated. Imaging, however, offers insight
into the physiologic integrity of brain tissue that is not attainable with time of symptom onset
alone. This thesis extends existing imaging techniques for acute human stroke in order to
improve identification of tissue at risk of infarction, thereby assisting clinical decision-making at
the stage when intervention may be most effective.

DWI and PWI have both been shown to identify infarcted tissue earlier than conventional stroke
imaging. However, these techniques are limited in their existing implementations. DWI in most
acute stroke settings has been restricted to isotropic imaging, measuring only mean diffusivity. In
this thesis, DWI is extended to diffusion tensor imaging (DTI) with results demonstrating that
DTI can detect ultrastructural changes in acute human stroke. PWI measures perfusion status by
tracking the first pass of a bolus of contrast agent. In this dissertation, using numerical
simulations, delay in contrast agent arrival is found to result in biased estimates of perfusion
indices. A deconvolution technique using a block-circulant matrix is therefore proposed to
compensate for delayed arrival, and its performance is compared to non-block circulant
techniques in simulations as well as in clinically acquired human data sets. The results show that
decoupling delay-associated effects reduces bias in tissue perfusion estimates.

Algorithms combining DWI and PWI information are also evaluated to determine whether they
predict tissue outcome in acute stroke better than models using only subsets of these parameters.
Results show that algorithms combining DWI and PWI on a voxel-by-voxel basis predict tissue
that infarct with higher specificity and sensitivity than algorithms using DWI or PWI
individually. These combination algorithms are then used to investigate the efficacy of a novel
therapeutic agent by evaluating the performance of the model as a function of treatment dose.
Findings suggest that predictive models allow evaluation of novel therapies using smaller sample
sizes than traditional endpoints.

The results of this dissertation demonstrate that imaging can be used to identify tissue at risk of
infarction, which may aid diagnosis and prognosis by providing clinicians unique insight into the
underlying pathophysiology of stroke.

Thesis Supervisor: Martha L. Gray, Ph. D. Thesis Supervisor: A. Gregory Sorensen, M. D.
Title: Edward Hood Taplin Professor of Title: Associate Professor of Radiology,

Medical & Electrical Engineering Harvard Medical School
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Chapter 1

Introduction

"Where shall I begin, please your Majesty?" he
asked.

"Begin at the beginning," the King said, very
gravely, "and go on till you come to the end:
then stop."

-Lewis Carroll
(Alice's Adventures in Wonderland)
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1.1 Time is brain
Stroke is the third 1,eading cause of death and a leading cause of serious long-term disability in
the United States with 600,000 new or recurring cases annually (1). In stroke, the
cerebrovascular system is impaired due to the obstruction (ischemic stroke) or rupture
(hemorrhagic stroke) of cerebral blood vessels that results in focal metabolic impairment and
neurological dysfunction (2). The majority of stroke types is ischemic (77%) (3) with the
remaining (23%) hemorrhagic. Previously considered a non-emergency condition due to lack of
available treatment options (4), recent advances have shown that ischemic stroke patients have
an improved outcome if treated early with thrombolytic or clot busting agents (5). The possibility
of treatment has changed the outlook of acute stroke care from therapeutic nihilism to therapeutic
optimism (4, 6). It has also changed the management of acute stroke patients such that early
detection and therefore treatment of an ischemic event is critical given that the only currently
FDA approved therapy, recombinant tissue plasminogen activator (rt-PA), has been shown to be
effective only if administered within 3 hours of symptom onset (7). Outside of this therapeutic
time window, it has been demonstrated that there is an increased risk of hemorrhage resulting in
a worsened outcome (7). This critical dependence of administration of treatment within a narrow
therapeutic time window has led to the coining of the phrase "Time is Brain".

Accurately assessing the exact onset time, however, is often difficult to determine, thereby
limiting the number of patients eligible for treatment. Critics argue that the rt-PA therapeutic
time window is too stringent and does not take into consideration individual patient variability
such as presence of collateral flow, lesion location, lesion volume and other factors. (8-10).
Some argue that a three-hour time window was not specific enough for identifying treatable
patients since some patients may not have lysable clots although they are seen within the time
frame (8). Others argue that the time window is not sensitive enough for identifying potentially
treatable patients and that the window should be expanded (11). Both parties agree, however,
that imaging may be the solution to both of their concerns since it would replace the concept of a
"ticking clock" as a surrogate for tissue viability with a more accurate "tissue clock" (10, 12). An
imaging surrogate for the ischemic penumbra, i.e. hypoperfused or oligemic but still
therapeutically treatable tissue, could allow identification of patients whom although seen within
the three hour time window should not be treated with thrombolysis due to the lack of presence
of salvageable tissue. In another scenario where a patient is seen outside the three-hour time
frame, an imaging surrogate may identify still salvageable tissue suggesting the potential benefits
of treatment even though the therapeutic time window has lapsed.

More and more stroke investigators are advocating the use of imaging as an inclusion or
exclusion criterion for clinical trials and also for monitoring patients' individual responses to
therapy (11-16). This is a logical extension of the experimental animal stroke models experience
where the majority of these pre-clinical trials has been using imaging criteria. In these studies,
differences in lesion volumes between treatment groups are used to evaluate efficacy, with a
positive result reported if the treatment group has smaller lesion volumes than the control
placebo group. However, much work has been invested in experimental animal models to insure
the reproducibility of lesion size and location in the animals. For humans, on the other hand, due
to large inter-patient variability in stroke severity and location, large numbers of patients are
often necessary in order to detect a statistically significant effect. Since intra-patient variability is
presumably lower than the inter-patient variability, statistical power may be increased if one
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measures change in lesion size from baseline (13). A logical extension would be to compare
individual voxels to their baseline state. Such a method might provide even lower variability and
thereby further increase the statistical power for detecting a treatment-related change.

By acutely identifying tissue at risk of infarction, salvageable tissue can then be identified.
Without knowing how much tissue is at risk of infarction prior to treatment, assessing the
efficacy of a therapy is complicated by physiologic variations and choices of treatment. By
distinguishing tissue likely to infarct without treatment, tissue that was saved post-treatment can
then be identified. This identification should be done with both high sensitivity and specificity.
While current imaging technologies have hinted at some promise, the methodological framework
to carry out this process remains to be developed. This is one of the goals of this thesis.

1.2 The Role of Imaging in Acute Stroke
Imaging occupies an essential but limited role in the routine care of acute ischemic stroke
patients, namely for the exclusion of hemorrhage, a contraindication for rt-PA. One reason for
this limited role has been due to the low sensitivity of imaging techniques in acutely detecting
stroke lesions and therefore obviating their use for early diagnosis and therapy guidance. Typical
imaging techniques used to evaluate the extent and severity of an infarct such as computed
tomography (CT) and conventional magnetic resonance imaging (MRI) reflect anatomical
changes wrought by damage due to the ischemic process. In general, however, both techniques
are insufficient in the acute setting, only showing abnormalities hours after onset. Conventional
imaging techniques therefore may not be optimal for the guidance of early intervention due to
their lack of acute sensitivity (17, 18).

With the advent of high speed functional MRI, the underlying physiology of tissue can be better
investigated. In particular, diffusion weighted imaging (DWI), a reflection of extent of cellular
injury and ionic homeostasis, and perfusion weighted (PWI) magnetic resonance (MR) imaging,
a measurement of hemodynamic status, have both been shown to identify infarcted tissue earlier
than conventional stroke imaging with greater sensitivity and specificity (19). The lesion
volumes identified by perfusion and diffusion imaging, however, often do not match. Because
DWI and PWI measure different aspects of ischemia and infarction, it has been postulated that
this area of mismatch may help identify the ischemic penumbra. However, lesion volume
mismatches may be overly sensitive and not specific due to intralesional heterogeneity in both
diffusion (20) and perfusion parameters (21). There have been several studies investigating
thresholds of diffusion (12, 22) or perfusion parameters (23-25) that may distinguish the
ischemic penumbra. However, in an acute clinical setting, readily identifying regions of tissue
within the pertinent thresholds in multiple images may be a cumbersome process. A single
image reflecting tissue that has already infarcted, tissue likely to infarct without treatment and
tissue not at risk would be an ideal tool in assisting clinical decision making. The question is
therefore how to optimally combine these multiple images to assess risk of infarct accurately and
objectively.

1.3 Overview
The goal of this study is to extend existing imaging techniques to acutely identify tissue at risk of
infarction in stroke to better identify tissue that can be saved. Identifying salvageable tissue is ill
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defined without specifying which treatment is to be attempted since some tissue may respond
better to one therapy than another. However, identifying tissue that will infarct without novel
intervention is a tractable problem and the target of this dissertation.

This study is organized into three major components:

" Extension of diffusion weighted imaging techniques to diffusion tensor imaging in acute
stroke patients.

" Extension of perfusion weighted imaging techniques to decouple "delayed flow" from
reduced flow.

" Development of algorithms that combine acute diffusion and perfusion weighted images into
a single map of the estimated risk of infarction on a voxel-by-voxel basis.

The first two components seek to better characterize the underlying pathophysiology in acute
stroke and to identify with greater specificity tissue that is at risk of infarction. The first section
examines tissue status and risk of infarction with the second section investigating perfusion
status of the tissue and risk of infarction. The third section, on the other hand, seeks to identify
tissue that is at risk of infarction with sensitivity and specificity by providing a single index of
probability of infarction.

The organization of this thesis is therefore as follows:

Chapter 2 investigates the extension of diffusion weighted imaging to diffusion tensor imaging
in acute stroke to gain insight into ultrastructural changes that may lead to greater understanding
of the contrast provided by diffusion weighted imaging than can be elucidated from mean
diffusivity alone. Diffusion weighted imaging has been shown to be a highly sensitive and
specific indicator of tissue that is likely to infarct. (26). However with the advent of rt-PA, cases
where the initial DWI abnormality has reversed and cases where the initial DWI abnormality
hemorrhages have been reported (12). Figure 1.3.1 shows an example lesion that reversed on
follow-up exam following intravenous thrombolysis and Figure 1.3.2 shows an example where
the patient went on to hemorrhage following intra-arterial thrombolysis. To differentiate between
these two conditions, a marker that is more sensitive to ultrastructure may be more useful. For
example, as shown in Figure 1.3.3, an image that uses only mean diffusivity shows very little
gray white matter contrast. However, an image derived from diffusion tensor imaging data
clearly distinguishes gray from white matter. We hypothesize that diffusion tensor imaging can
better capture any structural changes that may occur in acute stroke and therefore, by reflecting
extent of tissue damage, may be useful for aiding decisions to treat or not treat.
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Figure 1.3.1 Example of a patient who was
treated with intravenous thrombolysis and
whose initial DWI lesion (arrow) reversed
leaving no identifiable lesion on the follow-up
imaging study.

Figure 1.3.2 Example of a patient who was
treated with intra-arterial thrombolysis
resulting in hemorrhage (arrow) as evidenced
on the follow-up CT imaging study.

In Chapter 2, a brief background in isotropic diffusion weighted imaging is first provided
followed by a description of its extension to diffusion tensor imaging (DTI). The chapter is
divided into DTI technical development and DTI applications in acute stroke. Results show that
ultrastructural changes occur in hyperacute stroke, which are detectable with DTI. These changes
are complimentary to changes in mean diffusivity and may provide insight into cellular structural
integrity. For example, reductions in anisotropy were found on average in DWI lesions that
infarcted whereas elevations and preserved anisotropy were observed within reversible DWI
lesions.

Chapter 3 concentrates on improving existing
perfusion analysis techniques. Perfusion
imaging measures cerebral blood flow (CBF),
cerebral blood volume (CBV) and mean transit
time (MTT) using tracking of the first pass of a
bolus of high magnetic susceptibility contrast
agent. Perfusion indices of CBF and MTT have
been shown to be very sensitive for identifying
tissue at risk of infarction but not very specific
(27). We speculate that this may be partly due to
sensitivity of the existing perfusion analysis
technique to tracer arrival delay. For example,
Figure 1.3.4 shows the calculated flow maps for
a patient where two very different hemispheres
are identified as abnormal depending on
whether one chooses the diseased hemisphere
for the arterial input function (LMCA CBF) or
the normal hemisphere for the arterial input
function (RMCA CBF). We see that using an

Figure 1.3.3 Structural differences
between white and gray matter are more
evident in the image derived from DTI than
in the image of mean diffusivity from the
same subject.
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Figure 1.3.4 Example case where AIF selection results in different regions of tissue being
identified as hypoperfused.
Diffusion and perfusion studies for a 12 year-old sickle cell anemia patient within 35 hours of
symptom onset of left MCA stroke. Clearly evident is diminished flow in the MRA as well as an
area of infarct in the left frontal lobe (DWI). CBF maps using RMCA and LMCA for the AIF
produce very disparate flow estimates. The graph on the left hand side shows the signal change,
AR2(t), for three ROIs: ipsilateral in area of DWI abnormality (ROI 1 - red), ipsilateral normal
perfused territory (ROI 2 - blue) and normal contralateral (ROI 3- green).

arterial input function (AIF) from the diseased hemisphere leads to the wrong hemisphere
identified as abnormal, which from clinical symptoms and images of the vasculature in the
magnetic resonance angiogram (MRA) and the DWI is determined to be the left hemisphere. The
signal curves measured from three different regions are observed to have different tracer arrival
times that may have contributed to the differences in the estimated flow rates. Although this
example is an extreme case of tracer arrival delay, because the current technique for estimating
CBF and MTT use a single AIF for all voxels, tracer delay may be occurring on an individual
voxel basis. We therefore investigated the contribution of tracer arrival timing in CBF estimates
using both numerical simulations and simulations with acquired human data. Results show that
the existing technique for calculating perfusion parameters is sensitive to delay in tracer arrival
time and selection of the arterial input function. For that reason, a deconvolution technique using
a block-circulant matrix is presented to compensate for delayed arrival, and it is compared to the
current deconvolution technique by using numerical simulations as well as in clinically acquired
human data sets. Using this new technique to analyze the data shown in Figure 1.3.4, a more
robust assessment of tissue perfusion status is obtained as shown in Figure 1.3.5. Decoupling
delay-associated effects on calculated CBF is shown to result in less bias in estimates of tissue
perfusion status.

14



Standard Method Block Circulant Method Figure 1.3.5 Results of
deconvolution using a
block-circulant
compared to standard

-W techniques for patient
seen in Figure 1.3.4.
The new technique
provides an estimate of
tissue perfusion status
that is more consistent

CBF MTT cC BF cMTT with clinical symptoms
and follow-up exam.

Chapter 4 describes algorithms that combine DWI and PWI values where they are evaluated to
determine whether they are more sensitive and specific predictors of tissue outcome than
algorithms using only subsets of these values. Ideally, one would like to be able to take the initial
acute imaging studies consisting of DWI and PWI and predict the infarct volume when no novel
intervention occurs, an example of which is shown in Figure 1.3.6. Towards this goal, DWI and
PWI images from acute human stroke patients not receiving thrombolytic or novel
pharmaceutical intervention were retrospectively analyzed to create statistical models of the
likelihood of infarction of an individual patient on a voxel-by-voxel basis. Maps of risk of tissue
infarction in acute human cerebral ischemia using statistical techniques such as thresholding

Figure 1.3.6 Ideally, one would like to be able to take as input an acute imaging data set
consisting of diffusion and perfusion images and predict the infarct volume if no intervention
occurs.
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ngure 1.J. Freoictea area at risk ot intarction
using acute imaging data shown in Figure 1.3.6 as
input to a generalized linear model. The predicted
area at risk of infarction spatially correlates well
with the infarct volume seen in the follow-up
exam.

models, generalized linear models,
generalized additive models and
hierarchical mixtures of experts are
presented, an example of which is shown
in Figure 1.3.7. The performances of these
models are compared using receiver
operator curve analysis. Results show that
algorithms combining acute DWI and PWI
predicted tissue at risk of infarction with
higher specificity and sensitivity than
algorithms using DWI or PWI
individually. Furthermore, non-linear
models perform more accurately than
linear models.

Chapter 5 applies the combined
generalized linear model algorithm
described in Chapter 4 to evaluate
outcomes for patients receiving a novel

Figure 1.3.8 Baseline estimate of tissue at risk of infarction using models developed in
Chapter 4 and acute imaging studies for a patient who received 150 pg/kg of bFGF. The top
row shows a much larger predicted infarct volume than what was demonstrated in the
follow-up study, suggesting tissue at risk of infarction did not due to the therapy.
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therapeutic treatment, basic fibrinogen growth factor (bFGF). The positive-predictive-value of
the model is evaluated on a voxel-by-voxel basis as a dose-dependent function of a
neuroprotective agent in a small patient population. Using each voxel of tissue as its own
baseline risk assessment, for example as seen in Figure 1.3.8, may reduce the number of patients
required to statistically identify a biologic effect due to therapeutic intervention by reducing
interpatient as well as intervoxel variability. Although additional patients are needed to
demonstrate statistical significance for bFGF, findings suggest that predictive models may allow
evaluation of novel therapies using smaller sample sizes than traditional clinical endpoints.
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Chapter 2

Diffusion-Weighted Imaging

Never imagine yourself not to be otherwise than
what it might appear to others that what you
were or might have been was not otherwise than
what you had been would have appeared to
them to be otherwise.

-Lewis Carroll
(Alice's Adventures in Wonderland)
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Diffusion weighted imaging (DWI) has been shown by several studies to be a highly sensitive
and specific identifier of lesion and clinical outcome for patients with acute cerebral ischemia (1-
3). However, the precise pathophysiological mechanisms underlying the evolution of the
diffusion signal and its associated apparent diffusion coefficient (ADC) is not fully understood.
Studies have hypothesized that the initial decline of ADC is related to the shift of water from
extracellular space (ECS) to intracellular space (ICS) due to cytotoxic edema with the
subsequent pseudonormalization and elevation of ADC to be due to vasogenic edema and cell
lysis. However, this may be an oversimplification of a complex and heterogeneous process. For
example, in cases where patients received thrombolytic therapy, DWI lesions either completely
reversed, stayed abnormal or reversed temporarily only to suffer secondary ADC reduction in
subsequent imaging studies (4). These findings suggest that ADC alone may not be a suitable
marker of irreversibly damaged tissue and that there may be better markers that are more
sensitive to ultrastructural changes.

The direction-dependence or anisotropy of the diffusion process in tissue has been demonstrated
in both ex vivo measurements (5-8) and in vivo animal (9-11) and human studies (12-16). The
diffusion process in three-dimensional space can be characterized by a tensor to take into
consideration its direction-dependence. Diffusion tensor imaging therefore provides a means for
examining microscopic water diffusion in 3D space as well as a technique for extracting
ultrastructural information in both normal and pathologic tissue (14, 15, 17-20). By extending
diffusion weighted imaging in acute stroke to diffusion tensor imaging, additional understanding
into ultrastructural changes and ultimately salvageability may be attained than can be gleaned
from mean diffusivity alone.

This chapter is divided into two sections. In the first section, Technical Development, diffusion
tensor imaging acquisition and analysis techniques are described. Techniques for solving for the
elements of the diffusion tensor are presented. In order to simplify visualizing and to provide a
numerical index to reflect changes in the shape of the tensor during ischemia, scalar metrics of
anisotropy are evaluated rather than vector metrics. Because calculation of diffusion tensor
values is complicated by the presence of noise, Monte Carlo simulations are used to validate and
compare anisotropy metrics. Additionally, the stability and reproducibility of the metrics are
assessed using data from normal human subjects. The second section, Applications, describes
the application of diffusion tensor imaging to a clinical setting. The first study, Acute Human
Cerebral Ischemia: Detection of Changes in Water Diffusion Anisotropy, diffusion tensor images
from patients presenting with acute cerebral ischemia are retrospectively analyzed to investigate
acute changes in the shape and magnitude of the diffusion tensor in stroke. The second study,
Anisotropy Changes in Reversible DWI Lesions, examines changes in the diffusion tensor in
cases of reversible DWI lesions in order to gain insight into ultrastructural viability.

2.1 Technical Development

2.1.1 Diffusion Tensor Imaging

Diffusion is the process by which particles from a region of high concentration are transported to
a region of low concentration. According to Fick's first law of diffusion, the flux of particles is
proportional to the gradient of the concentration, that is:
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(D = -DVc (2.1.1.1)

where D, the diffusion coefficient, is the proportionality constant and c is the concentration of
the particles as a function of space and time. The diffusion coefficient is typically a function of
the physical characteristics of the solute as well as the solvent in which it is diffusing. The rate at
which the concentration changes follows Fick's second law:

-- DV 2c. (2.1.1.2)
dt

The mechanism by which the particles diffuse has been shown to be the result of random
translational motion of molecules due to their thermal energy (21). Thus, even in a one-phase
system, the molecules are moving at a rate that can be characterized by its self-diffusion
coefficient. The self-diffusion of water molecules causes the transverse magnetization in a
nuclear magnetic resonance (NMR) experiment to be dephased which results in the reduction of
the measured signal. In a standard spin-echo (SE) sequence, the effects due to diffusion are
minimized by keeping the imaging gradients small. However, by applying a large gradient over a
long duration, the diffusion effects become significant. In 1965, Stejskal and Tanner developed a
NMR technique to measure the self-diffusion coefficient of water by adding pulsed field
gradients to a SE sequence (22). An example of such a sequence is shown in Figure 2.1.1.1. In
this experiment, the measured signal, S is:

In S = -D y 2 G2 32 A - (2.1.1.3)
So 3

where So is the non-diffusion weighted signal, D is the diffusion coefficient, y is the
gyromagnetic ratio for hydrogen (42.6 MHz/Tesla), G is the amplitude of the diffusion gradient,
8 is the duration of the diffusion gradient and A is the intertemporal pulse offset. The yf G2 82 (A -

6/3) factor is termed the diffusion sequence's b-value, a measure of the amount of diffusion
weighting applied (23).

900 1800 Echo

RF

Diffusion A
Gradient G

Figure 2.1.1.1 Pulsed field gradient spin-echo NMR sequence.
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Equation 2.1.1.3 is used to characterize diffusion measured in a single direction. The diffusion
process in three-dimensional space can be characterized by a tensor to take into consideration its
direction-dependence. This tensor has six degrees of freedom and thus can be represented by D,
a 3x3 symmetric matrix':

Dxx Dx, Dxz
D =DX DzJ

where D,=DV, D, =D ,, and D,,=D,, assuming rate of diffusion is symmetrical along the same
axis. In isotropic media, D reduces to an identity matrix scaled by a constant, D, because the rate
of diffusion is independent of direction, meaning that the probability that a particle moves to
another point follows the behavior of a spherically symmetric Gaussian function (21). However,
in the case of restricted diffusion, the diffusing particles encounter barriers that are direction
dependent. The probability that a particle moves to another point then becomes a function of the
geometry of the diffusion barriers (5) and results in diffusion coefficients that are anisotropic or
direction dependent. In order to accurately characterize the underlying diffusion process, the full-
diffusion tensor should therefore be sampled as opposed to measured in only one, two or three
orthogonal directions. Sampling in only one-direction measures the rate of diffusion only in the
sampled direction. Using only two directions for characterizing anisotropy, e.g. D I /D1 , results in
an underestimation of anisotropy (18). Sampling in only three directions results in
measurements dependent on the imaging frame. Only in isotropic media can one safely assume
that the off-diagonal terms are zero. In anisotropic media, the off-diagonal terms are comparable
to the diagonal terms (24) and therefore need to be sampled using full diffusion tensor imaging.

The diffusion tensor is sampled on a voxel-by-voxel basis by generalizing the original Stejskal-
Tanner sequence (Eqn. 2.1.1.3) to include the condition of anisotropic, restricted diffusion (25,
26) when applying a diffusion gradient in direction r:

In Sr (F(t) - 24(t) f) -D . (F(t) - 2((t) f) dt (2.1.1.4)
S, 0

with

W 0 0< t< T

I t >r

(2.1.1.5)

F(t) = G(x) dx
0

where TE is the echo time, t=1/2 TE or refocus time, f=F(T), G(t) is the applied diffusion
gradient sequence, such as the one shown in Figure 2.1.1.2 with r=(1,-1,0) G/cm, and D is the

' Vector and tensor quantities are denoted in boldface.
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diffusion tensor to be determined. Piecewise linear analysis of Equation 2.1.1.4 produces an
analytical expression that can be used to solve for the elements of the diffusion tensor.
Assuming G(t) is the sequence shown in Figure 2.1.1.2, and letting:

Gd (r) = Diffusion gradients on from T2 to T3 and T7 to T8

g, = Gradients on from 0 to To
g? = Gradients on from T, to T2

g3= Gradients on from T4 to T9 and from T5 to T6

d =Gd *D-Gd

A = T7 - T2

= T3 - T1 =T8 -T7

= T, - T4 =T6 -T5

= T, - To

a, = g . D -gi

, = 2 g - D.g

yi = 2 gi . D -gj

where i, j = 1,2,3

and substituting into Equation 2.1.1.4 and 2.1.1.5, the following analytical expression can be
obtained:

d 32 (A -+)+ P, To 8 A+ 2 E 3 A + 3

+a [(t - ) + (T - T) + 3L TO

+a2 (+TT) [(t- T ()+T-T)

+43 3

+y12T TP - T) + E]

+Y13 T0 + Y23 _,

(2.1.1.6)

Equation 2.1.1.6 reduces to Equation 2.1.1.3 if imaging gradients are assumed to have no effect
on the measured signal, by setting the imaging gradients' amplitudes and durations to zero. It
should also be noted that the largest contributions are due to interactions between the imaging
gradients and the diffusion gradients (P,) as opposed to interactions between the imaging

gradients (a and Y) due to the magnitude and duration of GD compared to gi.

By rearranging terms, Equation 2.1.1.6 can be expressed more compactly as:

In S(r) = -B V (2.1.1.7)
So
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Figure 2.1.1.2 Pulsed field gradient spin-echo NMR sequence extended to three-
dimensional space using echo planar imaging. This diffusion sequence applies a
diffusion gradient in the direction r(x,y,z) = (1, -1, 0) with an amplitude of 1 G/cm.

where V is a vector of the six-elements of the symmetric diffusion tensor and B is a matrix of
weighting coefficients that is not only a function of the imaging gradients, but is also a function
of the direction and magnitude of the applied diffusion gradient sequence r. Each row of the B
matrix is due to a different applied diffusion gradient r. Therefore, by applying six non-collinear
diffusion gradients, we can solve for the six elements of the diffusion tensor, V, for an individual
voxel by:

26

100 120

100. - 120

12080 100

11 lop ZAN

I



V = - B' In K(r) . (2.1.1.8)

As long as the imaging gradient sequence is not modified, B- 1 can be calculated a priori given
the timing parameters of the diffusion sequence and does not need to be recalculated for each
newly acquired dataset following the same protocol. A unique solution for D can be obtained
provided ri, i = 1, . . ., 6, are linearly independent and So is known.

Once the diffusion tensor (D) coefficients are calculated, the diffusion tensor's eigenvalues, Xi,
and eigenvectors, vi, can be derived using eigenanalysis. The eigenvectors of the symmetric
diffusion tensor, a set of orthonormal vectors, define the orientation of the principal axes of the
diffusion tensor ellipsoid in space. Their corresponding eigenvalues represent the lengths of the
axes. These quantities define the size and shape of the ellipsoids of D and are independent of a
voxel's orientation in its frame of measurement.

To demonstrate the feasibility of measuring the diffusion tensor in humans, datasets acquired
from a normal human volunteer as well as an acute stroke patient are presented.

Materials and Methods

To reduce artifacts due to patient movement (12), echo planar imaging (EPI) was used in this
study to allow the acquisition of the full diffusion tensor for multiple slices of the head in a short
time period (15). However, EPI introduces additional artifacts in the form of eddy current
distortion (27, 28). These eddy currents are scanner dependent and are generated on the surfaces
of the scanner equipment due to high switching fields from the large amplitude diffusion
gradients (29). Residual eddy currents lead to a translation in the slice select direction, shearing
in the read direction and scaling in the phase encode direction which are dependent on the
inhomogeneities in individual MR scanners (27, 28). Warping due to eddy currents was
compensated for by an affine transformation of the warped high b-value images using an
automated image registration software package, AIR 3.08 (UCLA, CA) (30, 31). Eddy currents
may also contribute additional diffusion weighting, however, for the high b-values used in this
study they were not considered significant.

The full diffusion tensor was sampled using a T2-weighted one-shot echo-planar imaging (EPI)
technique (32) repeated seven times, the minimum required for solving for the diffusion
coefficients that characterizes the diffusion tensor (26, 33-35). Diffusion gradients were applied
in turn at ro = (x,y,z) = (0.05, 0.05, 0.0) and the six ri = {(1,1,0), (1,-1,0), (0,1,1), (0,-1,1), (1,0,1),
(-1,0,1)}, which corresponded to the centers of the non-opposed edges of a cube.

Due to the retrospective nature of this study, which spanned over the years 1996-2001, imaging
was performed on a variety of platforms. Imaging was performed on a 1.5T MR instrument with
5.4.2 software (Signa; GE Medical Systems, Milwaukee, Wis.) and EPI capabilities by means of
a hardware upgrade (ANMR, Wilmington, MA), including "catch and hold" modification. T2-
weighted single-shot pulsed field gradient spin-echo sequences consisted of diffusion encoding
pulses of amplitudes 1 G/cm, durations 5 = 47 ms, with an interpulse temporal offset A = 52 ms,
placed symmetrically about the 1800 radio-frequency pulse resulting in a b-value=1221 sec/mm.
With catch-and-hold enabled, the echo time (TE) was 118 ms. A repetition time (TR) of 6,000
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ms was used and up to 20 axial sections were obtained with a 6-mm section thickness and a 1-
mm spacing between sections. A fixed field of view (FOV) of 40 x 20 cm 2 and an acquisition
matrix of 256 x 128 pixels was used resulting in an in-plane resolution of 1.56 x 1.56 cm2 . Total
acquisition time for a single complete tensor was 42 seconds for imaging the whole head. To
increase the signal-to-noise ratio (SNR) multiple tensor samples was acquired and averaged.
After averaging, the SNR in this study was estimated from non-diffusion-weighted images by
calculating the ratio of the mean signal intensity of a 5 x 5 region of interest (ROI) in the
thalamus to the standard deviation (SD) of the noise measured in artifact free background areas
outside the head. At this institution, a typical clinical study consisted of three averages resulting
in an estimated SNR of 20 and a total acquisition time of 2 minutes and 6 seconds.

The more recent imaging studies were performed on a 1.5T GE Signa Horizon LX BRM and
CRM systems (GE Medical Systems, Milwaukee, Wis.) with echo planar imaging capabilities.
On the LX system, TR=7500 ms and FOV=22 x 22 cm 2 or 20 x 20 cm 2 and acquisition matrix
size 128 x 128 pixels and up to 23 slices with slice thickness of 5-6 mm and interslice gap of
1mm. Some systems were BRM systems with TE=99 ms, 8= 32.5 ms, A=38.4 ms with gradient
amplitudes of 1.6 G/cm in each direction resulting in b-value=1000 sec/mm 2 . For CRM systems,
TE=73 ms, 6 = 21.1 ms, A=27.2 ms with gradient amplitudes of 2.8 G/cm in each direction
resulting in b-value=.1000 sec/mm 2 . For both systems, typical clinical studies consisted of three
averages resulting in a total acquisition time of 2 minutes and 38 seconds. Data acquired from
the BRM systems typically have an SNR of 35 while data from the CRM systems have an SNR
of approximately 40.

A normal 34-year-old male underwent diffusion imaging on the 1.5T MR ANMR system using
the previously described protocol after providing informed consent. An estimated SNR of 65 was
obtained by averaging 30 full diffusion tensor samples for one axial section, with a total
acquisition time of 21 minutes. For comparison, diffusion tensor data from a 48-year-old female
stroke patient imaged on the 1.5T ANMR system within 2 hours of onset of aphasia and right
hemiplegia is also presented. Diffusion data is also shown for a 66-year old male stroke patient
whom was imaged on a 1.5T GE BRM system.

In addition to the raw diffusion data, images that were used for clinical diagnosis, the mean
diffusivity and associated isotropic DWI, were also calculated. The isotropic DWI was the
geometric mean of the six diffusion-weighted images. Using this isotropic DWI and the low b-
value image, a monoexponential fit can be calculated where the rate of decay is the "apparent
diffusion coefficient" (ADC). To demonstrate the effect of eddy current distortion on diffusion
tensor calculation, fractional anisotropy maps were also calculated (19). Fractional anisotropy
will be discussed in more detail in Section 2.1.2.

The diffusion tensor, D, was calculated on a voxel-by-voxel basis using Eqn. 2.1.1.8. In the
calculation, the effects of the imaging gradients were corrected by using techniques described
above which were similar to those described in other reports (26, 34, 35). The eigenvalues and
eigenvectors of D were calculated on an individual voxel basis. Images of the eigenvalues were
generated as grayscale scalar images where the intensity reflects the magnitude of the
eigenvalue. Since the eigenvectors were a three-dimensional quantity, for visualization, their
directions were color-coded with their normalized <x,y,z> components in the image coordinates
mapped to red, green and blue intensity values respectively (36). To mask out isotropic structures
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ligure 2.1.1.i Liltusion weighted images acquired in each of six directions. Also shown is the
low b-value image that is used as the EPI T2 image. Clearly seen is the dependence of the
diffusion signal on the direction of the applied diffusion gradient.

where fiber orientation is meaningless (37), the images were scaled according to their level of
fractional anisotropy (19).

Results

Figure 2.1.1.3 shows the diffusion weighted images acquired in each of the six directions along
with the EPI T2 image for the normal volunteer. Clearly seen is the dependence of the diffusion
signal on the direction of the applied diffusion gradient. Greater restriction, as evident by regions
of hyperintensity, is seen in areas corresponding to fiber tracts. Figure 2.1.1.4 shows the
distortions from eddy current effects. The first high b-value image was subtracted from the other
five high b-value image. The "halos" around the edges of the cortex are due to the mismatch
between diffusion images resulting from eddy current distortions. Figure 2.1.1.5 shows the same
images after correcting for eddy current distortions. The halos around the edges are less
noticeable. Figure 2.1.1.6 shows the effects eddy current distortions have on the isotropic DWI.
The isotropic DWI image without correction appears blurry especially in the areas corresponding
to the "halo" regions in Figure 2.1.1.4. After correcting for eddy current distortions, one sees that
the gyri appear much sharper than in the uncorrected image (arrowheads). Figure 2.1.1.7 shows
the effects of eddy current distortions on fractional anisotropy calculations. Due to the mismatch
in the tensor images, tissue regions appear artificially anisotropic (arrowheads). After correction,
the fractional anisotropy image appears sharper, with greater contrast between gray and white
matter.

Figure 2.1.1.4 Eddy current distortions are clearly visible when subtracting the first high b-
value image from the other five as evidenced by the "halos" around the edges
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Figure 2.1.1.5 Results of eddy current compensation. The halos around the edges are less
noticeable than in Figure 2.1.1.4.

A potential clinical impact of not correcting for eddy current distortions is shown in Figure
2.1.1.8. This figure shows the DWI image created with and without eddy current corrections for
a 66-year-old male patient imaged within 3 hours of presenting with symptoms of left-sided
weakness. The effects of eddy current distortions on a stroke patient may blur small lesions
reducing the conspicuity of the abnormal area. With eddy current corrections, the areas of
abnormalities in this patient are much better delineated (arrowheads). The gyri are again noted to
be sharper in the corrected DWI than in the uncorrected DWI (arrows).

To demonstrate the effects anisotropy has on clinical decision making, Figure 2.1.1.9 shows the
eddy-current corrected diffusion weighted images acquired at the same gradient directions used

Figure 2.1.1.6 The effects of the eddy
current distortions result in bluffing of the
isotropic DWI generated from the data shown
in Figure 2.1.1.3. With compensation for
eddy current distortions, one sees that the
gyri in the cortex appears sharper compared
to the DWI calculated without correction.
This may be especially important for
detecting small lesions.

Figure 2.1.1.7 The effects of the eddy
current distortions result in inaccurate
anisotropy maps, especially noticeable
around the edges (arrowheads). Tissue has
artificially elevated anisotropy in areas
where the DWI do not match. With
compensation, the anisotropy image appears
sharper with greater contrast between white
and gray matter.
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Figure 2.1.1.8 The effects of eddy current
distortions on a stroke patient may blur
small lesions reducing the conspicuity of
the abnormal area. With eddy current
corrections the area of abnormalities in this
patient are much bet! r delineated
(arrowheads) The gyri are again noted to
be sharper in the corrected DWI than in the
uncorrected DWI (arrows).

in Figure 2.1.1.3 but for an acute stroke patient
seen within 2 hours of symptom onset and
using only 3 averages. Again we see
hyperintensities corresponding to greater
restriction in white matter tracts. However, an
area of hyperintensity is seen in the left2

lentiform nucleus (arrowhead) in each of the
diffusion weighted images that is not seen for
the normal volunteer (Figure 2.1.1.3). One can
deduce from the asymmetry that this region of
increased restriction is likely due to a
pathophysiological cause but identifying this
abnormality using a single diffusion weighted
image is complicated by anisotropy occurring
in the normal brain. Imaging in only one
direction therefore would have been inadequate
for this patient.

Figure 2.1.1.10 shows the isotropic DWI and
ADC maps calculated from Figure 2.1.1.9 as
well as the seven-day follow-up T2 weighted
MR study. From the isotropic DWI, the lesion
is clearly delineated as a hyperintense region. In

the ADC, this translates into a region of hypointensity reflecting the reduction in the diffusivity.
The area of reduced ADC becomes infarcted as evidenced by the corresponding hyperintensity in
the 7-day follow-up T2 MR. From Figure 2.1.1.9, we note that this reduction is independent of
the direction of the applied diffusion gradient. For comparison, the isotropic DWI for the normal
volunteer (Figure 2.1.1.6) does not show an abnormality on either DWI map.

Figure 2.1.1.9 Diffusion weighted images acquired in each of the six directions for an acute
stroke patient. The anisotropy of the white matter tracts causes restricted diffusion that can be
confused for reduced diffusion due to acute stroke.

2 According to radiologic convention, the right half of the image corresponds anatomically to the left half of the
brain and vice-versa.
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Figure 2.1.1.10 Isotropic DWI, ADC
and 7-day follow-up T2 image for the
patient shown in Figure 2.1.1.9. The area
of hyperintensity on the DWI and
hypointensity on the ADC corresponds
well to the area of infarct as seen on the
7-day follow-up study.

Figure 2.1.1.11 shows the calculated elements of
the diffusion tensor, D,,, DYY, Dzz, D, D,, and DY
for the acquired images shown in Figure 2.1.1.3.
The images representing each of the diffusion
tensor elements are placed in accordance to their
corresponding location in the diffusion tensor:

Dxx DX, Dxz
D 4 Dyx Dy Dv]

Dzx Dzy Dzz

From this image, it is evident that off-diagonal
terms are not zero and may be quite high in areas
corresponding to white matter fiber tracts, thereby
justifying the necessity of full-tensor sampling.

Figure 2.1.1.12 Eigenvalues calculated
from Figure 2.1.1.11. Non-brain tissue
has been masked out

Figure 2.1.1.11 Calculated components
of the diffusion tensor using acquired
images shown in Figure 2.1.1.3. The
order of the images corresponds to the
elements of the diffusion tensor. Non-
brain tissue has been masked out.

Figure 2.1.1.13 Eigenvectors calculated
from Figure 2.1.4. Non-brain tissue has
been masked out.
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Figure 2.1.1.12 shows the eigenvalues of the diffusion tensor for each voxel in Figure 2.1.1.11.
The same image intensity scale was used for each image to ease comparison. As expected,
cerebral spinal fluid (CSF) appears the same intensity for all images since it is an isotropic
medium. A clear difference is seen in areas corresponding to white matter tracts across the
eigenvalue images.

Figure 2.1.1.13 shows the associated eigenvectors for the eigenvalues shown in Figure 2.1.1.12.
One sees that the orientations of the principal eigenvectors, v,, are parallel to the known
orientations of the fiber bundles. From the color-coding, one sees that v2 and v3 are perpendicular
to v, and one another. This suggests that, in white matter, the direction of greatest rate of
diffusion, as represented by v,, is along the fiber bundle whereas the direction of greatest
restriction, as represented by v3 , is perpendicular to it.

2.1.2 Evaluation of Scalar Metrics of Diffusion Anisotropy
Because the diffusion tensor is a 3D quantity, visualizing and measuring changes is not a
straightforward task, as demonstrated by the results in Section 2.1.1. As a first estimate of
tracking changes in the diffusion tensor, alterations in the shape of the diffusion tensor, as
measured by its anisotropy, and changes in its mean diffusivity, as reflected by its trace apparent
diffusion coefficient (ADC), are examined. Using the calculated eigenvalues, coordinate
independent scalar functions of D can be constructed that measure the tensor's degree of
anisotropy.

A challenge to measuring anisotropy from the calculated eigenvalues arises from noise
contamination (20). For example, even in an isotropic sample, measurement noise makes the
calculated eigenvalues unequal, with the resultant implication of some anisotropy. For anisotropy
metrics that rely on sorting of the eigenvalues, a bias and a variance that depend on the diffusion
properties of the tissue are introduced (20). To reduce partial volume artifacts, only intravoxel
scalar indices that do not involve averaging anisotropy metrics with neighbors are examined.
Therefore, in this study, evaluation of anisotropy metrics is limited to intravoxel scalar indices
that do not require the sorting of eigenvalues. Maps of fractional anisotropy (FA), relative
anisotropy (RA) and volume ratio (VR) indices are calculated. FA, the ratio of the anisotropic
component of the diffusion tensor to the magnitude of the whole diffusion tensor, is defined by
(19) as:

3 (A- \D))2 + (A2 - (D))2 + (11 - (D))
FA(D) 2 (2.1.2.1)

with

(D)= A 2 3 (2.1.2.2)
3

which is the trace apparent diffusion coefficient (ADC) or mean diffusivity. RA, the ratio of the
variance of the computed eigenvalues to their mean is defined by (19) to be:
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FT I(A - (D ))2 + (1 D) )2 A - /D) )2
RA(D) = IN I + (A3 (2.1.2.3)

3 (D)

VR, the ratio of the volume of the diffusion tensor ellipsoid to the volume of a sphere whose
radius is the mean diffusivity, is defined by (20) as:

VR(D) = I - / 3 . (2.1.2.4)
(D)

Methods

Scalar diffusion anisotropy metrics were evaluated using Monte Carlo methods to simulate
diffusion-weighted images over a range of SNRs of 0.1-100. Anisotropy maps are generated
using the three metrics described, and the contrast-to-noise ratio (CNR) between the anisotropic
and isotropic region calculated. The CNR is defined as

CNR(x, y) = + , (2.1.2.5)

where x and y are calculated anisotropy values for anisotropic and isotropic media respectively
and ax and oy are their SDs.

The diffusion-weighted images are simulated using eigenvalues typical for a healthy volunteer in
two homogeneous white matter regions - 1.7, 0.3, and 0.1 x 10-3 mm 2/sec for the corpus
callosum and 1.2, 0.9, and 0.3 x 10-3 mm 2/sec for the left forceps major. Monte Carlo
simulations were used to synthesize diffusion-weighted images. The simulated diffusion-
weighted images consisted of 128 x 128-pixel regions of anisotropic white matter media and
128 x 128-pixel regions of isotropic media. For the isotropic media, eigenvalues of 0.8, 0.8, and
0.8 x 10-3 mm 2/sec were used because they were representative of values measured in cortical
gray matter and also corresponded well with values reported by another group (20). The mean
and standard deviation (SD) of each anisotropy measure as a function of image SNR were then
calculated.

The CNR between the white matter regions and the isotropic regions are calculated for SNR
levels of 0.1-100.0. The SNR is varied by changing the statistical characteristics of the noise
added to the real and imaginary components of the noise-free diffusion-weighted images (20,
38). These random noise values are normally distributed with a mean of zero and different
variances, depending on the desired SNR. The simulated acquired signal was set to the
magnitude of the complex images. These steps are repeated 10 times to assess the variability of
results between different simulations. In addition, the contribution of noise bias and variance to
the calculated eigenvalues are estimated.

To investigate the variability of ADC and anisotropy metrics between different imaging sessions
in the same subject, a healthy 34-year-old male volunteer, the same subject in Section 2.1.1,
underwent imaging three times in three separate sessions, with a resultant total of nine full-head
tensor data sets. The imaging parameters were the same as reported in Section 2.1.1 with the
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exception that three averages were used, the same protocol that was used clinically for the 1.5T
ANMR systems, resulting in an imaging time of 2 minutes and 6 seconds for each scan. The
trace ADC values, anisotropy index values, and eigenvalues are measured in 2 x 2 ROIs. The
mean±SD of ADC and anisotropy values are calculated in ROIs placed in deep gray matter in the
thalamus; deep white matter in the corpus callosum; and cerebrospinal fluid in the atrium of the
right lateral ventricle.

For statistical comparison, two-tailed heteroscedastic Student t-tests were used for calculating the
significance of differences in fractional anisotropy, eigenvalues, and ADC values between
normal white and gray matter and cerebrospinal fluid. P<.05 was considered to indicate a
statistically significant difference.

Results

The results of the Monte Carlo simulations are shown in Figure 2.1.2.1. The corpus callosum has
a higher level of anisotropy than the left forceps major, with a resultant higher CNR when the
simulated corpus callosum tissue was compared with simulated isotropic tissue. On the basis of
empiric measurements, the clinically acquired diffusion data was estimated to have an SNR of
approximately 20. At this SNR, the three anisotropy metrics perform approximately the same.
However, at a higher SNR, the volume ratio performs poorer than the other two metrics. From
the Monte Carlo simulations, one notes that of the anisotropy metrics examined, fractional
anisotropy (FA) provided the best contrast-to-noise ratio (CNR) as a function of SNR.

Table 2.1.2.1 summarizes the trace ADC values, fractional anisotropy index values, and
eigenvalues measured in the healthy volunteer in 2 x 2 ROIs. ADC values in gray matter, white
matter, and cerebrospinal fluid are stable at repeated measures. Moving from cerebrospinal fluid
to normal gray matter to normal white matter, a stepwise increase in anisotropy was observed.

Table 2.1.2.1 Stability of Mean of the ADC, Fractional Anisotropy, and Eigenvalue
Measurements

Thalamus Splenium CSF
ADC Mean 0.76 (0.05) 0.65 (0.06) 2.69 (0.08)
FA Mean 0.36 (0.04) 0.86 (0.04) 0.21 (0.03)
AI Mean 1.06 (0.08) 1.54 (0.13) 3.29 (0.20)
k2 Mean 0.74 (0.05) 0.31 (0.08) 2.61 (0.08)

k3 Mean 0.49 (0.06) 0.11 (0.04) 2.16 (0.08)

Stability of gray and white matter measurements of the ADC, fractional anisotropy, and
eigenvalues in nine separate scanning sessions in the same volunteer for three imaging
acquisitions at three different dates; 2 x 2 ROIs were placed for each study in the thalamus, the
splenium of the corpus callosum, and the cerebrospinal fluid (atrium of the right lateral
ventricle). Data are the mean of the ROIs for the nine images. Numbers in parentheses are the
SD of the means.

FA = fractional anisotropy. The units of ADC, k, k,, and 3 are in 103 mm2/sec. Fractional
anisotropy values are unitless.
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Figure 2.1.2.1 Graph shows CNR as a function of SNR for fractional anisotropy (FA),
relative anisotropy (RA), and volume ratio (VR) indices computed from Monte Carlo
simulations of two tissue types with different levels of anisotropy. The eigenvalues for the
two tissue types were based on typical in vivo values of the splenium of the corpus callosum
(CC) (1.7, 0.3, and 0.1 x 10-' mm2/sec) and the left forceps major (MF) (1.2, 0.9, and 0.3 x
10-1 mm2/sec) in healthy volunteers. The error bars represent the SD in computed CNR over
10 different simulations.

While white matter was more anisotropic than gray matter or cerebrospinal fluid, deep gray
matter voxels were not completely isotropic. Deep gray matter had almost twice the fractional
anisotropy value of isotropic cerebrospinal fluid, a significant difference (P < .001). The
differences between deep gray matter and deep white matter fractional anisotropy values were
significant (P < .001). For ADC, the difference between deep gray matter and deep white matter
was also significant (P = .001).
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Discussion

We extend the results of earlier studies of scalar metrics of anisotropy (14, 19, 20) by identifying
fractional anisotropy as the metric with the best performance characteristics over the range of
available SNRs in both the corpus callosum and left forceps major. Fractional anisotropy is
therefore used as the anisotropy metric of choice for investigation of changes in anisotropy in the
remainder of this dissertation.

As Table 2.1.2.1 and Figure 2.1.1.7 demonstrate, anisotropy maps can be used to differentiate
clearly between gray and white matter. The distance scale to which our sequence is sensitive can
be derived from the Einstein relation (21), which states that the time scale (A) is sensitive to
diffusion on the length scale, L = (2DA)"2 . For our implementation, assuming D ranges from
I to 1.5 x 10- mm 2/sec (range of X, values from Table 2.1.2.1) at a A=47 ms, L = 10 to 12 pm.
This distance scale is comparable to typical neuroglial cell soma diameters of 7-15 pm (39)
suggesting that the diffusion images are different from those obtained with conventional MR
imaging in that they are based on microscopic diffusion properties rather than on relaxation
properties.

2.2 Applications

2.2.1 Acute Human Cerebral Ischemia 3

Magnetic resonance imaging (MRI) has excelled at depicting the macroscopic anatomy of the
human brain. However, many normal cellular functions as well as disease processes that occur
at the microscopic level do not affect conventional MR relaxation parameters. As a result,
certain disease processes such as early acute cerebral ischemia are poorly assessed with
conventional MRI. Routine diagnosis could be improved if MR imaging could be used to
investigate events at the microscopic level; this has been shown to be possible with acute
ischemic stroke, where diffusion and perfusion weighted MR imaging have documented
abnormalities, even when conventional MR imaging shows no abnormality (17, 41, 42).

To date, most diffusion imaging of humans in a clinical setting measured either a single direction
of the diffusion tensor (17, 23, 41, 43-46) or averaged the diffusion coefficient measured in three
orthogonal directions (41, 42, 47-52). Several studies have documented marked anisotropy in
the normal human brain particularly in regions of white matter (12, 13, 53-56). However, only a
few studies have measured the full diffusion-tensor in human cerebral ischemia. Studies
sampling the full diffusion tensor have been limited to chronic stroke patients. In one study,
anisotropy reductions were detected in chronic stroke patients in regions corresponding to areas
of gliosis and to areas of Wallerian degeneration (57). In another study, changes in tensor
orientation were observed in a chronic embolic stroke patient (36).

Based on evidence of anisotropy changes in chronic stroke patients, one can hypothesize that
changes in anisotropy will also occur in cases of acute cerebral ischemia particularly in white

' This section is based on a previous study (40). Results differ slightly due to improved eddy current compensation
techniques used in this present study not used in the previous study. The overall conclusions, however, remain
unchanged.
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matter. Measuring the entire diffusion tensor during ischemia may thus provide insight
regarding the mechanisms involved in acute ischemia and ultimately improve diagnosis. Two
earlier stroke studies using middle cerebral artery occlusion (MCAO) in cats did not detect
anisotropy changes over a 15-hour period post-occlusion (10, 58). However, one study utilizing
MCAO in rats demonstrated a reduction in anisotropy 24-48 hours after occlusion (59). None of
these animal studies, however, measured the full diffusion tensor. In this study, changes in the
shape of the diffusion tensor in white and gray matter were investigated in acute human cerebral
ischemia. It is hypothesized that acute ischemic tissue will show changes in anisotropy
compared to tissue that is not infarcted, particularly in areas normally exhibiting anisotropy such
as white matter.

Methods

Patient Selection

Patients who presented with symptoms of acute cerebral ischemia underwent imaging with an
acute stroke protocol similar to that previously published (42). The protocol included evaluation
by the hospital stroke service, computed tomographic scanning, and MR imaging, which may
involve both diffusion and, at the discretion of the radiologist and neurologist, perfusion
weighted functional MR imaging. For this study, patients were selected at random
retrospectively from patients with acute stroke who underwent full diffusion tensor imaging.
This study included only patients who underwent imaging less than 24 hours after they were last
known to be asymptomatic. All patients underwent full diffusion tensor imaging as described in
Section 2.1.1 using an average of three data sets for a total acquisition time of 126 seconds.
Isotropic diffusion-weighted images were calculated by taking the geometric mean of the six
images obtained with a b-value of 1,221 sec/mm 2 . Calculation of the diffusion coefficients was
done as described in Section 2.1.1.

No head restraints or navigator echoes were used to control or correct for patient motion. Patients
were excluded if the data contained image artifacts due to motion or other technical reasons.
Patients were excluded if their isotropic diffusion-weighted images were normal. Patients were
also excluded if the time of onset of symptoms was not available or not determinable to be less
than 24 hours. Fifty patients (33 men, 17 women; age distribution, 62.9 years ± 21 (mean ± SD))
met the inclusion criteria, with 25 white matter infarcts and 35 gray matter infarcts. Ten patients
had lesions in both gray and white matter. The mean time±SD to imaging from the time the
patient was last seen to be healthy was 7.8 hours ± 3.7.

Data Analysis

In this study, the ischemic focus was defined as an area of hyperintensity on the initial isotropic
diffusion-weighted images. 2 x 2 ROIs were placed in the following areas: ischemic gray
matter, contralateral normal-appearing gray matter, ischemic white matter, and contralateral
normal-appearing white matter. In the ischemic regions, the ROIs were placed in the geometric
center. Care was taken that the same type of gray or white matter (e. g., deep or cortical) was
chosen in the contralateral hemisphere as in the ischemic focus. If the lesion did not involve both
gray and white matter as determined by a neuroradiologist (A.G.S.), then only the appropriate
ROI and its corresponding contralateral ROI were placed. The mean and SD for trace ADC and
anisotropy values were obtained for each ROI.
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Figure 2.2.1.1 Images obtained axially in a 76-year-
old man 12 hours after the onset of symptoms. The
conspicuity of the ischemic zone is greatest in the
DWI owing to the homogeneity of the background.
The white matter in the area of ischemia (arrowhead)
shows a subtle decrease in FA.

The statistical analysis was either
nonparametric two-tailed Wilcoxon
signed rank tests for paired
comparisons or Student t tests,
assuming heteroscedasticity for
nonpaired comparisons. Wilcoxon
signed rank tests were used for
comparing differences in anisotropy,
eigenvalues, and trace ADC between
ipsilateral and contralateral
hemispheres. A one-way analysis of
variance (ANOVA) was performed
followed by a two-tailed Student t-
test, assuming heteroscedasticity to
compare group differences between
X, X,, and X,. An F-test was
performed to compare variances
between gray and white matter
eigenvalues. P<.05 was considered
statistically significant.

Results

Figure 2.2.1.1 displays the isotropic DWI, trace ADC and fractional anisotropy (FA) images
acquired at an SNR of 20 for an example case of acute ischemic stroke in a 76 year-old man
imaged 12 hours after the onset of symptoms. Consistent with expectations from results of
Monte Carlo simulations (Figure 2.1.2.1), a higher CNR was seen in the high-SNR brain image
from the healthy volunteer (Figure 2.1.1.7) than in the ischemic brain image (Figure 2.2.1.1).
The white matter in the area of ischemia (arrowhead) shows a subtle decrease in FA. The
conspicuity of the ischemic zone is greatest in the DWI and ADC owing to the homogeneity of
the surrounding tissue.

Figure 2.2.1.2 shows the eigenvalues of the normal contralateral regions in the patients with
acute stroke. Using a one-way analysis of variance, the eigenvalues were all significantly
different (P < .001) from each other in both normal gray matter and normal white matter.
Performing a post-hoc two-tailed heteroscedastic Student t-test further demonstrated a significant
difference between all pairs of eigenvalues (P < .001). Consistent with previous reports (14),
eigenvalues from normal white matter have slightly larger variability than those from normal
gray matter. The differences in variances between gray and white matter for our data set were
significant for X, but not for X2nor X(F test for X,, P = .04; X2, P = .06; and X., P = .1).

Table 2.2.1.1 summarizes the results from patients presenting with acute ischemic stroke. There
was a significant decrease in ADC between ischemic brain and normal brain, for both white and
gray matter ischemia (P < .00 1). A significant decrease in fractional anisotropy (P = .007)
between the contralateral and ipsilateral hemispheres was detected in only white matter but not in
gray matter (P = .4). Figure 2.2.1.3 displays the differences between abnormal and contralateral
fractional anisotropy values for all of the patients. Figure 2.2.1.4 shows the eigenvalues
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Table 2.2.1.1 Changes in ADC and Fractional Anisotropy in Normal and Ischemic Gray
Matter and White Matter

A. Mean (SD) values of 2x2 ROIs

Measurement Normal GM Ischemic GM Normal WM Ischemic WM

ADC 0.77 (0.11) 0.48 (0.14) 0.77 (0.18) 0.55 (0.22)

FA 0.35 (0.13) 0.33 (0.13) 0.52 (0.14) 0.44 (0.16)

B. Statistical significance between populations (P-value)

Normal Differences Ischemic Differences

Measurement GM vs. WM GM vs. GM Infarct WM vs. WM Infarct

ADC 1.0 <0.001 <0.001

FA <0.001 0.4 0.007
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measured in the abnormal ischemic ROIs. F-tests comparing the observed variabilities between
gray matter and white matter ischemic tissue were significant for X (P=.01) and )L (P=.02) but
not for X2 (P=. 1).In Figure 2.2.1.5, the differences in eigenvalues between the ischemic and
normal contralateral hemispheres are plotted. Significant decreases for the first (P < .001 for both
gray and white matter) and second (P < .001 for gray matter and P =.00l for white matter)
eigenvalues were found. A significant decrease in the third eigenvalue (x) was found in gray
matter (P < .001) but only a trend towards significance was found in white matter (P = .06).

Discussion

While the focus of clinical studies (17, 41, 46, 48, 49, 51, 60) appropriately has been on the
decrease in the trace or single-direction ADC in acute cerebral ischemia, our results confirm
those of earlier reports of changes in anisotropy in animal models of cerebral ischemia (59) and
in patients with chronic stroke (36, 57). Our data extend previous work by documenting acute
changes in the eigenvalues of white and gray matter; thus demonstrating that measurement of the
full tensor can provide additional microanatomic information in human tissue.

The exact mechanisms underlying ADC changes in the ischemic brain remain controversial.
Anisotropy has not been a major component of the proposed models to date. However, such
information may prove useful as the models used to understand the ADC changes in early
cerebral ischemia are refined. For example, the ADC decrease in ischemic white matter was
largest in X, the direction of which has been shown to align with white matter tracts (36). One
thus can speculate that ADC principally decreases along the long axis of the white matter fiber
tracts.

Our data in both our high SNR and lower SNR clinical data demonstrated a significant difference
between X and X_ in non-ischemic gray matter and non-ischemic white matter (P <.001). These
findings of nonaxisymmetry have also been detected by other groups (14). Furthermore, our data
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indicate that during ischemia, k and X may behave differently, which suggests that the
assumption of axisymmetry may prevent an accurate description of water diffusion behavior in
acute cerebral ischemia. Although this difference may be due to noise-related bias and variance
(14) it may be nonetheless prudent to acquire the full six diffusion directions in tensor studies.

As can be seen in Figure 2.2.1.4, the variance of the eigenvalues in the ischemic white matter
ROIs is quite high, which suggests that some biologic heterogeneity may exist. While the
variance may be due to noise, Monte Carlo simulation results from Pierpaoli et al (20) have
shown the expected deviation due to noise in a single eigenvalue direction to be less than
±0. 15x 10-3 mm 2 /s for SNR=20, which is less than the standard deviation we measured for the
individual eigenvalues in the ipsilateral hemisphere. This suggests that the variance we measured
is more due to biology than noise. We speculate that the changes in anisotropy may occur to a
different degree in different white matter locations; further subset analyses await collection of
additional data. In addition, to better characterize changes in eigenvalues additional studies
should be performed evaluating the variance in estimated eigenvalues over a greater range of
possible eigenvalues than used in this study as well as previous others (20). While the anisotropy
maps were sensitive to changes in white matter anisotropy, the visual conspicuity of early
ischemia is still highest on the trace diffusion-weighted images. These images normally have
little or no gray-white contrast. In addition, on the basis of our Monte Carlo simulations,
fluctuations in noise have greater effects on anisotropy metrics than they do on ADC values.

Anisotropy maps provide useful information not captured in ADC values. One example is the
ability to differentiate between white and gray matter in cases in which the biology of ischemic
injury may well differ. Water can diffuse into the neuronal cell bodies that make up gray matter
through neurotransmitter-gated ion channels, synapses, and a concentration of voltage-gated ion
channels not found in white matter. The dense arrays of parallel white matter tracts create a
structured extracellular space that differs substantially from that found in the meshwork of gray
matter. It may be that diffusion tensor changes in shape are more evident in white matter than in
gray matter owing to the greater structure and hence anisotropy present in normal white matter as
compared with normal gray matter.

Careful evaluation of anisotropy metrics is needed. There are at least four causes for variability:
(a) anisotropy metrics, themselves, are sensitive to noise contamination (Figure 2.1.2.1); (b)
anisotropy itself is quite variable throughout white matter (Figure 2.1.1.7); (c) incomplete eddy
current compensation can lead to artifactual anisotropy measurements (Figure 2.1.1.7) and (d)
just as ADC values first decrease and later pseudo-normalize, anisotropy values may also vary in
different stages of stroke. These many causes of variability may contribute to the fractional
anisotropy changes in our sample size. Changes in anisotropy and the eigenvalues that
characterize the full diffusion tensor therefore need further investigation.

2.2.2 Anisotropy Changes in Reversible DWI
Almost, but not quite all acute DWI lesions proceed to infarction on follow-up imaging,
suggesting that perhaps some DWI lesions may include salvageable tissue. In both experimental
animal stroke models with reperfusion (61-64) and in patients receiving thrombolytic therapy
(4), the outcome of DWI lesions varied from reversing completely, staying abnormal or
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reversing temporarily only to suffer secondary ADC reduction. This suggests that ADC alone
may not be a suitable marker for inevitable tissue infarction. Elevations in anisotropy of the
diffusion tensor have been observed in early stages of ischemia in both animals (65) and humans
(66, 67). One study suggested that elevations in the anisotropy might be related to tissue salvage
(67). We therefore sought to determine if anisotropy indices of the diffusion-tensor might reveal
additional information about reversibility of ADC lesions.

Subjects and Methods

Full-tensor diffusion-weighted images of patients acquired between November 1995 and May
1999 were examined retrospectively. Due to the rarity of imaging "ADC reversal" in acute stroke
patients, this study was not limited to arterial stroke patients and all cases of ADC reversal
during this time period were examined. Imaging was performed on a 1.5T General Electric Signa
MR instrument, with 5.4.2 software (General Electric Medical Systems, Waukesha, WI) and
retrofitted with echo planar imaging (EPI) capabilities via an Advanced NMR Systems
(Wilmington, MA) hardware upgrade, that included the "catch and hold" modification. Each
patient was also imaged with conventional MR sequences that included sagittal TI-weighted
localizers, axial T2-weighted fast spin echo (FSE), fluid attenuated inversion recovery (FLAIR)
or proton-density (PD) images. Axial full-tensor diffusion-weighted images with b-value=1221
s/mm2 were acquired using six single-shot pulsed field gradient spin-echo sequences consisting
of diffusion encoding pulses of duration 47 ms, with interpulse intervals of 52 ms, placed
symmetrically about the 1800 RF pulse. A low b-value (b=3 s/mm2) was used in place of crusher
gradients for the non-diffusion-weighted image. For all images, TR/TE=6000/118 ms with 6 mm
slice thickness and 1 mm slice gap. A fixed field of view (FOV) of 400 x 200 mm2 with an
acquisition matrix of 256 x 128 voxels was used. Three tensor sequences were acquired and
averaged to increase the signal to noise ratio of the diffusion weighted images. The apparent
diffusion coefficient (ADC), fractional anisotropy (FA) and eigenvalues (ki, 2 k,) of the
diffusion tensor were calculated on a voxel-by-voxel basis using techniques described in the
previous section.

Cases of "ADC reversal" were operationally defined in this study as cases where an initial ADC
region of abnormality demonstrated a reduction greater than or equal to 10% of the values in the
normal appearing contralateral hemisphere where the follow-up T2 FSE or FLAIR lesion
volumes were less than 10% of the initial ADC lesion volume. Follow-up T2 FSE or FLAIR
studies for these patients were required to show no volume loss. Furthermore, resolution of the
clinical symptoms associated with the initial ADC lesions was required.

For patients meeting the inclusion criteria for "ADC reversal", regions of interest (ROI) were
outlined in the initial studies in areas exhibiting reduced ADC along with matching normal
appearing contralateral anatomical areas. If no matching non-affected contralateral region could
be found, ROI analysis was not performed for those lesions and the lesions excluded from this
study. Regions that demonstrated T2 prolongation on follow-up T2 FSE or FLAIR studies were
also omitted in the ROI analysis of this study. In one patient who demonstrated both reversible
and irreversible ADC reductions, regions that demonstrated T2 prolongation on the co-registered
F/U images were outlined and compared with tissue with reversed ADC reduction.
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Table 2.2.2.1 Patient diagnoses and scan times.

Pt Diagnosis First Scan Second Scan Lesion Type

1 Status Epilepticus 6 days 5 days Cortical

2 Venous sinus thrombosis 11 hours 3 days White Matter

3 Hemiplegic migraine 3 days 4 days White Matter

4 Venous sinus thrombosis 11 days 28 days Cortical

5 Acute MCA Stroke 2 hours 5 days Both

Initial scan is the time the patient received the first MRI since presenting with symptoms.
Follow-up scans are the days since initial scan. Five distinct lesions were outlined in the
five patients (two white matter lesions and three gray matter lesions).

tTime from symptom onset
$Time from first scan

The mean and standard deviation of the ADC, FA, X1, X2, and X3values in the outlined ROIs were
calculated. One-sided non-parametric paired Wilcoxon signed-rank tests were performed on the
initial MR studies between the means of the ADC, FA, Xi, X2, and X3values in the lesion ROIs
and their matching anatomical normal appearing contralateral ROIs. For intrasubject lesion
values, a non-paired one-tailed Wilcoxon signed-rank test was performed comparing ADC, FA
and eigenvalues in tissue that infarcted versus tissue that demonstrated ADC reversal.

Results

Six patients fulfilled the criteria for ADC reversal as defined operationally in this study. These
were all the cases that had come to the attention of the neuroradiologists at this institution. The
small number of patients for this study is due to the rarity of "ADC reversal", estimated to be
0.2-0.4% by a previous study on the frequency of "ADC reversal" (68). Preliminary data for
these six patients have been reported in an earlier study of the frequency of "ADC reversal" (68)
and in a case report (69). Neither study, however, investigated changes in anisotropy. One patient
was excluded in the both studies due to motion artifacts. In this study, ROI analysis involved the
entire lesion rather than one section as performed in the previous study (68). One patient was
included in this study but not in the previous one (Patient 1). The clinical settings of the patients
studied are summarized in Table 2.2.2.1. Five distinct lesions were outlined in the five patients
(two white matter lesions and three gray matter lesions). One patient (Patient 4) demonstrated a
second area of ADC reversal in the left thalamus. However, since the right thalamus was also
abnormal, no normal matching anatomical contralateral region could be outlined and the region
not included in this study. The area of initial DWI abnormality for Patient 5 encompassed both
white and gray matter. However, the white matter lesion infarcted and was therefore not
considered a reversible ADC lesion and excluded from ROI analysis.
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Figure 2.2.2.1 A 31-year-old male (Patient 2) was imaged 11 hours after the onset of left -
sided weakness and seizures, including a seizure in the magnet. DWI shows marked bilateral
abnormalities (arrowheads). FA is elevated in multiple areas (arrowheads). Average ADC
reduction is 50% and average FA increase is 20% with respect to contralateral. The patient
was diagnosed with venous sinus thrombosis, treated with transverse sinus thrombolysis with
urokinase the following day. His follow-up MRI acquired 3 days later shows minimal
damage, with reversal of the majority of the DWI, ADC and FA abnormalities, consistent
with the patient's clinical recovery of movement.

Figure 2.2.2.2 A 23-year old female (Patient 3) presented with right-sided weakness due to
hemiplegic migraine. Her initial scan (not shown) taken the same day as admission was
normal. The second study acquired 3 days later demonstrates marked white matter
abnormalities in the DWI and ADC maps (arrowheads) that are typically associated with
infarction. In this case, FA appears normal. The average reduction in ADC was 41% while
FA had an average decrease of 8% with respect to contralateral. The patient's hemiplegia
resolved consistent with the follow-up MRI taken 4 days later which show recovery of ADC
in previously abnormal regions.
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Figure 2.2.2.1 shows an example case of a reversible ADC reduction for a patient diagnosed with
venous sinus thrombosis and treated with transverse sinus thrombolysis with urokinase the
following day (Patient 2). The DWI shows marked bilateral abnormalities (arrowheads). This
patient had a mean overall 50% reduction in ADC. Elevations in FA are also noticeable with a
mean increase of 20% over contralateral values. His follow-up MRI acquired 3-days later shows
minimal damage with reversal of the majority of the DWI, ADC and FA abnormalities,
consistent with the patient's clinical recovery of movement.

Figure 2.2.2.2 shows an example of reversible ADC reduction for a patient with hemiplegic
migraine. This patient was imaged 3 days after presenting with symptoms. There exists marked
ADC reductions, with an average reduction of 41%. FA, however appears normal, with a
measured average reduction of 8% with respect to the normal hemisphere.

Figure 2.2.2.3 shows the fractional change in ADC, X, A., k and FA from normal appearing
matched anatomical contralateral regions for all five patients studied. The average and standard
deviation of the fractional changes in these values were respectively -36±11, -35±11, -35+11,
-39± 13, and +7± 13. From the one-sided non-parametric paired Wilcoxon signed-rank tests,
ADC, X, X1, X were found significantly reduced (P=.03). FA changes were not significant
(P=0.2). Three out of the five patients had overall elevated anisotropy (20%, 17% and 8%) while
two remaining showed mild reductions (8% and 5%) with respect to the normal contralateral
hemisphere. In all cases, eigenvalues were reduced but to different degrees. For the three patients
demonstrating elevated anisotropy, X, reductions (46%, 26%, and 25%) and X reductions (5 1%,
27%, and 26%) were less than X3 reductions (60%, 36%, and 28%) in two of the cases. For the
two patients with mild reductions, k, reductions (46% and 31%) and X reductions (42% and
30%) were comparable to k reductions (40% and 30%). This suggests that the elevated
anisotropy in two of three cases were associated with greater reduction in X compared to the
other two eigenvalues.

Figure 2.2.2.4 shows the initial DWI, ADC and FA for Patient 5 who was imaged within 3 hrs of
symptom onset of acute stroke. The patient received intravenous thrombolytic therapy, reversing
the majority of the initial ADC reduction (green arrows) but not all (red arrows) as reflected by
the 5-day T2 follow-up MRI. In the tissue that reversed, ADC was reduce by 29%, while FA was

100 100
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-50 - 0 V 50 (P=0.03) in all five lesions. FA
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not significant.
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elevated by 17%. In
the total lesion that
presented with ADC
reduction on the
initial scan, ADC
and FA were
significantly less in
tissue that infarcted
(P<.0l) than tissue
that reversed. In
terms of A

eigenvalues, for Figure 2.2.2.4 shows the initial DWI, ADC and FA for Patient 5 within
tissue that infarcted, 3 hours of symptom onset. The patient received rt-PA reversing the
k and k were majority of the initial ADC reduction (green arrows) but not all (red
significantly less arrows) as reflected by the 5-day T2 follow-up MRI.
(P<.001), while I
was not significantly reduced.

Discussion

In the rare event when reduced ADC reverses with minimal associated permanent T2 changes no
significant change in anisotropy was found. This is most likely due to the limited sample size of
this study. This study extends previous research by examining anisotropy changes in tissue with
reversible ADC reductions in various clinical settings including arterial infarction. Our findings,
although clearly preliminary, suggest that FA may be elevated or preserved in these cases even
though significant reductions in ADC and individual eigenvalues were found. In the 2 of the 3
cases with elevated anisotropy, k had greater reductions, which would result in the change in
anisotropy. In cases with mild changes in anisotropy, the changes in the individual eigenvalues
were comparable. For an rt-PA treated patient, tissue that recovered had significantly higher
ADC and FA than tissue that became infarcted. This is in contrast to reductions in anisotropy
reported for tissue with reduced ADC that infarcted (40, 70). The eigenvalues in this case were
significantly less in infarcted tissue compared to reversible tissue only for k, and k 2. One can
speculate that the more severe drop in X, and X may reflect tissue at greater risk of irreversible
infarction.

Anisotropy metrics may provide complimentary information to that gleaned from ADC. The
biophysical mechanisms underlying ADC changes in stroke have been the target of several
studies. In acute brain injury, the decrease in ADC is principally due to cellular swelling or
cytotoxic edema (71-73) where upon failure of the transmembrane pump due to ATP depletion
and energy failure, water shifts from the extracellular space (ECS) to the intracellular space
(ICS). This shift has been posited to reduce ADC in principally three ways: (1) normal
intracellular water has a lower ADC than normal extracellular water and therefore a water shift
will result in net reduction of ADC (72) (although recent studies have shown intracellular ADC
may not be significantly lower (73-75)); (2) increased tortuosity due to cellular swelling reduces
extracellular diffusion (76); (3) intracellular diffusion is reduced due to the ischemic insult which
leads to breakdown of the cytoarchitecture (74, 75) and increased intracellular viscosity (77, 78).
However, in a recent study (73) examining histological and ADC changes in an experimental rat
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stroke model, Liu et al demonstrated that ADC reductions were associated with tissue that
demonstrated both cytotoxic edema, where ADC could be elevated intracellullarly due to
swollen cells but reduced extracellularly due to increased viscosity, and neuronal shrinkage, with
an overall measured reduced ADC. Therefore measured ADC values may be the ensemble
average of processes that both reduce and increase ADC, possibly explaining the heterogeneity
in ADC values. However, this study does not actually measure intracellular diffusion but infers it
from measured ADC and expected extracellular changes. They also demonstrated that although
the ADC was reduced, no signs of irreversible infarction were visible on histology and therefore
the reduction in ADC was still potentially reversible.

In this study, three out of five patients showed elevated FA in conjunction with reversible ADC
reductions. The cause of elevated FA remains to be determined. However, our findings are not
contradictory to the above hypotheses for ADC reductions. Shift of water to intracellular space
with reduced diffusion due to increased restriction may also result in increased anisotropy (67).
The increased tortuosity associated with reduced ADC may result in direction dependent
increased restriction and increased anisotropy. Reduction of intracellular diffusion may also be
direction dependent, for example reduction of diffusion parallel to the fiber bundles due to
impairment of fast axonal transport, and therefore also lead to an increase in anisotropy.

Our observations of elevated FA in three reversible ADC lesions are consistent with previous
studies that found increases in anisotropy in early acute cerebral ischemia (66, 67). In these two
studies, the authors hypothesized the elevation of anisotropy at hyperacute stroke was an
indicator of membrane viability in the setting of increased water restriction due to water shift.
Yang et al (67) hypothesized that anisotropy, at first elevated in the acute stage,
pseudonormalizes before finally becoming reduced due to increased membrane permeability,
onset of vasogenic edema and finally lysis. Pseudonormalization of anisotropy was shown to
occur much sooner than that of ADC which has been shown by serial studies (60) to persist as
long as two weeks.

Therefore, we speculate that FA elevation or preservation in conjunction with ADC reduction
may indicate tissue at risk of infarction that may still salvageable due to an intact structural
membrane or preserved cytoarchitecture. Increased FA, however, has also been observed in
tissue that infarcts (66, 67). Therefore, although elevated or preserved anisotropy may be a
sensitive marker for salvageability in tissue with reduced ADC but it may not be specific and as
such, is not a definitive marker for reversibility or irreversibility. The utility of FA in identifying
tissue with reversible ADC reductions remains to be proved with studies involving larger patient
populations. With additional information, such as the tissue's state of perfusion, the temporal
characteristics of anisotropy and ADC in reversible and irreversible tissue can perhaps be better
understood.

The findings of this study may be confounded by the inherent spatial heterogeneity of FA present
in even normal subjects (14). To better characterize changes in FA, a comparison to baseline
values would be preferred. Such an analysis was used in an experimental animal model of
ischemia (65) that found bilateral elevation of anisotropy compared to baseline early after
occlusion. The technique used in this study, comparison with contralateral regions, would not be
sensitive to such bilateral changes. Furthermore, comparison with contralateral regions may be
confounded with partial volume effects since it is difficult to outline identical regions of tissue in
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human patients. Since ADC values are more homogeneous at baseline compared to FA (Table
2.2.1.1), comparison of ADC values to contralateral regions are perhaps less sensitive to partial
volume effects than FA. Clarification of anisotropy's role in hyperacute ischemia may be better
determined with additional studies in animal models of ischemia where baseline data are readily
available.

This study is clearly limited by its small sample size. Given that reversible ADC lesions are rare
events (68), an alternate approach may be to use serial studies of patients demonstrating
mismatches in diffusion and perfusion lesion volumes which have been speculated to represent
salvageable tissue. Serial studies which characterize ADC and FA evolution on an individual
voxel basis in the area of mismatch may provide additional insight over previous volumetric
based approaches (66, 67) due to the known temporal heterogeneity of ADC evolution (60, 79)
and spatial heterogeneity of FA even in normal subjects (14). Techniques which takes into
consideration white and gray matter differences may also be needed to accurately characterize
the nature of anisotropy and ADC changes in acute stroke.

In this post-rt-PA era, the role of anisotropy as a marker of salvageability may be best elucidated
with additional imaging studies of patients receiving interventional therapies, and correlating
anisotropy to which tissue reverses and to which tissue infarcts after treatment. If anisotropy is
shown persistently preserved or elevated in tissue that is successfully salvaged, and reduced in
tissue that infarct, one can then speculate that anisotropy is a specific indicator for salvageable
tissue.

2.3 Conclusions
In conclusion, this chapter demonstrates that full-tensor imaging is feasible in the clinical setting
of stroke imaging. Even at the low SNR available clinically, maps of anisotropy metrics can be
generated. As scanner equipment improve with greater gradient strengths, greater SNR will
become available and subtler changes may be better discerned.

This chapter has also demonstrated that acute human cerebral ischemia changes the anisotropy or
shape of the diffusion tensor in white matter. Furthermore, it has demonstrated that diffusion
tensor imaging may provide valuable insight into the ultrastructural information and changes that
occur with tissue damage. This in turn may prove useful for evaluating the integrity of ischemic
tissue. With additional studies from patients receiving interventional therapy, which should
become more readily available, as more and more patients receive rt-PA, anisotropy may prove
to be useful in assessing tissue integrity. We eagerly await these future studies that can evaluate
anisotropy metrics sensitivity and specificity as a diagnostic marker of salvageable tissue that
can be used to assist therapeutic strategies.
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Chapter 3

Perfusion-Weighted Imaging

"Oh dear! Oh dear! I shall be too late!"

-Lewis Carroll
(Alice's Adventures in Wonderland)

59



Ischemia is the reduction of cerebral blood flow resulting in metabolic impairment and
neurological dysfunction. The previous chapter describes techniques used to image the
microstructural damage resulting from ischemia on a voxel-by-voxel basis. A logical extension is
to directly image cerebral blood flow on a voxel-by-voxel basis. One of the research goals in
stroke imaging is to identify the imaging correlate to the ischemic penumbra - tissue that is
oligemic but still viable. It is this tissue that has been speculated to maximally benefit from
therapeutic intervention. An accurate in vivo measure of cerebral blood flow (CBF) may assist
guiding therapeutic strategies on an individual patient basis.

By strict definition, the ischemic penumbra, the term first coined by Astrup in 1981 (1), consists
of tissue that is oligemic at a flow level leading to electrical failure but above that leading to
structural membrane damage. It has been recently suggested that the ischemic penumbra can
perhaps be more usefully redefined as tissue that is still therapeutically treatable (2). Critical
thresholds of CBF are summarized in Figure 3.1. The reader is directed to an excellent review
article by Siesj6 (2) for a detailed description of the cascade of metabolic events that occur in
ischemia. In brief, the studies showed that metabolic dysfunction occurs at flow levels below
critical thresholds of 40 - 50% of normal flow. Electrical failure occurs at values of 15-18 ml/100
g/min while membrane failure occurs at 10 ml/100 g/min. Thus the threshold for metabolic
failure and infarction are not necessarily equivalent. A gradient of ischemia density exists from
the core of the infarction to the periphery, where electrically silent but still viable tissue may be
present. In both in vivo and in vitro models of focal ischemia, the ability for oligemic tissue to
recover is a function of both density and duration of ischemia (Figure 3.2). Therefore, although
quantitative CBF may not be absolutely necessary for guiding therapy (3), an accurate
assessment of relative CBF may be useful for measuring depth of ischemia and thereby assessing
whether tissue is salvageable or not.
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Perfusion weighted (PWI) magnetic resonance imaging using tracking of the first pass of a bolus
of high magnetic susceptibility contrast agent has been demonstrated to be highly sensitive in
detecting tissue at risk of infarction (see review by Baird (4)). CBF maps are estimated by
deconvolving tissue concentration curves with an arterial input function (AIF). This technique
has been shown to be both sensitive to delay and dispersion between the AIF and the tissue
concentration curve (5, 6). Because the perfusion maps depend highly on the selection of the
AIF, determination of a threshold of irreversible ischemia is complicated and makes
identification of tissue at risk of infarction sensitive to user variability. Furthermore, such
artifacts may negatively affect patient management. For example, a vascular territory whose
feeding artery is occluded will suffer delayed flow as well as reduced flow. However, even if the
territory has sufficient collateral flow, the tissue may have an estimated CBF that is artificially
oligemic due to these technical limitations. One can speculate that the lack of specificity of CBF
and MTT in identifying salvageable tissue may be due to contamination by delay in tracer arrival
and AIF selection. A technique that decoupled delay from flow estimations may provide a better
estimation of existing hemodynamic injury by measuring depth of ischemia as well as
distinguishing vascular territory that is downstream from a stenosis.

This chapter seeks (1) to evaluate the effects of delay on calculated CBF, (2) to correct for the
delay and (3) to determine if CBF values decoupled from delay provide better insight into the
pathophysiology of tissue at risk of infarction. This chapter is divided into two sections. The
first section, Background, provides a brief overview of the current technique used for estimating
cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) by
deconvolution with an arterial input function using singular value decomposition (SVD). The
second section, Technical Development, is in turn divided into two subsections. The first
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Figure 3.2 Thresholds of tissue
viability
Ischemic thresholds in monkey brain
as defined by level of local cerebral
blood flow (lCBF) below which
reversible (stippled) and irreversible
(cross-hatched) ischemic changes
occur. (Reprinted from Jones TH,
Morawetz RB, Crowell RM et al:
Thresholds of focal cerebral ischemia
in awake monkeys. J Neurosurg
54:773, 1981.)

Source: Barnett, et al., Stroke:
Pathophysiology, Diagnosis, and
Management, New York: Churchill
Livingstone Inc. 1986, p. 98.
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subsection evaluates the effects of delay between the arterial input function and tissue arrival
curve on flow estimates in numerical simulations and in acquired human data. In the human data,
the AIF is artificially shifted with respect to the tissue arrival curve. In the second subsection, a
technique less sensitive to timing shifts between the AIF and measured signal is proposed using
deconvolution with a block-circulant matrix. This technique as well as SVD is evaluated for
performance in terms of bias and variance as a function of noise and timing delay using
numerical simulations. In addition, an additional perfusion parameter, delay, is evaluated as a
supplemental marker of tissue downstream from an occlusion and therefore at risk of infarction.
The performance of the deconvolution technique with the block-circulant matrix is also
compared to SVD qualitatively in acquired clinical human data.

3.1 Background
Lathanide chelate contrast agents produce changes in transverse relaxation time (AR 2)
proportional to its concentration in magnetic susceptibility MR imaging (7). During the passage
of a bolus of a high magnetic susceptibility contrast agent, tissue surrounding the vessels produce
a transient loss of signal due to the intravascular compartmentalization of the contrast agent. The
relationship between image intensity and change in susceptibility AR 2 (or AR2* in a gradient echo
experiment) has been shown to be (8):

S(t) = So e-T E - AR,

where So is the baseline MR image intensity prior to administration of contrast agent. The
contrast agent concentration over time in a volume of tissue, C(t) has been demonstrated to be
linearly related to AR 2 (8):

C(t) oc AR2(t) = In S(t) (3.1.2)
TE So

Traditional tracer kinetic models for intravascular agents (9, 10) can be extended to dynamic
susceptibility contrast MRI data to calculate cerebral blood flow (CBF) and tracer mean transit
time (MTT). Modeling the vascular bed as a fluid dynamic system consisting of a single in-flow
and single out-flow with multiple capillary branches in between (11), the distribution of transit
times can be characterized by a transfer function, h(t), as shown in Figure 3.1.1 where C,,(t) is the
concentration flowing in, C,,(t) the concentration flowing out, and h(t) has the following property:

f h(t) dt = 1. (3.1.3)
0

h(t)

C()-+ C,(t)

Figure 3.1.1 Simplified model of relationship tracer influx and tracer outflux.
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This relationship can be formulated as,

C,(t) = C, (t) 0 h(t) (3.1.4)

where 0 represents linear convolution operator.

Furthermore, by defining the fraction of tracer remaining in the system, also known as the
residue function, R(t) as

R(t) = 1 - fh(r) dr, (3.1.5)
0

the concentration of tracer remaining within the voxel of tissue can then be modeled as (12):

C(t) = F C,(t) 0 R(t) = tf Ca c) R(t - z) dr (3.1.6)
0

where C(t) is the concentration at the input artery (the arterial input function) and F, is the flow
within the tissue system. Flow can then be determined if one has knowledge of the arterial input
function, Ct) and concentration remaining in the voxel, C(t).

Previous studies have shown that estimating the arterial input function (AIF) measured from MR
images correlated well with values measured directly from arterial blood samples (13). The
arterial input function is obtained by averaging the signal changes in pixels selected from regions
near large cerebral vessels in the MR images that showed early large increases in AR, after
contrast injection. The AIF cannot be measured directly in a large vessel, for example the middle
cerebral artery (MCA), since the change in signal does not follow Eqn. 3.1.2 due to large flow
effects and dependence of signal change on orientation of the large vessel (14). Instead, the AIF
is typically selected in voxels near the large vessel where the signal change has been demostrated
to follow Eqn. 3.1.2. Without knowledge of the concentration of contrast agent passing through
the vessels resulting in the measured AIF, true quantitative CBF in terms of ml/100 g/min is not
possible with the current techniques and one is relegated to use relative flow values which will
differ from true CBF by a scale factor. Typically a single AIF is then used for deconvolving Eqn.
3.1.6 to calculate relative CBF for all of the voxels in the brain.

Assuming a scaled Cf(t) can be measured, R(t) can then be estimated via deconvolution with the
measured concentration versus time curve. Ostergaard investigated both model-based and model-
independent methods to estimate R(t) (12). Briefly, using Monte Carlo simulations, he showed
that model based methods produced reasonable estimates of flow only if the modeled residue
function matched the true residue function. In cases of pathophysiology, this assumption often
does not hold true. In terms of model-independent approaches, deconvolution methods using
Fourier, regularization and singular value decomposition (SVD) were examined. Fourier based
methods were found to generate flow values whose accuracy was a function of flow rate,
resulting in the underestimation of true flow at high flow rates. The regularization technique's
performance was found to be dependent on the vascular volume of the tissue. The SVD
approach, on the other hand, provided estimates that were independent of both the flow and
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volume being measured. For these reasons, SVD is used to investigate CBF and MTT in this
study.

The SVD technique entails expressing Eqn. 3.1.6 in discretized format:

i
c(tj) = At Ft Y Ca(ti) R(tj - ti). (3.1.7)

i=O

By expanding Eqn. 3.1.7 into matrix notation, the deconvolution problem can be expressed as an
inverse matrix problem:

( c(to) Ca(tO) 0 --- 0 'R(to) 1
c(t,) Ca(ti) Ca(tO) - 0 R(t1)

. At . t.-5 (3.1.8)

c(tN-0 y N1 N2 ' a$0 R(tN-1

Simplifying the above equation to:

c = Ft A-b (3.1.9)

one can solve for b, the elements of R(t). The measured AIF, Ca(t), can be prefiltered to reduce
noise contributions and compensate for quantization errors (12), resulting in A with elements:

a At (Ca(ti_ _1 )+4C (ti_ )+ Ca(ti_ j) 0heri (3.1.10)a~j 'j 0 otherwise (..0

Since A may be close to singular, the inverse of A is calculated using singular value
decomposition (15). In SVD, A is decomposed to:

A = U -S -V (3.1.11)

where U and V are orthogonal matrices and S a non-negative square diagonal matrix The inverse
is then simply:

A-' = V.W-U T  (3.1.12)

where W=1/S along the diagonals, and zero elsewhere. Values of W corresponding to values
where S is smaller than a preset tolerance threshold (usually a percentage of the maximum value
of S) are set to zero in order to eliminate singular values and to produce a more stable result. The
residue function scaled by flow, b, can then be estimated by:

b = Ft V . W.- UT _ C. (3.1.13)

From b, which is the estimated R(t), rCBF is set equal to its maximum value which often does
not occur at the zero time point due to tracer arrival delay.
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By integrating Eqn. 3.1.2 with respect to time, relative CBV (rCBV) can be obtained (8, 16):

fC(t) dt

rCBV 0 (3.1.14)
SC,(t) dt

0

assuming no recirculation or consumption of the contrast agent.

MTT can then be calculated using the Central Volume Theorem (17):

rCBV
MTT = . (3.1.15)

rCBF

From these equations, maps of perfusion indices have been calculated to assist in clinical
diagnosis.

Methods

Dynamic susceptibility contrast weighted images were obtained by acquiring either spin-echo
(SE) or gradient-echo (GRE) EPI images during the first pass of 0.1-0.2 mmol/kg of a
gadolinium-based contrast agent injected 10 seconds after the start of imaging at a rate of 5 ml/s
with the use an MR imaging-compatible power injector (Medrad, Pittsburgh, PA). The contrast
agent was followed by a comparable volume of normal saline injected at the same rate. Datasets
of 10-11 slices over 46 timepoints were obtained. The in-plane resolution of the images were
1.56 x 1.56 mm 2. Each slice was 6 mm thick with a 1 mm interslice gap. TR= 1500 ms and
TE=75 ms were used for SE images. TR=1499 and TE=50 ms were used for GRE images.
Images were obtained on the same 1.5 T equipment used for diffusion tensor imaging (Chapter
2). From these images, the perfusion indices of cerebral blood flow (CBF), cerebral blood
volume (CBV) and mean transit time (MTT) were calculated using the techniques described
above.

Results

Figure 3.1.2 shows the CBF, CBV and MTT maps for a 78-year old woman imaged within 4
hours of presenting with symptoms. For comparison the acute DWI acquired in the same
imaging session is also shown. Regions of abnormality are seen in the left operculum (arrows) on
all acute studies. However, an additional area of abnormality can be seen in the CBF and MTT
maps in the left temporal parietal lobe (arrowheads) that is shown to have infarcted on the 5-day
follow-up study. The initial DWI is normal as well as the CBV. These areas of mismatch have
often been hypothesized as areas of salvageable tissue and the clinical relevance of the mismatch
is still the subject of active debate and investigation.

Figure 3.1.3 shows the associated concentration versus time curve derived from the measured
MR signal in three regions of interest (ROIs) along with the arterial input function for Figure
3.1.2 selected in the diseased hemisphere from the right MCA. The three ROIs correspond to
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Figure 3.1.2 Example perfusion maps using SVD for an acute stroke patient
Acute CBF, CBV and MTT maps for 78-year-old woman imaged within 4 hours of presenting
with symptoms. The acute DWI acquired in the same imaging session is also shown. Regions
of abnormality are seen in the left operculum (arrows) on all acute studies. However, an
additional area of abnormality can be seen in the CBF and MTT maps in the left temporal
parietal lobe (arrowheads) that is shown to have infarcted on the 5-day follow-up study.
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Figure 3.1.3 AR2(t) for the arterial input function selected in the diseased hemisphere from
the right MCA (black) and for three ROIS: normal contralateral (green), ipsilateral
operculum (red), and ipsilateral temporo-parietal lobe (blue). The blue and red ROIs both
have much smaller amplitudes than the green ROI. The red ROI signal is almost at the level
of noise.
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normal contralateral hemisphere (green), ipsilateral tissue that was abnormal on the initial DWI
and CBV (red) and ipsilateral tissue that was CBF and MTT abnormal (blue). Clearly reduced
amplitudes are seen in the ischemic regions compared to the ROI measured in the normal
contralateral hemisphere. In addition, the red ROI signal, which corresponds to tissue already
DWI and CBV abnormal, is almost at the level of noise. In addition to reduced amplitude, the
arrival of tracer for the ischemic tissue is greater than that in the contralateral region resulting in
a delayed time-to-peak.

3.2 Technical Development
A limitation of using SVD has been the underestimation of flow due to dispersion and delay of
the arterial input function (5, 6, 18). To demonstrate the potential clinical relevance of such an
underestimation, an example case is shown in Figure 3.2.1, of a 39 year old woman with right
internal carotid artery (ICA) stenosis experiencing recurring symptoms of numbness on the left
side. Two very different CBF and MTT maps are derived depending on the selection of the AIF.
By using an arterial input function from the left MCA (LMCA) in the non-occluded contralateral
hemisphere, one overestimates the area of abnormality. A follow-up PET study (not shown)
reported an area of abnormality in deep white matter, which correlates better with the MTT map
generated using the AIF from the right MCA (RMCA). As observed from the time course
graphs in Figure 3.2.1, some differences between the RMCA and LMCA AIFs are that the
RMCA AIF has a larger signal change, arrives later than the LMCA AIF and experiences greater
dispersion. However, as the feeding artery to the vascular territory of interest, the right
hemisphere, the RMCA AIF generated maps that provide better estimates of tissue at risk of
infarction.

Ideally, one would like to select an AIF on an individual voxel-by-voxel basis. However, this is
not feasible in current practice. Instead, techniques have been proposed for modifying the
selected AIF to compensate for delay and dispersion between where the AIF is sampled and the
individual voxels are measured. One study proposes to compensate for vascular dispersion
through the use of vascular transport operators (5). As shown in data from normal volunteers, a
model-based approach has the benefit of being less sensitive to delay and dispersion since the
vascular operators take these parameters into account. However, in pathophysiological
conditions, the model may no longer be accurate if flow heterogeneity becomes disrupted (18).
Another proposal for correcting for delay has been to shift the AIF by the amount it appears
delayed until it is synchronized with C(t) for each voxel (6, 12, 19). However, this technique has
yet to be performed on a voxel-by-voxel basis, most likely due to the necessity of each voxel
requiring an individual shift. Schemes for correcting for dispersion are more complicated and
involve modeling the vasculature (6) and as such will not be discussed here.

Our goals are therefore two-fold: (1) to examine the effects of delayed tracer arrival time in C(t)
with respect to AIF on calculated CBF in both simulations and acquired human data and (2) to
compensate for these effects. For the first part, the effects of timing offsets independent of noise
contamination are examined using numerical simulations where "true" CBF is known and SNR
is infinity. These effects are then examined in acquired human data by artificially shifting an
acquired AIF over time and estimating CBF and MTT for each shift. For the second part, to
correct for delay artifacts, circular convolution is used in place of linear convolution since linear
convolution is constrained by assumptions of causality. However, circular convolution is known
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to be sensitive to oscillatory artifacts, and therefore was further modified to include smoothness
constraints (20). This technique is compared to the standard deconvolution technique as well as
to deconvolution with a block-circulant matrix without smoothness constraints by using Monte
Carlo simulations where "true" CBF is known. The performance of the new technique is also
compared qualitatively on clinically acquired human data.

In addition, it is speculated that the sensitivity and lack of specificity of current perfusion indices
(CBF and MTT) in identifying infarct volumes may be related to delay in arrival times.
Therefore, techniques for estimating delay are also evaluated. We propose using the phase offset
from SVD, that is the time when the maximum of R(t) is reached, as a delay term. Since both
phase offsets are readily calculated from the deconvolution techniques, delay estimated from
circular deconvolution techniques are compared with delay estimated with deconvolution.

3.2.1 Effects of delayed tracer arrival on flow estimates using singular value
decomposition

Methods

Simulations

An arterial input function was simulated using a gamma variate function that has been shown in

6 AR (t) for AIFs
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Figure 3.2.1 Sensitivity of perfusion maps to AIF selection
MTT maps for a 39-year old woman with a history of right internal carotid artery stenosis. The
graph shows the measured AR 2(t) for the arterial input functions used to generate the MTT
maps. The MTT maps generated using LMCA from the non-diseased hemisphere results in an
overestimation of abnormal tissue, whereas the maps made using the RMCA from the diseased
hemisphere shows a much smaller area that better correlates with a follow-up PET study (not
shown) report of an area of perfusion deficit limited to deep white matter.
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previous studies to correlate well with physiologically measured AIFs (6, 12). The analytical
expression for the AIF was:

0 t < to
C' (t) = ,t--o (3.2.1.1)

(t -to ) e t> to

with r=3.0 and s=1.5 s representative of data from normal adult volunteers. t0=20 s with
maximum t=200 s to insure C(t) was not truncated for the longest MTT used in this study (24 s).
By assuming the vasculature bed was a single well-mixed compartment (6, 12), the residue
function was modeled as:

R(t) = et''. (3.2.1.2)

The tissue concentration curves, C(t), were generated using Eqn. 3.1.6 in conjunction with Eqn.
3.2.1.1 and Eqn. 3.2.1.2. Flow values were varied between 10-70 ml/100 g/min. Blood volume
was kept constant at either 4% or 2%, values that are typical for gray and white matter
respectively (6). MTT was calculated using Eqn. 3.1.15 and then used to estimate the residue
function according to Eqn. 3.2.1.2. Signal enhancement curves were generated by combining
Eqn. 3.1.1, Eqn. 3.1.2 and Eqn. 3.1.6 with the simulated C(t):

S(t) = So e(t)TE (3.2.1.3)

S, was set to 100. The proportionality constant, k, was determined from the desired peak drop in
the signal enhancement curve. For all simulations, a k was selected that resulted in a 40% change
at a flow rate of 60 ml/100 g/min, corresponding to values measured in human gray matter and
used in other previously published reports (6, 12). The signal enhancement curve for the arterial
input function, S(t), was similarly simulated using Eqn. 3.2.1.3, substituting Ca(t) for C(t). The
proportionality constant, k, in this respect was selected to generate a peak signal change of 60%,
typically measured signal reductions for selected AIFs at this institution using double-dose spin-
echo perfusion imaging. The sampling rate (TR) was set to 1 sec with a TE=65 ms.

To evaluate the sensitivity of the flow estimation techniques to delay times, S(t) was shifted -5 to
+5 seconds in time. In a previous study S(t) was delayed up to maximally 6 seconds (6),
however, S(t) was not shifted forward in time such that S(t) led the S,(t). Such a condition can
potentially occur naturally if the AIF is selected downstream from a stenotic vessel, as in the
case of ICA stenosis and therefore such conditions were modeled in our study. This study
investigates shifts in both directions. No noise was added to S(t) in order to better evaluate the
effects of delay on flow estimates independent of noise contamination.

Effects of delay in AIF in acquired human data

Effects of delay in clinically acquired human data are examined by artificially shifting a
measured AIF with respect to tissue arrival curves. CBF and MTT are calculated for each shift
using techniques described in Section 3.1. Using methods described in Section 3.1, dynamic
susceptibility contrast weighted images were obtained by acquiring spin-echo (SE) EPI images
within 10 hours of symptom onset of left-sided weakness in a 65-year old male patient with a
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history of right internal carotid artery stenosis and who was diagnosed with right middle cerebral
artery (RMCA) stroke.

Results

Monte Carlo Simulations

Figure 3.2.1.1 shows the result of simulations assuming noiseless data. An example of the
simulated AIF and simulated C(t) are shown for time shift of -5 s and 5 s (A). The ratio of the
estimated flow using standard deconvolution is shown in (B). The flow estimate is persistently
underestimated for short MTTs. For long MTTs, flow is grossly overestimated for negative shifts
but flow is accurately estimated for positive delays. When C(t) leads C(t) (positive shifts), we
see a persistent underestimation of flow for all shifts, with slight oscillation. When Ca(t) lags C(t)
(negative shifts), however, flow is both overestimated and underestimated depending on the
MTT and length of shift.

Effects of delay in AIF in acquired human data

Figure 3.2.1.2 shows acute CBV and DWI maps acquired within 10 hours of symptom onset
along with the one-year follow-up (F/U) T2 FSE
right ICA stenosis presenting with symptoms of
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Figure 3.2.1.1 Effects of time shifts between AIF and concentration versus time curve
assuming noiseless data.
(A) Example AIF and C(t) curves. (B) Ratio of estimated flow using standard linear
deconvolution to its true flow value as a function of timing shift.
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Figure 3.2.1.2 Acute DWI imaged within 10 hours
of symptom onset and 1 year follow-up study for a
65 year-old male presenting with symptoms of left-
sided weakness.

MCA stroke. Based on the follow-up
study, the initial lesion volume seen in
the acute DWI is observed to have
grown slightly.

Figure 3.2.1.3 shows the estimated CBF
and MTT maps acquired in the same
scan session as the acute DWI. The AIF
selected from the right MCA in the
diseased hemisphere was artificially
shifted forward and backward in time
and CBF and MTT maps calculated.
Also shown are the concentration versus
time curves for two 5 x 5 regions of
interest, one outlined in the ipsilateral
affected right hemisphere

Figure 3.2.1.3 Artificially shifting the AIF with respect to the voxel signals can lead to
both over and under estimation of flow.
The bottom row shows the RMCA AIF and average signals in the two ROIs, one drawn in the
ipsilateral diseased right hemisphere (yellow-ROI 1) and one in the contralateral normal
appearing left hemisphere (magenta-RO12). Each column represents the estimated flow and
MTT and signals for a particular shift of the AIF. One sees that the area of abnormality changes
considerably as the AIFs relative position to the C(t) changes.

71



(yellow-ROI 1) and one outlined in the contralateral normal appearing left hemisphere
(magenta-RO12). Each column represents the calculated CBF and MTT for each shift along with
the AIF signal with respect to each ROI signal. All images are scaled using the same dynamic
range for better comparison. The middle column shows the CBF and MTT maps that is
calculated if the AIF is not shifted. One sees that the final infarct volume (Figure 3.2.1.2)
correlates well with the perfusion defect seen in both the CBF and MTT maps in the middle
column. However, if the AIF is advanced forward in time to an extent such that it lags the R012
signal, CBF is underestimated and the wrong hemisphere may even be identified as tissue at risk
(Figure 3.2.1.3 -7.5 s). Even for time shifts as small as -3 s, one can potentially underestimate the
volume of tissue at risk since some of the surrounding tissue in the affected hemisphere appears
hyperintense, suggesting overestimation of flow in those regions. This is consistent with our
results for the Monte Carlo simulations for negative shifts (Figure 3.2.1.1). Furthermore, if one
decides to shift the AIF backwards in time in an attempt to ensure that the AIF will not lag a C(t)
signal, one may overestimate the volume of tissue at risk of infarction due to underestimation of
flow as a result of positive timing shifts (as is seen in Figure 3.2.1.3 +7.5 s).

Although in the example presented in Figure 3.2.1.3 the AIF was artificially manipulated, such
delays may occur naturally due to the fact that the measure AIF is not the true AIF. From the
time course graphs in Figure 3.2.1.3 one sees that ROI 1 not only has smaller amplitude than
R012, but also lags R012, potentially due to the patient's angiographically diagnosed right ICA
stenosis. Figure 3.2.1.4 shows the estimated CBF and MTT using the left MCA from the non-
diseased hemisphere as an arterial input function. These maps appear similar to the maps in
Figure 3.2.1.3 generated when the RMCA AIF selected from the diseased hemisphere leads the

Figure 3.2.1.4 CBF and MTT maps for the patient in Figure 3.2.1.3 using an AIF selected from
the left MCA in the non-diseased hemisphere. Comparing the CBF and MTT maps in this-
figure with those in Fig 3.2.1.3, one sees that these maps appear similar to those generated when
the RMCA AIF selected from the diseased hemisphere leads the tissue curves by 3 s (+3s). Also
shown is the time course for the LMCA AIF (green) overlaid on the RMCA AIF (gray) and left
(magenta) and right (yellow) RO~s' (shown in Fig 3.2.1.3) time courses. The LMCA AIF (green)
is slightly shifted in time with respect to the other curves, corresponding well to the time course
when the RMCA AIF leads the time curves by +3s.
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tissue curves by 3 s (+3s). The time course is also shown for the LMCA AIF (green) overlaid on
the RMCA AIF (gray) and left (magenta) and right (yellow) ROIs' (shown in Figure 3.2.1.3)
time courses. From this graph, the left MCA AIF (green) is observed to lead the right MCA AIF
(gray) most likely due to less-delayed tracer arrival and appears much like the time course graph
in Figure 3.2.1.3 at +3s.

Discussion

We have shown that delay between the arterial input function and measured tissue signal can
result in inaccurate estimation of flow regardless of SNR. This is consistent with findings from
other reports (6, 12). This is the first study that investigates the condition when the AIF lags the
tissue signal, a situation that may occur naturally when the AIF is selected downstream from an
occlusion. Therefore, with the existing technique, relative flows within an imaging session may
not be accurate since a shifted AIF may result in overestimated CBF in some voxels and
underestimated CBF in other voxels. As a result, oligemic tissue may be incorrectly diagnosed as
ischemic. This has implications in clinical settings where the mismatch between DWI and PWI
lesion volumes may be overestimated resulting in greater amounts of tissue categorized as at risk
of infarction than is truly at risk.

NaYve approaches that grossly shift the AIF may result in flow estimates being over or
underestimated if the amount of shift is not accurate. For example, to avoid negative shifts, one
may be tempted to shift the AIF back in time such that it always leads the tissue curve. However,
this may result in the overestimation of tissue volume at risk of infarction due to underestimation
of flow, as seen in Figure 3.2.1.3. Ideally, as the delay is variable across voxels, such a correction
technique would need to be on an individual voxel-by-voxel basis. Correcting for timing shifts
on an individual voxel basis is a difficult task and may also be sensitive to noise. It may also be
complicated by the sampling rate currently available due to TR limitations. For example, if the
time shifts between the tissue concentration curve and the AIF were less than the sampling rate,
accurate time shift corrections would be difficult without interpolating the acquired data. The
degree of interpolation may require an a priori estimate of minimum expected time shift that is
typically not readily available. A better technique, perhaps would be one which is insensitive to
timing shifts between the C(t) and AIF.

3.2.2. Correcting for and estimating delay between AIF and tissue curve

As shown in the previous section, the current SVD technique is sensitive to timing shifts between
the tissue curve, C(t) and the AIF which can lead to both overestimation and underestimation of
flows. In this section, an extension is proposed of the standard SVD technique to a deconvolution
technique with a block-circulant matrix whose flow estimates are delay invariant. To compare
this new method with the existing deconvolution technique we use Monte Carlo simulations
where "true" CBF is known. Since the performance of both techniques depend on the selection
of free parameters to discard singular values, the performance of the two models are first
evaluated as a function of the free parameters assuming zero delay between the AIF and tissue
time course curves and a threshold selected which minimizes bias. Having selected optimum
parameters for the respective techniques, the performances of the different deconvolution
techniques are then evaluated as a function of simulated SNR and timing shifts. The
performances are evaluated as a function of both mean and standard deviation of the bias of
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estimated flows from true flows. The distribution of the bias is also examined when assuming no
timing delay in order to determine if the algorithms systematically underestimate or overestimate
high or low flow values. This analysis is repeated for estimates of timing delay between the AIF
and C(t). The performance of these techniques will also be evaluated qualitatively on clinically
acquired human data.

Methods

Deconvolution using a block-circulant matrix

One of the limitations of Eqn. 3.1.8 is the assumption of causality. This assumption is violated
when Ca(t) lags C(t) as shown in Figure 3.2.2.1 and which may occur naturally as described in
the previous section . In this condition, the measured C,'(t)=C(t-t0). Therefore, the calculated
R'(t)=R(t+to) for C(t). By using circular convolution, instead of linear convolution, R'(t) will be
R(t+t,) circularly time shifted by to. Circular convolution is equivalent to linear convolution with
time aliasing (21). If one assumes that the signal was sampled for a sufficient duration such that
C(t) is not truncated, then time aliasing will not be a consideration. In addition, by zero-padding
the N-point time series C/t) and C(t) to length L, where L>2N-], time aliasing can be avoided.
Therefore, replacing matrix A in Eqn. 3.1.8 and Eqn. 3.1.9 with a block-circulant matrix, D:

alD
D = 7

,aLn

a 12

a7l

-- av
3 1

.. aL, L

(3.2.2.1)

Eqn. 3.1.9 can be reformulated as:

g = F, D -f, (3.2.2.2)

where g is the zero-padded c and f is the residue function to be determined. However, a more
accurate representation of the signal to be measured can be obtained by modifying Eqn. 3.2.2.2

Ca(t) Ft R(t)- *

'5(t-t0 ) 8(t+t0 )

---------- ~ ~ ~ ~ -- - - - - - -- - - - - - -

C' (t)

C(t)
Figure 3.2.2.1 Block
diagram of measured AIF
that is delayed with respect
to true C/t). The calculated
residue function will be
shifted the reverse direction.

F, R' (t)
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to take into consideration the presence of noise, w, in the measurement of f:

g = F D -f + w. (3.2.2.3)

As a result, simply multiplying by the inverse matrix D, which will still be ill-conditioned if A
was ill-conditioned, will result in noise amplification if one assumes w is white noise:

f = F f + D-w (3.2.2.4)

resulting in U, the estimated residue function, differing greatly from f, the true residue function.
Therefore, one can again make use of singular value decomposition techniques to solve for f
substituting D for A and g for c.

When using circular deconvolution, however, due to the discontinuity between t=O and t=L,
leakage frequencies may be amplified giving rise to spurious oscillations dominating the
deconvolved signal (20). Increasing the cutoff in the SVD decomposition can reduce these
oscillations. Using a modified oscillation index from that described by Gobbel (22):

0 = Y, f f'[k] - f'[k - 1] (3.2.2.5)
Lmfax (k=1

where U(t) is the estimated residue function and L is the number of sample points, the SVD
threshold was varied until the estimated residue function's oscillation index fell below a user
specified value.

Monte Carlo Simulations

Tissue signals, S(t) and S,(t) were simulated using the same techniques described in Section
3.2.1. To evaluate the performance of the deconvolution algorithms in the presence of noise, the
signal-to-noise ratio (SNR) was varied between infinity (no noise) to 10 by adding noise to the
real and imaginary components of the noise-free Sa(t) and S(t) (23). These random noise values
were normally distributed with a mean of zero and variances ranging from 1 to 10. The
magnitude of the complex data with added noise was then used in the simulations. For each level
of SNR, 1024 iterations were performed, except for the noiseless condition where only two
iterations were used to demonstrate that the results did not change over iterations. The same
noisy signal was used by each of the techniques for each shift in each iteration.

The performances of standard SVD, corrected SVD (cSVD) and corrected SVD with minimal
oscillation index (oSVD) were evaluated as a function of bias and variance. The error at each
iteration, i, was calculated as the sum of the absolute difference between calculated flow values
(F') from true flow values (F) over the range of simulated flow values (10 to 70 ml/100 g/min) at
delays ranging from -5 to 5 s:

Error = F' - F1. (3.2.2.6)
F
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The bias or mean, and standard deviation of the error over all N iterations were calculated and
compared as a function of shift for the different SNR levels:

i N
Bias = - Error,. (3.2.2.7)

N t=1

One can then estimate the amount each flow estimate differs from its true flow value by dividing
Bias by the number of flow values evaluated, in this case seven.

The performances of SVD, cSVD and oSVD depend on the selection of free parameters. For
SVD and cSVD, the selection of the cutoff threshold or tolerance level of values considered
close to singular determines the accuracy of the deconvolved residue function. A threshold that is
too low can result in instability as the matrix becomes close to singular while a threshold that is
too high will result in not enough values used for accurately determining the residue function.
For the oSVD, the choice of minimal oscillation index also affects the accuracy of the
deconvolved residue function. In this case a high threshold results in instability and a low
threshold in insufficient values for calculating the residue function accurately. At each noise
level, for SVD and cSVD, the cutoff threshold was varied between I and 95% whereas for
oSVD, the minimum oscillation index was varied between 0.001 and 0.2. The bias is evaluated
as a function of threshold and noise for the condition of no time shift. The threshold that
produced the minimum bias at each noise level is then used in the remaining simulations where
the tissue curves are shifted with respect to the AIF.

Delay was estimated as the time point when the maximum R(t) occurs. For the circular
deconvolution techniques, the following algorithm was used to estimate shift, D

( k.TRk 
N/2

D'= (k-)TR k>N/2 (3.2.2.8)

assuming k is the sample when the maximum R(t) occurs and N is the total number of points. For
standard deconvolution, D '=k. The calculation of the error in the delay estimate is similar to that
used for the flow estimate (Eqn. 3.2.2.6):

Delay error = D' - Di (3.2.2.9)
D

where the absolute error between estimated D'and true D are summed over all applied shifts.
The same tolerance level or minimum oscillation index used for estimating flow was used to
estimate delay. The bias of the delay estimate was taken as the mean of the delay error over all
iterations and the deviance as the standard deviation of the error over all iterations:

Delay Bias = I Delay Error,. (3.2.2.10)
N t=I

To estimate the amount each delay estimate differs from its true delay value, one can divide by
the number of shifts evaluated, in this case eleven.
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Assessments of error of fit are also estimated on individual voxel bases by calculating the error
of the fitted C(t) compared to the measured C(t):

EOF = At it>I C, (j) R(j - i) - C(i) (3.2.2.11)

where R(t) is the deconvolved residue function, C(t) is the user defined AIF, At is the sampling
rate, F, is the estimated flow and C(t) is the concentration versus time curve. A larger EOF value
represents a larger error between fitted signal and the measured signal and therefore a reflection
of poorer fit.

Image Acquisition

Dynamic susceptibility contrast weighted images were obtained by acquiring spin-echo (SE) EPI
or gradient echo (GRE) images as described in Section 3.1. All data analysis was performed
retrospectively. Due to the retrospective nature of this study, which spanned over the years 1996
until 2001, imaging was performed on a variety of platforms. The imaging hardware consisted of
1.5 T with 5.4.2 software (Signa; GE Medical Systems, Milwaukee, Wis.) and 3.0 T MR
instrument with EPI capabilities by means of a hardware upgrade (ANMR, Wilmington, MA),
including "catch and hold" modification. On the 3.0 T system, single doses of gadolinium
contrast agent were used. Imaging was also performed on a 1.5T GE Signa Horizon LX (GE
Medical Systems, Milwaukee, Wis.) system with echo planar imaging capabilities. On the LX
systems, TR/TE=1520/65 ms and a FOV of 22 x 22 cm 2 or 20 x 20 cm 2 and acquisition matrix of
128 x 128 was used with slice thickness of 6 mm and interslice gap of 1 mm. All perfusion
studies on the LX were SE EPI. Studies were performed on 1.5 T unless otherwise noted.

Results

Monte Carlo Simulations

Figure 3.2.2.2 shows the bias and variance as a function of tolerance and noise levels assuming
no delay for standard deconvolution (SVD) and deconvolution with the block-circulant matrix
(cSVD). The effects of choice of oscillation cutoff for deconvolution with the block-circulant
matrix with minimum oscillation (oSVD) are also shown. The x-axis is reversed for oSVD in
order to be consistent with the SVD and cSVD graphs that are plotted as functions of increasing
stringency. Each graph shows the bias and variance at SNR=infinity (i.e. no noise), SNR=100,
SNR=50, SNR=20 and SNR=10. As expected, with increasing stringency, the deviance of the
estimations is reduced. For bias, there is a tolerance value that minimizes bias at each noise level.
Selecting a tolerance value that is too low not only results in greater variance of the flow
estimate but also results in greater bias as the matrix in the SVD stays ill-conditioned. A
tolerance cutoff that is too high also results in increased bias as too many values are considered
singular and removed, therefore leaving not enough values to accurately characterize the matrix.
The tolerance cutoff that minimizes bias is observed to increase as a function of noise. The
threshold for cSVD is lower than for SVD, but the resulting bias is larger in cSVD. The
minimum bias for
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Figure 3.2.2.2 Bias (first column) and deviance (second column) of flow estimates assuming
zero time delay for (A) standard SVD, (B) cSVD and (C) oSVD techniques. The deviance for
SNR=Infinity was zero for all techniques. Minimum oscillation index is plotted on reverse x-
axis to demonstrate effects of increasing stringency.
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oSVD is comparable in magnitude to that of SVD, though oSVD's variance is larger. In oSVD,
minimizing oscillations reduces variance in the flow estimates; however, this is at the cost of
larger bias.

Figure 3.2.2.3 shows the estimated bias as a function of timing shift and noise for the standard
decovolution technique (SVD), for the circular deconvolution (cSVD) and for the circular
deconvolution with minimization of oscillation index (oSVD) (Eqn. 3.2.2.5) for SNR levels of
(A) infinity, (B) SNR=100, (C) SNR=50, (D) SNR=20 and (E) SNR=10. Even when no noise is
added, the bias is small (overall Bias=16 or 2.2 ml/100 g/min for each flow estimate for SVD
and overall Bias=12 or 1.7 ml/100 g/min for cSVD and oSVD) but not zero, due to the pre-
filtering of the AIF function that produces more accurate flow estimates in the presence of noise
and coarse sampling (12) but distorts the estimate when no noise is present. From the graphs, one
notes that when the delay is zero and in the presence of noise, standard deconvolution (SVD)
provides the best estimate in terms of bias. However, in the presence of timing shifts, bias is
observed to depend on the magnitude of the delay and can be quite considerable. Interestingly, as
the SNR decreases, the amount of bias due to negative shifts relative to non-delayed bias is
reduced, potentially due to the higher tolerance level used to minimize bias for lower SNR as
seen in Figure 3.2.2.2. The magnitude of the bias, at zero delay, nonetheless, increases with
noise (overall Bias=77 or 11 ml/100 g/min at SNR=10 compared to 2.2 ml/100 g/min at
SNR=Infinity). At low SNR, the effects of delay on flow estimation using SVD appears less than
the effects due to noise, resulting in apparently less variations as a function of delay. For both
circular deconvolution techniques, bias is delay independent but increases with decreasing SNR.
For all SNR levels in the presence of noise, oSVD consistently provides less bias than cSVD, for
example for SNR=10 overall Bias=91 or 13 ml/100 g/min compared to overall Bias=95 or 13.6
ml/100 g/min.

In terms of variance, oSVD, at low SNR (SNR=10 to 20) has slightly larger variance (Figure
3.2.2.4) than cSVD. For positive or small delays, flow estimates using SVD is observed to have
less variance than the other two techniques. However, the amount of variance is again dependent
on the magnitude and sign of the timing shift.

Figure 3.2.2.5 plots the estimated flow as a function of true flow assuming zero delay at an
SNR=20, a typical SNR for a SE acquired human perfusion study at this center. The overall
Bias=77 or 11 ml/100 g/min for cSVD while for oSVD the overall Bias=70 or 10 ml/100 g/min
for each flow estimate. However, the difference between estimated flow and true flow is
dependent on the flow being estimated, with larger errors for very high and very low flow values.
From Figure 3.2.2.5, it is observed that oSVD better characterizes extremely low and high flow
rates than cSVD with SVD providing the overall best estimate.

Figure 3.2.2.6 plots the estimated flow as a function of true flow under the same conditions as
Figure 3.2.2.5 except a vascular volume of 2% is used. Flows were evaluated over a range from
5 to 35 ml/100 g/min in order to maintain the same range of MTT values used for the previous
simulations assuming a vascular volume of 4%. The same tolerance levels and minimum
oscillation factors used for Figure 3.2.2.5 were used for Figure 3.2.2.6. cSVD seems to have a
stronger dependence on vascular volume, as seen by the larger error for low flow values. On the
other hand, both SVD and oSVD have only slightly poorer performance, with oSVD again
underestimating high flow values more than SVD.
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Figure 3.2.2.3 Simulation results for standard linear deconvolution (SVD), circular
deconvolution (cSVD), and circular deconvolution with minimization of oscillation index
(oSVD) at different SNR levels. In the first column, the bias is plotted on a log scale due to
the large range of bias. The second column, with a smaller range of bias as a function of
delay, is plotted on a linear scale. Flow estimates using SVD clearly are dependent on delay.
Both cSVD and oSVD are independent of shift, with oSVD consistently having the smaller
bias in the presence of noise.
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Figure 3.2.2.4 Standard deviation of errors in flow estimations from true flow as a function
of delay. The standard deviation for SNR=Infinity was zero for all three techniques (not
shown). For SNR= 100, the standard deviation of the bias for cSVD and oSVD are
superimposed with oSVD slightly reduced. Clearly seen is the delay independence for the
deviance of the flow estimation for cSVD and oSVD but not so for SVD where positive
timing shifts have smaller variance.

Figure 3.2.2.7 shows the estimated delay using SVD, cSVD and oSVD as a function of flow at
SNR levels of (A) infinity, (B) SNR=100, (C) SNR=50, (D) SNR=20, (E) SNR=10. From the
graphs, it is noted that estimation of delay is affected by flow rate, with low flow rates producing
the worst estimates. For low flows, SVD provides the smallest bias for moderate SNR. For
moderate to high flow levels, SVD has a larger bias than the other two techniques. At high SNR,
the oSVD and cSVD techniques have better performances at low flow, which suggests that their
performances are limited by noise rather than systematic error. Of the two circular deconvolution
techniques, oSVD provides less bias over cSVD. Figure 3.2.2.8 shows the standard deviation of
the estimated delay where SVD has the least variance. Figure 3.2.2.9 shows the estimated delay
at a flow rate of 60 and SNR=20. Both cSVD and oSVD techniques perform comparably. For
positive delay values, the SVD technique performs comparably to cSVD and oSVD. However,
when the shift is negative, the standard deconvolution technique has a systematic bias since it is
unable to distinguish negative time shifts from zero time shifts.
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Figure 3.2.2.5 Estimated flow as a
function of true flow at SNR=20
assuming no delay between AIF and
voxel signal and vascular
volume=4%. The oSVD technique is
observed to perform comparably to
the SVD technique for low flows,
however with larger error bars. For
high flows the oSVD technique
underestimates flows more than the
SVD technique. The cSVD
technique both overestimates low
flow and underestimates high flow
values to a greater extent than both
SVD and oSVD.

Figure 3.2.2.6 Estimated flow as a
function of true flow at SNR=20
assuming no delay between AIF and
voxel signal and vascular
volume=2%. SVD performs
comparably to Figure 3.2.2.5 with
volume=4%, with greater
overestimation of low flow values.
cSVD performs considerably worse,
while oSVDs performance is
reduced at higher flow values. A
lower range of flow values were
evaluated in order to compare

40 calculations using the same MTTs as
used in Figure 3.2.2.5.
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Figure 3.2.2.7 Estimation of delay bias as a function of flow at SNR of (A) infinity, (B)
SNR=100, (C) SNR=50, (D) SNR=20 and (E) SNR=10. All abscissas are drawn on a
logarithmic scale. Of cSVD and oSVD, oSVD estimates delay with less bias especially at
low flow values. For all techniques estimation of delay is affected by flow rate. SVD
produces less bias at low flow rates, however this error is summed across all delays.
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Comparison of SVD and oSVD on clinically acquired human data

To qualitatively compare the performance of the oSVD with SVD technique, we retrospectively
evaluated perfusion studies from a 30-year-old healthy female volunteer acquired on a 3.0 T MR
system. CBF, MTT, CBV and Delay maps using SVD are shown in the first row of Figure
3.2.2.10. The second row consists of the oSVD results of cCBF, cMTT, cCBV and cDelay maps.
All studies were evaluated using the same right MCA AIF. The CBV and cCBV maps are both
normal and as expected the two maps appear similar. Consistent with the simulation results, the
estimates of cCBF are slightly noisier than that of CBF. However, the uncorrected CBF map
shows areas of low flow in the occipital lobes (arrowheads), which are more clearly
demonstrated on the MTT map as areas of hyperintensities (arrowheads). In the corrected cCBF
and cMTT maps both regions appear normal although they were calculated using the same data
set that produced the first row of images. Comparing MTT with cDelay and Delay, however, one
observes that the area of hyperintensities in the MTT map correspond to areas with increased
delay (arrowheads). This leads one to suspect that the reduced flow is due to delayed tracer
arrival compared to the AIF rather than hypoperfusion since the subject was an asymptomatic
volunteer who most likely had slower posterior circulation, a normal variant. The EOF appears to
be homogeneous for both techniques.

To examine the performance of oSVD in pathologic conditions not involving reduced flow, we
retrospectively studied a tumor patient. Figure 3.2.2.11 shows the perfusion maps for a 39-year-
old female patient with a history of oligodendroglioma with a left frontal craniotomy and partial
resection of the tumor. Using a left MCA AIF, the CBF and cCBF maps appear similar as do
MTT and cMTT. As expected CBV and cCBV also appear similar. Both the corrected and
uncorrected maps were able to discern the areas of high volume which are indicative of a high
grade tumor. A delay is detected in the left hemisphere using both techniques, which may be due
to low flow. In simulations results (Figure 3.2.2.7), delay is overestimated in conditions of low
flow. The EOF for SVD appears to be more heterogeneous with larger errors in the contralateral
hemisphere opposite to where the AIF was selected whereas oSVD appears to be more uniform.
This suggests that CBF in regions corresponding to areas with high EOF may be a poorer
estimation possibly confounding relative estimates of flow changes.

To examine the effects of a naturally occurring delayed AIF on SVD and oSVD, we
retrospectively examine a clinical perfusion study which had markedly different maps depending
on the selection of the AIF using SVD. Figure 3.2.2.12 shows the diffusion and perfusion maps
for a 12-year-old boy with a history of sickle cell anemia imaged 35 hours after onset of a left
middle cerebral artery stroke. Diminished flow in the MRA is clearly seen as well as an area of
infarct in the left frontal lobe as evidenced by the region of hyperintensity in the DWI. A slight
flow defect is present (arrowhead) in the CBF map constructed using the right MCA for an AIF.
However, contrary to previous results, where the ipsilateral AIF produced more accurate
estimates of tissue flow, the resulting CBF estimate using the ipsilateral LMCA, in this case,
generates a CBF map that suggests either hypoperfusion in the contralateral hemisphere or
hyperemia in the ipsilateral hemisphere. Examining the AR 2(t) provides insight into the results.
Three 2 x 2 ROIs were selected in the ipsilateral area of DWI abnormality (ROI 1 - red),
ipsilateral normal perfused territory (ROI 2 - blue), and normal contralateral area (ROI 3 -
green). From the graphs, one sees that ROI 2 and ROI 3 have the same signal amplitude with
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Figure 3.2.2.10 Example case of oSVD showing less artifacts than SVD maps in a normal volunteer.
CBF and MTT for a normal volunteer using both SVD and oSVD techniques with a right MCA AIF. The maps corrected for
delay (oSVD) appear more homogeneous than uncorrected maps (SVD). The results using regular SVD appear artificially
hypoperfused (arrows) in regions corresponding to delayed tracer arrival (arrows).
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Figure 3.2.2.11 Example case of comparable performance of oSVD and SVD in tumor patient.
Perfusion maps for a 39-year-old female patient with a history of oligodendroglioma and left frontal craniotomy and partial
resection of a tumor. Both SVD and oSVD perfusion studies provide similar results using the left MCA AIF. A substantial
delay is shown in the left hemisphere, which may be due to the measured low flow in the area.
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Figure 3.2.2.12 Example case where AIF selection results in different regions of tissue
being identified as hypoperfused.
Diffusion and perfusion studies for a 12 year-old sickle cell anemia patient within 35 hours of
symptom onset of left MCA stroke. Clearly evident is diminished flow in the MRA as well as
an area of infarct in the left frontal lobe (DWI). CBF maps using RMCA and LMCA for the
AIF produce very disparate flow estimates. The graph on the left hand side shows the AR2(t)
for three ROls: ipsilateral in area of DWI abnormality (ROI 1 - red), ipsilateral normal
perfused territory (ROI 2 - blue) and normal contralateral (ROI 3- green).

ROI 2 shifted more in time suggesting that the flow in these two regions should be equivalent,
which was not the case in the LMCA CBF maps. ROI 1, however, is also shifted but its
amplitude is also reduced which suggests truly reduced flow that is reflected in both RMCA and
LMCA CBF. Furthermore, the R013 signal curve lags the RMCA AIF but leads the LMCA AIF.
Since the LMCA AIF lags ROI 3, we get the behavior predicted by the Monte Carlo simulations.

Figure 3.2.2.13 shows SVD and oSVD maps for this patient using the ipsilateral LMCA for the
AIF. His four month follow-up imaging study is shown in the last column. The CBF and MTT
maps appear abnomal on the contralateral side that appears normal in other imaging studies and
in follow-up studies.. However, in the oSVD cCBF maps, a perfusion defect is noted only in the
ipsilateral frontal territory. This is more visible on the corrected MTT maps. Both CBV and
cCBV appear normal with only a slight defect in the area of the DWI abnormality (Figure
3.2.2.12). The area of cCBF and cMTT defects are confirmed to infarct on the follow-up study.
When examining the cDelay maps we see that there is a negative shift (as indicated by the dark
gray, where light gray represents zero) between the LMCA AIF and the right hemispheric voxels
which appeared hypoperfused on the uncorrected map CBF. Furthermore, in cDelay, the delay in
areas of low flow and prolonged MTT is greater than the surrounding areas. This is also
consistent with simulation results (Figure 3.2.2.7) which showed delays are overestimated in low
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flow conditions. The EOF for the SVD technique is quite large and heterogeneous for this
patient. The areas of large EOF correspond to areas that appear artificially hypoperfused on the
contralateral hemisphere. The EOF for the oSVD technique on the other hand is much smaller.

Figure 3.2.2.14 shows another case where AIF selection affects the output of the SVD technique,
the perfusion studies of the 39 year old woman with a history of right ICA stenosis whose data
was previously shown in Figure 3.2.1. The first two rows show the results without correction
using an LMCA AIF and a RMCA AIF. The last two rows show the perfusion maps using
oSVD. The EOF for the SVD techniques are shown on the same scale. For clarity, the EOF for
the oSVD techniques are shown using a different scale from SVD, but the same scale as one
another. For both SVD and oSVD techniques, one sees a larger flow abnormality when using the
contralateral LMCA for the AIF, though the disparity is less for the corrected technique than the
uncorrected technique. This continued disparity may be due to differences in dispersion between
the two AIFs, as seen in Figure 3.2.1, which the oSVD does not take into account. In addition,
for the uncorrected technique, the MTT regions of abnormality strongly correspond to regions of
delay in the Delay maps, leading one to suspect that the MTT maps are highly weighted by
delay, consistent with our simulation results. For the corrected technique, a similar correlation
with delay is seen but not as strong, especially when using the RMCA as the AIF, as evidenced
by the larger region of cDelay defect than cMTT defect. Interestingly, the EOF for the ipsilateral
RMCA AIF seems to be much greater than for the LMCA. Both are heterogeneous and seem to
have a dependence on underlying tissue. The EOF for the oSVD technique, on the other hand is
much more homogeneous but again appears greater for the RMCA AIF.

Finally, we investigate the behavior of oSVD in examples of diffusion-perfusion mismatches in
stroke to determine if oSVD is still sensitive to detecting areas of hypoperfusion without an
accompanying DWI lesion. Figure 3.2.2.15 shows a pefusion study involving a 56-year old
female patient imaged within four hours of presenting with symptoms of a right MCA stroke.
Perfusion maps for both techniques were made using the same ipsilateral left MCA AIF. The
EOF is larger in the SVD and appears to have more anatomic dependency than the EOF for the
oSVD, which appears rather homogeneous. The EOF maps for SVD and oSVD are scaled
differently to better show dependence on anatomy. This is a case when both oSVD and SVD
show large flow defects despite the lack of DWI abnormality and minimal CBV abnormality.
CBV maps are only shown once since both SVD and oSVD maps were identical within a scaling
factor. The patient's lesion evolved into her perfusion defect, as demonstrated on the 22-day
follow-up T2 FSE demonstrating that oSVD can show large MTT abnormalities when tissue
infarction is likely even though DWI is normal. The 22-day follow-up T2-FSE appears distorted
since during her hospital course, the patient ultimately required a hemicraniectomy in order to
alleviate intracranial pressure due to brain swelling from the stroke.

Figure 3.2.2.16 shows the perfusion studies for a 65-year-old male patient imaged within 11
hours of presenting with symptoms of aphasia. This is an example of "diffusion-perfusion"
mismatch where the perfusion defect does not evolve into the flow defect due to intervention
with mechanical thrombolysis that resulted in reperfusion. Both CBF and cCBF show a larger
area of hypoperfused tissue than the DWI lesion, however, the flow reduction in the cCBF is to a
lesser extent than in the uncorrected maps (70% reduction in SVD compared to 40% reduction in
oSVD). The four-month follow-up T2 FSE shows that the original DWI and CBV defects
(arrowheads) did not evolve into the CBF or cCBF abnormality. Again we note the close
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Figure 3.2.2.13 Example case where oSVD can compensate for SVD misprediction.
Perfusion maps for sickle cell patient shown in Figure 3.3.5 using both SVD and corrected SVD techniques. The perfusion
abnormalities on the corrected maps (left frontal territory) are more consistent with the patient's clinical presentation than the
maps made using standard techniques. This area is confirmed to have infarcted on the four month T2 FSE.



Figure 3.2.2.14 Example case of oSVD and SVD in a patient with carotid stenosis
Results of SVD and oSVD for a patient with right ICA stenosis. A mismatch between maps
generated using the RMCA and LMCA as AIF are still seen though not as great as without
correction. One also sees the close correspondence of Delay abnormality to areas of prolonged
MTT on the uncorrected maps. EOFs for SVD are on the same scale for both LMCA and
RMCA. The EOF for SVD and oSVD are on different scales (with EOF for SVD much larger
than for oSVD) to better emphasize inhomogeneities within the map. The EOF for the ipsilateral
RMCA is much larger than for the LMCA in both techniques.
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Figure 3.2.2.15 Example case with DWI/PWI mismatch where patient's lesion evolves into infarct.
SVD and oSVD perfusion studies for a 56-year-old woman imaged within 4 hours of presenting with symptoms of a
RMCA stroke. The EOF is larger in the SVD and appears to have more anatomic dependency than the EOF for the oSVD.
The EOF maps for SVD and oSVD are scaled differently to better show dependence on anatomy. This is a case when both
oSVD and SVD show large flow defects despite the lack of DWI abnormality and minimal CBV abnormality. The patient's
lesion evolved into her perfusion defect, as demonstrated on the 22 Day F/U T2 FSE demonstrating that oSVD can show
large MTT abnormalities when tissue infarction is likely. The patient ultimately required a hemicraniectomy in order to
alleviate intracranial pressure due to brain swelling.



Figure 3.2.2.16 Example case with DWI/PWI mismatch with successful intervention.
SVD and oSVD calculated CBF and MTT maps for a 65-year-old male patient imaged within 11 hours of symptom
onset. Both CBF and cCBF show a larger area of hypoperfused tissue than the DWI and CBV lesion, however, the flow
reduction in the cCBF is to a lesser magnitude than in the uncorrected maps (70% reduction compared to 40%
reduction). The EOF for SVD again shows a greater dependency on underlying tissue with a larger error in the
contralateral hemisphere whereas the EOF for oSVD appears more homogeneous. The patient was successfully treated
with mechanical thrombolysis resulting in reperfusion. The four-month follow-up T2 FSE shows that the original DWI
and CBV defects (arrowheads) did not evolve into the CBF or cCBF abnormality.



spatial correlation of the Delay maps with the uncorrected CBF and MTT lesion abnormality.
The EOF for SVD also again shows a greater dependency on underlying tissue with a larger error
in the contralateral hemisphere whereas the EOF for oSVD appears more homogeneous.

Discussion

We have presented a model independent technique whose flow estimates are delay invariant.
This technique does not compensate for dispersion but it is one step closer towards improving
relative flow estimates. From Figures 3.2.2.3 and 3.2.2.4 one can conclude that at greater SNR
circular deconvolution techniques are preferred despite the slightly greater variance and bias than
SVD when no delay is present (Figure 3.2.2.5). Improved SNR can be attained with better MR
instrumentation while the error in the standard SVD technique is inherent to its implementation.
Due to the use of a single AIF for calculating flow in the whole brain, there will inevitably exist
tracer arrival time differences between the AIF and tissue curves even in the absence of
pathology. Therefore, a technique that is insensitive to tracer arrival delays is preferred.

Of the two deconvolution techniques that used block-circulant matrices examined here, the
oSVD technique provides better performance in terms of flow estimate at both low and high flow
rates (Figure 3.2.2.5) at low SNR. Although delay independent, oSVD has poorer performance in
terms of bias assuming no delay as a function of signal to noise compared to standard
deconvolution techniques. There may be alternate methods that can provide better solutions such
as the Tikhonov-Miller (24) or Phillips-Twomey (25) method that uses regularization to impose
smoothness constraints. Iterative algorithms which do not require calculation of the inverse of
close to singular matrices may also prove useful in minimizing the oscillations due to the circular
deconvolution (20). Such future investigations into optimizing circular deconvolution
techniques may result in methods that provide better flow estimates at low SNR.

3.3 Conclusions
This chapter has demonstrated that techniques that use the standard SVD technique with standard
deconvolution to estimate flow are likely contaminated by delay. Therefore, CBF and MTT maps
are probably more accurately considered delay-weighted CBF and MTT maps. We have shown
that delay insensitive CBF estimates using oSVD may provide results that are potentially more
robust than delay sensitive techniques in both normal subjects and in many different pathology
cases. To determine if oSVD provides more accurate flow estimates, correlation with PET flow
values in humans should be performed.

With flow estimates free from tracer arrival delay contamination, improved identification of
salvageable tissue may be possible. Due to tracer arrival delay, the existing SVD technique may
produce estimates of flow suggesting ischemia in regions that was merely oligemic. This in turn
may contribute to the large sensitivity but lack of specificity in traditional MTT maps. One may
argue that clinically what is desired is a sensitive indicator of tissue at risk of infarction and
therefore delay contamination in CBF and MTT maps are potentially clinically useful features.
The utility of decoupling flow from delayed arrival times in clinical diagnosis has yet to be
proven by a large retrospective study. We speculate that the cDelay maps presented here can
continue to provide sensitivity while at the same time the cCBF maps may be able to provide a
more specific indicator of ischemic tissue at risk of infarction. The cDelay maps may prove of
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continued use in qualitative assessment while cCBF may be of use in quantitative scientific
investigation.

The clinical results presented here are clearly preliminary and additional studies involving a
larger cohort of patients are necessary to better determine the accuracy of oSVD perfusion maps.
Retrospective analysis of perfusion studies with follow-up MRIs need to be performed where
lesion volumes identified by cCBF, cDelay, CBV, CBF and MTT are evaluated and compared
for sensitivity and specificity. Decoupling delay from flow may enable clinicians to better
distinguish regions that is downstream from an occlusion that may be oligemic from tissue that is
truly ischemic and therefore at a higher risk of infarction. This in turn can potentially lead to
better understanding of the pathophysiological events underlying the ischemic process and
ultimately better prediction of salvageable tissue in human cerebral ischemia.
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Chapter 4

Combining diffusion & perfusion weighted imaging

One side will make you grow taller,
And the other side will make you grow shorter.

-Lewis Carroll
(Alice's Adventures in Wonderland)
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Efforts to limit infarction in acute stroke patients might gain significantly from an accurate
means of identifying hypoperfused yet viable brain tissue. Diffusion-weighted (DWI) and
perfusion-weighted (PWI) magnetic resonance (MR) imaging have been shown to be highly
sensitive and specific in diagnosing acute human cerebral ischemia (1-8). These imaging
techniques appear to provide superior early identification of regions likely to infarct, compared
to conventional MR or CT imaging (1-4, 9). However, the prediction of tissue and clinical
outcome from specific imaging characteristics remains challenging. Although studies have found
correlations between acute DWI and PWI lesion volumes with patients' clinical and follow-up
imaging outcomes (10-15), the ability to predict clinical or tissue outcome in individual patients
using a single modality still appears limited, perhaps due to the effects of stroke location and co-
morbid factors.

Attempts have been made to combine DWI and PWI by comparing lesion volumes identified by
the two techniques. "Diffusion-perfusion mismatches," in which the lesion volumes identified
by one modality are larger than those by the other, have been reported by several groups (11-14,
16). Many groups have reported greater lesion enlargement of the acute DWI lesion volume in
cases where the acute PWI volume is larger (1, 13-21) than the DWI lesion. In cases where the
acute PWI lesion was smaller than the DWI lesion, total lesion growth was not as great (13-15,
22). Based on these observations, many have hypothesized that these DWI-PWI mismatches
may allow identification of salvageable tissue in individual patients.

This "mismatch", however, is typically between the size of lesion volumes rather than between
DWI and PWI values on an individual voxel basis. Due to heterogeneity in both ADC (12, 22-
25) and flow values (14, 16, 19, 22) within acute ischemic tissue, volumetric approaches
comparing gross differences in DWI and PWI lesion volumes may oversimplify the complex
task of assessing tissue viability in different regions within ischemic tissue. A voxel-by-voxel
analysis, such as one developed by Welch and colleagues (23-26), may provide a more sensitive
approach for identifying salvageable tissue. Their studies demonstrated that a combination of T2
and ADC information provided better prediction of cellular necrosis than algorithms that used
them separately and that a voxel-by-voxel analysis may better demonstrate the underlying
heterogeneity in the lesion.

A natural extension of these tissue signature algorithms is the inclusion of perfusion information.
However, assessing the signatures' significance becomes complicated since each additional
parameter leads to an exponential increase in the number of "signatures." Furthermore, assuming
only discrete states ignores the variances intrinsic to the data. A more complete algorithm may be
one in which inputs are treated as random variables and the output is the probability of infarction
for each given tissue voxel. In this study, a strategy was investigated that used statistical
algorithms where the output is not a map of stages of infarction but risk of future infarction.

This chapter is divided into three sections. The first section seeks to determine whether
algorithms that combine diffusion and perfusion information provide more sensitive and specific
predictors of tissue outcome than algorithms using only subsets of this information. In addition,
it also examines whether a Generalized Linear Model (GLM) algorithm provides an improved
indicator of which tissue is at risk of infarction over thresholding-based approaches. Both
questions were investigated by retrospectively applying the different techniques to diffusion and
perfusion indices acquired from acute stroke patients and comparing the algorithms' voxel-by-
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voxel performances in predicting which tissue will proceed to infarction. The second section
investigates Generalized Additive Models (GAMs) whose predictions are based on non-linear
functions of input diffusion and perfusion parameters in order to take into consideration observed
non-linear behavior of diffusion and perfusion values. The third section investigates non-linear
combinations of input parameters using a Hierarchical Mixture of Experts. It is hypothesized
that our initial models were limited in using a single model for all tissue regions although it has
been observed that different tissue regions, e.g. gray matter vs. white matter, have different
diffusion and perfusion characteristics even in normal conditions. By allowing for combinations
of experts, we hypothesize better estimation of tissue likely to infarct may be obtained.

4.1 Generalized Linear Models4

Subjects and Methods

Patient Selection

Diffusion- and perfusion-weighted images of patients with hyperacute cerebral ischemia
acquired within twelve hours of symptom onset between the years August 1994 and August 1997
were examined retrospectively (n=94). To avoid potential confounds due to different types of
ischemic damage and to obtain a relatively homogenous population of stroke patients, this study
was limited to patients with clinical signs suggestive of a major cerebral artery occlusion. This
study therefore only included Trial of ORG 10172 in Acute Stroke (TOAST) classification
subtypes of large artery atherosclerosis, cardioembolism, stroke of other determined etiology and
stroke of undetermined etiology (28). Subtypes of small vessel occlusion and non-cerebral artery
occlusions were excluded (n=32). Other exclusion criteria included treatment with thrombolytic
or neuroprotective agents (n= 10) and non-availability of acute diffusion or perfusion studies due
to motion or equipment induced artifacts (n=4). Patients were excluded if a follow-up (F/U) axial
T2 -weighted fast spin echo (FSE) imaging study five days or later was not available to confirm
extent of lesion volume (n=34). A total of fourteen patients satisfied these inclusion criteria.
Diffusion and perfusion findings in 9 out of 14 of these patients have been reported previously
(1, 12, 18, 19). Table 4.1.1 summarizes their demographics and stroke subtype classifications.

Image Acquisition

Imaging was performed on a 1.5T General Electric Signa MR instrument, with 5.4.2 software
(General Electric Medical Systems, Waukesha, WI) and retrofitted with echo planar imaging
(EPI) capabilities via an Advanced NMR Systems (Wilmington, MA) hardware upgrade, that
included the "catch and hold" modification. Table 4.1.1 summarizes the MR acquisition
parameters for the patients. Each patient was also imaged with conventional sequences that
included sagittal TI localizers, axial T2 weighted fast spin echo (FSE), fluid attenuated inversion
recovery (FLAIR) or proton-density (PD), 2D phase contrast MR angiography (MRA) and post-
contrast axial TI weighted images. The Acute Stroke Protocol used for imaging patients was
similar to those published in previous reports (1, 12, 19).

Multi-slice axial diffusion-weighted images were acquired by either sampling three orthogonal
directions at b-values of 1010 s/mm 2 (n=3) (1) or sampling the full diffusion tensor at b-values of

' Parts of this section have been reprinted with modifications from (27) with permission from Lippincott, Williams
& Wilkins @ 2001.
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1221 s/mm2 (n= 11) (29) using single-shot pulsed field gradient spin echo EPI. The duration of
the diffusion gradient in each single shot diffusion weighted image was either 42 ms (3-
direction) or 47 ms (full-tensor) with intertemporal pulse offset of 5 ms resulting in b-values of
1010 s/mm2 (3-directions) or 1221 s/mm2 (full-tensor) respectively. A low b-value (b=3 s/mm2 )
was used in place of crusher gradients for the non-diffusion-weighted image. This low b-value
image was used as the initial T2-weighted image. For sequences sampling three directions, echo
times were TE=108 ms (n=2) or 155 ms (n=1). For the seven single-shot full diffusion tensor
sequence, TE= 118 ms. For all images, a repetition time of TR=6000 ms was used and up to 20
axial slices were obtained with 6 mm slice thickness and 1 mm interslice gap. A fixed field of
view (FOV) of 400 x 200 mm 2 and an acquisition matrix of 256 x 128 voxels was used. To
increase the signal-to-noise ratio (SNR) of the images, three full-head diffusion weighted images
were acquired and averaged. The isotropic diffusion weighted image (DWI), was formed from
the geometric mean of the high b-value single-shot images. The ADC image was calculated
from the slope of the linear regression fit of the log of the high and low b-value images versus
their b-values.

Perfusion weighted images were acquired from dynamic susceptibility contrast images using
either spin-echo (SE) (n= 10) or gradient-echo (GRE) (n=4) EPI pulse sequences. Images were
acquired during the first pass of a bolus of 0.1 mmol/kg (GRE) or 0.2 mmol/kg (SE) of body
weight of gadopentetate dimeglumine (Magnevist; Berlex Laboratories, Wayne, NJ) contrast
agent. The bolus was injected approximately 10 seconds after the start of imaging at a rate of 5
ml/s using a MRI-compatible power injector (Medrad, Pittsburgh, PA) through an 18-gauge
antecubital catheter. The contrast agent was followed by at least 15 ml of normal saline injected
at the same rate of 5 ml/s. The imaging sequence consisted of either 51 single-shot echo planar
images over a volume of 10 slices for a total of 510 images (n=3) or 46 single-shot images over a
volume of 11 slices for a total of 506 images (n=1 1). With a TR=1500 ms, the total acquisition
time was 83 seconds (51 time points) or 69 seconds (46 time points). Echo times were TE=75 ms
(SE) and TE=50 ms (GE). The FOV was 400 x 200 mm with an acquisition matrix of 256 x 128.
Images were acquired with a slice thickness of 6 mm and a 1 mm interslice gap. From the
dynamic susceptibility contrast images, concentration-versus-time curves were calculated on a
voxel-by-voxel basis utilizing the linear relationship between changes in transverse relaxation
and concentration of contrast agent (30, 31). Relative regional cerebral blood volume (CBV)
values were then obtained for each voxel by numerically integrating the concentration-versus-
time curve (31, 32). Relative cerebral blood flow (CBF) values were obtained for each voxel as
the height of the deconvolved tissue response function with an arterial input function (33). The
arterial input function was measured directly from the susceptibility contrast images (34) in
voxels of tissue encompassing the cerebral artery in the normal contralateral hemisphere. From
the central volume theorem, the mean transit time (MTT) for each voxel was then calculated by
taking the ratio of CBV to CBF (33).

Coregistration

The volumetric diffusion, perfusion and follow-up data were spatially coregistered utilizing an
automated image registration software package, AIR 3.08 (UCLA, CA) (35, 36). The initial low
b-value T2-weighted EPI, ADC, DWI and follow-up T2-weighted FSE images were coregistered
to the same dimensions (128x128xl 1 or 128x128x10 voxels), orientation and coordinates as the
perfusion images using an affine, twelve-parameter transformation model and trilinear

102



interpolation. Voxels from "normal" appearing gray matter in the unaffected, contralateral
hemisphere from the coregistered initial T2 images were outlined prior to generation of the
predictive maps. For all six acute-stage images, voxel values were normalized by dividing by the
mean of these outlined regions to produce "relative" values (rT2, rADC, rDWI, rCBF, rCBV,
and rMTT).

Development of Generalized Linear Model Algorithms

In the generalized linear model (GLM) algorithms, tissue outcome was modeled as a binary
variable (infarcted/non-infarcted), P, where the value 1 represented infarcted tissue and value 0
non-infarcted tissue. In a GLM, for a binary variable, the probability of tissue infarcting can be
represented by the logistic function:

P =(4.1.1)
1+ e (x)

where rl(x), the predictor is a linear function of its input parameters, x,

11(x)= $ Tx + X (4.1.2)

and P is the vector of calculated coefficients and a the bias or intercept term for the GLM. The a
term provides the base value for P if all of the input parameters, x, are zero. The P coefficients
can be interpreted as the multiplicative effects on P due to changes in the input parameters (37).

For calculating the coefficients in the GLM algorithms, a supervised approach was utilized.
Using commercial image processing software (Alice, Hayden Image Processing Solutions,
Boulder, CO), training regions were selected by outlining brain tissue volumes that were clearly
infarcted or non-infarcted in the ipsilateral hemisphere in the coregistered follow-up axial T2 FSE
images by a neuroradiologist blinded to the predictive map results. Care was taken to avoid
including regions demonstrating chronic changes on T2, such as old stroke lesions or
periventricular white matter abnormalities. Selection of "normal" voxels was also limited to the
ipsilateral hemisphere in slices that showed evidence of infarction. Combinations of initial rT2
EPI, rADC, rDWI, rCBF, rCBV and rMTT values from these outlined training regions were used
as the input vector, x, in the training stage. Because GLM algorithms assume independent
observations, only every other voxel in the selected ROIs was sampled for the training data in
order to reduce correlation. The coefficients for the GLMs, P, were calculated using an iterative
reweighted least squares (IRLS) algorithm in S-PLUS 3.4 (StatSci, Seattle, WA). Selection of
covariates was based on the Akaike Information Criterion (AIC) whereby terms were included if
their addition resulted in reductions in prediction error values that were a function of both
training error and complexity (38). The AIC therefore provided an objective means to evaluate
the trade-off between minimizing residual training error and increased complexity (38). The
algorithm with the minimum AIC is therefore one with the minimum number of parameters and
minimum training error. Automatic parameter selection was not utilized because all the input
parameters were not independent with MTT=CBV/CBF and DWI=T, exp(-b ADC). Therefore,
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Table 4.1.1 Patient demographics, vascular territory, presenting symptoms, stroke subtype, imaging times and follow-up
lesion volume. Unless otherwise noted, all diffusion sequences were acquired axially at TR=6000, b-value=1221 s/mm2 up to
20 slices and perfusion sequences with TR/TE=1500/75 ins, 11 slices and 46 timepoints.

Patient

1

2

*3

*t4

5

Age/
Sex

78/F

77/F

58/M

64/F

69/M

79/M

33/M

32/M

65/M

61/M

72/M

80/F

45/M

45/M

Vascular
Territory

LMCA

LPCA

LMCA

RACA

LPCA

LMCA

LMCA

LMCA

RMCA

RMCA

LMCA

RMCA

RMCA

LMCA

R hemiparesis
LAA=Large artery atherosclerosis; OIC=Other identified cause; UC=Undetermined cause
* DWI sampled in 3 directions, b-value=1010 s/mm 2. PWI consists of 10 slices and 51 timepoints; t Gradient Echo EPI sequences
used for PWI at TR/TE=15000/50 ms; $ Early spontaneous reperfusion (<15 hours) as determined by serial MR perfusion studies.

Symptoms

Aphasia

Amnestic Syndrome

R hand weakness & slurred speech

L hand & L leg weakness

R homonymous hemianopia & pure
alexia w/o agraphia

R hemiplegia &mutism

R hemiplegia&aphasia

R hemiplegia&mutism

L weakness & hemineglect

L hemiparesis

Aphasia

L facial droop & pronator drift

L hemiparesis &plegia of leg

R homonymous hemianopia,

0

t6

7

8

9

*10

:11

t12

$13

t14

TOAST Classification

Cardioembolism

Cardioembolism

Cardioembolism

UC

Cardioembolism

LAA

LAA

UC

LAA

Cardioembolism

Cardioembolism

OIC (balloon occlusion)

OIC (dissection)

OIC (dissection)

Initial
DWI/PWI

(hrs)

4

4

6

5.5

3

7

4

5

10

3

6

11

4

7

F/U T2
(days)

5

6

5

7

5

8

178

44

379

11

54

7

57

58

F/U T2
Volume

(cm')

86.7

0.41

5.3

2.2

22.9

130.1

83.9

58.7

96.6

1.2

21.7

32.8

18.9

92.2



when selecting covariates, independent parameters, rT 2, rADC, rCBF and rCBV were considered
first for inclusion followed by the higher order covariates of rDWI and rMTT. For purposes of
comparing the two techniques, combinations of DWI and PWI identical to those created for the
thresholding algorithms were generated for the GLM algorithms.

To validate the performance of the GLMs, a jack-knifing approach was followed wherein the
coefficients for each patient's algorithms were calculated using the other patients in the study as
training data (39). Jack-knifing was used to avoid bias that would otherwise occur if the
algorithm's performance was evaluated on the same data that was used to train the algorithm.
Using the calculated coefficients, the risk of a voxel of tissue going on to infarction was
calculated using Equations (4.1.1) and (4.1.2). The 95% confidence intervals for the computed
risks were computed from the parameters obtained from S-PLUS 3.4.

To evaluate the jack-knifing results for the GLM algorithms, we compared the computed
coefficients for each of the training datasets to determine if they were significantly different
(P ;0.05) from the coefficients obtained using a dataset containing data from all patients. The
average of the coefficients of the GLM algorithms obtained from the 14 training data subsets was
also compared with the coefficients of the aggregate GLM algorithm. Two-tailed Z-tests were
used for the statistical comparisons.

Thresholding Algorithms

For the thresholding algorithms, a strategy similar to that reported by Welch (23) was followed.
Tissue was classified as abnormal if the initial diffusion or perfusion values were greater than a
specified number of standard deviations from the mean value measured in the contralateral non-
infarcted gray matter regions. We generated tissue signature maps using images calculated from
the diffusion study (T,+ADC+DWI), images calculated from the perfusion study
(CBF+CBV+MTT), and combinations of images from both studies. For the combined study, we
generated signature maps using combinations of T2 and ADC with one perfusion parameter
(CBF, CBV or MTT) and all six parameters (T2+ADC+DWI+CBF+CBV+MTT). The
combinations of the parameters used for the thresholding algorithms were selected to be identical
to the combination of parameters used in the GLM algorithms for the purpose of comparing the
two techniques. For creating signature maps, a threshold of 2 standard deviations from the mean
of the contralateral values was used. Each of the resulting signatures was taken to represent a
different "state" of infarction. Voxels not meeting any of the threshold criteria were given a
"normal" signature. For the thresholding algorithms, which are based on an unsupervised
approach not requiring training data from other subjects, the non-normalized datasets were used.

Evaluation of Algorithm Performance

For evaluating the accuracy of the thresholding and GLM algorithms, the same infarcted and
non-infarcted regions used in the training of the GLM algorithms were used. The performance of
each of the algorithms was evaluated on its ability to accurately discriminate the infarcted from
non-infarcted regions in the ipsilateral hemisphere. By comparing the predicted maps with
lesions demonstrated on follow-up conventional MR images, the number of voxels predicted to
infarct that actually did infarct (true positives or TP), and the number that did not infarct (false
positives or FP) were tabulated. In addition, we tracked the number of voxels predicted not to
infarct that remained non-infarcted (true negatives or TN) as well as those that became infarcted

105



(false negatives or FN). From these counts, the algorithm's sensitivity or true positive ratio,
TPR=TP/(TP+FN), and specificity or true negative ratio, TNR=TN/(TN+FP), were calculated.
Receiver operating characteristic (ROC) curves were then generated for each algorithm by
plotting TPR (sensitivity) against the false positive ratio (FPR) (1-specificity). For thresholding
algorithms, the number of standard deviations was varied from -5 to 5 in 0.1 increments for all
parameters except MTT. For MTT cutoff values ranged from -10 to 10 standard deviations in
0.2 increments due to its larger range of values. For the GLM algorithms, the probability cutoffs
for classifying tissue to be infarcted were varied from 0 to 1 in 0.01 increments.

The area under the ROC curves (AUC) has been shown to represent the probability that an image
will be correctly ranked normal or abnormal and therefore used to assess the performance of
diagnostic systems (40). The AUC for the ROC curves for each patient was calculated using
numerical integration. The AUCs for the different algorithms were compared by paired one-
tailed Wilcoxon signed-rank tests. Values P50.05 were considered significant in all statistical
analysis. The performances of the algorithms were also compared at their optimal operating
points (OOPs) on the ROC curves (41). As defined by Halpern, (41) the OOP is the point where
the ROC curve is tangent to the highest line of slope:

(prevalence of disease) x (cost of false - positive result)
1 - (prevalence of disease) (cost of false - negative result)

By assuming equal prevalence of infarcted (0.5) and non-infarcted (0.5) voxels and equal costs
of false-positives and false-negatives, the OOPs for the ROC curves were determined
numerically by finding the points on the ROC curves where the slope=1.

Results

Generalized Linear Model Algorithms

Based on the Akaike Information Criterion (AIC), GLM algorithms using different combinations
of the possible six input parameters were evaluated and compared using data from all fourteen
patients. Out of the independent parameters, rCBF resulted in the greatest reduction in the AIC,
followed by rT2, then rADC and finally rCBV. Adding the higher order terms, rDWI and rMTT
resulted in a further reduction of AIC and were therefore included in the combined diffusion and
perfusion GLMs. Therefore, the optimal GLM algorithm by the AIC requires all six parameters.
However, for the purpose of comparison, the GLM coefficients for all possible 63 GLMs were
calculated. A subset of these 63 GLMs that performed best in terms of sensitivity and specificity
are shown in Table 4.1.2 along with the standard errors for the estimates of each parameter. The
coefficients and intercepts for the aggregate GLM algorithm were not significantly different
(P>0.5) from the mean of the coefficients across the 14 subjects. However, the coefficients and
intercepts for some parameters in individual patients showed significant differences (P 0.05)
from the aggregate GLM algorithm demonstrating the potential effects of training data on
algorithm development.
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Table 4.1.2 Coefficients of GLM algorithms for all 14 subjects.

Algorithm X rT, rADC rDWI rCBF rCBV rMTT

rT2+rADC+rDWI -10.0±0.2 -2.9±0.2 4.9±0.2 6.7±0.2 ... ... ...

rCBF+rCBV+rMTT -1.2±0.06 ... ... ... -1.2±0.09 -0.02±0.06 0.6±0.03

rT,+rADC+rMTT -3.6±0.06 4.4±0.08 -3.5±0.07 ... ... ... 0.9±0.02

rT2+rADC+rCBF+rCBV -1.6±0.05 4.4±0.08 -3.3±0.07 ... -3.0±0.06 1.2±0.04 ...

Combined Algorithm -11.7±0.2 -3.0±0.2 5.9±0.2 7.1±0.2 -1.2±0.1 0.05±0.06 0.7±0.03

The columns labeled rT2, rADC, rDWI, rCBF, rCBV and rMTT represent the mean and standard error of the weighting
coefficient for each respective parameter when utilizing all 14 patients for the training data set. The column labeled a is the
bias or intercept term. Dashed lines indicate the parameter was not used for a particular multivariate algorithm. Each row
represents the coefficients for the different GLM algorithms investigated.

Table 4.1.3 Optimal operating points for thresholding and GLM algorithms.

Cut-off
Algorithm Values Specificity Sensitivity

Thresholding T2+ADC+DWI 2.2 0.87 0.54

CBF+CBV+MTT 1.6 0.64 0.72

Combined Algorithm 2.7 0.83 0.66

GLM T2+ADC+DWI 34 0.90 0.50

CBF+CBV+MTT 28 0.65 0.71

Combined Algorithm 32 0.84 0.66

OOPs for each model and their associated
cut-off values used for classification of
infarcted and non-infarcted voxels are
shown. The cut-off values are in number
of standard deviations for the thresholding
algorithm for all parameters with the
exception of MTT. The cut-off threshold
of MTT was twice the standard deviations
of the other five parameters. The cut-off
values for the GLM algorithm are in
percent risk of infarction. The third
column and fourth represents the
specificities and specificities at the GOPs
for each of the algorithms.



ROC Analysis

Figure 4.1.1 shows the ROC curves of the pooled results from the (A) thresholding and (B) GLM
methods across all fourteen patients for the multivariate and univariate GLM algorithms. For
both approaches, the multivariate GLM algorithms performed better than the univariate GLM
algorithms as measured by higher ROC curves. Furthermore, GLM algorithms that combined
diffusion and perfusion data performed better than the rT 2+rADC+rDWI or rCBF+rCBV+rMTT
GLM algorithms as shown by the higher ROC curves.' The full six-parameter "Combined
Algorithm" has a higher ROC curve than GLM algorithms using only rT2+rADC+rMTT or
rT2+rADC+rCBF+rCBV parameters, consistent with the AIC results. For the diffusion and
perfusion based GLM algorithms, the multivariate algorithms provided the best performance in
terms of ROC curves and therefore the univariate diffusion and perfusion studies are not
discussed in further detail in this study. Out of the combined algorithms, the algorithm using all
six parameters provided the best performance and therefore the other combined algorithms are
also not discussed in the remainder of this study.

Algorithms using only perfusion imaging appear to have greater sensitivity in regions of low
specificity (FPR>0.3). For algorithms using only diffusion imaging, the reverse appear true, that
is the diffusion-based algorithm had greater sensitivity than perfusion-based algorithms in ranges
of high specificity (FPR<0.3). When perfusion and diffusion values are combined concurrently,
an overall increase in sensitivity is obtained. Table 4.1.3 shows the specificities associated with
the OOPs for both thresholding and GLM algorithms along with their corresponding
sensitivities. The OOPs are comparable for both thresholding and GLM algorithms. For both
algorithms, from the ROC curves shown in Figure 4.1.1, the "combined algorithms" have the
greatest sensitivities at each of the specificities listed in Table 4.1.3.

From Figure 4.1.1, one sees that both thresholding and GLM methods produce similar ROC
curves when pooling results across the fourteen subjects. ROC curves were also generated on an
individual patient basis and the area under the curves (AUC) calculated. The differences
between the multivariate algorithms' AUCs were calculated for the thresholding and GLM
algorithms. For the thresholding algorithm, the "Combined Algorithm" had significantly higher
AUCs than the diffusion-based algorithm (T2+ADC+DWI) (P=0.02) indicating better overall
performance of the combined threshold algorithm over the initially proposed diffusion-only
thresholding algorithm (23-26). The difference between the "Combined Algorithm" and
CBF+CBV+MTT threshold algorithms were not significant (P=0.21). No significant difference
was found between the performances of threshold algorithms based purely on diffusion
(T2+ADC+DWI) and those based purely on perfusion (CBF+CBV+MTT) (P=0.52). For the
GLM algorithms, the "Combined Algorithm" showed a significant improvement over diffusion
based algorithms (rT2+rADC+rDWI) (P=0.02) and perfusion based algorithms
(rCBF+rCBV+rMTT) (P=0.04). There was no significant difference between multivariate
diffusion and multivariate perfusion GLM algorithms (P=0.50). The lack of difference between
the diffusion and perfusion algorithms for both GLM and thresholding algorithms is most likely
because diffusion algorithms have lower sensitivity at low specificity than perfusion algorithms
but higher sensitivity at high specificity which may in turn translate into equivalent AUCs.

5 In the interest of clarity, only the ROC curve of the single diffusion, perfusion combinations with the highest curve
is shown. This was the model combining T2, ADC and MTT.
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Figure 4.1.1 Performance of
(A) thresholding and (B)
GLM methods pooling
results across fourteen
patients. For both methods,
the perfusion-based maps
(rCBF+rCBV+rMTT) appear
more sensitive than the
diffusion based maps
(rT 2+rADC+rDWI) at values
of high FPR. The
multivariate algorithms tend
to have a higher ROC curve
than the univariate
algorithms. When diffusion
and perfusion data are
combined either singly
(rT2+rADC+rMTT) or
multiply (rT2+rADC+rCBF
+rCBV or "Combined
Algorithm"), an overall
increase in sensitivity in
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Differences between the AUCs for the GLM algorithms and their corresponding threshold
algorithm counterparts were calculated and compared. The GLM and thresholding algorithms
using diffusion data (P=0.33), perfusion data (P=0.64) or combined algorithms (P=0.27)
performed comparably.

Example Cases

Figure 4.1.2 shows the acute imaging studies and thresholding maps for Patient 14. The tissue
signature maps are the results of using only hyperacute diffusion data (T2+ADC+DWI),
hyperacute perfusion data (CBF+CBV+MTT) and combining all six input parameters
("Combined Algorithm"). The diffusion-based algorithm, though identifying a smaller region at
risk of infarction in the ipsilateral hemisphere than either the perfusion-based algorithm or
"Combined Algorithm", also demonstrates an abnormal signature in the contralateral
hemisphere. Abnormal tissue signatures in the perfusion-based algorithm are predominantly
limited to the ipsilateral hemisphere although they encompass an area much greater than the
follow-up infarct volume. Because misclassifications are cumulative in the thresholding
algorithms, the results in the combined diffusion and perfusion algorithms have similarly high
sensitivity but poor specificity as that shown for the perfusion based algorithms. However, a
greater number of tissue states exist in the combined algorithm resulting in greater heterogeneity
than those based on algorithms incorporating only diffusion or perfusion information.

Figure 4.1.3 shows the results of the GLM algorithms using the same imaging data as shown in
Figure 4.1.2. One again observes that algorithms utilizing diffusion alone (rT2+rADC+rDWI)
underestimate the follow-up infarct volume. Maps using only perfusion information
(rCBF+rCBV+rMTT) overestimate the follow-up infarct volume. The "Combined Algorithm",
however, predicts an area at high risk of infarction, as evidenced by the red-yellow region, that
correlates well with the follow-up lesion areas as demonstrated on the two month follow-up T2
FSE image shown in Figure 4.1.2. In addition, for all algorithms, the regions predicted to be at
high risk of infarction are predominantly localized to the ipsilateral hemisphere as compared to
the results of the thresholding algorithm.

The results of applying the statistical algorithms to a patient with early reperfusion as defined by
follow-up perfusion studies are shown in Figure 4.1.4. The acute MRI studies for Patient 11
appear normal with the exception of decreased CBF and increased MTT in the left temporo-
parietal lobe. The imaging study eight hours later show a slight diffusion abnormality in the area
shown abnormal in the initial perfusion study. However, the remaining perfusion defects appear
to have resolved as demonstrated by the CBF and MTT maps, suggesting the occurrence of
spontaneous reperfusion. Both the thresholding and the GLM based risk maps over predict the
follow-up infarct volume in the two-month follow-up T2 FSE. The resolution of much of the
abnormalities in the follow-up imaging study was consistent with the patient's improved clinical
outcome.
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Figure 4.1.2 Initial imaging data and thresholding results for Patient 14. Shown are the acute diffusion and perfusion studies
acquired within 7 hours since patient was last seen asymptomatic. Signature maps were created using initial T2, ADC and
DWI data, initial CBF, CBV and MTT values and combining all six variables T2, ADC, DWI, CBF, CBV and MTT. The
first two signature maps have 8 possible signature values, and the last maps 64 values as indicated by the different colors in
the adjacent color bars. Each color represents a different tissue signature or state. The two-month follow-up T2 FSE image is
shown for comparison.



Figure 4.1.3 Predicted risk of infarction maps overlaid on the two-month follow-up T2
FSE for Patient 14. The maps were generated from the hyperacute data shown in Figure
4.1.2. Overlaid values are the probability tissue will go on to infarction, with blue areas at
low risk of infarctions and yellow areas at high risk of infarction. The first row shows the
probability of tissue becoming infarcted. The second and third rows are the lower and
upper 95% confidence limits respectively for the risk estimates shown in the first row. For
clarity, voxels with less than 30% probability of becoming infarcted are not shown. The
first column are the results of using only diffusion data as predictors (rT2+rADC+rDWI),
second column are the results of using only perfusion data as predictors
(rCBF+rCBV+rMTT) and the third column are the results of combining all six input
parameters (rT2+rADC+rDWI+rCBF+rCBV+rMTT). The area at risk depicted by the third
column correlates best with the two-month follow-up lesion area shown in Figure 4.1.2.
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Figure 4.1.4 Predicted risk of infarction maps for a patient with early spontaneous
reperfusion. Both the thresholding and the GLM based risk map over predict the
follow-up infarct volume as reflected by a two-month follow-up T2 FSE.
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Discussion

Our results demonstrate the feasibility of generating, on a voxel-by-voxel basis, quantitative
predictive maps of tissue outcome utilizing acute MRI images. These results are consistent with
earlier studies that show that tissue predictive algorithms can combine on a voxel-by-voxel basis
multiple image modalities successfully into a single map of tissue status (23-26). This study
extends these earlier algorithms in two ways. First, the algorithms based on thresholding were
extended to include perfusion information. Second, tissue signature algorithms were extended to
provide a voxel-by-voxel prediction of the viability of brain tissue in a "risk maps" using a
generalized statistical approach.

Combined diffusion and perfusion algorithms

By extending tissue signature algorithms based on thresholding to include perfusion information,
our results show that such inclusion improves the predictive power of signature maps. While
only a trend towards improved performance was demonstrated in the case of the combined
thresholding algorithm over the perfusion-based algorithm (P=0.21), we believe that further
optimization of the threshold approach and refinement in interpretation of results would improve
its utility. Although statistical significance was not found in the AUCs for the multivariate
diffusion-based algorithm compared to the multivariate perfusion-based algorithm using either
thresholding or GLM, the ROC curves demonstrate the difference between the diffusion-based
and perfusion-based algorithms in their tradeoffs between sensitivity and specificity, a
characteristic not evident in simple AUC indices (42). Diffusion-based algorithms were
observed to have higher sensitivity in regions of high specificity or low FPR whereas perfusion-
based algorithms have higher sensitivity in regions of low specificity. Combined algorithms
appear to provide the best trade-off in terms of maintaining high sensitivity at high specificity.

The high specificity of diffusion-based algorithms is not unexpected due to the association
between high risk of infarction and changes in diffusion parameters which are believed to detect
tissue with altered cellular water homeostasis caused by severe energy depletion and breakdown
in Na+-K+ pump activity (22, 26). The level of sensitivity of diffusion-based algorithms is time
dependent; less sensitive at very early imaging times before DWI reaches its maximum, and
more sensitive hours later when DWI lesion size approaches the "final" infarct size. However, a
simple reduction of ADC may not be a marker for irreversibly injured tissue and indeed a set
"threshold" for irreversible ADC reductions may be difficult to determine as the threshold varies
as a function of depth and duration of ischemia (22). The perfusion parameters, on the other
hand, presumably reflect the state of nutritive flow to the voxel of tissue. The lack of specificity
but high sensitivity in perfusion-based algorithms may be attributed to the presence of
metabolically viable hypoperfused tissue at flow levels below the threshold for electrical
neuronal failure (43). The likelihood for tissue to infarct is a combined function of the degree
and the duration of blood flow reduction, which have been shown to vary spatially and
temporally (43-46). Therefore, perfusion-based algorithms may also have a similar level of time-
varying sensitivity and specificity, which varies on a voxel-by-voxel basis.

GLM algorithms

Of the two techniques examined in this study for combining diffusion and perfusion information,
the GLM method may provide results that are straightforward to interpret as additional
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parameters are included in the algorithm. In initial thresholding algorithms, a key feature was the
ability to assign each tissue signature based on imaging to a possible physiologic state of the
tissue. However, with the addition of multiple parameters, each additional term exponentially
complicates output interpretation since the signature maps create additional states whose
biological significance is not necessarily clear. Nevertheless, thresholding algorithms may
provide unique insight regarding heterogeneity of the ischemic lesion at any single point in time.
Further investigations correlating evolution of these signatures with histology may provide
insight into the pathophysiologic significance of the different signatures. GLM algorithms, on the
other hand, provide the risk of the tissue infarcting as a continuous variable that ranges between
0 and 1 and therefore, as stroke evolves, the risk of individual voxels of tissue can be monitored
quantitatively by a single variable. The recruitment of voxels in the presumed "ischemic
penumbra" might therefore be quantified as the change in risk in the peripheral areas from low
probability to high probability over time.

In this study, algorithms were trained on data from patients who did not receive thrombolytic or
neuroprotective therapy. The two patients with spontaneous reperfusion were specifically not
excluded from the training set since their inclusion were believed to be a better reflection of the
naturally occurring ischemic stroke patient population where spontaneous reperfusion has been
detected within 24 hours after symptom onset in 24% of patients using transcranial doppler
ultrasound (47). Therefore, these algorithms' predictions seem likely to be based on the natural
evolution of ischemic tissue undergoing infarction. However, the training set is small, and
therefore does not yet capture the full range and frequency of stroke evolution possibilities. For
example, if in a new patient an event occurs to interrupt the progression of ischemic damage as
quantified from the training patient data, the probability of infarction of individual tissue regions
may change greatly. This was apparent in the case of Patient 11, who exhibited spontaneous
reperfusion (Figure 4.1.4). For such circumstances progression of infarct lesion size have been
shown to be diminished (15, 48-50). A similar change in probabilities might be seen after
successful therapeutic reperfusion, or after administration of an effective neuroprotective agent.
This method therefore appears to provide a technique that might be used to monitor this change
in risk quantitatively. Were this approach to be validated, the GLM approach could become a
useful statistical method for evaluating the efficacy of novel therapies, and possibly even develop
into a tool to help guide the choice of appropriate therapy for individual patients.

Future investigation

These results demonstrate in a preliminary fashion the feasibility of combining diffusion and
perfusion information into a single index of tissue risk. While collection of additional patient
data will make the specific algorithm parameters more robust, this would not necessarily change
the methodology presented for analyzing and quantifying this natural history data. On the other
hand, there are still many avenues of investigation for improving these algorithms. Clearly, the
retrospective aspect of this study limited the models. As demonstrated by the large variance of
lesion volumes and etiologies across patients in this report, prospective studies involving a
greater cohort of patients with standardized MR acquisition parameters and follow-ups at set
intervals are needed to further test the validity of the algorithmic approaches described here. For
example, an overestimation of "final" lesion volumes in some patients may have occurred due to
the possible presence of vasogenic edema at five-days post-ictus (51) resulting in the use of
wrongly classified voxels in the training and evaluation of our algorithms. In addition,
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inaccuracies in the coregistration may have introduced errors in both algorithm development and
evaluation. Although intrasubject studies have shown the average misregistration size to be less
than 1 mm, less than the voxel dimensions used in this study, the maximum misalignment has
been reported to be as large as 3.8 mm (36). This suggests that the GLM algorithms' results may
be inaccurate for cases involving small infarct volumes. The addition of acute clinical variables
as covariates may also improve GLM models' performances as has been demonstrated by
another study that predicted clinical outcome by combining imaging data with initial clinical
variables (52).

A priori assumptions in algorithm design, principally that the risk of infarction changes linearly
with the covariates, may also have negatively impacted the performance of both thresholding and
GLM algorithms. Several studies have shown that the risk of infarction does not change linearly
for some of the algorithm variables. For example, ADC has been well documented to first
decrease in acute cerebral ischemia before pseudonormalizing and increasing in the chronic stage
(9). This non-linear behavior may also hold true for perfusion metrics even in the hyperacute
stage. Recent studies have found both increased and decreased CBV in acutely imaged lesions
(<12 hours) that become infarcted as shown by follow-up MR studies (16, 19). The GLM
algorithms used in this study assume linear behavior. This suggests that additional investigations
of algorithms that take into consideration the nonlinear behavior of covariates may provide
improved performance.

Finally, there are a few additional technical limitations to our approach. Our models are almost
certainly limited because they do not account for the intrinsic anatomic variations in both normal
and pathophysiologic conditions. For instance, white matter may be misclassified as territory at
risk of infarction since its normal flow values fall within the ischemic range for gray matter.
Expert models that can differentiate white from gray matter, perhaps taking into consideration
fractional anisotropy, and apply the appropriate tissue specific model to obtain an assessment of
infarction risk can potentially compensate for this limitation.

4.2 Generalized Additive Models
Predictive models which combined diffusion and perfusion MRI have been previously shown to
provide more sensitive and specific detection of areas at risk of infarction in hyperacute cerebral
ischemia than models utilizing diffusion or perfusion alone (27). However, these combined
models had an optimal operating point of 66% sensitivity and 84% specificity. One of the
limitations of these models was the assumption of a linear dependence of the risk of infarction on
their input parameters. Several studies (19, 23), however, have suggested that the risk a voxel
will infarct may depend nonlinearly with measured diffusion and perfusion values. In particular,
areas that are infarcted in follow-up exams have been observed acutely to contain both
abnormally high ADC values, representing tissue that has already infarcted, and abnormally low
ADC values, representing tissue at risk of infarction (9, 23). Areas that are infarcted on follow-
up imaging studies have also been observed to consist of both low and high CBV values at the
acute stage (19). Therefore, models that do not take into consideration these pathophysiologic
variations may not perform optimally. This problem can potentially be overcome by using
different sets of models for handling different cases. In prospective studies, however, the
decision of which model is appropriate may not be clear. Instead, models whose functional form
are derived from their data, such as generalized additive models (GAM) (53), may provide better
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estimates of infarction state over models that assume an a priori linear dependence, such as
generalized linear models (GLM). The aim of this study therefore was two-fold: (1) to extend
linear predictive MRI models by generalizing them to handle nonlinear behavior and (2) to
examine if GAM algorithms provide an improved estimate of the risk of infarction over GLM
models.

Subjects and Methods

Patient inclusion criteria are the same as that reported in Section 4.1 describing the development
of GLM models. Using the imaging protocol and techniques described in the previous section,
maps of the EPI T2 image (T2), isotropic diffusion weighted image (DWI), apparent diffusion
coefficient (ADC), relative cerebral blood flow (CBF), relative cerebral blood volume (CBV),
and mean transit time (MTT) were calculated on a voxel-by-voxel basis. The diffusion and
perfusion maps were spatially coregistered using an automated image registration software
package, AIR 3.08 (35). Intensity values in each image were normalized by the mean value of
normal appearing regions in the contralateral hemisphere as described in Section 4.1 to reduce
"relative" values (rT2, rADC, rDWI, rCBF, rCBV, and rMTT).

Based on the results of the previous section which showed the best model in terms of the Akaike
Information Criterion included all covariates, GLM and GAM models of risk of tissue infarction
were generated combining T2, ADC, DWI, rCBF, rCBV, and MTT as input parameters. Models
were also generated using only independent parameters as input in order to evaluate the effects
of dependent variables on the results. The coefficients for the GLM and GAM for each patient
were calculated using the same jack-knifing approach described in the previous section to avoid
bias. For both algorithms, tissue outcome was modeled as a binary variable (infarcted/non-
infarcted), P, where the value I represented infarcted tissue and value 0 non-infarcted tissue. For
the GLM, coefficients were calculated using:

1
P = I(4.2.1)

1+ e

where q(x), the predictor is a linear function of its input parameters, x,

u(x) = a + #x (4.2.2)

and $, are again the elements of the vector of calculated coefficients and a the bias or intercept
term for the GLM. For the GAM, Equation 4.2.2 is generalized to no longer assume a linear
relationship:

q(x) = a + f (xi) (4.2.3)

wheref (x,) is a nonparametric function of x,, which for this study was a cubic B-spline. The risk
of infarction for each voxel was then calculated using the new predictor. The parameters for the
GAM for each patient were calculated using the other 13 patients' data for training using a
supervised learning algorithm using S-PLUS 6.0 (Insightful, Seattle, WA).
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The performances of the GAM and the GLM models were evaluated using the same ROC
analysis techniques described Section 4.1. The AUC for the ROC curves for each patient was
calculated using numerical integration. The AUCs for the GAM and the GLM were compared
using a paired one-tailed Wilcoxon signed-rank test. P<0.05 was considered significant.

Results

Figure 4.2.1 shows the calculated f(x), the relative contribution of x, to the total additive
predictor for the GAM for each of the covariates when using a model consisting only of the
independent parameters. In dashed lines, the GLM weighting parameters are also shown in
which eachf(xi) was assumed to be a linear operator. The predictor, 71(x), is the summation of
the individual ff(x) terms for a given rT2, rADC, rCBF and rCBV values plus an alpha onset
(ox=- 1 for both models). From the graphs, the risk of infarction increases with rT2. At very high
values, the risk of infarction for rT2 decreases slightly in the GAM. For rADC, low values of
rADC are associated with increased risk of infarction for both GAM and GLM. However, for
GAM models, normal to high values are do not reduce the risk of infarction whereas in the
GLM, normal to high rADC reduces the predicted risk of infarction. For rCBF, the GLM and
GAM perform similarly except for high rCBF values. In the GAM, the estimated risk of
infarction for high rCBF GAM
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behave opposite than in Figure 4.2.1 which is
potentially due to the presence of the non-
independent parameter of rDWI, a mathematical
combination of rADC and rT2. For rCBF values, low
values will produce a higher risk of infarction as can
be inferred by the negative slope. Comparable
performance is again seen between the GLM and
GAM models except for normal to high CBF values
where the GAM again exhibits nonlinear behavior.
Non-linear behavior is also seen with rMTT, where
comparable behavior is demonstrated for GAM and
GLM for lower values. However, for high rMTT
values, in the GAM, the slope is reduced compared
to the GLM. With the introduction of rMTT, the
contributions of both rCBF and rCBV to the
estimated risk of infarction are reduced with rCBV's
contribution becoming non-significant. In the GAM,
a non-linear transformation function is observed for
rCBV.
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Figure 4.2.3 shows the boxplot of the differences between the AUCs for the GAM versus GLM
for the 14 patients. The GAM had statically significantly higher AUC than the GLM (P=0.034).
The optimal operating points for both GAM (specificity=79% sensitivity=70% using a cutoff of
29%) and GLM were comparable (specificity=84%, sensitivity=66% using a cutoff of 32%).

Figure 4.2.4 shows an example case where GAM models provide better prediction of tissue that
eventually infarcts for a 33-year-old patient whom was imaged within 4 hours of presenting with
symptoms (Patient 7 in Table 4.1.1). Also shown are the acute imaging parameters. Both GAM
and GLM were thresholded at a risk of 30%. The GAM shows improved performance over the
GAM especially in the area surrounding the core of the infarct. However, the GAM provides
poorer performance in non-tissue regions as reflected by spots along edge of the brain.

Figure 4.2.4 Initial imaging data of acute stroke patient acquired within 4 hours of symptom
onset and predicted risk of infarction by GLM and GAM thresholded at their optimal operating
point of 30%. The GAM provides a better estimate of the lesion volume especially in the
periphery of the initial lesion volume.

Discussion

This study has demonstrated that the GAM, besides providing a more flexible model, may also
provide a more accurate estimate of risk of infarction than the GLM. The GAM may be of most
benefit over GLM in cases where biphasic behavior of the input parameters exists. This study has
also shown that the GAM may be useful in identifying non-linear behavior and may provide
insight into physiologic variation of risk of infarction with rT2, rADC, rDWI, rCBF, rCBV and
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rMTT. For rADC, in models consisting only of independent parameters (Figure 4.2.1), high
values of rADC in the GLM models reduce the estimated risk of infarction whereas in the GAM
models they have little effect. This apparently contradicts the well-documented association of
elevated ADC with infarct lesion in the chronic stage. However, since the study was a priori
limited to hyperacute stroke patients presenting within 12 hours, it is likely that the training data
did not have enough representative points for the GAM to detect a positive correlation of risk of
infarction with elevated ADC. We speculate that if future studies were to include chronic as well
as acute stroke patients in their training data, a GAM algorithm may perform better than a GLM
algorithm, which would not be able to take into consideration such non-linear behavior.

Besides providing a quantitative estimate of individual voxels of tissue's risk of infarction, both
GLMs and GAMs may provide insight into the relative weights of the different input parameters
in estimating the risk of infarction. For example, the diffusion parameters (rDWI, rADC and rT2)
have the greatest weight in terms of estimating which tissue may become infarcted if the
ischemic cascade is allowed to proceed unimpeded. These parameters are followed by the
perfusion parameters (rCBF, rMTT and rCBV) in weight with rCBV being statistically
insignificant in the combined algorithms used in this study. Care needs to be taken when
examining the weighting parameters of the models, however, since the input parameters are not
independent. As a result, aliasing and marginality constraints should be taken into account (37).
For example, the combined diffusion coefficients (Table 4.1.2 and Figure 2.2.2) suggest that
increased rADC and reduced rT2 are positive risk factors in the hyperacute state, which is
inconsistent with the generally observed behavior of reduced ADC in the acute stroke setting (9,
12, 54). However, when GLM models using rADC and rT2 are examined without rDWI (Figure
4.2.1), the risk of infarction is negatively correlated with rADC, and positively correlated with
rT2, both consistent with expected physiologic behavior. This inconsistency is likely due to the
interactions of the non-independent variables, rDWI with rADC and rT2. Because the covariates
are themselves correlated, the partial correlations may be different from the marginal
correlations. In addition, parameters that are significant in univariate models may lose their
significance when combined with other covariates, as in the case of rCBV when combined with
rCBF and rMTT. For this reason, in the model selection process, care was taken to consider the
independent covariates first before including the dependent variables, rDWI and rMTT, which
are mathematical combinations of the other parameters. By analyzing the independent
parameters first separately, one finds that each of the parameters contribute significantly to the
models, and indeed may be useful in understanding the biological state of the tissue. Therefore,
although rCBV information may not significantly improve the prediction of infarction in the
combined diffusion and perfusion model, it may still be an independent indicator of tissue status
and therefore useful for clinical decision-making.

One of the limitations of the GAM is its increased computational complexity due to its use of
nonparametric functions that are derived from the data using smoothing functions (55). Piece-
wise linear models may provide a compromise between computational complexity with
modeling of non-linear behavior. Another limitation to both the GAM and GLM models is that
both models do not take into account intrinsic anatomic variations in both normal and
pathophysiologic conditions. The GAM models may still fail in distinguishing normal white
matter from ischemic gray matter. Expert models that can differentiate white from gray matter
from CSF may potentially compensate for this still existing limitation.
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4.3 Hierarchical Mixture of Experts
A limitation of the GLM and GAM algorithms is that the intrinsic variations in both normal and
pathophysiologic states are not taken into account. Utilization of a hierarchical mixture of
experts (HME) system is postulated to provide better prediction than a single-layer GLM since
measured DWI and PWI values show dependence on tissue type. Using a mixture of experts in
which each tissue type will be analyzed by its own expert may improve the accuracy of the
prediction. For example, normal white matter CBF values are at ischemic levels for gray matter
and thus, white matter may need a different statistical model of infarction risk than gray matter.
A mixture of experts approach may potentially handle this need for separate models. The
purpose of this study is two-fold: (1) to develop predictive models using a hierarchical mixtures
of experts architecture and (2) to compare the performance of HME models with the GLM
models developed in Section 4.1. We hypothesize that a mixture of experts model will provide
improved prediction of tissue outcome than a single-layer GLM. We tested this hypothesis by
analyzing the predictive performance of both models on hyperacute stroke patients.

Subjects and Methods

HME Algorithms

The HME is a tree-structured architecture consisting of gating and expert networks (56), as
shown in Figure 4.3.1. (For an in depth discussion of HMEs see (56).) Briefly, the gating
networks calculate the a priori probabilities of which expert to use based on the values of the
input vector x. Each expert generates an output pi based on the input vector { x} and target output
vector y. The expert networks may themselves consist of other GLMs or HMEs. In this
application, pi is the probability of infarction. The expert networks are GLMs trained on a binary
target vector y.

The gating networks are also GLMs utilizing a multinomial density function. The a priori
probabilities of the top level i branches can be computed as:

e4.
gi=

k
where

VT(=vi x,

that is also a function of the input vector. The lower levels j for each i level are computed
similarly:

e

k
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X={T2,ADC,DWI,CBF,CBV,MTT}

Expert I Expert 2 Expert 3 Expert N

Gating
Network

Y=Probability(Infarction)

Figure 4.3.1 Architecture for a Hierarchical Mixture of Experts whose top layer
consists of N experts. Each expert can be another HME or single layer GLM.

with

ij = vT x.

The output Y is then the sum of the output of the individual experts weighted by the gating
functions:

i j

where:

1
Fij o + ewok c

For training, the posterior probabilities of each network can then be represented as follows:
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h.=
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where

PV;y) = p '- 1-p

assuming y is the known output given an input vector x.

The Expectation-Maximization (EM) algorithm was used for updating the HME parameters as
described in (56). As the expectation step, hi and hjjj for the current parameters are calculated. In
the maximization step, the parameters are updated using the t training samples as follows:

W = arg maxI h(!) In J)(y(t))
WII t

v = arg max ht)In gt)
Vi t k

v;j = arg max Y (t)

4, t k /

where h1 =hhJi,. These three network parameter equations can be solved using IRLS. For the
weight parameters, Wij, a logistic function is used since each expert consists of a GLM. For the
gating functions, vi and v,,, a softmax function is used as the link function in order to handle the
multinomial distribution of the gating networks. The EM steps are repeated until the parameter
values converge.

A two-layer HME consisting of three experts at the top branch and four experts in each sub-
branch was used resulting in a total of 12 experts. Each expert was a GLM model.

Patient Selection and Image Acquisition

Patient inclusion criteria are the same as that reported in the previous sections describing the
development of GLM and GAM models. Using the imaging protocol and techniques described
in the previous section, maps of the apparent diffusion coefficient (ADC), relative cerebral blood
flow (rCBF), relative cerebral blood volume (rCBV), and mean transit time (MTT) were
calculated on a voxel-by-voxel basis. The diffusion and perfusion maps were coregistered using
an automated image registration software package, AIR 3.08 (35). Intensity values in each
image were normalized by the mean of its contralateral hemisphere.
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Two sets of training data were used to evaluate the potential of the HME to discriminate different
tissue types. The first set of training data used the same data to train the GLM and GAM in
Sections 4.1 and 4.2 (ROI). The second set of training data consisted of all outlined follow-up
lesion values assigned the value 1 and all other tissue voxels in the image assigned the value zero
(ALL). This dataset was also subsampled. The HME and the GLM were trained on the two-sets
of data and performances evaluated using jack-knifing routines described in Section 4.1.

Evaluation of Algorithm Performance

ROC analysis as described in Section 4.1 was performed for the predicted infarct volumes from
GLM and HME algorithms. Section 4.1 has already demonstrated the superior performance
obtained by combining DWI and PWI values and as result, in this study, analysis will be limited
to combined DWI and PWI models. The AUC for the ROC curves for each patient was
calculated using numerical integration. The AUC for the ROC curves were compared using
paired one-tailed Wilcoxon signed-rank test. P<0.05 was considered significant. The optimal
operating points were also calculated and presented to the nearest significant digit.

Results

Figure 4.3.2 shows the boxplots of the differences between the AUCs for the HME versus the
GLM when trained using user outlined lesions and normal regions constrained to the ipsilateral
hemisphere (ROI) (same used in Section 4.1) and when trained using the whole brain (ALL). No
statistical difference was found between the HME and GLM when trained using only the
ipsilateral tissue data (P=0.48) whereas when trained using the whole brain the HME performed
significantly better (P=0.034).

Figure 4.3.3 shows the HME and GLM
prediction for Patient 1 using regional
subsets (ROI) and the whole brain (ALL) for
training. One sees that sees that the areas
predicted to infarct appear brighter on the
HME models, and hence with greater
probability than the GLM model for both
training data sets. In addition, the optimal
operating points were found to be 30% and
5% when training with ROI and ALL
respectively. It is also evident that training
with data whose normal values were not
constrained to the ipsilateral hemisphere
(ROI), a better estimation of tissue outcome
in the normal contralateral hemisphere as
well as in CSF is obtained. One notes,
however, that normal white matter continues
to be misclassified as being at high risk of
infarction. It should also be noted that all
four models were able to acutely identify the
volume of tissue that infarcted based on
follow-up exam, albeit with different

U

0

0.40-

0.30 -

0.20 -

0.10 -

0

0.00

-0.10

-

ROI

Figure 4.3.2 Boxplot of differences between
AUCs for the HME and the GLM when using
only regions (ROI) of ipsilateral tissue for
training and using the whole brain for training
(ALL). HME had significantly higher AUC
(P=0.034) when training with the latter.
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Figure 4.3.3 HME and GLM predictions for Patient I using user outlined abnormal and normal
regions (ROI) for training and user outlined abnormal and the remaining brain as normal (ALL)
for training. The optimal operating points for the two training sets are 30% and 5% for ROI and
ALL respectively. The acute imaging data as well as the 5-day follow-up study are shown for
comparison.

degrees of certitude, as reflected by intensity of the risk maps.

Discussion

Based on these preliminary results, we have shown the feasibility of using an HME for
predicting tissue at risk of infarction. Furthermore, the HME architecture improves our estimate
of tissue at risk of infarction over a single-layer GLM. We speculate that this is due to multiple
experts handling different tissue subtypes. We have also demonstrated improved performance of
models trained using the entire infarct volume and entire remaining brain tissue with greater
specificity in identifying lesion volumes. When training with the infarct/remaining brain data
sets (ALL), the HME has significantly higher AUCs than the GLM model (P=0.034). The
models performed poorest for patients with small lesion volumes (Patients 2 and 10) perhaps due
to errors in the co-registration process. Additional evaluation using a larger patient population
involving larger volumes of tissue may provide a better assessment of the performance of these
models.

With the continued poor risk assessment of normal white matter, one suspects that there does not
exist enough information to segment normal white matter from gray matter other than using flow
rates. However, normal white matter flow rates are equivalent to ischemic gray matter levels
which results in white matter voxels' continued misprediction. We therefore speculate that the
inclusion of anisotropy may help to segment gray and white matter tissue and therefore result in
more accurate estimates. Future investigations can also involve using GAMs as the experts rather
than GLMs, since based on the results of the previous section, GAMs appear to have more
accurate performance.
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4.4 Conclusions
Despite some limitations, we have shown that algorithms combining diffusion and perfusion
information can assess the risk of infarction at the acute stage with greater sensitivity and
specificity than algorithms using diffusion and perfusion information separately. Of the
combined algorithms studied, the HME may provide the preferred approach due to its potentially
greater ease of interpretation with its single index of risk and greater sensitivity and specificity
trade-off. While further investigation and algorithm refinement is necessary, this method for
quantitatively assessing the risk of infarction on a voxel-by-voxel basis shows promise as a
technique for not only gaining insight into the natural spatial temporal evolution of ischemic
damage in humans but also for evaluating the effects that novel therapies may have on this
process.
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Chapter 5

Evaluating novel acute stroke therapies with tissue
signatures

It's a poor sort of memory that only works
backwards.

-Lewis Carroll
(Through the Looking Glass)
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The use of imaging to assess outcomes in clinical trials remains controversial, even though pre-
clinical researchers in experimental models of cerebral ischemia commonly use it as an endpoint.
A typical proposed imaging endpoint in stroke investigation is the comparison of infarct volumes
between treatment and control groups. However, in humans, due to considerable inter-patient
variability in stroke severity and location, large numbers of patients are often necessary in order
to detect a statistically significant effect. Since intra-patient variability is presumably lower than
the inter-patient variability, statistical power may be increased if one measures change in lesion
size from baseline (1). Review of variability data from published studies indicate that when such
a compare-to-baseline approach is used for the analysis of acute ischemic stroke, the sample size
for detecting a given change can decrease by a factor of 5 or more (2). A logical extension
would be to compare individual voxels to their baseline state. Such a method might provide even
lower variability and thereby further increase the statistical power for detecting a treatment-
related change.

With the advent of new MRI techniques such as diffusion weighted MR imaging (DWI) and
perfusion-weighted MR imaging (PWI), early abnormalities can now be detected in the first few
hours after the onset of stroke symptoms. Both animal and human imaging have confirmed that
these techniques can identify tissue at risk of future infarction (2-12). These novel MR
techniques provide information about blood flow, blood volume, metabolic state, and vascular
permeability. However, the single best imaging modality for predicting tissue outcome has yet to
be defined.

The mismatch between diffusion (DWI) and perfusion weighted imaging (PWI) has been
proposed for use as an inclusion criterion in clinical trials because it has been hypothesized to be
an imaging surrogate for salvageable tissue (1, 12). This "mismatch", however, is typically
between the size of lesion volumes rather than between DWI and PWI values on an individual
voxel basis. Due to heterogeneity in both ADC (12-16) and flow values (2, 12, 17, 18) within
acute ischemic tissue, volumetric approaches comparing gross differences in DWI and PWI
lesion volumes may oversimplify the complex task of assessing tissue viability. A voxel-by-
voxel approach may be more sensitive in identifying salvageable tissue on an individual subject
basis.

An approach that attempts to incorporate multiple imaging modalities has been termed a tissue
signature model; an initial description of such an approach to stroke diagnosis included T2
weighted images and diffusion data (13). Since then, extensions to these models have been
developed which incorporate tissue perfusion parameters to evaluate the natural evolution of
stroke (19, 20). These models' predictions were validated either by histology in experimental
animal models of stroke (20-22) or by follow-up imaging in retrospective human studies (15, 19,
23). They have been shown to be better predictors of infarct volume than using single individual
modalities.

By predicting likelihood of infarction, tissue models can be used to evaluate the biological effect
of a novel therapeutic agent. By comparing the infarct volume on follow-up imaging studies to
the predicted infarct volume from baseline imaging, one can determine whether a treatment
reduces the predicted infarct volume and in which areas. Specifically, if initial imaging data
indicates that a given area of tissue (or voxel) has a 90% likelihood of proceeding to infarction in
the absence of therapy, this indicates that 9 out of 10 times the tissue in that voxel will be

134



infarcted on follow-up imaging. If such a voxel does not proceed to infarction, it could be a one-
in-ten chance occurrence. Alternatively, if hundreds such high-probability-of-infarction voxels
do not infarct, that would suggest that tissue deemed likely to infarct based on the natural history
of ischemic stroke, may potentially have responded to therapy.

We hypothesize that a novel intervention that reduces the amount of tissue that proceeds to
infarction in a dose-dependent manner may result in a modification of the model accuracy. The
expected outcome, infarction, may not occur, due to modification of the natural progression of
the disease by the novel therapy. Specifically, we hypothesized that an efficacious treatment
would produce a reduction in the predictive performance of tissue signature models as a function
of effective dose. To test this hypothesis, this chapter examines the positive predictive
performance of an extended tissue signature model (19) in a group of patients participating in a
dose-escalation phase II study of a neuroprotective agent, basic fibroblast growth factor.

5.1 Preliminary evaluation of basic fibroblast growth factor (bFGF)
using predictive tissue models

Subjects and Methods

Patient Enrollment and Treatment

Basic fibroblast growth factor (bFGF) is an 18 kiloDalton, 154 amino acid polypeptide that is
found in the brain and has potent trophic effects on brain cells (24). In particular, bFGF protects
brain neurons against a variety of toxins and insults, including anoxia, hypoglycemia, excitatory
amino acids, free radicals, and nitric oxide, among others (25, 26). Preclinical studies have
shown that the intracerebral or intravenous administration of bFGF reduces infarct size in animal
models of stroke (27-30). This large protein, administered intravenously, crosses the damaged
blood brain barrier to penetrate ischemic brain tissue (27). The mechanism of infarct reduction
appears, in part, to depend on upregulation of anti-apoptotic proteins in the ischemic penumbra
(31). As a result of these preclinical data, a human clinical safety trial of intravenous bFGF was
undertaken.

Sixty-six patients were entered into a phase I/LI trial of bFGF, Fiblast ® (Scios Inc., Mountain
View, CA), in acute stroke at seven centers. This trial was a double-blind, randomized, placebo-
controlled, dose-escalation, three month follow-up study of intravenous infusion of human
recombinant bFGF in patients with major thromboembolic ischemic infarction within 12 hours of
the onset of symptoms. Each patient or an appropriate family member provided informed
consent. All procedures were approved by the hospital's Subcommittee on Human Studies.
Patients were randomized to receive a 3-hour intravenous infusion of either placebo or one of six
different doses of bFGF ranging from 9 to 150 pg/kg. Eleven patients were enrolled at this
institution. Their demographics and lesion volumes are shown in Table 5.1. Four of the eleven
patients were excluded due to incomplete acute data sets. Each of the remaining seven patients
underwent serial diffusion and perfusion MR imaging prior to treatment according to the
protocol described below within the first 12 hours of symptom onset, and follow-up imaging at
discharge.
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Image Acquisition

For this study, the imaging protocols described in Chapter 4 were followed.

Model Development

A generalized linear model (GLM) of risk of tissue infarction was used to generate estimates of
risk of tissue infarction in patients with acute ischemic stroke due to large vessel embolic or
thrombotic disease. In GLM models, tissue outcome, P, was modeled as a binary variable
(infarcted/not infarcted). The risk of tissue becoming infarcted can then be estimated by the
logistic function:

1
P (5.1).

where P is an estimate of the risk of infarction, x represents the input vector consisting of the
initial diffusion and perfusion imaging data and P is the vector of weighting coefficients for each

parameter. The calculation of these coefficients have been described in the previous chapter and
was derived from the analysis of acute and follow-up studies in fourteen patients not enrolled in

treatment trials or treated with thrombolytic agents. Table 5.2 shows the coefficients used in the
analysis in this study.

Table 5.2: Standardized coefficients of the GLM model.

U rT2  rADC rDWI rCBF rCBV rMTT
-11.7 -3.0 5.9 7.1 -1.2 0.05 0.7

The column labeled a term is an intercept term constant for all voxels. The other

columns represent the weighting coefficient for each respective parameter.

Maps of the risk of infarction for the seven patients receiving initial DWI and PWI were
calculated using coregistered initial data sets and the GLM model. Voxels were classified as
likely to infarct if their risk were greater than a prespecified threshold or risk level. The number

of voxels that was correctly predicted to infarct (true positives or TP) was counted as well as the

number of voxels incorrectly predicted to infarct (false positives or FP). The positive predictive
value (PPV) was obtained by calculating the ratio of TP/(TP+FP). The pre-specified risk level

was selected based on previously reported results from fourteen patients not enrolled in the bFGF
trial (19). From this previous study, the optimal operating point (32) of the GLM algorithm was

found to occur at a probability cutoff of 32% assuming equal prevalence of infarcted and non-
infarcted tissue voxels and equal costs of false positives and false negatives (19). At this risk
threshold, the GLM algorithm achieved 66% sensitivity and 84% specificity. Therefore a risk
threshold of 32% was used in this study.

The PPV of the model was calculated for each patient by comparing predicted infarct volume
with the lesion volume demonstrated on an axial T2-weighted FSE study acquired prior to
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Table 5.1 Patient demographics, bFGF dosage, acute DWI and follow-up (F/U) T2 FSE lesion volumes and NIH
Stroke Scale scores at admission and at discharge and 3 month Barthel Index.

Patient Age/ Dosage Initial Scan Follow-up Initial DWI F/U T2 NIH SS NIH SSS Barthel
Sex (pg/kg) (hours) (days) (cm 3) (cm 3) (Initial) (Discharge (90-day)

1 68/M Placebo 9 5 7 6 4 2 100

2 63/M Placebo 9 6 55 88 9 2 100

3 79/M 9 8 7 18 14 15 5 75

4 80/F 27 9 7 102 207 15 11 35

5 75/F 75 6 4 20 26 6 1 100

6§ 58/F 150 7 13 134 289 16 14 100

7 74/M 150 8 19 25 16 17 12 20

8* 77/M 75 6 8 9 6 4 2 100

9* 41/M 3 3 3 31 52 2 2 (died)

10* 33/M 75 5 5 2 7 4 3 100

11* 78/M Placebo 9 7 169 148 18 20 (died)

*Incomplete initial MRI examinations.
§Gradient-echo EPI sequences used for PWI.



discharge. To assess PPV, matching volumes of lesion and "normal" voxels need to be selected.
For example, a degenerate algorithm that classified all voxels as infarcted would do well in cases
where the lesion volume is greater than the "normal" volume compared to cases with the reverse
situation. The performance of the model would then depend on the size of the lesion volume and
make interpatient comparisons infeasible. By a priori constraining the number of total normal
voxels to equal the number of total abnormal voxels, a minimum performance of 50% is obtained
in the case of degenerate models regardless of the size of the lesion volume. Follow-up T2 FSE
lesion regions of interest for performance evaluation were selected by a neuroradiologist blinded
to treatment regimen using a semi-automated image processing software (Alice, Hayden
Systems/Parexel, Waltham, MA). For patients with very large infarcts (for example, greater than
100 cc) where the number of abnormal voxels was greater than the number of normal voxels in
the ipsilateral hemisphere, in order to reduce without bias the number of abnormal voxels, care
was taken to limit the lesion to areas that did not appear abnormal on the initial T2 scan. This
was under the assumption that tissue already demonstrating T2 prolongation was likely already
infarcted and therefore would not benefit from a neuroprotective agent. A matching number of
non-infarcted voxels were selected in areas surrounding the lesion in the ipsilateral hemisphere
that appeared normal in the follow-up T2 FSE.

Endpoints

Preliminary clinical efficacy was measured using change in NIH Stroke Scale score (NIH SSS)
measured at admission compared to that reported at discharge. Patients were classified with an
improved outcome if the NIHSSS decreased by more than four points. 2 x 2 contingency tables
were computed for the placebo versus the bFGF treated patients and a two-sided Fisher's Exact
test performed. P<0.05 was considered significant.

We first sought to correlate the dose of bFGF with total size of follow-up lesion volumes, a
traditional imaging endpoint. Lesion volumes were selected and measured in the coregistered
acute DWI and T2 follow-up using a semi-automated image processing software package (Alice,
Hayden Systems/Parexel, Waltham, MA). Follow-up lesion volumes were plotted as a function
of dose and linear regression performed to determine if a significant trend existed. We performed
similar dosage analysis for percent change between initial DWI lesion volume and follow-up
lesion volume. The dose of bFGF was also correlated with the positive predictive value of the
GLM generated risk maps. Pearson's product-moment correlation was used to determine
existence of correlation between the outcome variables and dosage level (P<0.05).

Results

None of the traditional outcome measures, clinical or imaging, were statistically significant most
likely because of the wide variability in lesion volume and location, as well as the range of initial
NIHSS scores in these seven patients (NIHSSS = 4 to 17, see Table 5.1). As shown in Table 5.3
and Table 5.4, there is a trend towards improved NIH SSS change in the bFGF treated patients
compared to control for both the total eleven patients and the seven patients subset, but the trend
is not significant (P= 1). As shown in Figure 5.1 and Table 5.1, analysis of the volumetric
measurement of lesion size at discharge for all eleven patients (R=0. 19 P=0.58) or for the seven
patient subset (R=0.34 P=0.45) as a function of dosage level also preclude drawing any
statistically valid conclusions. In addition, as shown in Figure 5.2, assessment of the change of
lesion volume from baseline DWI to follow-up for all eleven patients (R=0. 13 P=0.7 1) or seven-
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patient subset (R=0.12 P=0.8) also fail to
demonstrate any statistically significant trends.
This is again likely because of the small sample
size. Furthermore, the trends in these figures
suggest that with increasing dosage, the patients'
lesion volumes grow.

Figure 5.3 summarizes the PPV for the seven-
patient subset who had received acute DWI and
PWI studies. A probability threshold of 32% risk
was used for classifying abnormal and normal
tissue. The PPV of the model decreases as the
dosage increases (R=0.38 P=0.4) suggestive of a
dose-dependent effect of bFGF. Statistical
significance was not found again most likely due
to the small number of patients used in this
study.

Table 5.3: 2x2 Contingency table based
on improved outcome for eleven patients.

I ANIH SSS 4 ANIH SSS < 4
Treated
Placebo

4
1

4
2

Table 5.4: 2x2 Contingency table based
on improved outcome for subset of 7
patients used in GLM analysis.

I ANIH SSS 4 ANIH SSS < 4
Treated
Placebo

4
1

1
1

Figure 5.4 shows the GLM risk map for a patient randomized to receive placebo (Patient 2). The
top row shows a subset of the input data to the model. The top row shows the predicted map
overlaid on the initial DWI image. From the figures, one sees that the amount of tissue predicted
to go onto infarction correlates well with the six-day follow-up lesion volume.
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Figure 5.4 GLM input and output for a placebo patient imaged 9 hrs after onset of
symptoms. The top row shows the predicted risk of infarction using only acute imaging data.
For clarity, only voxels with greater than 30% risk of becoming infarcted are overlaid on the
initial DWI. One can observe the good correlation of the area predicted to go on to
infarction with the six-day follow-up T2 FSE.

Figure 5.5 shows the predicted risk map of infarction for Patient 7 who had been randomized to
receive the full-dose of bFGF. One sees from the risk map an area at high risk of infarction
which correlates to the initial DWI abnormality. However, the blue region surrounding the red
"'core" represents an area at risk of infarction that does not infarct as can be seen by the 19-day
follow-up FLAIR. In this case, the GLM predicted a large area at risk of becoming infarcted that
ultimately appears to have been salvaged. Despite the positive imaging outcome, the patient's
clinical outcome, as determined by his 90-day Barthel Index of 20, was poor (see Table 5.1).

In comparison, Figure 5.6 shows the predicted risk map of infarction for Patient 6, who also had
been randomized to receive the full dose of bFGF. For this patient, the predicted risk correlates
well with the follow-up infarct volume. The PPV for this patient was 88% compared to 61% for
Patient 7. However, unlike Figure 5.5, there does not appear to be a substantial region of tissue
that is at lower risk of infarction (blue) than the initial DWI lesion. This suggests that there may
have been very little tissue that would be able to respond to therapy. Interestingly, this patient
had a favorable clinical outcome with a 90-day Barthel Index of 100, despite a larger lesion
volume at discharge.
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Figure 5.5 GLM input and output for Patient 7 who received 150 pg/kg of bFGF. The top
row shows a much larger predicted infarct volume than what was demonstrated in the
follow-up FLAIR.

Discussion

Our results confirm earlier studies that showed that diffusion and perfusion MRI in the
hyperacute stage can reflect tissue at risk of infarction (2, 8, 16, 19, 33). Our results are also
consistent with earlier demonstrations of a correlation between clinical outcome and imaging (8,
16, 17, 33-35). These results confirm that predictive models of tissue outcome can be
constructed capturing the natural history of cerebral ischemia into a "risk map" (13, 19). We
extend these earlier findings by applying a statistical predictive model of tissue outcome as a
measure of treatment efficacy in the setting of a neuroprotective agent, and show that
neuroprotective efficacy can be suggested with a small group of subjects.

Our results are clearly preliminary and therefore the conclusions that can be drawn are quite
limited. Nevertheless, we speculate that using each patient's baseline study as his/her own control
on a voxel-by-voxel basis shows increased statistical power compared to traditional endpoints
and may show treatment efficacy even in a small group of subjects. We speculate that the
primary reason for this increased statistical power is the reduction in variability that accrues from
using each voxel as its own control. While imaging has been suggested as a surrogate endpoint

142



Figure 5.6 GLM input and output for Patient 6 who received 150 pg/kg of bFGF. The top row
shows a much predicted infarct volume that matches well with the follow-up FLAIR. Unlike
Figure 5.5, there does not appear a region of lower at risk of infarction tissue (blue areas)
suggesting there may be little tissue that would respond to therapy.

for stroke trials in numerous studies, (8, 36-39), typically the endpoint is lesion volume size
either on an absolute basis or occasionally in a change-from-baseline basis. Unlike pre-clinical
stroke models in animals, where considerable effort has been expended to control as many
variables as possible to generate reproducible lesions, in human stroke, the size of the lesion and
its natural evolution can be highly variable. Perhaps due to the effects of stroke location and co-
morbid factors, the high variability in lesion size between patients detracts in the ability of these
volumetric techniques to detect differences based on treatment assignment.

Our results also suggest that MRI may be useful for testing biological hypotheses even in a small
group of subjects. In the present case, the biological hypothesis was that bFGF reduces infarct
size in humans. Such a hypothesis is well founded, since studies in animal models have shown
that bFGF reduces infarct volume (27-30). Our results did not reach statistical significance due
to the limited number of sample points, especially at the highest dosage level. However the trend
of reduced positive predictive value as a function of dosage level may be an indication that bFGF
in some manner may have modified the natural history of the disease in this patient. The
recovery of tissue at intermediary values of risk is suggestive of some therapeutic efficacy of
bFGF for non-irreversibly damaged tissue.
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From a clinical imaging perspective, our findings suggest that "risk maps" indicating areas of
tissue at risk of infarction can be created and used. This may be useful for consumers of imaging
who are often faced with a variety of imaging techniques but who may not have time or ability to
sort through the many different images that functional MRI can produce. Risk maps may
therefore provide an objective quantitative method for a priori selecting regions of tissue for
investigation in serial studies. Further studies where signature maps are applied retrospectively to
select patients who will optimally benefit from therapy are awaited to test this hypothesis.

Nonetheless, our model has several important limitations. First, it cannot address safety issues;
many neuroprotective agents appear to be effective in animals and even in humans, but have
adverse safety profiles in humans. Safety can only be addressed through clinical testing. In fact,
the phase III clinical trial of bFGF in North America was discontinued in 1999 due to significant
drug side effects (40, 41). However, in the European trial, no significant side effects were
reported and a small trend towards efficacy was reported using one third of the projected patients
recruited (42, 43). Correlation of our model's results with traditional clinical endpoints has yet to
be demonstrated. Despite the clear potential of such imaging techniques to identify promising
therapies with small numbers of patients, we do not advocate that imaging be used as a sole
clinical trial endpoint. Indeed, a preliminary study has shown that although a therapy may be
effective in preserving brain tissue, it may not be effective in preserving functionality (44). One
or more full-scale phase III clinical trials using traditional clinical endpoints will be needed
before efficacy can be truly established. However, numerous unsuccessful phase III trials for
acute cerebral ischemia have been performed (45, 46), and it is possible that imaging may
rapidly identify inefficacious therapies while still in phase I or phase II.

Another limitation of our method is that the patient database that we used to train the generalized
model is restricted to infarction resulting from large vessel occlusion. A more appropriate
approach might be to use a group of patients from the placebo arm of a randomized clinical trial
to perform the training of the extended tissue signature model, thus guaranteeing similarity
between the placebo and the treatment arms. Furthermore, our model does not indicate the reason
why tissue predicted to infarct does not. For example, in our training data, there were cases
where the predicted signature map overestimated the lesion volume on follow-up MRI, as shown
in Figure 4.1.4. In this case, it was determined that early spontaneous reperfusion occurred (< 14
hrs from symptom onset) which led to the over-determination of predicted lesion volume.
Similarly, the reduction in PPV in the present study might be attributed to early spontaneous
reperfusion. However, the observed trend towards dose-dependent reductions of PPV makes this
possibility less likely. The decrease in PPV with increasing dose allows us to speculate that the
bFGF played a role in decreasing infarct growth via a neuroprotective effect, rather than an all-
or-nothing reperfusion effect. We speculate that such neuroprotective effects would be evident
with clinical outcome measures if an appropriate sample size were used, assuming no safety
issues were present.

Furthermore, the failure of our models to demonstrate a statistical significant effect may be in the
selection of our metric, PPV, which used an a priori cutoff of 32% to classify infarcted and non-
infarcted tissue. Indeed, it may be that a better use of the results of the GLM, which is a
continuous variable, would be to take advantage of the continuous variable associated with each
volume of tissue's risk of infarction. For example, from the predicted risk of infarction for Patient
6 shown in Figure 5.6, one observes very little salvageable tissue as compared to Patient 7 shown
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in Figure 5.5 as indicated by regions of lower risk of infarction (blue). Therefore, one can
speculate that a better hypothesis to test would be that tissue at moderate risk levels, as reflected
by the predicted risk map, would have their outcome affected by intervention. Future studies that
exploit this information are eagerly anticipated.

5.2 Conclusions
Although our results are clearly preliminary, they indicate the usefulness of MRI-based modeling
techniques as an outcome measure. By using a change from baseline approach, we may be able
to compensate for intrinsic patient and intralesional intervoxel variability. While further testing is
clearly needed, our results imply that if this modeling approach is validated, efficacy
determination might be possible using smaller numbers of patients than is required using
traditional means. Such an assessment model could allow more rapid screening in smaller groups
of patients, and thereby speed the development and evaluation of effective therapies for acute
cerebral ischemia.
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Chapter 6

Conclusions

"Would you tell me, please, which way I ought
to go from here?"

"That depends on where you want to get to,"
said the Cat.

"I don't much care where-" said Alice.

"Then it doesn't matter which way you go," said
the Cat.

-so long as I get somewhere," Alice added as
an explanation.

"Oh, you're sure to do that," said the Cat, "if
you only walk long enough."

-Lewis Carroll
(Alice's Adventures in Wonderland)
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This dissertation extended and improved existing stroke imaging techniques to aid in the
identification of tissue at risk of infarction, thereby furthering the ultimate goal of identifying
and treating salvageable tissue. Chapter 2 extended techniques for imaging tissue status whereas
Chapter 3 improved techniques for measuring perfusion status, both critical parameters in the
assessment of tissue viability. Chapter 4 introduced a promising new framework for in vivo
quantification of tissue viability in humans through the use of tissue risk maps where each voxel
of tissue is given a probability value of risk of infarction based on its acute imaging studies.
Chapter 5 demonstrated the potential of this new technique for evaluating novel therapies in a
clinical trial setting since it is the means for evaluating changes in baseline risk of infarction on
an individual voxel basis. Chapters 2 and 3 are linked to Chapters 4 and 5 in that all extend
current imaging techniques for identifying tissue at risk of infarction with greater specificity and
sensitivity on an individual voxel basis. This chapter summarizes the main findings in the
previous chapters and suggests avenues for future investigations.

Chapter 2 extended diffusion weighted imaging in acute stroke patients to diffusion tensor
imaging in order to gain insight into the brain's ultrastructure not assessable with measurements
of mean diffusivity alone. Reductions in anisotropy were found in the core of infarcted DWI
lesions (1) whereas elevations and preserved anisotropy were observed within reversible DWI
lesions. We therefore speculate that anisotropy shows promise as a marker of salvageable tissue.
This hypothesis remains to be proved with additional studies involving therapeutically treated
patients that may lead to the better discrimination of reversibly from irreversibly injured tissue.

However, given that reversible ADC lesions are rare events (2), an alternate approach may be to
evaluate changes in anisotropy in serial studies of patients demonstrating mismatches in
diffusion and perfusion lesion volumes, which have been speculated to represent salvageable
tissue. Serial studies which characterize ADC and FA evolution on an individual voxel basis in
the area of mismatch may provide additional insight over previous volumetric based approaches
(3, 4) due to the known temporal heterogeneity of ADC evolution (5, 6) and spatial heterogeneity
of FA even in normal subjects (7). Techniques which takes into consideration white and gray
matter differences may also better characterize anisotropy and ADC changes in acute stroke.

The foci of Chapter 2 were anisotropy and mean diffusivity changes in hyperacute stroke.
Additional insight may be gained by investigating changes in the individual eigenvalues and
eigenvectors in hyperacute stroke patients, for which both anisotropy and ADC are functions of.
However, this evaluation can be complicated by noise where the principal eigenvector directions
may change if reductions of diffusion show an orientation preference, e.g. along the principal
eigenvector resulting in greatest reduction in the principal eigenvalue. Additional numerical
simulations of anisotropic tissue would be needed to provide clarification of this complex
interaction between noise and resulting bias from sorting of eigenvalues (8).

Chapter 3 improved current perfusion imaging techniques by providing a more robust method
for estimating in vivo perfusion indices by decoupling delay-related flow biases from truly
reduced flow that is less likely to benefit from therapy. This has important clinical implication in
that it may aid in better discrimination of tissue with oligemic flow from ischemic flow. This in
turn may lead to better understanding of the pathophysiological events underlying the ischemic
process and ultimately better identification of salvageable tissue in human cerebral ischemia.
This thesis demonstrates the possible confounding of results and underestimation of flow values

152



if delays in tracer arrival are not taken into consideration. The proposed delay-insensitive
refinement using deconvolution with a block-circulant matrix may provide additional insight into
the nature of the diffusion and perfusion mismatch, which given this study's findings may be
delay-related. Monte Carlo simulation results and qualitative evaluation of human stroke patients
suggest that the sensitivity of existing CBF and MTT measurements may be more due to
differences in tracer arrival time than to hypoperfusion. This may explain why existing MTT
maps have been found to be not specific identifiers of infarcted tissue (9). To further examine the
accuracy of the relative flow measurements in the new technique as compared to the current
SVD technique, it may be fruitful to compare values from both techniques to those measured
using PET. Previous studies have shown a close correlation between PET and the existing
technique but they have been in either normal volunteers (10) and normal pigs (11) or in acute
stroke pigs (12) where tracer delay may not be as severe as in human cases.

It may be argued, however, that identifying vascular territory that is downstream from an
occlusion, and hence, area that is at risk of infarction, may be desired over identifying only
ischemic tissue that may no longer be therapeutically treatable. Additional studies remain to be
performed to determine if there is a clinical benefit using delay-insensitive flow indices coupled
with delay maps over delay-weighted CBF and MTT maps. The clinical results presented here
are clearly preliminary and additional studies involving a larger cohort of patients are necessary
to better determine the accuracy of new technique. We anticipate retrospective analysis of
perfusion studies with follow-up MRIs can be performed where lesion volumes identified by the
new and current techniques are evaluated and compared for sensitivity and specificity.

Chapter 4 introduced a novel framework for acutely assessing the risk of tissue infarction, by
combining multiple diffusion and perfusion imaging parameters into a single index of risk. We
showed that algorithms combining diffusion and perfusion information predict the risk of
infarction with greater sensitivity and specificity than algorithms using diffusion and perfusion
parameters separately. Of the combined algorithms studied, statistical maps of risk of infarction
was the preferred approach due to their potentially greater ease of interpretation with their single
indices of risk and greater sensitivity and specificity trade-off. We presented several different
approaches ranging from a simple generalized linear model (GLM), to a non-parametric
generalized additive model (GAM) and to a hierarchical mixture of experts (HME). Each of
these techniques tried to compensate for limitations of simpler techniques. GLMs sought to
provide a single index for risk of infarction as a continuous variable. GAMs took into
consideration the non-linear behavior of diffusion and perfusion values. HMEs tried to
compensate for variations in anatomy. The small number of patients and large variability in
lesion volume outcome involved in this study limited the ability to demonstrate statistical
significance between techniques. Nonetheless, even in our small patient population of fourteen
patients, GAMs performed significantly better than GLMs and HMEs performed significantly
better than GLMs when training with data not constrained to user outlined regions. With
additional studies that include larger cohorts of patients in the training and evaluation of models,
improved predictive models with greater sensitivity and specificity may be attained.

One of the advantages of these statistical models whose output is the risk of infarction is the ease
by which additional parameters can be added to the model. The models do not assume any a
priori physiological relevance to any of the input parameters. This in turn makes adding
parameters straightforward. The parameters presented in Chapters 2 and 3 can therefore be
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incorporated in future models. One of the limitations of the existing training data is that three of
the fourteen patients were not acquired with full diffusion tensor imaging. In future
investigations, we speculate that incorporation of anisotropy will aid in the discrimination of
white from gray matter and therefore lead to better performance in the HME based models. With
the new perfusion algorithms, greater specificity may be perhaps reached with greater import to
CBF values than currently assigned due to its lack of specificity. Inclusion of delay maps may
also be found a useful parameter. One may even be able to compare the new and current
perfusion analyses algorithms for identifying tissue at risk of infarction by comparing the
sensitivity and specificity of statistical models derived from their calculated parameters.
Advances in development of models and of new applications are eagerly anticipated.

Statistical based tissue signatures, however, already show promise as techniques for not only
predicting the natural evolution of ischemic damage but also for evaluating the effects that novel
therapies may have on this process as our findings in Chapter 5 suggest. Despite the limited
number of patients involved in a preliminary study, a trend towards efficacy of a neuroprotective
agent, basic fibrinogen growth factor, was found as a function of dosage, demonstrating the
feasibility of using signature maps in clinical trials to evaluate the response of individual patients
to therapy. We speculate that using each patient's baseline study as his/her own control on a
voxel-by-voxel basis increased statistical power compared to traditional clinical endpoints and
compared to change-from-baseline lesion endpoints and may show treatment efficacy even in a
small group of subjects. We speculate that the primary cause for this increased statistical power
is the reduction in variability that accrues from using each voxel in each patient as its own
control thereby taking into account both interpatient and intervoxel variability.

For this initial study, however, we did not take advantage of the fact that the output of our
models were continuous variables and used an a priori cutoff of 32% (13) for classifying
infarcted from non-infarcted tissue, thereby obfuscating the gradations of risk our models
provide. We speculate that a better approach would be to compare the risk of infarction after
therapy to before in treated and control patients. This analysis could be further refined by
limiting the analysis to tissue whose baseline risk of infarction was moderate and therefore more
likely to respond favorably to therapy.

In conclusion, although much more remains to be done, the overall results of this dissertation
demonstrate that imaging can be used to identify tissue at risk of infarction, which may aid
diagnosis and prognosis by providing clinicians unique insight into the underlying
pathophysiology of stroke.
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