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ABSTRACT

Two important issues in failure detection by human
monitors are considered: the threshold change which can
be consistently detected, and the process by which the
human detects a change. The observed process is modelled
by a second order shaping filter with white noise input.
Changes in frequency and the displayed process variance
are considered for increases and decreases from the nom-
inal values. The results reveal that the thresholds for
increases and decreases are not significantly different
from each other. Also thresholds are higher for changes
in variance than for changes in frequency.

The results obtained from detection time experiments
suggest that the human may be using changes in rms velocity
as a means of detecting failures. Detecting changes in
variance takes a longer time than corresponding changes in
frequency. Models are formulated for predicting the ob-
served detection times. A Xalman filter followed by a
decision mechanism which cperates on the measurement
residuals to perform a Sequential Probability Ratio Test
matches the experimental results for changes in frequency
and variance. A simpler model using the velocity magnitude
is also found to explain the detection time results for
changes in frequency. The model which tests the residuals
for a variance change seems better since it can handle
both changes in frequency and in variance of the displayed
process. :
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CHAPTER I

INTRODUCTION

1.1 Background and Motivation

Traditionally, maﬁ has functioned as a controller in
tasks involving a human. Since controlling a plant or a
system requires continuous monitoring, the tasks of con-
trolling and monitoring cannot be separated. However, in
recent years, there is a trend for the human to function
as a supervisor or a monitor since most of the control
tasks have been relegated to automatic control systems.
Hence, failure detection and isolation by human monitors
is of interest. The ability of the human monitor to detect
failures as they occﬁr and take corrective aqtion is vit-
ally important for the success of the mission or even for
the safety of the individual and the people for whose
safety he is responsible. Failures of large magnitude in
any system are usually easy to detect. Also, a failure in
one particular subsystem may be more critical than in others,

in that some are more crucial to the success of overall
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system operatidn. In such a system, small failures should
be detected as quickly as possible so that corrective action
can be taken in time. The quickness with which a failure
can»be detected is extremely important in airc:aft terminal
area operations, rendezvous of aerospacé vehicles, nuclear
reactor control, high speed ground transportation systems,
and éhémical process control, among other things. There are
two important issues éommon to these failure detection situ-
ations. One is the threshold size 6f a éhange in a system
parameter whiéh can be detected consistently by a human,

and the other is the process by which a human detects such

a change; These are important for better system design,
since one of the basic requiremenﬁs for failure detection

is to be able to define the most sensitive factors. An
attempt is made in the present work to study some specific
aspects of human failure detection.

Failure detection by humans has been the subject of
research for a number of years by various researchers. 1In
most of the previous work done, this was studied in the con-
text of detecting plant failures while a human acted as a
controller, and his adaptive characteristics to function
normally in the changed situations were explored. Miller
and Elkind (1967), Phatak and Bekey (1969), Niemela and

Krendel (1975), and Young (1964, 1969) examined the various
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models for adaptive characteristics of the human controller
for a step change or a polarity reversal in the gain of the
controlled process.

Good models using classical as well as modern contrbl
theory exist for the human as a controller in a variety of
tasks. However, not much work has been done invmodelliﬁg
the ﬁuman when he is a pure monitor. Smallwood (1967) pro-
posed models of the environment (internal to the human oper-
ator) of first and second order systems, to explain the
sampling behavior while a human is monitoring a number of
instruments. He used the distribution function of the cur-
rent state conditioned on all the previous states as the
decision function for shifting of attention between various
instruments. He found that the second order shaping filters
were better able to predict the operator's sampling behavior
in terms of the bandwidth of the instrument being observed
and the precision requifed of the readout in a multidegree
of freedom system.

Levison and Tanner (1971) proposed a control theoretic
model for human decision making. Following their optimal
control model of the human operator, they suggested a Kalman
filter model for the estimator and a decision mechanism

using the instantaneous likelihood ratio as a decision
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function. Phatak and Kleinman (1972) emphasized the roles

of the internal model and the optimal estimator, suggesting
that the observation errors are the inputs to the decision

mechanisms.

Gai and Curry (1976) reported experiments on the detec-
tion of failures in the mean of a random process, which con-
- sisted of the output of a second order shaping filter driven
by white Gaussian noise. An estimator consisting of a Kalman
‘fiiférwéﬁdfé‘dédiSion mechanism based on the observation
residuals (i.e., the difference between observations and
their estimates) was found to match the failure detection .’ ’
behavior of the human monitor. In a random process, there
are many parameters subject to change when a failure occurs,
for instance: the variance, bandwidth or the damping ratio
of the process (Anyakora and Lees, 1972). |

Since no previous data could be found on the ability of
the human to detect such failures, preliminary experiments
were conducted to obtain an estimate of the various thresholds
and detection response characteristics. For a basic study
of how these failures are detected, a simple, yet adequate,
system is a second order shaping filter driven by random
input. Even for higher order systems, it is reasonable to

assume that the human is sensitive to the dominant modes of
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the system, and hence a second order approximation for system
dynamics is usually sufficient; hence, the observers were
expected to detect failures in a second order shaping filter
driven by white noise. The results of this study were reported
in Curry and Govindaraj (1976). Based on the information in-
ferred from the data collected, it was decided to explore

some aspects of the changes more thoroughly. Better experi-
mental procedures were designed using well-proven psycho-
physical procedures for measuring thresholds and for evalu-
-ating detection response characteristics.

From the preliminary series of experiments, it was
obvious that a change in damping ratio could not be handled
in a consistent manner. Some subjects tended to perceive
the decreases in damping as increases in damping, and vice
versa. Also the detection times had no apparent relation
with the magnitude of the stimuli presented. Hence, only
changes in variance and frequency were taken for careful and
detailed investigation. As the first step, thresholds were
determined for changes in frequency and variance for all
combinations of two frequencies and two damping ratios. The
frequencies were chosen (corresponding to periods of one and
three seconds) on the basis of being representative of the
passband characteristics of the instruments encountered in

aircraft monitoring situations. Damping ratios of 0.707 and
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0.2 were used, which correspond to a moderately damped
system'and an underdamped system.respectively.

Another series of experiments was conducted to study
the detection behavior as the stimulus strength was varied.
Detection times were measured for various'levels of change
in the parameter values from nominal, for changes in fre-
quency and variance. Finally, the data obtained from these
experiments have been used to formulate a model for the

detection process.

1.2 Organization of the Thesis

Chapter II contains a detailed description of the
experiment for threshold estimation and detection time
studies. Various methods of estimating thresholds are
compared. The staircase method, which is used in this
work, is described in detail. Its advantages over other
methods are pointed out. Modifications in the threshold
experiments to perform detection time studies are indi-
cated.

Chapter III concerns the results of the threshold

measurements. Effects of different nominal parameters,
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i.e., frequency, and damping ratio, on thresholds for
changes in frequency and input variance are analyzed.

In Chapter 1V, the detection time results are given.
Increases and decreases in the parameter values from nominal
are compared for frequency and variance in terms of the
detection times. An attempt is made to explain the results
in terms of physical conditions and variables.

Models for the detection of the failures are proposed
in Chapter V. The models consist of two stages: (1) an
‘estimator, and (2) a decision mechanism. Brief summaries
of estimation theéry and sequential analysis pertaining to
the current work are given. The results of application of
these models are compared with the experimental results.

In Chapter VI, the work is summarized, and possible
directions for further investigation are suggested.

Appendices A and B include details for implementing
the shaping filter digitally (using Z-transforms), and a
copy of the "Instructions for the Subjects" used in the
threshold experiment respectively. The schedules used for
all the experiments are given in Appendix C. In Appendix
D, the thresholds'fof each subject are tabulated, while
Appendix E contains the detection times for individual

subjects.
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CHAPTER II

DETAILS OF THE EXPERIMENTS

In the previous chapter, the failure detection problem
was int?odﬁcéd, aﬁa its rélevance in control and monitoring
systems was pointed out; A brief summary of previous work
was given. In this chapter, the experiments conducted for
specific failure detection situations will be described in
detail.. The process being monitored by the observer is a
second order shaping filtér driven by white noise. A gen-
eral description of the procedure and the experimental set-
up will be given. Then the threshold experiment will be
described, whefe comparison of various methods is followed
by a detailed description of the staircase method. The
detection time experiments will be described after this,

with the changes clearly pointed out.



17

2.1 Description of. the Experiment

Experiments were conducted to determine the thresholds
for changes in the parameters of a random process, and to
study the detection behavior. A set of preliminary experi-
ments were conducted to get an idea of the approximate values
for the threshold. The process consisted of the output of

a second order shaping filter with the transfer function:

K
' (s/wn)2'+ 2§(s/wn) + 1

(2.1)

and zero mean white Gaussian noise as input. The éutput of
the shaping filter was displayed on the graphics display
terminal as a horizontal line moving up and down inside a
grid (see Figure 2.1). All three parameters, thé natural
frequency, the damping ratio, and K, the gain, could be
changed.

Failure was defined as a change in one of the parameters
of this shaping filter. Only variations in the natural fre-
quency (the bandwidth) and the variance of the input noise
(equivalently, the gain) were considered for the present
study of failure detection. Effects of a change in damping

ratio were not considered.
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2.2.1 Equipment

A PDP 11/34 computer with graphics capability was used
for all phases of the experiment; conducting the experiment
"on-line, storage 6f data, and for subsequent analysis and
modeiling. White Gaussian noise was digitally generated by
summing 12 uniformly distr;buted random numbers. All the
prqgramming WQS done with discrete-time approximations
usfng the Z-tfansform meého&; The details are;givéh‘in Ap-
pendix A. The stétes were updated once every 10.5 milli-
seconds. This time was chosen since it was just sufficient
for one complete cycle of operations, including the reading
of the switches for subject response, when the computer was
dedicated to the éxperiment. The subject was seated about
75 cm in front of the screen, the screen being at normal eye
level. He held a small box with two switches to indicate
his response (one switch to indicate an increase in para-
meter value, and the other for an indication of decrease),
when a change was detected. 1In the computation cycle, the
noise input was calculated, filter states were updated, and
the switches were read. A 12 inch diagonal P31l fast phosphor
cathode ray tube was used for all displays, and the motion

of the line appeared continuous and smooth to the observer



19
except when the frequency was about ten times the nominal
during the initial familiarization phase. Then discrete
jumps or flicker could be seen. The grid was 60 high
(approximately 12 cm), where o2 was the variance of the
procéss, io of the motion corresponding to about 0.2

radians (see Figure 2.1).

42.1.2_ Procedure

. The subjects for both series of experiments were re-
cruited through advertisements in the Institute newspaper,
and by advertisements posted at various places on campué.
They were required to have normal vision (with or without
glasses) and they were informed that they would be paid
$2.50 an hour. Before anyone was started on the experi-
mental series, he or she was told of the nature of the
experiment, and that their participation in a series of
experiments running into a few weeks duration was expected.
A wide variety of people, both male and female, responded
to the advertisements, and were recruited. About fifteen
pedple participated for a period of about four weeks for
the threshold experiment.k Their backgrounds and ages ranged

from sophomores at MIT and elsewhere to graduate students in



Figure 2.1 Grid (actual size).
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science and engineering to a senior citizen. The experiments
were conducted at various hours of the day, starting as early
as 7:30 AM and running on to 11 PM on some days for some sub-
jects. For any one subject, one session lasted for about
an hour on each day. For every session, two series of experi-
ments were conducted (one for a change in frequency and the
other for a change in variance of the input). If, for.any
reason, it was felt that a subject was not alert in the
"beginning of the session or at the end of the first experi-
ment, the remainihg part was postponed. The experiments were
done uéually during regular working days, though some students
on campus participated on weekends and holidays.

Except for one or two subjects, most were not familiar
with stochastic processes or control theory, and none had
any familiarity with psychophysics. Only one subject had
some previous exposure to this kind of experiment, since he
had participated in the earlier series of preliminary experi-
ments. But since the (staircase) procedure used for the
determination of the thresholds was completely different,
and since there was a time lapse of more than three months,
this did not create any problems. Hence, for our purposes

all could be considered as naive subjects.
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The general nature of the experiment was explained to
each subject on the very first day of the experiment. A
brief explanation of the observed process was given in terms
of'the analog of a spring-mass system, with which almost
everyone was familiar. The subjectg were told that there
would not be any definite pattern, sihce the input or the
excitation was random, and that they could only form an idea
of "how far on either side the line moves away from the
centerline” or "how fast or slow it is moving". They were
told to observe the "average behavior of the line". Since
the instructions were clear and simple, no uncontrolled

effects were expected.

2.1.3 Learning or Familiarization Phase

After the procedure was explained, the nominal mode was
shown for two minutes. After the nominal, large failures of
either sign were shown, to familiarize the subject with the
nature of the failures. For every trial other than the nom-
inal, the process started with the nominal parameter values,
and a failure occurred every time between 8 and 12 seconds

after starting. Though it was obvious, the subjects were
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told about the nature of the failures (i.e., increase or
decrease) during this phase. One nominal and four failure
modes were sufficient for all subjects to become familiar
with the changes. If, at this stage, anythihg was not clear,
these trials were repeated and any specific questions were
answered. Data from the first session was not used in the

analysis.

2.1.4 Response and Feedback

The subject held the switch box used to indicate his
response in his lap, or on a table nearby, depending on
whichever was convenient for quick response. The subject
was told to press the appropriate switch as soon as he was
certain of the nature of the change. The grid on the screen
appeared only when the line was in motion, and it was blanked
out at the end of each trial. The screen was used to give
immediate feedback after every trial. The subject was told
of the type of response and the result. If the failure were
detected and correctly identified, it was a "correct" response.
If any switch was pressed prior to an actual failure, it was

a "false alarm". If the identification were incorrect, it
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was fwrong“. Finally, if the failure were not detected
within the available time, it was a "no detection". ("Wrong"
and "no detection" are considered "misses" later on.) After
every trial, the result’was displayed to the subject on the
otherwise blank screen for two seconds. After a blanking
peridd of three seconds, thé next trial followed in a similar

manner.

2.1.5 Initial Conditions for the Runs

The starting values for the position and velocity were
chosen properly so that the statistics of the normal (nominal)
random process would not have unduly long transient effects.
Ideally, the initial conditions should be chosen such that

they correspond to the steady state covariance obtained from

M=AM+ MA' + Q =0
(2.2)

where cov(X) = M
and

X = AX + w Elwwl] = O (2.3)
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where X is the state vector of the random process driven by
zero mean white noise w, and A denotes the System matrix.

A set of eigenvectors can be found such that

gj‘p )‘l 0

1 =
eT Mm(_gl 9_2) = 0 \ (2.4)
=2 2

whre Al and A2 are the variances of the uncorrelated random

variables, uy and u,. X(to),can be found by choosing uy and

with the correct variances and using

Uy
v
X(ty) = (e; e,) a (2.5)

In our simulations, alsimpler approach was used. For
every run, the random initial conditions were chosen from
the previous run. For any run, the state values were stored
when the parameters of the process changed from the normal
mode value to those corresponding to failure. This proce-
dure is followed for all runs, except the first which is
the nominal for two minutes. The first run started from

zero initial conditions.
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Stimulus values were chosen according to the following

relation:
(P/Pn) = exp[lnR x S] ~ (2.6)

where

Pn = nominal value of the parameter

P = changed or failed value

R = ratio of initial change (R = 10)

'S = stimulus (|S8] < 1.0)
2.2 Threshold Experiment

2.2.1 Introduction

The existence of a sensory threshold has been a subject
of discussion ever since the emergence of psychophysics. For
our purposes, it is clear that there is a level below which
reliable conclusions cannot be drawn as to whether a process

is functioning in the normal mode or has deteriorated. This
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is the 5noise level" for the system. Understandiné the mag-
nitude of the threshold is important for at least two reasons.
One is to identify the inherent limitations of the human
monitor in observing a task. If the failure or the.change
that may occur félls below the threshold, some other means
must be found to make'the failure detectable if that failure
cannot be tolerated for safe operation. Another possible
use is in evaluating the effectiveness of a model for the
.human as a controller or an observer. If the threshold is
known, it would be easier to separate the_usefulness of the
model and its behavior at the uncertainty level. Even if
the model is very good in explaining and/or predicting the
phenomenon for a given situation, it cannot be relied on if
the parameters are below.the threshold level.

The measurement of sensory thresholds is made difficult
by physiological and psychological variations in any experi-
mental situation; in addition to the difficulty of maintaining
the same physical conditions. Such extraneous factors as the
subject's "timidity, warming up, and anxiety" (Titchener,
1905) and his conscious as well as unconscious criteria for
making a positive response (Guilford, 1936) have to be taken

into account.



28

For our purposes, the threshold will be definéd as the
smallest change (from the nominal) that a person can reliably
detect. What we mean by reliable will become apparent after
an explanation of the procedure for the determination of
the threshold is given, but for now can be simply stétéd as
the value that can be detected in approximately 75% of the
trialsvin which it is presented. In psychophysics, there are
variqus'methods to measure thfesholds. The sensory threshold
was usually found by determining the intensity of the stimulus
required to be just detectable or by determining the difference
between two stimuli that are noticeably different. A brief
discussion of possible approaches to threshold measurement
is in order, prior to describing the approach finaily settled
on for this experiment. The four methods of importance are
(i) the method of adjustment, (ii) the method of serial ex-
ploration, (iii) the method of constant stimuli, and (iv)
the staircase method. An excellent review of various defini-
tions of thresholds and pertinent discussions are given in

Green and Swets (1966).

2.2.2 Discussion of Various Methods

In the method of adjustment, the subject manipulates a

continuously variable stimulus so that it appears just not-
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iceably different from the nominal, or just noticeable,
depending on the‘nature of the process. The mean over a
number of runs is taken as the threshold (Green and Swets,
1966). In the method of serial exploration, varioﬁs levels
of stimuli are presented in steps, starting on either side
(or both sides with interleaving) of the thresholdvvalue.

In these methods, the response could be either Yes-No or
Yes-No-Doubtful (or Equal). The estimation of the threshold
depends on the responses that are permitted of the subject.
.In these methods, usually the psychometric function (the
percentage of corfect responses versus stimulus levels) is
plotted, and depending on the response category allowed, the
stimulus value corresponding to the 50% or 75% correct res-
ponses is arbitrarily taken as the threshold. In the method
of constant stimuli, a set of stimulus values around the
expected threshold is chosen. At any trial, a particular
value of the stimulus froﬁ this set is presented, and the
response is recorded, the order of presentation being random.
Again, the psychometric function can be plotted and the

threshold estimated.

2.2.3 The Staircase Method

The staircase method is used in our experiments and

hence will be explained in greater detail, before a comparison
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is made between various methoés. A detailed discussion of
this method can be found in Cornsweet (1962) and also in
Levitt (1969). The procedure for determining the threshold
starts with the presentation of relatively large stimulus
values, just as in the method of serial exploration. The
starting value could be from either side of the expected
threshold value, and two series could be interleaved. The
main differepce ?etweentthe%stai;qasebmethod and the serial
exploration method is in the presentation of the stimuli
after the first negative response is reached. 1In the stair-
case method, once the stimulus that elicits a negative res-
ponse (or a wrong or no response) is reached, the levels are
alternated, with systematic variations of decreases and
increases over that level. After the first negative response,
the stimulus level is increased by a certain level and the
response is determined.  If the response is positive, the
same level is repeated once more to take care of any responses
that may result from a pure guess. If the response is again
positive, the stimulus level is reduced by a certain step
size. But, for any level, if a "no" responée is obtained,
the stimulus value is increased. The procedure is repeated
until a predetermined number of ups and downs (or "peaks" and
"valleys") is obtained in the stimulus-response history. As

the experiment proceeds, the stepsizes are adaptively reduced.
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With proper stebsizes, the mean of the peaks and valleys
gives a good measure of the threshold. ‘Ideally, the rever-
~ sals in the directions (i.e., increase or decrease frdm ﬁhe
previous step size) should occur for one or two step size
differences. After a pre-determined number of ups and
downs are reached, theiexperiment is terminated, and the
asymptotic value of the stimulus is taken to be the thrés-
hold. |

The threshold estimation by the staircase method is
- very fast compared to other methods, since the stepsizes
can be determined adaptively, depending on the stimulus
values, and the number of steps needed before termination
is small compared with other methods. Also, the efficiency
is higher due to operation near threshold most of the time.
The experimental procedure will now be described, and
particular attention will be given to how various previous
criticisms have been overcome.

For the threshold experiment, the subjects were told
that the aim of the experiment was "to determine thresholds",
i.e., the "smallest change you can reliably detect when a
failure occurs in the process you are o?serving“. The exp-
eriment would start with large magnitudes of failure and
that-mégnitude would be reduced gradually "until it becomes

very difficult for you to correctly detect the changes that
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occur". He was also told that towards the end he may not
be, and in fact he will not be, able to respond correctly
to all the stimuli. He was told not to agonize over any
‘érrors in the response when the magnitude becomes very small.
The détection time was not of primary concern. But the sub-
jects were aware that their response time was being recorded.
Since the subjects had time to give their response even
after the trial was over, the number of false alarms, if any
were negligibly small. Onlyiin one or two runs, and especi-
ally for one subject, was it apparent that the subject was
disappointed at the errors; the runs were terminated, and
it was explained that it was inherent in the procedure that
one could not get all of the responses correctly. For any
one parameter, the experiment normally ran for about 30
minutes. Then after a rest period of about 5 minutes, trials
for the other parameter were run. For any experiment, the
subject was told which of the parameters (frequency or
variance) was being changed. A copy of the exact set of
instructions given to each subject for the threshold experi-
ment is given in Appendix B.

The stimulus values used until the subject made his
first incorrect response were as follows: |S| = 0.8, 0.6,

0.4, 0.2, 0.16, 0.12, 0.08, 0.04, 0.03, 0.02, 0.01, 0.008,
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0.006, 0.004, 0.002, 0.0015, 0.0010, 0.0005. The above
choice was made by taking into consideration the fact that
as the threshold is approached, smaller values are dééirable
for as accurate an estimate of the threshold as possible.
Moreover, the large initial values are needed to “wafm up”
the subject, and the step size is initially large so as not
to spend too much time away from the expected threshold.
Both positive and negative vaiues of thé stimuli were inter-
leaved, and the experiment was conducted with two single
staircases, alternating at random (see also Levitt, 1969).
The magnitudes were not presented in strictly descending
order lest the subject get an idea of how the stimulus is
presented. From the stimuli listed above, two values are
taken at a time, aﬁd sets of four are formed by having
increases and decreases at those magnitudes, i.e., the sets
are: (*0.8, *0.6), (*0.4, %0.2), ..., etc. Within any set,
the stimuli are chosen at random without replacement. There-
fore from trial to trial, the consecutive stimuli could be
either an increase or a decrease, and the magnitude could
be higher or lower (e.g. in the first four trials, the set
is formed of 0.8, *0.6, and the order could be +0.6, —0.8?
+0.8, -0.6 or any other combination). |

Now vérious salient features of the staircase method,
its advantages and disadvantages over other methods, criti-

cisms of the method, and the method as used in our experiments
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will be discussed. An excellent discussion of the staircase
method in psychophysics can be found in Cornsweet (1962).
He points out four important factérs that are to be taken
into account. They are: (l) where to start the series, (2)
how large a stép size to take, (3) when to stop the series,
and (4) when tokmbdify the series.

‘In'our experiments, the stepsizes were adaptively
chosen as explained below (Seétion 2.2.4). It was possible
to use large stepsizes in the beginning, since the threshold
was approached relatively quickly from the start of the
experiment. Because of the adaptive stgpsizes used, and
since the stepsizes were quite small towards the end, it was
decided to stop the experiment after 6 or more reversals were
observed. This>is also the recommended procedure by Levitt
(1969) and Wetherill and Levitt (1965). As Cornsweet ob-
served, in most of the cases, "the values of the stimuli
presented change relatively rapidly until they reach an
asymptotic level or plateau, and then they hover around this
level as long as the conditions remain unchanged". He con-
tinues, "Obviously, the longer the series the more reliable
will be the computed value of the threshold". But, if the
series is too long, the subject may get bored and tired, and
the psychological and physiological conditions do not remain

constant over a long period of time. He also suggests that
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a certain number of reversals be used as the stopping
criterion. The advantages are the small number of trials
needed, since once the first few stimuli are out of the

. way, the remaining stimuli are near threshold, and since

an asymptotic fit (i.e., the threshold is assumed to be
reached asymptotically (see Sgction 3.2)) is used, a far
fewer number of presentations are needed, compared with
other methods. Since both increases and decreases are pre-
sented in successive trials, there are two main drawbacks
pointed out by Cornsweet: anchoring or.seriés effects (or
anticipation of next levels), and the way in which the
stimuli are ordered. However, these do not present any
problem in our case. Anchoring effects are usually elim-
inated using the double staircase procedure, where the
stimuli presentation is started from both sides of the ex-
pected nominal (i.e., at a value much lower than threshold
resulting in 100% misses, and at a value much higher than
threshold resulting in 100% hits), and changing the stimuli
so that they approach the threshold from both sides. 1In our
case, two single staircases, one for threshold for an increése
in parameter values from nominal, and the other forva decrease
from nominal, are mixed at random. Hence, the subject may

not be able to guess the next stimulus from the previous one,
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i.e., this has the advantages of the double staircase
procedure in eliminating or minimizing the anchoring
effects, etc.

By proper design, it is also believed that the crit-
icisms of Dallénbach (1966) have been taken into account.
He criticized this method because of the following factoré:
(15 constant errors, in time or space or in both, i.e., the
order of presentation, the standard first and the variable
next and vice versa, (2) ya;iab}e(?;;grs - practice, fat-
igﬁe, expectation, and habituation, and (3) accidental
errors due to the experimenter's manipulation of the appa-
ratus, mood and health of the subject, etc. Accuracy has
not been compromized for efficiency. Since the order of
preséntation has been randomized, with magnitude as well
as sign being nondeterministic, the constant errors have
been eliminated. The variable errors due to practice,
fatigue, etc., are eliminated by the use of rest periods
and even discoﬁtinuing the experiment if the subject is not
alert. The random order among the set of four stimuli, and
adaptive étep sizes (smaller nearer threshold), make it al-
most impossible for.the subject to guess. Even the experi-
menter, who had been working on this problem for a long
- time, could perform no better (in the sense of getting
lower thresholds) than his earlier levels, even after con-

siderable experience.
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The thresholds were calculated using an asymptotic
least squares fit to the stimulus versus time hlstogge
Though a forced choice procedure was used (the subject usually
had to respond by indicating either an increase.or a decrease),
the fact that the stimulus value was not altered until two
correct responses were obtained (when it was reduced by one
step size), takes out the guessing factor, and in effect
makes it a "strictly +" or "strictly -" choice. At any time,
the subject cannot make a choice, and get away with it, if
it were just a guess, i.e., this cannot continue forever,
since, if it were a pure guess, his probability of correctly
identifying the same level the next time it is presented is
very small. Any accidental errors could occur if the sub-
ject pressed the incorrect switch (since everything else
was contfolled by the computer). If such a thing occurred,
the subject was asked to notify the experimenter. Since the
subjects were well aware that the reaction time was not the
principal factor being determined, they seldom made this

kind of error.
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2.2.4 Stepsize Control

The adaptive step size control noted above was dchieved
in the following manner. The stimuli were presented from
the initial set with step sizes decreasing as the maghitude
itself was decreased, unﬁil an incorrect response was made.
At the occurrence of the first incorrect response, thelsteﬁ
size was chosen as the différénceixxmagnitudes of the stimuli
in the next set of four, i.e., the stimuli were grouped in
sets of four and the order in any set was random (see Section
2.2.3). If the first incorrect response occurred, say, while
the set (*0.16, *0.12) was being presented, the stepsize in
stimulus value was chosen as the magnitude difference in the
set (+0.08, *0.04), which is 0.04. This was used to increment
the stepsize for the next stimulus. The sets of four were
not used for the rest of the experiment. For the next run,
the step size was taken to be 0.8 times the previous value.
This practice was found to work very well, since after one
or two direction reversals, the number of steps between re-
versals was about one, two or three. Hence this method of
choosing the stepsize was continued for all subsequent runé.

Increases and decreases had separate step lengths dep-
ending on the perforﬁance of the subject. In an early version

of the experiment, both staircases were separately continued
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until incorrect responses occurred in each of the series.
But soon it was discovered that if the stepsizes were far
apart to start with, there was a tendency for the subjects
to compare the currently observed procesé with a process ob-
served in the previous run(s), where the failure was easy

to identify (due to a compatatively large separation from
the nominal) instead of comparing wiih the nominal. So upon
encountering the first incorrect response, both stepsizes

- started at the samevaluethough they could differ as the
‘experiment continued.

During any tfial, the run continued until the subject
responded, or for 30 seconds from the onset of failure,
whichever occurred earlier. If at the end of 30 seconds,
the subject had not indicated his response, the horizontal
line came to a stop, the grid disappeared, and he had five
seconds to respo;d. If he did not respond even after this,
it was considered a "miss". Since the same random number
generator was used to choose the stimuli as well as to
form the "white” noise input, and since the stopping time
for any run depended on the subject's response, every subject
had a unique presentation éxcept for the two minute initial
nominal. For every experiment, all the information was
stored (i.e., the nature of the response, response time, the

stimulus intensity;.- and the "seed" for the random number



40
generator to generate the whole sequence and time history

of the process). The data is presented in the next chapter,

and the statistics are discussed.

2.2.5 Order of Presentation of the Nominals

A set of four nominals, obtained by the factorial
-combination of T = (1.0, 3.0) and ¢z = (0.2, 0.707) were
used. During any one session, on any particular day, only
one nominal was presented. Since all the subjects who
participated in the threshold experiments were given all
the four sets of nominals, a Latin square design was used
to choose the order of presentation. The Latin squares
used are shown below. For more subjects (>8), the same

Latin squares were used repeatedly (i.e., S9 = S1, S10 = S2,

etc.).
s1- S2 s3 S4 S5 S6 s7 | s8
El 12 17 | 32 | 37 .|| 32 17. 37 | 12
E2 37 | 32| 12 |17 || 17 | 37 12 | 32
E3 | 32 .| 37 | .17. | .12 || 12 | .32. |. 17 | 37
E4 |17 | 12..| 37 | 32 || 37. | 12 .| 32.{ 17
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where S1 through S8 referléa the subjects, El through E4

to the stimulus presentation for eachvsubjéct, and the first
digit of the number refers to the period (T), and the second
refers to the damping ratio (2 for 0.2 and 7 for 0.707).
‘For any one of the nominals,‘the decision as to whether to
varybthe period or variance first in a session was deter-
mined with equal probability in the beginning until about
half of the planned total experiments were completed. Then
the choice was according to the random arrival time of ﬁhe'
-subjects. (Though the subjects were scheduled a day or two
in advance, the scheduling was done according to their indi-
vidual preferences and availabilities at various times of
the day). For any nominal, if the sessions where the period
was changed first were more than the corresponding sessions
for variance, the variance was changed first for the next
subject, and vice versa. This resulted in a fairly equal
distribution for period-first and variance~first sessions.
(Actual schedules used for the experiments are given in
Appendix C.) This arrangement was thought necessary, since
it was observed that detecting changes in frequency was
easier and less tiring, and took slightly less time for the
subjects. Thus, the above arrangement mixes}easy and hard
tasks with equal likelihood, between subjects, and for any

particular subject.

R e ettt ettt 1 oo
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2.3 Detection Time Experiments

A second series of experiments ﬁas conducted to deter-
mine the time taken for detection of a failure as a function
‘of the stimulus level. The general set-up for this series
was the samé as before. ' However, the criterion by which
the subject responded was different. It was made clear
that the objective was to determine how quickly one detects
a failure. The subject was specifically told that "he was
expected to :detect the failure as gquickly as possible with-
out making too many mistakes". Another important difference
was in the set of stimuli chosen. From the previous experi-
ments; thresholds were determined for frequency and variance
for various nominals. Four levels were chosen with increas-
ing magnitudes, the smallest being slightly higher than the
threshold. Four increases and four decreases were mixed to
form a group of eight stimuli,'and a stimulus was chosen
from this group at random (without replacement) and presented.

Since the detection times were of interest, the subjects
had to respond in a given time. If they did not respond
during this period, it was considered a "miss". The presen-
tation of stimuli and performance feedback were as in the
earlier experiment. If, for any session, too many false

@alarms were observed, the subject was told to reduce the
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number of false alarms by waiting for sufficient time before
responding, to be certain that a failure had occurred. If
it persisted, the 8session was discontinued. This was néces-
sary only for one subject. Two or three sessions out of
about 50 sessions were cancelled.

These experimenfs were conductéd for a number(of days,
running into a few weeks. Since a large number of runs were
needed, and a commitment on the part of the subject to parti-
cipate over a period of several weeks was necessary, only
three of the subjects who participated ih the earlier series
were retained. Due to their experience with the earlier
experiments, they were familiar with the random process'beihg
observed, and hence no training runs were necessary. However)
since the criteria were different, and since only a limited

number of stimuli were presented, one initial trial run was

given.
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CHAPTER III
EXPERIMENTAL RESULTS: THRESHOLD

In Chapter II, detailed descriptions of the experiments
for measurement of thfeshold and detection time behavior were
_given.:kThe data collected during the threshold experiment
have been used to estimate various thresholds for frequency
and variance for various nominals. The form of the curve
used to fit the data to obtain thresholds will be given.
Comparisons will be made between various thresholds. Pos-

sible explanations for some of the observed effects will be

given.

3.1 Stimulus versus Time History

Some of the results from the stimulus versus time history
for the staircase method for threshold experiments are shown
in the accompanying plots (Figures 3.la - 3.1f). These plots
were obtained while the experiment was in progress, so that

the experimenter could follow the progress of the experiment
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closely. This was necessary since the subject was in

a separate room where the only source of noise was the
monitor he was watching. 1In addition to the lack of
distraction, subject isolation did not impose on the
subject the feeling of beihg watched continuoﬁsly. How-
eﬁer, this necessitated the monitoring of the experimental
results by the experimenter, which was made possible by
the plot display on the typewriter terminal. Any unusual
trends in the correct/incorrect/false alarm responses
could usually be traced to the subject not being attentive
enough (in some cases, the subject was found to be dozing
off). When the subject was found to be "not alert", the
session was postponed to a different day and the data was
discarded for that day. Plots were started oﬁly after the
first incorrect detection was made. The starting value of
the stimulus associated with a particular plot, which is

also the full scale value, is shown at the top.



52

3.2 Exponential Fit

An exponential approximation was used to fit the

data. The fitted curve has the form

S, = a + b(exp(ct)) (3.1)

where S, is the value of the stimulus at the time instant
t. Thé constant a was assumed to be the threshold value.
A‘léééﬁxSquafés’fit was found ﬁsinéhaN¢onjugate:gradient
algorithm. A standard program from the IBM Scientific
subroutine Package (FMCG) was used, and the convergence
was quite fast. The minimization was done for 30 itera-
tions, though the minimum was reached much earlier (to
the fourth significant place). Threshold values had been
calculated at the end of each session by taking the mean
of the last six peaks and valleys of the stimulus versus
time history. These values are shown along with the
values calculated by the least squres fit in Appendix D
(summary in Table 3.1). 1In mést cases, these first approx-

imation values agree very closely with the values found

by a better fit.
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TABLE 3.1 THRESHOLDS

(1) Change in Period

Damping :
Ratio 0.2 - 0.707
Period
(sec)
1 -0.034 (0.022) -0.033 (0.020)
0.028 (0.021) 0.038 (0.026)
3 -0.060 (0.039) -0.037 (0.026)

0.054 (0.030) 0.047 (0.023)

(2) Change in Variance

0.2 ' 0.707

1 -0.072 (0.038) -0.084 (0.035)
0.077 (0.042) 0.066 (0.044)
3 -0.121 (0.039) -0.091 (0.034)
0.150 (0.073) 0.083 (0.037)

Standard deviations are given in parentheses.

Units: ln(P/PO)/ln(lO)
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3.3 Comparison between Nominals

The magnitudes of the thresholds were compared for each
of the four nominals, both for a change in frequency énd for
a change in variance. Equality of variances was tested for
each pair beingvcompared using the F-test. If the variances
were found to be not significantly different, a t-test was
performed on the means. va'tHe variances were different, an
approximate t-test was done for comparing the means (Hoel,
1971). The null hypothesis that the means (for increase
and decrease in the parameter value from nominal) are the
samé~could not be rejected at 0.01 significance level. Thus
the thresholds are not'significantly different from one another.
The t valués along with the F values for the equality of var-
iances have been tabulated in Table 3.2.

The thresholds for a change in variance appear to be
higher than those for a change in frequency in all the cases
(Table 3.3). Though a direct comparison is not of much value,
it is nevertheless important to carry out such a comparison
since the stimuli are normalized ﬁalues in logarithmic unité.
Again, a t-test on the means was done for each nomihal, for
a change in variance and for a change in frequency. 1In all

cases except one, the means were found to be significantly
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TABLE 3.2 t-TEST FOR THE MEANS (THRESHOLD)

An F test was performed to test for'the.equiValence of
variances.

The table gives the means (magnitudes) for increase and
decrease, for the same nominal, along with the t-values
(t), degrees of freedom (dt), F values for variance (F),
-and its degree of freedom (df, same for numerator and
denominator).

Increase decrease dt t F df
i21 0.034 0.028 16 0.670 1.076 8
123 0.077 0.072 18 0.274 1.266 9
171 0.033 0.019 16 0.494 1.973 8
173 0.084 0.066 14 0.924 1.537 7
321 0.060 0.054 22 0.461 1.678 11
323 0.150 0.121 14 0.979 3.605 7
371 0.047 0.037 . 22 0.939 1.285 11
373 0.091 0.083 16 0.479 1.196 8

So for the individual nominals, the mean value of the
magnitudes of the thresholds are not significantly dif-
ferent. (The tests were made at the 0.010 significance

level.)
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TABLE 3.3 t-TEST FOR THE MEANS (THRESHOLD)

The table gives the means (magnitudes) for increase (+)
and decrease (-) in frequency (fre) and in variance (var)
for the same nominal, along with the t-values (t), and
degrees of freedom (dof). The last column (diff) shows
the difference that is significant at the 95% level.

Nominal (Nm): first digit period (secbnds)
‘ second digit damping ratio (0.2 oxr 0.707)

Nm dof -t ; Th (var) 'Th (fre) = diff
12+ 17 2.707 - 0.0769 0.0344 0.000
12- 17 . 3.126 0.0720 - 0.0276 0.014
17+ 10 1.965 ~ 0.0655 0.0329 0.000
I7- 15 3.044 0.0838 0.0382 0.014
32+ 18 3.583 0.1498 0.0601 0.037
32- 18 4.411 0.1212 0.0536 0.035
37+ 19 3.325 0.0831 0.0374 0.017
37- 19 3.588 0.0911 0.0467 0.019

The difference in mean value of the thresholds for fre-
quency and variance are significant, except for 12+ and
17+.
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different. As shown by Smith and Sherlock (1957) and
Gibson (1958), from experiments at Cornell, one is more
sensitive to the frequency with which an bbject crosses
any refe?ence marks. This could explain the somewhat
higher threshold for‘variance, since in the case of a
change in variance, the frequéncy remains constant. It
should be noted, however, that the earlier work was not
concerned with random processes. Also, as shoWn by Rice
(1954) and Blake and Lindesey (1973), the average number
of level crossings of a random process depends only on
the passband of Ehe filter for a Gaussian white noise,

and n&t on the filter gain.

| It is interesting to observe that one set of nominals
(T = 3, £ = 0.2) appears distinctly different from the
others. This nominal also resulted in a different type of
performance in the detection time experiments. A possible
e#planation for the discrepancy will be given in the next
chapter, where results from the detection time experiments

are given.
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3.4 Analysis of Variance

An analysis of variénce was also performed for both
increases and decreases in frequency and variance. These
results also have been tabulated (Table 3.4). These were
obtained using a}standard packaged program (BMDPZV, from
the BMDP programs package of the UCLA Computing Facility).

A linear hypothesis model of the form

Yisk =u+a; + Bj + (aB)ij + e;3x (3.2)

has beeh used. Taking u to be the 5verall mean, o, to be
effects due to frequency, and sj the effects due to damping
ratio in the nominals, the results could be interpreted in
the following manner. The : results are considered at a
significance level of 0.05. For a decrease in frequency,
the differential effects due to frequency in different nomi-

nals, are significant (i.e., the null hypothesis that
a; =a, =0 (3.3)

cannot be rejected).

For a change in variance, the frequency is significant
for decreases, whéreas for an increase, differential effects
due to both frequency and damping ratio (between various

nominals) are significant.
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TABLE 3.4 ANALYSIS OF VARIANCE FOR FREQUENCY (F) AND
DAMPING RATIO (D) EFFECTS.

(Results from the BMDP2V Program)

M - Overall mean
F - Differential effects due to frequency
D - Differential effects due to damping
FD - Effects due to interaction of P and D
Er - Error
Sum dof Mean Sq. F P(F exceeded)

(a)
"M
F

D
FD
Er

(b)

FD
Er

(c)

FD
Er

(d)

FD
Er

Decrease in Frequency

0.07096
0.00306
0.00004

0.00078

0.02475

(V3]
SR

Increase in

0.06982
0.00237
0.00151
0.00116
0.03060

1
1
1
1
38

Increase in

0.30549
0.01774
0.01324
0.00664
0.07794

1
1
1
1
31

Decrease in

0.29397
0.00694
0.00073
0.00380
0.04105

31

1l
1
1
1l

0.07096
0.00306
0.00004
0.00078
0.00065

Frequency

0.06982
0.00237
0.00151
0.00116
0.00081

Variance

0.30549
0.01774
0.01324
0.00664
0.00251

Variance

0.29397
0.00694
0.00073
0.00380
0.00132

108.9478
4.7048
0.0554

1.2052

86.9641
2.9439
1.8707
1.4345

121.5088
7.0550
5.2673

2.6429

221.9800
5.2381
-0.5494
2.8693

0.0

0.036
0.815
0.279

0.0

0.094
0.179
0.238

0.0

0.012
0.029
0.114

0.0

0.029
0.464
0.100
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In every case above, ‘the null hypothesis o) = a, = 0,
or Bl = 62,= 0 was tested at a significance level of 0.05.
If the probability that F exceeds the value obtained in- the
ahalysi§ of variance procedure (Table 3.4) is less than 0.05,
the null hypothesis is rejected for £he alternative that the

differential effects are significant.

3.5 Explanation of the Observed Results

Now an attempt will be made to explain the results from
a physical standpoint. Significant conclusions could not be
drawn as to whether an increase in frequency (i.e. decrease
in period) is easier to detect than a decrease, though the
preliminary experiments suggested such a trend (Curry and
Govindaraj, 1976). There is a definite trend for the thres-
hold to be higher for a lower nominal frequency. If thres-
hold is viewed in terms of the angular distance traveled
per unit time, a higher frequency motion would travel a
~given angular distance in a shorter time. Or, in other words,

for a given time and angular distance, a higher increment is
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required for a iower nominal frequency than for a higher
nominal ffequency. Spigel (1965) defines absolute threshold
(for angular motion) as "the minimum angular distance tra-
versed, with the rate held constant". So, in terms of the
difference in frequency from the nominal value, it is reas-
onable to expect that if the angular distance traversed is
the threshold, the difference should be higher for a lower
frequency. Spigel also states that the thresholds for cir-
cular movements follow the same laws és the rectilinear
movements. For our case, though the motion is not uniform,
(i.e., the motion is random), it may be expected that the
thresholds for random processes also follow the same laws.
The thresholds shown as a ratio to the nominal frequency
are of the order of 0.10 for a change in frequency and
agrees with the 0.10 threshold given by Brown (1960), and
others in the psychophysics of motion (Spigel, 1965) (sce
Table 3.5).

For a change in variance, the thresholds are higher
for the lower nominal frequencies, and the above explanation
could again be used. The thresholds for increase and decrease
for any one nominal are not significantly different from one
another, though, as will be seen later in the detection time

results, increases in variance from the nominal are easier
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FIGURE 3.5 THRESHOLDS (Percentage

(1) Change

of Nominal)

in period
Nm Th(log) R W W-w0
12  -0.078 (0.051, 9) 0.924 6.800 0.517
0.064 (0.048, 9) 1.066 5.896 -0.387
17 -0.076 (0.046, 9) 0.927 6.778 0.495
0.087 (0.060, 9) 1.090 5.764 -0.519
32 -0.138 (0.090,12) 0.871 2.405 0.310
_ 0.124 (0.069,12) - 1.131 1.852 ~-0.243
37  -0.085 (0.060,12) 0.917 2.284 0.186
0.108 (0.053,12) 1.114 1.881 -0.214
(2. Change in variance
Nm Th (log) R $Nm
12 -0.166 (0.87,10) 0.847 15.3
0.177 (0.097,10) 1.190 19.4
17 -0.193 (0.081, 8) 0.825 17.5
0.152 (0.101, 8) 1.162 16.2
32 -0.279 (0.090, 8) 0.757 24.3
0.345 (0.168, 8) 1.410 41.0
37 -0.210 (0.078, 9) 0.811 18.9
0.191 (0.085, 9) 1.211 21.1
Nm - Nominal: (period and damping ratio)
Th(log)- Threshold in log units (1ln(P/P,.)
R - Ratio of the parameter to nominal
W - Frequency (rad/sec)
W—W0 - Difference from nominal
$Nm - Percent threshold (period or variance)

o0
Z
=]

o o
NN

¢« e
w o

-
o [l > [+« RN ()¢ o]

ot

Standard deviation and number of subjects are shown
in parentheses.
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consistently to detect than decreases. The fact that this
does not affect the threshold is a proof that the form of
the staircase method used here has eliminated any extraneous
effects, i.e., though it takes a longer time to detect de-
creases compared to increases, the thresholds do not seem
to’differ significantly from each other. Similar conclusions
can. be drawn about detecting a change in frequency.

Finally, a comment is necessary in interpreting these
thresholds. Since the experiments were conducted when the
subject always anticipated a failure, his performance prob-
ably contrasts with what would be observed in a situation
where failures are not normally expected. Thus, these re-
sults are likely to be a lower bound for the detection
thresholds, higher values to be anticipated in situations
where "failure~set" is not.so strong. Nevertheless, the
threshold values found in our work give a good order of
magnitude for actual cases. Also, since increases and de-
creases are interleaved, these values may not depart too

far from the values to be expected in real life situations.
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CHAPTER IV
EXPERIMENTAL RESULTS: TIMES FOR DETECTION

Experiments conducted for threshold estimation and for
'détecﬁion time behavioy were described in detail in Chapter
II. in_Chapter iII, resuits'from thezthreshold experiments
were discussed. Though a knowledge of thresholds is esseﬁ-
tial for an understanding of the inherent limitations of
the human in failure detéction tasks, it is not sufficient
for a complete understanding of the failure detection pro-
cess. Hence, experiments were conducted to examine the
detection times for various stimulus levels. This data will
be later used’in Chapter V for arriving'at descriptive models.
In this chapter; the results will be discussed and comparisons
will be made between changes in frequency and variance.

Since the subjects who took part in these experiments
went through the previous series of experiments for threshold
determination, they had extensive experience with detection
of parameter changes in a random process. This experiment

was conducted over a period of several weeks and it is
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reasonable to asSume that the subjects were "well-trained
observers". For each nominal, the detection times are
plotted as a function‘of stimulus level, for the population
(see Figures 4.1.1,'4.1.2, 4.2.1, and 4.2.2). The data for
individual subjects is given in Appendix E. The abscissa
was chosen as the logarithm of the difference in standard
deviation of the stimulus:velocity from £he nominal value.
This was done because the preliminary experiments suggested
that the detection times would be symmetric about the ordi-
nate if plotted against rms velocity. Hence, it was felt
that the subject might be more sensitive to velocity and he
could be using this as a principal cue. Also, in the case
of a change in frequency, rms value of velocity is directly
proportional to the change in natural frequency, and in

the case of a change in the variance, it is proportional

to the standard deviation of stimulus displacement. The

detection times are plotted in logarithmic units.

4.1 Symmetry in Detection Times for Frequency

From the plots (Figures 4.1.1 and 4.1.2), the following
observations can be made. Detection times for frequency and

variance appear nearly symmetric about the Y-axis. However,
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thé detection of a change in'variance takes a longer time
compared to the detection of a change in frequency for the
same level of change in rms velocity. The assumption that
the subject.might be using the rms velocity as a cue to
detect changes in frequency seems to be reasonable. As ob-
served by Smith and Sherlock (1957) and Gibson (1958), the
observer may be sensitive to the‘frequency with which the
object (line) crosses the reference lines. Though Smith
»and~8herlobkﬁconéiderhmotidﬁs»whichuare»not random (as in
our case) it i;>neverthe1ess:q similar situation. Thus if
the subject is using the frequency of level crossings as
the cue, the difference in the results obtaiﬁed for variance
and frequency should be expected. The straight line which
the subject is observing moves inside a grid, and the grid
lines aid in forming an estimate of the frequency with which
it crosses the reference lines. If the variance of the
displayed process changes, Ehe average rate of level crossings
does not changé (Blake and Lindesay, 1973); hence the subject
cannot use this as a cue. Therefore he may have to estiméte
the variance, rather than the frequency of level crossings.
This may result in longer times for detection.

For a change in vgriance,_it is almost always éasier to
; detect an increase over a decrease. Since the subject knows

the normal limits for motion, he could be behaving as a peak
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detector or a detector of ekéeedence limits (Curry and
Govindaraj, 1976). When the variance decreases from nominal,
the line tends to stay nearer to the origin. The subject
takes more time to récognize such a change, since that>is
where the line remains for most of the time under normal
cirdumstances; " Thus the failéd mode appears almost normal,
and the failure is suspected only after some time of obser-
ving that the line never exceéds the limits it used to

reach under normal circumstances.

4.2 Differences Among Subjects

Finally, a comment is necessary for a more detailed
interpretation of the results of the three subjects, and the
times at which the experiments were performed. For subjécts
MR and'WM, participation in the experiment was their first
activity during their workday, with a few exceptions for WM.
They were prompt in arriving, and appeared fresh and alert,.
and remained so throughout the experiments. There were no

no-shows, cancellations or postponements for any run. For

SH, the schedule was different from day to day. There were
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a few days when the experi%ents were cancelled or postponed,
and the subject ﬁas.not always prompt in reporting at the
scheduled times. While ruhning the experiments, it waé
obvious that MR and WM had set consistent criteria and main-
tained them throughout. With very few exceptions, the prob-
abilities of a miss or a false alarm increases in the oréer
WM, MR, SH, and thé'probabilities<xfcorrect.detections de-
crease in the‘Saméhbfagf?~F(Tﬁe%probabilities are shown in
‘the 'tables of Appendix E.) This is also consistent with
the relatively higher detection times observed for subject
WM  (Appendix E). It should also be noted that a change
in variance was more difficult, and comparatively more tiring
for the subject. The subject WM always aimed at 100% correct
detections, and though evefybody was told to "detect as
quickly as ?ossible without making too many mistakes", he
seemed to feel highly uncomfortable about any mistakes he
made. It may be worth reéalling a remark by Green and Swets
(1966, p. 336), "At worst; a miss indicates a minor sensory
deficit; a false alarm, for the naive observer is a false-
hood". It was apparent that WM wanted to avoid both misses
and false alarms, and hence one sees an increase in his

detection times.
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There is one other obgervation that is worth noting.
The nominél of T = 3.0 seconds, £ = 0.2, appears to be
different from the other nominals, in that more false alarms
and misses are noted for all subjects, along with higher
detection times, when compared to-the nominal with a higher
damping ratio. Also, it may be recailed from aiscussions
in Chapter III (Sections 3.4; 3.5), that this nominal resulted
in higher thresholds for changes in frequency and variance.
This is possibly due to the higher frequencies that are
passéd through an underdamped system. The ratio of upper
.cut—off.frequencies for damping ratios of 0.2 and 0.707 is
about 2. Also, éhe amplitude ratio at any frequency is
higher for the underdamped case, reaching as high as 10 db
at some frequencies (see Figure 4.3). Though these ratios
do not depend on the nominal frequency, the effect may be
more noticeable at lower nominal frequencies, and the abso-
lute values.of frequencies could have been more important
in a lower frequency case in confounding the subject. It
was perhaps not obvious as to whether the effect observed
was due to a freguency change or some spurious phenomenon.
Though the subjects may not have been awére that the dif-
ference occufred dué to a very low damping ratio, it was

:obvious that they had difficulty in detection.. So, in order
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to make correct detections, they seem to wait a longer
time to be certain that the frequency has changed. They
either make too many mistakes or take too long a time.
In fact, most of the time both these effects appear.

Similar behavior is not observed for the case of a higher

nominal frequency (T = 1.0 second).
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CHAPTER V

MODELS FOR FAILURE DETECTION

In the previous chapters, the experiments for threshold
-estimation and detection behavior were described. The results
-obtained from the experiments were analysed. 1In this chapter,

models will be developed which incorporate the data.

5.0 General Discussion

Since the process being monitored is stochastic, the
observer cannot know the state of the system with certainty.
But, for detection of any failures that might have occurred,
the parameters that are significant must be estimated. These
-estimates should be properly utilized to arrive at conclusioné
as to whether a failure has or ‘has not occurred. Hence, our
model is assumed to consist of two stages: (1) an estimator
for system states and (2) a decision mechanism which utilizes

these estimates. Since the process is being observed contin-
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uously, estimates of system states must be made continuously.
For estimation, a linear estimator is uéed. The decision
process uses data, arriving continuously from the estimator,
i.e., sequential analysis is performed on the estimates.
Hence, the approach is similar to that of Curry and Gai
(1976) and Gai (1975), who used two stage models to explain
the oBserved detection time behavior in a monitoring task
involving changes in the mean of a random process. Brief
descriptions are given for linear estimation theory and
sequential analysis.

The two parameéeter changes,'i.e., variance and frequency
from their nominal values, are considered separately for
modelling purposes. Modifications of sequential analysis
for use in the decision strategy are given. Finally, £he
results obtained from the experiments are compared with

results from simulations of the proposed models.

5.1 Linear Estimation

When the process being observed contains noise, an
exact determination of the states involved is not possible,

and estimates must be obtained. If the associated statistics
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are known for any process, the problem can be viewed as a
Bayesian estimation problem, and when the operations des-
cribing the dynamics of the process are linear, it becomes
a linear Bayesian problem. Depending on the structure of
the problem, various approaches can be used to obtain a
solution.' Since the dynamics of the process are assumed
to be completely known, and since the input is assumed to
be white noise, an appropriate choice of estimator would
be the'Kalmanwfilter;‘rItvis thevbest possible lingar esti-
mator for such a system, becaﬁse it result; in a minimum
error in its estimates. A brief description of the Kalman
filter will be given.

Since the process used in this experiment was generated
by a digital computer, and since all the computations were
performed digitally, only a discrete time formulation is
discussed. A brief discussion of the Kalman filter will be
~given here. A more detailed description can be found in
Jazwinski (1970).

The discrete linear system is described by
= &(t

X + F(tk)w

k+1 k+1* %) ¥k k+1

(5.1)
k=00'1,.Q'.

where Xy is the n-vector of the state at tk’ ® is ann xn

non-singular state transition matrix, T is n x r, and



79

{mk,k=1,...} is an r-vector of white Gaussian sequence,
where Wy is normally distributed with zero mean and covar-
iance Qk' The discrete linear observation is given by

Yy = m(tk)xk + vy (5.2)
The statistics of Vi and Wy are assumed known, and they are

assumed to be independent.
For this system, the optimal (minimum variance) filter
consists of difference equations for the conditional mean,

and the covariance matrix. Between observations,

% ~k
R ORI P (5.3)
x X.T T
Pre1 = (b i BB (e )+ T 0, T (1) (5.4)

At observations

!
"k _ Zk-1 k-1
X, = X O+ K(t) Iy, - M(t) ) xy ] (5.5)

k _ k-1 _ k-1
Pk = Pk K(tk)M(tk)Pk (5.6)
where
_ wk=1.T k-1.T -1
K(tk) = Pk M (tk){M(tk)Pk M (tk) + Rk} (5.7)
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is the Kalman gain. Prediction for t, > tk’ (xt, Pt) is
accomplished via equations with initial condition (xi, Pi).
Since P is a covariance matrix, Pi 2 0if Py > 0.

The system under consideration, i.e. the shaping filter,
is time invariant, and hence<®,randkM are constant. However,
when a failure occurs, these system matrices change, and it
is this change that results in a discrepancy between observed
and expected values, leading to a detection of the change.

The predicted residual or the measurement error is

i

given by
4 - =
= = ’k
= Yyg) = M(k+1)xk+l (5.8)

When the system matrices and the Kalman filter matrices are

the same, it can be shown that

Elr(k+1]k)] = 0

and (5.9)

Elr(k+1|k)r(k+1|k) ] = M(k+1)P(k+1|k)M® (k+1) + R(k+1)

N

The residual is also called the innovation process, since it
is orthogonal to all previous information, i.e., each new

sample of the innovation process brings new information, and
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the residual cannot be predicted from the knowledge of in-
formation up to the current point (Schweppe; 1973; Kailath,
1970) . | |

The filter is not optimal if the parameters governing
the dynamics of the filter are different from those of the
system. The residuals -do not remain white for such a situ-
ation. An expression for the correlation of the residuals
for such a case, for a continuous system is given by Curry
and Gai (1976). For discrete systems, a similar formulation
can be found in Martin and Stubberud (1976);4

In the failure detection situations considered in the
current work, the mean of the observed process remains
zero. The variance changes. However, for the case of a
failure in frequency, the mean speed of the observed process

(|velocity|), changes, and this is used for detecting the

failures.

5.2 Sequential Analysis

Under the normal hypothesis testing approach, the

number of observations or the sample size is fixed. But
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there are cases where it may be desirable and advantageous

to allow the sample size to be a random variable, to be |
determined by the outcome of the observations. This is the
cése suited for problems like failure detection, where suf-
ficient information is accumulated‘over a sequence of obser-
vations, so that a decision can be made as to which hypothesis
is true. A decision rule is determined in advance so that
éepending on the observations, one of the following paths

i# féken (1) the hypqthesis Hy is accepted, (2) the hypo-

'thesis H, is rejected (alternately, hypothesis Hy is accepted),

0
or (3) a decision is deferred until an additional observation
is made; This procedure is carried out sequentially until
a definite decision to accept or reject the hypothesis HO
is made. An optimal strategy for sequential analysis‘has
been spelled out in detail by Wald (1947). Use of this
method for signal detection has been suggested by Birdsall
et al (1965), Phatak and Kleinman (1972), and Sheridan and
Ferrel (1974). For our purposes, methods given by Wald will
be used with some slight modifications. Since details can
be found in Wald, only a brief summary relevant to our work
will be given.

The sequential decision problem is to test between two

hypotheses H0 and Hl. It will be assumed that (1) the hypo-

theses are simple hypotheses, meaning that the probability
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distributions are known under both hypotheses, and (2)
that the observgtions are independent. Under these
assumptions, thé problem can be formulated as

the distribution is £(X,8,) when Hy is true
and the distribution is f(X,el) when Hl is true,
where 6, the distribution parameter, assumes 60 or el
depending on which hypothesis is ture.
? Let x,, i=1, ..., m, be the realization of the
random variable x, for m observations. Then the likeli-

-hood of either hypothesis is given by

Pom = TE(x;,8p) ' (5.10)

and

) (5.11)

Wf(xi,e

Pim 1

respectively. In the sequential probability ratio test, the
probability ratio

PR = (py_/Pop) (5.12)

is found at every stage for the past m observations. Two
limits, A and B, are set in advance. At any stage, either
of the hypotheses is accepted or a decision is deferred

until more information is accumulated. The decision as to

which alternative to choose is taken as follows:
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(1) I£f B < PR < A, the experimént is continued by
taking an additional observation,
(2) If PR > A, the experiment is terminated with the
acceptance of Hl, and
(3) If PR < B, the experiment is terminated with the
acceptance of Ho.
Now the problem is in the proper choice of A and B. It

would be desirable to relate these to the following para-

meters:
PFA - the probability of rejecting'Ho when it
is true
PMISS'- the probability of accepting Ho when I-I1

is true.
These values are predetermined before sampling is done. The

exact functional relationships A = PFA) and

91 (Pyrss:

MISS’ PFA) are not available. Wald has suggested

very good approximations for these functions. They are

B = g2(P

A= (1-P and B = P The use of the

miss’/Fra mrss’ 1"Pra) -
above strategy with the above values for A and B is known
as the sequential piobability ratio test (SPRT). Some of
the advantages of this procedure are: (1) there is no need
to calculate any statistic such as t or F, (2) the size of

two types of error can be determined apriori, (3) the ex-

pected number of samples needed can be calculated, and (4)
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the expected number of samples needed is less than that for
a test with fixed number of observations. For a failure
detection task, since the occurence of the failure is itself
random, the number of observations cannot be predetermined,
and hence the sequential test would appear to be well—suited
for the task.

- For our purposes, we need to consider two specific
- forms of the test. Because a change occurs in variance,
.during one part of the experiment, it is reasonable to
-expect that the variance of the observed process will be
different from the nominal, while the mean will remain at
zero independent of variance change (since the input is
zero mean). Thus, a test on the means is of no use, and
a test for variance is needed. For a change in frequency
(under failed conditions), it was found that a test for the
mean of certain variables could also be used to detect the
failure that occurred. Hence the problem of testing for
means (with the same variance) will also be discussed.
Since we have a linear system driven by a Gaussian white
noise source, the density functions under the two hypotheses

are given by

Under HO:

£(x;,0 = (;/m co)exp[-(l/ZU(z)) (xi-e,)zl (5.13)

o)
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Underxr le

f(xi,el) = (1/V/27 Ul)exp[~(l/203)(xi-8)2] (5.14)

Now the two cases will be considered.

Case A. Variance is constant and known, 00 =0, =0

and the means are different.

(i) 61'>,90

The probability density of the sample (xl,..., xm) is

given by
= (1/(2m™ 2™ exp - (1/202) ? (x,-0,)2%] (5.15)

Pom £ SR B .

if 8 = 8, and by
m/2 m 2 o 2
Pim = (1/(2m) o Jexp[-(1/20 )_Zl(xi-el) ] (5.16)
l=

if b = 61. The probability ratio (plm/pOm) is calculated at

each stage of the inspection.

Pin exp[—(1/202)2(xi~61)2] (
= 5.17)

Pom exp[-(l/202)2(xi-60)2]

Additional observations are taken as long as

B < (plm/pom) <A A (5.18a)
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The hypothesis Ho is accepted and observations are terminated
if

(P1n/Pon) < B (5.18b)

The hypothesis H, is rejected and observations are terminated

0
if

(P1p/Por) 2 A (5.18c)
A and B are given by

A= (1 - Pyrgg)/Ppp

(5.19)

B = Pyrgs/ (1 = Ppa)

After taking logarithms and simplifying, the following in-

equalities are obtained:

Continue with additional observations if

1nB < [(el—eo)/ozlz xi+(m/202)(96—ei) < 1lnA (5.20a)

Accept Ho if

[(8,-84)/0?1F x;+(m/20%) (63-03) 1nB (5.20b)

A

Reject H, if

[(8,-64)/0%1% x,+(m/20%) (63-8}) > A (5.20c)
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These can be further simplified to obtain the folloWing:

Continue if

(02/(61—60)1nB < (zxi-(m/z)(eo+el)) < (02/(61-60)lnA

(5.21a)
Accept Ho’if
(Ex;-(m/2) (8,+6,)) < (0?/(8,-6,)1nB (5.21b)
Reject Ho if
(Ix;=(m/2) (6,+6,)) > (6%/(8,-68,)1nA (5.21c)

(i1) 6, < o,

Since the inequalities in équation 5.20 hold for
el > 60 as well as for el < eo (they are obtained just by
taking the probability ratios, without imposing any ccnditions),
a convenient form can be obtained by multiplying by -1. The

inequalities are reversed when multiplied by -1.
Continue observations if

-1nB > ((8,-6,)/02) (z(-x.)-(m/2062) (p2-02)) > -1nA (5.22a)
170 i ro Y1

Accept Ho if

((Bl'BOY/Oz)(Z(-xi)-(m/ZUZ)(Gs—ﬁi)) 2 -1lnB (5.22b)
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Reject Hy if

_ 2 - - 2 2_p2 - .
((61 60)/0 ) (Z( xi) (m/20 )(.60 91)) iv 1nA (5.22¢)
These can be simplified to obtain the following:

Continue observations if:

-(02/(60—61))lnB > (zxi-(m/z)(eo+el)) S —(02/(60*91))lnA

(5.23a)
Accept HO if
‘(in-;h/z)(60+el)) > -(oz/(eo;el))lnB (5.23b)
Reject HO if
(Zx;-(m/2) (6,+6,)) < -(0®/(8,-6,))1nA (5.23c)

A modification is necessary in the above since the mean value
under the failed mode is unknown. Wald suggested that an
artificial parameter 81 could be chosen based on the physical

properties. This will be done in our analysis.

Case B. Mean is known (90 = Sl = 0), and variances are

different, oy %}00. (oo is known,ch_is unknown, but just as

in the Case A,,ol can be assumed for tests.
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The probability densities of the.sample (xl, ceey xm)

are given by

_Ay 2
(xi 0)°] (5.24)

| m
Pom = (1/((2m™26T)) expl-(1/203) %
i=

1

ifos= oo, and

(x;-6)%]  (5.25)

. m
Pim = (1/((2n)m/on))exp[-(1/20§)_zl
1=

ifo= °1'

The probability ratio plm/POm is calculated at each

stage of the inspection

Pim (1/0?) expl-(1/203) I (x,-0) 2]
= ' (5.26)
Pom  (1/00)expl-(1/204) I (x;~6) *]
Observations continue with additional measurements if
B < (plm/pOm) <A (5.27a)
Choose HO if
(Py/Pon) < B (5-27Db)

Choose Hl if

(Py/Pom) > A (5.27¢)
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Taking logarithms, dividing by 1/2,03 - 1/2oi, and simplifying,

we obtain the following:

Continue observations if

0.2 02
| % o
21nB + mln (6:2—) 21nA + mln (—UT)
0 < z(xg-0)% < 0 (5.28a)
11 11
0'0 O'l 00 Ol

Accept H, if

0
ci
- 21nB + mln ('&T)
IR T
Z(xi 8)° < S N (5.28b)
2 2
‘00 o3
Reject HO if
oi
21nA + mln (6—2-)
- B
—ay2
Z(xi 0)% > T T (5.28¢c)
2 2
9, o3

These can be further simplified to obtain the following:

Continue observations if

2
g
mln(—)
o2 ~_21lnA
21nB__  (x;-6) 2 -0 o 2B (5. 29a)

1 1
2 2 2 2 2



‘Accept H, if

0 2
,0'1
mln (—)
| % 21nB
Z(x;-6)7 - < 2 (5.29b)
1 _ 1 1 _ 1
2 2 2 2
‘0'0 0'1 .Go 0'1
Reject HO if 52
mln(—i)
.. o? 21
I(x;-8)% - e > nh _ (5.29¢)
1 _ 1 1 _1
2 2 2 2
00 .0'1 0'0 O'l

(ii) When a failure is defined by a reduction in
variance (i.e., <i < co), the inequalities are obtained by

multiplying by -1 and reversing the inequalities.
Continue with additional observations if

(-B) > -(plm/pOm) > (-A) (5.30a)

Choose HO if

- (P1,/Pom) > (-B) (5.30b)

Reject H0 if

=Py, Pop) < (-A) (5.30c)
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Taking logarithms, we get the following:

Continue observations if

0.2

-1nB > %(—1— - L)5(x.-0)2 - min(-2) > -1na (5.31a)
0_2 0'? g 02
1 % 1
Accept HO if
1,1 1 94
(5 = ) I(x;-0)2 - min(—2) > -1nB (5.31b)
°1 % °1
Reject Ho if
1 1 %, . *
S - Lz x,-0)2 - min(-Y) < -1na (5.31c)
o2 o3 1 o2
1 9% 1

These inequalities can be rewritten as follows:

Continue observations. if

2 2

g g

21nB + mln(—% 21nA + mln(—%)
08 ' oé
- >z(xi—e)2>— (5.32a)
(£ -4 » (= -2
,O'l .00 Ul .00



Accept H, if

0 o2
21nB + mln(—%)
o2
(x,-0)2 > - 0
1 _ 1
2 2
o] 9,
- Reject Ho if L2
21nA + mln(—l)
o 02
L(x;-8)% < - 0
1 _ 1
2 2
o 9

The slope can be subtracted to obtain the following

Continue observations if

%0
mln(—)
_ 21nB o] 21nA
> Z(xi-e)2 - —_—— > = ——
1 _ 1 S 1 _ 1
2 - 2 ) 2 2 2 2
.01 .00 .CFl .0'0 01 OU
Accept H, if
2
o
mln(«——Q
oi 21nB
L(x;-8)? - > -
1_1° 1_1

(5.32b)

(5.32c)

(5.33a)

(5.33b)
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Reject H, if

0 2
o
mln(—g)
: 'Ul 21nA
E(x;-6)% - ——=— < — ———— (5.33¢)

d _ 1 1 _ 1

2 2 2 2

91 9% 91 9

The decision regions for both cases are shown in Figures

5.1 and 5.2.

. Modification to account for change of mode

The basic sequential test does not anticipate any
change in modes during the observation process, while a
change is to be expected in a failure detection process
(see also Gai, 1975). Consequently, a method suggested by
Chien (1972) and also used by Gai is used. Chien suggested
that if a failure detection process involves checking for
the normal operation, i.e., checking if the process con-
tinues to function normally, more observations are needed
to detect a failure, because the decision function might
have strayed too far into the region indicating norﬁal
operation. He suggested a suboptimal strategy where the
decision function is reset to its initial value whenever

normal mode of operation is likely. When this is done,
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Reject . Accept

Continue Continue

' i
Accept ‘ Reject

Ix

%1 < 8

Figure 5.1 Test for Means

Reject

Continue Continue

///////, ~ Reject
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Z(xi - 9)?
E(x, - 9)2

Accept

>
0, > 0, (for failure)

Figure §.2 Test for Variance-
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the number of observations required to drive the decision
function into the failure region is less than the case with
no reset. This resetting helps to reduce the time between
the onset of a failure and its subsequent detection.

In both cases described above, the normal mode is given
by the zero-mean horizontal line; thus the decision function
should be reset whenever it crosses the zero line (Figure 5.3).
Now only one criterion level is needed, since the normal
mode is not reported. However, the same level as before
cannot be used, if the same false alarm probability is to be
maintained. This is because, for the same level, more false
alarms would occur due to the resets. The criterion level
should thus be raised to Al, where Al is given by the

following:

Al - 1nAl - 1 = -[1nA + ((2-1)/(1-B))1lnB] (5.34)

(Chien, 1972)

In the following sections, models for the decision stra-
tegy will be discussed both for failures in frequency and for

failures in variance.
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DECISION

FUNCTION

TIME

Figure 5.3 Decision Function for the case with resetting.
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5.3 Modelling: éeneral Description

The process-aisplayed to the subject consists of up and
down motion of a horizontal line (see Section 2.1). The sub-
ject observed the position of the line continuously. It is’
well known that a human is also sensitive to the velocity of
the motion being observed. Initial analysis showed that if
velocity were to form the basis of the detection task, more
accurate predictions could be made of the experimentally
observed detection times. Hence, a séalaf observation, con-
sisting of the rate of motion will be considered as the ob-
served variable. The observations are assumed corrupted by
an additive noise,\v(t), which can be modelled as a zero mean
Gaussian pfocess, The input to the failure detection system
then consists of the observation plus Gaussian white noise.
The failure detector is modelled here as an estimator cas-
caded with a decision mechanism.

For the estimation process, a Kalman filter was assumed
for both changes in frequency and variance. The output of
this estimator was used in the decision mechanism for detec-
tion of failures. Since the process being observed was a

second order system operating on white noise, a second order
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Kalman filter with the same parameters as the nominal system
parameters was used. Since the observéd system as well as
the estimator are linear, and the input is Gaussian and zero
ﬁean, the states (or a linear combination of the states) from
either one can be used for the decision prdcess. The obser-
vation estimate of the model is used in the decision mechanism,
since the states are non-unique, and the dimension of the
state vector is larger than that of the observation, which

is a scalar. It is also assumed that the measurement resi-
.dual, i.e., the difference between estimated and observed
values, rather thén the observation estimate itself, is used
for the decision mechanism. This can be justified because

(1) the residual is more sensitive to the effect of failure
than the observation estimate, and (2) for the nominal pro-
cess, the residual is a white Gaussian process (Schweppe,
1973:>Kailath, 1970).

Therg are now two separate problems: (1) the detection
of failures in frequency, and (2) the detection of failures
in variance. As noted earlier, the mean of the residual
remains zero for both changes, since the system (the shaping
filter), and the Kalman filter are both linear, and the input
is a zero mean white Gaussian process. However, the variance
of the residual changes for a failed process. This charac-

teristic of the residual thus motivated a modelling approach
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using residual variance changes as a failure indicator.
' This approach satisfactorily explained the results ob-
served experimentally in response to a change in display

process variance and a change in frequency.

5.4 Notes on the Implementation of the Models

For all of the models, the states were updated at
5/60ths of a second. Since the same program was used,
the stimulus presentation was the same as in the experi-
ment. Observation noise with variance equal to 0.01
that of the observed variables was added prior to any
processing. For any stimulus value, there were 15 runs
for the model. The summations needed for the decision
function were done with a first order filter with a long
time constant, starting 5 seconds after the start of the
process (l/(Ts + 1), T = 1000). Thus it is effectively
a direct summation. In all cases, PFA = PMISS = 0.05

was used for setting the bounds.
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5.5 Model for a Change in Variance

For the normal process, the variance of the residual
~is given by equation (5.9), and hence is known in advance.
- For a failed process, the variance is unknown. Assuming‘
that 91 > 60 for t > tf where tf is the time of failure,

the decisién function is calculated as explained earlier.

—0 (5.35)

Introducting the resetting feedback

(5.36)
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where
2
o
ln(—i)
~ cé :
Ap = Apop * o Lx-8)2 - } (5.36)
1 _ 1
2 2
% 91

When the magnitude and sign of variance change is un-
known for a failed process, an additional set of hypotheses
must also be tested for oi > 08. The subject was not told
if the failure was going to be an increase or a decrease.

This was necessary to avoid guessing by the subject. An

additional strategy could be given as follows:

o
ln(—g)
m oi
A = E{(xi—6)2 - —} (5.37)
i=1 1_ 1
2 2
°1 %9
with resetting
A= Am if xm < 0
=0 if Xm > 0
(5.38)
and , .
’ jo)
1n (-2
~ . .0
L I ’ - -
Ay = Ap-y + Uz -8)% - } (5.38)
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Block diagrams of the complete model and the linear esti-
mator are given in Figures 5.4 through 5.7.

The parameters o and B are assumed to be 0.05, and the
parameter 0, was found such that the model detection times
agreed as closely as possible with the experimental values.
The results are plotted in Figures 5.8 and 5.9. It can be
seen that tﬁe model values predict the experimental results
very well. Detection times as a function of change in rms
ve}oqity show discontinuities Where;the nominal period changee
from T = 1 sec to T = 3 sec. However, the model appears to
have the same discontinuity as the experimentai data obtained

from the subjects.

5.6 Modelling a Change in Frequency

Two approaches were used to model detection of changes
in frequency. In the first approach, the model used to
detect changes in variance was used. Hence, only the results
‘will be presented for that model. 1In enother approach, the
" magitude of velocity is used as the basic variable for de-

tecting a failure.

5.6.1 Results of the Model Using Residual Variance

The results are displayed along with the experimental
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results in Figures 5.10 and 5.11. One value of 6 for in-
creases and énother value for decreases was chosen for all
the néminals. The agreement with the experimental results

is very good. As inifhe case of a change in variancé, slight
discbntinuities are observed in detection times when the nom-
inal changes from T=1 to T=3. Again, the model as well as

the subject appear to have the same discontinuity.

5.6.2 Velocity Magnitude Estimator

In this approach; the velocity of the line is used to
test for the means in the following manner. Since the velo-
city itself is a zero mean process, the magnitude of velocity,
i.e. without regard to the direction in which it is moving,
is taken as the basis for the model. 1In the initial learning
phaSe, the Kalman filter is used to obtain an estimate of vel-
ocityvmagnitude. The estimator is a two stage process. After
an estimate is made for the velocity’magnitude, the Kalman
filter stage is “shut off", and the second stage is used as a
comparator. This compares the observed speed (velocity magni-
tude) with the estimated mean value and generates the error
residuals. Under normal conditions with no failure, this is
a zero mean process. But when a failure does occur, the speed
changes (increases or decreases with a similar change in

frequency), and this is reflected in the mean of the
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residuals. A sequential probability ratio test could then
be used to test for the mean.

When a failure occurs

m(t) > 0 t >t (5.39)

£

where m(t) is the mean at time t. The decision function is

calculated with resetting feedback

where (5.40)

Am = Agoq + (X = (80 + 67)/2)

Simultaneously, another set of hypotheses is tested for a

failure with a reduction in frequency from the nominal.

for el < eo

| IR ~!' ~|
Am Am if Am < 0

0 1if ;' > 0
m (5.41)

and

> 2
|

= A} + (xm + (eo + 6,)/2)

m m-1
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For a given o and B8, Al can be determined as before,
and the parameter el can be determined. This model was
tried for all the'subjects, for ail the nominals. The
results obtained with this model are shown in Figures 5.12

and 5.13. For most cases, the correspondence appears to be

very good.

5.5.3 Uncertainty About the Variance and Its Consequences

For the model appropriate to detecting a change in
frequency, the variance was assumed constant and known (5.6.2).
This variance (for speed) was calculated during the first
stage of operation, i.e., the learning phase. But in the
actual situation, when the frequency changes both the mean
and the variance change. Though the variance changes, for
large magnitudes of failure, there is no problem in detec-
tion, either for an increase or a decrease. The difficulty
in detection occurs only for smaller magnitudes of change.

For these the variance can be assumed not to depart too

much from the nominal value.
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5.6.4 Previous Evicdence for the Applicability of this

Model

While the model was being tried, some evidenée was
found in the literature which was consistent with our
approach. 'Gibson (1958), on a study of the perception
of motion, observed thatiihaitwo window situation in which
different objects were moving in two different visual sur-
rounds, the observer could easily compare speed independent
of velocity. That is, he.could match the speeds even when
the directions were opposite, or at right angles, to one
another. He also conjectured that in such a Situation,
the observer may be responding to frequency of level cross-
ings rather than to velocity.

The fact that certain nominals do not give satisfac-
tory results could be due to the effect of a need to sepa-
rate various effects as discussed earlier. A simple hypo-
thesis may not be satisfactory. A composite hypothesis or
composite strategy might give better results. One such pos-
sibility is to have two stages of testing. It was obsefved
that larger magnitudes (of either sign) could easily be de-
tected. 1In a situation where a failure is expected, tests

could be made for larger magnitude failures, and for increases
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in frequency (since they are easier to detect). If the test
indicates no such failure, and if sufficient time has elapsed,
tests could be made for decreases with a different strategy.
Since this does not appear to have general applicability,

and since no reasonable alternative strategy could be'found,

this procedure has not been tried.

5.7 Comparison Between the Models

An important motivation for trying to determine models
other than the one used for variance changes was the obser-
vation that the higher stimulus values predicted very low
detection times. (Low detection times from the model seem
reasonable if the human's reaction time is taken into account.
This may be taken to be in the range of 0.2 to 0.3 seconds.
(Sheridan and Ferrel, 1974).) Also, it was‘interesting to
test if the velocity could be used without regard to its
sign. For the cases under consideration, both the models
appear to perform well. A third approach was also tried.
This is based on the idea that the subject might be esti-
mating the average number of zero-crossings or‘level cross-

ings to obtain an estimate of frequency. This model performed
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well for failurs with an increase in frequency, but decreases
had a very high false alarm rate. A different decision cri-
terion that accdunts for the subjeét's prior information

that the failure occurs at least 8 seconds after starting
might give fewer false alarms. A more detailed investigation
is necessary to test the validity of this "zero-crossing
detector" model.

Satisfactory parameter values for el could not be
obtained that result in proper detection times for 1 Hz
and a damping ratio of 0.707. Various values were tried.
They either resulted in a high false alarm rate (>90%) or
went undetected. Judging from the overail performance, the
model where the residuals are tested for variance appears

very good. Aslo this model satisfactorily explains the

detection of failures in variance as well.
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CHAPTER VI

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

Certain aspects of failure detection by human observers
were investigated in detail in this thesis. The process be-
ing monitored consisted of a random process of filtered white
noise. To obtain an understanding of thg detection processes
involved, it was thought necessary to know the various thres-
holds for changes in parameters that describe the dynamics
of the system. Experiments were conducted to determine the
thresholds for four nominals of a second order shaping filter
for changes in frequency and for changes in the variance of
the output. For the nominals, frequencies‘were chosen cor-
responding to periods of one and three seconds, and damping
ratios of 0.2 and 0.707 were used.

Further experiments were performed to determine the
detection times for failures as a function of failure magni-
tude. The results from this study have been used to form
models for the detection process. A summary of the work

reported in this thesis is given below.
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6.1 Summary

Thresholds obtained for the frequency and variance are
consistent with what is to be expected. For changes in
frequency,'thresholds were higher for a lower nominal fre-
quency. For an increase in variance, thresholds were higher
for a lower nominal'frequency and for a lower damping ratio.
When comparing the thresholds obtained for the frequency with
those for variance, the thresholds were found to be signi-
ficantly higher for variance than for frequency. For changes
.in frequency the thresholds were of the order of 10% of the
nominal (usually less), consistent with the psychophysical
data of Gibson (1958), Brown (1960) and others. Though
their data pertain to changes in constant velocity (and not
for random processes), a similar trend seems to be present
in our case.

Another series of experiments was conducted to study
the detection time behavior of the subjects for various
failures. Only two sets of stimuli were presented, one for
increases in parameter value and the other for decreases in
parameter values from the nominal. They were also told that
the objective was to see how quickly they could detect fail-

ures without making too many mistakes. The stimuli were
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chosen with decreasing order of difficulty (increasing mag-
nitudes), the first being slightly above threshold. As
could have been expected, the detection times were found

to be higher for smaller magnitudes of failure (and with

a large variability) than for larger failure magnitudes.

It was also noted that increases in variance could be de-
tected more easily than the corresponding decreases, in
terms of detection times for the same level of failure.

Fbrrchanges in frequency, the detection time curves aré
found to be nearly symmetric about the Y-axis, when plotted
against the logarithm of the rms velocity difference from
the nominal, though increases are slightly easier to detect
than decreases.

In tasks where the variance changes from its nominal
value, it appears that the human may be behaving as a peak
detector, or an ex¢eedance level monitor. .Under normal
conditions, he knows how far the line should move, on the
average, and if this is exceeded, an increase is detected.
But, for a decrease, the line stays closer to the origin,
where it is expected to stay most of the time under normal
conditions. So it takes a longer time to realize that it
does not come up as far as it used to . More evidence with
specially designed experiments may be needed to prove this

conclusively.
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Finally, an attempt was made to develop models to
explain the observed effects. A two stage model was used,
consisting of an estimator and a decision mechanism. For a
change in variance, an estimator (consisting of a Kalman
filter) and a decision mechanism operating on the observation
errors (a sequential probability ratio test), were found to
explain the results adequately. Two models were tried for
a change in frequency. One is the same as that for variance,
where the residual is tested for a change in variance. A
‘simpler model was also tried: the model uses an estimator
(a Kalman filter) to estimate the velocity initially, and
uses its magnitude (i.e., speed) to compare with the observed
speed. The error between the observed and expected speeds
was used in a decision mechanism to perform a sequential
probability ratio test. As indicated earlier, the nominal
of T = 3.0 seconds, £ = 0.2 was found to give somewhat dif-
ferent results.

The correspondence obtained with these models is pro-
bably the best that could be obtained using the simple stra-
tegies described above with simple hypotheses. A better
correspondence may be possible with some composite hypothesis
testing, with alternate strategies.

In conclusion, it was observed that changes in frequency

are easier to detect than changes in variance, if, of course,
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such comparisons are meaningful. This could be due to the

fact that humans are sensitive to frequency even when theyr
are not consciously aware of it. Failures at lower nominal
frequency are comparatively harder to detect. Also, as is

intuitively evident, making the field more heterogeneous by
providing a finer grid is better (but not too fine, making

it tiring to watch), since the frequency could be better

discerned in such a field.

6.2 Recommendations for Further Research

(1) 1In ouf work, only changes in frequency and variance
were investigated in detail. However, as discussed earlier,
damping ratio may also be an important parameter for study.
This may be especially important since thefe was a tendency
among some subjecfs in the earlier investigation, to inter-
pret increased damping as a decrease and vice versa. This
suggests that detecting such a failure might be harder than
detecting mean, frequency, or variance failures. Ohly a

detailed investigation can resolve this problem.
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(2) So far, only individual parameter failures were
consideréd. Though this is essential for a basic under-
standing of the processes involved, a task more relevant to
real life situations would be to study the failure detection
capabilities of the human when two of more combinations of
parameters fail (either together or at different instants
in time). Such a study should explain any interactions that
are important. With proper observation variables, such as
velocity, it may be possible to predict such a failure by
considering a linear combination of various effects

separately.

(3) It would be interesting and worthwhile to study the
effects on deteétion when auditory and other cues are pre-
sented simultaneously. It is perhaps reasonable to expect
that a combined stimulus will aid in faster detection of

failures.

(4) A more realistic study would include simultaneous
monitoring of various instruments, with similar or dissimilar
behavior for different types of failures. Also when attention
must be shared between various instruments, and also control
system components, the performance would differ from that

where only a single instrument is being monitored. Simulations
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with actual instruments in tasks like automatic landing

could be studied (Gai and Curry, 1976).

(5) When a failure is not expected during every run,
the monitor may not be alert continuously and modifications
may be needed in the model. Experiments could be performed
when failures do not occur as frequently as in the experi-

ments described in this thesis.
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APPENDIX A

DISCRETE TIME REPRESENTATION FOR A CONTINUOUS TIME SYSTEM

F(s) = 1
| sz+2;wns+w;

Roots:

_ =2zw * VArZw?2-4up?
s = 2

= -fw * iw/l-C2

1 1
(s+a+jb) (s+a-jb)

F(s) =

Tw b = wYl-r2

where a

2b' s+a+jb s+a-jb

In the Z-transform representation (Saucedo and Schiring,

1968)
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E(z) = I residues{ ——Eéil—— } l
k 1-e2 Tz~ A= s

8 = -a-jb, and -a+jb

Therefore

- 1
F(z) éL[ -aT -]bT -1 l_e-aTeijz-ll

Simplifying, we obtain

(e'aT/b){ z2sinbT }

=aT o spr+e2aT

F(z)

z2-2ze

For real roots, jb can be replaced by b.

bT

“bT_cbTy /5 cos(jbT) = e’ (1+e”

sin(jbT) = (e

S
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Substituting these equations into F(z), we get

.l;[ ze-aT(e-bT_ebT
2b zz_ze-aT(

)

F(z) = —bT)+e-2aT]

ebT+e

The roots are real andkthe above case holds for z > 1.0.

State Variable Diagram (and Formulation) for the Discrete

Time Problem (Saucedo and Schiring, 1968).

0w — 1 P(z) b—m —x
F(z) = YEZ; = alz = { l{ }
U(z 2 w
z +blz+b0
(a;2)w = (22 + bz + boz-z)x

(1 + blz“l + boz'z)J(z) = E(z)

-(alz"YJ(z) = Y(z)
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a
Y(z) = X(2)
E(z) = (2)
x, (2) = z*lxzxz)
x,(2) = 27 w(z) - byx,(2z) - box, (2)]
xl(n-l-l) = xz(n) |
x2(n+1) = w(n) - blxz(n) - boxl(n)
CT = [0 a,] (n) = a;x,(n)
1 Y 1%2
' 0 1l 0
X(n+l) = Xx(n) + w(n)
-b0 -b1 ..l
0 1 0 i 0
A = B = C =
—bo fbl 1 __al
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Relationship between gain, variances and the other parameters

of a discrete (z-transform) second order system.

H(z)

_ -1
Syy(z) = H(z)H(z )SXX(Z)
Sxx(z) =49
alz-l{P}
H(z) =
by + b,z + z2
with poles at
[zl, z?_]
v

z = (by/2){-1 % "1 - (4b0/b12)}

with poles at

[z3. 24].

z = {(-by/by) * '/(bl/bo)z - 4/by )



®. . (0) = ¢° = —l+ S s, (z)z ~dz ' = unit circle
YY T

Poles are real:

b1 é
1,2 = 7 (1 * 71 - 4by/by ]

= - - 2
Z3,4 = 35 L+ "1 4bo/b1 ]

For |[z]| < 1, take the residues to get o;

_ 1 -1, -1
¢yy(0) = 753 £ H(z)H(z ")z Sxx(z)dz
= residues in the unit circle
2 2 2 ) 2
o, = (P?q) (aj/by) { I }

res (z-zl)(z-zz)(z-z3)(z-z4)

Poles are imaginary:

z = (-b)/2) 1 ¢ i‘/(4bo/bi) - 1]

Izll'2 = |-by/2| [1 + (4by/b3) - 131/2 ‘b1/2)/4bo/‘°i‘_ - /g;

X
= e-2aT _ -aT. <1
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= "1/b = e > 1

So only z, o need be considered for residues
’ A

(312’-) = (Pzai){ il N °2 }
g, ' b
1 0 (zl-zz)(zl—ZB)(zl-z4) (zz-zl)(zz-z3)(22-z4)
_ Pzai 232, - 252,
0 (21-23)(21-24)(22—23)(zz-z4)
Denominator =

(2122-2223—z4zl+z3z4)(zlzz~zzz4-zlz3+z3z4)

= {(leé + z3z4) - (2223 + 2421)}{(2122'+ z3z4) - (zlz3+ 2224)}

Using the relationships

z, = a + jb

we obtain

+

z, =a- jb z3 = a/b0 + jb/b0 and

z, = a/b0 - jb/b0

Z,z, = (2/b0)(a2 - b?)

z3z4‘ (1/10(2J + 1)(a? + b?)
(1/b) (a2 + b?)

(l/bo)(a2 + b?)
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= 2 2
Zo24% 2,2, = (a* + b )(2/b0)
- = 2 2 2 _
Z42,~ 2,2%, (a* + b )(l/bo 1)

= _ ‘ vy _ 2 '
where a = b1/2 and b (bl/2) 1 (4b0/b1)

Substitution of these in the equation for (o;)ql) gives

Pzai) (a®+b?) ([1/bF] - 1)

(62/q,) = ( _
v o (a%+ b?) (1-11/by1) % [a? (1-1/by) *+b* (1+1/by) 2]

P2a? . 1 - b2
1) ¢ 9 }

; 20 (a2 /2y (th 7)2 2y (1% Y2
(by-1)* [(a®/b]) (by-1) 2+ (b/bJ) (1-b) *]

2
(1 bo)b0

}

(Pzai){
(bo—l)z[az(b0—1)2+b2(l+b0)2]

(bo-l)z[az(bo-l)2+b2(l+bo)2]
P = { }(o;/ql)
2 2
(l—bo)boal
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Relation between gain, frequency, damping ratio and variance

of the input and output

® p2 (02)
2 2 X
+ +
(ql) s 2Cwns vwn
qul qul
Gy (s) = ( — =) ( ——— =)
s +.2;wns + Wy s‘ - 2;wns + Wy
C0 = P»/ql Cl =0
d0 = 0, dl = 2§mn d2 =1
2 2 2 2
52 = Cldo + Cod2 P q P q,
X 2 3
Zdodld2 2wn(2Cwn) 4wn§
o;/ql = x = ratio of variance of output to variance
of input
= p2 3;
=P /4wnC
Therefore

P = 4w;§x
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Programming details:

Real roots

by

al(sum of residues)

= (g2
P = goy/ql)
where residues are calculated at z such that |z| < 1.

Real if (4b0/b1) <1l (since cosh( ) > 1) b - imaginary

c>1.

For £ < 1, the roots are imaginary since

(Abo/bi) = 1/cos?w"1l-z%T > 1.

So, for our problem, the imaginary case is relevant.
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APPENDIX B

INSTRUCTIONS GIVEN TO THE SUBJECTS

WELCOME
- TO

MAN-VEHICLE LABORATORY

You are going to participate in an Experiment in
Failure Detection. You will be observing a random process,
in which a failure will occur at some random time. The
nature of the process and the failure will become clear
after the initial trial runs. A brief explanation is now

given about the details.

This is an experiment to find out the threshold (i.e.,
the smallest change you can reliably detect) when a failure
occurs in a (second order) process driven by random input.
The process consists of up and down motion of a straight

line.

[l1] When a failure occﬁrs, either the FREQUENCY or the

VARIANCE (swing away from the mean) will change from the



nominal value.
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During any one set of trials, only one

parameter will change. Initially the NOMINAL (i.e. NORMAL)

PROCESS will be shown for two minutes.

[2] After the nominal, failed modes with large

increase/decrease will be shown for lesser times.

During these trials you are advised to observe the

motion of the

line. You may note how fast orfslow it

moves, how far away from the center it goes, etc.

After the first two minute nominal, for every run

the process will start normally, and the failure will

occur between

[3] The

clear. If it

[4] For
seconds after

not been made

8 and 12 seconds.

experiment will start when the procedure is

is not clear the trials will be repeated.

any run, the process will continue for 30
the occurence of failure. If a decision has

by then, the line will stop and you will have

5 seconds to decide. You will respond by using one of the

two switches.

- [5] You will use the UPPER SWITCH to indicate what

you perceive as an INCREASE, and the LOWER onequr a
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DECREASE, from the nominal parameter value. Pressing any
switch at any time will terminate the current run. Hence,

the decision cannot be changed.

[6] NOT DETECTING the failure in the available time,
"detecting" a failure before one occurs (FALSE ALARM), and
making a WRONG choice are the three possible errors one

might make.

[7) The result of your decision will be displayed on

the screen soon after you respond.

[8] Between trials, there is a blanking period of

5 seconds (including the time for showing the result).

[9] The experiment proceeds until the threshold is
determined for one parameter. The entire procedure is

repeated for the other parameter.

PLEASE CLARIFY ANY QUESTIONS YOU MAY HAVE.
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Table of first exreriments in a session [ For threshold 1

Two

ist
2nd
3Ird

( chronolodgical order for each nominal )

SH706
CM707
yL714
W5714
RE715
MF715
LM721

exrPeriments rer sessions one

123

VAK29
MR701
RE709
LM711
LI713
nL714
VA720
wMB0O3
w811

Nominal?

digit?
digit?
digit?

Two
l1st

Feriod

171

SH701
MF706
nL7o8
MR712
LI714
ws718
MF719
WwMB04

173

Ws706
VL7009
RE712
VA715
LM719
CM722

in seconds
Nameing ratio ( 2 ~> 0.2y 7
Ferameter changed ( 1 for reriods
3 for variance)

letters for subdects

didgit?

monthy

2nd  3rd digits?! daw

MR630
DL706
VA&630
Ws708
LI7Z1S
CM721
nL722
SH720

SH707
RR708
MF708
MR715
LM716
VL7718
VL7720
WMBO9?
MR719

371

LI701
VLL708
CM711
LM712
RE713
MR714
VL7719
WwMB02
WMB10
MR720

session rer das.

->» 0.707)

3 didits for date

Table Cl

373

SH&630
w8707
SH712
MF712
VA713
LI716
nL720
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Table of first exreriments in a session

If the freauency was chandged firsty for the second
exrerimenty the variance was chanded (and vice versa)

Nominal?$

1st digit! Period in seconds
2nd didit?! Damring ratio ( 2 -> 0,2y 7 => 0.707)
3rd didit?: Parsmeter changed ( 1 for reriody

3 for variance)

Three digit + ( F or Ry where arrlicable )¢

ist didgit? monthy 2nd 3rd digits! dau
F! First for the subdectr data not used.
R: Rereatr rrevious data discarded.

Nomimal 121 123 171 173 321 323 371
Sub.ect
CM 707F - - 722 721 - 711
DL - 714 708 - 706F - -
722
LI - 713 714 - 715 - 701F
LM 721  711F - 719 - 716 712
MF 715 - 706F - - 708 -
719
MR - 701 712 - 630 715 714
719R 720R
RE 715 709 - 712 - 708 713
SH 706 - 701 - 720R 707 -
va - &29F - 715 630 - -
720 ,
VL. 714 - - 709 - 718 708F
720K 719
WM - 803 804 - - 809 802F
811R 810
WS 714 - 718 706F 708 - -

Table C2

373

707
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Chronolodical order for detection time data.

SH 721
723
728

MR 307
038 .

805

WM

(individual subdects)

123

237
267
287
819
198

730

- 803

058
068

817
178
823
238
825
258

171

297
048
802

(two digits for dates

173

816
148

729
- 804
028

818
188
827
278
?10
109

one for month in

Table C3

321

227
726
277

722
197
277

323

207
722
727
817
178
826
268

217

727
806

816
820
208
824
248

371

804
8044
806
098

227
267
728

373

048
068
809
818
188

207
726
287

819
198
826
268
099
209

the rrorer order)
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Table D1
Nominal$ Period = 1.0 Second.
Dameing ratio = 0,200,
Thresholds for chanse in FERIOD.
Sub.dect Decrease Increase
MR 0,021  (0.021) 0.014 (0.01%)
SH 0.048 (0.0952) 0.013 (0.,028)
VL 0.030 (0.037) 0.063 (0.067)
WS 0,009 (0.,018) 0.027 (0.,037)
RE 0.016 (0.018) 0.014 (0.,018)
MF 0.016 (0.014) 0.002 (0.010)
VA 0.040 (0.047) 0,059 (0.062)
LM 0.058  (0,075) 0.024 (0.,062)
WM 0.072 (0.070) 0.030 (0.032)
Mean 0.034 0.028
Sigma 0.022 0.021
Thresholds for chandge in VARIANCE.
Subldect Ilecrease Increase
MR 0.021 (0.025) 0.152 (0.165)
CH 0.056 (0.057) 0.118 (0.123)
WS 0.071 (0.078) 0.051 (0.101)
RE 0.090 (0.087) 0.0003 (0.007)
MF 0.026 (0.,033) 0.052 (0.055)
Va 0.112 (0.106) 0.081 (0,080)
SH 0.139 (0.141) 0.105% (0.103)
LM 0.070 0,055
LI 0.093 (0.,091) 0.064 (0.079)
WM 0.042 (0.048) 0.091 (0.,082)
Mean 0.072 0.077
Sigma 0.038 0.042
The magnitudes shown in paranthesis are

calculated by taking the means of ‘reaks and vallews’.

estimates



153

Table D2
Nominal? FPeriod = 1.0 Second,

DNamring ratio 0.707.,

Thresholds for chande i PERIOI.

Subdect Ilecrease . Increase
1 SH 0.026 (0,030) 0.075 (0.080)
2 L 0.069 (0.080) 0.048 (0.047)
3 MR 0,014 (0.013) 0.024 (0.029)
4 VA 0,026 (0.,029) 0.029 (0.032)
] Wws 0.029 (0.,032) 0.054 (0,055)
é MF 0.016 (0.022) 0.008 (0.016)
7 CM ' 0.026 (0.,080) 0.078 (0.090)
8 LI 0.061 0.016
9 WM 0.028 (0.029) 0.012 (0.023)
Mean 0,033 0,038
Sigma 0.019 : 0.026

Thresholds for chande in VARIANCE.

Subdect lNecrease Increase
1 SH 0.082 (0.,091) 0.020 (0.,025)
2 MR 0.079 (0.083) 0.063 (0.065)
3 RE 0.048 (0,0357) 0.113  (0.120)
4 .M 0.105 (0.120) 0.045 (0.111)
S MF 0,073 (0.077) 0,058 (0.066)
é VA 0.104 (0.135) 0.1446 (0.145)
7 CM 0.147 (0.137) 0.021 (0,025
8 WM 0.034 (0.03%) 0.0589 (0,058)

Mean 0.084 0.066

Sigma 0,035 0.044

The magnitudes shown in raranthesis are estimates

calculated by taking the means of ‘reaks and valleus’.
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Nominal? Feriod 3.0 Second, Table D3

H

Damring ratio 0.200,

Thresholds for chandge in PERIOD.

SubJdect llecrease Increase
1 VA 0.016 (0.024) 0.025 (0.,031)
2 ws 0,015 (0.,01%5) 0.064 (0.065)
3 RE 0.033 (0,033 0.041 (0.045)
4 MR 0.048 (0.,050) 0.028 <(0.030)
5 LM 0.084 (0.096) 0.023 (0.025)
é VL 0.088 (0.,098) 0.050 (0.0460)
7 SH 0,135 (0.,137) 0.097 (0.103)
8 CM 0.033 (0.040) 0.056 (0.,052)
9 MF 0.072 (0,0735) 0.039 (0.035)
10 It 0.113 (0.119) 0.117 <(0.118)
11 LI 0.058 (0.061) . 0.028 (0.030)
12 WM 0.027 0.075
Mean 0,060 0.054
Sigma 0.039 0.030

Thresholds for change in VARIANCE.

Sub.Ject llecrease Increase
1 MF 0.062 (0.,061) 0.055 (0.060)
2 RE 0.101 (0.,131L) 0.18% (0.200)
3 MR 0.170 (0.200) 0.279 (0.313)
4 © YL 0.131 (0,153) 0.079 (0.140)
9 CM 0.105 (0.,112) 0.159 (0.168)
é va 0.1462 (0.174) 0.200 (0.193)
7 L. 0.152 (0.157) 0.146 (0.147)
8 WM 0.087 (0,089) 0.095 (0.103)

Mean 0.121 0.150

Sidma 0.039 0.073

The madnitudes shown in  paranthesis are estimates

calculated by taking the means of ‘reaks and valleus”’,
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Nominal$ Feriod 3.0 Second. Table D4

0.707.

i

Damring ratio

Thresholds for charge in PERIOD.

Sub.Ject Decreasse Increase
1 Ws 0.041 (0.052) 0,021 (0.,022)
2 CM 0.034 (0.035) 0.080 (0,090)
3 SH - 0.100 (0,108) - 0.089 (0.,088)
4 LM 0.015 (0.023) 0.065 (0.071)
3 MF 0.046 (0.045) 0.011 (0.018)
é RE 0.005 (0.,015) 0.042 (0.041)
7 VA 0.015 <(0.018) 0,039 (0.040)
8 VL 0.03%9 (0,037) 0.034 (0.033)
9 MR 0.051 (0.,050) 0.053 (0.057)
10 . DL 0.036 (0.040) 0.040 (0.047)
11 LI 0.012 (0.018) 0.051 (0.051)
12 WM 0.0585 (0.,055) 0.036 (0.052)

Mean 0.037 0.047

Sidma 0.026 0.023

Thresholds for chandge in VARIANCE.

Subrdect Ilecrease Increase
1 CHM 04110 (0.107) 0.142 (0.145)
2 SH 0.021 <(0.020) 0.057 (0.073)
3 L 0.071 <(€0.072) 0.019 (0.023)
4 MF 0.021 (0.092) 0.094 (0,133
) RER 0.107 (0.115) 0.084 (0.090)
) va 0.062 (0.063) 0.057 (0.069)
7 MR 0.115 (0.123) 0.073 (0.075)
8 VL 0.110 (0.115) 0.094 (0.095)
9 WM 0,132 (0.140) 0.126 (0.133)

Mean 0.0%1 0.083

Sigdma 0.034 0.037

The madnitudes shown 1in earanthesis are estimates

calculated bw takindg the means of ‘reaks and vallewus’.,
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Nominal? Period = 1,0 Seconds. A Taﬁle El

Damping ratio = 0.200.

Chandge in FREQUENCY SubJdect! MR

Stimulus Detection time
X0 X1 X2 Mean Sidma
—001 "0037 -1032 1091 0052
-0 ~0.67 ~1.90 ' 1.33 0.464
“"003 "'0090 "2020 0089 0036
~0.4 -1,09 ~2.39 ‘ 0.76 0.29
0.1 0.47 1.55 1.72 0.81
0.2 1.06 2.36 0.82 0.55
0.3 1.80 2.89 0.25 0.40
0.4 2.74 3.31 0.20 0.27
Stimulus F(C) P(M) PC(F) e M F T
-0.1 0.958 0.042 0,000 23 1 0 24
-0.2 1.000 0.000 0.000 24 0 O 24
-0.3 0,958 0.000 0.042 23 0 1 24
-0.4 0.958 0.000 0.042 23 0 1 24
0.1 0,958 0.000 0.042 23 0 1 24
0.2 1.000 0.000 0.000 24 0 0 24
0.3 1.000 0.000 0.000 24 0 0 24
0.4 1.000 0.000 0.000 249 0 0 24
Summary 0.979 0.005 0.016 188 1 3 192

Detection time units! lrn(2%time in seconds).
Stimulus! X0 - 1lr(F/Fn) / 1n(10)
X1 - Difference in sidms of velocitwy from
the nominal
X2 - (sign) 1ln ( abs(10X1) )
C - Correct M - Miss F - False alarm T - Total

P(CY)yee ~ Probability of Correct detection etc..
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N uU

Nominal?

X0

-0.1
-0.2
-0.3
-0.4

leReolelo)
¢ o o o
DN

Stimulus

"‘001

Summary

Detection

Stimulus?

liams
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feriod

ing ratio

0.200.

bJect! SH

1.0 Seconds.

Detection time

Mean

2.27
1.62
1.51

1.29

1,92
1,68
0.92
0,74

F(F)

0.043
0.000
0.000
0.000

0.000
0,000
0.000
0.043

0.011

2%time in

/ 1n(10)

Sigma

0.85
0.97
0.33
0.41

0.91

0.46 .

0.52

0.35

Table E2
M F T
i 1 23
0O 0 23
0O 0 23
0O 0 23
1 0 23
0O 0 23
0O 0 23
0 1 23
2 2 184

seconds) .

Difference in sigma of velocity from

Change in FREQUENCY Su
Stimulus
X1 X2
~-0.37 -1.32
"0067 “‘1090
-0.90 -2.20
"'1 009 "‘:..039
0.47 1,595
1.06 2.36
1.80 2,89
2.74 3.31
P P(M)
0.913 0.043
1.000 0.000
1.000 0,000
1,000 0.000
0.957 0.043
1.000 0.000
1.000 0.000
0.957 0.000
0.978 0.011
time units! 1n(
X0 = 1n(P/Pn)
X1 -
the rnomin
X2 - (sidgn) 1n
- Miss

C - Correct M

al

( abs(10X1) )

F — False 2larm

T - Tatal

F(CYs++ - Probability of Correct detection etc..
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-

Nominal:? Period 1.0 Seconds. Table E3
Damrping ratio = 0.200. |

Chanse in FREQUENCY Summarwy (31l subdects)

XN U DOLIN*

Stimulus ' Detection time
X0 X1 X2 Mean Sigma
"'001 "0037 ”‘1032 2009 . 0071
-0.2 ~-0.67 -1.90 1.48 0.82
-0.3 ~0.90 -2.20 1.20 0,34
~0.4 -1.09 -2.39 1.02 0.35
0.1 0.47 1.55 , 1.82 0.86
0.2 1.06 2+36 1.25 0.51
0.3 1.80 2.89 0.58 0.47
0.4 2.74 3.31 0.47 0.31
Stimulus P(C) P(M) FP(F) ' C M F T
i -0.1 0.936 0.043 0,021 44 2 1 47
2 =-0.2 1.000 0.000 0.000 47 0 O 47
3 -0.3 0.979 0.000 0.021 46 0 1 47
4 -0.4 0.979 0.000 0.021 44 0 1 47
S 0.1 0.957 0.021 0.021 45 1 1 47
6 0.2 1.000 0.000 0.000 47 O O 47
7 0.3 1.000 0.000 0.000 47 0O O A7
8 0.4 0.979 0.000 0.021 46 0 1 47
Summary 0.979 0.008 0.013 368 3 S5 376

Detection time units?! In(2%Xtime in seconds).
Stimulus! X0 - In(F/Pn) /7 1In(10)
X1 - Difference in sidma of velocity from
the nominal
X2 -~ (sidgn) 1n ( abs(10X1) )
C - Correct M ~ Miss F -~ False alarm T - Totsal

P(C)yes ~ Probability of Correct detection etc..
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Nominal? Feriod 1.0 Seconds. Table E4

Namring ratio = 0.200.

Change in VARIANCE. SubJect? SH

Stimulus DNetection time

X0 X1 X2 Mean Sigms

1 0.2 0,47 1.55 2,37  0.72

2 0.3 - 0.75 2,01 2.16 0.61

3 0.4 1.06 2.36 2.18 0.61

4 0.5 1.41 2.65 1.75 0.57

5 "002 "‘0037 "1‘032 2022 1046

6 ~0.3 -0.,53 -1 v67 2.26 1426

7 =0.4 =0,67 -1.90 2+24 Q.58

8 "‘005 '0079 "'2007 1095 0074
Stimulus FC) P(M) FCF) C M F 71
1 0.2 0.800 0.075 0.125 32 X 5 40
2 0.3 0.900 0.050 0.050 365 2 2 40
3 0.4 0.900 0.025 0.075 36 1 3 40
4 0.5 0.92350 0.000 0,050 I8 0 2 40
5 -0.2 0.900 0.075 0.025 %66 3 1 40
6 -0.3 0.975 0.025 0.000 39 1 0 A0
7 -0.4 0.850 0.050 0.100 34 2 4 40
8 -0.9 0.875 0.050 0,075 I35 2 3 40
- Summary 0.894 0.044 0.062 286 14 20 320

INetection time units! 1In(2X%Xtime in seconds).

In(F/FPRY /7 1n(10)

Iifference in sidgma of velocity from
the nominal

X2 (sign) 1In ( abs(10X1) )

Stimulust X0
X1

C - Correct M - Miss F - False alarm T - Total

P(CYyse ~ Probability of Correct detection etc..
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Nominal? _ Period 1.0 Séconds. Table E5

Damping ratio 0.200.

Chande in VARIANCE. Subject! MR

ONOU DONM

Stimﬁlus . Detection time
X0 X1 X2 Mean Sigma
0.2 0.47 1.55 2.05 0.76
- 0.3 0.75 2,01 1.86 0.83
0.4 1.06 2:36 1.52 0.53
0.5 1.41 2.65 1.29 0.45
-0.2 -0.37 -1.32 2.09 0.81
"003 “‘0053 "‘1067 2002 0077
‘004 -0067 -1090 . 1067 0049
-0.9 -0.79 -2.07 1.59 0.61
Stimulus P(C)  P(M) F(F) C M F T
1 0.2 0.889 0,022 0.089 40 1 4 45
2 0.3 0.978 0.022 0.000 44 1 0 45
3 0.4 0.867 0.044 0.089 39 2 4 45
4 0.5 0.889 0.022 0.089 40 1 4 A5
S =-0.2 0.911 0,067 0.022 | 41 3 1 45
6 -0.3 0.933 0.022 0.044 42 1 2 45
7 -0.4 0.933 0.000 0.067 42 0 3 45
8 ~0.5 0.978 0.000 0.022 44 0 1 45
Summary 0,922 0.025 0.053 332 9 19 3460

Detection time units! In(2%time in seconds).

Stimulus: X0 - 1In(P/Fn) / 1n(10)

X1 - Difference in sigma of velocity from
the nominal
X2 - (sidn) 1ln ( abs(10X1) )

c - Cdrrect M - Miss F - False slarm T - Total

P(C)res - Probabilituy of Correct detection.etc..
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1.0 Seconds. | Table E6

|

Nominal? Period

Dameing ratio = 0.200,

Chandge in VARIANCE. SubJect?: WM

Stimulus Detection time
X0 X1 X2 Mean Sisgms .
1 0.2 0.47 1.55 2,36  0.57
2 0.3 0,75 2,01 1.85 0.45
3 0.4 1.06 2.36 1.72 0.73
4 0,5 1,41 2,65 1,44 0,60
5 =0.2 ~0,37 ~=1,32 2.50 0.71
6 =0.3 ~0.,53 -1.67 2.41 0.82
7 =0.4 ~0.67 ~-1.90 2.26 0.59
8 -0.5 -0.79 -2.07 2,09 0.78
Stimulus F(C) F(M) F(F) cC M F T
1 0.2 0.875 0,062 0,062 42 3 3 48
2 0.3 0.937 0.000 0,062 45 0 3 48
3 0.4 1.000 0.000 0,000 48 0 0 48
4 0,5 0.958 0.021 0,021 46 1 1 48
5 ~0,2 0.958 0.042 0,000 46 2 0 48
6 -0.3 0.958 0.000 0.042 46 0 2 48
7 -0.4 1,000 0,000 0,000 48 0 0 48
8 -0.5 0.937 0,042 0,021 45 2 1 48

Summary 0.953 0.021 0.026 366 8 10 384

Netection time units! 1In(2X%Xtime in seconds).

In(P/PN) /7 1In(10)

Hifference in sidma of velocity from
the nominal

X2 ~ (sign) 1ln ( abhs(10X1) )

Stimuslus? XO
X1

-1

C - Correct M - Miss F -~ False alarm T - Total

P(C)r+e — Frobabilituy of Correct detection etc..
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A

1.0 Seconds. Table E7

Nominal? Period
Damring ratio = 0.200.

Change in VARIANCE. Summary (all subdects)

Stimulus Retection time
X0 X1 X2 Mean Sigma
0.2 0.47 1,55 2,26 0.49
0.3 0.75 2,01 1.96 0.70
0.4 1.06 2,36 1.81 0.63
0.5 1.41 2.65 1.49 0.54
~0.2 -0,37 -1,32 2,27 1.05
"‘003 "0053 ".1067 2023 0098
""004 "’0067 "1090 2006 0056
"005 -0079 "‘2007 1088 0071
Stimulus P(C) P(M) FCF) C M F T
0.2 0.857 0.053 0.090 114 7 12 133
0.3 0.940 0,023 0.038 125 3 5 133
0.4 0.925 0.023 0.053 123 3 7 133
0.5 0.932 0.015 0.053 124 2 7 133
~-0.2 0.925 0.060 0.015 123 8 2 133
-0.3 0,255 0.013 0.030 127 2 4 133
~0.4 0.932 0.015 0.053 124 2 7 133
-0.5 0.932 0.030 0.038 124 4 5 133
Summary 0.925 0.029 0.046 984 31 491064

Ietection time units! ln(2%time in seconds).

InCF/PnY 7/ 1n(l0)
Nifference in sidma of velocity from

the nominal
X2 (sign) 1n ( abs(10X1) )

Stimulust: X0
X1

C - Correct M - Miss F -~ False alarm T -~ Totsal

F(C)yes - Probability of Correct detection etc..
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Nominal?

Iiame

Period

ing ratio

Chansge in FREQUENCY Su

Stimulus

—001
‘002
‘0o3
"’004

0.1
0.2
0.3
0.4

Summary

lletection

Stimulus?

Stimulu
X1

~-0.37
'0067
~-0.90
“1009

0.47
1.06
~1+80
2,74

P(C)

0.958
1.000
1.000
1.000

1.000
0.9548

0.958
1.000

0.984

time wu

X0 -
X1

X2 -~

C - Correct M

=3

“1032
“1090
~-2.20

'2039

1.55
2636
2.89
3.31

F(M)

0.000
0.000
0.000
0.000

0.000
0.000
0.042
0.000

0.005

nitst 1In(

Irn(P/PR)

Differenc
the nomin
(sign) 1n

- Miss
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L

0.707.

bJject? MR

1.0 Seconds.

Detection time

Mean

1.62
1.20
0.86
0.65

1.68
0.71
0.32
0.17

F(F)

0.042
0.000
0.000
0.000

0.000
0.042
0.000
0.000

0.010

2%time in

/ 1n(10)

Sidgma

1.28
0.67
0.32
0.53

0.79
0,48
'0i34
0.18

23
24
24

24

24
23
23
24

189

Table E8

-
-

24
24
24

24

24
24
24

24

OrOC CSCOoOCQC X

CORrRS COOm

fery
+J
fors
<0
N

seconds) .

e in sidgma of velocity from

al

( abs(10X1) )

F - False alarm

T - Total

P(C)yss — Probabilitw of Correct detection etc..
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1.0 Seconds. Table E9

Nominal? Period

Damping ratio 0,707,

Chanse’in FREQUENCY Summary (31l subJects)

Stimulus . Detection time
X0 X1 X2 Mean Sigma
1 ""001 "‘00.37 "1032 1062 1028
2 "002 "0067 "1090 1020 0067
3 "003 “‘0090 ""2020 0086 0032
4 -0.4 -1.09 -2.39 0,65 0.53
5 0.1 0.47 1,55 1,68 0.79
6 0.2 1.06 2.36 0.71 0.48
7 0.3 1.80 2.89 0.32 0.34
8 0.4 2.74 3.31 0.17 0.18
Stimulus FC) PIM) FP(F) C M F T
1 -0.1 0.958 0.000 0.042 23 0 1 24
2 =-0.2 1.000 0.000 0.000 24 0 0 24
3 ~0.3 1.000 0.000 0.000 24 0 0 24
4 -0.4 1.000 0.000 0.000 24 0 0 24
S 0.1 1.000 0.000 0.000 24 0 0 24
6 0.2 0.958 0.000 0.042 23 0 1 24
7 0.3 0,958 0.042 0.000 23 1 0 24
8 0.4 1,000 0.000 0.000 24 0 0 24
Summary 0.984 0.005 0.010 189 1 2 192

Iletection time units! 1ln(2%time in seconds).

Stimulus? X0 - In(F/Fn) / 1n(10)
X1 Difference in sidgma of velocituy from
the nominal ‘
X2 - (sign) 1n ( abs(10X1) )

C - Correct M ~ Miss F - False alarm T - Total

P(C)y+.e - Probability of Correct detection etc..
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}Period

Damring ratio

Chande in VARIANCE. Su
Stimulus
X0 X1 X2
0.2 0.47 1.55
0.3 0.75 2.01
0.4 1.06 2.36
0.3 1.41 2+65
~0.2 =0.37 -1.32
-0.3 -0.53 ~1.67
-0.4 -0:67 -1:90
—005 "'0079 "&-007
Stimulus P(C) (M)
0.2 1.000 0.000
0.3 0,937 0.000
0.4 1.000 0.000
0.3 0.937 0.000
“002 00750 00187
“003 10000 0'000
“004 10000 00000
-0.:5 0.937 0.000
Summanry 0,945 0,023

Ietection time units?

Stimulus: XO
X1

X2

C - Correct

M

In(F/Pr)
Iifferenc
the nomin

0.707.

bJect: SH

1.0 Seconds.

Detection time

Mean

225
1.81
1.83
1.37

2.81
2,54
2.00
2.26

P(F)

0.000
0.062
0.000
0.062

0.062
0.000
0.000
0.062

0.031

/ 1In(10)

Sigma

0.66
0.45
0.65
0.42

0.62
0.57
0.60
0.57

16
15
16
15

12
16
16
15

121

Table E10
M F T
0 0 16
0 1 16
0O 0 16
0O 1 16
3 1 16
0O 0 16
0O 0O 16
0O 1 16
3 4 128

In(2%time in seconds).

e in sidgma of velocitwy from

al

(sign) 1ln ( abs(10X1) )

- Miss

F - False alarm

P(CYyee = Probabilituy of Correct detection

T - Total

etc..
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S OGN =

aNou

Nominal?

X
<

* & o o
NdLN

11 -
OOOC OO0OCO

adN

* * * »

Stimulus

0.2
0.3
0.4
0.5

"‘002
-0.3
~-0.4
"0»5

Summary

Detection

Stimulus?

Dampind ratio =

167

FPeriod

= 1.0 Seconds.

bdect?! MR

0.707.

Detection time

Mean

1.72
1,51
1.23
0.89

2,12
1.94
1.63
1.29

P(F)

0.07%
0.000
0.000
0.073

0.025
0.000
0.000
0.075

0.031

2%time in

/ 1In(10)

Sidma

0.77
0.58
0.44
0.48

0.68
0.54
0.58
0.43

35
40
39
37

36
40
39
36

Table E11
M F T
2 3 40
0 0 40
1 0 40
0 3 40
3 1 40
0 0 40
1 0 40
1 3 40
8 10 320

seconds) .

Difference in sigma of velocity from

Chande in VARIANCE. Su
Stimulus
X1 X2
0.47 1.55
0.75 2.01
1.06 2,36
1.41 2,65
-0.37 -1.,32
-0.53 ~-1+67
-0.67 -1.90
"0079 ".:.007
P(C) P(M)
0.875 0.050
1.000 0,000
0.975 0.025
0.925 0.000
0.900 0.075
1.000 0.000
0.975 0.025
0.900 0.025
0,944 0.025
time units! 1In(
X0 - 1In(P/Fn)
X1 -
the nomin
X2 -

€C - Correct M

al

(sign) 1In ( abs(10X1) )

- Miss

F - False

alarm

T - Totsal

P(C)ys+ — Probabilite of Correct detection etc..
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Nominal$ Feriod 1.0 Seconds. Table E12

0.707.

Damrindg ratio

Chande in VARIANCE. SubJdect?! WM

Stimulus Detection time
X0 X1 - X2 Mean @ Sidma
1 0.2 0.47 1.55 2.39 0.66
2 0.3 0.75 2,01 1.86 0.53
3 0.4 1.06 2.36 1.71 0.66
4 0.5 1.41 2.65 1.41 0.50
S ~0.2 ~0.37 -1,32 2,55  0.67
6 =-0.3 ~-0.53 -1.67 2.24 0.60
7 ~-0.4 ~0. 67 -1:90 1.96 0.48
8 "‘005 "0079 "‘.007 1083 0058
Stimulus FCC) P(M) F(F) C M F T
1 0.2 0.958 0.042 0.000 46 2 0 48
2 0.3 1.000 0.000 0.000 4 0 0 48
3 0.4 1.000 0.000 0.000 48 O O 48
4 0.5 0.958 0.021 0.021 446 1 1 48
S =-0.2 0,958 0.021 0.021 44 1 1 48
6 =-0.3 0.979 0.021 0.000 47 1 O 48
7 ~-0.4 0.958 0.000 0.042 44 O 2 48
8 -0.5 0.979 0.000 0.021 47 0 1 48
3 9 384

Summary 0.974 0.013 0.013 374

Detection time units! ln(2%time ir seconds).
Stimulus: X0 ~ 1n(F/FPr) 7/ 1n(10)
X1 - Difference in sidgma of velocity from
the nominal ’
X2 - (sign) 1n ( ahs(10X1) )
C - Correct M - Miss F - False alarm - T -~ Total

P(C)syse - FProbability of Correct detection etc..
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n

Nominal:? - Period 1.0 Seconds. Table E13

0.707.

Damring ratio

Chande in VARIANCE. Summary (23ll subdects)

Stimulus - Detection time

X0 X1 X2 Mean Sigma

1 0.2 0.47 1.55 2,12 0.70

3 0.4 1.06 2:.36 1.59 0.59

4 0.9 1.41 2465 : 1.22 0.47

5 "’002 "'0037 "1032_ 2049 0065

6 ~0.3 ~0s53 -1.67 2.24 0.57

7 ~-0.4 -0.467 -1.90 1.86 0.55

8 "‘005 "’0079 "2007 1080 0053
Stimulus F(C) P(M) P(F) C M F T
1 0.2 0.933 0.038 0.029 97 4 3 104
2 0.3 0.990 0.000 0.010 103 O 1 104
3 0.4 0.990 0.010 0.000 103 1 0O 104
4 0.5 0.942 0.010 0.048 98 1 5 104
6 -0.3 0.990 0.010 0.000 103 1 0 104
7 ~0.4 0.971 0.010 0.019 101 1 2 104
8 =-0.95 0.942 0.010 0.048 28 1 5 104
Summary 0.958 0.019 0.023 797 16 19 832

Detection time units! 1rm(2%Xtime in seconds).
Stimulus? X0 = 1n(F/Pn) / 1In(10)
X1 - Differemrnce in sidgma of velocity from
the nominal
X2 - (sidgn) 1In ( abs(10X1) )
C - Correct M - Miss F - False alarm T - Total

_P(C)y.. - Probability of Correct detection etc..
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oNO A

Nominal?

Chande in

Stimulus

"001
‘-002
"’0;3
“'004

0.1
0.2
0.3
0.4

Summary

Detection time urmits?

Stimulus?

Nameping ratio

170

Period

FREQUENCY
Stimulus
X1 X2
-0.12 ~0.22
“'0022 "0080
"'0030 "‘1010
-0.,36 -1,29
0.16 0.45
0.35 1.26
FC) P(M)
0.957 0.043
1.000 0,000
0.957 0.000
0.957 0,000
0.652 0.348
0.957 0,000
0,957 0.000
1.000 0.000
0.929 0.049

X0 -
X1 -

X2 -

C - Correct ™

In(F/Fn)
Nifferenc
the nomin

i

0.200.

SubhJectt: SH

Detection time

Mean

2.26

1.98
1.96
1.93

2.16
2,16
1.38
1004

F(F)

0.000
0.000
0.043
0.043

0.000
0.043
0.043
0.000

0.022

/ 1n(10)

2.0 Seconds.

Sidgdma

0.67
0.64
0.78
0.83

0.93
0.66
0.64
0.36

¥

ISR
RRIOIND

Table El4
M F T
1 0 23
o 0 23
0 1 23
0O 1 23
8 0 23
0 1 23
0 1 23
0O 0 23
9 4 184

In(2%time in seconds).

e in sidma of velocity from

al

(sisgn) 1n ( abs(10X1) )

- Miss

F - False alarm

T - Total

P(CYrese - Probability of Correct detection etc..



171

Nominal? Period 3.0 Seconds., Table E15

0.200.

Damping ratio

Chande in FREQUENCY SubJdect? MR

EN AR A

Stimulus Detection time

X0 X1 X2 Mean - Sidgma

-0.1 -0.12 -0.22 1.86 1.21

=02 -0.22 -0.80 1.88 0.70

-0.3 -0.,30 -1.10 1.58 0.53

""004 "0'36 “1029 1048 0045

] 0.1 0.16 0.45 2.17 0.77

é 0.2 0.35 1.26 1.37 0.38

7 0.3 0.60 1.79 0.924 0.55

8 0.4 0.91 2.21 0.59 0.46
Stimulus P(C) F(M) PCF) C M F T
1 -0.1 0.909 0.045 0.045 20 1 1 22
2 =0.2 1.000 0.000 0.000 22 0 0 22
3 ~0.3 1.000 0,000 0.000 22 0 0 22
4 -0.4 0.955 0.000 0.045 21 0 1 22
S 0.1 0.909 0.091 0.000 20 2 0 22
r) 0.2 0.955 0,000 0.04%5 ' 21 0 1 22
7 0.3 1.000 0.000 0.000 22 0 0 22
8 0.4 0.909 0,000 0.091 20 0 2 22
3 9 176

Summary 0.935 0.017 0.028 168

Detection time units?! 1n(2%time in seconds).

t

Stimulus?t X0 In<F/Pn) /7 1m(10)

X1 - DIifference in sidma of velocity from
the nominal
X2 - (sign) 1In ( abs(10X1) )

C - Correct M - Miss F - False alarm T -~ Total

FP(C)yss — Probability of Correct deteqtion etc.
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Nominal$ Period 3.0 Secondss, Table El6

0.200.

Namrering ratio

Change in FREQUENCY Summary (31l subdects)

Stimulus Detection time
X0 X1 X2 " Mean Sisgma
1 ~0.1 -0.12 -0.22 2,06 0.98
2 =0.2 ~0.22 -0.,80 1,93 0.67
3 "‘0'3 "0030 "'1010 1077 0066
4 ~-0.,4 ~0.36 -1.29 1.71 0.67
S 0.1 Q.16 0.45 2.17 0.86
) 0.2 0.35 1.26 1.76 0.54
7 0.3  0.60 1.79 1.16 0.60
8 0.4 0.91 2.21 0.81 0.41
Stimulus FPC) P(M) F(F) - C M F T
i -0.1 0,933 0.044 0,022 42 2 1 4%
2 =0.2 1.000 0.000 0,000 45 0 0 45
3 -0.3 - Q.978 0.000 0,022 44 0 1 45
4 -0.4 0.956 0.000 0.044 43 0 2 45
S 0.1 0.778 0.222 0.000 35 10 0 45
6 0.2 0.956 0.000 0.044 43 0 2 45
7 0.3 0.978 0.000 0.022 44 0 1 45
8 0.4 0.956 0.000 0.044 43 0 2 A5
Summary 0.942 0.033 0.025 339 12 9 360

Detection time units: 1n{2%time in seconds).

Stimulus: X0 In(F/Prv) /7 1n(10)

X1 ~ Difference in sigdma of velocity from
the nominal
X2 = (sidgn) 1n ( abs(10X1) )

C - Correct M - Miss F - False alarm T - Total

F(C)ree - FProbasbility of Correct detection etc..
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i

Nominal?$ - Feriod 3.0 Seconds. Table E17

Dameing ratio = 0.200.

Chandge in VARIANCE. SubJect?! SH

Stimulus Detection time
X0 X1 X2 Mean Sigma
1 0.2 0.16 0.45 3.08 0.75
2 0.3 0.25 0.921 2.52 0.82
3 0.4 0.35 1.26 2,35 1033 '
4 0.5 - 0447 1.55 2.47 0.80
S -0.2 ~0.12 -0.22 2,89 0.76
é& -0.3 -0.18 -0.57 2.60 1.23
7 ""004 "0022 “0080 2056 0094
8 0.5 -0.26 ~-0.97 . 2.50 0.95
Stimulus F(C) P (M) P(F) C M F T
1 0.2 0.667 0.278 0.056 36 15 3 54
2 0.3 0.796 0.185 0.019 43 10 1 G4
3 0.4 0.889 0.056 0.056 48 3 3 54
4 0.5 1.000 0.000 0.000 40 0 O 40
S ~0.2 Q0.759 0.241 0.000 41 13 0 5S4
7 =-0.4 0.981 0.019 0.000 53 1 0 5S4
8 -0.5 0.975 0.025 0.000 39 1 0 40
Summary 0.854 0.126 0.020 345 G1 8 404

Detection time units! In(2%time in seconds).

In(P/FPnY /7 1In(10)

Nifference in sidma of velocity from
the nominal

X2 (sidgn) 1n ( abs(10X1) )

Stimulus?: X0
X1

i

C - Correct M - Miss F - False alarm T - Total

F(C)yes ~ Probshility of Correct detection etc..
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Nominal?

Damr
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Period

ing ratio

Chande in VARIANCE. Su

X0

0.2
0.3
0.4

0.5

"'002
=0,

"004‘
"005

Siimulus

Nhdbui

* * £ -*

{1

COO0OC OCOO

* o o o
NdW

Summary

Stimuly
X1

0.16
0.25
0,35
0.47

-0.12
-0.18
"'0022‘ .
-0.26

P(C)

0.667
0.897
0.923
0.969

0.923
0.974
0.949
1.000

0.%209

s
X2

0.45
0.91
1.26
1.55

-0.22

. "0057

"'0080
"'0097

PM)

0.308
0.077
0.026
0.000

0.051
0.000
0.026
0.000

0.064

Detection time units! 1n(

Stimulus?

X0 -
X1 -

X2 -

€C - Correct M

In(F/Pn)

= 3,0 Seconds.

= 0.200,

bdect: MR

Detection time

Mean

2.49
2.26
2.16
1.97

2,59
2,37
2,29
2,26

P(F)

0.026
0.026
0.051
0.031

0.026
0.026
0.026
0.000

0.027

2Xtime in

/7 1n(10)

Sigdma

0.59
0.71
0.64
0.57

0.71

0.72
0.56
0.43

271

Table E18
M F T
12 1 39
3 1 39
1 2 39
o 1 32
2 1 39
o 1 39
1 1 39
0 0 32
19 8 298

saconds) .

Lifference in sigma of velocity from

the nomin

al

(sidn? 1n ( a3bs(10X1) )

- Miss

F - False slarm

T - Total

P(C)r.. — Probabilituy of Correct detection etc..
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Nominal? Period 3.0 Seconds. Table El9

Damping ratio 0.200.

Chandge in VARIANCE. Subdect: WM

Stimulus Detection time
X0 X1 X2 Mean  Sigma
1 0.2 0.16 0.45 2,69 0.73
3 0.4 0.35 1.26 2,10 0.67
4 0.5 0.47 1,55 1.80 0,55
5 "002 '0012 “0022 3032- 0041
6 -0.3 ~0.18 ~-0.57 3.11  0.53
7 -0.4 -0.22 ~0.80 2,96 0.55
8 -0.5 =-0.26 ~-0.97 2,94 0.62
‘Stimulus P(C) P (M) PCF) C M F T
1 0.2 0.975 0,025 0.000 39 1 0 40
2 0.3 0.925 0,075 0.000 37 3 0 40
3 0.4 1.000 0.000 0.000 40 0 O 40
4 0.5 1.000 0.000 0.000 40 0 0 40
5 -0.2 0.825 0.125 0.050 33 S 2 40
6 -0.3 0,950 0.050 0.000 38 2 0 40
7 -0.4 1,000 0,000 0.000 40 0 0 40
8 -0.5 0.950 0.025 0,025 38 1 1 40

Summary 0.953 0.038 0.009 305 12 3 320

Detection time units! 1n{2%time in seconds).

Stimulus! X0 - 1n(P/Fn) / 1n(10)
X1 DNifference in sidma of velocity from
the nominsal
X2 - (sign) 1In ( abs(10X1) )

€C - Correct M - Miss F - False alarm T - Total

P(CYy«s - Probability of Correct detection etc..
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N U

Nominal?

Dams

Chandge in VARIA

Stimulus

0.2
0.3
0.4

0.5

"'002
"'003
“'004

"005

Summary

Stimulu
X1

0.16
0.25
0.35
0.47

-0.12
""0018
-0.22
-0.26

_P(D)

0.759
0.865
0.932
0.991

0.827
0.9210
0.9277
0.973

0,901

lNetection time u

Stimulus?

X0 -
X1

X2 -

C - Correct M

176

Period

indg ratio

0.200.

it

3.0 Seconds. Table E20

NCE. Summary (3ll subdects)

s

0.45
0.91
1.26
1.55

-0.22
-0.57
-0.80
s 97

P(M)

0.211
0.120
0.030
0.000

0.150
0.075
0.015
0.018

0.080

nits?! 1n(

In(F/Fn)
Differenc
the nomin

letection time

Mean

2.75
2.40
2.20
2.08

2.93
2,69
2.60
2,57

P(F)

0.030
0.015
0.038
0.009

0.023
0.015
0.008
0.009

0.019

2%time in

/ 1n(10)

Sidma

0,69
0.73
0.94
0,65

0.65
0.88
0.71
0,70

c

101
115
124
111

110
121
130
109

M F T
28 4 133
16 2 133

4 5 133

0 1 112
20 3 133
10 2 133

2 1 133

2 1 112

82 191022

seconrds) .

e in sidma of wvelocitw from

al

(sign) 1n ( abs(10X1) )

- Miss

F - False alarm

T - Total

P(C)ys+ = Probability of Correct detection etc..
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Nominal? Period = 3.0 Seconds. Table E21

Damering ratio = 0.707.

Chandge in FREQUENCY SubJdect?! SH

TAOIN =

Stimulus Detection time
X0 X1 X2 Mean Sigma
1 -0.1 -0.12 -0.22 2,29 0,73
2 ~0.2 ~0.,22 -0.80 1.95 0.54
3 ~-0.3 ~0.,30 -1.10 1.75 0.48
4 -~-0.4 ~0.36 ~1.29 1.28 0.93
S 0.1 0.16 0.45 2.36 0.88
é 0.2 0.35 1.26 1.51 0.468
7 0.3 0.60 1.79 1.11 0.48
8 0.4 T 0.91 2.2% 0.70 0.31
. BStimulus P(C) P(M) P(F) C M F T
-0.1 1.000 0.000 0.000 32 0 0 32
~0.2 0,969 0.000 0.031 31 0 1 32
~0.3 0.906 0,000 0.094 20 0 3 32
~0.4 0.969 0.000 0.031 31 0 1 32
5 0.1 0.906 0.062 0.031 29 2 1 32
é 0.2 0.9469 0.031 0.000 31 1 0 32
7 0.3 0.969 0.031 0.000 31 1 0 32
8 0.4 0.937 0.000 0.062 30 0 2 32
Summary 0.953 0.016 0.031 244 4 8 2546

DNetection time units! 1m(2%time in seconds).

1n(P/Fr) /7 1In(10)

Difference in sidgma of velocity from
the nominal

X2 - (sidgn) 1n ( abs(10X1) )

Stimulus? X0
X1

C - Correct M - Miss F - False 2larm T - Totsl

P(CYros - FProbability of Correct detection etc..
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Nominal? Period = 3.0 Seconds. Table E22

Damping ratio = 0.707.

Change in FREQUENCY  Subdect? MR

Stimulus Detection time
X0 X1 X2 Mean Sidgma
1 -0.1 -0.12 -0.22 1.88 0.63
2 ~0.2 -0.22 -0,80 1.24 0.50
3 =-0.3 -0.30 -1.10 1.14  0.40
4 -0.4 -0.36 -1.,29 1.09 0.35
5 0.1  0.,16 0.+45 2.06 0.72
6. 0.2 . 0,35 1.26 1432 0.52
7 0.3 o 0.60 1,79 L0389 . 0460
8: 0.4 - 0,91 - 221 0451  0.28
Stimulus P(CO F(M) F(F) C M F T
i -0.1 1.000 0.000 0.000 23 0 0 23
2 =0.2 1.000 0.000 0.000 23 0 0 23
I -0.3 0.957 0.000 0,043 22 0 1 23
4 -~-0.4 0.913 0.000 0.087 21 0 2 23
] 0.1 1.000 0.000 0.000 23 0 0 23
é 0.2 1.000 0.000 0.000 23 0 0 23
7 0.3 0.957  0.000 0.043 22 0 1 23
8 0.4 . 0.957 0.043 0.000 22 1 0 23
Summary 0.973 0.005 0.022 179 1 4 184

Detection time units! 1ln(2%Xtime in seconds).
Stimulus: X0 = 1rm(F/Frn) / 1n(10)
X1 -~ Difference in sidgma of velocity from
the nominal
X2 - (sidn) 1ln ( abs(10X1) )
C - Correct M - Miss F - False alarm T - Total

P(C)v..'~ Probability of Correct detection etc..
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Nominal$

Chande in pFREQUENCY

X0

-0.1
-0,2
~0.3
"'004

0.1
0.2

0.3
0.4

Stimulus

Summary
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Period

Damering ratio

Stimulus
X1 X2
-0.12 -0.22
-0.,22 -0.80
-0.30 ~1.,10
~0.36 -1.,29
0.16 0.45
0.35 1.26
0.60 1.79
0.91 2.21
P(C) F(M)
1.000 0.000
0.982 0.000
0.927 0.000
0.9435 0.000
0,945 0.036
0.982 0.018
0.964 0.018
0.945 0.018
- 0.961

0.011

0.707.

3.0 Seconds.

Detection time

Mean

2,09
1.59
1.44
1.18

2421
1.41
0.85
0.61

P(F)

0.000
0.018
0.073
0.055

0.018
0.000
0.018
0.036

0.027

Sisgma

0.68
0.52
0.45
0.70

0.80
0.61
0.54
0.30

95
5S4
91
92

52
54
53

52

Table E23

Summary (3ll subdects)

—
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Wd=O n

UG,
gaau

o b3
= O
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D
-
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Detection time wunmits! 1n(2%time in seconds).

Stimulus?

X0
X1

X2

C - Correct

-

M

In(F/Pn)

/ 1n(10)

Differernce in sigma of velocitwe from

the nomin

al

(sign) 1In ( 3bs(10X1) )

- Miss

F - False alarm

T - Total

F{(C)yee - Probabilitw of Correct detection etc..
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3.0 Seconds. Table E24

Nominal? : Feriod

0.707.

Damring ratio

Change in VARIANCE. SubJect? SH

Stimulus Detection time
X0 X1 X2 Mean Sigma
1 0.2 0.16 0.45 2,75 0.56
2 0.3 0.25 0.91 2,32 0.98
3 0.4 0.35 1.26 2.45 0.72
4 0.5 0.47 1,55 - 2,03 0.77
§ -0.2 ~0.12 -0.22 2,86 0,70
6 -0.3 -0.18 -0.57 2,70 0.71
7 =-0.4 -0.22 -=0.80 2.68 0,78
B8 ~0.5 ~0.26 -0.97 2,28 0,65
Stimulus F(C) F(M) F(F) C M F T
1 0.2 0.775 0.225 0.000 31 9 0 40
2 0.3 0.925 0,050 0.025 37 2 1 40
3 0.4 0.975 0,000 0.025 39 0 1 40
4 0.5 0.975 0.000 0.025 39 0 1 40
5 =0.2 0.875 0.125 0,000 35 5 0 40
7 -0.4 0,925 0.000 0.075 37 0 3 40
8 -0.5 0.950 0.025 0.025 38 1 1 40
Summary 0.919 0.053 0.028 294 17 ? 320

[letection time urnits! 1n(2%time in seconds).
Stimulus: X0 - 1n(F/Fn) / 1n(10)
X1 - Difference in sigma of velocity from
the nominasl
X2 - (sidgn) 1In ( 3bs(10X1) )
Cc - Corfect M - Miss F - False alarm T - Total

P(C)r.. = Probabilitu of Correct detection etc..
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Nominal? Feriod- 3.0 Seconds. Table E25

Damping ratio 0.707.

Chandge in VARIANCE. SubJdect?! MR

Stimulus Detection time
X0 X1 X2 Mean Sisma
1 0.2 0.16 0.45 2.37 0.84
2 0.3 0.25 0.91 2.02 0.54
3 0.4 0.35 1.26 1.83 0.47
4 0.5 0.47 1.55 1.66 0.61
5 —0.2 -0.,12 ~0.22 2.58 0.56
6 -0.3 -0.18 -0.57 2.21 0,65
7 =-0.4 -0.22 -0.80 2,17 0.59
8 "005 "0026 ""'0§97 ’ 2001 0057
Stimulus FC) P(M) F(F) cC M F T
1 0.2 0.795 0.205 0.000 31 8 0 39
2 0.3 1.000 0.000 0.000 32 0 0 39
3 0.4 0.8%7 0.026 0,077 35 1 3 39
4 0.5 . 1.000 0.000 0.000 32 0 0O 32
8 ~0.2 0.974 0.026 0.000 38 1 0 39
6 -0.3 - 0.974 0.000 0.026 8 0 1 39
7 ~0.4 0.974 0.026 0.000 38 1 0 3¢9
8 ~0.5 1.000 0.000 0.000 32 0 0O 32
Summary 0.950 0.037 0.013 283 11 4 298

Detection time units! 1ln(2Xtime in seconds).,

Stimulus: X0 - 1n(F/Prd) / 1In(10)
X1 Lifference in sidgma of velocits from
the nominal
X2 - (sign) 1ln ( abs(10X1) )

C - 'Correct M - Miss F - False alarm T - Total

P(C)s+s '~ Probability of Correct detection etc..
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Nominal?$

Dams
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Feriod

ing ratio

Chande in VARIANCE. Su

e o o o
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Stimulus

0.2
0.3
0.4
0.5

“002
“003
*004

"‘0 9_5

Summary

Stimulu
X1

0.16
0.25
0.35
0.47

—0012
—0018
-0022
-0.26

FC)

0.8735
1,000
0,979
1.000

0.979
0.958

00979

0.979

0.969

s

0.45
0.91
1.26
1.55

-0.22
-0.57
“0080
-0.97

F(M)

0.125
0.000
0.021
0.000

0.021
0.042
0.000
0.000

0.707.

bdect? WM

3.0 Seconds.

Detection time

Mean

268
2:36
2,18
1.80

2.93
3.02
2.74
2.64

P(F)

0.000
0.000
0.000
0.000

0.000
0.000
0.021
0.021

0.005

Sidgma

0.70
0.68
0.61
0.63

0.69
0.51

- 0.48

0.56

Table E26
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DIetection time units! 1ln(2Xtime in seconds).

Stimulus?

X0 -
X1 -

X2 -

€ - Correct M

In(F/Fr)

/ 1n(10)

Difference in sigma of velocitwy from

the nomin

al

(sign) 1In ( abs(10X1) )

- Miss

F - False alarm

T - Total

P(CY»se - Probahility of Correct detection etc..
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Nominal:? Period = 3,0 Seconds. Table E27

Dameing ratio = 0.707.

Chandge in VARIANCE. Summary (311 subJdects)

Stimulus Detection time
X0 X1 X2 Mean Sigma
1 0.2 0.16 0.45 2.60 0.71
2 0.3 0.25 0.91 2.23 0.76
3 0.4 0.35 1.26 2.15 0.61
4 0.5 0.47 1.55 1.83 0.468
S -0.2 -0.12 ~0.22 2,79 0.65
6 "'003 ""0018 "0057 2065 0063
7 "“004 "'0022 —0080 2053 0063
8 -0.5 -0.26 -0.97 2.31 0.60
Stimulus P(CY  P(M) P(F) cC M F T
1 0.2 0.819 0.181 0.000 104 23 0 127
2 0.3 0.976 0.016 0.008 124 2 1 127
3 0.4 0.953 0.016 0.031 121 2 4 127
4 0.9 0.992 0.000 0.008 119 0 1 120
S -0.2 0.945 0.055 0.000 120 7 0 127
6 -0.3 0.961 0.016 0.024 122 2 3 127
7 -0.4 0.961 0.008 0.031 122 1 4 127
8 -0.5 0.975 0.008 0.017 117 1 2 120
Summary 0.947 0.038 0.015 249 38 1351002

Detection time wunits! ln(2%time in seconds).

Stimulus: X0 - 1In(F/Fr) / 1n(10)
X1 ~ Difference in sidma of velocity from
the nominal
X2 - (sidn) 1ln ( abs(10X1) )

.

C - Correct M - Miss F ~'False alarm T - Total

P(C)se+ — Probability of Correct detection etc..



