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ABSTRACT

Two important issues in failure detection by human
monitors are considered: the threshold change which can
be consistently detected, and the process by which the
human detects a change. The observed process is modelled
by a second order shaping filter with white noise input.
Changes in frequency and the displayed process variance
are considered for increases and decreases from the nom-
inal values. The results reveal that the thresholds for
increases and decreases are not significantly different
from each other. Also thresholds are higher for changes
in variance than for changes in frequency.

The results obtained from detection time experiments
suggest that the human may be using changes in rms velocity
as a means of detecting failures. Detecting changes in
variance takes a longer time than corresponding changes in
frequency. Models are formulated for predicting the ob-
served detection times. A Kalman filter followed by a
decision mechanism which operates on the measurement
residuals to perform a Sequential Probability Ratio Test
matches the experimental results for changes in frequency
and variance. A simpler model using the velocity magnitude
is also found to explain the detection time results for
changes in frequency. The model which tests the residuals
for a variance change seems better since it can handle
both changes in frequency and in variance of the displayed
process.

Thesis Supervisor: Dr. Renwick E. Curry
Title: Research Associate
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CHAPTER I

INTRODUCTION

1.1 Background and Motivation

Traditionally, man has functioned as a controller in

tasks involving a human. Since controlling a plant or a

system requires continuous monitoring, the tasks of con-

trolling and monitoring cannot be separated. However, in

recent years, there is a trend for the human to function

as a supervisor or a monitor since most of the control

tasks have been relegated to automatic control systems.

Hence, failure detection and isolation by human monitors

is of interest. The ability of the human monitor to detect

failures as they occur and take corrective action is vit-

ally important for the success of the mission or even for

the safety of the individual and the people for whose

safety he is responsible. Failures of large magnitude in

any system are usually easy to detect. Also, a failure in

one particular subsystem may be more critical than in others,

in that some are more crucial to the success of overall
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system operation. In such a system, small failures should

be detected as quickly as possible so that corrective action

can be taken in time. The quickness with which a failure

can be detected is extremely important in aircraft terminal

area operations, rendezvous of aerospace vehicles, nuclear

reactor control, high speed ground transportation systems,

and chemical process control, among other things. There are

two important issues common to these failure detection situ-

ations. One is the threshold size of a change in a system

parameter which can be detected consistently by a human,

and the other is the process by which a human detects such

a change. These are important for better system design,

since one of the basic requirements for failure detection

is to be able to define the most sensitive factors. An

attempt is made in the present work to study some specific

aspects of human failure detection.

Failure detection by humans has been the subject of

research for a number of years by various researchers. In

most of the previous work done, this was studied in the con-

text of detecting plant failures while a human acted as a

controller, and his adaptive characteristics to function

normally in the changed situations were explored. Miller

and Elkind (1967), Phatak and Bekey (1969), Niemela and

Krendel (1975), and Young (1964, 1969) examined the various
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models for adaptive characteristics of the human controller

for a step change or a polarity reversal in the gain of the

controlled process.

Good models using classical as well as modern control

theory exist for the human as a controller in a variety of

tasks. However, not much work has been done in modelling

the human when he is a pure monitor. Smallwood (1967) pro-

posed models of the environment (internal to the human oper-

ator) of first and second order systems, to explain the

sampling behavior while a human is monitoring a number of

instruments. He used the distribution function of the cur-

rent state conditioned on all the previous states as the

decision function for shifting of attention between various

instruments. He found that the second order shaping filters

were better able to predict the operator's sampling behavior

in terms of the bandwidth of the instrument being observed

and the precision required of the readout in a multidegree

of freedom system.

Levison and Tanner (1971) proposed a control theoretic

model for human decision making. Following their optimal

control model of the human operator, they suggested a Kalman

filter model for the estimator and a decision mechanism

using the instantaneous likelihood ratio as a decision
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function. Phatak and Kleinman (1972) emphasized the roles

of the internal model and the optimal estimator, suggesting

that the observation errors are the inputs to the decision

mechanisms.

Gai and Curry (1976) reported experiments on the detec-

tion of failures in the mean of a random process, which con-

sisted of the output of a second order shaping filter driven

by white Gaussian noise. An estimator consisting of a Kalman

filter and a decision mechanism based on the observation

residuals (i.e., the difference between observations and

their estimates) was found to match the failure detection:

behavior of the human monitor. In a random process, there

are many parameters subject to change when a failure occurs,

for instance: the variance, bandwidth or the damping ratio

of the process (Anyakora and Lees, 1972).

Since no previous data could be found on the ability of

the human to detect such failures, preliminary experiments

were conducted to obtain an estimate of the various thresholds

and detection response characteristics. For a basic study

of how these failures are detected, a simple, yet adequate,

system is a second order shaping filter driven by random

input. Even for higher order systems, it is reasonable to

assume that the human is sensitive to the dominant modes of
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the system, and hence a second order approximation for system

dynamics is usually sufficient; hence, the observers were

expected to detect failures in a second order shaping filter

driven by white noise. The results of this study were reported

in Curry and Govindaraj (1976). Based on the information in-

ferred from the data collected, it was decided to explore

some aspects of the changes more thoroughly. Better experi-

mental procedures were designed using well-proven psycho-

physical procedures for measuring thresholds and for evalu-

ating detection response characteristics.

From the preliminary series of experiments, it was

obvious that a change in damping ratio could not be handled

in a consistent manner. Some subjects tended to perceive

the decreases in damping as increases in damping, and vice

versa. Also the detection times had no apparent relation

with the magnitude of the stimuli presented. Hence, only

changes in variance and frequency were taken for careful and

detailed investigation. As the first step, thresholds were

determined for changes in frequency and variance for all

combinations of two frequencies and two damping ratios. The

frequencies were chosen (corresponding to periods of one and

three seconds) on the basis of being representative of the

passband characteristics of the instruments encountered in

aircraft monitoring situations. Damping ratios of 0.707 and
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0.2 were used, which correspond to a moderately damped

system and an underdamped system respectively.

Another series of experiments was conducted to study

the detection behavior as the stimulus strength was varied.

Detection times were measured for various levels of change

in the parameter values from nominal, for changes in fre-

quency and variance. Finally, the data obtained from these

experiments have been used to formulate a model for the

detection process.

1.2 Organization of the Thesis

Chapter II contains a detailed description of the

experiment for threshold estimation and detection -time

studies. Various methods of estimating thresholds are

compared. The staircase method, which is used in this

work, is described in detail. Its advantages over other

methods are pointed out. Modifications in the threshold

experiments to perform detection time studies are indi-

cated.

Chapter III concerns the results of the threshold

measurements. Effects of different nominal parameters,
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i.e., frequency, and damping ratio, on thresholds for

changes in frequency and input variance are analyzed.

In Chapter IV, the detection time results are given.

Increases and decreases in the parameter values from nominal

are compared for frequency and variance in terms of the

detection times. An attempt is made to explain the results

in terms of physical conditions and variables.

Models for the detection of the failures are proposed

in Chapter V. The models consist of two stages: (1) an

estimator, and (2) a decision mechanism. Brief summaries

of estimation theory and sequential analysis pertaining to

the current work are given. The results of application of

these models are compared with the experimental results.

In Chapter VI, the work is summarized, and possible

directions for further investigation are suggested.

Appendices A and B include details for implementing

the shaping filter digitally (usirg Z-transforms), and a

copy of the "Instructions for the Subjects" used in the

threshold experiment respectively. The schedules used for

all the experiments are given in Appendix C. In Appendix

D, the thresholds for each subject are tabulated, while

Appendix E contains the detection times for individual

subjects.
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CHAPTER II

DETAILS OF THE EXPERIMENTS

In the previous chapter, the failure detection problem

was introduced, and its relevance in control and monitoring

systems was pointed out. A brief summary of previous work

was given. In this chapter, the experiments conducted for

specific failure detection situations will be described in

detail. The process being monitored by the observer is a

second order shaping filter driven by white noise. A gen-

eral description of the procedure and the experimental set-

up will be given. Then the threshold experiment will be

described, where comparison of various methods is followed

by a detailed description of the staircase method. The

detection time experiments will be described after this,

with the changes clearly pointed out.
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2.1 Description of. the Experiment

Experiments were conducted to determine the thresholds

for changes in the parameters of a random process, and to

study the detection behavior. A set of preliminary experi-

ments were conducted to get an idea of the approximate values

for the threshold. The process consisted of the output of

a second order shaping filter with the transfer function:

K

(s/W )2+ 2+ (s/w ) + 1 (2.1)
n n

and zero mean white Gaussian noise as input. The output of

the shaping filter was displayed on the graphics display

terminal as a horizontal line moving up and down inside a

grid (see Figure 2.1). All three parameters, the natural

frequency, the damping ratio, and K, the gain, could be

changed.

Failure was defined as a change in one of the parameters

of this shaping filter. Only variations in the natural fre-

quency (the bandwidth) and the variance of the input noise

(equivalently, the gain) were considered for the present

study of failure detection. Effects of a change in damping

ratio were not considered.
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2.2.1 Equipment

A PDP 11/34 computer with graphics capability was used

for all phases of the experiment; conducting the experiment

on-line, storage of data, and for subsequent analysis and

modelling. White Gaussian noise was digitally generated by

summing 12 uniformly distributed random numbers. All the

programming was done with discrete-time approximations

using the Z-transform method. The details are given in Ap-

pendix A. The states were updated once every 10.5 milli-

seconds. This time was chosen since it was just sufficient

for one complete cycle of operations, including the reading

of the switches for subject response, when the computer was

dedicated to the experiment. The subject was seated about

75 cm in front of the screen, the screen being at normal eye

level. He held a small box with two switches to indicate

his response (one switch to indicate an increase in para-

meter value, and the other for an indication of decrease),

when a change was detected. In the computation cycle, the

noise input was calculated, filter states were updated, and

the switches were read. A 12 inch diagonal P31 fast phosphor

cathode ray tube was used for all displays, and the motion

of the line appeared continuous and smooth to the observer
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except when the frequency was about ten times the nominal

during the initial familiarization phase. Then discrete

jumps or flicker could be seen. The grid was 6a high

(approximately 12 cm) , where a 2 was the variance of the

process, la of the motion corresponding to about 0.2

radians (see Figure 2.1).

2.1.2. Procedure

The subjects for both series of experiments were re-

cruited through advertisements in the Institute newspaper,

and by advertisements posted at various places on campus.

They were required to have normal vision (with or without

glasses) and they were informed that they would be paid

$2.50 an hour. Before anyone was started on the experi-

mental series, he or she was told of the nature of the

experiment, and that their participation in a series of

experiments running into a few weeks duration was expected.

A wide variety of people, both male and female, responded

to the advertisements, and were recruited. About fifteen

people participated for a period of about four weeks for

the threshold experiment. Their backgrounds and ages ranged

from sophomores at MIT and elsewhere to graduate students in



Figure 2.1 Grid (actual size).
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science and engineering to a senior citizen. The experiments

were conducted at various hours of the day, starting as early

as 7:30 AM and running on to 11 PM on some days for some sub-

jects. For any one subject, one session lasted for about

an hour on each day. For every session, two series of experi-

ments were conducted (one for a change in frequency and the

other for a change in variance of the input). If, for any

reason, it was felt that a subject was not alert in the

beginning of the session or at the end of the first experi-

ment, the remaining part was postponed. The experiments were

done usually during regular working days, though some students

on campus participated on weekends and holidays.

Except for one or two subjects, most were not familiar

with stochastic processes or control theory, and none had

any familiarity with psychophysics. Only one subject had

some previous exposure to this kind of experiment, since he

had participated in the earlier series of preliminary experi-

ments. But since the (staircase) procedure used for the

determination of the thresholds was completely different,

and since there was -a time lapse of more than three months,

this did not create any problems. Hence, for our purposes

all could be considered as naive subjects.
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The general nature of the experiment was explained to

each subject on the very first day of the experiment. A

brief explanation of the observed process was given in terms

of the analog of a spring-mass system, with which almost

everyone was familiar. The subjects were told that there

would not be any definite pattern, since the input or the

excitation was random, and that they could only form an idea

of "how far on either side the line moves away from the

centerline" or "how fast or slow it is moving". They were

told to observe the "average behavior of the line". Since

the instructions were clear and simple, no uncontrolled

effects were expected.

2.1.3 Learning or Familiarization Phase

After the procedure was explained, the nominal mode was

shown for two minutes. After the nominal, large failures of

either sign were shown, to familiarize the subject with the

nature of the failures. For every trial other than the nom-

inal, the process started with the nominal parameter values,

and a failure occurred every time' between 8 and 12 seconds

after starting. Though it was obvious, the subjects were
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told about the nature of the failures (i.e., increase or

decrease) during this phase. One nominal and four failure

modes were sufficient for all subjects to become familiar

with the changes. If, at this stage, anything was not clear,

these trials were repeated and any specific questions were

answered. Data from the first session was not used in the

analysis.

2.1.4 Response and Feedback

The subject held the switch box used to indicate his

response in his lap, or on a table nearby, depending on

whichever was convenient for quick response. The subject

was told to press the appropriate switch as soon as he was

certain of the nature of the change. The grid on the screen

appeared only when the line was in motion, and it was blanked

out at the end of each trial. The screen was used to give

immediate feedback after every trial. The subject was told

of the type of response and the result. If the failure were

detected and correctly identified, it was a "correct" response.

If any switch was pressed prior to an actual failure, it was

a "false alarm". If the identification were incorrect, it
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was "wrong". Finally, if the failure were not detected

within the available time, it was a "no detection". ("Wrong"

and "no detection" are considered "misses" later on.) After

every trial, the result was displayed to the subject on the

otherwise blank screen for two seconds. After a blanking

period of three seconds, the next trial followed in a similar

manner.

2.1.5 Initial Conditions for the Runs

The starting values for the position and velocity were

chosen properly so that the statistics of the normal (nominal)

random process would not have unduly long transient effects.

Ideally, the initial conditions should be chosen such that

they correspond to the steady state covariance obtained from

M AM + MA' + Q = 0

(2.2)

where cov(X) = M

and

=AX + w E[ww T= (2.3)
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where X is the state vector of the random process driven by

zero mean white noise w, and A denotes the system matrix.

A set of eigenvectors can be found such that

K M (e 1 2) 2  
(2.4)

e-2 02J

whre X and A2 are the variances of the uncorrelated random

variables, u1 and u2. X(t0) can be found by choosing u1 and

u2 with the correct variances and using

X(t0 ) = (e e2 ) (2.5)
0 -1 -2 u 2

In our simulations, a simpler approach was used. For

every run, the random initial conditions were chosen from

the previous run. For any run, the state values were stored

when the parameters of the process changed from the normal

mode value to those corresponding to failure. This proce-

dure is followed for all runs, except the first which is

the nominal for two minutes. The first run started from

zero initial conditions.
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Stimulus values were chosen according to the following

relation:

(2.6)(P/Pn) = exp [lnR x S]

where

P = nominal value of the parameter

P = changed or failed value

R ratio of initial change (R = 10)

S =stimulus (ISI < 10)

2.2 Threshold Experiment

2.2.1 Introduction

The existence of a sensory threshold has been a subject

of discussion ever since the emergence of psychophysics. For

our purposes, it is clear that there is a level below which

reliable conclusions cannot be drawn as to whether a process

is functioning in the normal mode or has deteriorated. This
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is the "noise level" for the system. Understanding the mag-

nitude of the threshold is important for at least two reasons.

One is to identify the inherent limitations of the human

monitor in observing a task. If the failure or the change

that may occur falls below the threshold, some other means

must be found to make the failure detectable if that failure

cannot be tolerated for safe operation. Another possible

use is in evaluating the effectiveness of a model for the

human as a controller or an observer. If the threshold is

known, it would be easier to separate the usefulness of the

model and its behavior at the uncertainty level. Even if

the model is very good in explaining and/or predicting the

phenomenon for a given situation, it cannot be relied on if

the parameters are below the threshold level.

The measurement of sensory thresholds is made difficult

by physiological and psychological variations in any experi-

mental situation, in addition to the difficulty of maintaining

the same physical conditions. Such extraneous factors as the

subject's "timidity, warming up, and anxiety" (Titchener,

1905) and his conscious as well as unconscious criteria for

making a positive response (Guilford, 1936) have to be taken

into account.
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For our purposes, the threshold will be defined as the

smallest change (from the nominal) that a person can reliably

detect. What we mean by reliable will become apparent after

an explanation of the procedure for the determination of

the threshold is given, but for now can be simply stated as

the value that can be detected in approximately 75% of the

trials in which it is presented. In psychophysics, there are

various methods to measure thresholds. The sensory threshold

was usually found by determining the intensity of the stimulus

required to be just detectable or by determining the difference

between two stimuli that are noticeably. different. A brief

discussion of possible approaches to threshold measurement

is in order, prior to describing the approach finally settled

on for this experiment. The four methods of importance are

(i) the method of adjustment, (ii) the method of serial ex-

ploration, (iii) the method of constant stimuli, and (iv)

the staircase method. An excellent review of various defini-

tions of thresholds and pertinent discussions are given in

Green and Swets (1966).

2.2.2 Discussion of Various Methods

In the method of adjustment, the subject manipulates a

continuously variable stimulus so that it appears just not-
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iceably different from the nominal, or just noticeable,

depending on the nature of the process. The mean over a

number of runs is taken as the threshold (Green and Swets,

1966). In the method of serial exploration, various levels

of stimuli are presented in steps, starting on either side

(or both sides with interleaving) of the threshold value.

In these methods, the response could be either Yes-No or

Yes-No-Doubtful (or Equal). The estimation of the threshold

depends on the responses that are permitted of the subject.

In these methods, usually the psychometric function (the

percentage of correct responses versus stimulus levels) is

plotted, and depending on the response category allowed, the

stimulus value corresponding to the 50% or 75% correct res-

ponses is arbitrarily taken as the threshold. In the method

of constant stimuli, a set of stimulus values around the

expected threshold is chosen. At any trial, a particular

value of the stimulus from this set is presented, and the

response is recorded, the order of presentation being random.

Again, the psychometric function can be plotted and the

threshold estimated.

2.2.3 The Staircase Method

The staircase method is used in our experiments and

hence will be explained in greater detail, before a comparison
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is made between various methods. A detailed discussion of

this method can be found in Cornsweet (1962) and also in

Levitt (1969). The procedure for determining the threshold

starts with the presentation of relatively large stimulus

values, just as in the method of serial exploration. The

starting value could be from either side of the expected

threshold value, and two series could be interleaved. The

main difference between the staircase method and the serial

exploration method is in the presentation of the stimuli

after the first negative response is reached. In the stair-

case method, once the stimulus that elicits a negative res-

ponse (or a wrong or no response) is reached, the levels are

alternated, with systematic variations of decreases and

increases over that level. After the first negative response,

the stimulus level is increased by a certain level and the

response is determined. If the response is positive, the

same level is repeated once more to take care of any responses

that may result from a pure guess. If the response is again

positive, the stimulus level is reduced by a certain step

size. But, for any level, if a "no" response is obtained,

the stimulus value is increased. The procedure is repeated

until a predetermined number of ups and downs (or "peaks" and

"valleys") is obtained in the stimulus-response history. As

the experiment proceeds, the stepsizes are adaptively reduced.
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With proper stepsizes, the niean of the peaks and valleys

gives a good measure of the threshold. Ideally, the rever-

sals in the directions (i.e., increase or decrease from the

previous step size) should occur for one or two step size

differences. After a pre-determined number of ups and

downs are reached, the experiment is terminated, and the

asymptotic value of the stimulus is taken to be the thres-

hold.

The threshold estimation by the staircase method is

very fast compared to other methods, since the stepsizes

can be determined adaptively, depending on the stimulus

values, and the number of steps needed before termination

is small compared with other methods. Also, the efficiency

is higher due to operation near threshold most of the time.

The experimental procedure will now be described, and

particular attention will be given to how various previous

criticisms have been overcome.

For the threshold experiment, the subjects were told

that the aim of the experiment was "to determine thresholds",

i.e., the "smallest change you can reliably detect when a

failure occurs in the process you are observing". The exp-

eriment would start with large magnitudes of failure and

that -magnitude would be reduced gradually "until it becomes

very difficult for you to correctly detect the changes that
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occur". He was also told that towards the end he may not

be, and in fact he will not be, able to respond correctly

to all the stimuli. He was told not to agonize over any

errors in the response when the magnitude becomes very small.

The detection time was not of primary concern. But the sub-

jects were aware that their response time was being recorded.

Since the subjects had time to give their response even

after the trial was over, the number of false alarms, if any

were negligibly small. only in one or two runs, and especi-

ally for one subject, was it apparent that the subject was

disappointed at the errors; the runs were terminated, and

it was explained that it was inherent in the procedure that

one could not get all of the responses correctly. For any

one parameter, the experiment normally ran for about 30

minutes. Then after a rest period of about 5 minutes, trials

for the other parameter were run. For any experiment, the

subject was told which of the parameters (frequency or

variance) was being changed. A copy of the exact set of

instructions given to each subject for the threshold experi-

ment is given in Appendix B.

The stimulus values used until the subject made his

first incorrect response were as follows: ISi = 0.8, 0.6,

0.4, 0.2, 0.16, 0.12, 0.08, 0.04, 0.03, 0.02, 0.01, 0.008,
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0.006, 0.004, 0.002, 0.0015, 0.0010, 0.0005. The above

choice was made by taking into consideration the fact that

as the threshold is approached, smaller values are desirable

for as accurate an estimate of the threshold as possible.

Moreover, the large initial values are needed to "warm up"

the subject, and the step size is initially large so as not

to spend too much time away from the expected threshold.

Both positive and negative values of the stimuli were inter-

leaved, and the experiment was conducted with two single

staircases, alternating at random (see also Levitt, 1969).

The magnitudes were not presented in strictly descending

order lest the subject get an idea of how the stimulus is

presented. From the stimuli listed above, two values are

taken at a time, and sets of four are formed by having

increases and decreases at those magnitudes, i.e., the sets

are: (±0.8, ±0.6), (±0.4, ±0.2), ... , etc. Within any set,

the stimuli are chosen at random without replacement. There-

fore from trial to trial, the consecutive stimuli could be

either an increase or a decrease, and the magnitude could

be higher or lower (e.g. in the first four trials, the set

is formed of ±0.8, ±0.6, and the order could be +0.6, -0.8,

+0.8, -0.6 or any other combination).

Now various salient features of the staircase method,

its advantages and disadvantages over other methods, criti-

cisms of the method, and the method as used in our experiments
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will be discussed. An excellent discussion of the staircase

method in psychophysics can be found in Cornsweet (1962).

He points out four important factors that are to be taken

into account. They are: (1) where to start the series, (2)

how large a step size to take, (3) when to stop the series,

and (4) when to modify the series.

In our experiments, the stepsizes were adaptively

chosen as explained below (Section 2.2.4). It was possible

to use large stepsizes in the beginning, since the threshold

was approached relatively quickly from the start of the

experiment. Because of the adaptive stepsizes used, and

since the stepsizes were quite small towards the end, it was

decided to stop the experiment after 6 or more reversals were

observed. This is also the recommended procedure by Levitt

(1969) and Wetherill and Levitt (1965). As Cornsweet ob-

served, in most of the cases, "the values of the stimuli

presented change relatively rapidly until they reach an

asymptotic level or plateau, and then they hover around this

level as long as the conditions remain unchanged". He con-

tinues, "Obviously, the longer the series the more reliable

will be the computed value of the threshold". But, if the

series is too long, the subject may get bored and tired, and

the psychological and physiological conditions do not remain

constant over a long period of time. He also suggests that
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a certain number of reversals be used as the stopping

criterion. The advantages are the small number of trials

needed, since once the first few stimuli are out of the

way, the remaining stimuli are near threshold, and since

an asymptotic fit (i.e., the threshold is assumed to be

reached asymptotically (see Section 3.2)) is used, a far

fewer number of presentations are needed, compared with

other methods. Since both increases and decreases are pre-

sented in successive trials, there are two main drawbacks

pointed out by Cornsweet: anchoring or .series effects (or

anticipation of next levels), and the way in which the

stimuli are ordered. However, these do not present any

problem in our case. Anchoring effects are usually elim-

inated using the double staircase procedure, where the

stimuli presentation is started from both sides of the ex-

pected nominal (i.e., at a value much lower than threshold

resulting in 100% misses, and at a value much higher than

threshold resulting in 100% hits), and changing the stimuli

so that they approach the threshold from both sides. In our

case, two single staircases, one for threshold for an increase

in parameter values from nominal, and the other for a decrease

from nominal, are mixed at random. Hence, the subject may

not be able to guess the next stimulus from the previous one,
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i.e., this has the advantages of the double staircase

procedure in eliminating or minimizing the anchoring

effects, etc.

By proper design, it is also believed that the crit-

icisms of Dallenbach (1966) have been taken into account.

He criticized this method because of the following factors:

(1) constant errors, in time or space or in both, i.e., the

order of presentation, the standard first and the variable

next and vice versa, (2) variable errors - practice, fat-

igue, expectation, and habituation, and (3) accidental

errors due to the experimenter's manipulation of the appa-

ratus, mood and health of the subject, etc. Accuracy has

not been compromized for efficiency. Since the order of

presentation has been randomized, with magnitude as well

as sign being nondeterministic, the constant errors have

been eliminated. The variable errors due to practice,

fatigue, etc., are eliminated by the use of rest periods

and even discontinuing the experiment if the subject is not

alert. The random order among the set of four stimuli, and

adaptive step sizes (smaller nearer threshold), make it al-

most impossible for the subject to guess. Even the experi-

menter, who had been working on this problem for a long

time, could perform no better (in the sense of getting

lower thresholds) than his earlier levels, even after con-

siderable experience.
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The thresholds were calculated using an asymptotic

least squares fit to the stimulus versus time histoy.

Thougha forced choice procedure was used (the subject usually

had to respond by indicating either an increase-or a decrease),

the fact that the stimulus value was not altered until two

correct responses were obtained (when it was reduced .by one

step size), takes out the guessing factor, and in effect

makes it a "strictly +" or "strictly -" choice. At any time,

the subject cannot make a choice, and get away with it, if

it were just a guess, i.e., this cannot continue forever,

since,~if it were a pure guess, his probability of correctly

identifying the same level the next time it is presented is

very small. Any accidental errors could occur if the sub-

ject pressed the incorrect switch (since everything else

was controlled by the computer). If such a thing occurred,

the subject was asked to notify the experimenter. Since the

subjects were well aware that the reaction time was not the

principal factor being determined, they seldom made this

kind of error.
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2.2.4 Stepsize Control

The adaptive step size control noted above was achieved

in the following manner. The stimuli were presented from

the initial set with step sizes decreasing as the magnitude

itself was decreased, until an incorrect response was made.

At the occurrence of the first incorrect response, the step

size was chosen as the difference in magnitudes of the stimuli

in the next set of four, i e., the stimuli were grouped in

sets of four and the order in any set was random (see Section

2.2.3). If the first incorrect response occurred, say, while

the set (±0.16, ±0.12) was being presented, the stepsize in

stimulus value was chosen as the magnitude difference in the

set (±0.08, ±0.04), which is 0.04. This was used to increment

the stepsize for the next stimulus. The sets of four were

not used for the rest of the experiment. For the next run,

the step size was taken to be 0.8 times the previous value.

This practice was found to work very well, since after one

or two direction reversals, the number of steps between re-

versals was about one, two or three. Hence this method of

choosing the stepsize was continued for all subsequent runs.

Increases and decreases had separate step lengths dep-

ending on the performance of the subject. In an early version

of the experiment, both staircases were separately continued
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until incorrect responses occurred in each of the series.

But soon it was discovered that if the stepsizes were far

apart to start with, there was a tendency for the subjects

to compare the currently observed process with a process ob-

served in the previous run(s), where the failure was easy

to identify (due to a comparatively large separation from

the nominal) instead of comparing with the nominal. So upon

encountering the first incorrect response, both stepsizes

started at the same value though they could differ as the

experiment continued.

During any trial, the run continued until the subject

responded, or for 30 seconds from the onset of failure,

whichever occurred earlier. If at the end of 30 seconds,

the subject had not indicated his response, the horizontal

line came to a stop, the grid disappeared, and he had five

seconds to respond. If he did not respond even after this,

it was considered a "miss". Since the same random number

generator was used to choose the stimuli as well as to

form the "white" noise input, and since the stopping time

for any run depended on the subject's response, every subject

had a unique presentation except for the two minute initial

nominal. For every experiment, all the information was

stored (i.e., the nature of the response, response time, the

stimulus intensity;- and the "seed" for the random number



40

generator to generate the whole sequence and time history

of the process). The data is presented in the next chapter,

and the statistics are discussed.

2.2.5 Order of Presentation of the Nominals

A set of four nominals, obtained by the factorial

-combination of T = (1.0, 3.0) and ? (0.2, 0.707) were

used. During any one session, on any particular day, only

one nominal was presented. Since all the subjects who

participated in the threshold experiments were given all

the four sets of nominals, a Latin square design was used

to choose the order of presentation. The Latin squares

used are shown below. For more subjects (>8), the same

Latin squares were used repeatedly (i.e., S9 = Sl, S10 = S2,

etc.).

Si S2 S3 S4 S5 S6 S7 S8

El 12 17 32 37 32 17, 37 12

E2 37 32 12. 17 17 37. 12 32

E3 32 37 17. .12 12 32 17 37

E4 17 12.. 37 32 37 12 32 17
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where Sl through S8 refer to the subjects, El through E4

to the stimulus presentation for each subject, and the first

digit of the number refers to the period (T) , and the second

refers to the damping ratio (2 for 0.2 and 7 for 0.707).

For any one of the nominals,, the decision as to whether to

vary the period or variance first in a session was deter-

mined with equal probability in the beginning until about

half of the planned total experiments were completed. Then

the choice was according to the random arrival time of the

.subjects. (Though the subjects were scheduled a day or two

in advance, the scheduling was done according to their indi-

vidual preferences and availabilities at various times of

the day). For any nominal, if the sessions where the period

was changed first were more than the corresponding sessions

for variance, the variance was changed first for the next

subject, and vice versa. This resulted in a fairly equal

distribution for period-first and variance-first sessions.

(Actual schedules used for the experiments are given in

Appendix C.) This arrangement was thought necessary, since

it was observed that detecting changes in frequency was

easier and less tiring, and took slightly less time for the

subjects. Thus, the above arrangement mixes easy and hard

tasks with equal likelihood, between subjects, and for any

particular subject.
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2.3 Detection Time Experiments

A second series of experiments was conducted to deter-

mine the time taken for detection of a failure as a function

of the stimulus level. The general set-up for this series

was the same as before. However, the criterion by which

the subject responded was different. It was made clear

that the objective was to determine how quickly one detects

a failure. The subject was specifically told that "he was

expected to detect the failure as quickly as possible with-

out making too many mistakes". Another important difference

was in the set of stimuli chosen. From the previous experi-

ments, thresholds were determined for frequency and variance

for various nominals. Four levels were chosen with increas-

ing magnitudes, the smallest being slightly higher than the

threshold. Four increases and four decreases were mixed to

form a group of eight stimuli, and a stimulus was chosen

from this group at random (without replacement) and presented.

Since the detection times were of interest, the subjects

had to respond in a given time. If they did not respond

during this period, it was considered a "miss". The presen-

tation of stimuli and performance feedback were as in the

earlier experiment. If, for any session, too many false

alarms were observed, the subject was told to reduce the
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number of false alarms by waiting for sufficient time before

responding, to be certain that a failure had occurred. If

it persisted, the §ession was discontinued. This was neces-

sary only for one subject. Two or three sessions out of

about 50 sessions were cancelled.

These experiments were conducted for a number of days,

running into a few weeks. Since a large number of runs were

needed, and a commitment on the part of the subject to parti-

cipate over a period of several weeks was necessary, only

three of the subjects who participated in the earlier series

were retained. Due to their experience with the earlier

experiments, they were familiar with the random process being

observed, and hence no training runs were necessary. However,

since the criteria were different, and since only a limited

number of stimuli were presented, one initial trial run was

given.
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CHAPTER III

EXPERIMENTAL RESULTS: THRESHOLD

In Chapter II, detailed descriptions of the experiments

for measurement of threshold and detection time behavior were

given. The data collected during the threshold experiment

have been used to estimate various thresholds for frequency

and variance for various nominals. The form of the curve

used to fit the data to obtain thresholds will be given.

Comparisons will be made between various thresholds. Pos-

sible explanations for some of the observed effects will be

given.

3.1 Stimulus versus Time History

Some of the results from the stimulus versus time history

for the staircase method for threshold experiments are shown

in the accompanying plots (Figures 3.la - 3.lf). These plots

were obtained while the experiment was in progress, so that

the experimenter could. follow the progress of the experiment
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closely. This was necessary since the subject was in

a separate room where the only source of noise was the

monitor he was watching. In addition to the lack of

distraction, subject isolation did not impose on the

subject the feeling of being watched continuously. How-

ever, this necessitated the monitoring of the experimental

results by the experimenter, which was made possible by

the plot display on the typewriter terminal. Any unusual

trends in the correct/incorrect/false alarm responses

could usually be traced to the subject not being attentive

enough (in some cases, the subject was found to be dozing

off). When the subject was found to be "not alert", the

session was postponed to a different day and the data was

discarded for that day. Plots were started only after the

first incorrect detection was made. The starting value of

the stimulus associated with a particular plot, which is

also the full scale value, is shown at the top.
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3.2 Exponential Fit

An exponential approximation was used to fit the

data. The fitted curve has the form

Sn =a + b(exp(ct)) (3.1)

where Sn is the value of the stimulus at the time instant

t. The constant a was assumed to be the threshold value.

A least squares fit was found using a conjugate gradient

algorithm. A standard program from the IBM Scientific

subroutine Package (FMCG) was used, and the convergence

was quite fast. The minimization was done for 50 itera-

tions, though the minimum was reached much earlier (to

the fourth significant place). Threshold values had been

calculated at the end of each session by taking the mean

of the last six peaks and valleys of the stimulus versus

time history. These values are shown along with the

values calculated by the least squres fit in Appendix D

(summary in Table 3.1). In most cases, these first approx-

imation values agree very closely with the values found

by a better fit.
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TABLE 3.1 THRESHOLDS

(1) Change

Period
(sed)

1

in Period

Damping.
Ratio 0.2 0.707

-0.034 (0.022) -0.033 (0.020)

0.028 (0.021) 0.038 (0.026)

-0.060 (0.039) -0.037 (0.026)

0.054 (0.030) 0.047 (0.023)

(2) Change in Variance

0.2 0.707

-0.072 (0.038) -0.084 (0.035)

0.077 (0.042) 0.066 (0.044)

-0.121 (0.039) -0.091 (0.034)

0.150 (0.073) 0.083 (0.037)

Standard deviations are given in parentheses.

Units: ln(P/P 0 )/ln(10)

3

1

3
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3.3 Comparison between Nominals

The magnitudes of the thresholds were compared for each

of the four nominals, both for a change in frequency and for

a change in- variance. Equality of variances was tested for

each pair being compared using the F-test. If the variances

were found to be not significantly different, a t-test was

performed on the means. If the variances were different, an

approximate t-test was done for comparing the means (Hoel,

1971). The null hypothesis that the means (for increase

and decrease in the parameter value from nominal) are the

same could not be rejected at 0.01 significance level. Thus

the thresholds are not-significantly different from one another.

The t values along with the F values for the equality of var-

iances have been tabulated in Table 3.2.

The thresholds for a change in variance appear to be

higher than those for a change in frequency in all the cases

(Table 3.3). Though a direct comparison is not of much value,

it is nevertheless important to carry out such a comparison

since the stimuli are normalized values in logarithmic units.

Again, a t-test on the means was done for each nominal, for

a change in variance and for a change in frequency. In all

cases except one, the means were found to be significantly



55

TABLE 3.2 t-TEST FOR THE MEANS (THRESHOLD)

An F test was performed to test for the equivalence of
variances.

The table gives the means (magnitudes) for increase and
decrease, for the same nominal, along with the t-values
(t) , degrees of freedom (dt) , F values for variance (F) ,
and its degree of freedom (df, same for numerator and
denominator).

Increase

0.034

0.077

0.033

0.084

0.060

0.150

0.047

0.091

decrease

0.028

0.'072

0.019

0.066

0.054

0.121

0.037

0.083

So for the individual nominals, the mean value of the

magnitudes of the thresholds are not significantly dif-

ferent. (The tests were made at the 0.010 significance

level.)

121

123

171

173

321

323

371

373

dt

16

18

16

14

22

14

22

16

t

0.670

0.274

0.494

0.924

0.461

0.979

0.939

0.479

F

1.076

1.266

1.973

1.537

1.678

3.605

1.285

1.196

df

8

9

8

7

11

7

11

8
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TABLE 3.3 t-TEST FOR THE MEANS (THRESHOLD)

The table gives the means (magnitudes) for increase (+)
and decrease (-) in frequency (fre) and in variance (var)
for the same nominal, along with the t-values (t) , and
degrees of freedom (dof). The last column (diff) shows
the difference that is significant at the 95% level.

Nominal (Nm): first digit period (seconds)
second digit damping ratio (0.2 or 0.707)

Nm dof

12+

12-

17

17

t

2.707

3.126

.17+ 10 1.965

17- 15

32+ 18

3.044

3.583

32- 18 4.411

37+ 19 3.325

37- 19 3.588

Th (var)

0.0769

0.0720

0.0655

0.0838

0.1498

0.1212

0. 0831

0.0911

Th (fre)

0.0344

0.0276

0.0329

0.0382

0.0601

0. 0536

0. 0374

0.0467

The difference in mean value of the thresholds for fre-
quency and variance are significant, except for 12+ and
17+.

dif f

0.000

0.014

0.000

0.014

0.037

0.035

0.017

0.019
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different. As shown by Smith and Sherlock (1957) and

Gibson (1958), from experiments at Cornell, one is more

sensitive to the frequency with which an object crosses

any reference marks. This could explain the somewhat

higher threshold for variance, since in the case of a

change in variance, the frequency remains constant. It

should be noted, however, that the earlier work was not

concerned with random processes. Also, as shown by Rice

(1954) and Blake and Lindesey (1973), the average number

of level crossings of a random process depends only on

the passband of the filter for a Gaussian white noise,

and not on the filter gain.

It is interesting to observe that one set of nominals

(T = 3, r = 0.2) appears distinctly different from the

others. This nominal also resulted in a different type of

performance in the detection time experiments. A possible

explanation for the discrepancy will be given in the next

chapter, where results from the detection time experiments

are given.
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3.4 Analysis of Variance

An analysis of variance was also performed for both

increases and decreases in frequency and variance. These

results also have been tabulated (Table 3.4). These were

obtained using a standard packaged program (BMDP2V, from

the BMDP programs package of the UCLA Computing Facility).

A linear hypothesis model of the form

(3.2)yijk = + a. + . + (aa).. + e1~ J 1) ijk

has been used. Taking p to be the overall mean, a to be

effects due to frequency, and . the effects due to damping
J

ratio in the nominals, the results could be interpreted in

the following manner. The : results are considered at a

significance level of 0.05. For a decrease in frequency,

the differential effects due to frequency in different nomi-

nals, are significant (i.e., the null hypothesis that

a = a2 = 0 (3.3)

cannot be rejected).

For a change in variance, the frequency is significant

for decreases, whereas for an increase, differential effects

due to both frequency and damping ratio (between various

nominals) are significant.
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TABLE 3.4 ANALYSIS OF VARIANCE FOR FREQUENCY (F) AND

DAMPING RATIO (D) EFFECTS

(Results from the BMDP2V Program)

M - Overall mean
F - Differential effects due to frequency
D - Differential effects due to damping

FD - Effects due to interaction of P and D
Er - Error

Sum dof Mean Sq. F P(F exceeded)

(a) Decrease in Frequency

0.07096
0.00306
0.00004
0.00078
0.02475

1
1
1
1

38

0.07096
0.00306
0.00004
0.00078
0.00065

108.9478
4.7048
0.0554
1.2052

(b) Increase in Frequency

0.06982
0.00237
0.00151
0.00116
0.03060

1
1
1
1

38

0.06982
0.00237
0.00151
0.00116
0.00081

(c) Increase in Variance

0.30549
0.01774
0.01324
0.00664
0.07794

0.30549
0.01774
0.01324
0.00664
0.00251

121.5088
7.0550
5.2673
2.6429

(d) Decrease in Variance

0.29397
0.00694
0.00073
0.00380
0.04105

0.29397
0.00694
0.00073
0.00380
0.00132

221.9800
5.2381
0.5494
2.8693

M
F
D
FD
Er

0.0
0.036
0.815
0.279

M
F
D
FD
Er

86.9641
2.9439
1.8707
1.4345

0.0
0.094
0.179
0.238

M
F
D
FD
Er

1
1
1
1

31

0.0
0.012
0.029
0.114

M
F
D
FD
Er

1
1
1
1

31

0.0
0.029
0.464
0.100
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In every case above, the null hypothesis a = a2 = 0,

or 0= 1 2 = 0 was tested at a significance level of 0.05.

If the probability that F exceeds the value obtained in the

analysis of variance procedure (Table 3.4) is less than 0.05,

the null hypothesis is rejected for the alternative that the

differential effects are significant.

3.5 Explanation of the Observed Results

Now an attempt will be made to explain the results from

a physical standpoint. Significant conclusions could not be

drawn as to whether an increase in frequency (i.e. decrease

in period) is easier to detect than a decrease, though the

preliminary experiments suggested such a trend (Curry and

Govindaraj, 1976). There is a definite trend for the thres-

hold to be higher for a lower nominal frequency. If thres-

hold is viewed in terms of the angular distance traveled

per unit time, a higher frequency motion would travel a

given angular distance in a shorter time. Or, in other words,

for a given time and angular distance, a higher increment is
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required for a lower nominal frequency than for a higher

nominal frequency. Spigel (1965) defines absolute threshold

(for angular motion) as "the minimum angular distance tra-

versed, with the rate held constant". So, in terms of the

difference in frequency from the nominal value, it is reas-

onable to expect that if the angular distance traversed is

the threshold, the difference should be higher for a lower

frequency. Spigel also states that the thresholds for cir-

cular movements follow the same laws as the rectilinear

movements. For our case, though the motion is not uniform,

(i.e., the motion is random), it may be expected that the

thresholds for random processes also follow the same laws.

The thresholds shown as a ratio to the nominal frequency

are of the order of 0.10 for a change in frequency and

agrees with the 0.10 threshold given by Brown (1960), and

others in the psychophysics of motion (Spigel,-1965) (see

Table 3.5).

For a change in variance, the thresholds are higher

for the lower nominal frequencies, and the above explanation

could again be used. The thresholds for increase and decrease

for any one nominal are not significantly different from one

another, though, as will be seen later in the detection time

results, increases in variance from the nominal are easier
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FIGURE 3.5 THRESHOLDS (Percentage of Nominal)

(1) Change in period

Th (log) R W W-W 0
%Nm

12 -0.078 (0.051, 9)
0.064 (0.048, 9)

17 -0.076 (0.046, 9)
0.087 (0.060, 9)

32 -0.138 (0.090,12)
0.124 (0.069,12)

37 -0.085 (0.060,12)
0.108 (0.053,12)

(2. Change in variance

Nm Th (log)

0.924 6.800 0.517
1.066 5.896 -0.387

8.2
6.2

0.927 6.778 0.495 7.9
1.090 5.764 -0.519 8.3

0.871 2.405 0.310
1.131 1.852 -0.243

0.917 2.284 0.186
1.114 1.881 -0.214

R

12 -0.166 (0.87,10)
0.177 (0.097,10)

17 -0.193 (0.081, 8)
0.152 (0.101, 8)

32 -0.279 (0.090, 8)
0.345 (0.168, 8)

37 -0.210 (0.078, 9)
0.191 (0.085, 9)

14.8
11.6

8.9
10.2

%Nm

0.847 15.3
1.190 19.4

0.825 17.5
1.162 16.2

0.757 24.3
1.410 41.0

0.811 18.9
1.211 21.1

Nm -

Th(log)-
R -

W -

W-W 
-

%Nm -

Standard

Nominal: (period and damping ratio)
Threshold in log units (ln(P/P )
Ratio of the parameter to nomiRal
Frequency (rad/sec)
Difference from nominal
Percent threshold (period or variance)
deviation and number of subjects are shown

in parentheses.

Nm
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consistently to detect than decreases. The fact that this

does not affect the threshold is a proof that the form of

the staircase method used here has eliminated any extraneous

effects, i.e., though it takes a longer time to detect de-

creases compared to increases, the thresholds do not seem

to differ significantly from each other. Similar conclusions

can be drawn about detecting a change in frequency.

Finally, a comment is necessary in interpreting these

thresholds. Since the experiments were conducted when the

subject always anticipated a failure, his performance prob-

ably contrasts with what would be observed in a situation

where failures are not normally expected. Thus, these re-

sults are likely to be a lower bound for the detection

thresholds, higher values to be anticipated in situations

where "failure-set" is not so strong. Nevertheless, the

threshold values found in our work give a good order of

magnitude for actual cases. Also, since increases and de-

creases are interleaved, these values may not depart too

far from the values to be expected in real life situations.



64

CHAPTER IV

EXPERIMENTAL RESULTS: TIMES FOR DETECTION

Experiments conducted for threshold estimation and for

detection time behavio; were described in detail in Chapter

II. In Chapter III, results from the threshold experiments

were discussed. Though a knowledge of thresholds is essen-

tial for an understanding of the inherent limitations of

the human in failure detection tasks, it is not sufficient

for a complete understanding of the failure detection pro-

cess. Hence, experiments were conducted to examine the

detection times for various stimulus levels. This data will

be later used in Chapter V for arriving at descriptive models.

In this chapter, the results will be discussed and comparisons

will be made between changes in frequency and variance.

Since the subjects who took part in these experiments

went through the previous series of experiments for threshold

determination, they had extensive experience with detection

of parameter changes in a random process.. This experiment

was conducted over a period of several weeks and it is
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reasonable to assume that the subjects were "well-trained

observers". For each nominal, the detection times are

plotted as a function of stimulus level, for the population

(see Figures 4.1.1, 4.1.2, 4.2.1, and 4.2.2). The data for

individual subjects is given in Appendix E. The abscissa

was chosen as the logarithm of the difference in standard

deviation of the stimulus velocity from the nominal value.

This was done because the preliminary experiments suggested

that the detection times would be symmetric about the ordi-

nate if plotted against rms velocity. Hence, it was felt

that the subject might be more sensitive to velocity and he

could be using this as a principal cue. Also, in the case

of a change in frequency, rms value of velocity is directly

proportional to the change in natural frequency, and in

the case of a change in the variance, it is proportional

to the standard deviation of stimulus displacement. The

detection times are plotted in logarithmic units.

4.1 Symmetry in Detection Times for Frequency

From the plots (Figures 4.1.1 and 4.1.2), the following

observations can be made. Detection times for frequency and

variance appear nearly symmetric about the Y-axis. However,
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the detection of a change in'variance takes a longer time

compared to the detection of a change in frequency for the

same level of change in rms velocity. The assumption that

the subject might be using the rms velocity as a cue to

detect changes in frequency seems to be reasonable. As ob-

served by Smith and Sherlock (1957) and Gibson (1958), the

observer may be sensitive to the frequency with which the

object (line) crosses the reference lines. Though Smith

and Sherlock- consider motions which are not random (as in

our case) it is nevertheless a similar situation. Thus if

the subject is using the frequency of level crossings as

the cue, the difference in the results obtained for variance

and frequency should be expected. The straight line which

the subject is observing moves inside a grid, and the grid

lines aid in forming an estimate of the frequency with which

it crosses the reference lines. If the variance of the

displayed process changes, the average rate of level crossings

does not change (Blake and Lindesay, 1973); hence the subject

cannot use this as a cue. Therefore he may have to estimate

the variance, rather than the frequency of level crossings.

This may result in longer times for detection.

For a change in variance, it is almost always easier to

detect an increase over a decrease. Since the subject knows

the normal limits for motion, he could be behaving as a peak
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detector or a detector of exceedence limits (Curry and

Govindaraj, 1976). When the variance decreases from nominal,

the line tends to stay nearer to the origin. The subject

takes more time to recognize such a change, since that is

where the line remains for most of the time under normal

circumstances. Thus the failed mode appears almost normal,

and the failure is suspected only after some- time of obser-

ving that the line never exceeds the limits it used to

reach under normal circumstances.

4.2 Differences Among Subjects

Finally, a comment is necessary for a more detailed

interpretation of the results of the three subjects, and the

times at which the experiments were performed. For subjects

MR and WM, participation in the experiment was their first

activity during their workday, with a few exceptions for WM.

They were prompt in arriving, and appeared fresh and alert,

and remained so throughout the experiments. There were no

no-shows, cancellations or postponements for any run. For

SH, the schedule was different from day to day. There were
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a few days when the experiments were cancelled or postponed,

and the subject was not always prompt in reporting at the

scheduled times. While running the experiments, it was

obvious that MR and WM had set consistent criteria and main-

tained them throughout. With very few exceptions, the prob-

abilities of a miss or a false alarm increases in the order

WM, MR, SH, and the probabilities of correct detections de-

crease in the same order. (The probabilities are shown in

the tables of Appendix E. ) This is also consistent with

the relatively higher detection times observed for subject

WM (Appendix E). It should also be noted that a change

in variance was more difficult, and comparatively more tiring

for the subject. The subject WM always aimed at 100% correct

detections, and though everybody was told to "detect as

quickly as possible without making too many mistakes", he

seemed to feel highly uncomfortable about any mistakes he

made. It may be worth recalling a remark by Green and Swets

(1966, p. 336), "At worst, a miss indicates a minor sensory

deficit; a false alarm, for the naive observer is a false-

hood". It was apparent that WM wanted to avoid both misses

and false alarms, and hence one sees an increase in his

detection times.
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There is one other observation that is worth noting.

The nominal of T = 3.0 seconds, , = 0.2, appears to be

different from the other nominals, in that more false alarms

and misses are noted for all subjects, along with higher

detection times, when compared to the nominal with a higher

damping ratio. Also, it may be recalled from discussions

in Chapter III (Sections 3.4, 3.5), that this nominal resulted

in higher thresholds for changes in frequency and variance.

This is possibly due to the higher frequencies that are

passed through an underdamped system. The ratio of upper

cut-off frequencies for damping ratios of 0.2 and 0.707 is

about 2. Also, the amplitude ratio at any frequency is

higher for the underdamped case, reaching as high as 10 db

at some frequencies (see Figure 4.3). Though these ratios

do not depend on the nominal frequency, the effect may be

more noticeable at lower nominal frequencies, and the abso-

lute values of frequencies could have been more important

in a lower frequency case in confounding the subject. It

was perhaps not obvious as to whether the effect observed

was due to a frequency change or some spurious phenomenon.

Though the subjects may not have been aware that the dif-

ference occurred due to a very low damping ratio, it was

obvious that they had difficulty in detection. So, in order
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to make correct detections, they seem to wait a longer

time to be certain that the frequency has changed. They

either make too many mistakes or take too long a time.

In fact, most of the time both these effects appear.

Similar behavior is not observed for the case of a higher

nominal frequency (T = 1.0 second).

r
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CHAPTER V

MODELS FOR FAILURE DETECTION

In the previous chapters, the experiments for threshold

-estimation and detection behavior were described. The results

obtained from the experiments were analysed. In this chapter,

-models will be developed which incorporate the data.

5.0 General Discussion

Since the process being monitored is stochastic, the

observer cannot know the state of the system with certainty.

But, for detection of any failures that might have occurred,

the parameters that are significant must be estimated. These

estimates should be properly utilized to arrive at conclusions

as to whether a failure has or has not occurred. Hence, our

model is assumed to consist of two stages: (1) an estimator

for system states and (2) a decision mechanism which utilizes

these estimates. Since the process is being observed contin-
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uously, estimates of system states must be made continuously.

For estimation, a linear estimator is used. The decision

process uses data, arriving continuously from the estimator,

i.e., sequential analysis is performed on the estimates.

Hence, the approach is similar to that of Curry and Gai

(1976) and Gai (1975), who used two stage models to explain

the observed detection time behavior in a monitoring task

involving changes in the mean of a random process. Brief

descriptions are given for linear estimation theory and

sequential analysis.

The two parameter changes, i.e., variance and frequency

from their nominal values, are considered separately for

modelling purposes. Modifications of sequential analysis

for use in the decision strategy are given. Finally, the

results obtained from the experiments are compared with

results from simulations of the proposed models.

5.1 Linear Estimation

When the process being observed contains noise, an

exact determination of the states involved is not possible,

and estimates must be obtained. If the associated statistics
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are known for any process, the problem can be viewed as a

Bayesian estimation problem, and when the operations des-

cribing the dynamics of the process are linear, it becomes

a linear Bayesian problem. Depending on the structure of

the problem, various approaches can be used to obtain a

solution. Since the dynamics of the process are assumed

to be completely known, and since the input is assumed to

be white noise, an appropriate choice of estimator would

be the Kalman filter. It is the best possible linear esti-

mator for such a system, because it results in a minimum

error in its estimates. A brief description of the Kalman

filter will be given.

Since the process used in this experiment was generated

by a digital computer, and since all the computations were

performed digitally, only a discrete time formulation is

discussed. A brief discussion of the Kalman filter will be

given here. A more detailed description can be found in

Jazwinski (1970).

The discrete linear system is described by

Xk+l (tk+l, tk )xk + r(tk )Wk+1

(5.1)
k = .0,1,...

where xk is the n-vector of the state at tk, 4 is an n x n

non-singular state transition matrix, r is n x r, and
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{w kk=1,...} is an r-vector of white Gaussian sequence,

where W k is normally distributed with zero mean and covar-

iance Qk* The discrete linear observation is given by

yk = m(tk) Xk +Vk (5.2)

The statistics of vk and wk are assumed known, and they are

assumed to be independent.

For this system, the optimal (minimum variance) filter

consists of difference equations for the conditional mean,

and the covariance matrix. Between observations,

^k ^kx -k+l = P(tk+' gtk Ok (5.3)

Pk+1= D(tk+'tk)Pk (tk+'tk) + r(tk )Q+r (tk)(5.4)

At observations

XkX+ K (tk) t k -M(tk ^k-1 55

k k-- 1k-i
Pk k -YK(tk)M(tk) k (5.)

where

K(tk _k-MT(tk {M(t)Pk-lMT ( + R} - (5.7)
k, k tk {~k)Pk (k) k
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is the Kalman gain. Prediction for t > tk, (X , P k is
k k'rk k.

accomplished via equations with initial condition (xk, P )k

k
Since P is a covariance matrix, Pk > 0 if P 0 > 0.

The system under consideration, i.e. the shaping filter,

is time invariant, and hence D ,J and M are constant. However,

when a failure occurs, these system matrices change, and it

is this change that results in a discrepancy between observed

and expected values, leading to a detection of the change.

The predicted residual or the measurement error is

given by

r(k+llk) = yk+l - Eyk+l k k yl'2 ' . k

I ^k
yk+l = M(k+1)xk+l (5.8)

When the system matrices and the Kalman filter matrices are

the same, it can be shown that

E[r(k+lk)J = 0

and (5.9)

E[r(k+lIk)r(k+l Ik)T] = M(k+1)P(k+ljk)M (k+l) + R(k+l)

The residual is also called the innovation process, since it

is orthogonal to all previous information, i.e., each new

sample of the innovation process brings new information, and
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the residual cannot be predicted from the knowledge of in-

formation up to the current point (Schweppe, 1973; Kailath,

1970).

The filter is not optimal if the parameters governing

the dynamics of the filter are different from those of the

system. The residuals -do not remain white for such a situ-

ation. An expression for the correlation of the residuals

for such a case, for a continuous system is given by Curry

and Gai (1976). For discrete systems, a similar formulation

can be found in Martin and Stubberud (1976).

In the failure detection situations considered in the

current work, the mean of the observed process remains

zero. The variance changes. However, for the case of a

failure in frequency, the mean speed of the observed process

(I velocity I), changes, and this is used for detecting the

failures.

5.2 Sequential Analysis

Under the normal hypothesis testing approach, the

number of observations or the sample size is fixed. But
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there are cases where it may be desirable and advantageous

to allow the sample size to be a random variable, to be

determined by the outcome of the observations. This is the

case suited for problems like failure detection, where suf-

ficient information is accumulated over a sequence of obser-

vations, so that a decision can be made as to which hypothesis

is true. A decision rule is determined in advance so that

depending on the observations, one of the following paths

is taken (1) the hypothesis H0 is accepted, (2) the hypo-

thesis H is rejected (alternately, hypothesis H is accepted),

or (3) a decision is deferred until an additional observation

is made. This procedure is carried out sequentially until

a definite decision to accept or reject the hypothesis H0

is made. An optimal strategy for sequential analysis has

been spelled out in detail by Wald (1947). Use of this

method for signal detection has been suggested by Birdsall

et al (1965), Phatak and Kleinman (1972), and Sheridan and

Ferrel (1974). For our purposes, methods given by Wald will

be used with some slight modifications. Since details can

be found in Wald, only a brief summary relevant to our work

will be given.

The sequential decision problem is to test between two

hypotheses H0 and H 1  It will be assumed that (1) the hypo-

theses are simple hypotheses, meaning that the probability
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distributions are known under both hypotheses, and (2)

that the observations are independent. Under these

assumptions, the problem can be formulated as

the distribution is f(X,e0) when H0 is true

and the distribution is f(X,6 1 ) when H is true,

where 6, the distribution parameter, assumes 60 or 01

depending on which hypothesis is ture.

Let x1 , i = 1, ... , m, be the realization of the

random variable x, for m observations. Then the likeli-

hood of either hypothesis is given by

P0m = if(x.60 ) (5.10)

and

Plm ='x ) (5.11)

respectively. In the sequential probability ratio test, the

probability ratio

PR = (p /lm0m) (5.12)

is found at every stage for the past m observations. Two

limits, A and B, are set in advance. At any stage, either

of the hypotheses is accepted or a decision is deferred

until more information is accumulated. The decision as to

which alternative to choose is taken as follows:
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(1) If B < PR < A, the experiment is continued by

taking an additional observation,

(2) If PR > A, the experiment is terminated with the

acceptance of H 1 , and

(3) If PR < B, the experiment is terminated with the

acceptance of H0.

Now the problem is in the proper choice of A and B. It

would be desirable to relate these to the following para-

meters:

PFA - the probability of rejecting H0 when it

is true

PMISS - the probability of accepting H when H
mis0 1

is true.

These values are predetermined before sampling is done. The

exact functional relationships A = gl(PMISS' PFA) and

B = 92(PMISS' PFA) are not available. Wald has suggested

very good approximations for these functions. They are

A = (1-Pmiss FA and B = PMISS '( 1 FA). The use of the

above strategy with the above values for A and B is known

as the sequential probability ratio test (SPRT). Some of

the advantages of this procedure are: (1) there is no need

to calculate any statistic such as t or F, (2) the size of

two types of error can be determined apriori, (3) the ex-

pected number of samples needed can be calculated, and (4)
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the expected number of samples needed is less than that for

a test with fixed number of observations. For a failure

detection task, since the occurence of the failure is itself

random, the number of observations cannot be predetermined,

and hence the sequential test would appear to be well-suited

for the task.

For our purposes, we need to consider two specific

forms of the test. Because a change occurs in variance,

during one part of the experiment, it is reasonable to

expect that the variance of the observed process will be

different from the nominal, while the mean will remain at

zero independent of variance change (since the input is

zero mean). Thus, a test on the means is of no use, and

a test for variance is needed. For a change in frequency

(under failed conditions), it was found that a test for the

mean of certain variables could also be used to detect the

failure that occurred. Hence the problem of testing for

means (with the same variance) will also be discussed.

Since we have a linear system driven by a Gaussian white

noise source, the density functions under the two hypotheses

are given by

Under H 0

f(xi ,0) = (1//27 o0 )exp[-(1/2a )(x -0.)2 ] (5.13)
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Under H :

f(x ,f ) = (1//Zi a )exp[-(1/2a ) (x -6)2] (5.14)

Now the two cases will be considered.

Case A. Variance is constant and known, a0  a = a

and the means are different.

(i) 1> 60

The probability density of the sample (x, ..., xm) is

given by

m/2 m 2]

Pom = (l/ (2r) a ) exp [- (1/2Cy 2 ) E (x i-e0 )2
i=l

(5.15)

if 6 = e0, and by

m/2m M
Plm = (1/ (27T) a/ ) exp [- (1/2a 2) _ (X 1)

i=l
(5.16)

if 0 = 0 . The probability ratio (p im) is calculated at

each stage of the inspection.

Plm

S0m

exp[- (1/2a 2) i (X 1) 2

exp [-(1/2a 2)EX_ )2

(5.17)

Additional observations are taken as long as

B < (plm'pOm) < A (5.18a)
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The hypothesis 110 is accepted and observations are terminated

if

(5.18b)(Pim/m)< B

The hypothesis H is rejected and observations are terminated
0

if

(5. 18c)(plmlom) > A

A and B are given by

A = (1 - PmissUp)FA

B = P /(1-Pmiss FA~
(5.19)

After taking logarithms and simplifying, the following in-

equalities are obtained:

Continue with additional observations if

(5. 20a)

Accept H0 if

(5. 20b)

Reject H if

[(o 1 -o 06)/a iE xi+(m/20 2 ) ( e-e) lnA

lnB < [ (e - a0 i] X+ (m/2 (2) (02-02) < lnA

[e (6-60 iEx+(m/2 C2) (e2-62) < lnB

(5. 20c)
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These can be further simplified to obtain the following:

Continue if

(W 2/( 1 -0)lnB < (Ex -(rn/2) (00+6 )) < (0 2/(o - 0 )lnA

(5.21a)

Accept H f

(Fx.-(m/2) (e0+61)) ( 2/(6 -e )lnB (5.21b)

Reject H0 if

(Ex -(m/2) (8 +e ) > (-G2/ (a )lnA (5.21c)

(ii) 01 <

Since the inequalities in equation 5.20 hold for

6 > e0 as well as for 0 < 60 (they are obtained just by

taking the probability ratios, without imposing any conditions),

a convenient form can be obtained by multiplying by -1. The

inequalities are reversed when multiplied by -1.

Continue observations if

-lnB > ((6-e i)-(m/202) (02-02) > -JnA (5.22a)

Accept H 0i

(5. 22b)((o - 0 )*a' (Z(-x.)-(m/2 j2 ) (E) -2 ))e > -lnB
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Reject H0 if

( -60 i)E-x (m/2c2) (.02-02) < -lnA (5. 22c)

These can be simplified to obtain the following:

Continue observations if:

(02/ (00-1 ))lnB > (Ex - (m/2)e (0+e )) > -(2/(e -1 ))lnA

(5.23a)

Accept H0 if

(5.23b)(Ex -(m/2) (e +e ) > -(a2/(e -0 )lnB

Reject H0 if

< -(Oa 2/(0 0 -e))lnA(A dx -(m/2) ( 0+ ))

A modification is necessary in the above since the mean value

under the failed mode is unknown. Wald suggested that an

artificial parameter 01 could be chosen based on the physical

properties. This will be done in our analysis.

Case B. Mean is known (0 = 01 = 0), and variances are

different, a1 a 00 (a0 is known, a1 is unknown, but just as

in the Case A, a can be assumed for tests.

(5.23c)



90

(i) 1 > a0

The probability densities of the sample

are given by

0m (1/((21)om/2a

m/2 )
PLrn (l/ ((270 a) o)

m
(x -O)

2]
i=1

m
exp[- (1/2 ) E(X e') 2]

(5.24)

(5.25)

if = 0i.

The probability ratio plmOm is calculated at each

stage of the inspection

Plm _ (5.26)

pr (1/c )exp[ 1 6)21

Observations continue with additional measurements if

Choose H if

Choose H 1 if

(Pl Om)

(x 1, .

if a= OO' and

xm

B < (plm 0m) < A (5.27a)

< B (5.27b)

(1/0 exp [-(1/2 2.).E (X -6) 2 1

)exp [- (1/2F )2

(5.27c)
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Taking logarithms, dividing by 1/22 - 1/2 U, and simplifying,

we obtain the following:

Continue observations if

2

21nB + mln(z-)

0 01

(x e.) 2

2

21nA + mln(W)
0

1 1

0 1

Accept H 0 if

E (x -e )

o21
2lnB + mln(7y)

0

2
0 cr201

Reject H if

.Y2
1

2lnA + mln(- -)G
z(x.-e) 2 0

1 - 1 1

- 2 cr2
00 01

(5.28c)

These can be further simplified to obtain the following:

Continue observations if
2

mln ( 2 )

2lnB < (x.-e 2 0- 2lnA (5.29a)

.1.*
2
0 CF201

a. ±

0
cr201

.. .1.

2
0

201

(5. 28a)

(5. 28b)



Accept H0 if

1 (x . -e) 2 -

Reject H0 if

x 2

(ii) When a failure is defined by a reduction in

variance (i.e., 0 < ao) , the inequalities are obtained by

multiplying by -1 and reversing the inequalities.

Continue with additional observations if

(-B) > -(plm/pOm) > (-A) (5. 30a)

Choose H 0 if

(5. 30b)- (plm/OM) > (-B)

Reject H0 if

(5.30c)-(.plm"0m) < (-A)
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'2
mln(-)

02
0

1 1

-2 ' 2

0 0

2

mln(-)

0

1 _ 1

Z2 02
0 *1

21nB

1 _ -1

Z2 a2
0 1

21mA

-2 Cr2

0 1

(5. 29b)

(5. 29c)
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Taking logarithms, we get the following:

Continue observations if

-lnB > 12

Accept H0

(1 -1),
2 2
1 )

Z(x.- )2 - mln(0)
2
01

if

1

Reject H0 if

( 1 _ ) E (X.

1 1 1)
2 2
1 0

a2
- mln (--2 )

2a..1
< -lnA (5. 31c)

These inequalities can be rewritten as follows:

Continue observations.if

21nB + mln (-- )
2
0

1 1
2 Z2
.1 .0

-

CT2

2lnA + mln(-)
2

0

I ~1
2 2
1 0

> -lnA (5.31a)

2

2
> -lnB (5. 31b)

(5. 32a)
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Accept H if
0

1 0) 2 >

Reject H if
0

o2
21nB + mln(-)

2

0

2 2
a1 a0

2

2lnA + mln(-)
02

E(x. 6 2 _ 0

2

The slope can be subtracted to obtain the following

Continue observations if

2lnB
> E (x -. ) 2

2 2
a1 ,0

2

mln (-)
C0 2lnA1 > _-_

1 1

02 cr2
a1 0

1 1
2

a1
CY2

Accept H 0 if

a2

nln (---)
.0 2 2lnB

E (x1- ) 2 >

I I

Xy2 02 a2 02
.1 0 1 0

(5. 32b)

(5. 32c)

(5. 33a)

I - I

(5. 33b)
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Reject H if

2
mln (- n

Z 2 21nA
:(x ) < (5.33c)

2 2 2 2
01 0 1 0

The decision regions for both cases are shown in Figures

5.1 and 5.2.

Modification to account for change of mode

The basic sequential test does not anticipate any

change in modes during the observation process, while a

change is to be expected in a failure detection process

(see also Gai, 1975). Consequently, a method suggested by

Chien (1972) and also used by Gai is used. Chien suggested

that if a failure detection process involves checking for

the normal operation, i.e., checking if the process con-

tinues to function normally, more observations are needed

to detect a failure, because the decision function might

have strayed too far into the region indicating normal

operation. He suggested a suboptimal strategy where the

decision function is reset to its initial value whenever

normal mode of operation is likely. When this is done,
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the number of observations required to drive the decision

function into the failure region is less than the case with

no reset. This resetting helps to reduce the time between

the onset of a failure and its subsequent detection.

In both cases described above, the normal mode is given

by the zero-mean horizontal line; thus the decision function

should be reset whenever it crosses the zero line (Figure 5.3).

Now only one criterion level is needed, since the normal

mode is not reported. However, the same level as before

cannot be used, if the same false alarm probability is to be

maintained. This is because, for the same level, more false

alarms would occur due to the resets. The criterion level

should thus be raised to Al, where Al is given by the

following:

Al - lnAl - 1 = -[lnA + ((A-1)/(l-B))lnB] (5.34)

(Chien, 1972)

In the following sections, models for the decision stra-

tegy will be discussed both for failures in frequency and for

failures in variance.
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5.3 Modelling: General Description

The process displayed to the subject consists of up and

down motion of a horizontal line (see Section 2.1). The sub-

ject observed the position of the line continuously. It is

well known that a human is also sensitive to the velocity of

the motion being observed. Initial analysis showed that if

velocity were to form the basis of the detection task, more

accurate predictions could be made of the experimentally

observed detection times. Hence, a scalar observation, con-

sisting of the rate of motion will be considered as the ob-

served variable. The observations are assumed corrupted by

an additive noise, v(t), which can be modelled as a zero mean

Gaussian process. The input to the failure detection system

then consists of the observation plus Gaussian white noise.

The failure detector is modelled here as an estimator cas-

caded with a decision mechanism.

For the estimation process, a Kalman filter was assumed

for both changes in frequency and variance. The output of

this estimator was used in the decision mechanism for detec-

tion of failures. Since the process being observed was a

second order system operating on white noise, a second order
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Kalman filter with the same parameters as the nominal system

parameters was used. Since the observed system as well as

the estimator are linear, and the input is Gaussian and zero

mean, the states (or a linear combination of the states) from

either one can be used for the decision process. The obser-

vation estimate of the model is used in the decision mechanism,

since the states are non-unique, and the dimension of the

state vector is larger than that of the observation, which

is a scalar. It is also assumed that the measurement resi-

dual, i.e., the difference between estimated and observed

values, rather than the observation estimate itself, is used

for the decision mechanism. This can be justified because

(1) the residual is more sensitive to the effect of failure

than the observation estimate, and (2) for the nominal pro-

cess, the residual is a white Gaussian process (Schweppe,

1973; Kailath, 1970).

There are now two separate problems: (1) the detection

of failures in frequency, and (2) the detection of failures

in variance. As noted earlier, the mean of the residual

remains zero for both changes, since the system (the shaping

filter), and the Kalman filter are both linear, and the input

is a zero mean white Gaussian process. However, the variance

of the residual changes for a failed process. This charac-

teristic of the residual thus motivated a modelling approach
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using residual variance changes as a failure indicator.

This approach satisfactorily explained the results ob-

served experimentally in response to a change in display

process variance and a change in frequency.

5.4 Notes on the Implementation of the Models

For all of the models, the states were updated at

5/60ths of a second. Since the same program was used,

the stimulus presentation was the same as in the experi-

ment. Observation noise with variance equal to 0.01

that of the observed variables was added prior to any

processing. For any stimulus value, there were 15 runs

for the model. The summations needed for the decision

function were done with a first order filter with a long

time constant, starting 5 seconds after the start of the

process (1/(Ts + 1), T = 1000). Thus it is effectively

a direct summation. In all cases, PFA = P MISS = 0.05

was used for setting the bounds.
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Model for a Change in Variance

For the normal process, the variance of the residual

is given by equation (5.9), and hence is known in advance.

For a failed process, the variance is unknown. Assuming

that 01 > 0 for t > tf where tf is the time of failure,

the decision function is calculated as explained earlier.

~m

= im

ln (--)
r2

(x.-e)12 0

2 2
a0 a1

(5.35)

Introducting the resetting feedback

X = X if X > 0

(5.36)

X = 0 if X < 0

5.5
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where

2

In

a2

S  1 + { (xM6.) 2 _ 0 } (5.36)
1 _1

Cr2 Cr2

0 a1

When the magnitude and sign of variance change is un-

known for a failed process, an additional set of hypotheses

must also be tested for C2 > 2 . The subject was not told1 0

if the failure was going to be an increase or a decrease.

This was necessary to avoid guessing by the subject. An

additional strategy could be given as follows:

ln(--)
n .2

-' = {(x.-) 2  
- 1 (5.37)

i=l1_1

a2 a2

1 0

with resetting

= X if x < 0M m m

=0 if X > 0
M (5.38)

and
2

ln(- )
2

= + 7{(x e-)2 - 1 (5.38)M-1 1

-2 _U2
1 0
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Block diagrams of the complete model and the linear esti-

mator are given in Figures 5.4 through 5.7.

The parameters a and a are assumed to be 0.05, and the

parameter a 1 was found such that the model detection times

agreed as closely as possible with the experimental values.

The results are plotted in Figures 5.8 and 5.9. It can be

seen that the model values predict the experimental results

very well. Detection times as a function of change in rms

velocity show discontinuities where the nominal period changes

from T = 1 eec to T = 3 sec. However, the model appears to

have the same discontinuity as the experimental data obtained

from the subjects.

5.6 Modelling a Change in Frequency

Two approaches were used to model detection of changes

in frequency. In the first approach, the model used to

detect changes in variance was used. Hence, only the results

will be presented for that model. In another approach, the

magitude of velocity is used as the basic variable for de-

tecting a failure.-

5.6.1 Results of the Model Using Residual Variance

The results are displayed along with the experimental
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results in Figures 5.10 and 5.11. One value of e for in-

creases and another value for decreases was chosen for all

the nominals. The agreement with -the experimental results

is very good. As in the case of a change in variance, slight

discontinuities are observed in detection times when the nom-

inal changes from T=l to T=3. Again, the model as well as

the subject appear to have the same discontinuity.

5.6.2 Velocity Magnitude Estimator

In this approach, the velocity of the line is used to

test for the means in the following manner. Since the velo-

city itself is a zero mean process, the magnitude of velocity,

i.e. without regard to the direction in which it is moving,

is taken as the basis for the model. In the initial learning

phase, the Kalman filter is used to obtain an estimate of vel-

ocity magnitude. The estimator is a two stage process. After

an estimate is made for the velocity magnitude, the Kalman

filter stage is "shut off", and the second stage is used as a

comparator. This compares the observed speed (velocity magni-

tude) with the estimated mean value and generates the error

residuals. Under normal conditions with no failure, this is

a zero mean process. But when a failure does occur, the speed

changes (increases or decreases with a similar change in

frequency), and this is reflected in the mean of the
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residuals. A sequential probability ratio test could then

be used to test for the mean.

When a failure occurs

m(t) > 0 t > t f (5.39)

where m(t) is the mean at time t.

calculated with resetting feedback

= A if A < 0

= 0 if A > 0im

The decision function is

(5.40)where

Am = Am-1 + (xM - (6 0 + 1)/2)

Simultaneously, another set of hypotheses is tested for a

failure with a reduction in frequency from the nominal.

for 81 < e

if A' < 0m m in

0 if A' > 0
n (5.41)

and

A'X = ' + (x + (0 + 01)/2)S i-l 0l/)
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For a given a and 8, Al can be determined as before,

and the parameter 01 can be determined. This model was

tried for all the subjects, for all the nominals. The

results obtained with this model are shown in Figures 5.12

and 5.13. For most cases, the correspondence appears to be

very good.

5.5.3 Uncertainty About the Variance and Its Consequences

For the model appropriate to detecting a change in

frequency, the variance was assumed constant and known (5.6.2).

This variance (for speed) was calculated during the first

stage of operation, i.e., the learning phase. But in the

actual situation, when the frequency changes both the mean

and the variance change. Though the variance changes, for

large magnitudes of failure, there is no problem in detec-

tion, either for an increase or a decrease. The difficulty

in detection occurs only for smaller magnitudes of change.

For these the variance can be assumed not to depart too

much from the nominal value.
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5.6.4 Previous Evidence for the Applicability of this

Model

While the model was being tried, some evidence was

found in the literature which was consistent with our

approach. Gibson (1958), on a study of the perception

of motion, observed that in a two window situation in which

different objects were moving in two different visual sur-

rounds, the observer could easily compare speed independent

of velocity. That is, he could match the speeds even when

the directions were opposite, or at right angles, to one

another. He also conjectured that in such a situation,

the observer may be responding to frequency of level cross-

ings rather than to velocity.

The fact that certain nominals do not give satisfac-

tory results could be due to the effect of a need to sepa-

rate various effects as discussed earlier. A simple hypo-

thesis may not be satisfactory. A composite hypothesis or

composite strategy might give better results. One such pos-

sibility is to have two stages of testing. It was observed

that larger magnitudes (of either sign) could easily be de-

tected. In a situation where a failure is expected, tests

could be made for larger magnitude failures, and for increases
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in frequency (since they are easier to detect) . If the test

indicates no such failure, and if sufficient time has elapsed,

tests could be made for decreases with a different strategy.

Since this does not appear to have general applicability,

and since no reasonable alternative strategy could be found,

this procedure has not been tried.

5.7 Comparison Between the Models

An important motivation for trying to determine models

other than the one used for variance changes was the obser-

vation that the higher stimulus values predicted very low

detection times. (Low detection times from the model seem

reasonable if the human's reaction time is taken into account.

This may be taken to be in the range of 0.2 to 0.3 seconds.

(Sheridan and Ferrel, 1974).) Also, it was interesting to

test if the velocity could be used without regard to its

sign. For the cases under consideration, both the models

appear to perform well. A third approach was also tried.

This is based on the idea that the subject might be esti-

mating the average number of zero-crossings or level cross-

ings to obtain an estimate of frequency. This model performed
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well for failurs with an increase in frequency, but decreases

had a very high false alarm rate. A different decision cri-

terion that accounts for the subject's prior information

that the failure occurs at least 8 seconds after starting

might give fewer false alarms. A more detailed investigation

is necessary to test the validity of this "zero-crossing

detector" model.

Satisfactory parameter values for e could not be

obtained that result in proper detection times for 1 Hz

and a damping ratio of 0.707. Various values were tried.

'They either resulted in a high false alarm rate (>90%) or

went undetected. Judging from the overall performance, the

model where the residuals are tested for variance appears

very good. Aslo this model satisfactorily explains the

detection of failures in variance as well.
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CHAPTER VI

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

Certain aspects of failure detection by human observers

were investigated in detail in this thesis. The process be-

ing monitored consisted of a random process of filtered white

noise. To obtain an understanding of the detection processes

involved, it was thought necessary to know the various thres-

holds for changes in parameters that describe the dynamics

of the system. Experiments were conducted to determine the

thresholds for four nominals of a second order shaping filter

for changes in frequency and for changes in the variance of

the output. For the nominals, frequencies were chosen cor-

responding to periods of one and three seconds, and damping

ratios of 0.2 and 0.707 were used.

Further experiments were performed to determine the

detection times for failures as a function of failure magni-

tude. The results from this study have been used to form

models for the detection process. A summary of the work

reported in this thesis is given below.
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6.1 Summary

Thresholds obtained for the frequency and variance are

consistent with what is to be expected. For changes in

frequency, thresholds were higher for a lower nominal fre-

quency. For an increase in variance, thresholds were higher

for a lower nominal frequency and for a lower damping ratio.

When comparing the thresholds obtained for the frequency with

those for variance, the thresholds were found to be signi-

ficantly higher for variance than for frequency. For changes

in frequency the thresholds were of the order of 10% of the

nominal (usually less), consistent with the psychophysical

data of Gibson (1958), Brown (1960) and others. Though

their data pertain to changes in constant velocity (and not

for random processes), a similar trend seems to be present

in our case.

Another series of experiments was conducted to study

the detection time behavior of the subjects for various

failures. Only two sets of stimuli were presented, one for.

increases in parameter value and the other for decreases in

parameter values from the nominal. They were also told that

the objective was to see how quickly they could detect fail-

ures without making too many mistakes. The stimuli were
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chosen with decreasing order of difficulty (increasing mag-

nitudes), the first being slightly above threshold. As

could have been expected, the detection times were found

to be higher for smaller magnitudes of failure (and with

a large variability) than for larger failure magnitudes.

It was also noted that increases in variance could be de-

tected more easily than the corresponding decreases, in

terms of detection times for the same level of failure.

For changes in frequency, the detection time curves are

found to be nearly symmetric about the Y-axis, when plotted

against the logarithm of the rms velocity difference from

the nominal, though increases are slightly easier to detect

than decreases.

In tasks where the variance changes from its nominal

value, it appears that the human may be behaving as a peak

detector, or an exceedance level monitor. Under normal

conditions, he knows how far the line should move, on the

average, and if this is exceeded, an increase is detected.

But, for a decrease, the line stays closer to the origin,

where it is expected to stay most of the time under normal

conditions. So it takes a longer time to realize that it

does not come up as far as it used to . More evidence with

specially designed experiments may be needed to prove this

conclusively.
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Finally, an attempt was made to develop models to

explain the observed effects. A two stage model was used,

consisting of an estimator and a decision mechanism. For a

change in variance, an estimator (consisting of a Kalman

filter) and a decision mechanism operating on the observation

errors (a sequential probability ratio test), were found to

explain the results adequately. Two models were tried for

a change in frequency. One is the same as that for variance,

where the residual is tested for a change in variance. A

simpler model was also tried: the model uses an estimator

(a Kalman filter) 'to estimate the velocity initially, and

uses its magnitude (i.e., speed) to compare with the observed

speed. The error between the observed and expected speeds

was used in a decision mechanism to perform a sequential

probability ratio test. As indicated earlier, the nominal

of T = 3.0 seconds, C = 0.2 was found to give somewhat dif-

ferent results.

The correspondence obtained with these models is pro-

bably the best that could be obtained using the simple stra-

tegies described above with simple hypotheses. A better

correspondence may be possible with some composite hypothesis

testing, with alternate strategies.

In conclusion, it was observed that changes in frequency

are easier to detect than changes in variance, if, of course,
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such comparisons are meaningful. This could be due to the

fact that humans are sensitive to frequency even when they

are not consciously aware of it. Failures at lower nominal

frequency are comparatively harder to detect. Also, as is

intuitively evident, making the field more heterogeneous by

providing a finer grid is better (but not too fine, making

it tiring to watch) , since the frequency could be better

discerned in such a field.

6.2 Recommendations for Further Research

(1) In our work, only changes in frequency and variance

were investigated in detail. However, as discussed earlier,

damping ratio may also be an important parameter for study.

This may be especially important since there was a tendency

among some subjects in the earlier investigation, to inter-

pret increased damping as a decrease and vice versa. This

suggests that detecting such a failure might be harder than

detecting mean, frequency, or variance failures. Only a

detailed investigation can resolve this problem.
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(2) So far, only individual parameter failures were

considered. Though this is essential for a basic under-

standing of the processes involved, a task more relevant to

real life situations would be to study the failure detection

capabilities of the human when two or more combinations of

parameters fail (either together or at different instants

in time). Such a study should explain any interactions that

are important. With proper observation variables, such as

velocity, it may be possible to predict such a failure by

considering a linear combination of various effects

separately.

(3) It would be interesting and worthwhile to study the

effects on detection when auditory and other cues are pre-

sented simultaneously. It is perhaps reasonable to expect

that a combined stimulus will aid in faster detection of

failures.

(4) A more realistic study would include simultaneous

monitoring of various instruments, with similar or dissimilar

behavior for different types of failures. Also when attention

must be shared between various instruments, and also control

system components, the performance would differ from that

where only a single instrument is being monitored. Simulations



126

with actual instruments in tasks like automatic landing

could be studied (Gai and Curry, 1976).

(5) When a failure is not expected during every run,

the monitor may not be alert continuously and modifications

may be needed in the model. Experiments could be performed

when failures do not occur as frequently as in the experi-

ments described in this thesis.
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APPENDIX A

DISCRETE TIME REPRESENTATION FOR A CONTINUOUS TIME SYSTEM

F (s) =
s2+2wn s+W2

notn

Roots:

-2Cw ± /4C 2w2 -4 2

s = 2

= -CW ± i W/1-C2

F(s) = 1 1
(s+a+jb) (s+a-jb)

where a = cw b = w/--c2

= i, 1 1 1
2b s+a+jb s+a-jb

In the Z-transform representation (Saucedo and Schiring,

1968)
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E(z) Z E residues{
k

k 1-e z

E )

1-e z

res{ E(A)

= Sk

A k

B = -a-jb, and -a+jb

Therefore

F(z) = [2 _ - -jbTz - l-e-aTejTZ

Simplifying, we obtain

F (z) = (e -aT/b) { zsinbT

z 2-2ze-aT cosbT+e -2aT

For real roots, jb can be replaced by b.

sin(jbT) = (e-bT_ bT)/2 ; cos (jbT) = ebT (+e- 2 bT )/2

s = -a-b, -a+b
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Substituting these equations into F(z), we get

1 ze -aT -bT_ bT
F(z) = -[ z2-ze-aT (ebT+e-bT )+e-2aT'

The roots are real and the above case holds for , > 1.0.

State Variable Diagram (and Formulation) for the Discrete

Time Problem (Saucedo and Schiring, 1968).

W F(z) x

F(z) = Y(z) - z
U(z) z 2+b Iz+b 0

(alz)W = (z2 + b1 z + b0 z-
2)x

(1 + b1z 1 + b 0 z- 2 )J(z) = E(z)

(alz 1 )J(z) = Y(z)
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a1
vfp) = yie.)

E (z) = (z) J(z) z

-bx

-b 0

x1 (z) = z1 x2(Z)

x2 (z) = z [w(z) - b 1 x2 (z) - b0 x1 (z))

x (n+1) = x2 (n)

x2 (n+1) = w(n) - b 1x 2 (n) - b0x 1(n)

y(n) = a 1 x2 (n)

0  1 0
x (n) + w (n)

-b 0 -b

C = [0 al]

x(n+1)

0 1]

-b 0 -b1

B[]
0

Ca

-2oo
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Relationship between gain, variances and the other parameters

of a discrete (z-transform) second order system.

x y
H(z)

S (z) = H(z)H(z )S (z)
yy xx

S (z) =c

-1

H(z) a 1z {P}

b0 + b1 z + z2

with poles at

[z1 , z2 1

z = (b1/2){-1 ± '1 - (4b0 /b1 }2 )

-1 a1 z-1{P} a z
H(z )= b-bz -z2  bz+ z1

b0 + b1z0 + z- b02 + b z+1

with poles at

[z3 , z4 1

z = {(-b 1/b 0 ) (b1 /b 0 )2 - 4/b0
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4 (0) =a 2 = f S (z) z dz r - unit circle

Poles are real:

z1,
2

b- "'l - 4 b0 / b 1

For IzI < 1,

, - [1 ± 1 - 4b /b I

take the residues to get 02-1 -l

0 (0) = 1 f H(z)H(z )z S (z)dz

= residues in the unit circle

z
a 2 = (p 2ql) (a /b){
y 1 res (z-z1 (z-z2 ) (z-z3 ) (z-z4 )

Poles are imaginary:

z = (-b /2) [1 ± iV (4b0/b ) - 1 1

b) -1/2 = (b- /1z11 2 = -bl/21 [1 + (4b0/bj 1/ (b1/2)v'4b /bj 2=

= e- 2 aT e-aT <
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1z13 ,4 = 1/b 0  aT

So only z, 2 need be considered for residues

02 P 2 a2

(1 1 ) ( ) 0
=l b0

z

(z 1 -z 2 ) (z 1 -z 3 ) (z 1 -z 4 )

z2
+ I

(z2-z1 ) (z2-z3) (z2-z 4 )

P2a

= b
Z3 Z4 - z 1 z 2 I

(z 1 -z 3) (z 1 -z 4 ) (z 2 -z 3) (z 2 -z 4 )

Denominator = (z 2 2 -z 2 z3 -z z +z3 z (z z2 z3 +zz1 134) ( 1 z2 -.z2z4- 1  3 z34)

= {(z z + z 3 z4 ) - (z2z3 + z z )}{(z + z3 z4 ) - (z z3+ z2 z4 )}

Using the relationships

z= a + jb z2 = a - jb z3 = a/b0 + jb/b 0

z = a/b 0 - jb/b 0

we obtain

z1z 3 + z2 z 4 = (2/b 0 ) (a 2 - b 2 )

ziz2 + z 3 z = (1/b + 1)(a 2 + b 2 )

z 2 z 3 = (1/b 0 ) (a 2 + b 2)

z 4 z1 = (1/b 0 ) (a 2 + b 2 )

and
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z2z3 + z 4z= (a2 + b 2 ) (2/b0)

z3 z4- z z2 = (a2 + b2 ) (1/b2 - 1)

where a = -b /2 and b = (b /2) 1 - (4b /b

Substitution of these in the equation for (a2)ql) gives

(21 (a2+b 2 ) ([l/b ] - 1)
(- b

b0 (a2 + b2) (1- [1/b0])2 [a2 (1-1/b0)y 2+b2 (1+1/b0)2

2

b (

1 - 2

(b01 2 [ (a 2/b 2) (b - 1) 2+ (b/b 2) (1-b )

(1-b 2)b0
= (P2a ){ 0b

(b0 -1) 2 [a 2 (b0 -1) 
2+b 2 (1+b 0 ) 2

I

I

(b 0 -1) [a2 (b 0 -1) 2+b
2 (1+b 0)

2 ]
p =}(a2/q)

(1-b7-) b a2
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Relation between gain, frequency, damping ratio and variance

of the input and output

Ul)

p 2

n2 2

)nn

(C2 )
x x

G (S) =(
s2 2 s + s s22- 2Cw sn n

C = Cl = 0

dO =in

c2 d + Cd 2

120 0 2

di = 2C n

n n

d2 1

n

a 2 /q = x = ratio of variance of output to variance

of input

= P2 /4W3
n

Therefore

p = 4wncx

(c

)
+ o2

a2x

al
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Programming details:

Real roots

P = (a/
a (sum of residues)

where residues are calculated at z such that Izi < 1.

Real if (4b0 /b1 ) <1 (since cosh( ) > 1)

C > 1.

For r < 1, the roots are imaginary since

b - imaginary

(4b0/b ) = A/1os 2 1l- 2 T > 1.

So, for our problem, the imaginary case is relevant.
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APPENDIX B

INSTRUCTIONS GIVEN TO THE SUBJECTS

WELCOME

TO

MAN-VEHICLE LABORATORY

You are going to participate in an Experiment in

Failure Detection. You will be observing a random process,

in which a failure will occur at some random time. The

nature of the process and the failure will become clear

after the initial trial runs. A brief explanation is now

given about the details.

This is an experiment to find out the threshold (i.e.,

the smallest change you can reliably detect) when a failure

occurs in a (second order) process driven by random input.

The process consists of up and down motion of a straight

line.

[1] When a failure occurs, either the FREQUENCY or the

VARIANCE (swing away from the mean) will change from the
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nominal value. During any one set of trials, only one

parameter will. change. Initially the NOMINAL -(i.e. NORMAL)

PROCESS will be shown for two minutes.

[2] After the nominal, failed modes with large

increase/decrease will be shown for lesser times.

During these trials you are advised to observe the

motion of the line. You may note how fast or slow it

moves, how far away from the center it goes, etc.

After the first two minute nominal, for every run

the process will start normally, and the failure will

occur between 8 and 12 seconds.

[3] The experiment will start when the procedure is

clear. If it is not clear the trials will be repeated.

[4] For any run, the process will continue for 30

seconds after the occurence of failure. If a decision has

not been made by then, the line will stop and you will have

5 seconds to decide. You will respond by using one of the

two switches.

[5] You will use the UPPER SWITCH to indicate what

you perceive as an INCREASE, and the LOWER one "or a
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DECREASE, from the nominal parameter value. Pressing any

switch at any time will terminate the current run. Hence,

the decision cannot be changed.

[6] NOT DETECTING the failure in the available time,

"detecting" a failure before one occurs (FALSE ALARM), and

making a WRONG choice are the three possible errors one

might make.

[7] The result of your decision will be displayed on

the screen soon after you respond.

[8] Between trials, there is a blanking period of

5 seconds (including the time for showing the result).

[9] The experiment proceeds until the threshold is

determined for one parameter. The entire procedure is

repeated for the other parameter.

PLEASE CLARIFY ANY QUESTIONS YOU MAY HAVE.
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Table of first experiments in a session C For threshold 3

( chronological order

121

SH706
CM707
VL714
WS714
RB715
MF715
LM721

123

VA629
MR701
RB709
LM711
L1713
DL714
VA720
WM803
WM811

171

SH701
MF706
DL708
MR712
L1714
WS718
MF719
WM804

for each nominal )

173

WS706
VL709
RB712
VA715
LM719
CM722

Two experiments Per sessiont

321

MR630
DL706
VA630
WS708
L1715
CM721
DL722
SH720

323

SH707
RB708
MF708
MR715
LM716
VL718
VL720
WM809
MR719

371

L1701
VL708
CM711
LM712
RB713
MR714
VL719
WM802
WM810
MR720

one session Per daw.

Nominal:

diitf Period in seconds
digit* Damping ratio ( 2
digit: Parameter changed

-> 0.2, 7 -> 0.707)
1 for Period,

3 for variance)

Two letters for subJect^ 3 digits for date
1st digit* month, 2nd 3rd digits* dai

Table Cl

373

SH630
WS707
SH712
MF712
VA713
LI716
DL720

1 st
2nd
3rd
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Table of first experiments in a session

If the freauencw was changed first, for the second
experiment, the variance was changed (arid vice versa)

Nominal

Ist digit: Period in seconds
2nd digit: Damping ratio ( 2 -> 0.2, 7 -> 0.707)
3rd digit* Parameter changed ( 1 for Period,

3 for variance)

Three disit + ( F or Ry where applicable )

1st digit* month, 2nd 3rd digits' daw
FO First for the subject, data not used.
R* Repeat, Previous data discarded.

Nominal 121 123 171 173 321 323 371 373

Subject

707F -
- 714

721
715

713
711F

- 701

715
706

VL 714

WM

ws 7

709

- 629F
720

- 803
811R

14 -

708

714

706F
719
712

701

722

719

712

- 715

- 709

804 -

718 706F

721 -
706F -
722
715 -

- 714
- 70f

6
E3

630 715
719

- 708
720R 707

630 -

- 718
720

- 809

708 -

711

701 F
712

714
R 720R

713

708F
R 719

802F
810

Table C2

CM
DL

LI
LM
MF

MR

RB
SH

VA

720

716

712

630
712
713

707
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Chronological order for detection time data.

(individual subjects)

121

SH 721
723
728

MR 307
038
805

WM

123

237
267
287
819
198

730
803
058
068

817
178
823
238
825
258

171

297
048
802

173

816
168

729
004
028

818
188
827
278
910
109

321

227
726
277

722
197
277

323

207
722
727
817
178
826
268

217
727
806

816
820
208
824
248

(two digits for date, one for month in the Proper order)

Table C3

371

804
8044
806
098

227
267
728

373

048
068
809
818
188

207
726
287

819
198
826
268
099
909



151

APPENDIX D



152

Table Dl

Nominal Period = 1.0 Second.

Damping ratio = 0.200.

Thresholds for change in PERIOD.

Decrease

0.021
0.048
0*030
0.009
0.016
0.016
0.040
0.058
0.072

0.034
0.022

(0.021)
(0.052)
(0.037)
(0.018)
(0.018)
(0.014)
(0.047)
(0.075)
(0.070)

Increase

0.014
0.013
0.063
0.027
0.014
0.002
0.059
0.024
0.030

0.028
0.021

(0.015)
(0.028)
(0.067)
(0.037)
(0.018)
(0.010)
(0.062)
(0.062)
(0.032)

Thresholds for change in VARIANCE.

Decrease Increase

0.152
0.118
0.051
0. 0003
0.052
0.081
0.105
0.055
0.064

(0.165)
(0.123)
(0.101)
(0.007)
(0.055)
(0.080)
(0.103)

(0.079)
0.091 (0.082)

0.077
0.042

The magnitudes shown in paranthesis are estimates

calculated bv taking the means of 'Peaks and valleys'.

SubJect

1
2
3
4
5
6
7
8
9

MR
SH
VL
WS
RB
MF
VA
LM
WM

Mean
Sigma

Subject

1
2
3
4
5
6
7
8
9
10

MR
CM
WS
RB
MF
VA
SH
LM
LI
WM

(0.025)
(0.057)
(0.078)
(0.087)
(0.033)
(0.106)
(0.141)

(0.091)
(0.048)

0.021
0.056
0.071
0.090
0.026
0.112
0.139
0.070
0.093
0.042

0.072
0.038

Mean
Sigma



153

Table D2
Nominal Period = 1.0 Second.

Damping ratio = 0.707.

Thresholds for change in PERIOD.

Subject

SH
DL
MR
VA
wS
MF
CM
LI
WM

Mean
Sigola

Decrease

0.026
0.069
0.014
0.026
0.029
0.016
0.026
0.061
0.028

0.033
0.019

(0.030)
(0.080)
(0.015)
(0.029)
(0.032)
(0.022)
(0.080)

(0.029)

Increase

0.075
0.048
0.024
0.029
0.054
0.008
0.078
0.016
0.012

0.038
0.026

(0.080)
(0.047)
(0,029)
(0.032)
(0.055)
(0.016)
(0.090)

(0.023)

Thresholds for change in VARIANCE.

Decrease

0.082
0.079
0.048
0.105
0.073
0.104
0.147
0.034

0.084
0.035

(0.091)
(0,083)
(0.057)
(0.120)
(0.077)
(0.135)
(0.137)
(0*035)

Increase

0.020
0.063
0.113
0.045
0,058
0.146
0.021
0.059

0,066
0.044

(0.025)
(0.065)
(0.120)
(0.111)
(0.066)
(0.145)
(0.025)
(0.058)

The masnitudes shown in Paranthesis are estimates

calculated bv takin the means of 'Peaks and vallews'.

1
2
3
4
5
6
7
8
9

Subject

1
2
3
4
5
6
7
8

SH
MR
RD
LM
MF
VA
CM
WM

Me an
Sigma
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Nominal Period = 3.0 Second. Table D3

Damping ratio = 0.200'.

Thresholds for change in PERIOD.

Subject

VA
wS
RB
MR
LM
VL
SH
CM
MF
DL
LI
WM

Mean
Sisma

Decrease

0.016
0.015
0*033
0.048
0.084
0.088
0.135
0.033
0.072
0.113
0.058
0.027

0.060
0.039

Increase

(0.024)
(0.015)
(0.033)
(0.050)
(0.096)
(0.098)
(0.137)
(0.040)
(0.075)
(0.119)
(0.061)

0.025
0.064
0.041
0.028
0.023
0*050
0.097
0.056
0.039
0.117
0.028
0.075

0.054
0.030

(0.031)
(0.065)
(0.045)
(0.030)
(0.025)
(0.060)
(0.103)
(0.052)
(0.035)
(0.118)
(0.030)

Thresholds for chane in VARIANCE.

Decrease

0.062
0.101
0.170
0.131
0.105
0.162
0.152
0.087

0.121
0.039

Increase

(0.061)
(0.131)
(0.200)
(0.153)
(0.112)
(0.174)
(0.157)
(0.089)

0.055
0.185
0.279
0.079
0.159
0,200
0.146
0.095

0.150
0.073

(0.060)
(0.200)
(0.313)
(0.140)
(0.168)
(0.193)
(0.147)
(0.103)

The magnitudes shown in Paranthesis are estimates

calculated bw taking the means. of 'Peaks and v.allews'.

1
2
3
4
5
6
7
8
9

10
11
12

Subject

1
2
3
4
5
6
7
8

MF
RB
MR
VL
CM
VA
DL
WM

Mean
sigma
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Nominal' Period = 3.0 Second. Table D4

Damping ratio = 0.707.

Thresholds for chansqe in PERIOD.

Decrease

0.041 (0.052)
0.034 (0.035)
0.100 (0.108)
0.015 (0.023)
0.046
0.005
0.015
0.039
0.051
0.036

(0.045)
(0.015)
(0,018)
(0.037)
(0.050)
(0*040)

Subject

WS
CM
SH
LM
MF
RB
VA
VL
MR
DL
LI
WM

Increase

0.021 (0.022)
0.080 (0.090)
0.089 (0.088)
0.065 (0.071)
0.011 (0.018)
0.042 (0.041)
0.039 (0.040)
0.034 (0.033)
0.053 (0.057)
0.040 (0.047)
0.051 (0.051)
0.036 (0.052)

0.047
0.023

Thresholds for

SubJect

chanse in VARIANCE.

Decrease Increase

0.11 (0.107)
0.021 (0.020)
0.071
0.091
0.107
0.062

(0.072)
(0.092)
(0.115)
(0.063)

0.115 (0.123)
0.110 (0.115)
0.132 (0.140)

0.091
0.034

0.142 (0.145)
0.057 (0.073)
0.019 (0.025)
0.094 (0.133)
0.084 (0.090)
0.057 (0.069)
0.073
0.094
0.126

0.083
0.037

(0.075)
(0.095)
(0.133)

The magnitudes shown in Paranthesis are estimates

calculated bv taking the means of 'Peaks and vallews'.

1
2
3
4
5
6
7
8
9
10
11
12

0.012 (0.018)
0.055 (0.055)

0.037
0.026

Mean
Sigma

1
2
3
4
5
6
7

9

CM
SH
LM
MF
RB
VA
MR
VL
WM

Mean
Sigma
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APPENDIX E
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Nominal: Period = 1.0 Seconds. Table El

Dampini ratio = 0.200.

Change in FREQUENCY Subject:

Stimulus

X0

1
2
3
4

6
7
8

-0.1
-0.2
-0.3
-0*4

0.1
0.2
0.3
0.4

Stimulus

1 -0.1
2 -0.2
3 -0.3
4 -0.4

5 0.1
6 0.2
7 0.3
8 0.4

Summarv

Xi

-0.37
-0.67
-0.90
-1.09

0.47
1*06
1*80
2.74

P (C)

0.958
1.000
0.958
0.958

0.958
1.000
1.000
1.000

0.979

X2

Detection time

Mean Sigma

-1.32
-1.90
-2.20
-2.39

1.55
2.36
2.89
3.31

P(M)

0.042
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.005

1.91
1.33
0.89
0.76

1.72
0*82
0.25
0.20

P (F)

0.000
0.000
0.042
0.042

0.042
0.000
0.000
0.000

0.016

0.52
0*64
0.36
0*29

0.81
0.55
0.40
0*27

C M F T

23 1 0 24
24 0
23 0
23 0

0
0
0

23
24
24
24

0
1
1

1
0
0

24
24
24

24
24
24

0 0 24

188 1 3 192

Detection time units: ln(2*time in seconds).

Stimulus: XO - ln(P/Pn) / ln(10)
X1 - Difference in sirmna of velocitw from

the nominal
X2 - (sign) in ( abs(1OX1) )

C - Correct M - Miss F - False alarm T - Total

P(C)v.. - Probabilitv of Correct detection etc..

MR
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Nominal: Period = 1.0 Seconds. Table E2

Damping ratio = 0.200.

Change in FREQUENCY

Stimulus

SubJect* SH

Detection time

Mean Sigma

2*27
1.62
1.51
1.29

1.92
1.68
0 *.92
0.74

0.85
0.97
0.33
0.41

0.91
0.46
0 52
0.35

Stimulus

1. -0.1
2 -0.2
3 -0.3
4 -0.4

5 0.1
6 0.2
7 0.3
8 0.4

Summary

P(C)

0.913
1.000
1.000
1.000

0.957
1.000
1.000
0.957

0.978

P(M)

0.043
0.000
0.000
0.000

0.043
0.000
0.000
0.000

0.011

P(F)

0.043
0.000
0.000
0.000

0.000
0.000
0.000
0.043

0.011

C M F T

21 1
23 0
23 0
23 0

22
23
23
22

1
0
0
0

1
0
0
0

0
0
0
1

23
23
23
23

23
23
23
23

180 2 2 184

Detection time units? lrn(2*time in

Stimulus* XO - ln(P/Pn) / ln(10)

seconds).

X1 - Difference in sigma of velocity from
the nominal

X2 - (sign) ln ( abs(1OX1) )

C - Correct M - Miss F - False alarm T - Total

P(C),.. - Probability of Correct detection etc..

X0

1
2
3
4

5
6
7
8

-0.1
-0.2
-0.3
-0.4

0.1
0.2
0.3
0.4

X1

-0.37
-0.67
-0.90
-1.09

0.47
1.06
1.80
2.74

X2

-1.32
-1.90
-2.20
-2.39

1.55
2*36
2.89
3.31
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Nominal: Period = 1.0 Seconds. Table E3

Damping ratio = 0.200.

Change in FREQUENCY

Stimulus

Summarw (all subjects)

Detection time

Mean Sigma

2.09
1.48
1.20
1.02

1.82
1.25
0,58
0.47

0.71
0.82
0.34
0.35

0.86
0.51
0.47
0.31

Stimulus

1 -0.1
2 -0.2
3 -0.3
4 -0.4

5
6
7
8

0.1
0.2
0.3
0.4

Summarv

P(C)

0.936
1.000
0.979
0.979

0.957
1.000
1,000
0.979

0.979

P(M)

0.043
0.000
0.000
0.000

0.021
0.000
0.000
0.000

0.008

P(F)

0.021
0.000
0.021
0.021

0.021
0.000
0.000
0.021

0.013

C M F T

44
47
46
46

45
47
47
46

2
0
0
0

1
0
0
0

1
0
1
1

1
0
0
1

47
47
47
47

47
47
47
47

368 3 5 376

Detection time units* ln(2*time in seconds).

Stimulus* XO - ln(P/Pn) / ln(10)
Xl - Difference in sigma of velocity from

the nominal
X2 - (sign) in ( abs(IOX1) )

C - Correct M - Miss F - False alarm T - Total

P(C),.. - Probabilitw of Correct detection etc..

X0

1
2
3
4

5
6
7
8

-0.1
-0.2
-0.3
-0.4

0.1
0.2
0.3
0.4

xl

-0.37
-0.67
-0.90
-1.09

0.47
1.06
1.80
2.74

X2

-1.32
-1.90
-2.20
-2.39

1.55
2.36
2.89
3.31
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Nominal: Period = 1.0 Seconds. Table E4

Damping ratio = 0.200.

Change in VARIANCE. SubJect:

Stimulus Detection

X0

1 0.2
2 0.3
3 0.4
4 0.5

5 -0.2
6 -0.3
7 -0.4
8 -0.5

Stimulus

1
2
3
4

5
6
7
8

0.2
0.3
0.4
0.5

--0.2
-0.3
-0.4
-0*5

Summar

Xi

0.47
0.75
1.06
1.41

-0.37
-0.53

-0.67
-0,79

P(C)

0.800
0.900
0.900
0.950

0.900
0.975
0.850
0.875

0.894

X2

1.55
2.01
2.36
2.65

-1.32
-1.67
-1.90
-2.07

P(M)

0.075
0.050
0.025
0.000

0.075
0.025
0,050
0.050

0.044

Mean Sigma

2.37
2.16
2.18
1.75

2.22
2. 26
2.24
1.95

P(F)

0.125
0.050
0.075
0.050

0.025
0.000
0.100
0.075

0.062

0.72
0.61
0.61
0.57

1.46
1.26
0.,58
0.74

C M F T

32
36
36

3
2
1

5
2
3

40
40
40

38 0 2 40

36
39
34

3
1
2

1
0
4

40
40
40

35 2 3 40

286 14 20 320

Detection time units: ln(2*time in seconds).

Stimulus: XO - in(P/Pn) / ln(10)
X1 - Difference in sisma of velocitv from

the nominal
X2 - (sign) in ( abs(10X1) )

C - Correct M - Miss F - False alarm T - Total

P(C),.. - Probability of Correct detection etc..

SH

time
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Nominal? Period = 1.0 Seconds. Table E5

Damping ratio = 0.200.

Change in VARIANCE.

Stimulus

Subject: MR

Detection time

Mean Sigma

2.05
1.86
1.52
1.29

2.09
2.02
1.67
1.59

0.76
0.83
0.53
0.45

0.81
0.77
0.49
0.61

Stimulus

1 0.2
2
3
4

0.3
0.4
0.5

5 -0.2
6 -0.3
7 -0.4
8 -0.5

Summarv

Detection

Stimulus**

P(C)

0.889
0.978
0.867
0.889

0.911
0.933
0.933
0.978

0.922

P(M)

0.022
0.022
0.044
0.022

0.067
0.022
0.000
0.000

0.025

P(F)

0.089
0.000
0.089
0.089

0.022
0.044
0.067
0.022

0.053

C M F T

40 1 4 45
44
39

1 0 45
2 4 45

40 1 4 45

41
42
42
44

3 1 45
1 2 45
0 3 45
0 1 45

332 9 19 360

time units4 ln(2*time in seconds),

XO - ln(P/Pn) / ln(10)
X1 - Difference in sigma of velocity from

the nominal
X2 - (sign) in ( abs(1OX1)

C - Correct M - Miss F - False alarm T - Total

P(C),.. - Probability of Correct detection etc..

X0 X2

1
2
3
4

5
6
7
8

0.2
- 0.3
0.4
0.5

-0.* 2
-0.3
-0.4
-0.5

Xi

0*47
0.75
1.06
1.41

-0*37
-0.53
-0.67
-0.79

1.55
2.01
2.36
2.65

-1.32
-1.67
-1*90
-2.07
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Nominal? Period = 1.0 Seconds. Table E6

Damping ratio = 0.200.

Change in VARIANCE.

Stimulus

Subject? WM

Detection time

Mean Sigma,

2.36
1.85
1.72
1.44

2.50
2.41
2.26
2.09

0.57
0.65
0.73
0.60

0.71
0.82
0.59
0.78

Stimulus

1
2
3
4

0.2
0.3
0.4
0.5

5 -0.2
6 -0.3
7 -0.4
8 -0.5

Summar v

P(C)

0.875
0.937
1.000
0.958

0.958
0.958
1.000
0.937

0.953

P(M)

0.062
0.000
0.000
0.021

0.042
0.000
0.000
0.042

0.021

P (F)

0.062
0.062
0.000
0.021

0.000
0.042
0.000
0.021

0.026

C M F T

42
45
48
46

46
46
48
45

3
0
0
1

2
0
0
2

3
3
0
1

0
2
0
1

48
48
48
48

48
48
48
48

366 8 10 384

Detection time units? ln(2*time in seconds).

Stimulus** XO - ln(P/Pn) / ln(10)
X1 - Difference in sigma of velocity from

the nominal
X2 -. (sian) in ( abs(lOX1) )

C - Correct M - Miss F - False alarm T - Total

P(C)v.. - Probabilitw of Correct detection etc..

X0

1
2
3
4

5
6
7
8

0.2
0.3

* 0.4
0.5

-0.2
-0.3
-0,4
-0,5

xi

0,47
0.75
1.06
1.41

-0.37
-0.53
-0.67
-0.79

X2.

1.55
2.01
2.36
2.65

-1.32
-1.67
-1.90
-2.07
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Nominal: Period = 1.0 Seconds. Table E7

Damping ratio = 0.200.

Change in VARIANCE.

Stimulus

Summerw (all subjects)

Detection time

Mean Sigma

2.26 0.69
1.96
1.81
1.49

2.27
2.23
2.06

0.70
0.63
0.54

1.05
0.98
0.56

1.88 0.71

Stimulus

1
2
3
4

0.2
0.3
0.4
0.5

5 -0.2
6 -0.3
7 -0.4
8 -0.5

Summar v

P(C)

0.857
0.940
0.925
0.932

0.925
0.955
0.932
0.932

0.925

P(M)

0.053
0.023
0.023
0.015

0.060
0.015
0.015
0.030

0.029

P(F)

0.090
0.038
0.053
0.053

0.015
0.030
0.053
0.038

0.046

C M F T

114 7 12
125 3 5
123 3 7
124 2 7

123
127
124
124

8 2
2 4
2 7
4 5

984 31 491064

Detection time units *ln(2*time in seconds).

Stimulus* XO - ln(P/Pn) / 1n(10)
X1 - Difference in sigma of velocitu from

the nominal
X2 - (sign) 1n ( abs(10X1)

C - Correct M - Miss F - False alarm T - Total

P(C),.. - Probability of Correct detection etc..

X0

1
2
3
4

5
6
7
8

0.2
0.3
0.4
0.5

-0.2
-0.3
-0.4
-0.5

Xi

0.47
0.75
1.06
1.41

-0.37
-0.53
-0.67
-0.79

X2

1.55
2.01
2.36
2.65

-1.32
-1.67
-1.90
-2*07

133
133
133
133

133
133
133
133
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Nominal: Period = 1.0 Seconds. Table E8

Damping ratio = 0.707.

Change in FREQUENCY Subject:

Stimulus

xi X2

Detection time

Mean Sigma

-0.37 -1.32
-0.67 -1.90
-0.90 -2.20
-1.09 -2.39

0.47
1.06
1.80
2.74

1.55
2436
2.89
3.31

Stimulus

1 -0.1
2 -0.2
3 -0.3
4 -0.4

5
6

0.1
0.2

7 0.3
8 0.4

Summarv

Detection

Stimulus*#

P(C)

0.958
1.000
1.000
1.000

1.000
0.958
0.958
1.000

0.984

P(M)

0.000
0.000
0.000
0.000

0.000
0.000
0.042
0.000

0.005

P (F)

0.042
0.000
0.000
0.000

0.000
0.042
0.000
0.000

0.010

C M F T

23 0
24 0
24 0
24 0

24
23
23
24

0
0
1
0

1 24
0 24
0 24
0 24

0
1
0
0

24
24
24
24

189 1 2 192

time units* ln(2*time in seconds).

XO - ln(P/Pn) / ln(10)
X1 - Difference in sigma of velocitv from

the nominal
X2 - (sign) in ( abs(10X1) )

C - Correct M - Miss F - False alarm T - Total

P(C)v.. - Probabilitv of Correct detection etc..

MR

X0

1
2
3
4

5
6
7
8

-0.1
--0.2
-0.3
-0.4

0.1
0.2
0.3
0.4

1.62
1.20
0.86
0.65

1.68
0.71
0.32
0.17

1.28
0.67
0.32
0.53

0.79
0.48
0.34
0.18



165

Nominal: Period = .1.0 Seconds. Table E9

Damping ratio = 0.707.

Change in FREQUENCY

Stimulus

Summarw (all subJects)

Detection time

Mean Sigma

1.62
1*20
0.86
0.65

1.68
0.71
0.32
0.17

1*28
0.67
0.32
0.53

0.79
0.48
0.34
0.18

Stimulus

1 -0.1
2 -0.2
3 -0.3
4 -0.4

5
6
7

001
0.2
0.3

8 0.4

Summarv

P(C)

0.958
1.000
1.000
1.000

1.000
0.958
0.958
1.000

0.984

P(M)

0.000
0.000
0.000
0.000

0.000
0.000
0.042
0.000

0.005

P(F)

0.042
0.000
0.000
0.000

0.000
0.042
0.000
0.000

0.010

Detection time units: ln(2*time in

C M F T

23
24
24
24

24
23
23
24

0
0
0
0

0
0
1
0

1
0
0
0

0
1
0
0

24
24
24
24

24
24
24
24

189 1 2 192

seconds).

Stimulus: XO - ln(P/Pn) / ln(10)
Xl - Difference in sigma of velocity from

the nominal
X2 - (sign) ln ( abs(1OX1) )

C - Correct M - Miss F - False alarm T - Total

P(C)r.. - Probabilitw of Correct detection etc..

X0

1
2
3
4

5
6
7
8

-0.1
-0.2
-0.3
-0.4

0.1
0.2
0.3
0.4

X1

-0.37
-0.67
-0.90
-1.09

0.47
1.06
1.80
2.74

X2

-1.32
-1.90
-2.20
-2.39

1.55
2.36
2.89
3.31
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Nominal: Period = 1.0 Seconds. Table E10

DampinS ratio = 0.707.

Change in VARIANCE. Subject:

Stimulus

X0

1
2
3
4

5
6
7
8

0.2
.0.3
0.4
0.5

-0.2
-0#3
-044
-0.5

Stimulus

1 0.2
2 0.3
3 0.4
4 0.5

5 -0.2
6 -0.3
7 -0.4
8 -0.5

Summarv

Xi

0.47
0.75
1.06
1.41

-0.37
-0#53
-0#67
-0.79

P(C)

1.000
0.937
1.000
0.937

0.750
1.000
1.000
0.937

0.945

X2

1.55
2.01
2.36
2.65

-1.32
-1.67

-2.07

P(M)

0.000
0.000
0.0000,
0.000

0.187
0.000
0.000
0.000

0.023

Detection time

Mean Sigma

2.25
1.81
1.83
1.37

2.81
2.54
2.00
2.26

P(F)

0.000
0.062
0.000
0.062

0.062
0.000
0.000
0.062

0.031

0.66
0.45
0.65
0.42

0.62
0.57
0.60
0.57

C M F T

16 0 0 16
15 0 1 16

0
0

3
0
0
0

0 16
1 16

1 16
0 16
0 16
1 16

16
15

12
16
16
15

121 3 4 128

Detection time units: ln(2*time in seconds).

Stimulus: XO - ln(P/Pn) / ln(10)
X1 - Difference in sigma of velocitv from

the nominal
X2 - (sign) in ( abs(1OX1) )

C - Correct M - Miss F - False alarm

P(C),.. - Probability of Correct detection etc..

SH

T - Total
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Nominal? Period = 1.0 Seconds. Table Ell

Damping ratio = 0.707.

Change in VARIANCE.

Stimulus

SubJect* MR

Detection time

1
2
3
4

5
6
7
8

1
2
3
4

X0

0.2
0.3
0.4
0.5

-0.2
-0.3
-0.4
-0.5

Stimulus

0.2
0.3
0.4
0.5

0 -0.2
6 -0.3
7 -0.4
8 -0.5

Summarv

X.1

0.47
0.75
1.06
1.41

-0.37
-0.53
-0.67
-0.79

P(C)

0.875
1.000
0.975
0.925

0.900
1.000
0.975
0.900

0.944

X2 Mean Sigma

1*55
2.01
2.36
2.65

-1.32
-1.67
-1.90
-2.07

P(M)

0.050
0.000
0.025
0.000

0.075
0.000
0.025
0.025

0.025

1*72
1.51
1.23
0.89

2.12
1.94
1.63
1.29

P(F)

0.075
0.000
0.000
0.075

0.025
0.000
0.000
0.075

0.031

0.77
0.58
0.44
0.48

0.68
0.54
0.58
0.43

C M F

35
40
39
37

T

2 3 40
0 0 40
1 0 40
0 3 40

36 3 1 40
40 0 0 40
39 1 0 40
36 1 3 40

302 8 10 320

Detection time units *ln(2*time in seconds).

Stimulus: XO - ln(P/Pn) / ln(10)
XI - Difference in sigma of velocitv from

the nominal
X2 - (sian) In ( abs(1OX1)

C - Correct M - Miss F - False alarm T - Total

P(C),.. - Probability of Correct detection etc..
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Period = 1.0 Seconds. Table E12

Damping ratio = 0.707.

Change in VARIANCE.

Stimulus

SubJect# WM

Detection time

Mean Sigma

2.39
1.86
1071
1.41

2.55
2.24
1;.96
1.83

0.66
0.53
0.66
0.50

0.67
0.60
0448
0.58

Stimulus

1 0.2
2 0.3
3 0.4
4 0.5

5 -0.2
6 -0.3
7 -0.4
8 -0.5

Summarv

P(C)

0.958
1.000
1.000
0.958

0.958
0.979
0.958
0.979

0.974

P(M)

0.042
0.000
0.000
0.021

0.021
0.021
0.000
0.000

0.013

P(F)

0.000
0.000
0.000
0.021

0.021
0.000
0.042
0.021

0.013

C M F T

46
48
48
46

46
47
46
47

2
0
0
1

1
1
0
0

0
0
0
1

1
0
2
1

48
48
48
48

48
48
48
48

374 5 5 384

Detection time units* ln(2*time in seconds).

Stimulus: XO - in(P/Pn) / ln(10)
X1 - Difference in siSma of velocity from

the nominal
X2 - (sign) In ( abs(1OX1)

C - Correct M - Miss F - False alarm - T - Total

P(C),.. - Probabilitv of Correct detection etc..

Nominal

X0

1
2
3
4

5
6
7
8

0.2
0.3
0.4
0.5

-0.2
-0.3
-0t 4
-0.5

X1

0.47
0.75
1.06
1.41

-0.37
-0*53
-0*67
-0.79

X2

1.55
2.01
2.36
2.65

-1.32
-1.67'
-1#90
-2.07
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Nominal:* Period = 1.0 Seconds. Table E13

Dampins ratio = 0.707.

Change in VARIANCE.

Stimulus,

Summarw (all subjects)

Detection time

Mean Sigma

2.12
1.73
1.59
1.22

2.49
2.24
1.86
1.80

0.70
0.52
0.59
0.47

0.65
0.57
0.55
0.53

Stimulus

1

3
4

0.2
0.3
0.4
0.5

5 -0.2
6 -0.3
7 -0.4
8 -0.5

Summarv

P(C)

0.933
0.990
0.990
0.942

0.904
0.990
0.971
0.942

0.958

P(M)

0.038
0.000
0.010
0.010

0.067
0.010
0.01.0
0.010

0.019

P(F)

0.029
0.010
0.000
0.048

0.029
0.000
0.019
0.048

0.023

C M F T

97
103
103
98

94
103
101
98

4
0
1
1

7
1
1
1

3
1
0
5

3
0
2 )

5 1

104
104
104
104

104
104
104
104

797 16 19 832

Detection time units #ln(2*time in seconds).

Stimulus*$ XO - ln(P/Pn) / ln(10)
XI -D ifference in sigma of velocitv from

the nominal
X2 - (sign) in ( abs(1OX1) )

C - Correct M - Miss F - False alarm T - Total

P(C),.. - Probabilitv of Correct detection etc..

X0

1
2
3
4

6
7
8

0.2
0.3
0.4
0.5

-0.2
-0.3
-0.4
-0.5

xi

0.47
0.75
1.06
1.41

-0.37
-0.53
-0.67
-0.79

X2

1.55
2.01
2.36
2.65

-1.32
-1.67
-1.90
-2.07
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Nominal: Period = 3.0 Seconds. Table E14

Damping ratio 0.200.

Change in FREQUENCY

Stimulus

SubJect: SH

Detection time

Mean Si!Ama

2.26
1.98
1.96
1.93

2.16
2.16
1.38
1.04

0.67
0.64
0.78
0.83

0.93
0.66
0.64
0.36

Stimulus

1 -0.1
2 -0.2
3 -0.3
4 -0.4

cr.

6
7
8

0.1
0.2
0.3
0.4

Summarv

P(C)

0.957
1.000
0.957
0.957

0.652
0.957
0.957
1.000

0.929

P(M)

0.043
0.000
0.000
0.000

0.348
0.000
0.000
0.000

0.049

P(F)

0.000
0.000
0.043
0.043

0.000
0.043
0.043
0.000

0.022

C M F T

22

23
22
22

15
22
22
23

1
0
0
0

8
0
0
()

0
0
1
1

0
1
1
0

23
23
23
23

23
23
23
23

171 9 4 184

Detection time units: 1n(2*time in seconds).

Stimulus:* XO - 1n(P/Pn) / ln(10)
X1 - Difference in sigma of velocity from

the nominal
X2 - (sign) In ( abs(1OX1)

C - Correct - Miss F - False alarm T - Total

P(C),.. - Probabilitv of Correct detection etc..

X0 X2

1
2
3
4

C.

6
7
8

-0.1
-0.2
-.0.3
-0.4

0.1
0.2
0.3
0.4

xi

-0.12
-0.22
-0.30
-0.36

0.16
0.35
0.60
0.91

-0.22
-0.80
-1.10
-1.29

0.45
1.26
1.79
2.21
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Nominal: Period = 3.0 Seconds. Table E15

Damping ratio = 0.200.

Change in FREQUENCY

Stimulus

SubJect# MR

Detection time

Mean. Sigma

1.86
1.88
1.58
1.48

2.17
1.37
0.94
0.59

1.21
0.70
0.53
0.45

0.77
0.38
0.55
0.46

Stimulus

1 -0.1
2 -0.2
3 -0.3
4 -0.4

C.

6
0.1
0*2

7 0.3
8 0.4

Summarv

P(C)

0.909
1.000
1.000
0.955

0.909
0.955
1.000
0.909

0.955

P(M)

0.045
0.000
0.000
0.000

0.091
0.000
0.000
0.000

0.017

P(F)

0.045
0.000
0.000
0.045

0.000
0.045
0.000
0.091

0.028

C M F T

20 1
22 0
22 0
21 0

20 2
21 0
22 0
20 0

1 22
0 22
0 22
1 22

0 22
1 22
0 22
2 22

168 3 5 176

Detection time units:

Stimulus:

ln(2*time in seconds).

XO - ln(P/Pn) / ln(10)
X1 - Difference in sigma of velocitv from

the nominal
X2 - (sign) In ( abs(10X1)

C - Correct M - Miss F - False alarm T - Total

P(C),.. - Probabilitwyof Correct detection etc..

X0

1
2
.3
4

C.

6
7
8

-0.1
-0.2
-0.3
-0.4

0.1
0.2
0.3
0.4

xi

-0.12
-0.22
-0.30
-0.36

0.16
0*35
0.60
0.91

X2

-0.22
-0.80
-1.10
-1.29

0.45
1.26
1.79
2.21
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Nominal: Period = 3.0 Seconds.- Table E16

Damping ratio = 0.200.

Change in FREQUENCY Summarv (all subjects)

Stimulus

X0 xi

1 -0.1 -0.12
2 -0.2 -0.22
3 -0.3 -0.30
4 -0.4 -0.36

5
6
7
8

0.1
0.2
0.3
Q.4

Stimulus

1 -0.1
2 -0.2
3 -0.3
4 -0.4

C.

6
7
8

0.1
0.2
0.3
0.4

Summarw

0.16
0.35
0.60
0.91,

P(C)

0.933
1.000
0.978
0.956

0.778
0.956
0.978
0.956

0.942

X2

-0.22
-0.80
-1.10
-1.29

0.45
1.26
1.79
2.21

P(M)

0.044
0.000
0.000
0.000

0.222
0.000
0.000
0.000

0.033

Detection time

Mean Sigma

2.06
1.93
1.77
1.71

2.17
1.76
1.*16
0.81

P(F)

0.022
0.000
0.022
0.044

0.000
0.044
0.022
0*044

0.025

Detection time units* ln(2*time in

0.98
0*67
0.66
0.67

0.86
0.54
0.60
0.41

C M F T

42 2
45 0
44
43

35
43
44
43

0
0

10
0
0
0

1 45
0 45
1 45
2 45

0 45
2 45
1 45
2 45

339 12 9 360

seconds).

Stimulus* XO - ln(P/Pn) / 1n(1.0)
X1 - Difference in sigma of velocity from

the nominal
X2 - (sian) In ( abs(1OX1) )

C - Correct M - Miss F - False alarm T - Total

P(C)P.. - Probability of Correct detection etc..
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Nominal: - Period = 3.0 Seconds. Table E17

Dampia ratio 0.200.

Change in VARIANCE.

Stimulus

SubJect: SH

Detection time

xi

0.16
0.25
0.35
0.47

X2 Mean Sigma

0.45
0.91
1.26
1.55

-0.12 -0.22
-0.18 -0.57
-0.22 -0.80
-0.26 -0.97

3.08
2.52
2.35
2.47

0.75
0.82
1.33
0.80

2.89 0.76
2.60 1.23
2.56 0.94
2.50 0.95

Stimulus

1 0.2

3
4

0.3
0.4
0.5

5 -0.2
6 -0.3
7 -0.4
8 -0.5

Summarv

Detection

Stimulus:

P(C)

0.667
0.796
0.889
1.000

0.759
0.833
0.981
0.975

0.854

P(M)

0.278
0.185
0.056
0.000

0.241
0.148
0.019
0.025

0.126

P (F)

0.056
0.019
0.056
0.000

0.000
0.019
0.000
0.000

0.020

C M F T

36 15 3 54
43
48

10
3

1 54
3 54

40 0 0 40

41 13
45 8
53 1
39 1

0 54
1 54
0 54
0 40

345 51 8 404

time units' ln(2*time in seconds).

XO - ln(P/Pn) / ln(10)
X1 - Difference in sigma of velocitv from

the nominal
X2 - (sign) ln ( abs(10X1)

C - Correct M - Miss F - False alarm T - Total

P(C)P.. - Probabilitv of Correct detection etc..

X0

1
2
3
4

5
6
7
8

0.2
0.3
0.4
0.5

-0*2
-0.3
-0.4
-0.5
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Nominal: Period = 3.0 Seconds. Table E18

Damping ratio = 0.200.

Change in VARIANCE.

Stimulus

Subject* MR

Detection time

Mean Sigma

2.49 0.59
2.26 0.71
2.16 0.64
1.97 0.57

2.37
2.29
2.26

0.71
0.72
0.56
0.43

Stimulus

1
2
3
4

0.2
0.3
0.4
0.5

5 -0.2
6 -0.3
7 -0.4
8 -0.5

Summarv

Detection

Stimulus:

P(C)

0.667
0.897
0.923
0.969

0.923
0.974
0.949
1.000

0.909

P(M)

0.308
0.077
0.026
0.000

0.051
0*000
0.026
0.000

0.064

P(F)

0.026
0.026
0.051
0.031

0.026
0.026
0.026
0.000

0.027

C M F T

26
35
36
31

36
38
37
32

12
3
1
0

2
0
1
0

1 39
1 39
2 39
1 32

1 39
1 39
1 39
0 32

271 19 8 298

time units* in(2*time in seconds).

XO'- ln(P/Pn) / ln(10)
X1 - Difference in sigma of velocitv from

the nominal
X2 - (sian) in ( abs(1OXl)

C - Correct M - Miss F - False alarm T - Total

P(C)v.. - Probabilitv of Correct detection etc..

X0

1
2
3
4

5
6
7
8

0.2
0.3
0.4
0.5

-0.2
-0.3
-0.4
-0.5

Xi

0.16
0.25
0.35
0.47

-0.12
-0.18
-0.22
-0.26

X2

0.45
0.91
1.26
1.55

-0.22
-0.57
-0.80
-0.97
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Nominal? Period = 3.0 Seconds. Table E19

Damping ratio = 0.200.

Change in VARIANCE.

Stimulus

SubJect* WM

Detection time

Mean Sigma

2.69
2.42
2.10
1.80

3.32
3.11
2.96
2.94

0.73
0.66
0.67
0.55

0.41
0.53
0455
0.62

Stimulus

1 0.2
2
3
4

0.3
0.4
0.5

5 -0.2
6 -0.3
7 -0.4
8 -0.5

Summarv

P(C)

0.975
0.925
1.000
1.000

0.825
0.950
1.000
0.950

0.953

P(M)

0.025
0.075
0.000
0.000

0.125
0.050
0.000
0.025

0.038

P(F)

0.000
0.000
0.000
0.000

0.050
0.000
0.000
0.025

0.009

C M F T

39 1
37 3
40 0

0 40
0 40
0 40

40 0 0 40

33
38
40
38

5
2
0
1

2 40
0 40
0 40
1 40

305 12 3 320

Detection time units* ln(2*time in seconds).

Stimulusq XO - ln(P/Pn) / ln(10)
X1 - Difference in sigma of velocity from

the nominal
X2 - (sign) ln ( abs(1OX1)

C - Correct M - Miss F - False alarm T - Total

P(C),.. - Probabilitv of Correct detection etc..

X0 X2

1
2
3
4

5
6
7
8

0.2
0.3
0.4
0.5

-0.2
-0.3
-0.4
-0.5

X1

0.16
0.25
0.35
0*47

-0.12
-0.18
-0*22
-0.26

0.45
0.91
1.26
1.55

-0.22
-0.57
-0.80
-0.97
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Nominal: Period = 3.0 Seconds. Table E20

Damping ratio = 0.200.

Change in VARIANCE.

Stimulus

Summarv (all subJects)

Detection time

Mean Sigma

2.75
2.40
2.20
2.08

2.93
2.69
2.60
2*57

0.69
0.73
0.94
0.65

0.65
0*88
0.71
04 *70

Stimulus

1
2
3
4

0.2
0.3
0.4
0.5

5 -0.2
6 -0.3
7 -0.4
8 -0.5

Summar v

Detection

Stimulus:

P(C)

0.759
0.865
0.932
0.991

0.827
0.910
0.977
0.973

0.901

P(M)

0.211
0.120
0.030
0.000

0.150
0.075
0.015
0.018

0.080

P(F)

0.030
0.015
0.038
0.009

0.023
0.015
0.008
0.009

0.019

C M F T

101
115

28 4 133
16 2 133

124 4 5 133
111 0 1 112

110
121
130

20
10

2

3 133
2 133
1 133

109 2 1 112

921 82 191022

time units# ln(2*time in seconds).

XO - 1n(F'/Pn) / ln(10)
Xl - Difference in sigma of velocitv from

the nominal
X2 - (sign) In ( abs(1OX1) )

C - Correct M - Miss F - False alarm T - Total

P(C),.. - Probabilitv of Correct detection etc..

X0

1
2
3
4

5
6
7
a

0.2
0.3
0.4
0.5

-0.2
-0.3
-0.4

xl

0.16
0.25
0.35
0.47

-0.12
-0.18
-0*22
-Q.26

X2

0.45
0.91
1.26
1.55

-0.22
-0.57
-0.*80
-0.97
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Nominal: Period = 3.0 Seconds. Table E21

Damping ratio = 0.707.

Change in FREQUENCY

Stimulus

Subject* SH

Detection time

Mean Sigma

2.29'
1.95
1.75
1 *28

2.36
1.51
1.11
0.70

0*73
0.54
0.48
0.93

0.88
0.68
0*48
0.31

Stimulus

1 -0.1
2 -0.2
3 -0.3
4 -0.4

5i 0.1
6
7

0.2
0.3

8 0.4

Summarv

P(C)

1.000
0.969
0.906
0.969

0.906
0.969
0.969
0.937

0.953

P(M)

0.000
0.000
0.000
0.000

0.062
0.031
0.031
0.000

0.016

P(F)

0.000
0.031
0.094
0.031

0.031
0.000
0.000
0.062

0.031

C M F T

32 0 0 32
31
29
31

0
0
0

1 32
3 32
1 32

29 2 1 32
31
31

1
1

0 32
0 32

30 0 2 32

244 4 8 256

Detection time units 'ln(2*time in seconds).

Stimulus XO - ln(P/Pn) / ln(10)
X1 - Difference in sigma of velocitv from

the nominal
X2 - (sign) in ( abs(1OX1) )

C - Correct M - Miss F - False alarm T - Total

P(C),.. - Probabilitv of Correct detection etc..

X0 X2

1
2
3
4

5
6
7
8

-0.1
-0.2
-0.3
-0*4

0.1
0.2
0.3
0.4

xi

-0.12
-0.22
-0.30
-0.36

0.16
0.35
0*60
0.91

-0.22
-0.80
-1.10
-1.29

0.45
1.26
1.79
2.21
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Nominal: Period = 3.0 Seconds. Table E22

Dampin ratio = 0.707.

Change in FREQUENCY

Stimulus

SubJect* MR

Detection time

Mean Sigma

1.88
1.24
1.14
1.09

2.06
1.32
0.59
0.51

0.63
0.50
0.40
0.35

0.72
0.52
0.60
0"* 28

Stimulus

1 -0.1
2 -0.2
3 -0.3
4 -0.4

5
6
7
8

0.1
0.2
0.3
0.4

Summarv

P(C)

1.000
1.000
0.957
0.913

1.000
1.000
0.957
0.957

0.973

P (M)

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.043

0.005

P (F)

0.000
0.000
0.043
0.087

0.000
0.000
0.043
0.000

0.022

C M F T

23
23
22
21

23
23
22
22

0
0
0
0

0
0
0
1

0
0
1
2

0
0
1
0

23
23
23
23

23
23
23
23

179 1 4 184

Detection time units: ln(2*time in seconds).

Stimulus: XO - ln(P/Pn) / ln(10)
XI - Difference in sigma of velocity from

the nominal
X2 - (sign) ln ( abs(1OX1) )

C - Correct M - Miss F - False alarm T - Total

P(C),.. - Probability of Correct detection etc..

X0

1
2
3
4

5
6
7
8

-0.1
-0.2
-0.3
-0.4

0.2
0.3
0.4

Xi

-0.12
-0.22
-0.30
-0.36

0.16
0.35
0.60
0.91

X2

-0.22
-0.80
-1.10
-1.29

0.45
1.26
1.79
2621
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Period = 3.0 Seconds. Table E23

Damping ratio = 0.707.

Chane in FREQUENCY

Stimulus

Summrar (all subjects)

Detection time

Mean Si 1ma

2.09
1.59
1.44
1.18

2.21
1.41
0.85
0.61

0.68
0*52
0.45
0.70

0.80
0.61
0.54
0.30

Stimulus

1 -0.1
2 -0.2
3 -0.3
4 -0.4

6
7

0.1
0.2
0.3

8 0.4

Summarv

Detection

Stimulus**

P(C)

1.000
0.982
0.927
0.945

0.945
0.982
0.964
0.945

0.961

P(M)

0.000
0.000
0.000
0.000

0.036
0.018
0.018
0.018

0.011

0.000
0.018
0.073
0.055

0.018
0.000
0.018
0.036

0.027

C M F T~

cc55
54
51
52

52
54
53

0 0 55
0 1 55
0 4 55
0 3 55

2 1 55
1 0 55
1 1 55

52 1 2 55

423 5 12 440

time units in(2*time in seconds).

XO - ln(P/Pn) / ln(10)
X1 - Difference in sigma of velocitv from

the nominal
X2 - (sign) In ( abs(10X1) )

C - Correct M - Miss F - False alarm T - Total

P(C),.. - Probabilitv of Correct detection etc..

Nominal *

X0

1
2
3
4

5
6
7
8

-0.1.
-0.2
--0.3
-0.4

0.1
0.2
0.3
0.4

xi

-0.12
-0.22
-0.30
-0.36

0.16
0.35
0.60
0.91

X2

-0.22
-0.80
-1.10
-1.29

0.45
1.26
1.79
2.21
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Nominal: Period = 3.0 Seconds. Table E24

Damping ratio = 0.707.

Change in VARIANCE.

Stimulus

Subject? SH

Detection time

Mean Sigma

2.75
2.32
2,45

0.56
0.98
0.72

2.03 0.77

2.86
2.70
Z.68
2.28

0.70
0.71
0.78
065

Stimulus

1 0.2
2 0.3
3 0.4
4 0.5

5 -0.2
6 -0.3
7 -0.4
8 -0.5

Summarv

P(C)

0.775
0.925
0.975
0.975

0.875
0.950
0.925
0.950

0.919

P (M)

0.225
0.050
0.000
0.000

0,125
0.000
0.000
0.025

0.053

P (F)

0.000
0.025
0.025
0.025

0.000
0.050
0.075
0.025

0.028

C M F T

31 9
37 2
39 0
39 0

0 40
1 40
1 40
1 40

35 5 0 40
38 0 2 40
37 0 3 40
38 1 1 40

294 17 9 320

Detection time units? lrn(2*time in seconds).

Stimulus: XO - ln(P/Pn) / ln(10)
X1 - Difference in sigma of velocity from

the nominal
X2 - (si-in) in ( abs(1OX1)

C - Correct M - Miss F - False alarm T - Total

P(C)v.. - Probability of Correct detection etc..

X0

1
2
3

X2

0.2
0.3
0.4

4 0.5

X1

0.16
0.25
0.35
0.47

-0.12
-0.18
-. 22
30 .26

5
6
7
8l

0.45
0.91
1.26
1.55

-0.22
-0.57

$6.97

-0.2
-0.3
-0.4

-0,5
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Nominal: Period-= 3.0 Seconds+# Table E25

Damping ratio = 0.707.

Chanre in VARIANCE.

Stimulus

SubJect* MR

Detection time

X0

1
2
3
4

5
6
7
8

0.2
0.3
0.4
0.5

-0.2
-0.3
-0.4
-0.5

Stimulus

1 0.2

3
4

0.3
0.4
0.5

5 -0.2
6 -0.3
7 -0.4
8 -0.5

Summarv

Detection

Stimulus:

xi

0.16
0.25
0.35
0.47

-0.12
-0.18
-0.22
-0,26

P(C)

0.795
1.000
0.897
1.000

0.974
0.974
0.974
1.000

0.950

X2 Mean Sigma

0.45
0.91
1.26
1.55

-0.22
-0,57
-0.80
-0.97

P(M)

0.205
0.000
0.026
0.000

0.026
0.000
0.026
0.000

0.037

2.37
2.02
1.83
1.66

2.58
2.21
2.17
2*01

P (F)

0.000
0.000
0.077
0.000

0.000
0.026
0.000
0.000

0.013

0.84
0.54
0.47
0.61

0.56
0.65
0.59
0.57

C M F T

31 8 0 39
39 0 0 39
35 1 3 39
32 0 0 32

38 1 0 39
38 0 1 39
38 1 0 39
32 0 0 32

283 11 4 298

time units: in(2*time in seconds).

XO - ln(P/Pn) / ln(10)
X1 - Difference in sigma of velocity from

the nominal
X2 - (sish) In ( abs(1OX1) )

C -'Correct M - Miss F - False alarm T - Total

P(C),..'- Probability of Correct detection etc..
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Nominal: Period = 3.0 Seconds. Table E26

Damping ratio = 0.707.

Change in VARIANCE.

Stimulus

Subject: WM

Detection time

Mean Sigma

2.68
2.36
2.18
1.80

2.93
3.02
2.74
2.64

0.70
0.68
0.61
0.65

0.69
0.51
0.48
0.56

Stimulus

1
2
3
4

0.2
0.3
0.4
0.5

5 -0.2
6 -0.3
7 -0.4
8 -0.5

Summarv

P(C)

0.875
1.000
0.979
1.000

0.979
0.958
0.979
0.979

0.969

P (M)

0.125
04000
0.021
0.000

0.021
0.042
0.000
0.000

0.026

P(F)

0.000
0.000
0.000
0.000

0.000
0.000
0.021
0.021

0.005

C M F T

42
48
47
48

47
46
47
47

6
0
1
0

1

20
0

0
0
0
0

0
0
1
1

48
48
48
48

48
48
48
48

372 10 2 384

Detection time units* ln(2*time in seconds).

Stimulus: XO - ln(P/F'n) / ln(10)
X1 - Difference in sigma of velocitv from

the nominal
X2 - (sign) ln ( abs(1OX1) )

C - Correct M - Miss F - False alarm T - Total

P(C),.. - Probabilitq of Correct detection etc..

X0 X2

1

3
4

6
7
8

0.2
0.3
0.4
0.5

-0.2
-0.3
-0,4
-0.5

Xi

0.16
0.25
0.35
0.47

-0.12
-0.18
-0.22
-0.26

0.45
0.91
1.26
1.55

-0.22
-0.57
-0.80
-0.97
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Period = 3.0 Seconds. Table E27

Dampins ratio = 0.707.

Change in VARIANCE.

Stimulus

Summarv (all subjects)

Detection time

Mean Sigma

2.60
2.23
2.15
1.83

2.79
2.65
2.53
2.31

0.71
0.76
0.61
0.68

0.65
0.63
0.63
0.60

Stimulus

1
2
3
4

0.2
0.3
0.4
0.5

5 -0.2
6 -0.3
7 -0.4
8 -0.5

Summarv

Detection

Stimulus**

P (C)

0.819
0.976
0.953
0.992

0.945
0.961
0.961
0.975

0.947

P(M)

0.181
0.016
0.016
0.000

0.055
0.016
0.008
0.008

0.038

P(F)

0.000
0.008
0.031
0.008

0.000
0.024
0.031
0.017

0.015

C M F T

104 23 0 127
124 2 1 127
121 2 4 127
119 0 1 120

120 7 0 127
122 2 3 127
122 1 4 127
117 1 2 120

949 38 151002

time unitsq~ ln(2*time in seconds).

XO - ln(P/Pn) / ln(10)
X1 - Difference in sigma of velocitv from

the nominal
X2 - (sign) ln ( abs(1OX1) )

C - Correct M - Miss F - False alarm T - Total

P(C),.. - Probabilitv of Correct detection etc..

Nominal

X0

1
2
3
4

5
6
7
8

0.2
0.3
0.4
0.5

-0.2
-0.3
-0.4
-0.5

xi

0.16
0.25
0.35
0.47

-0.12
-0.18
-0.22
-0.26

X2

0.45
0.91
1.26
1.55

-0.22
-0.57
-0.80
-0.97


