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ABSTRACT

The performance of the visual system under different attentional
situations is unknown. This research has been undertaken to examine
the normative characteristics of the peripheral visual field and how
these functions change with allocation of attention to progressively
demanding visual central tasks and when the auditory system is also
stimulated.

For this purpose experiments were conducted with 24 subjects in
which they responded to a variety of stimuli affecting their central
and peripheral visual fields. Using a YES-NO method, their performance
was evaluated for every task and stimulus position. Reaction times
were also measured for every target as well as the effect of different
audio inputs. Hardware and software were specially designed for these
experiments. Some computer programs were also developed for data
analysis.

An experimental function has been obtained for detectability of
peripheral targets versus central task load and the size of the visual
field has been determined under different conditions of visual and
audio stimulation.

It has been found that peripheral detection is improved when sub-
jects are occupied with a central task and that the visual field
narrows when listening to speech.

A model of attention is proposed to better explain up-to-date
observations in this field and some suggestions of applications and
future work are also given.

Thesis Supervisor: Robert V. Kenyon
Title: Assistant Professor of Aeronautics

and Astronautics
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CHAPTER 1

BACKGROUND OF PROJECT AND MOTIVATION

Detection of targets in the peripheral visual field is a task on

which all of us rely to successfully interact with our environment.

Drivers, pilots, cyclists and pedestrians especially make continuous and

competitive use of their central and peripheral visual fields as they

must allocate limited attention resources to both central and peripheral

tasks and other non-visual tasks such as listening for signals or mes-

sages. It is important to know how peripheral visual detection is

affected when attention to other events increases. A driver, for

instance, will be interested to know whether a over concentrating on a

central task or maneuver will make him temporarily blind to peripheral

events such as other vehicles overtaking, or on the other hand how non-

visual tasks such as talking with a passenger or listening to the radio

or the noise of the engine may influence the detection of targets neces-

sary for efficient driving. Pilots will especially benefit as flying a

plane makes extensive use of both central and peripheral visual fields

in continous competition for attentional resources. Pedestrians and

cyclists listening to portable radios may change their habits if the

probability of seeing a lateral object decreases while they are liste-

ning to music.
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Humans are provided with a surface at the back of the eyeball

called the retina, where images are formed. The retina contains

millions of photosensitive cells called rods and cones. Cones are only

present in a significant number (see Figure 1.1) in the center of the

retina. This area is called the fovea, its high concentration of cones

makes it very sensitive to small detail and for this reason it is always

in line with the object being fixated. Outside of this area, mostly

rods are responsible for detecting light and objects, the number of

rods per mm 2 decays towards the periphery of the retina outside the

central area of + 15 deg as shown in Figure 1.1 (Woodson, 1954). Cones

at the fovea are sensitive to high spatial frequency (high detail) and

their main task is to detect light, shapes and orientation. Sensitivity

to light versus location of the stimulus on the retina has been studied

verifying the supposition that the sensitivity follows the rod density

(Pirenne, 1967). This is not, however, always so, for instance visual

acuity decreases when viewing a bright object if the periphery is dimmed

(Davson, 1963). This suggests that central and peripheral sensitivity

can be influenced by other than anatomical characteristics. Many exter-

nal factors affect the perception of peripheral targets, for example

concentrating on a particular task, such as an interesting book, makes

other events in the surroundings pass unnoticed. This and other examples

show that prediction of sensitivity to peripheral events based on the

distribution of rods alone may in some cases be completely wrong, in

particular attention allotted to central tasks may decrease sensitivity

to peripheral targets.

7
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It appears to be very likely that some unknown property of atten-

tion exists which selects some sources of information in the visual

field over others to achieve an optimum input of relevant information to

match the processing requirements at that time. This study will inves-

tigate how likely it would be to detect a target or what changes can be

introduced to improve detectability.

1.1 Historical Perspective

1.1.1 Introduction

The mechanism by which some external events are selected for

processing and others are not is called attention (i.e. Berlyne, 1960).

In visual perception, such mechanism is believed responsible for some

targets being ignored in favor of others that are classified as more

interesting or important at that particular moment (Berlyne, 1950, 1951,

1967, 1970; Berlyne and Lawrance, 1964; McDonnell, 1967, 1970). Figure

1.2 illustrates this point, independent of fixation, either a goblet or

a pair of faces is seen indicating a perceptual or central selection.

It seems obvious that rules governing attention must exist if we are to

make the most of our capailities to deal with information from the

outside world. However, there is a limit to the number of things to

which we can attend at any given time, regardless of how alert we are.

We cannot, for instance, listen to a person talk while effectively

watching a television program. On the other hand, attention can be

switched from one event to another without difficulty, for example

anyone can watch a TV program on one set, while ignoring another set

tuned to a different station next to it.

9
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The early experimental investigators (Berlyne, 1969) began with

unrepresentatively simple experimental situations. These were situa-

tions in which one stimulus was presented virtually alone or was, at any

rate, so much more intense than any other that might be present that the

subject's response could be safely ascribed to its influence. In the

every day life of higher animals and human beings, however, this is not

the way things are. Our sensory organs are generally flooded with

stimuli, all of which are capable of evoking unlearned and, especially,

learned responses. However, we can hardly perform more than a very

small proportion of the responses associated with the objects that are

stimulating our receptors. There is severe competition among stimuli

for control over our behavior. Laws of attention are therefore needed

to supplement the laws of learning and the laws of unlearned behavior if

we are to predict what responses will actually occur in realistic stimu-

lus situations.

1.1.2 Evidence for the Selective Aspects of Attention

Information relative to future behavior is picked up from the

physical world by biological transducers called sensors. This informa-

tion is coded, transmitted, processed and then used to make a decision

and/or stored for future reference. The amount of information available

from a single source (sense) can be enormous and only partially used due

to psychological or physiological limitations. Processing or utiliza-

tion of such information is often selective in that some senses do not

receive the treatment necessary to elicit a response or to gain a place

in memory, that is, the processing is not enough to guarantee their
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perception (Shaw, 1982). This phenomenon of selective attention has

been studied by a number of investigators and tested in many experi-

ments, arriving at two basic findings:

a) The perceptual mechanism has limited capacity

in an informational sense. When stimuli for two tasks

arrive simultaneously, the extend of the interference

between them depends on the amount of information they

conve ( Webster and Thomson (1953, 1954), Webster and

Solomon (1955), Poulton (1953, 1956) Broadbent (1952,

1956)). In each of these studies, one's ability to

listen to the primary message was impaired when a

second message was added which had more information

than the primary message. It seems quite clear there-

fore that dealing with too many stimuli at one time is

difficult perhaps due to a limit in the amount of

information that some central mechanism can process in

a given span of time.

(b) The probability of perceiving a target dec-

reases if the number of separate sources containing

irrelevant information increases. Many investigators

(Duncan, 1980; Erikson and Spencer, 1969; Estes and

Taylor, 1964; Fidell, 1970; Gardner, 1973; Green and

Swets, 1966; Kinchla, 1969, 1974, 1977; Runelhart,

1970; Shaw, 1980; Shiffrim and Gardner, 1972) found

that error rate and response time typically do increase

with the number of signal locations.
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Many theoretical mechanisms have been suggested to account for such

attentional aspects of human information processing. All of them,

however, can be classified in one of two proposed models of attention.

1.1.3 Attention Models

Whether attention is unitary or divisible was hotly debated in the

nineteenth century and by experimentalists since 1950, but the question

is still unanswered. Two common observations are relevant to the ques-

tion of the unity of attention, but the answers they suggest are contra-

dictory. The first of these observations is that one, often performs

several activities in parallel, and apparently divides one's attention

among the activities, for instance driving and talking. The second

basic observation is that when two stimuli are presented at once, often

only one of them is perceived, while the other is completely ignored.

If both are perceived, the responses that they elicit are often made in

succession rather than simultaneously.

There is a common experience which is a good example for this

observation. Sometimes when we are deeply concentrating on a task and

someone asks us a question, we answer "what?" and a few seconds later we

answer the question without having the question repeated. One possible

13



explanation for this is that there is difficulty in perceiving* the

second stimulus and a need to end the first task before responding to

the new one. The frequent occurrence of suppresion or queuing in the

organization of behaviour suggests a bottleneck, i.e. a stage of

internal processing which can only operate on one stimulus at a time.

A person's sensory and motor performance is obviously constrained

by some bottlenecks in his biological constitution. For example, a

person is equipped with only a narrow field of clear and sharp vision

and is therefore dependent on sequential scanning for acquisition of

high spatial frequency information. A person is also equipped with a

single tongue and must therefore arrange his verbal responses in sequen-

ce. Attention theorists have speculated that there are similarly li-

mited processes in the central aervous system which would make a person

unable to think, remember, perceive, or decide more than one thing at a

time (Sternberg and Knoll, 1972).

The modern study of attention has been dominated by theories which

assume a bottleneck somewhere in the system; but the localization of the

bottleneck has been contraversial. Discrepancies in the two models can

be summarized in by looking at Figures 1.3 and 1.4 in which the bottle-

neck is located at different stages.

*Since 1913 (Watson, 1913), the general tendency is to consider percep-

tion as neural activity able to elicit a response, avoiding all

reference to subjective experience. In this thesis, it is also used in

that sense.
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The serial model illustrates some central aspects of the filter

theory first proposed by Broadbent (1957, 1958). This theory assumes a

bottleneck at or just before the stage of processing, so that only one

stimulus at a time can be perceived (Figure 1.2). When two stimuli are

presented at once, one of them is perceived immediately, while the

sensory information that corresponds to the other is held briefly as an

unanalyzed image. The observer can attend to such images and perceive

their content only after the perceptual analysis of the first message

has been completed. In this model, attention controls perception.

In the parallel model, which is associated with Deutsch and Deutsch

(1963), the bottleneck is located at or just before the stage of deci-

sion making (see Figure 1.3). According to this model, the meanings of

all stimuli are extracted in parallel and without interference. The

bottleneck that imposes sequential processing is only encountered later.

This bottleneck prevents the initiation of more than one response at a

time and selects the response that best fits the requirements of the

situation.

As an example of how the two models provide different answers to

the same question, consider a person at a cocktail party who actively

participates in the many loud conversations that take place in the room.

Assuming that the sensory messages that correspond to several of these

conversations reach the central nervous system of the listener, we may

ask: (1) at what point is the attended conversation favored over the

others? (2) to what level of processing do the unattended messages

penetrate? According to the serial model, the unattended messages are

16



"heard". According to the parallel model, all the conversations are

heard, but only one is responded to.

Several experiments have been performed to answer these questions.

For example, strong evidence was advanced against the serial model soon

after it was formulated. Although the serial model accounts very well

for the cocktail party phenomenon of selective attention, it fails to

explain another common experience at parties: The detection of one's

own name as soon as it is mentioned in an otherwise ignored conversa-

tion. Moray (1959) documented this everyday experience. He observed

that subjects were much more likely to notice a message if it was

preceded by their own name, than if it were not. Moray's results are

incompatible with Broadbent's assumption that the sounds arriving at the

ear are not analyzed as speech.

Neisser (1969) developed a visual analogue to the auditory situa-

tion, and he obtained results very similar to Moray's. He required

subjects to read coherent text aloud and to ignore words printed in red

under each line of the selected text. Subjects could do this very well

since this situation is similar to ordinary reading, where the lines

just above and below the attended line do not intrude. Neisser also

showed that subjects do not recognize the words presented in the ignored

lines, even when the same word is repeated in the text several times.

Two thirds of his subjects, however, noticed their own name on a rejec-

ted line.

The evidence from these studies indicates that selective attention

17



to inputs affects perceptual analysis, attenuating or rejecting the

processing of other inputs. This is contrary to the parallel model.

However, man is also capable of dividing his attention among concurrent

messages. This is contrary to the serial model. Thus one of the main

conclusions of research on attention is that man's cognitive operations

are far more flexible than either of these bottleneck theories would

suggest.

In Chapter 4, I shall propose a new model that solves the particu-

lar problem of the serial and parallel models and represents a good

account of the experiments described in Chapters 2 and 3 and other

investigators' observations.

18



1.2 Obiectives of the Thesis

1.2.1 Summary of Findings

If we review the attention literature of the last few years, we

shall find a considerable amount of work, mainly in hearing and vision.

These two senses are easy and practical to experiment with and they also

represent the most important source of input information as they are

used almost constantly in everyday life so that any finding in attention

mechanisms in this area would be of interest by itself, even if conclu-

sions could not be generalized to other senses. However, many experi-

ments in this area have mixed both audio and visual input, obtaining

results that should be considered as general rules of attention but not

necessarily applicable to vision or hearing alone. A typical example is

the experiment in which the subject must read a text and simultaneously

listen to recorded speech (Treisman, 1969). The differences in proces-

sing of audio inputs would make one caucious in applying the results of

this experiments to vision. Another example is the experimental proce-

dure to measure workload indirectly by means of a secondary task in a

simulator (Wierwille et al, 1977). In this case, the subject is asked to

drive safely under different conditions (usually different simulated

velocities) and to perform a secondary task, such as reading numbers

aloud whenever he thinks that he has time. Assuming that the total

processing capability is a constant, the performance in the secondary

task is an indication of the difficulty of the primary task. However,

if the assumption of constancy is false (Easterbrook (1959) and others

admit that total processing capability may be a function of central task

demand), the only way to assess workload is using a primary task

19



measure.

The conclusion therefore is that allowing intrusion from a very

different task can be useless unless some baselilne data on vision has

been previously determined with well defined task changes. Since 1958

(Broadbent, 1958), it has been known that the attention mechanism within

the hearing sense is capable of selecting one of two speech messages.

However, there have been no equivalent experiments for the visual system

to show how two visual inputs compete for attention resources. The

reason for this lack of experiments in selective attention within the

visual system is that it has several characteristics that make experi-

ments harder to design as compared with hearing; the most important may

be that the visual system has an additional mechanism to select a parti-

cular target, i.e. the fixation system that aims the fovea to the

target for maximum resolution. This way, many other target inputs away

from the central field are automatically attenuated (visual acuity is

very poor in the periphery) without diverting any attention mechanism

whatsoever. It appears clear, however, that it would be of great impor-

tance to assess the performance of the visual system under different

attentional situations.

The purpose of this thesis is to determine how subjects allocate

their attentional resources when they must respond to a variety of

tasks. All experiments involve detection of peripheral flashes as

measures of the subject's awareness of peripheral visual field events.

The results of these experiments are described in Chapter 3.3. The

total number of correct detections (the hit rate if a percentage) is

also very useful as it is a measure of the attention assigned to the

peripheral task. In this case, the d' values will be calculated and

20



thus independent of changes in subject criterion. According to models of

attention this function should decrease monotonically as the central

workload increases. The effect of audio inputs on visual detection will

also be discussed. An audio input is systematically used to investigate

how perceptual detection performance is affected while sim ultaneously

attending to a con versation, radio program or acoustic signal. Section

3.4 describes the effects observed for this and other types of audio

input such as white noise and music. In Section 3.6 we will look at the

reaction time needed by the subjects to detect flashes in each particu-

lar range position and will see how it may vary according to central

visual field task load.

In the light of the results obtained in this series of experiments

and considering up to date literature in this field, I shall propose a

model of attention in Chapter 4.4 together with other experiments that

would naturally follow the ones that this thesis covers.

Some of the results from this- thesis could be immediately appli-

cated to some real life activities. For example, pilots, drivers, and

operators of vehicles in general are engaged for a great part of their

time in performing a primary task continuously while peripheral events

are simultaneously searched. Inputs in the experiments such as talk or

noise could simulate conversation, radio listening, radio communication

or the background niose of the engine. The performance of the subject

in the laboratory under controlled conditions will show what effects are

attributable to each variable, which otherwise would be impossible to

measure under real life conditions.

21



1.2.2 Signal Detection Theory

The detectability of flashes in the peripheral visual field is a

measure of the psychophysical threshold. The classical theory of thres-

holds assumes that a real physiological threshold actually exists. A

fixed stimulus, however, is not always judged to have the same inten-

sity, but the sensation will follow a normal distribution (see Figure

1.5). A stimulus with an intensity corresponding to the threshold will

then be detected 50 percent of the time (see Corso, 1967). This theory,

although it has been used successfully for a long time, faces problems

when the subject changes his criterion. This may happen, for instance,

when he is offered some reward according to the number of correct detec-

tions. In this case, he will probably increase the number of detections

by taking more risks; that is he will say 'yes' to a doubtful stimulus.

On the other hand, if he is going to be penalized according to the

number of false detections he will be very careful, signalling detection

only when he is very certain that a stimulus exists. Obviously, two

different thresholds would be obtained in these cases. As the subject's

criterion is unpredictable and varies from subject to subject, we may

obtain a collection of different thresholds for different subjects or

for the same subject at different times while the threshold we are

interested in has not changed. All experiments described in this thesis

make use of signal detection theory to get rid of changes in detectabi-

lity due to changes in the subject's criterion during the course of the

experiment, which is possible as the experiments take a long time. To

understand the design of the experiments described in the next chapter,

it is important to understand signal detection theory. For this reason,

we will briefly review the fundamentals of this theory and how it will

22
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be applied to the experiments which are the object of this study.

The roots of signal detection theory lie both in statistical deci-

sion theory and in electrical engineering. Tanner and Swets (1954)

first proposed its application to visual detection, and later Swets

(1964) and Green and Swets (1966) compiled an account of its theoretical

and empirical bases.

Signal detection theory assumes that sensitivity is continuous and

that no true sensory threshold exists. What appears to be a threshold

is in fact a response criterion. The only reason that the observer

appears to have a threshold is that he is forced to distinguish between

a signal and noise. The noise either is produced by internal events,

such as random activity of neural origin, or is introduced by the exper-

imenter as background. Since the observer's sensation is continuously

variable, rather than discrete, he must set some criterion for deciding

whether a signal was presented or not. When a sensation does not exceed

the criterion , he responds as if no stimulus had been- present. His

task is like that of a statistical decision maker, who, on the basis of

noisy or variable data, must decide whether or not his experimental

manipulation produced a true difference. The decision maker is well

aware that even a large difference could have been produced by a combi-

nation of chance factors. He therefore sets some criterion that defines

the risk he is willing to take in accepting the difference as a true

one, when there is no difference. The location of this criterion is

assumed to be affected by non-sensory aspects of the experiment, such as

the probability that the signal is presented or the rewards and costs of

right and wrong decisions.
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A necessary experimental condition to test signal detection theory

is the inclusion of a substantial proportion of noise trials on which no

signal is presented. Thus there are two types of trials: signal pre-

sent, occurring on proportion p of the trials, and signal absent,

occurring on i-p proportion of the trials.

Noise alone and signal plus noise are assumed to be normally

distributed in classical theory. Since the two distributions overlap

(Figure 1.6), a sensation of given magnitude could be produced either by

a noise alone or by a signal plus noise. Usually the standard devia-

tions of the noise and signal distributions are assumed to be equal. The

measure of the subject's sensitivity is the distance between the means

of the two distributions m. and ms and is called d'. For a given

observer and a given signal intensity, d' is assumed to remain

constant. This can be checked by plotting the hit rate against the

false alarm rate in what is known as the "receiver operating characteri-

stic (ROC) curve" (Figure 1.7). For a fixed stimulus, the ROC curve can

be plotted by systematically varying the ratio flash/blank trials or by

asking the subject to change his criterion. This plot is checked with

the theoretical curves (Figure 1.7) or tables (Swets, 1964).

The value of d' can be calculated from the hit rate and the false

alarm rate alone. This can be done by calculating the Z scores (see

Broadbent, 1971) or consulting tables (Swets, 1964) or from a plot of a

family of d' curves such as that of Figure 1.7. These curves can be

approximated by a number of analytical functions (Broadbent, 1971); one

of these, modified to suit our experiments, is used in the computer
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program to calculate d' (see chapter 2).

Of course, for signal detection theory to be sensitive and useful,

the stimuli have to be dim enough to be barely seen. For these experi-

ments, the stimulus intensity was adjusted so that about 50 percent of

them were detected in test runs with no primary task. This adjustment

could have been made for every subject, but it was not necessary as we

never exceeded the range 20 to 80 percent detectability.
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CHAPTER 2

METHODS

2.1 Experiments and Experimental Procedure

Measurement of peripheral field sensitivity with increasing central

attention was accomplished by having subjects fixate on a target in the

center of a wide field display, then at a random time, an additional

target would briefly appears in the periphery, and the subject's task

was to detect it. The number of hits, misses, and false alarms were

used to indicate the performance of the subject and the sensitivity of

the peripheral visual field.

To control the amount of attention allocated to the central visual

field the subject's central visual field was occupied with a primary

task whose level of difficultly was controlled. Several central tasks

were devised for use in these experiments. The first presents the

subject with two numbers in his central visual field and he must detect

when they differ by a-specified amount. For example, to make this a low

attention task, the subject was required to detect only when the two

numbers were equal, i.e. the difference is equal to zero. Increased

amounts of attention are needed when this difference is increased to 1,

2, or 3. Presumably the need to perform a mental calculation to arrive

at a decision of whether the central target numbers are at criterion

value would increase the attention this central task requires to be

performed
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Other attention loading tasks involved having the subject listen to

speech, white noise, or music, and a task which requires detecting a

central number display of 3 as already mentioned, but with peripheral

targets flashing 200-400 ms after a central change.

2.2 Set-up and Experimental Description

2.2.1 Peripheral Stimuli Procedure

For all experiments, the set-up is as depicted in Figure 2.1. It

consists of a cylindrical surface (arc perimeter), whose center coin-

cides with the subject's eyes and is one meter away from them. This arc

perimeter contains 20 green 550 nm light emitting diodes (LEDs) which

flash randomly in time and singulary in space for 100 ms. To accomplish

this, a computer program randomly choses one of twenty possible numbers

which then selected one of the LEDs. Then a specially designed control-

ler to drive the LEDs, sends the appropriate voltage to the selected

light to make it flash with the same preadjusted luminous intensity and

duration of 400 ms. Subjects press a button, held in their right hand,

if they saw a flash. This switch triggers a one shot and debouncer

circuit especially designed for this experiment to send an adequate

pulse to trigger the computer. The program is then capable of storing

the subject's response to the flash and his reaction time. If the

button is pressed within a determined maximum time (2 sec) after the

onset of the flash, the computer interprets it as a hit; otherwise, a

miss is scored.
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According to signal detection theory, blank trials must be inserted

among those with flashes to determine the false alarm rate. This was

done in the following way: The computer sellected either a flash or

blank trial, then after 400 ms sent a 5 V pulse to a buzzer to produce a

short beep to request an answer from the subject. If he pressed the

response button in a blank trial, the computer increments the false

alarm counter by one; again the maximum waiting time is two seconds,

after which the program will start a new cycle after a random time of 1

to 3 seconds or 1 to 7.5 seconds, depending on the experiment. Figure

2.2 shows the timing for both versions of the experiment, the fast

version (Program ARCTRO) and the slow version (ARCTRL). The total

number of trials is always 250, although the fast version had 60 percent

flashes and 40 percent blank trials, while the slow version was 50 -50.

The reason for the use of two versions will be explained later.

2.2.2 Central Task

The two seven segment displays showed two random numbers generated by

the computer between 0 and 9. The central task display consisted of two

seven segment displays placed in front of the subject, at eye level in

the center of the arc perimeter, and at the middle of the LEDs. The

numbers on the display were used to concentrate the subject's attention

in the central visual field in a controlled manner. In each experiment,

the subject is asked to press a second button, held in his left hand,

when the difference between the two numbers is 0, that is when they are

equal, 1, 2, 3, or 7. Runs with difference 0 require less attention to

the central task than runs with a higher difference. Difference 0 is

31



P (BLANK)

P (BLANK)

100 ms -

FLASH
OR

BLANK
FIXED
TIMEBEEP

16
ms

V.'

192ms

e Z) I Sec

RANDOM
TIME

I 2 Sec
MAX

ARCTRO

P(BLANK)

P (BLANK)

FIXED
TIMEBEEP

192ms1004

+ -2 Sec I Sec

I

RANDOM
TIME

I1 6.5 Sec-- -

ARCTRL

F I G U R E 2 . 2

2

3

FLASH
OR

BLANK

FLASH
OR

BLANK

FLASH
OR

BLANK
v a a



detected by simply mentally matching the two numbers, while difference 3

or 7 calculations have to be done quickly before the numbers change.

Thus the subject must concentrate on the central task so relevant calcu-

lations can start as soon as possible after a change of numbers since he

must decide and then press the button before the next change in numbers.

Woodworth (1954) showed that when a subject is attending and expecting

an event to happen, the reaction time is approximately 100 ms shorter

than when he is not. Therefore, our subjects will find it easier to

perform their central task if they pay more attention to it.

The pair of numbers displayed was changed every two seconds, al-

though there were runs with the difference 3 and 7 when the time was

reduced to 1 second to increase even more the attention required from

the subject. It was however, not clear whether the task required froni

the subject was really a visual task or if only mental calculations were

involved without intervention of any mechanism dealing with central

visual field attention. To check this, two subjects were run with the

central task digits dimmed to the point of making them barely visible,

then run with a normal intensity; this sequence was repeated for four

runs. If looking at the peripheral profiles showed any sign of percep-

tual narrowing when the central task was made more difficult to see, it

would indicate that the paradigm used to increase the central task load

by means of two changing numbers was not suitable to measure perceptual

funneling.

In all experiments with central tasks, the subject is required to

press a button when he detects a match, to let the computer know of his

performance and to be able to determine if it is good enough for the
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corresponding peripheral performance to be included in the data for

further analysis. Similarly, when the button for peripheral targets is

pressed, the one shot and debouncer circuit sends a pulse to the Schmitt

trigger input number 1 of the computer and a hit is stored if there was

actually a match, a false alarm if there was no match, and a miss if

there was a match but no response.

2.2.3 Experiments with Other Attentional Tasks

Other additional experiments were included. They were mainly varia-

tions of the basic experiment with no central task, but included

several audio sources to the experiment such as recorded speech. Other

types of audio input were tried such as music and white noise. To

investigate if attention concentrates on the central task only when a

match occurs, a synchronized version of the main program was developed

which flashes the LEDs just after a match (difference 3) occurs; there

are also flashes which don't follow a match, but they are irrelevant to

the results and their mission was only to prevent the subject learning

that a flash always follows a match, as then he could change his distri-

bution of attention according to his expectations. Figure 2.3 shows the

timing of this run. Other details concerning the software to generate

this sequence are discussed in Section 2.4.
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2.2.4 Test Runs

Some test experiment runs were done to find out how short the

average time between trials could be. This is very important because

250 trials are needed for meaningful results and considering that each

subject must usually take part in five runs, the whole session could

become prohibitively long. The fast and slow versions shown in Figure

2.2 were tried and gave identical results except when there was no

central task. The possible explanation of this interesting effect will

be discussed later, but whatever the reason, it is clear that the

optimal solution was to run the no central task experiment with the slow

version and the more demanding central task with the fast version to

save time.

Experiments were run in a room with illumination adjusted to be

within the mesotopic region for rods. Luminous intensity and brightness

of the LEDs and the seven segment display, as well as average room

illumination, are given in the hardware section.

2.3 Hardware

Basically the equipment used in the experiments consisted of:

- arc perimeter, 20 LEDs plus a central double LED seven segment

display

- Digital PDP 11/34 computer

- LED driver and controller

- dual display driver and transcoder

- dual one shot and debouncer
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- other additional complementary materials, such as momentary

switches, beepers, tape recorder, ambient light source, filters, and

power supplies.

Other instruments were used solely for calibration and testing.

These include: photometer, eye movement monitor and pulse counter.

Most of the equipment was specially designed and constructed for

these experiments. For those pieces of equipment, a more detailed

description will foLlow and circuit diagrams and schematics can be found

in Appendix 1, where applicable.

2.3.1 Peripheral Stimulus Hardware

The arc perimeter consists of a black cylindrical surface of one

meter radius. Twenty LEDs are placed horizontally every 5 degrees (see

Figure 2.1). LEDs were Fairchild type FLV 310, whose relative luminous

intensity pattern is depicted in Figure 2.4 . They were coloured green

with a wavelength of 525-625 nm. A small pinhole, 0.1" in diameter,

also black, was placed in front of each LED. The LEDs were adjusted to

have the same luminous intensity of 50 micro-cd measured from the center

of the arc, that is from the subject's eye position. The fact that the

eyes are separated by a distance of about 60 mm could make it so that

the luminous intensity measured from a single point would not corres-

pond to the intensity received by the two eyes, especially if the LEDs

had a narrow radiation pattern or if they were badly aligned with the
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pinhole. To check this possible source of error, the photometer was

shifted about 60 mm to the right and to the left for each measurement

to detect any large deviation from the central value. No significant

change was observed. This also guarantees that small movements of the

subject's head during the experiment will not effect the results.

Control over the 20 LED targets is mediated by a digital interface

to the PDP 11/34. This special purpose interface, built in-house,

allows the computer to address and activate any number of LEDs for any

duration and intensity. Using this controller, we have control over the

timing and placement of the peripheral target and its luminous

intensity. The current through the LEDs could be adjusted simitaneously

to the required value by means of a single knob; also each individual

LED has an ajustable resistor in series with its anode for purposes of

calibration and matching of the LEDs luminous intensities.

2.3.2 Central Stimulus Hardware

The central stimulus was placed in the middle of the arc perimeter

and at the same height as the LEDs the pair of LED seven segment

displays, Texas Instruments Model TIL 308 were capable of displaying

any digit from 0 to 9 in a red color with a wavelength of 660 nm and a

luminous intensity measured from the position of the observer's eyes,

of 900 micro-cd. The width of the side by side display assembly was 20

mm. This allowed the subject to shift his line of gaze + 10 mm so that

the peripheral LEDs might also move on his retina. Therefore, periphe-

ral plots will be accurate to within an error of

e = tan-10.01 = 0.57 deg (about 10 percent)
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A 60 watt bulb illuminated the room with an average illuminance of 1 fc.

The contrast ratio measured for each LED is shown in Table 2.1.

A device using an A/D converter was designed to illuminate the

twin seven segment display. The description,block diagram and schematics

of this device are shown in appendix I.

2.3.3 Subiect Computer Interface

The mission of the one shot circuitry is to produce debounced

pulses from the two switches operated by the subject to fire the Schmitt

triggers of the computer. The IC 7400 (see Appendix 1) was used as a

bistable to output a debounced 5 volt output each time the switch was

pressed. The IC 74-121 generated a pulse of 300 ms with the positive

going edge of the anterior level signal. When the Schmitt triggers in

the computer are set to positive going edge triggering, the pressing of

a switch will be immediately detected exept for a few microseconds delay

due to the digital gates.

2.4 Software

Software was written by professor Kenyon to control the duration,

placement and timing of the peripheral stimuli on the LED arc perimeter

using the interface controller. Three programs have been developed to

issue a stimulus to the arc perimeter to light up one diode. The

position of the illuminated target and when it is turned on is rando-
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mized by the programs to prevent any subject prediction. They also

display a set of random numbers independently to a two digit display.

When the two agree with a predetermined difference between them, the

program looks for a response from the subject to indicate detection.

These three programs have been named ARCTRL, ARCTRO, and ARCSYN, and a

copy of them, together with their flow charts, can be found in Appendix

2. ARCTRL lights an LED every 10.50 seconds (average) and then waits 2

seconds forthe subject's response. Fifty percent of these trials are

flashes (see Figure 2.1). ARCTRO is a fast version of ARCTRL, the only

difference is that the mean time between trials has been reduced to 4

seconds and that the proportion of flash trials over blank trials is now

2 to 3. This reduces the duration of an experimental run from 25

minutes (ARCTRL) to 12 minutes (ARCTRO), the results being exactly the

same except when no central task is used, in which case, the fast and

continuous flashing seems to keep the subject in a state of alertness

that would disappear during the slow run of ARCTRL. For this reason,

ARCTRL was used in the experiments in which the arousal of the central

task was so little (no central task or music), that the fast flashing

of the LEDs could arouse the subject to a comparable level.

The program ARCSYN, although designed to perform similarly to the

other programs, as far as the observer is concerned, is quite different

from them. This program will not allow a flash unless a match has

previously occurred (400 ms) in the central task display. This

synchronicity between the central and peripheral tasks is achieved

without letting the subject know by introducing other non-synchronous

flashes (catch flashes) and by making matches not necessarily followed

by a flash (see Figure 2.2).
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ARCTRL and ARCTRO are provided with two additional features: fixa-

tion control and staircase methods. The fixation control loop insures

that subjects are fixating on the central target and not inadvertently

looking at the periphery by checking that the eye position monitor has a

value within the central field before issuing a command to the arc

controller. This feature was only used for testing that the eyes

looked to the central task 99 percent of the time, making the use of the

eye movement monitor unnecessary. On the other hand, the use of the

infrared eye movement monitor would have made the experiments tiring for

the subject and tedious for the experimenter as the D.C. drift has to be

periodically checked. Provision for the staircase method of determining

each LED threshold was also originally made. However, this method was

not used as it would require a prohibitive number of trials. All the

programs are capable of calculating d' (the detectability index for

each run) from the hit and false alarm rate and are provided with other

analysis features including: reaction time for each peripheral hit,

displayed as a histogram, mean and standard deviation and maximum and

minimum values for reaction time data. Other programs are used for

data analysis, DPLOT plots d' versus central task load and normalizes

these curves. PPLOT prints out the peripheral profiles for different

subjects or runs and averages them. It should be remembered that each

run is stored on a disk with a name for access at any time. To print

out the histograms, the program BPRINT should be used. RTPLOT prints

out histograms of reaction time averaged for all the subjects for each

angular position and for each central taskload.
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2.5 Subjects and Experimental Protocol

Twenty one subjects including nine members of the laboratory were

the population that took part in the experiments mentioned Most of

them were students, graduate and undergraduate. They were all previous-

ly checked and asked about any eye pathology; none of them exhibited any

sign of vision abnormality. Those who wore spectacles were asked to

wear a black shield around their head to prevent any ambient light from

reflecting on their glasses through the sides, which might change the

contrast ratio of the peripheral LEDs. This could happen because the

arc perimeter was painted black and therefore reflected little light,

which could be comparable to the light reflected on the temporal edges

of the spectacle glasses. The black cardboard shield prevented back

light from reaching the glasees. This shield caused no interference

with the experiment as the shadow cast by it, together with that cast by

the subject's head, fell on the table in front of the subject, well away

from the arc perimeter display. Peripheral vision was not restricted in

any way.

All subjects were sufficiently informed of the purpose of the

experiments and were told what was expected from them not only in an

informal way while showing them the apparatus, but were also given the

instruction sheet which follows:

You are going to participate in an experiment to study the

relationship between central and peripheral vision percep-

tion.
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You will be required to press one of two buttons

depending upon what you observe.

Please be seated and extend your arms on the table so

that you feel comfortable. You should be relaxed during the

experiment.

You will see in front of you two numbers. They will

change randomly and you are required to press the button in

your left hand every time the difference between them has a

certain value. In the first experiment, the value is 0, so

you have to press the button when the two numbers are the

same-.

While you are performing this task, you will see green

lights flashing for a short time at various distances fr.om

the central task. Each time a flash occurs, it will be

followed by a beep sound. However, the beep sound will also

occur at other times. You should press the button in your

right hand as soon as you notice a flash.

Never try to look for the flashes; keep your attention

on the central task.

Try to keep your head still during the experiments. The

two pushbuttons should be pressed only once and then released

each time the conditions are met.

Before the main experiment of about 30 minutes, you will

have a five minute trial period.

Please feel free to ask any questions you might have

concerning the experiment.

Thank you for your participation.
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Subjects were never informed of the synchronization between the

central task change and peripheral target onset existing in one of the

runs, as this would have defeated its purpose. Subjects were adapted to

the illumination of the room for about five minutes. During this time,

last minute instructions were given according to any questions the

subjects might have.

Before the actual experiments began, all subjects had a test run of

five minutes to check that they had understood all the instructions and

to familiarize them with the experiment. The order of experiments was

changed randomly for every subject to prevent any unwanted effects such

as possible improvements in performance due to practice. Between runs,

there was always a rest period of about ten minutes. The following run

was never begun unless the subject felt relaxed and willing to go on.

Subjects were scheduled for three hours, as this was the usual

duration of the experiment, preferably in the morning when they were

supposedly more rested and alert. The experiment was never split into

two parts and run on different days, as this might introduce important

errors due to changes in subject alertness. Between runs and at the

end of the experiments, subjects usually made comments spontaneously

about their performance and experiences. These comments were noted,

together with other points of possible interest. The subjects could

also be asked questions at the end of the experiment after a quick look

at the data obtained.

Subjects came on a voluntary basis and were not paid for their
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collaboration. In addition to the instruction sheet, they were asked to

read and sign an informed consent statement with a brief description of

the purposes and apparatus of the experiment.

2.6 Data Analysis

Experiments were conducted with a total of 24 subjects. However,

data was discarded when some perturbance was suspected to have inter-

fered with the normal experimental procedure or when performance in the

central task (usually 1.0 < d' < 1.9) differed more than one unit

between runs. This happened only with three subjects and was very

probably due to subject fatigue or a drop in interest in the experiment.

The amount of information recorded from each subject was enormous. To

deal with data from 21 subjects, some computer programs and algorithms

were designed. The next section summarizes how the data analysis proce-

dure can answer questions concerning:

1 Detectability of flashes as a function of central task load

2 Narrowing of the visual field as a result of increased

central task load or an additional task

.3 Effect of central task in reaction time along the visual
field

4 Effect of audio inputs (speech, music, and noise) in

peripheral detection and visual field size

5 Effect of simultaneous central and peripheral target onset

6 Differences between right and left visual fields

The total number of hits and false alarms in a run is a measure of

the detectability of the peripheral targets. For all runs, the total
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number of hits, misses, and false alarms was recorded and from them the

d' value was calculated as described in Section 1.2.2. There is no

analytical function for d'. Its value can be easily calculated,

however, from tables such as the one in the Appendix or using

logarithmic or exponential expressions which are approximations of the

real curve. The program designed to calculate d' used the equation:

d' = 3.01 - 6.02 (log HR/log FR)

where HR is the hit rate and FR is the false alarm rate. The constants

3.01 nd 6.02 were chosen to fit the real curve as closely as possible in

the region of interest for the experiments (low false alarm rate and

about 0.5 hit rate). It can be checked from the table in the Appendix

that this is a good approximation for d'(better than 5%). These d'

values have been calculated for every run, then each group of d' values

for each experiment has been normalized so that every group has the

same area (area between the curve and the horizontal axis). This rids

us of effects due to differences in target intensity for a given experi-

ment or difference in subject sensitivity. We are not, therefore, measu-

ring absolute threshold, but differences in sensitivity versus central

task load. All d' values for the same central task were then averaged.

Some of them, however, were rejected before the averaging; this hap-

pened when the d' value for that task was very different from the d'

value for the other tasks, i.e. the subject did not pay attention to the

center or he attended the center in a markedly different manner than in

the other tasks. Only four runs out of ninety seven had to be rejected

for these reasons, however.
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For each subject and each run, the ratio of central hit rate over

peripheral hit rate (C/P) was calculated as a measure of narrowing of

the visual field and then all C/P values were averaged across each task.

This was repeated for the right and left visual fields.

Reaction times were printed out by the computer after each run for

every target position in the form of histograms and the average reaction

time and standard deviation were displayed. From this data, the mean

reaction time and standard deviation was calculated for each target for

every task over all subjects and the profiles of the reaction time

versus angular displacement were plotted.
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CHAPTER 3

RESULTS

3.1 Detection of Peripheral Flashes versus Central Task Load

In Figure 3.1, the average detectability d' across subjects is

plotted for both central and periperal targets(see appendix IV for table

of values). The detectability of peripheral targets shows a significant

rise as the central task load increases from no task to a difference of

2. The t-test showed this rise to be significant at the p < 0.02 level

for all four points (N to 2). However, the central task performance

changes little except for the highly demanding task of difference 3;

this suggests that increased peripheral performance was not gained at

the expense of the central task performance. The peripheral d' curve

reaches its peak for the central task load correspondng to detecting a

difference of 2 in the center and then decreases.

3.2 Distribution of Peripheral Target Detectability

The detectability of peripheral targets, shown in Figure 3.1, is

the lumped detectability for all targets (-45 deg to 45 deg) and there-

fore it does not indicate how the changes in sensitivity are distributed

along the visual field. For example the increase in sensitivity up to

difference 2 could be due to an increase in sensitivity in only a
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portion of the visual field, such as the central area. This would imply

a narrower visual field.

3.2.1 Definition of Narrowing

For instance, Figure 3.2 depicts two bell shaped curves: f(x) and

g(x); we would probably say that f(x) is narrower than g(x) because f(x)

has higher values than g(x) around the center and lower ordnate values n

the periphery. This intuitive notion of narrowing can be mathematically

defined in the following way:

Given two functions f(x) and g(x) defined for -xo < x < X0 , we shall

say (see Figure 3.2) that f(x) is narrower than g(x) for x = xi if

If(x)d(x) J g(x)d(x)

:f(x)d(x)f: f(x)d(x) f::g(x)d(x)+fg(x)d(x)
-xo Px i -Xo+- x i

What this definition of narrowing means is that the ratio of the area

beneath the curve f(x) between -xi and xi (center) and the area between

-xo to -xi and xi to x0 should be greater for g(x) if f(x) is going to

be said to be narrower than g(x).

It should be noted that this definition requires a region where the

narrowing will be tested (xi). It does not make much sense to speak

about narrowing if we do not say where it occurs, at least roughly. The

intuitive narrowing first observed in Figure 3.2 was assumed to be in

the central area, although it was not specified what the center was.
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There is a property of this definition which should be tested, too. If

any curve f(x) or g(x) is multiplied by a constant, the definition of

narrowing should not be affected, beause the constant would multiply

both the numerator and denominator of one of the ratios. In our experi-

ments multiplying by a constant is the equivalent of a change in

subject's sensitivity. This definition fits very well therefore with

visual field detection as it is independent of drifts in overall

subject detectability profiles.

3.2.2 Measure of Narrowing of the Visual Field

There are several parameters that can be used to measure a

narrowing or funnelling of the visual field when central task load

increases. The simplest one is to use hit rate for each individual LED.

This represents the sensitivity profile of the horizontal meridian of

the retina for that particular task. By comparing profiles for

different tasks, we can check for any concentration towards the center.

Figure 3.3 depicts one subject's profiles for different central tasks,

they all have an overall bell shape as Pirenne (1967) measured. Note

that the notch at around + 15 deg is due to the blind spot. Also note

that some targets sometimes show a very different hit rate; this is

probably due to the low number of flashes for that target position (it

was usually around 10, but could drop as low as 4). Thus these plots

are not the best representation of a possible narrowing visual field.

Although a very large funneling effect would be visible this way. There

are two reasons why this profile would not show small amounts of funnel-

ing. Firstly, the low number of flashes for each angular position
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(around 10) makes it difficult to see small changes in the slope (a

narrower curve implies a greater slope). Secondly, the total number of

hits does not necessarily have to be the same for the curves being

compared making comparisons very difficult, especially considering that

targets in the center of the visual field are seen 100 percent of the

time making the peak of the curve invisible. The reason why these

peripheral profiles "sa'turate" in the center (flashes are seen 100

percent of the time) is that since all LEDs have the same intensity and

the peripheral sensitivity is so greatly diminished as we go further

from the center, flashes seen only around 10 percent of the time in the

periphery are always seen in the center. If LED intensity were reduced

to make central flashes visible 90 percent of the time, for example,

then peripheral flashes wuold not be detected at all. Figure 3.3(d,e)

is an example of how mistakes can occur if based solely on an estimation

by eye of the peripheral profiles; anyone would say that the profile

SMLS corresponds to a visual field narrower that that of SML3. We shall

see with the more elaborate ways of measuring narrowing described next

that it is just the opposite.

Another alternative to check what curve is narrower is to consider

these profiles as normal distributions and then the standard deviation

would be a measure of how peaked or narrow the curves are.

The third possibility is to calculate the ratio between the hit

rate in the center and the hit rate in the periphery. The angle that

demarcates center from periphery is the angle that defines narrowing,

that is, if the two curves are compared in this way, choosing 30 deg as

the boundary between center and periphery, for instance, the profile

60



with a higher C/P ratio has a higher concentration of hits for flashes

occurring between + 30 deg than the other. If we assume that the false

alarms are evenly distributed along the visual field the detectability

for targets between + 30 deg is greater. If the false alarms are not

evenly distributed, but had for example a higher concentration in the

periphery the ratio between d' in the center and d' in the periphery

would change slightly for all subjects. In the last case, C/P is still

useful in measuring narrowing if used only for comparison with other C/P

values, as it is in our case, and therefore detectability for targets

between + 30 deg will still be greater for that run with a higher C/P.

These two last algorithms have been used in this data in the

following way: for one task, the standard deviations, the ratio of

central hit rate (C) and peripheral hit rate (P) was calculated. Two

values were obtained for C/P, for targets between + 15 deg; the only

difference between them was that targets in the blind spot (15 - 20 deg)

were excluded from the calculation of one of them.

In all three cases (standard deviation, C/P and C/P excluding blind

spot), the results were very close, indicating that they are good ways

to measure narrowing.

The third method (C/P for all targets), however, has some advan-

tages. Compared to the standard deviation, C/P can be used for right

and left visual fields separately and the definition of "periphery" can

be shifted in or out as wished. Thus narrowing was calculated using

C/P, the values obtained are shown in table 2 in appendix IV. The plot
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in Figure 3.4 shows C/P versus central task. These data show that C/P

is almost independent of the central task load, that is, increasing

attention to a central task does not appear to reduce or narrow the

visual field.

3.2.3 Narrowing for the Right and Left Visual Fields

The ratio of C/P has been calculated for the right and left visual

field independently, that is: C/P for the right hand hemivisual field

is the ratio between the hit rate for 0 to 25 deg and the hit rate for -

30 to -45 deg. As described in Chapter 2, these values are calculated

and averaged for every central task. The results are plotted in Figure

3.5, C/P values for the right field are represented by squares and

values for the left field by triangles. The t-test did not show any

significant difference between right and left fields for tasks N, 0, 1,

2, and 3, indicating that for this type of task, both visual fields are

equally detectable.

3.3 Synchronized Central and Peripheral Targets

Section 3.2 has shown that no narrowing occurs when central task

load increases. To further test this, a synchronous expermiment was

performed. The hypothesis is that when the central numbers reach a

match, a high concentration of attention to the center is required from

the subject for a short time. This could cause a drop in the number of

targets detected in the periphery, whose onset was only 200 ms later (of

course, the subject was unaware of the synchrony; see Section 2.2.3)
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In addition to the normal protocol, five subjects performed an

experiment in which central and peripheral onset was synchronized. They

were, of course, not informed of this and many of them did not find any

difference from the run with simple difference 3. Figure 3.6 shows

graphically the results obtained when comparing detectability for the

center and peripheral targets. Both detectabilities drop when the onset

of the targets is synchronized with a match in central task. Both

peripheral and central task reductions are significant beyond the 0.05

level (p < 0.035). Figure 3.7 plots C/P for difference 3 and difference

3 with synchronized tasks. It shows clearly that simultaneous target

onsets do not make the visual field narrow, even momentarily.

3.4 Audio Inputs

Three different audio inputs, speech (T), white noise (W) and music

(M), were introduced in three independent runs with no central task to

study the effect of such auditory signals in peripheral performance.

Values for overall detectability (d') and narrowing (C/P) have been

calculated and compared with the value for no central task (N).

3.4.1 Audio Inputs and Detection of Targets

The mean detectability and standard deviation of peripheral targets

has been plotted in Figure 3.8 for the number of subjects indicated,

when listening to white noise (W), music (M), speech (T) or no task (N).

According to this figure, listening to speech increases the

detectability of peripheral flashes. Easy listening music seems to have
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the same trend as silence and white noise makes detection of peripheral

targets even lower than silence. These results however, should be taken

very carefully because the t-test for differences of means shows no

significant difference beyond the 0.05 level, probably due to the small

number of samples. The difference between no task and speech is signi-

ficant at the 0.1 level.

3.4.2 Effect of Audio Inputs on Visual Field Size

Figure 3.9 depicts the ratio (C/P) for the three audio inputs

tested and no central task or silence. The (C/P) mean value for speech

is significantly different than the other means beyond the 0.05 level (P

< 0.03). Thus, listening to speech narrows the visual field although the

overall detectability is not reduced (see figure 3.8). The concentra-

tion of hits in the periphery can be seen in Figure 3.3(A), which

depicts the profiles for one subject. It can be seen that the profile

for speech (T) shows a lower hit rate for peripheral targets while

central detection is not diminished. Consequently listening to speech

makes central targets less detectable as compared to listening to white

noise, music or silence.

3.4.3 Right and Left Field Narrowing

The ratio (C/P) was also calculated for the right and left field

for every run with audio input and all runs within the same audio input

were averaged. The means and standard deviations for right, left and

6 9
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total are depicted in Figure 3.5 together with ther central tasks for

comparison.

It must be noted that tasks with an audio input, white niose, music

and speech have a (C/P) higher (but not statistically significant)

difference for the right field, especially for speech, while tasks

involving the central display do not show this trend. To find out if

audio inputs do make the right field less detectable (higher (C/P)) a

single averaged (C/P) value was calculated for all audio inputs for the

right and left field and the same for the other runs. The t-test

applied to the latter showed no significant difference, audio inputs did

not show significant differences beyond the 0.05 level, but they did at

0.1. The fact that the difference betweeen right and left field becomes

more significant when all audio inputs are considered makes one think

that a greater number of subjects could have shown a significant

difference.

3.5 Detectability and Narrowing for all Tasks Tested

Figure 3.10 depicts the detectability for all tasks tested, that is

audio inputs, increasingly difficult central tasks and synchrony. Syn-

chronizing the central and peripheral target onsets decreases peripheral

target detectability from the peak at 2 similar to the decrease for no

central task. The lowest physical detectability was reached when -

listening to white noise, with a d' value even lower than that for

synchronized targets. The drop in central task detectability or perfor-

mance for synchronization is huge and significantly different from any
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other central task detectability. In Figure 3.11 are plotted all

the (C/P) values for all tasks. It is obvious from this plot that

there is no narrowing effect except for T (speech) which might show some

narrowing if tested with a greater population. (C/P) for white noise

is lower than the rest of the values, however, its great standard

deviation prevents it from achieving any significant difference.

3.6 Reaction Time

It is well known that reaction time (RT) is longer for less

detectable targets (Green and Swets, 1966). Measuring RT for every

target position is therefore an indirect measure of detectability.

3.6.1 Reaction Time for Nine Subjects Randomly Chosen

Before calculating averages across all subjects, the mean RT and

standard deviation for targets located at 5, 25 and 40 deg have been

plotted for nine subjects (Figure 3.12) to see individual trends. The

nine subjects were chosen randomly among all subjects run with

difference 3 in the central task. Difference 3 was chosen because it

represents a high central task load and it was thought that differences

in RT between several angular positions might be more visible under this

condition.

As Figure 3.12 shows almost all subjects (seven) needed a longer
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reaction time to detect targets at 25 deg as compared to those at 5 deg.

From 25 to 40 deg, again, only two other subjects showed a drop in

reaction time. All subjects had a longer RT for 40 deg than for 5 deg.

3.6.2 Average Reaction Time Profiles for Each Task

The average reaction time profiles for each task are plotted in

Figure 3.13. Each plot represents data from a particular central task or

audio input as the letter indicates. Reaction times are invariably

longer in the periphery. This increase in reaction time in the periphery

is more impressive with audio inputs (more than 400 ms) especially the

music and white noise (M,W). Experiments with syncrhonized central

tasks showed the opposite trend; no significant differences between

center and periphery.

3.6.3 Averge Reaction Times for Each Task

The average for each plot in Figure 3.13 was calculated, with the

loss of the angular position information. These averaged reaction times

have been plotted versus central task in Figure 3.14 and versus type of

audio input in Figure 3.15. It should be noted that reaction time is

longer in the synchronized runs and shorter when there is no task (P >

0.05). There is no significant difference between reaction times for

the other tasks or between reaction times with audio input.
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CHAPTER 4

DISCUSSION

4.1 Peripheral Detectability

We have seen that the detectability of peripheral targets shows a

significant rise as the central task load increases from no task to a

difference of 2. This suggests that a greater demand of attention to

the center task also increases detectability of flashed stimuli.

Experiments described in Chapter 2 were designed to measure mainly

three parameters related to peripheral detection as a function of a

central or primary task. One parameter is overall detectability (d') of

the peripheral visual field (+ 45 deg). This measures the probability of

detecting a target in a random position of the peripheral visual field.

The variable in these experiments is the complexity of the central task.

According to the Yerkes-Dodson Law (Yerkes & Dodson, 1908) to move from

a simple to a complex task keeping the same quality of performance, the

level of arousal has to be increased, but the law does not contemplate

secondary tasks so that it does not say how the increased level of

arousal will meet the demand of the second task. However, Kahneman

(1973) included this possibility in his electrical analogy (an electric

generator plays the role of arousal or supply and several tasks are the

load connected to it) and suggested that the increased arousal is only

enough to compensate for the higher demand of the primary task (up to a
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limit), so that the spare capacity allocated to the secondary task will

diminish and performance will deteriorate. According to this, detection

of peripheral targets should drop when the central task demand

increases. We have found (see Figure 3.1) the opposite up to a differe-

nce of 3. Kahneman's electrical analogy can be modified however to

accommodate our finding by changing the shape of the "total supply"

curve as shown in Figure 4.1.

This figure has been plotted from the overall detectability data

(d') for central and peripheral tasks (see section 3.1). The x axis

represents the central task load and the y axis the supply or arousal

for a particular central task. The line "supply = load" indicates how

much supply should 'increment when the central task becomes more

demanding to keep the same performance. The lower curve represents the

supply to the central task, the d' value for the central task

performance was used to plot this curve. As long as d' for the central

task does not change as the central task difficulty increases, the

supply meets the demands of the central task and the curve coincides

with the straight line "supply = load". When d' drops (for central task

difficulty 3), the supply is not enought to meet the central task

requirements and the curve diverges from the straight line "supply =

load". The supply to the central task is not the total supply. The

total supply consists of that to the central task plus the supply to any

other tasks, in our case the peripheral task. Therefore if we add to

the central task supply curve in Figure 4.1 the supply to peripheral

task, we can plot the total supply. Detectability of peripheral targets

(d') and supply to peripheral task are closely related, as supply in-

creases detectability increases; therefore d' values were added directly
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of d'. The curves plotted in Figure 4.1 this way have a remarkable

resemblance to the hypothetical "performance resource function" proposed

by Norman and Bobrow (see Wickens et al., 1980) and with Kahneman's

(1973, p. 15) hypothesized curve. All curves, although using different

names, plot capacity supplied to concurrent tasks versus capacity

demanded by primary task.

The most interesting aspect of these curves is the vertical

distance or substraction between total supply and central task supply,

that is supply to the secondary task or peripheral task in our case. As

Figure 4.1 shows, supply to the periphery increases faster than to the

center; then for highly demanding tasks the supply starts to be insuffi-

cient for efficient accomplishment of the central task (around

differences 2 and 3) and for the increasingly difficult central tasks

all available supply is in the limit theorethicaly directed to the

central task in detriment to the periphery.

What these results seem to indicate is that occupation in a primary

task can improve performance as long as the compelxity of the primary

task is not too high. It may be hard to say what task is easy or

difficult. According to the scale of these experiments to detect when

two changing (every 2 seconds) numbers were equal was an easy task while

detecting when they were three digits apart (changing every second)

began to make performance drop. Detecting difference 2 put peripheral

performance at a maximum.
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It is interesting to note that speech has the same effect as

visual central task has as far as arousal and detectability are

concerned (see Figure 3.10). Noise and music played at the same level

as speech, however, did not show any arousal effect. Very loud noise

has, though, been reported to be an effective arouser (Boggs and Simon,

1968; Broadbent, 1954; Hockey, 1970; Houston, 1968).

Another very interesting result has been obtained for the run with

synchronized central and peripheral target onset. In this case,

detectability of targets, either central or peripheral drops drastically

(see Figure 3.10) indicating that two events happening very close in

time (peripheral onset was 200 ms later than central) are very likely to

pass undetected. As can be seen in Figure 3.10, the detectability in

the periphery for this synchronized run is almost as low as when no

task was presented, which points out how deteriorated peripheral detec-

tion of targets is when there is no central task. Vince (1948) found

that whenever two signals followed one another within 0.5 seconds, the

reaction to the second signal was markedly delayed. We have found not

only this (see Section 4.3) but also a considerably lower

detectability.

4.2 Narrowing of the Visual Field

The motivation of the experiments which are the subject of this

thesis was to find out if the visual field narrows when the central task

becomes demanding. No narrowing of the visual field has been found (see

Figure 3.4), except when recorded speech was played while the subject

was engaged in the peripheral task (see Figure 3.1). Bursill (1958)
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reported narrowing of his subjects' visual field or a "funnel effect"

when they were exposed to extreme hot and humid conditions. Ikeda

(1979) suggested that the visual field is smaller while detecting a

figure in the central visual field. Therefore it would have been a

reasonable guess to expect some narrowing in this experiment as the

central task difficulty increases. It should be pointed out that the

absence of a funnel effect has been observed when subjects were informed

and expecting peripheral flashes. They should therefore allocate some

of their attentional resources to the periphery. It should also be

argued that in real life conditions such as flying a plane or driving a

car, peripheral events can be expected as well. Narrowing of the visual

field was however observed clearly and significantly in runs when sub-

jects were asked to listen to recorded speech, as Figure 3.11 shows (T

for talk or speech). The ratio of hit rate in the central field and in

the periphery (beyond +30 deg) increases from 2 without speech to 3 with

speech. This narrower visual field is not accomplished at the expense

of less detection, but rather the opposite, as Figure 3.10. depicts. The

detectability for speech (T) is quite high. Translating the experimen-

tal conditions to real life situations, it could be predicted that the

probability of detecting peripheral events while listening to a conver-

sation or any other speech source will decay significantly. This effect

can be important when flying a plane or driving, as detection of peri-

pheral targets is necessary for efficient control of the vehicle. Audi-

tory inputs may divert attention from visual events.

Another interesting finding, also related to audio inputs, was

observed when plotting the C/P values for the right and left visual
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fields independently (Figure 3.5). It can be seen that all tasks

involving audio inputs have a lower detection rate for the right visual

field. The right field ends up in the left hemisphere of the visual

cortex. It could be argued that as word processing is predominantly

done in the left hemisphere, both visual and auditory tasks share

processing in detriment to the visual (maybe also to the auditory)

supporting the tendency observed in figure 3.5 in contrast with the

opposite view which would predict a higher detection rate in the right

visual field as the left hemisfere is more active or dominant than the

right.

4.3 Reaction Time

Reaction time (RT) has been found to be longer in the periphery

than in the center. Figure 3.13 showed that this increase in reaction

time towards the peripheral is gradual and steady. This result was

expected because it is known (Green and Swets, 1966) that reaction time

is a sensitive and predictable measure of detectability that decreases

as probability of detection increases.

We also know (Vince, 1948) that when two signals follow one another

within 0.5 seconds, the reaction to the second signal is markedly -

delayed. The RTs for the run with synchrony (flash 200 ms later than

central change) confirms this rule, as can be checked in Figure 3.13

(3S), the RTs are considerably higher than the rest. It is interesting

to note that the extreme periphery is not affected by this delay. This

suggests that the center and periphery are processed independently, so

that there is no possible synchronization between central task and
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periphery because they are processed by independent channels. Figure

3.3 confirms this finding; the hit rate for each angular position is

plotted for difference three in the central task and difference three

with synchrony. Central targets are much less detectable when the tasks

are synchronized, however, the detection of peripheral targets is very

little affected.

A parallel model of attention would easily explain these observa-

tions just assuming that central and peripheral vision are independent

channels, however, we have also seen that speech makes peripheral

targets less detectable, obviously speech and peripheral processing are

different channels, so that there is no explanation for it in a parallel

model, but in a serial model where processing capabilities are shared.

These results suggest that there are both a parallel and a serial

stage in processing of information. A model with this feature will be

proposed in the next section and how the model predicts results obtained

so far and other observations will also be discussed.

4.4 Proposed Model of Attention

Two basic models of attention can be found in the literature. They

are the parallel and serial models, already described in Section 1.1.3,

and depicted in Figures 1.3 and 1.4. My proposed model takes features

from both of them and adds new capabilities necessary to account for up

to date observations. We have tried nevertheless to keep the model as

simple as possible. Figure 4.2 depicts the model. Information from the
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outside world coming from a variety of sources is processed, according

to their nature in independent preprocessors. For example, central and

peripheral visual fields could have independent preprocessing. These

dedicated stages would work independently and no interference among them

is possible. The main processor will then take care of preprocessed

information. This box, labeled MAIN PROCESSOR in Figure 4.2, is capable

of dealing with information which has passed the first stage simultan-

eously, for example central, peripheral visual field information and

speech would be processed at the same time in this box as long as its

capabilities are not exceeded. That the main processor is of limited

capacity is in agreement with classical theory (Webster and Thompson,

1953, 1954; Webster and Solomon, 1955; Poulton, 1953, 1956; Broadbent,

1952, 1956). We shall further assume that this capacity is constant as

there is no reason why this processing power should be reduced, and it

is what the results of the experiments suggest (see level K in Figure

4.1).

The main consequence of a limited processing capacity is that it

may not be enough to deal with all the information arriving from the

dedicated preprocessors. The decision making stage is then in charge of

deciding which sources of information should be favored and which

attenuated to match the amount of information that the main processor

can handle. The decision making stage also takes care of sending com-

mands to the motor system to initiate a response to the stimuli. The

main processor has other input apart from the ones from the sensory

organs, which informs the processor of past experiences and is therefore

coming from the box labeled MEMORY. Inputs from memory alone can
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trigger the motor system, for example, if we suddenly remember to make a

telephone call, the main processor will receive this request from memory

and after informing the decision making stage of this and the other

inputs competing for a response, the decision making box will probably

decide to move the arm to reach for the phone and dial the number.

Again, the numbers sent from the memory are converted into finger move-

ments. The decision making box will also send signals to the main

processor to attenuate other inputs such as listening to a conversation.

The decision making stage has another important mission. There are

stimuli to which we may not want to respond with the motor system, but

may want to store in memory for future reference. The decision making

box will then decide which information is considered useful for storage.

This requires some processing as the decision will probably be based on

comparisons with past experiences to make sure something new is stored.

The main point is that the processor can be utilized to process external

and internal information, the decision making stage decides what portion

of the total capacity of the processor is dedicated to them. Let us

illustrate this point with an example: If we are engaged in a very

simple task, like watching a sunset, the decision making stage will

detect the under utilization of the processor and will use the remaining

capacity to organize internal information. This is what we call thinking

and will attenuate information coming from the outside to prevent any

interference. This example may help us understand why the peripheral

detection is so low in the experiment described before when no central

task is imposed on the subject. In fact, many subjects commented after

the experiment that they could not concentrate because their imagination

interfered.
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There is a state in which stimuli from outside are almost

completely ignored, that is sleep. It can be checked that the visual

system is no exception with the following simple experiment: Open the

eyes of a sleeping person with your fingers and put an object in front

of his eyes, then hide the object, wake the person and ask him what it

was. He will be unable to say. During sleep, therefore, the main

processor is not occupied with external information, according to the

model it must be processing internal information. Several authors,

looking for a reason for sleep have proposed models that consider sleep

as a state in which reprogramming takes place with the new information

acquired in the day (Dewan, 1967; Newmann, 1965; Gaardner, 1966;

Greenberg and Leiderman, 1966). This hypothesis fits very well in the

model proposed. According to the model, sleep could be a situation in

which channels bringing information from the outside are shut off to

allow the main processor to organize the data collected and stored in

memory. There is some evidence presented by Livingstone and Hubel (1981)

to support this view. They recorded from individual cells in the visual

cortex of sleeping cats. The recordings showed irregular bursts of

spontaneous firing although images on a screen stimulated their retinas.

As soon as they were awakened, the spontaneous firing (noise) was

reduced and replaced by a smoother and more regular pattern,suggesting

that visual signal transmision was blocked during sleep because of the

increased signal to noise ratio. This experiment seems to suggest that

the attenuators of Figure 4.2 are rather controllers of the signal to

noise ratio.
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4.5 Justification

Some examples have already been described that support the model

proposed. However, the real justification of the model is in its

superiority as compared to existing models to explain results obtained

in many experiments. The serial or filter model first proposed by

Broadbent fails to explain those experiments (Treisman, 1970; Treisman

and Fearnley, 1971) in which division of attention to two or more

sources is evidenced. The parallel model, associated with Deutsch and

Deutsch (1963) assumes that each source is processed independently.

This way attention can be divided, however, it cannot explain those

experiments where selective attention to a source or task reduces

performance on other tasks, because it would imply that the processing

is not parallel or independent. In an attempt to solve the problem, the

capacity model was formulated. It assumes that there is a general limit

on man's capacity to perform mental work (Moray, 1967). The parallel

model with this feature could be able to explain those cases of reduced

performance in a secondary task due to load in a primary task as a

simple overload of the processor. Very soon, however, a new problem

arose with this capacity model. Experiments showed evidence that the

total capacity was not constant whatsoever but varied with the

difficulty of the task. The effort invested is determined by the

intrinsic demands of the task (Kahneman et al., 19.68). This apparently

reasonable finding is actually quite puzzling. At an intermediate level

of difficulty, the subject makes a significant number of errors. Yet he

does not work as hard as he can, since he exerts greater effort when

difficulty is further increased. Why, then does the subject not work

harder at the initial level of difficulty and avoid all errors? The
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model proposed in this thesis answers that question. The total

processing capabilities are constant for each subject, but they are not

only utilized for processing external information but for internal

processing also. No task (external or internal) has the privilege of

exclusive use of the processor, but they all must share the available

capabilities according to the subject's needs at that time.
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CHAPTER 5

SUMMARY

The main objective of this thesis has been to assess the

performance of the visual system under different attentional situations.

As a starting point, Chapter 1 has reviewed the literature in selective

attention revealing that the mechanisms involved are far from being

understood. The coexistence of different attention models, discussed in

this study, is evidence of our limited knowledge.

Experiments were designed and conducted to determine how subjects

allocate their attentional resources when they must respond to a variety

of tasks (Chapter 2). The experiments measured changes in peripheral

sensitivity with increasing central attention and with audio inputs,

accomplished by having subjects view a wide field display while fixating

on a target in the center of the visual field. At a random time, an

additional target appears in the periphery, and the subject's task is to

detect it. The number of hits, misses and false alarms were used to

indicate the performance of the subject and the peripheral visual field.

Results obtained from these experiments have double value: Firs I,

they are applicable to real life situations if we consider the experi-

ment as a simulation of a particular activity. Peripheral detection is

a function of the primary task. Knowing the shape of this function

(Figure 3.1), we could change a variable central task to obtain a

desired peripheral performance. For instance if we wanted to optimize
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the peripheral visual field detection of a pilot flying a plane, we

should make sure he is engaged in a task that puts his peripheral

detection in the peak of Figure 3.1. Experiments have shown that speech

narrows the visual field; we can conclude that activities requiring

peripheral target detection will be performed less effectively when

simultaneously listening to speech. Thus it will not be desirable to

listen to any speech source while engaged in a task that requires maxi-

mum peripheral detection, although it can be advantageous if the rele-

vant task is in the central field.

Secondly these experiments have shown that selective attention is

involved in visual perception although the performance of the visual

system under various attentional situtations appears to be different

from what could have been expected. We have therefore gained some

knowledge of the attentional mechanisms themselves and a model of atten-

tion to account for these and previous experiments has been proposed in

Chapter 4.

The use of the C/P ratio has shown a simple and effective way of

measuring the narrowing of the visual field and we recommend its use in

further experiments.

Several experiments have shown interesting although non-significant

results, such as the effect of white noise and music in peripheral

detection and the higher detectability of the left visual field when the
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subject is listening to any audio input. The lack of statisitcal signi-

ficance could very well be due to the small population of subjects who

participated in these audio experiments, therefore to design a collec-

tion of experiments with simultaneous audio and visual inputs for a

larger population seems to be a future step.

All experiments in this work have been conducted with static tar-

gets. It would also be very interesting to know what differences

dynamic targets may introduce.

Also, before using the results of this work to predict perfor-

mance in real life situations, an evaluation should be done with

gradually increasing intensity targets, instead of the sudden onset used

in the experiments and targets with different shapes should be used to

adapt the experiment to particular cases.
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C PROGRAM TO CONTROL THE LED ARC PERIMETER.
C WRITTEN BY R.V. KENYON FALL 81.
C
C LINKING OBJECT FILES NEEDED ARE:
C RVKLIB.OBJ - LIBRARY WRITTEN BY R.V. KENYON FOR LPS11.
C LPSLIB.OBJ; - LPS11 LIBRARY WRITTEN BY DEC.
C
C ri-ls PROGRAM WILL ILLUMINATE ONE LED ON THE ARC IN A
C PSEUDO-RANDOM SEQUENCE AFTER WAITING BETWEEN FLASHES
C SOME RANDOM TImE BETWEEN 1 AND 7.5 SECONDS.
C
C CONCURRENTLYP AT A USER SPECIFIED INTERVAL THE CENTER DISPLAY
C NUMBER WILL CHANGE VALUE PRODUCED BY A RANDOM NUMBER
C GENERATOR. THIS FEATURE IS IMPLEMENTED BY CONNECTING
C t TO A CHANNEL t2 (DACI) TO A DVM DISPLAY.
C
C THE SUBJECT RESPONDS BY TRIGGERING ST2 WITH A PULSE.
C AT WHICH TIME THE REACTION TIME IS STORED IN A DATA.ARRAY.
C IF NO RESPONSE IS RECIEVED .AFTER 3 SECONDS THE TRIAL IS
C A MISS AND A 1 IS STORED IN THAT LOCATION.
C
C A HIT WILL DECREMENT THAT TARGET INTENSITY BY A FIXED AMOUNT
C WHILE A MISS WILL INCREMENT THAT SAME TARGET INTENSITY
C BY THE SAME INCREMENTAL AMOUNT. THUS EACH TARGET LOCATION
C ON fHE ARC WILL HAVE ITS OWN INTENSITY VALUE THAT WILL
C CHANGE WITH THE NUMBER OF HITS AND MISSES. (STAIRCASE PARADIGM)
C

IF A RESPONSES IS RECIEVED BEFORE THE FLASH OCCURS AS SEEN
C BY STl, A FALSE ALARM IS SCORED.

C AT THE END OF TRIALS, THE DATA IS STORED ON THE DISK:
C REACTION TIME IN MILLISECONDS,
C [rjTEN.ITY PROFILE FOR EACH LAMP AS FUNCTION OF TRIAL,
C 3TA TICTICAL AND HISTOGRAM RAW DATA.
C
c tUrPUT LINES ARC: D TO A 1=-= VARIABLE LED FLASH INTENSITY

fD TO A === CENTRAL LED DISPLAY #1
fD TO A 3-.==CENTRAL LED DISPLAY t2

C D TO A 4m== GALVONOMETER CONTROL
Cft TO A _ j BEEF " TONE CONTROL.
C
c INPUT LINES ARE: ATo D 0-==EYE POSITION.
C
C KEYDOARD COMMANDS TNCLUDE:
C 3- TP n iATA ACQUISTION JUMP ro A Pr. iCEs5IN.3

1H :.PR.IUCE NO HISTOGR1AMS
- NHII.LIT LL [ATA PRINTOUT

CoMMANDs MAY ,E PUJ T [N BACK Ti) BACK:
C -3P RET: - STOP DATA ACQUISTION AND NO DA TA PRINTOUT
C SH .RET*:- STOP DATA ACOUISTION AND No HISTOGRAMS
C
c THE sUEROUTINE RUN ASYNCHRONOUSLY AND ARE CONTROLLED VIA
C VARIiF4LES :N COMMON ILOCKS.



PROGRAM ARCCTL
C
C DEFINE ARRAYS AND VARIABLES
C

EXTERNAL BOOL , MIRRORLEDGEN
VIRTUAL RESUL T( 256,.20) ,INTENS(Z56 2O0)
INTEGER*4 A TIMEBTIME
rNTCGER thAXC:ARTR(10),STHP.BELLON(') -BELOFF(Z)
INTEGER NOPLEFLGINH ,IMISSIHITNCOUTTIMMER(4)
INTEGER TARGET(6,20) plNCrImNICHARPFICNT
INTEGER FALSE, IOP, ICNT TICKP JSW
INTEGER IDAT(1) rILOWvITOP pOUTPUT(6)
REAL MTIMEPR(')
REAL TIME X DTIME iFRE0120) PCT(203 ,STAT () S( 256) NLAT
REAL UBO(3) ,4BXC(6) SECDNSPMAXPMXPDELXPEMPEMCALXY
INTEGER iP(2),NUN TIRR(41tTICKR'ZTIME
INTEGER NLFT IVLLEDFLSLEDCNT LEDMISPRUNotPFFC()
INTEGER IFLGDIFFCALPMIb, TOTHIT TOTMIS
LGOTCAL*1 RGTLFTPAUTOOIMON&ASSOCNTSKvQlMRCAL, QSTAIRQMRGAL',
.NOPECTR r, QOUTDV
COfLMUH /TOALL,'IP
COMMON /CBOOL/'IHITP IMISS
COMMON /ClGEN/TICKtTIMPLEDMISPLEDFLSPLEDCNTYLEDHITDIFF-RUNVID1l

COMMON /C:ilR/TICKRMXODELXPPMAX,PMINCALID',OFFSUBMRX

C DEFAULT VALUES FOR EYE MOVEMENT WINDOW

DATA tTOP/000/ILOW/O/

VALUES FOR MOVING TARGET JOB

CA TA CAL/40 /T IC1c.R/ 1 /DELX/ 1.0/

C )ALLES FOR CONDITIONAL LOGIC

C I)ALUES FOR UPPERLOWER 2OUNDS 3 INTERVALS

iwirA UBU/100. *'0. Q71000./

C ICJfr:EMENT FrFR L.GHT [wTENSITY

C Ar TO~R I'EYDtARD BR~ANCH IIG

!tAT, A DELL00 ( 5) 3000/BELC)FF ( I) /2048/
LiA ArGT'O2/LFT/7./AuTO/6Z/Y/'9 NJPE/ 7f3//1/C'TR/7/
LArTA GT/83 H/7:/P /O



C TARGET ARRAY: ROW NUMBERS CORRESPOND TO AN LED ON THE ARC PERIMETERP
C AND ENTIRE ROWS ARE OUTPUT AT A TIME TO THE LED CONTROLLER.
C

DATA TARGET/32383v-1,31767'-9'-1 -'
.32447, -I,31767,-9,-I,-1s

. 245 7-1,31767 -9v - -It

.32511 ,-105, 31767 -9 -1 -

.3511,-1,731767-9-I p-i,

.32ii ,-33,31767,-9,-i -,

. 325 11, 2 4 E317 6 - 9 1 -I
. 35 ,-i73,3767 -9,- p-i

C

DO t E=t 2~
[it 2! N=1~0'3
LINTENS(i4,t)=
.L J=-27 -46

I RE.EUL r ( Jrr )=o . o
CALL tJTAX(BELOFFPF1,5)

2 ENrER FILE NA.ME, A/D LIMITS FOR EYE MOVEMENTS. AND NUJMBER OIFTIL.

TYPE 600
0~~ FORMAT(' ENTER NAME OF OUTrPUT STORAGE f*ILE.'P/

FORMATAi.
C.ALL r;S:!I GN ( 3v'DtJM' t-
OPEN 2N9, 3r7 F 9 -' NEW-

r'YFE xv 'ENTrER 1I'LA'3H COUNT'

.'F,1 -T7, 7W INIOM -UM9EERS -3-GLE 01
.f r -9, 3-- T --( L

. 3tCEF, * 7 - -F(2)

.T PE*, O fOU WISH TO MONITOR EYE 37SI7TOU-o-
"CC EFT 60' p0IMC:N
i'(1T[4(N.NE. 'Y)GOTO 705



TYPE *,'ENTER AMPLITUDE OF PERMISSABLE EYE MOVEMENTS(DEGREES).'
ACCEPT *vEM
EM=ABS(EM)
TYPE *p'HOW MANY VOLTS=5 DEGREES.,
ACCEPT *PEMCAL
EMCAL:=ABS(EMCAL)
EMCAL= ! /EMCAL
EM- (2048./EMCAL) *EM
ITOP=2048+IFIX (EM)
1LOWn2048-IFIX(EM)

C
705 TYPE *,'DO YOU WISH CENTRAL TASK?'

ACCEPT 601,QCNTSK
IF(QCNTSK.NE.Y)GOTO 701
TYPE *9'CENTRAL TASK PARAMETERS INCLUDE:'
TYPE *#'INTERVAL BETWEEN SUCCESSIVE NUMBERS(SEC).'
ACCEPT *vSECONS
TYPE *P'DIFFERENCE BETWEEN NUMERICAL PAIR(0- 9)'
ACCEPT *EDIFF
TIMuIFIX(SECONS)
TICK-IFIX(60.*(SECONS-FLOAT(TIM)))
RUNmlO0/(TIM*60+TICK) !RUN IS TRIALS PER 2 SECONDS

C
701 TYPE *P'ARE YOU USING MIRROR GALVONOMETER?'

ACCEPT 601.QMRGAL
IF(QMRGAL.NE.Y)GOTO 700
TYPE *.'***LED ARC PERIMETER CONTROLS DISABLED***'
TYPE t.'VALUES FOR TARGET MOTION INCLUDE:'
TYPE *,'VELOCITY OF TARGET (DEGREES/SEC).'
ACCEPT *.MX
TYPE *, 'AMPLITUDE OF TARGET MOTION( DEGREES).'
ACCEPT *vbX

C CONVERT DEGREES TO PTS FOR DACS
PMAX=(BX*40.96)
MXw(MX*40.76) /60.
TYPE t.'CALIBRATION OF MIRROR SYSTEM? (-1U/0/10 DEG)'
ACCEPT 401 ,QMRCAL
GOTO 707

TYPE *.'***LED ARC PERIMETER CONTROL ACTIVATED***'
TYPE *, 'DO YOU NEED STAIRCASE PARADIGM FOR LED rNTENSITY?'
ACCEPT 601,OSTAIR

C
' ET TIMER FOR 7 SEGMENT 0ISPLAY RUNNING ASYNCHRONOUSLY

707 IF (QCNTSK.NE , )GOTO 702
TDt= I Drii=L MEANS DO OUEUE CENTRAL TASK SUBROUTTNE.
CALL IPOKE( 170404-0)

4500 IF(IPEEK( "170404).3E.O)GOTO 4500 IWAIT FOR 3UBJECT (ST1).
C QUEUE LEDGEN SUBROUT INE.

[F(ITIMER(0,O,TIMTICK, TIMMER , ,LEDGEN).NE.o)PAUSE 'NO 0
.ELEMENTS LEFT:: FROM MAIN PRG.' =oUEUE, NO 0=CAN'T SCHEDULE

CCNTRAL TASK tS NOW RUNNING.



C
C FIND NEXT EMPTY SLOT IN DATA ARRAY FOR STORAGE.
C rUM IS THE PERIPHERAL TARGET TO BE FLASHED.
a5 N01
660 IF(RESULT(NOrNUM).E.0.0)GOTO 68

NO=NO+1-
GOTO 66

68 IF(IMAX.LT.NO)IMAX-NO
C
C DECIDE ON INCREMENT OR DECREMENT OF TARGET ILLUMINArION.

IF(QSTAIR.NE.Y)GOTO 70
IF(NO.EQ.1)GOTO 422
IF( INTENS(NONUM) .GT.O)GOTO 420
INTENS(NONUM)=INTENS(NO-1,NUM)+INC
GO TO 421

420 INTENS(NOPNUM)=INTENS(NO-1lNUM)-INC
GOTO 421

422 INTENS(NOPNUM)=1000
C
c OUTPUT VOLTAGE TO LED CONTROLLER FOR INTENSITY.
C USE CHANNEL DAC1 FOR INTENSITY (D TO A *2 ON PATCH PANEL)
4^1 OUTPUT(1) INTENS(NONUM)

CALL DTOAX(OUTPUT, 1P )
C
C GET RANDOM NUMBER FROM 1-> 3.0 SEC. FOR VARIABLE DELAY
C BRANCH HERE AFTER BLANK TRIAL.

X=RAN(IP(1),1P(2))
NLA T=9*3.0
IF(NLAT.LT.1. )NLAT=1.0

tL WAIT JARIABLE TIME AND CHECK FOR FALSE ALARM (ST2 FIRED).
TIME=SECNDS(0.0)
T'YPE *,' WAITING'

C WHILE WAITING, OECIDE IF THE NEXT TRIAL IS PLANK.
1 =O.o FOR ARCTRO, AS OPPOSED TO P=&).S FOR ARCTRL.

'Y=RAN( IPFF( 1), IPFF(2))

DTIME=SECNDS( TIME)
IF(CDTIME.L .NLA)OTO 79

TH-iEN CHECK FOR TTY rNPUT 1OR PROGRAM BRANCH.
C CTo:'RL CHARACTERS iN ARRAY. USE .)NLY THE FIRST C.HARACTER.

:?i-AR= t
HTR ( IAR =TTINR ( )
F (CHAR TR ( [ICHAR ) .L T. ') GOTO 401

LL1TO 99



C
C IS THE GALVONOMETER BEING USEDP AND IF SO DOES IT NEED CALIBRATION?
702 IF(QMRGAL.NE.Y)GOTO 703

IF(QMRCAL.NE.Y)GOTO 703
C
C CALIBRATION PROCEDURE

PMINS-1
ID2W2 uK To QUEUE MIRROR ROUTINE
TICKR-100
IF(ITIMER(0,0,0,TICKRTMIRR,2,MIRROR).NE.O)PAUSE 'NO Q
.LEFT FOR MIRROR FROM MAIN' !MIRROR IS QUEUED.

710 TYPE *, 'CALBRA TION:CaCTR;RRGT;LLFT;A=AUTD;Q=aUIT'
ACCEPT 601,PASS

C COMMUNICATE WITH MIRROR ROUTINE VIA COMMON VARIABLE.
IF(PASS.EO.CTR)PMIN=-I
IF(PASS.EQ.RGT)PMIN--2
IF(PASS.EO .LFT)PMIN=-3
IF(PASS.EQ.AUTO)PMIN=-4

C WHEN DONE TURN OFF CAL.
IF(PASS.NE.Q)GOTO 710
PMIN=-1
TICKR=1
ID2-6 'STOP QUEUEING MIRROR ROUTINE.

C WAIT
TIME=SECNDS(0.0)

709 DTIME=SECNDS ( TIME?
IF(DTIME.LT.2.)GOTO 709
PMIN-O

C
C JGW-JOB STATUS WORD; SET BIT-6 To INHIBIT CONSOLE WAIT STATE.

:03 .JW= rPEEkI e 44)
CALL [PW)KE( 44, 100.OR.JSW)

C
C BEGIN E.PERIMENT CONTROL.
C TYPE .01! !,4M(:GAL

TYPE 4. 'EXPERIMENT RUNNING; YOU MAY ENTER KEYBOARD COMMANDS!"
C
C
C E.'PERIMENT LOOP BEGINS.

C "ET RWNDOM NJMBER FROM 2- [0 FOR LED ELLUNINATION.

NUM=.:[FTX(X*13.)

1 ET 'JP FFSET FOR MOVTNG rAR(3ETn
r F (]IMRtAL . E. () cTO 6.Zo

[ NUM. GE . 0) 0NJM=rMJtM+L
F 111. CC . C0 NUM= t 9

FF 2)4. J.4FLUAT (NUM) -FLOh T ( MAX/2)
.UBMR X=0. O



C
C HIT CHARACTER 'S" TO STOP DATA ACQUISTION.
401 IF(CHARTR(1).EG.ST)GOTO 1100
C
C
C WAIT TILL EYE POSITION IS WITHIN LIMITS
403 IVL=1ADC(8)

IF(IVL.GT.ITOP.OR.IVL.LT.ILOW)GOTO 403
IF(QMRGAL.EQ.Y)TYPE *P'TARGET MOVING'

C
C
C SKIP TO MOVING TARGET CONTROL SECTION

IF(QMRGAL.6E.Y)GOTO 1450
C

IF(XY.GE.0.6)GOTO 156 'SKIP THE NEXT SECTION FOR A BLANK TRIAL.
C
C TURN ON TARGET BY SENDING DATA TO LED -CONTROLLER.

DO 155,*1i1,5-
CALL IDOR(,o0,-,TARGET(MvNUM))

155 CONTINUE
C
C
C UUTPUT rRIAL TYPE TO CONSOLE, AND TURN OFF TARGET.
C
115s lF(XY.GE.0.6)TYPE *,'BLANK TRIAL'

IF (XY .LT .0.6)FICN.T=FICNT+1
rF((QMRGAL.NE.').AND.(XY.LT.0.6))TYPE *,FICNT,'FLASHES'
IF'XY.LT.0.6)CALL IDOR(,0,-1,TARGET(6,NUM))

C
C SET. TIMER TO ZERO FOR TIME-OUT CHECK OF MISS

TIME=SECNDS o.0)

C WAIT FuR '3TC TO [fDtICATE DETECTION OF FLASH.

C HIST READS TIME FROM CLOCK INTO IDAT, THE SETS IFLO TO -1
CALL HIST(IDATt ,1,FLGNLFT)

C
rST t [=(FEEK ( "170404)
CALL SETR(4.3v0.v IEFLG) 'START TIMING. IEFLGOVERFLOW FLAG
CALL IFOKE( l70404.[PEEK( t 7O404). OR.("100000.AN..ZSr1))

C DEErER CONTROL
CALL OTII(ATIME)
CALL JJCVT(ATIME)
tvTIME.AJFl...T(ATIME)+25.
Ci.;LL GlTIM(DTIME)
CALL JJCVT ( flTrME)
iF( (mITIME-IAJFLr (TIME) .3T.0.J)GOTO 18 tWAIT 400ngS, THEN BEEP.
CALL DTOAX(EBELLONrip ',5)
CALL GTIM(A TIME)
,ALL JJCVT(ATIME)

MTIME=AJFLT(ATIME)+1C.
.i. C..ALL (TIM(EBTIME)

CALL JJCVT(r4TIME)
IF((MTIME--.JFiT.(ETIME)).GT.0.)GOTO 17 'WAfT L92aitS,7TH. N UtNBEEP.
CALL rTOA^ (ItELOFF I , -)



C
1455 IF(IFLG.NE.O)GOTO 145 !IF TRIGGER IS SET STOP TIMING
C
C IF NO RESPONSE IN 2 SECONDS SCORE AS MISS.
C

DTIME-SECNDS (TIME)
IF(DTIMELT..0)GOTO 1455
IDA(1)=L STORE 2 SECONDS AS R.T. -i.e. A MISS)
IF(QlSTAIR.NE.Y)IGOTO 145
INTENS(NO+1 NUM)a1

C
C CHECK FOR FALSE ALARM
145 IF((XY.GE.0.6).AND.(IDAT(I).NE.1))FALSE-FALSE+1
C
C CLEAR INTERRUPT BUT HOLD FOR FALSE ALARM.

IST1:[PEEK( '170404)
CALL SETR(-lv,,) KILL TIMER FOR HIST
CALL IPOKE(1-70404,I-PEEK(*170404).OR.(IST1.AND.*100000))
NLFT-NLFT+1

C
C
C CONTROL FOR 2CORING MOVING TARGET REC1GNTION
C IF CORRECT GIVE 2 IF WRONG GIVE 1
1450 IF(QMRGAL.NE.Y) GOTO 97

C GIUEUE MIRROR ROUTINE
ID2*2 'LET THE MIRROR ROUTINE QUEUE ITSELF.
IF(ITIMER(0 , oOTICKR, TMIRRP, 2,MIRROR).NE,0)PAUSE 'NEED LS'
TIME =C3ECNDS (0.0)

3150 ,DTIME=SE CNDS(TIME)
rIFDTTME.LT.4.0)GOTO 4150

r r!= o 'DO NOT QUEUE MIRROR ANYMORE
TYPE t. 'RESflNSE [S HIT OR MISS'
1CCEPT 6.0i PASS
TF AE. .E.H) r LA r(.t=2
[F A'33.aE.d) tDAr T )= L

TYPE ;.' 3T IMULUS COMPLETE.'

7 ;TORE REACTION FtME AND CONTINUE EXPERINEN4T IF COUNT NOT EXCEEDED.

IF(XY.L .0.6) RESULT (NO rNUM) =FLOAT( IDA T( 1)
ICNT= CNT - 1

t CJ T. LE iCO!IT OTO1100

[ICHT .E0C UTTsFr/Y.G . . coTr ~'

! . tYPE 4- ' fiA TA REDiuCTION REGINING'



C STOP TIMER ROUTINE FOR CENTRAL STIMULI.
C

ID1=0
ID2-0

C STORE DATA ON DISK

452 FORMAT(I4)
5 WRITE(3,452)IMAXpFALSE
WRITE (3,*) ( (RESUL T ( IJ) ,I=1, IMAX) ,J=1, 20)
WRITE (3#*)(<(INTENS (I, J) , =i, IMAX) ,J=lpa20)
WRITE (3,*)LEDCNT ,LEDHIT , LEDMIS LEDFLS
IF(QCNTSK.NE.-Y)GOTO 4003
TYPE *,'*******CENTER TASK PERFORMANCE SUMMARY*********'

TYPE *#LEDCNTP '(MAX POSSIBLE HITS)' rLEDHITP '(ACTUAL HITS)'

TYPE *PLEDMISP '(NUMBER OF MISSES)' PLEDFLSP' (FALSE ALARMS)'
TYPE *,

C
C PERFORM STATISTICAL ANALYSIS AND HISTOGRAMS.

1003 DO 4000 Nw1,20

i = fl=FLOAT(N001)

CALL SUBST(RESULTCRvOOLS,2 6 2 2)

CALL TAB1(RESULT,.SN001,UOBFREOPCTSTATP256v20)
C

;AVE DATA FROM EACH ANALYSIS

WRITE(3,J)N0OIIHITIMISSSTATPFREGPCT
rd = FT'( (UPO. 2) 3

HWAS TIHERE , CONSULE COMMAND TO STOP?

IFC ( 1T.(t) .E.P.OR. (CHARTR(2) .EQP) )GOTO 4002
!F ((CHARTR(1) .EQ.H) .OR. (CHARTR(2) .EO.H) )GOTO 4001
Ir(QMRGAL.NE. f)CALL HISTG(N001,FFRE0NP)

40c rYIE *HIT , ' "HIT' . M1S3, ' (MISSES) 'FALSE , ' (FAL SE AL ARMS)'

E F'11MRGAL .E. )GOTO -1002
- TYIE 4,ST,,T(2),'(AVERAGE)',STAT(3),'(STD)'.TAT(1),'(TOTAL.S)'

TYPE .T r4 '(I ) .T T ) 'M X '

o4: 2 r7r!IIT=TUTHIT ItHIT
OTf! TOTMIS-jiISS

I I IT=0

C f'.'EfRAL.L =TATTOTICS
R *T (3, 3 52' T0THIT . TOTMIS

Y.PE . ToTAL HLTS =-,iIrT, 1 TOTAL MIS3E1 '- TOTM[
:30 OSE ENIT:=.)



C SUDROUTINE TO GENERATE VOLTAGES ON DAC TO CHANGE NUMBER
C ON CENTRAL SEVEN SEGMENT DISPLAY.
C

SUBROUTINE LEDGEN ( ID)
EXTERNAL LEDGEN
INTEGER IP ( ),lIDN, IOUT3)VOLTS11)TIMMER(4) TICK ,TIMRUN
ENTEGER LEDMISLEDFLSIST1,LEDCNTSAMFLGLEDHITDIFF
TNTEGER COUNTr IDfl SF
REAL X
COMMON /TOALL/IP
COMMON /CLGEN/TICKTIMLEDMISLEDFLSLEDCNTLEDHITDIFFIRUNID1

C
C VALUES FOR DAC ro GENERATE 7 SEGMENT DISPLAY NUMBERS
C

DATA VOLTS/:048 , 2:52 , 2457, 2662,:867.3o7:,3276,3
481;3684 3s 9l'

.2048/
C
C CHECK FOR DATA EQUAL RECOGNITION
C

IF'SAMFLG.NE.1)GOTO 44
COUNT-COUNT+1
IST1=IPEEK(*170404)
IF'IST1.LT.O)GOTO 45 !IF SEEN CLR FLG
lF(COUNT.LT.RUN)GOTO 46
TYPE *?' mISS,
LEDMISmLEDMIS+1
GOTO 43

45 LEDHIT=LEDHIT+1
rYPE go' HIT'
(ALL POKE(0170404. 077777.AND.IST1) 'CLR STI FLG

43 C0)'NT-O

LEPCNT=LEDCNT+1
GOTO 46

C CHECK FOR FALSE ALARM
C
44 IST1=(PEEKJ(170404) 'CHECK FOR FALSE TRIG

[F IST. GE.))GOTO 46
LEDFLS=LEDFLS+-1 I INC PLASE LR AM
CALL F[POKE( "170404, 077777.AND.EST1)

C
C GiENERArE RANDOM NUMER FOR CENTRAL DISPLAY.

mrs IS I! FOR FIRST NUMBER.

46 xR~ P(l P(C
J= [F[' (X*10. 1*

oUr (C)= OL rs( IJ)
1=



C THIS I3 FOR SECOND NUMBER
C

X=RAN( IP(1) PIP(n) )
I=IFIX(X*10.)+l
OUT(3)=VOLTS(I)

C
C OUTPUT VOLTAGE 0=-9 FOR CENTRAL LED SEGMENT NUMBER.
C

IF((SAMFLG.E,1).AND.(IABS(I-IJ).EO.DIFF))OUT(3)=VOLTS(I+1)
CALL DTOAX(OUTp2,2)
IF((SAMFLG.Eo.1).OR.(IABS(I-IJ).NE.DIFF))GOTO 40
TYPE *,' A MATCH'
SAMFLG=1

C
C KILL TIMED EVENT IF ID1:1.
C
40 IF(ID1.NE.1)GOTO 41

C IF NOT RESCHEDULE EVENT.
C

IF(SF.NE.1)GOTO 49

SAMFLG=O
49 IF(ITIMER(oo0TIMrIcrIMMERILEDGEN).NE.O)PAUSE 'MORE Q

. ELEMENTS NEEDED:: FROM COPLETION RT.'
41 RETURN

END

C
C SUBROUTINE TO ASSESS NUMBER OF HITS AND MISSES
C GIVEN UPPER AND LOWER VAULES IN UBO.
C

SUBROUTINE BOOL(RT)
DEMENSION R(2)
CGJMMON .'CBOOL. IHITp IMISS

C F'(t) IS I IF RESULT=L; THUS SUBJECT MISSED.

IF(R( 1) .E. 1 )'EMISS=IM1SS+1

c R1(2) IS 1 [F RESULr t; THUS SUBJECT DETECTED FLASH.

IF(R(2) .EQ.l. ) [HIT=IHIT+1

C rETIJRN NEEDED VALUE TO CALLING PROGRAM.

E:ND



SUBROUTINE TO OSCILLATE MIRROR GALVONOMETER

SUBROUTINE MIRROR( ID)
EXTERNAL MIRROR
INTEGER TMIRR(4),OUT(6),IDTICKRINCAL
INTEGER ZEROOFFINCNTIP( ' ),-CAL,1ID2,PMIN
REAL MXPMAXSUBMRXDELX, OUTW CUFF
COMMON /TOALL/IP
COMMON / CMIR/TICKRMXDELXPMAXPMINCALID2,OFFSUBMRX
1ATA ZERO/2048/

CHECK FOR CALIBRATION

TYPE *ePMINPUT(4)vCAL
IF(PMIN.GE.0)GOTO 3

START CAL AS CENTERRIGHTPLEFTAND AUTO

INCAL=IABS(CAL)
IF(PMIJ.EG. -1)OUT(4) =048
IF(PMIN.EO.-2)OUT(4)=2048+INCAL
IF(PMIN.EQ.-3)OUT(4)=i2048-INCAL
rF(PMIN.NE.-4)GOTO 4
QUT(4)=ZERO+CAL
:ERO=0UT(4)
IF(OUT(4).LT.2048)CAL=-CAL
IF -OUT (4) . GT.2048) CAL-CAL
CALL DTOAX(OUT,1P4)
3()T '5

C
CALLULATE rRIANGLE WAVEFORM

!CENTER
'RIGHT 10
' LEFT '10
'AUTO 10/0/-10

oJI rw=r1e-*,i impx
tGUTr 4(4) IT (Otjrw+OFF)
k ALL iDT0A.X(UUTplp4)

ir ( UUT W+MX,.13E. PMAX) .OR. (OUTW-MX.Lr.-MX ))ELX=-DELA

INCREMENT COUNTER DY DELTA

iUEBMRX=:U.JBtRx F-DELA
IF( ID2.0E. )tiOTO 1l)o
. 'MORE
.k NEEDED AT iMilIR

.0 E '-:ET IR N

4
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VALUES OF d' FOR THE YEs-NO PROCEDURE

Pv(A) .01 .02 .03 .04 .05 .06 .07

PsN(A)

.01 0 - .27 -. 44 - .57 - .68 -. 77- .8

.02 .27 0 -. 17 - .30 - .41 -. 50 -. 5

.08 .09 .10

- .92 - .98 -1.04
- .65 - .71 - .77

.44 .17 0 - .13 - .24 - .33 - .41 - .48 - .54 - .60.03
.04
.05
.06
.07
.08
.09
.10

.11

.12

.13

.14
.15
.16
.17
.18
.19
.20

.21

.22

.23

.24

.25

.26

.27

.28
.29
.30

.31
.32
.33
.34
.35
.36
.37
.38
.39
.40

.41

.42

.43

.44

.45

.46

.47

.48

.49
.50

.57
.68
.77
.85
.92
.98

1.04

1.09
1.14
1.19
1.24
1.28
1.33
1.37
1.40
1.44
1.48

1.52
1.55
1.58
1.62
1.64
1.68
1.71
1.74
1.76
1.80

1.82
1.85
1.88
1.91
1.94
1.96
1.99
2.02
2.04
2.06

2.09
2.12
2.14
2.17
2.19
2.22
2.24
2.27
2.30
2.32

.13 0 - .11 - .20 - .28 - .35 - .41 - .47
.11 0 - .09 - .17 - .24 - .30 - .36

.09 0 - .08 - .15 - .21 - .27
.08 0 - .07 - .13 - .19

.30

.41

.50

.58

.65

.71

.77

.82

.88

.92

.97
1.01
1.06
1.10
1.14
1.17
1.21

1.24
1.28
1.31
1.34
1.38
1.41
1.44
1.47
1.50
1.52

1.54
1.58
1.61
1.64
1.68
1.69
1.72
1.74
1.77
1.80

1.82
1.85
1.87
1.90
1.92
1.95
1.98
2.00
2.02
2.05

.24

.33

.41

.48

.54

.60

.65
.70
.75
.80
.84
.89
.93
.96

1.00
1.04

1.08
1.11
1.14
1.18
1.20
1.24
1.27
1.30
1.32
1.36

1.38
1.41
1.44
1.47
1.50
1.52
1.55
1.58
1.60
1.62

1.65
1.68
1.70
1.73
1.75
1.78
1.80
1.83
1.86
1.88

.20

.28

.35

.41

.47

.52

.58

.62

.67

.71

.76

.80

.84

.87
.91

.94

.98
1.01
1.04
1.08
1.11
1.14
1.17
1.20
1.22

1.24
1.28
1.31
1.34
1.36
1.39
1.42
1.44
1.47
1.50

1.52
1.55
1.57
1.60
1.62
1.65
1.68
1.70
1.72
1.75

.17

.24

.30

.36

.41

.46
.51
.56
.60
.65
.69
.72
.78
.80

.84

.87

.90

.94

.96
1.00
1.03
1.06
1.08
1.12

1.14
1.17
1.20
1.23
1.26
1.28
1.31
1.34
1.36
1.38

1.41
1.44
1.46
1.49
1.51
1.54
1.56
1.59
1.62
1.64

.07

.13

.19

.24

.30

.34

.39

.43

.48

.52

.56

.59

.63

.66

.70

.73

.76

.80

.83

.86

.89

.92
.94

.96
1.00
1.03
1.06
1.08
1.11
1.14
1.16
1.19
1.22

1.24
1.27
1.29
1.32
1.34
1.37
1.40
1.42
1.44
1.47

0 - .06 - .12
.06 0 - .06
.12 .06 0

.17 .11 .05

.22 .16 .10

.27 .21 .15

.32 .25 .20

.36 .30 .24

.41 .35 .29

.45 .39 .33

.48 .42 .36

.52 .46 .40

.56 .50 .44

.60 .54 .48

.63 .57 .51

.66 .60 .54

.70 .64 .58

.72 .66 .60

.76 .70 .64

.79 .73 .67

.82 .78 .70

.84 .78 .72
.88 .82 .78

.90 .84 .78
.93 .87 .81
.96 .90 .84
.99 .93 .87

1.02 .96 .90
1.04 .98 .92
1.07 1.01 .95
1.10 1.04 .98
1.12 1.06 1.00
1.14 1.08 1.02

1.17 1.11 1.05
1.20 1.14 1.08
1.22 1.16 1.10
1.25 1.19 1.13
1.27 1.21 1.15
1.30 1.24 1.18
1.32 1.26 1.20
1.35 1.29 1.23
1.38 1.32 1.26
1.40 1.34 1.28

.15
.21
'27

.32

.38

.42

.47

.51

.56

.60

.64

.67
.71

.74

.78

.81

.84

.88

.91

.94

.97
1.00
1.02

1.04
1.08'
1.11
1.14
1.16
1.19
1.22
1.24
1.27
1.30

1.32
1.35
1.37
1.40
1.42
1.45
1.48
1.50
1.52
1.55



PN(A) .01 .02 .03 .04 .05 .06 .07 .08 .09 .10

PAN(A)

.51 2.34 1.08 1.90 1.78 1.66 1.58 1.50 1.42 1.36 1.30

.52 2.37 2.10 1.93 1.80 1.69 1.60 1.52 1.45 1.39 1.33

.53 2.40 2.12 1.96 1.82 1.72 1.62 1.54 1.48 1.42 1.36

.54 2.42 2.15 1.98 1.85 1.74 1.65 1.57 1.50 1.44 1.38

.55 2.45 2.18 2.01 1.88 1.77 1.68 1.60 1.53 1.47 1.41

.56 2.47 2.20 2.03 1.90 1.79 1.70 1.62 1.55 1.49 1.43

.57 2.50 2.23 2.06 1.93 1.82 1.73 1.65 1.58 1.52 1.46

.58 2.52 2.25 2.08 1.95 1.84 1.75 1.67 1.60 1.54 1.48

.59 2.55 2.28 2.11 1.98 1.87 1.78 1.70 1.63 1.57 1.51

.60 2.58 2.30 2.14 2.00 1.90 1.80 1.72 1.66 1.60 1.54

.61 2.60 2.33 2.16 2.03 1.92 1.83 1.75 1.68 1.62 1.56

.62 2.62 2.36 2.18 2.06 1.94 1.86 1.78 1.70 1.64 1.58
.63 2.65 2.38 2.21 2.08 1.97 1.88 1.80 1.73 1.67 1.61
.64 2.68 2.41 2.24 2.11 2.00 1.91 1.83 1.76 1.70 1.64
.65 2.70 2.44 2.26 2.14 2.02 1.94 1.86 1.78 1.72 1.66
.66 2.73 2.46 2.29 2.16 2.05 1.96 1.88 1.81 1.75 1.69
.67 2.76 2.49 2.32 2.19 2.08 1.99 1.91 1.84 1.78 1.72
.68 2.79 2.52 2.35 2.22 2.11 2.02 1.94 1.87 1.81 1.75
.69 2.82 2.56 2.38 2.26 2.14 2.06 1.98 1.90 1.84 1.78
.70 2.84 2.58 2.40 2.28 2.16 2.08 2.00 1.92 1.86 1.80

.71 2.88 2.60 2.44 2.30 2.20 2.10 2.02 1.98 1.90 1:84

.72 2.90 2.63 2.46 2.33 2.22 2.13 2.05 1.98 1.92 1.86

.73 2.93 2.66 2.49 2.36 2.25 2.16 2.08 2.01 1.95 1.89

.74 2.96 2.69 2.52 2.39 2.28 2.19 2.11 2.04 1.98 1.92

.75 3.00 2.72 2.56 2.42 2.32 2.22 2.14 2.08 2.02 1.96

.76 3.02 2.76 2.58 2.46 2.34 2.26 2.18 2.10 2.04 1.98

.77 3.06 2.79 2.62 2.49 2.38 2.29 2.21 2.14 2.08 2.02

.78 3.09 2.82 2.65 2.52 2.41 2.32 2.24 2.17 2.11 2.05

.79 3.12 2.b6 2.G8 2.56 2.44 2.36 2.28 2.20 2.14 2.08

.80 3.16 2.89 2.72 2.59 2.48 2.39 2.31 2.24 2.18 2.12

.81 3.20 2.93 2.76 2.63 2.52 2.43 2.35 2.28 2.22 2.16

.82 3.24 2.96 2.80 2.66 2.56 2.46 2.38 2.32 2.26 2.20

.83 3.27 3.00 2.83 2.70 2.59 2.50 2.42 2.35 2.29 2.23

.84 3.31 3.04 2.87 2.74 2.63 2.54 2.46 2.39 2.33 2.27

.85 3.36 3.09 2.92 2.79 2.68 2.59 2.51 2.44 2.38 2.32

.86 3.40 3.13 2.96 2.83 2.72 2.6.3 2.55 2.48 2.42 2.36

.87 3.45 3.18 3.01 2.88 2.77 2.68 2.60 2.53 2.47 2.41

.88 3.50 3.22 3.06 2.92 2.82 2.72 2.64 2.58 2.52 2.46

.89 3.55 3.28 3.11 2.98 2.87 2.78 2.70 2.63 2.58 2.51

.90 3.60 3.33 3.16 3.03 2.92 2.83 2.75 2.68 2.62 2.56

.91 3.66 3.39 3.22 3.09 2.98 2.89 2.81 2.74 2.68 2.62.

.92 3.72 3.45 3.28 3.15 3.04 2.95 2.87 2.80 2.74 2.68

.93 3.79 3.52 3.35 3.22 3.11 3.02 2.94 2.87 2.81 2.75

.94 3.87 3.60 3.43 3.30 3.19 3.10 3.02 2.95 2.89 2.83

.95 3.96 3.69 3.52 3.39 3.28 3.19 3.11 3.04 2.98 2.92

.96 4.07 3.80 3.63 3.50 3.39 3.30 3.22 3.15 3.09 3.03

.97 4.20 3.93 3.76 3.63 3.52 3.43 3.35 3.28 3.22 3.16

.98 4.37 4.10 3.93 3.80 3.69 3.60 3.52 3.45 3.39 3.33

.99 4.64 4.37 4.20 4.07 3.96 3.87 3.79 3.72 3.66 3.60



PN(A) .11 .12 .13 .14 .15 .16 .17

P SN(A)
.01 -1.09 -1.14 -1.19 -1.24 -1.28 -1.33 -1.3
.02 - .82 - .88 - .92 - .97 -1.01 -1.06 -1.1
.03 -. 65 - .70 - .75 - .90 - .34 - .89 -. 9
.04 - .52 - .58 - .62 - .67 - .71 - .76 -
.05 - .41 - .46 - .51 - .56 - .60 - .65 -. 6
.06 - .32 - .38 - .42 - .47 - .51 - .56 -. 6
.07 -. 24 - .30 - .34 - .39' - .43 - .48 -. 5
.08 -. 17 - .22 - .27 - .32, - .36 - .41 -. 4
.09 - .11 - .16 - .21 - .26 - .30 - .35 -. 3
.10 - .05 - .10 - .15 - .20 - .24 - .29 -. 3

.11 0 - .06 - .10 - .15 - .19 - .24- .2

.12 .06 0 - .04 - .10 - .14 - .18- .2'

.13

.14

.15

.16

.17

.18

.19

.20

.21

.22

.23

.24

.25

.26

.27

.28
.29
.30

.31

.32

.33
.34
.35
.36
.37
.38
.39
.40

.41
.42
.43
.44
.45
.46
.47
.48
.49
.50

.18 .19 .20

r -1.40 -1.44 -1.48
) -1.14 -1.17 -1.21
3 - .96 -1.00 -1.04

- .84 - .87 - .91
- .72 - .76 - .80

) - .64 - .67 - .71
2 - .56 - .59 - .63
5 - .48 - .52 - .56
) - .42 - .46 - .50
3 - .36 - .40 - .44

I - .32 - .35 - .39
- .26 - .30 - .34

.10 .04 0 , - .05 - .09 - .14 - .18 - .22 - .25 - .29

.15 .10

.19 .14

.24 .18

.28 .22
.32 .26
.35 .30
.39 .34

.42 .37

.46 .40

.49 .44
.52 .47
.56 .50
.59 .54
.62 .56
.65 .60
.68 .62
.70 .65

.72 .67
.76 .70
.79 .74
.82 .76
.84 .79
.87 .82
.90 .84
.92 .87
.95 .90
.98 .92

1.00 .94
1.03 .98
1.05 1.00
1.08 1.02
1.10 1.04
1.13 1.08
1.16 1.10
1.18 1.12
1.20 1.15
1.23 1.18

.05 0 - .04 - .09 - .13 - .16 - .20 - .24
.04 0 - .05 - .09 - .12 - .16 - .20

.05 0 - .04 - .08 - .11 - .15
.04
.08
.11
.15

.18
.22
.25
.28
.32
.35
.38
.41
.44
.46

.48
.52
.55
.58
.60
.63
.66
.68
.71
.74

.76
.79
.81
.84
.86
.89
.92
.94
.96
.99

0 - .04 - .07 - .11
.04 0 - .04 - .08
.07 .04 0 - .04
.11 .08 .04 0

.14 .11 .08 .04

.18 .14 .11 .07

.21 .18 .14 .10

.24 .21 .18 .14

.28 .24 .20 .16

.31 .28 .24 .20

.34 .30 .27 .23

.37 .34 .30 .26

.40 - .36 .32 .23

.42 .39 .36 .32

.44 .41 .38 .34

.48 .44 .41 .37

.51 .48 .44 .40
.54 .50 .47 .43
.56 .53 .50 .46
.59 .56 .52 .48
.62 .58 .55 .51
.64 .61 .58 .54
.67 .64 .60 .56
.70 .66 .62 .58

.72 .68 .65 .61
.75 .72 .68 .64
.77 .74 .70 .66
.80 .76 .73 .69
.82 .78 .75 .71
.85 .82 .78 .74
.88 .84 .80 .76
.90 .86 .83 .79
.92 .89 .86 .82
.95 .92 .88 .84

.09

.12

.16
-.20

.24

.27

.30

.34

.36

.40

.43

.46

.48

.52

.54

.57

.60

.63

.66
.68
.71
.74
.76
.78

.81

.84

.86

.89

.91

.94
.96
.99

1.02
1.04

.09
.13
.16
.20
.24

.28

.31

.34
.38
.40
.44
.47
.50
.52
.56

.58

.61
.04
.67
.70
.72
.75
.78
.80
.82

.85

.88

.90

.93

.95

.98
1.00
1.03
1.06
1.08

.09

.14

.18

.22

.25

.29

.32

.36

.39

.42

.46

.49

.52

.55

.58

.60

.62

.66
.69
.72
.74
.77
.80
.72
.85
.88

.90
.93
.95
.98

1.00
1.03
1.06
1.08
1.10
1.13



P(A) .11 .12 .13 .14 .15 .16 .17 .18 .19 .20

PSN(A)

.51 1.26 1.20 1.16 1.10 1.06 1.02 .98 .94 .90 .86

.52 1.28 1.22 1.18 1.13 1.09 1.04 1.00 .96 .93 .89

.53 1.30 1.25 1.20 1.16 1.12 1.06 1.02 .99 .96 .92

.54 1.33 1.28 1.23 1.18 1.14 1.09 1.05 1.02 .98 .94

.55 1.36 1.30 1.26 1.21 1.17 1.12 1.08 1.04 1.01 .97

.56 1.38 1.32 1.28 1.23 1.19 1.14 1.10 1.06 1.03 .99

.57 1.41 1.36 1.31 1.26 1.22 1.17 1.13 1.10 1.06 1.02

.58 1.43 1.38 1.33 1.28 1.24 1.19 1.15 1.12 1.08 1.04

.59 1.46 1.40 1.36 1.31 1.27 1.22 1.18 1.14 1.11 1.07

.60 1.48 1.43 1.38 1.34 1.30 1.24 1.20 1.17 1.14 1.10

.61 1.51 1.46 1.41 1.36 1.32 1.27 1.23 1.20 1.16 1.12

.62 1.54 1.48 1.44 1.38 1.34 1.30 1.26 1.22 1.18 1.14

.63 1.56 1.50 1.46 1.41 1.37 1.32 1.28 1.24 1.21 1.17

.64 1.59 1.54 1.49 1.44 1.40 1.35 1.31 1.28 1.24 1.20

.65 1.62 1.56 1.52 1.46 1.42 1.38 1.34 1.30 1.26 1.22

.66 1.64 1.58 1.54 1.49 1.45 1.40 1.36 1.32 1.29 1.25

.67 1.67 1.62 1.57 1.52 1.48 1.43 1.39 1.36 1.32 1.28

.68 1.70 1.64 1.60 1.55 1.51 1.46 1.42 1.38 1.35 1.31

.69 1.74 1.68 1.64 1.58 1.54 1.50 1.46 1.42 1.38 1.34

.70 1.76 1.70 1.66 1.60 1.56 1.52 1.48 1.44 1.40 1.36

.71 1.78 1.73 1.68 1.64 1.60 1.54 1.50 1.47 1.44 1.40

.72 1.81 1.76 1.71 1.66 1.62 1.57 1.53 1.50 1.46 1.42

.73 1.84 1.78 1.74 1.69 1.65 1.60 1.56 1.52 1.49 1.45

.74 1.87 1.82 1.77 1.72 1.68 1.63 1.59 1.56 1.52 1.48

.75 1.90 1.85 1.80 1.76 1.72 1.66 1.62 1.59 1.56 1.52

.76 1.94 1.88 1.S4 1.78 1.74 1.70 1.66 1.62 1.58 1.54

.77 1.97 1.92 1.87 1.82 1.78 1.73 1.69 1.66 1.62 1.58

.78 2.00 1.94 1.90 1.85 1.81 1.76 1.72 1.68 1.65 1.61

.79 2.04 1.98 1.94 1.88 1.84 1.80 1.76 1.72 1.68 1.64
.80 2.07 2.02 1.97 1.92 1.88 1.83 1.79 1.76 1.72 1.68

.81 2.11 2.06 2.01 1.96 1.92 1.87 1.83 1.80 1.76 1.72
.82 2.14 2.09 2.04 2.00 1.96 1.90 1.86 1.83 1.80 1.76
.83 2.18 2.12 2.08 2.03 1.99 1.94 1.90 1.86 1.83 1.79
.84 2.22 2.16 2.12 2.07 2.03 1.98 1.94 1.90 1.87 1.83
.85 2.27 2.22 2.17 2.12 2.08 2.03 1.99 1.96 1.92 1.88
.86 2.31 2.26 2.21 2.16 2.12 2.07 2.03 2.00 1.96 1.92
.87 2.36 2.30 2.26 2.21 2.17 2.12 2.08 2.04 2.01 1.97
.88 2.40 2.35 2.30 2.26 2.22 2.16 2.12 2.09 2.06 2.02
.89 2.46 2.40 2.36 2.31 2.27 2.22 2.18 2.14' 2.11 2.07
.90 2.51 2.46 2.41 2.36 2.32 2.27 2.23 2.20 2.16 2.12

.91 2.57 2.52 2.47 2.42 2.38 2.33 2.29 2.26 2.22 2.18
.92 2.63 2.58 2.53 2.48 2.44 2.39 2.35 2.32 2.28 2.24
.93 2.70 2.64 2.60 2.55 2.51 2.46 2.42 2.38 2.35 2.31
.94 2.78 2.72 2.68 2.63 2.59 2.54 2.50 2.46 2.43 2.39
.95 2.87 2.82 2.77 2.72 2.68 2.63 2.59 2.56 2.52 2.48
.96 2.98 2.92 2.88 2.83 2.79 2.74 2.70 2.66 2.63 2.59

.97 3.11 3.06 3.01 2.96 2.92 2.S7 2.83 2.80 2.76 2.72

.98 3.28 3.22 3.18 3.13 3.09 3.04 3.00 2.96 2.93 2.89

.99 3.55 3.50 3.45 3.40 3.36 3.31 3.27 3.24 3.20 3.16



Pv(A) .21 .22 .23 .24 .25 .26 .27 .28 .29 .30

PmN(A)

.01 -1.52 -1.55 -1.58 -1.62 -1.64 -1.68 -1.71 -1.74 -1.76 -1.80

.02 -1.24 -1.28 -1.31 -1.34 -1.38 -1.41 -1.44 -1.47 -1.50 -1.52

.03 -1.08 -1.11 -1.14 -1.18 -1.20 -1.24 -1.27 -1.30 -1.32 -1.36

.04 - .94 - .98 -1.01 -1.04 -1.08 -1.11 -1.14 -1.17 -1.20 -1.22

.05 - .84 - .87 - .90 - .94 - .96 -1.00 -1.03 -1.06 -1.08 -1.12

.06 - .74 - .78 - .81 - .84 - .88 - .91 - .94 - .97 -1.00 -1.02

.07 - .66 - .70 - .73 - .76 - .80 - .83 - .86 - .89 - .92 - .94

.08 - .60 - .63 - .66 - .70 - .72 - .76 - .79 - .82 - .4 - .88

.09 - .54 - .57 - .60 - .64 - .66 - .70 - .73 - .70 - .78 - .82

.10 - .48 - .51 - .54 - .58 - .60 - .64 - .67 - .70 - .72 - .76

.11 - .42 - .46 - .49 - .52 - .56 - .59 - .62 -. .65 - .68 - .70

.12 - .37 - .40 - .44 - .47 - .50 - .54 - .56 - .60 - .62 - .65

.13 - .32 - .36 - .39 - .42 - .46 - .49 - .52 - .55 - .58 - .60

.14 - .28 - .31 - .34 - .38 - .40 - .44 - .47 - .50 - .52 - .56

.15 - .24 - .27 - .30 - .34 - .36 - .40 - .43 - .46 - .48 - .52

.16 - .18 - .22 - .25 - .28 - .32 - .35 - .38 - .41 - .44 - .46

.17 - .14 - .18 - .21 - .24 - .28 - .31 - .34 - .37 - .40 - .42

.18 - .11 - .14 - .18 - .21 - .24 - .28 - .30 - .34 - .36 - .39

.19 - .08 - .11 - .14 - .18 - .20 - .24 - .27 - .30 - .32 - .36

.20 - .04 - .07 - .10 - .14 - .16 - .20 - .23 - .26 - .28 - .32

.21 0 - .04 - .06 - .10 - .13 - .16 - .20 - .22 - .25 - .28
.22 .04 0 - .03 - .06 - .10 - .13 - .16 - .19 - .22 - .24
.23 .06 .03 0 - .04 - .06 - .10 - .13 - .16 - .18 - .22
.24 .10 .06 .04 0 - .03 - .06 - .10 - .12 - .15 - .18
.25 .13 .10 .06 .03 0 - .04 - .06 - .10 - .12 - .15
.26 .16 .13 .10 .06 .04 0 - .03 - .06 - .08 - .12
.27 .20 .16 .13 .10 .06 .03 0 - .03 - .06 - .08
.28 .22 .19 .16 .12 .10 .06 .03 0 - .02 - .06
.29 .25 .20 .18 .15 .12 .8 .06 .02 0 - .03
.30 .28 .24 .22 .18 .15 .12 .08 .06 .03 0

.31 .30 .26 .24 .20 .17 .14 .10 .08 .05 .02
.32 .34 .30 .27 .24 .20 .17 .14 .11 .08 .06
.33 .36 .33 .30 .26 .24 .20 .17 .14 .12 .08
.34 .40 .36 .33 .30 .26 .23 .20 .17 .14 .12
.35 .42 .38 .36 .32 .29 .26 .22 .20 .17 .14
.36 .44 .41 .38 .34 .32 .28 .25 .22 .20 .16
.37 .48 .44 .41 .38 .34 .31 .28 .25 .22 .20
.38 .50 .46 .44 .40 .37 .34 .30 .28 .25 .22
.39 .52 .49 .46 .42 .40 .36 .33 .30 .28 .24
.40 .55 .52 .48 .45 .42 .38 .36 .32 .30 .27

.41 .58 .54 .51 .48 .44 .41 .38 .35 .32 .30

.42 .60 .57 .54 .50 .48 .44 .41 .38 .36 .32

.43 .62 .59 .56 .52 .50 .46 .43 .40 .38 .34

.44 .66 .62 .59 .56 .52 .49 .46 .43 .40 .38

.45 .68 .64 .61 .58 .54 .51 .48 .45 .42 .40

.46 .70 .67 .64 .60 .58 .54 .51 .48 .46 .42

.47 .73 .70 .66 .63 .60 .56 .54 .50 .48 .45

.48 .76 .72 .69 .66 .62 .59 .56 .53 .50 .48

.49 .78 .74 .72 .68 .65 .62 .58 .56 .53 .50

.50 .80 .77 .74 .70 .68 .64 .61 .58 .56 .52



Pi. (A) .21 .22

PSN(A)

.51 .83 .80
.52 .86 .82
.53 .88 .84
.54 .90 .87
.55 .94 .90
.56 .96 .92
.57 .98 .95
.58 1.00 .97
.59 1.04 1.00
.60 1.06 1.02

.61 1.08 1.05
.62 1.11 1.08
.63 1.14 1.10
.64 1.16 1.13
.65 1.19 1.16
.66 1.22 1.18
.67 1.24 1.21
.68 1.28 1.24
.69 1.31 1.28
.70 1.33 1.30

.71 1.36 1.32

.72 1.38 1.35
.73 1.42 1.38
.74 1.44 1.41
.75 1.48 1.44
.76 1.51 1.48
.77 1.54 1.51
.78 1.58 1.54
.79 1.61 1.58
.80 1.64 1.61

.81 1.68 1.65
.82 1.72 1.68
.83 1.76 1.72
.84 1.80 1.76
.85 1.84 1.81
.86 1.88 1.85
.87 1.94 1.90
.88 1.98 1.94
.89 2.04 2.00
.90 2.08 2.05

.91 2.14 2.11

.92 2.20 2.17

.93 2.28 2.24

.94 2.36 2.32

.95 2.44 2.41

.96 2.56 2.52

.97 2.68 2.65

.98 2.86 2.82

.99 3.12 3.09

.23 .24 .25 .26 .27 .28 .29

.76 .73

.79 .76
.82 .78
.84 .80
.87 .84
.89 .86
.92 .88
.94 .90
.97 .94

1.00 .96

1.02 .98
1.04 1.01
1.07 1.04
1.10 1.06
1.12 1.09
1.15 1.12
1.18 1.14
1.21 1.18
1.24 1.21
1.26 1.23

1.30 1.26

.70

.72

.75

.78

.80

.82

.86

.88

.90

.93

.96

.98
1.00
1.04
1.06
1.08
1.12
1.14
1.18
1.20

1.23
1.32 1.28 1.26
1.35 1.32 1.28
1.38 1.34 1.32
1.42 1.38 1.35
1.44 1.41 1.38
1.48 1.44 1.42
1.51 1.48 1.44
1.54 1.51 1.48
1.58 1.54 1.52

1.62 1.58 1.56
1.66 1.62 1.59
1.69 1.66 1.62
1.73 1.70 1.66
1.78 . 1.74 1.72
1.82 1.78 1.76
1.87 1.84 1.80
1.92 1.88 1.85
1.97 1.94 1.90
2.02 1.98 1.96

2.08 2.04 2.02
2.14 2.10 2.08
2.21 2.18 2.14
2.29 2.26 2.22
2.38 2.34 2.32
2.49 2.46 2.42
2.62 2.58 2.56
2.79 2.76 2.72
3.06 3.02 3.00

.66

.69

.72

.74
.77
.79
.82
.84
.87
.90

.92

.94

.97
1.00
1.02
1.05
1.08
1.11
1.14
1.16

1.20
.122
1.25
1.28
1.32
1.34
1.38
1.41
1.44
1.48

1.52
1.56
1.59
1.63
1.68
1.72
1.77
1.82
1.87
1.92

1.98
2.04
2.11
2.19
2.28
2.39
2.52
2.69

.64 .60 .58

.66 .63 .60

.68 .66 .63

.71 .68 .66
.74 .71 .68
.76 .73 .70
.79 .76 .74
.81 .78 .76
.84 .81 .78
.86 .84 .81

.89 .86 .84

.92 .88 .86

.94 .91 .88

.97 .94 .92
1.00 .96 .94
1.02 .99 .96
1.05 1.02 1.00
1.08 1.05 1.02
1.12 1.08 1.06
1.14 1.10 1.08

1.16 1.14 1.11
1.19 1.16 1.14
1.22 1.19 1.16
1.25 1.22 1.20
1.28 1.26 1.23
1.32 1.28 1.26
1.35 1.32 1.30
1.38 1.35 1.32
1.42 1.38 1.36
1.45 1.42 1.40

1.49 1.46 1.44
1.52 1.50 1.47
1.56 1.53 1.50
1.60 1.57 1.54
1.65 1.62 1.60
1.69 1.66 1.64
1.74 1.71 1.68
1.78 1.76 1.73
1.84 1.81 1.78
1.89 1.86 1.84

1.95 1.92 1.90
2.01 1.98 1.96
2.08 2.05 2.02
2.16 2.13 2.10
2.25 2.22 2.20
2.36 2.33 2.30
2.49 2.46 2.44
2.66 2.63 2.60

2.96 2.93 2.90 2.88

.30

.55
.58
.60
.62
.66
.68
.70
.72
.76
.78

.80

.83

.86

.88

.91

.94

.96
1.00
1.03
1.05

1.08
1.10
1.14
1.16
1.20
1.23
1.26
1.30
1.33
1.36

1.40
1.44
1.48
1.52
1.56
1.60
1.66
1.70
1.76
1.80

1.86
1.92
2.00
2.08
2.16
2.28
2.40
2.58
2.84



PN(A) .31 .32 .33 .34 .35 .36 .37 .38 .39 .40

PRN(A)

.01 -1.82 -1.85 -1.88 -1.91 -1.94 -1.96 -1.99 -2.02 -2.04 -2.06

.02 -1.54 -1.58 -1.61 -1.64 -1.66 -1.69 -1.72 -1.74 -1.77 -1.80

.03 -1.38 -1.41 -1.44 -1.47 -1.50 -1.52 -1.55 -1.58 -1.60 -1.62

.04 -1.24 -1.28 -1.31 -1.33 -1.36 -1.39 -1.42 -1.44 -1.47 -1.50

.05 -1.14 -1.17 -1.20 -1.23 -1.26 -1.28 -1.31 -1.34 -1.36 -1.38

.06 -1.04 -1.08 -1.11 -1.14 -1.16 -1.19 -1.22 -1.24 -1.27 -1.30

.07 - .96 -1.00 -1.03 -1.06 -1.08 -1.11 -1.14 -1.16 -1.19 -1.22

.08 - .90 - .93 - .96 - .99 -1.02 -1.04 -1.07 -1.10 -1.12 -1.14

.09 - .84 - .87 - .90 - .93 - .96 - .98 -01 - 1.04 -1.06 -1.08

.10 - .78 - .81 - .84 - .87 - .90 - .92 - .95 - .98 -1.00 -1.02

.11 - .72 - .76 - .79 - .82 - .84 - .87 - .90 - .92 - .95 - .98

.12 - .67 - .70 - .74 - .76 - .79 - .82 - .84 - .87 - .90 - .92

.13 - .62 - .66 - .69 - .72 - .74 - .77 - .80 - .82 - .85 - .88

.14 - .58 - .61 - .64 - .67 - .70 - .72 - .75 - .78 - .80 - .82

.15 - .54 - .57 - .60 - .63 - .66 - .68 - .71 - .74 - .76 - .78

.16 - .48 - .52 - .55 - .58 - .60 - .63 - .66 - .68 - .71 - .74

.17 - .44 - .48 - .51 - .54 - .56 - '59 - .62 - .64 - .67 - .70

.18 - .41 - .44 - .48 - .50 - .53 - .56 - .58 - .61 - .64 - .66

.19 - .38 - .41 - .44 - .47 - .50 - .52 - .55 - .58 - .60 - .62

.20 - .34 - .37 - .40 - .43 - .46 - .48 - .51 - .54 - .56 - .58

.21 - .30 - .34 - .36 - .40 - .42 - .44 - .48 - .50 - .52 - .55

.22 - .26 - .30 - .33 - .36 - .38 - .41 - .44 - .46 - .49 - .52

.23 - .24 - .27 - .30 - .33 - .36 - .38 - .41 - .44 - .46 - .48

.24 - .20 - .24 - .26 - .30 - .32 - .34 - .38 - .40 - .42 - .45

.25 - .17 - .20 - .24 - .26 - .29 - .32 - .34 - .37 - .40 - .42

.26 - .14 - .17 - .20 - .2.3 - .26 - .28 - .31 - .34 - .36 - .38

.27 - .10 - .14 - .17 - .20 - .22 - .25 - .8 - .30 - .33 - .36

.28 - .08 - .11 - .14 - .17 - .20 - .22 - .25 - .28 - .30 - .32
.29 - .05 - .08 - .12 - .14 - .17 - .20 - .22 - .25 - .28 - .30
.30 - .02 - .06 - .08 - .12 - .14 - .16 - .20 - .22 - .24 - .27

.31 0 - .04 - .06 - .10 - .12 - .14 - .18 - .20 - .22 - .25

.32 .04 0 - .03 - .06 - .08 - .11 - .14 - .16 - .19 - .22

.33 .06 .03 0 - .03 - 06 - .08 - .11 - .14 - .16 - .18

.34 .10 .06 .03 0 - .02 - .05 - .08 - .10 - .13 - .16
.35 .12 .08 .06 .02 0 - .02 - .06 - .08 - .10 - .13
.36 .14 .11 .08 .05 .02 0 - .03 - .06 - .08 - .10
.37 .18 .14 .11 .08 .06 .03 0 - .02 - .05 - .08
.38 .20 .16 .14 .10 .08 .06 .02 0 - .02 - .05
.39 .22 .19 .16 .13 .10 .08 .05 .02 0 - .02
.40 .25 .22 .18 .16 .13 .10 .08 .05 .02 0

.41 .28 .24 .21 .18 .16 .13 .10 .08 .05 .02

.42 .30 .27 .24 .21 .18 .16 .13 .10 .08 .06
.43 .32 .29 .26 .23 .20 .18 .15 .12 .10 .08
.44 .36 .32 .29 .26 .24 .21 .18 .16 .13 .10
.45 .38 .34 .31 .28 .26 .23 .20 .18 .15 .12
.46 .40 .37 .34 .31 .28 .26 .23 .20 .18 .16
.47 .43 .40 .36 .34 .31 .28 .26 .23 .20 .18
.48 .46 .42 .39 .36 .34 .31 .28 .26 .23 .20
.49 .48 .44 .42 .38 .36 .34 .30 .28 .26 .23
.50 .50 .47 .44 .41 .38 .36 .33 .30 .28 .26



.31 .32 .33 .34PN(A)

PBN(A)

.51

.52

.53

.54

.55

.56

.57

.58

.59

.60

.61

.62
.63
.64
.65
.66
.67
.68
.69
.70

.71

.72

.73

.74

.75
.76
.77
.78
.79
.80

.81

.82

.83

.84

.85

.86

.87
.88
.89
.90

.91

.92

.93

.94

.95

.96

.97
.98
.99

.35 .36 .37 .38 .39 .40

.53 .50 .46 .44

.56 .52 .49 .46

.58 .54 .52 .48

.60 .57 .54 .51
.64 .60 .57 .54
.66 .62 .59 .56
.68 .65 .62 .59
.70 .67 .64 .61
.74 .70 .67 .64
.76 .72 .70 .66

.78. .75 .72 .69

.81 .I8 .74 .72

.84 .80 .77 .74

.86 .83 .80 .77
.89 .86 .82 .80
.92 .88 .85 .82
94 .91 .88 .85

.98 .94 .91 .S8
1.01 .98 .94 .92
1.03 1.00 .96 .94

1.06 1.02 1.00 .96
1.08 1.05 1.02 .99
1.12 1.08 1.05 1.02
1.14 1.11 1.08 1.05
1.18 1.14 1.12 1.08
1.21 1.18 1.14 1.12
1.24 1.21 1.18 1.15
1.28 1.24 1.21 1.18
1.31 1.28 1.24 1.22
1.34 1.31 1.28 1.25

1.38 1.35 1.32 1.29
1.42 1.38 1.36 1.32
1.46 1.42 1.39 1.36
1.50 1.46 1.43 1.40
1.54 1.51 1.48 1.45
1.58 1.55 1.52 1.49
1.64 1.60 1.57 1.54
1.68 1.64 1.62 1.58
1.74 1.70 1.67 1.64
1.78 1.75 1.72 1.69

1.84 1.81 1.78 1.75
1.90 1.37 1.84 1.81
1.98 1.94 1.91 1.88
2.06 2.02 1.99 1.96
2.14 2.11 2.08 2.05
2.26 2.22 2.19 2.16
2.38 2.35 2.32 2.29
2.56 2.52 2.49 2.46
2.82 2.79 2.76 2.73

.41

.44

.46

.48
.52
.54
.56
.58
.62
.64

.66
.69
.72
.74
.7-d
.80
.82
.86
.89
.91

.94
.96

1.00
1.02
1.06
1.09
1.12
1.16
1.19
1.22

1.26
1.30
1.34
1.38
1.42
1.46
1.52
1.56
1.62
1.66

1.72
1.78
1.86
1.94
2.02
2.14
2.26
2.44
2.70

.38

.41

.44

.46
.49
.51
.54
.56
.59
.62

.64

.66
.69
.72
.74
.77
.80
.83
.86
.88

.92

.94

.97
1.00
1.04
1.06
1.10
1.13
1.16
1.20

1.24
1.28
1.31
1.35
1.40
1.44
1.49
1.54
1.59
1.64

1.70
1.76
1.83
1.91
2.00
2.11
2.24
2.41
2.68

.36

.38

.40

.43

.46

.48

.51

.53

.56

.58

.61
.64
.66
.69
.72
.74
.77
.80
.84
.86

.88

.91
.94
.97

1.00
1.04
1.07
1.10
1.14
1.17

1.21
1.24
1.28
1.32
1.37
1.41
1.46
1.50
1.36
1.61

1.67
1.73
1.80
1.s8
1.97
2.08
2.21
2.38
2.65

.33
.36
.38
.40
.44
.46
.48
.50
.54
.56

.58

.61
.64
.66
.69
.72
.74
.78
.81
.83

.86

.88

.92

.94

.98
1.01
1.04
1.08
1.11
1.14

1.18
1.22
1.26
1.30
1.34
1.38
1.44
1.48
1.54
1.58

1.64
1.70
1.78
1.86
1.94
2.)6
2.18
2.36
2.62

.30

.33

.36

.38

.41

.43

.46

.48

.51

.54

.56

.58
.61
.64
.66
.69
.72
.75
.78
.80

.84

.86

.89

.92

.96

.98
1.02
1.05
1.08
1.12

1.16
1.20
1.23
1.27
1.32
1.36
1.41
1.46
1.51
1.56

1.62
1.68
1.75
1.83
1.92
2.03
2.16
2.33
2.60

.28

.30

.33

.36

.38

.40

.44

.46

.48

.51

.54

.56

.58

.62

.64

.66

.70

.72

.76

.78

.81

.84

.86

.90

.93

.96
1.00
1.02
1.06
1.10

1.14
1.17
1.20
1.24
1.30
1.34
1.38
1.43
1.48
1.34

1.60
1.66
1.72
1.80
1.90
2.00
2.14
2.30
2.58



.42 .43 .44 .45PN(A) .41

PRN(A)

.01 -2.09

.02 -1.82

.03 -1.65

.04 -1.52

.05 -1.41

.06 -1.32

.07 -1.24
.08 -1.17
.09 -1.11
.10 -1.05

.11 -1.00

.12 - .94

.13 - .90

.14 - .85

.15 - .81
.16 - .76
.17 - .72
.18 - .68
.19 - .65
.20 - .61

.21 - .58

.22 - .54

.2.3 - .51

.24 - .48

.25 - .44

.26 - .41

.27 - .38
.28 - .35
.29 - .32
.30 - .30

.31 - .28

.32 - .24

.33 - .21

.34 - .18

.35 - .16

.36 - .13

.37 - .10

.38 - .08

.39 - .05

.40 - .02

.41 0

.42 .03
.43 .05
.44 .08
.45 .10
.46 .13
.47 .16
.48 .18
.49 .20
.50 .23

-2.12
-1.85
-1.68
-1.55
-1.44
-1.35
- 1.27
-1.20
-1.14
-1.08

-1.03
- .98
- .93
- .88
- .84
- .79
- .75
- .72
- .68
-. 64

-. 60
- .57
- .54
- .50
- .48
- .44
- .41
- .38
- .36
- .32

- .30
- .27
- .24
- .21
- .18
- .16
- .13
- .10
- .08
- .06

- .03
0

.02

.05

.07
.10
.12
.15
.18
.20

-2.14
-1.87
-1.70
-1.57
-1.46
-1.37
- 1.29
- 1.22
-1.16
-1.10

-1.05
-1.00
- .95
- .90
- .86
- .81
- .77
- .74
- .70
- .66

- .62
- .59
- .56
- .52
- .50
- .46
- .43
- .40
- .38
- .34

- .32
- .29
- .26
- .23
- .20
- .18
- .15
- .12
- .10
- .08

- .05
- .02

()
.03
.05
.0S
.10
.13
.16
.18

-2.17
-1.90
-1.73
-1.60
-1.49
-1.40
-1.32
-1.25
-1.19
-1.13

-1.08
-1.02
- .98
- .93
- .89
- .84
- .80
- .76
- .73
- .69

-. 66
-. 62

.59

.56

.52

.49

.46

.43

.40
- .38

- .36
- .32

-. 29
-. 26

.24
-. 21

.18

.16

.13

.10

.08

.05

.03
0

.02

.05

.08

.10

.13

.15

.46 .47 .48 .49 .50

-2.19
-1.92
-1.75
-1.62
-1.51
-1.42
-1.34
-1.27
-1.21
-1.15

-1.10
-1.04
-1.00
- .95
- .91
- .86
- .82
- .78
- .75
- .71

-. 68
-. 64
- .61
-. 58
- .54
- .51
- .48
- .45
- .42
- .40

- .38
- .34
- .31
- .28
- .26
- .2.3
- .20
- .18
- .15
- .12

- .10
- .07
- .05
- .02

0
.03
.06
.08
.10
.13

-2.22
-1.95
-1.78
-1.65
-1.54
-1.45
-1.37
-1.30
-1.24
-1.18

-1.13
-1.08
-1.03
- .98
- .94
- .89
- .85
- .82
- .78
- .74

- .70
- .67
- .64
-. 60
- .58
-. 54
- .51
- .48
- .46
- .42

- .40
- .37
- .34
- .31
- .28
- .26
- .23
- .20
- .18
- .16

- .13
- .10
- .08
- .05
- .03

0
.02
.05
.08
.10

-2.24
-1.98
-1.80
-1.68
-1.56
-1.48
-1.40
-1.32
-1.26
-1.20

-1.16
-1.10
-1.06
-1.00
- .96
- .92
-. 88
- .84
- .80
- .76

- .73
- .70
- .66
- .63
- .60
- .56
- .54
- .50
- .48
- .45

- .43
- .40
- .36
- .34
- .31
- .28
- .26
-. 23
- .20
- .18

- .16
- .12
- .10
- .08
- .06
- .02

0
.02
.05
.08

-2.27
-2.00
-1.83
-1.70
-1.59
-1.50
-1.42
- 1.35
-1.29
-1.23

-1.18
-1.12
-1.08
-1.03
- .99
- .94
- .90
- .86
- .83
- .79

- .76
- .72
- .69
- .66
- .62
- .59
- .56
-. 53
- .50
- .48-

- .46
- .42
- .39
- .36
- .34
- .31
- .28
- .26
- .23
- .20

- .18
- .15
- .13
- .10
- .08
- .05
- .02

0
.02
.05

-2.30
-2.02
-1.86
-1.72
-1.62
-1.52
-1.44
-1.38
-1.32
-1.26

-1.20
-1.15
-1.10
-1.06
-1.02
- .96
- .92
- .89
- .86
- .82

- .78
- .74
- .72
- .68
- .65
- .62
-. 58
- .56
- .53
- .50

- .48
-. 44
- .42
- .38
- .36
- .34
- .30
-. 28
- .26
- .23

.20

.18

.16

.13

.10

.08
- .05
- .02

0
.02

-2.32
-2.05
-1.88
-1.75
-1.64
-1.55
-1.47
-1.40
-1.34
-1.28

-1.23
-1.18
-1.13
-1.08
-1.04
- .99
- .95
- .92
-. 88
- .84

- .80
- .77
- .74
- .70
- .68
-. 64
- .61
-. 58
- .56
- .52

- .50
- .47
- .44
- .41
- .38
- .36
- .33
- .30
- .28
- .26

- .23
- .20
- .18
- .15
- .13
- .10
- .08
- .05
- .02

0



.42 .43 .44 .45 .46 .47 .48 .49 .50P(A)

Pay(A)

.51

.52

.53

.54

.55

.56

.57

.58
.59
.60

.81

.62
.63
.64
.85
.66
.57
.68
.69
.70

.71

.72

.73

.74

.75

.76

.77

.78

.79

.80

.81

.82

.83

.84

.85

.86

.87

.88

.89

.90

.91

.92

.93

.94

.95

.96

.97

.98

.99

.26 .22 .20

.28 .25 .23
.30 .28 .26
.33 .30 .28
.36 .33 .31
.38 .35 .33
.41 .38 .36
.43 .40 .38
.46 .43 .41
.48 .46 .44

.51 .48 .46

.54 .50 .48

.56 .53 .51

.59 .56 .54

.62 .58 .56

.64 .61 .59

.67 .64 .62

.70 .67 .65

.74 .70 .68

.76 .72 .70

.78 .76 .74

.81 .78 .76

.84 .81 .79

.87 .84 .82

.90 .88 .86

.94 .90 .88

.97 .94 .92
1.00 .97 .95
1.04 1.00 .98
1.07 1.04 1.02

1.11 1.08 1.06
1.14 1.12 1.10
1.18 1.15 1.13
1.22 1.19 1.17
1.27 1.24 1.22
1.31 1.28 - 1.26
1.36 1.33 1.31
1.40 1.38 1.36
1.46 1.43 1.41
1.51 1.48 1.46

1.57 1.54 1.52
1.63 1.60 1.58
1.70 1.67 1.65
1.78 1.75 1.73
1.87 1.84 1.82
1.98 1.95 1.93
2.11 2.08 2.06
2.28 2.25 2.23
2.55 2.52 2.50

.18

.20
.22
.25
.28
.30
.33
.35
.38
.40

.43

.46
.48
.51
.54
.56
.59
.52
.66
.68

.70

.73

.76

.79
.82
.86
.89
.92
.96
.99

1.03
1.06
1.10
1.14
1.19
1.23
1.28
1.32
1.38
1.43

1.49
1.55
1.62
1.70
1.79
1.90
2.03
2.20
2.47

.16

.18

.20

.23

.26

.28

.31

.33

.36

.38

.41

.44

.46

.49

.52
.54
.57
.60
.64
.66

.68

.71

.74

.77

.80

.84

.87

.90

.94

.97

1.01
1.04
1.08
1.12
1.17
1.21
1.26
1.30
1.36
1.41

1.47
1.53
1.60
1.68
1.77
1.88
2.01
2.18
2.45

.12

.15

.18

.20

.23

.25
.28
.30
.33
.36

.38

.40

.43
.46
.48
.51
.54
.57
.60
.62

.66

.68

.71

.74

.78

.80

.84

.87

.90

.94

.98
1.02
1.05
1.09
1.14
1.18
1.23
1.28
1.33
1.38

1.44
1.50
1.57
1.65
1.74
1.85
1.98
2.15
2.42

.10

.12

.15
.18
.20
.22
.26
.28
.30
.33

.36

.38

.40

.44

.46

.48

.52
.54
.58
.60

.63

.66
,68
.72
.75
.78
.82
.84
.88
.92

.96

.99
1.02
1.06
1.12
1.16
1.20
1.25
1.30
1.36

1.42
1.48
1.54
1.62
1.72
1.82
1.96
2.12
2.48

.08

.10
.12
.15
.18
.20
.23
.25
.28
.30

.33
.36
.38
.41
.44

.49

.52

.56

.58

.80
.63
.66
.69
.72
.76
.79
.82
.86
.89

.93

.96
1.00
1.04
1.09
1.13
1.18
1.22
1.28
1.33

1.39
1.45
1.52
1.60
1.69
1.80
1.93
2.10
2.37

.05

.08

.10

.12

.16

.18

.20

.22

.26

.28

.30

.33

.36

.38

.41

.44

.46

.50

.53
.55

.58

.60
.64
.66
.70
.73
.76
.80
.83
.86

.90

.94

.98
1.02
1.06
1.10
1.16
1.20
1.26
1.30

1.36
1.42
1.50
1.58
1.66
1.78
1.90
2.08
2.34

.02

.05

.08

.10

.13

.15

.18

.20

.23

.26

.28

.30

.33

.36

.38

.41

.44

.47

.50

.52

.56

.58
.61
.64
.68
.70
.74'
.77
.80
.84

.88

.92

.95

.99
1.04
1.08
1.13
1.18
1.23
1.28

1.34
1.40
1.47
1.55
1.64
1.75
1.88
2.05
2.32

.41



A P E N D I X I V

TABLES OF NORMALIZED d' AND C/P VALUES



d' VALUES FOR ALL TASKS

M

---------------

w TSUBJECT

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

MEAN :

.6 1

1.8 1

1.8 11 .6

.6

.7

.8

.5

.9

.5

.6

.7

.1

.6

.7

.6

.3

.2

1.56 1.38 1.67 1.53 1.6 5 1.7 0 1.7 8 1.74 1.54

K

N

1.9

1.8

11.9

1.8

T A S

0

2.0

2.1

2.1

2.1

1 .6

1.5

1.9

2.1

2.2

1.8

1.8

1.4

1.6

1.5

1.8

1

2.0

1.9

2.0

2.0

1 .6

1 .7

2.0

2.1

2.0

2.2

2.1

1.6

1.4

1 .7

1.7

1.5 1.6 1.6

1.9

1.2

2.0

2.0

1.2 1.4

1.6 1.6

2

2.1

2.0

2.0

2.0

1 .6

1.8

2.3

2.1

1.9

2.5

2.0

1.8

1.6

1.8

1 .7

3

1.8

2.0

2.0

2.0

1 .7

1 .7

2.0

1.8

1.9

1 .6

2.1

1.6

2.0

1.8

2.0

1 .7

S

1.3

1.9

1.4

1.4

1.8 1.8 1.8 1.8 1.7

1

TABLE OF NORMALIZED



TABLE OF C/P VALUES FOR

W T N

2.8

2.3

2.5

2.4

SUBJECT

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

2

22.1

.8

.7

.4

.7

.6

.8

.0

.8

.3

6 .3

1.8

3 .7

3.8

2.7

0.9

7 .9

1.1

1.8

2.2

2.0

1.8

2.9

2.6

M

T A S K

0

2.3

2.8

2.3

1.4

0.6

1.1

2.8

0.9

3.5

3.4

2.6

0.9

4.8

2.2

2.4

1

2.5

2.3

2.2

2.4

1.2

1.3

1.8

2.6

2.1

1.9

2.5

0.9

2.6

2.4
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2.9 2
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