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Abstract

In this thesis, we describe a general theory of modules over an algebra over an operad. We
also study functors between categories of modules. Specializing to the operad Ed of little
d-dimensional disks, we show that each (d - 1) manifold gives rise to a theory of modules
over Ed-algebras and each bordism gives rise to a functor from the category defined by its
incoming boundary to the category defined by its outgoing boundary. Then, we describe
a geometric construction of the homomorphisms objects in these categories of modules
inspired by factorization homology (also called chiral homology). A particular case of this
construction is higher Hochschild cohomology or Hochschild cohomology of Ed-algebras.
We compute the higher Hochschild cohomology of the Lubin-Tate ring spectrum and prove
a generalization of a theorem of Kontsevich and Soibelman about the action of higher
Hochschild cohomology on factorization homology.
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Introduction

A standard idea in mathematics is to study algebras through their representations. This idea

can be applied to various notions of algebras (associative algebras, commutative algebras,
Lie algebras, etc.). If we have to deal with more complicated types of algebras defined by

an operad, we must first understand what the correct notion of representation or module

is. There is a definition of operadic modules over an algebra over an operad, but this is

too restrictive in our opinion. For instance, operadic modules over associative algebras

are bimodules. However, left modules are at least equally interesting as bimodules. This

suggests that, in general, there are several interesting theories of modules over an algebra.

The first chapter of this thesis studies the most general type of modules one can think

of. As it turns out, notions of modules over 0-algebras are in one-to-one correspondance

with associative algebras in the symmetric monoidal category of right 0-modules. Using

standard techniques, we endow these various categories of modules with a model category

structure. At this stage, we have a function from the set of associative algebras in Modo

to the set of model categories. We then extends this function and construct a functor

from a category BiMod(Modo) to the category ModCat of model categories. The cat-

egory BiMod(Modo) has the associative algebras in Modo as objects and the space of

morphisms between two associative algebras is the "moduli space" of bimodules over these

two associative algebras. The category ModCat has model categories as objects and the

space of morphisms between two model categories is the space of left Quillen functors up

to equivalence. Pushing this further, using the fact that there are pairings between the

categories of modules over 0-algebras, we show that both BiMod(Modo) and ModCat

are the underlying category of operads BiMod(Modo) and ModCat and that our map of

category extends to a map of operad.

This general construction is not explicit enough to be useful. Understanding the operad

BiMod(Modo) is, in general, a formidable task. However, there are cases where a certain

suboperad can be made more explicit. If 0 is the operad Com of commutative algebra, then

the category Modcom is the category of presheaves of simplicial sets on the category of finite

sets. The subcategory of monoidal presheaves (i.e. sending a disjoint union of finite sets to

the product of the corresponding spaces) is equivalent to the category of spaces. Restricting

the general theory to these particular presheaves, we construct a map from the category of

cospans of spaces to the category ModCat (see the last section of the third chapter).
The third chapter is devoted to a construction of factorization homology. Factorization
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homology was originally introduced by Salvatore (see [Sal0l]) as a way of understanding

mapping spaces whose source is a manifold. A more systematic study has been made by

Lurie (see [Luri 1]) and Francis (see [Fral1] and [Fral2]). These two authors use the language

of oo-category in their papers. In this work we have chosen to use more classical model

categories techniques inspired by Andrade's thesis ([And10]). The idea of factorization

homology has been extended to "singular" manifolds in [AFT12]. We give an explicit

construction of singular factorization homology in the case of manifolds with boundary and

in the case of manifolds with certain cone-like singularities.

In the fourth chapter, we study modules over algebras over the operad Ed of little d-disk.

The category Moded is the category of presheaves on the category whose objects are disjoint

union of d-dimensional disks and morphisms are embeddings. There is an obvious functor

from the category of d-manifolds to the category Moded sending a manifold to the presheaf

it represents. Using this observation, we construct a map from a certain category fCobd
to ModCat. We show that fCobd is an "embedding calculus" version of the cobordism

category. More precisely, fCobd is what remains of the d-dimensional cobordism category

when we forget about the manifolds and only remember the presheaves they represent on

the category of disks. This exactly what the embedding calculus of Goodwillie and Weiss

is about (see [BdBW12]).

In the fifth chapter, we set up a spectral sequence computing factorization homology.

Its E2 page can be identified with a commutative version of higher Hochschild homology

introduced by Pirashvili. We make an explicit computation of factorization homology and

higher Hochschild cohomology of Morava E-theory. We put this computation in a broader

perspective using derived algebraic geometry over Ed-ring spectra, a field introduced by

Francis in his thesis (see [Frail]). We also show that the sequence of iterated centers of

Morava K-theory does not necessarily stabilize to Morava E-theory disproving a conjecture

of our advisor Haynes Miller which was our initial thesis project.

Finally in the last chapter, we use factorization homology techniques to give a sim-

ple proof of a theorem of Kontsevich and Soibelman (see [KS09]) describing the action

of Hoschschild cohomology on Hochschild homology. We actually prove a more general

statement about the action of higher Hochschild cohomology on factorization homology.

Several results presented here can be generalized. For instance, in the first chapter, we

have restricted ourselves to operads in the category of simplicial sets. However the results

presented there can be extended to operads in spectra or chain complexes over a field of

characteristic zero. Working with chain complexes over a general ring or other symmetric

monoidal model categories is also possible if one is willing to leave the world of model

categories and work with semi-model categories instead (see [Fre09] for an account of this

theory).

Similarly, we have restricted ourselves to the operad Ed of framed d-disks. For G a topo-

logical group over GL(d), one can define the operad EG of G-framed d-disks (see [And10]).

10



CONTENTS 11

If G is the trivial group, we recover Ed. We could develop the theory of the fourth chap-

ter using 'G instead of Ed. The cobordism category of d-dimensional framed manifolds

would be replaced by the cobordism category of d-dimensional G-framed manifolds. We are

confident that our results can be adapted to this more general situation without difficulties.
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Conventions

Notations

" A boldface letter or word like X or Mod always denotes a category.

" All categories are assumed to be simplicial. If they are ordinary categories we give

them the discrete simplicial structure. We denote by Fun(X, Y) the simplicial cate-
gory of simplicial functors from X to Y.

" Mapx (X, Y) denotes the simplicial set of maps between X and Y in the category X.

" If X is enriched over a monoidal category V, Homx (X, Y) denotes the V object of

homomorphisms from X to Y. The category V should clear from the context.

" X(X, Y) denotes the set of maps from X to Y in the category X. Equivalently,
X(X, Y) is the set of 0-simplices of Mapx(X, Y).

" A calligraphic letter like M always denotes a (colored) operad in the category of

simplicial sets.

" If C is a symmetric monoidal simplicial categoy, C [M] denotes the category of M-

algebras in C.

" The symbol a denotes an isomorphism. The symbol ~ denotes an isomorphism in

the homotopy category (i.e. a zig-zag of weak equivalences).

* The letters Q and R generically denote the cofibrant and fibrant replacement functor

in the ambient model category. There is a natural transformation Q -+ id and id -+ R.

Language conventions

" In this work, the word space usually means simplicial set. We try to say topological

spaces when we want to talk about topological spaces.

" We allow ourselves to treat topological spaces as simplicial sets without changing the
notation. The reader is invited to apply the functor Sing as needed.

" The word spectrum is to be interpreted as symmetric spectrum in simplicial sets.

13



14 CONTENTS

" We say operad for what is usually called multicategory or colored operad.

" We say large category to talk about a category enriched over possibly large simplicial

sets. We say category to talk about a category enriched over small simplicial sets. We

say small category to talk about a category whose objects and morphisms both are

small. The meaning of small and large can be made precise by fixing a Grothendieck

universe.



Chapter 1

Modules over an 0-algebra

In this chapter, we give ourselves a one-color operad 0 and we construct a family of theo-
ries of modules over O-algebras. These module categories are parametrized by associative
algebras in the category of right modules over 0. Assuming that the symmetric monoidal
model category we are working with satisfies certain reasonable conditions, these categories
of modules can be given a model category structure. We then study various functors be-
tween these categories and show that they can be organized into an algebra over a certain
operad with value in model categories.

The idea of introducing a 2-category of model categories seems to be due to Hovey (see
[Hov99]).

The reader is invited to refer to the two appendices for background material about
operads and model categories.

1.1 Definition of the categories of modules

In this section and the following (C, 0, R) denotes a simplicial symmetric monoidal category.
We do not assume any kind of model structure.

Let 0 be a one-color operad in S and A be an object of C[0]. We want to describe
various categories of modules over A. By a module we mean an object M of C together
with operations AO' 0 M -+ M.

1.1.1 Definition. Let P be an associative algebra in right modules over 0. The operad
PMod of P-shaped 0-modules has two colors a and m. Its spaces of operations are as
follows

PMod(a n; a) = O(n)

PMod(afn ED m; m) = P(n)

Any other space of operation is empty. The composition is left to the reader.

15



CHAPTER 1. MODULES OVER AN 0-ALGEBRA

Any category that can reasonably called a category of modules over an 0-algebras arise

in the above way as is shown by the following easy proposition:

1.1.2 Proposition. Let M be an operad with two colors a and m and satisfying the fol-

lowing properties:

" M(*; a) is empty if * contains the color m.

" M(am; a) = 0(n)

" M(*; m) is non empty only if * contains exactly one copy of m.

Then M = PMod for some P in Modo [Ass].

Proof. We define P(n) = M(amn ED m; m). Using the fact that M is an operad, it is easy

to prove that P is an object of Modo[Ass] and that M coincides with PMod. 0

We denote by C[PMod] the category of algebras over this two-colors operad in the

category C. Objects of this category are pairs (A, M) of objects of C. The object A is an

0-algebra and the object M has an action of A parametrized by the spaces P(n). Maps in

this category are pairs (f, g) preserving all the structure.

1.1.3 Remark. Note that the construction P -* PMod is a functor from Modo[Ass] to the

category of operads. It preserves weak equivalences between objects of Modo[Ass]. We

can in fact improve this homotopy invariance a little.

1.1.4 Construction. We construct a category M. Its objects are pairs (0, P) where

0 is a one-color operad and P is an associative algebra in right modules. Its morphisms

(0, P) -+ (0', P') consist of a morphisms of operads f : 0 - 0' together with a morphisms

of associative algebras in 0-modules P -+ P' where P is an seen as an 0-module by

restriction along f. We say that a map in M is a weak equivalence if it induces a weak

equivalence on 0 and P.

1.1.5 Proposition. The functor M -+ Oper sending (0, P) to PMod preserves weak

equivalences.

1.1.6 Definition. Let A be an 0-algebra in C. The category of P-shaped A-modules

denoted by PModA is the subcategory of C[PMod] on objects of the form (A, M) and of

maps of the form (idA, g).

Note that there is an obvious forgetful functor PModA -+ C. One easily checks that it

preserves limits and colimits.

This abstract definition recovers well-known examples. We can try to model left and

right modules over associative algebras. Take 0 to be Ass as an operad in the category of

sets. The category Ass is the category of non-commutative sets (it is defined in [Ang09]).

Its objects are finite sets and its morphisms are pairs (f, w) where f is a map of finite sets

and w is the data of a linear ordering of each fiber of f.

16



1.1. DEFINITION OF THE CATEGORIES OF MODULES

1.1.7 Construction. Let Ass- (resp. Ass+) be the category whose objects are based

finite sets and whose morphisms are pairs (f, w) where f is a morphisms of based finite sets

and w is a linear ordering of the fibers of f which is such that the base point is the smallest

(resp. largest) element of the fiber over the base point of the target of f.
Let R (resp. L) be the right module over Ass defined by the formulas

R(n) = Ass~({*, 1,... , *)

L(n) = Ass+({,, 1,..., )

Let us construct a pairing

R(n) x R(m) -+ R(n + m)

Note that specifying a point in R(n) is equivalent to specifying a linear order of {1, ... , n}.

Let f be a point in R(n) and g be a point in R(m). We define their product to be the map

whose associated linear order of {1, .. . , n + m} is the linear order induced by n concatenated

with the linear order induced by g.

1.1.8 Proposition. Let A be an associative algebra in C. LModA (resp. RModA) is
isomorphic to the category of left (resp. right) modules over A.

Proof. Easy. I

1.1.9 Remark. Operadic modules are also a particular case of this construction. Let 0[1]
be the shift of the operad (. Explicitely, O[1](n) = O(n + 1) with action induced by the

inclusion En -+ En+1. This is in an obvious way a right module over 0. Moreover it has

an action of the associative operad

0[1](n) x 0[1](m) = 0(n + 1) x 0(m + 1) # 0(n + m + 1) = 0(n + m)[1]

It is easy to check that the operad O[1]Mod is the operad parametrizing operadic 0-
modules. For instance if 0 = Ass, the associative operad, the category Ass[1]ModA is the

category of A-A-bimodules. If Com is the commutative operad, the category Com[1]ModA
is the category of left modules over A. If Lie is the operad parametrizing Lie algebra in

an additive symmetric monoidal category, the category Lie[1]Mod, is the category of Lie

modules over the Lie algebra g. That is object M equipped with a map

-.- :g M -+ M

satisfying the following relation

[X,Y].m = X.(Y.m) - Y.(X.m)

17



CHAPTER 1. MODULES OVER AN 0-ALGEBRA

1.2 Universal enveloping algebra

In this section, we show that the category PModA is the category of left modules over a

certain associative algebra built out of A and P.

Let UX = P oo A. Then by proposition B.2.8, it is an associative algebra in C

1.2.1 Definition. The associative algebra UAP is called the universal enveloping algebra of

PModA.

This name finds its justification in the following proposition.

1.2.2 Proposition. The category PModA is equivalent to the category of left modules over

the associative algebra UX.

Proof. Let J be the associative algebra in Modo J which sends 0 to * and everything else

to 0. J gives rise to a theory of modules. The operad JMod has the following description:

JMod(a k, a) = 0(k)

JMod(afk E m, m) = * if k = 0, 0 otherwise

The theory of modules parametrized by J is the simplest possible. There are no opera-

tions Aon 0 M -* M except the identity map M -+ M.

There is an obvious operad map

JMod -+ PMod

inducing a forgetful functor C[PMod] -+ C[JMod]. Let us fix the 0-algebra A. One

checks easily that JModA is isomorphic to the category C. We are interested in the left

adjoint
C ' JModA -+ PModA

Let us first study the left adjoint F : C[JMod] -+ C[PMod]. This is an operadic left

Kan extension. By B.2.6, we have the equation

F(A, M)(m) a PMod(-, m) ®JMod AO- 0 MO-

Note that the only nonempty mapping object in PMod with target m are those with

source of the form ams E m. Hence if we denote JMod* and PMod* the full subcategories

with objects of the form am' W m, the above coend can be reduced to

F(A, M)(m) ' PMod,(-, m) 0JMod. AO 0 M

Let us denote by Fin* the category whose objects are nonnegative integers n* and whose

morphisms from n, to m. are morphisms of finite pointed sets

18



1.2. UNIVERSAL ENVELOPING ALGEBRA

The previous coend is the coequalizer

L]P(t)X x OUf-1 x J(f-1(*))0@A0" e M
f EFin,(s*,t*) \XEt/

- L_ P(s) ® A0 s® M
sEFin

Since the right module J takes value 0 for any non-empty set, we see that the coproduct

on the left does not change if we restrict to maps s, -+ t, for which the inverse image of

the base point of t, is the base point of s,. This set of maps is in bijection with the set of

unbased maps s -+ t. Therefore, the coend can be equivalently written as

LI P(t)x ( O(f-1()) oAsoM
f EFin(s,t) \xEt

- L P(s) 0 A0 0 M
sEFin

But now we see that M can be pulled out of this coend. Since the tensor product with

M commutes with colimits, this is UA ( M.

One can compute in a similar but easier fashion that F(A, M)(a) e A.

We have constructed a natural isomorphism

C[PMod] ((A, UAP 0 M), (A, N)) a C[JMod]((A, M), (A, N))

It is clear that this isomorphisms preserves the subset of maps inducing the identity on

A. Hence we have

PModA(UA 0 M, N) 2 JModA(M, N) ' C(M, N)

This shows that, as functors, the monad associated to the adjunction

C 4 PModA

is isomorphic to the monad associated to the adjunction

C t LModuy

A little bit of extra-work would show that they are isomorphic as monad. Since both

adjunctions are monadic, the result follows. E

The above result is well-known if P = 0[1]. See for instance section 4.3. of [Fre09].

Note that there is an involution in the category of associative algebras in right modules

over 0 sending P to POP. The construction P F UA' sends POP to (UP) P.

19



CHAPTER 1. MODULES OVER AN 0-ALGEBRA

1.2.3 Remark. Another source of examples of modules is obtained by the following proce-

dure:

Assume that a : 0 -+ Q is a morphism of operads. Let A be an Q algebra and P be

an associative algebra in right modules over 0. Then by forgetting along the map 0 -+ Q,

we construct a*A which is an 0-algebra and one may talk about the category PModa*A.

The following proposition shows that this category of modules is of the form QModA for

some Q.

1.2.4 Proposition. We keep the notation of the previous remark. The object atP = Poo Q
is an associative algebra in right modules over Q. Moreover, the category PModa*A is

equivalent to the category a!PModA.

Proof. The first part of the claim follows from the fact that P oo Q is a reflexive coequalizer

of associative algebras in right Q-modules and reflexive coequalizers preserve associative

algebras.

The second part of the claim follows from a comparison of universal enveloping algebras

UA (PoQQ)oQA

SP oo (Q oQ A)

2 P oo a*A r Ua*A

1.3 Model category structure

We now give a model structure to the category PModA assuming the category has a good

enough model structure. See B.3.5 for the definition of "having a good theory of algebras".

Construction of the model category structure

In the remaining of this chapter, (C, 0, Ic) will denote a cofibrantly generated closed sym-

metric monoidal simplicial category.

1.3.1 Theorem. Assume that C has a good theory of algebras (resp. a good theory of

algebras over E-cofibrant operads). Let 0 be an operad (resp. E-cofibrant operad) and P be

a right 0-module (resp. E-cofibrant right 0-module). Let A a cofibrant 0-algebra. There

is a model category structure on the category PModA in which the weak equivalences and

fibrations are the weak equivalences and fibrations in C.

Moreover, this model structure is simplicial and if C is a V-enriched model category for

some monoidal model category V, then so is PModA.

Proof. The category PModA is isomorphic to Modu . The object of C underlying Up is
pseudo-cofibrant since there is a cofibration I -+ Up (B.3.11). The existence of the model

20



1.3. MODEL CATEGORY STRUCTURE

structure is then a consequence of [SSOO]. If the category satisfies the monoid axiom, then
any category of modules can be given a transferred model structure (see [SS00]).

The facts about enrichments come from A.2.6. 0

The category PModA depends on the variables P and A. As expected, there are "base
change" Quillen adjunctions.

1.3.2 Proposition. Let P -+ P' be a morphisms of associative algebras in right modules
over 0 and A be a cofibrant 0-algebra, then there is a Quillen adjunction

PModA t P'ModA

Similarly, if A -* A' is a morphisms of cofibrant 0-algebras then there is a Quillen
adjunction

PModA 4 PModA/

Proof. In both cases, we get an induced map between the corresponding universal enveloping
algebras. The result are then a standard "change of algebras" theorem (see [SSOO]). El

In some cases these adjunctions are Quillen equivalences.

1.3.3 Proposition. Let P be an associative algebra in Modo and A be a cofibrant object
of C[0]. Assume that for any cofibrant object of PModA, N, the functor - &Up N sends

weak equivalences of right Up-modules to weak equivalences in C. Then:

* If P -+ P' is a weak equivalence of associative algebras in right modules over 0, then
there is a Quillen equivalence

PModA t P'ModA

" If A -+ A' is a morphisms of cofibrant 0-algebras then there is a Quillen equivalence

PModA t PModA1

Proof. See [SSOO] Theorem 4.3.

1.3.4 Remark. Having to ask for - oup N to preserve weak equivalences is a little bit
unpleasant but often verified in practice. In particular, it is true for LzpModE and
LzaModE, S, Ch>o(R).

Cofibrant replacement in C[PMod]

The following proposition gives a simple description of the cofibrant objects of C[PMod]
whose algebra component is cofibrant.
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1.3.5 Proposition. Let A be a cofibrant 0-algebra in C. Let M be an object of PModA.

The pair (A, M) is a cofibrant object of C[PMod] if and only if M is a cofibrant object of

PModA.

Proof. Assume (A, M) is cofibrant in C[PMod]. For any trivial fibration N -4 N' in

PModA, the map (A, N) -+ (A, N') is a trivial fibration in C[PMod]. A map of P-shaped

A-module M -+ N' induces a map of PMod-algebras (A, M) -* (A, N') which can be lifted

to a map (A, M) -4 (A, N) and this lift has to be the identity on the first component. Thus

M is cofibrant.

Conversely, let (B', N') -+ (B, N) be a trivial fibration in C[PModl. We want to show

that any map (A, M) -+ (B, N) can be lifted to (B', N'). We do this in two steps. We first

lift the first component and then the second component.

Note that if we have a map A -+ B, any P-shaped module N over B can be seen as a

P-shaped module over A by restricting the action along this map. With this in mind, it is

clear that any map (A, M) -+ (B, N) can be factored as

(A, M) -+ (A, N) -+ (B, N)

where the first map is a map in PModA and the second map induces the identity on N.

Since the map (B', N') -+ (B, N) is a trivial fibration in C[PMod], the induced map

B' -+ B is a trivial fibration in C which implies that it is a trivial fibration in C[0]. A is

cofibrant as an 0-algebra so we can choose a factorization A -+ B' --+ B.

Using this map, we can see N' as an object of PModA and, we have the following

diagram in C [PM od]:

(A, N') > (B', N')

(A, M) > (A, N) >(B, N)

We want to construct a map (A, M) -+ (A, N') making the diagram to commute. The

map (A, N') -+ (A, N) is the product of the identity of A and a trivial fibration N -+ N'

in C. This implies that (A, N') -+ (A, N) is a trivial fibration in PModA, hence we can

construct a map (A, M) -+ (A, N') making the left triangle to commute, this gives us the

desired lift (A, M) -+ (B', N'). 0

Pairing between categories of modules

The category of associative algebras in right modules over 0 is a symmetric monoidal

category. In the end of this section, we want to show that the functor P H-> PModA is

symmetric monoidal in a certain sense.

First, notice that if S is any symmetric monoidal category, the category of associative

algebras in S inherits a symmetric monoidal category structure.
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1.3.6 Proposition. Let A be an object of C[O]. The functor

Modo[Ass] -+ C[Ass]

sending P to UAP is monoidal.

Proof. We want to construct an isomorphism

UP (9 UAQ _: UA "

It is easy to check that for any object X of C, we have

(P®Q)oX e (PoX)9(QoX)

Since the monoidal structure in C commutes with colimits in each variable, we have

U® 0 UQ coeq[(P o 0 o A) D (Q o 0 o A) = (P o A) o (Q o A)]

Because of the previous observation, this coequalizer can be rewritten as

coeq[(P & Q) o 0 o A 4 (P 0 Q) o A]

which is exactly the definition of U*.

1.3.7 Proposition. Let R and S be two associative algebras in C whose underlying object

is cofibrant. The monoidal product of C extends to a pairing:

ModR 0 Mods -+ ModROS

Moreover this pairing is a left Quillen bifunctor.

Proof. The first claim is straightforward.

It suffices to check the pushout-product condition on generating cofibrations and gen-

erating trivial cofibrations. If I is a set of generating cofibrations for C and J is a set of
generating trivial cofibration for C, we can take I 9 R as generating cofibrations in ModR
and JOR as generating trivial cofibrations in ModR and similarly for Mods and ModROS-
With this particular choice, the claim follows directly from the fact that the tensor product
of C itself satisfies the pushout-product axiom. I

1.3.8 Corollary. Let P and Q be two associative algebras in right modules over 0 and A
be a cofibrant 0-algebra. The monoidal product of C extends to a pairing:

PModA 0 QModA -+ (P & Q)ModA

Moreover, this pairing is a left Quillen bifunctor.
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Proof. We have
PModA J Modup, QModA a ModU

as model categories. Therefore, the result follows directly from the previous two proposi-

tions. L

1.4 Functors induced by bimodules

It is well-known that an A-B-bimodule induces a functor from the category of right A-

modules to the category of right B-modules. In this section, we study how this functor can

be derived in a model category context.

In this section, V is a cofibrantly generated closed monoidal model category. We make

a slight abuse of notation and denote V[Ass the category of associative algebras in V even

though, we have defined the operad Ass as a symmetric operad.

1.4.1 Proposition. If V satisfies the monoid axiom, then the category V[Ass] of associa-

tive algebras in V with its transferred model structure is such that the forgetful functor

V[Ass] -+ V

preserves cofibrations and trivial cofibrations.

Proof. This is a direct application of A.1.3. See for instance [SSOO] Theorem 4.1. E

1.4.2 Remark. The unit object of V is the initial associative algebra in V. If it is cofibrant,
then this proposition implies that any cofibrant object in V[Ass] is cofibrant in V. In

general, the unit object is always pseudo-cofibrant and this proposition implies that the

underlying object of a cofibrant associative algebra is pseudo-cofibrant (i.e. tensoring with

it preserves cofibrations and trivial cofibrations). This observation is useful because the

category ModA is usually better behaved if the underlying object of A is pseudo-cofibrant.

It is in general not true that any associative algebra is weakly equivalent as an associative

algebra to one whose underlying object is cofibrant. However any associative algebra is

weakly equivalent to a cofibrant associative algebra.

1.4.3 Proposition. Let A and B be two associative algebras in V whose underlying object

is pseudo-cofibrant, then the forgetful functor

AModB -+ ModB

preserves cofibrations.

Proof. This functor is the right adjoint of a Quillen adjunction

A( 0- : ModB ' AModB

24



1.4. FUNCTORS INDUCED BY BIMODULES

Moreover the model structure on the right hand side is transferred from the model structure
of the left hand-side. The right adjoint preserves filtered colimits and pushouts, therefore
by A. 1.3, the proposition will be proved if for any generating cofibration g of V, the map
A 0 g 0 B is a cofibration in ModB. But A is cofibrant, therefore, A 0 g is a cofibration in
V and A 0 90 B is a cofibration in ModB. 0

1.4.4 Proposition. Let A, B and C be three associative algebras in V whose underlying
object is pseudo-cofibrant. The relative tensor product

- OB - AModB X BModC -4 AModC

is a Quillen bifunctor.

Proof. Let f : X -+ Y be a cofibration in AMod. Then

XOB YOB

is a cofibration in AModB. Let g : P -+ Q be a cofibration in BModC, then the pushout-
product of f 0 B and g is

XOQuX® YOP *YOQ

It suffices to check that this is a cofibration to prove the proposition. Indeed maps of the

for f 0 B generate all the cofibrations in AModB.

By the previous proposition g is a cofibration in ModC. Therefore we have to prove
that the pairing

AMod X Modc ~-+ AMOdC

satisfies the pushout product axiom which is trivially checked on generators. 0

This implies in particular by Ken Brown's lemma that the relative tensor product pre-
serves any weak equivalence between cofibrant objects.

1.4.5 Corollary. Let M be a cofibrant object of AModB, then

- OA M: ModA -+ ModB

is a left Quillen functor.

Proof. Since V is closed, this functor is a left adjoint. By the previous proposition, it

preserves cofibrations and trivial cofibrations. 0

1.4.6 Remark. Functors of the form - OA M have the property that they preserve colimits.
In good cases, all colimit preserving functors are of this form up to homotopy. For instance

if A and B are associative algebras in Spec, colimit preserving functors from ModA to
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ModB are equivalent to objects Of AModB (see [Per13]). See also [To607] Corollary 7.6.

for a more precise statement in the case of chain complexes.

1.5 Simplicial operad of algebras and bimodules

The previous section was about constructing a functor from ModA to ModB out of an

A-B-bimodule. In this section, we globalize this construction and construct a simplicial

category whose objects are associative algebras and whose space of morphisms is the oc-
groupoid of weak equivalences in the oc-category of A-B-bimodule. Moreover, if we are in a

symmetric monoidal category, associative algebras and bimodules can be tensored together

and we can extend that category to an operad.

Construction of the category of algebras and bimodules

Let V be a cofibrantly generated monoidal model category. We make the assumption

that there are enough pseudo-cofibrant associative algebra in the sense that any associative

algebra is weakly equivalent as an associative algebra to one whose underlying object is

pseudo-cofibrant.

As we have noticed, if the category of associative algebras in V has a transferred model

structure then any cofibrant associative algebra is pseudo-cofibrant and in particular, there

are enough pseudo-cofibrant associative algebras.

1.5.1 Construction. We construct a large bicategory Si93Wo(V).
The object of 93i9Xo-(V) are associative algebras in V whose underlying object is

pseudo-cofibrant.

Let A and B be two objects of 93iOoD(V), the category of morphisms between them

Mapino-(V) (A, B)

is the category whose objects are cofibrant objects of AModB and whose morphisms are

weak equivalences. The composition

MapiMOD(V) (A, B) x Map9imo(V) (B, C) -+ Mapimo-(V) (A, C)

is induced by the relative tensor product functor

AModB XB ModC + AModc

Since we restrict to cofibrant bimodules, this map is well-defined (1.4.4). The fact that this

data has the structure of a bicategory is checked in [Shul0].
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Bicategories and weak simplicial categories

Whenever, we have a bicategory, we can take the nerve of each Hom category. The resulting
structure is not simplicial category since the composition is not strictly associative. The
structure we get is a P-simplicial category where P is a certain Ao-operad.

1.5.2 Definition. Let P be a non-symmetric operad which is degreewise contractible. A
P-simplicial category X is the data of:

" A set of objects Ob(X).

* Mapping spaces Mapx(X, Y) for any pair of objects of X

* Composition morphisms for any n-tuple of objects (including n = 0)

P(n) x Mapx(Xi, X 2) x ... x Mapx(Xn_1, Xn) - Mapx(X1, Xn)

All this data is required to satisfy the obvious associativity condition compatibly with the

operadic composition in P.

Note that a simplicial category is in an obvious way a P-category. If we apply 7ro to each

Hom space of a P-simplicial category, we get a honest category that deserves to be called

the homotopy category. Now we can say that a functor f : X -+ Y between P-simplicial

categories is a Dwyer-Kan equivalence if the induced map on homotopy categories is an

equivalence and the maps

Mapx(x, y) -* Mapy (f(x), f(y))

are weak equivalences.

1.5.3 Remark. The forgetful functors from simplicial categories with Bergner's model struc-

ture (see [Ber07]) to P-simplicial categories preserves Dwyer-Kan equivalences. This functor

induces an equivalence from the oo-category of simplicial categories to the co-category of P-
simplicial category. Although well-known to experts, this theorem does not seem to appear

anywhere in the literature.

The following proposition allows one to replace functors from a P-simplicial category to

a simplicial category by functors from an equivalent simplicial category.

1.5.4 Proposition. Let X be a P-simplicial category. There is a simplicial category X'
and an equivalence of P-simplicial categories X X' which induces the identity on objects

such that any map of P-simplicial categories X -+ Y with Y a simplicial category factors

through X'.

Proof. Let S be the set of objects of X. There is an operad in sets CP whose algebras in

S are P-simplicial categories with set of objects S. Similarly, there is an operad CS whose

algebras in S are simplicial algebras with set of objects S. There is a weak equivalence
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of operads p : CP -+ Cs. Moreover, both operads are Ecofibrant. Define X' = p*p!X.

There is counit map X -+ X' which is a weak equivalence since the pair (p!, p*) is a Quillen

equivalence (see B.3.5).

Now any map X -+ Y factors as X -+ U -+ Y where X -+ U induces the identity on

objects and U -+ Y is fully faithful. The map X -+ U is adjoint to a map p!X -+ U. We

define X' to be p!X and it clearly satisfies the proposition. 0

1.5.5 Proposition. The category of bicategories with set of objects S can be written as

the category Cat[Bs] for a certain operad !3S in Cat. Moreover, there is a certain non

symmetric operad P which is degreewise contractible so that if we apply the nerve functor
to BS, we obtain the operad CP of the previous proposition. In particular if we apply the

nerve functor to each Hom of a bicategory, we obtain a P-simplicial category with same set

of objects.

Proof. See [Lei04] Appendix B.2.

1.5.6 Remark. Note that a theorem similar to 1.5.4 holds for bicategory. Namely any

bicategory can be strictified to an equivalent 2-category (see for instance [Gur13]) with

same set of objects.

The weak simplicial category BiMod(V)

1.5.7 Definition. We denote by BiMod(V) the P-simplicial category whose objects are

Ob(i9J1o(V)) and with

MapBiMod(V) (A, B) = N. (Mapzi0too(v) (A, B))

Let us recall the definition of the grouplike monoid of homotopy automorphisms of an

object P in a model category X.

1.5.8 Construction. If X is a simplicial model category, the monoid Auth(P) has a simple

description. First, we take a cofibrant-fibrant replacement P' of P. Then Auth(P) is the

following pullback

Auth(P) >Mapx(P', P')

iro(Mapx(P', P'))X >7ro(Mapx(P', P'))

If X is not simplicial, it still has a hammock localization as any model category (see

[DK80]) denoted LHX. The space MaPLHX can be used instead of Mapx in the above

definition. Note that the two definition coincide up to homotopy when the model category

is simplicial.
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The space MaPBIMOd(V) has the homotopy type of the moduli space of AModB (see

e.g. [DK84]). More explicitely, it splits as

MapBiMod(v) (A, B) L BAuth(M)
ME isom. classes in Ho(AModB)

Now we want to study the functoriality of this construction with respect to the variable

V.

1.5.9 Proposition. Let G : V --+ W be a monoidal left Quillen functor which preserves

pseudo-cofibrant objects. The functor G induces a functor of bicategories

9i3OoD(G) :93iMoD(V) -+ 9i9Job(W)

Proof. By assumption, G preserves associative algebras whose underlying object is pseudo-

cofibrant. It is then easy to check that G also induces a left Quillen functor between

categories of bimodules. The fact that BiWoZ(G) preserves composition is checked in

[Shul0]. LI

1.5.10 Remark. The assumption that G preserves pseudo-cofibrant objects is a little ad hoc.

We had to work with pseudo-cofibrant objects to allow model categories in which the unit

is not cofibrant. We could equally well restrict to associative algebras whose underlying

object is cofibrant but we would not necessarily be able to have a representative of each

equivalence class of associative algebra.

Note that if G : V -+ W is such that the model category structure of W is transferred

from the one of V, then G preserves pseudo-cofibrant objects. Indeed in that case, we

can take GI (resp. GJ) as generating cofibrations (resp. trivial cofibrations). If X is

pseudo-cofibrant, then G(X) 0 GI consists of cofibrations and G(X) 0 GJ consists of trivial

cofibrations.

1.5.11 Corollary. Same notations. G induces a functor of P-simplicial category

BiMod(V) -+ BiMod(W)

Construction of the operad of algebras and bimodules

We now want to assume that V is a symmetric monoidal category. In this case, one can

prove that BiMod(V) is a symmetric monoidal bicategory (see [Shul0]). However, for our

purposes, we only care about the underlying operad which we now construct.

1.5.12 Definition. Let I be a finite set. For {Ai}iEi an I-indexed family of associative
algebras and B an associative algebra, we define

{Ai}iEI ModB
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to be the category whose objects have a left action by each of the Ai and a right action of

B all of these commuting with one another.

Note that {A1}EI ModB has a transferred model structure if each of the Ai and B are

pseudo-cofibrant.

1.5.13 Construction (sketch). There is a P-operad BiMod(V) whose colors are pseudo-

cofibrant associative algebras in V.

Let I be a finite set. For {Ai}iEi an I-indexed family of associative algebras and B an

associative algebra, we define

BiMod(V)({Ai}Eic; B)

to be the nerve of the category whose objects are cofibrant objects in {Ai},EiModB and

morphisms are weak equivalences between those.

We did not define what a P-operad is. Let us just say that is is to an operad what

a P simplicial category is to a simplicial category. In fact one could define a notion of

bioperad which is the straightforward generalization of a bicategory which allows many

inputs. Applying the nerve to the mappings spaces of a bioperad yields a P-operad. The

above construction is an example of this procedure.

1.5.14 Proposition. Let G : V -- W be a symmetric monoidal left Quillen functor

between symmetric monoidal model category which preserves pseudo-cofibrant objects. Then

it induces a functor of P-operads:

BiMod(G) : BiMod(V) -* BiMod(W)

Proof. Easy.

1.6 Simplicial operad of model categories

In this section construct a large category whose objects are model categories and whose

space of morphisms can be roughly described as the set of left Quillen functors up to weak

equivalence. We then extend this structure into an operad by allowing Quillen functors

with several inputs.

The simplicial category of model categories

1.6.1 Definition. Let X and Y be two model categories. Let F and G be two left Quillen

functors X -+ Y. A natural weak equivalence a : F -+ G is a natural transformation with

the property that a(x) : F(x) -* G(x) is a weak equivalence for any cofibrant x E Ob(X).

There is an obvious (vertical) composition between natural weak equivalences but there

is also an horizontal composition between natural transformation which preserves natural

weak equivalences by the following proposition.
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1.6.2 Proposition. Let X, Y and Z be three model categories and let F, G be two left
Quillen functors from X to Y and K and L be two left Quillen functors from Y -+ Z.
Let a be a natural weak equivalence between F and G and f be a natural weak equivalence
between K and L, then the horizontal composition is again a natural weak equivalence.

Proof. The horizontal composition evaluated at a cofibrant object x is the composition

_8F La

KF(x) + LF(x) -- LG(x)

Since F is left Quillen, F(x) is cofibrant and the first map is a weak equivalence. The second
map is L applied to a(x) : F(x) -+ G(x) which is a weak equivalence between cofibrant
objects. Since L is left Quillen, this is an equivalence as well. I]

1.6.3 Construction. The category ModCat is the simplicial category whose objects are
model categories and whose space of morphism from X to Y is the nerve of the category
whose objects are left Quillen functors: X -+ Y and morphisms are natural weak equiva-
lences between left Quillen functors.

Inspired by [Bar10] we suggest the following definition:

1.6.4 Definition. Let K be a simplicial category. A left Quillen diagram of shape K is a
simplicial functor

K -+ ModCat

Ths simplicial operad of model categories

Now we want to extend ModCat to an operad.
Note that Cat is a symmetric monoidal category for the cartesian product; however this

structure does not extend well to ModCat. For two model categories X and Y, one can
put a product model structure on X x Y, but the left Quillen functors from X x Y to Z
are usually not the right thing to consider. The correct notion of "pairing" X x Y -+ Z is
the notion of a left Quillen bifunctor (see [Hov99], or appendix A).

We need a version of a Quillen multifunctor with more than two inputs. Let us first
recall the definition of the cube category.

1.6.5 Definition. The n-dimensional cube is the poset of subsets of {1,... ,n}. We use
the notation P(n) to denote that category. Equivalently, P(n) is the product of n copies
of P(1). The category Pi(n) is the full subcategory of P(n) contatining all objects except
the maximal element.

1.6.6 Definition. If (Xi)E1,...,n} is a family of categories and fi is an arrow in Xi for each
i, we denote by C(fi,... ,fn) the product

fi : P(n) -+ 1 Xi
i i
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1.6.7 Definition. Let (Xi)iE{ 1 ,...,n} and Y be model categories. Let T : fJ7 1 Xi -+ Y

be a functor. We say that T is a left Quillen n-functor if it satisfies the following three

condition:

" If we fix all variables but one. The induced functor Xi -+ Y is a left adjoint.

" If fi : Ai -4 Bi is a cofibration in Xi for i E {1,. . . , n} then the map

colimP(n)T(C(f,. . . , f,)) - T(Bi, . . ., Bn)

is a cofibration in Y

" If further one of the fi is a trivial cofibration, then the map

ColiMP1(n)T(C(fi,. . ., f,)) -+ T(B,,. . ., Bn)

is a trivial cofibration in Y

1.6.8 Remark. Note that the category with one objects and only the identity is the unit of

the cartesian product in Cat. It is a model category in a unique way. A Quillen 0-functor

whose target is Y is just an object of Y.

1.6.9 Definition. A natural weak equivalence between left Quillen n-functors T and S is a

natural transformation T -4 T' with the property that

T(A1, . .. , An) -+ T'(A1, . .. , An)

is a weak equivalence whenever Ai is cofibrant for all i.

1.6.10 Construction. We construct a large operad ModCat whose colors are model cat-

egory and whose space of operations ModCat({Xi}; Y) is the nerve of the category of left

Quillen n-functors Hs Xi -+ Y and natural weak equivalences.

Now, take V to be a cofibrantly generated closed monoidal model category.

1.6.11 Proposition. There is a left Quillen diagram of shape BiMod(V) sending A to

ModA and M to

- OA M : ModA -+ ModB

Proof. Both BiMod(V) and ModCat are obtained as nerves of a certain bicategories,
therefore it suffices to construct this functor at the bicategorical level. This is then a

standard model category argument. E

Now assume that V is a cofibrantly generated symmetric monoidal closed model cate-

gory.
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1.6.12 Proposition. The functor from BiMod(V) to ModCat extends to a functor of

P-operads
BiMod(V) -+ ModCat

Proof. Again it suffices to do this at the bicategorical level where this is almost tautologous.

1.7 An algebraic field theory

In this section C is a symmetric monoidal simplicial cofibrantly generated model category

with a good theory of algebras (resp. with a good theory of algebras over E-cofibrant
operads).

The work of the previous two sections has the following corollary:

1.7.1 Theorem. Let P be an associative algebra in right modules over some operad (resp.

E-cofibrant operad) 0 whose underlying 0-module is cofibrant and A be a cofibrant 0-

algebra in C. Let Sndp be the endomorphism operad of P in the operad BiMod(Modo).
Then,the category PModA is an Endp-algebra in ModCat.

More generally, the assignment P v- PModA defines a BiMod(Modo)-algebra in

ModCat.

Proof. The functor P - P oo A is left Quillen and symmetric monoidal from Modo to C.

Moreover, it sends any P to a pseudo-cofibrant object by B.3.11. Therefore by 1.5.14, it

induces a P-operad morphism

BiMod(Modo) - BiMod(C)

Now we can use 1.6.12 to construct a P-operad morphism

BiMod(C) -+ ModCat

1.7.2 Remark. The title of this section is in reference to the fourth chapter in which we are

going to identify a suboperad of BiMod(Modc) with an approximation of the cobordism

category.
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Chapter 2

The operad of little disks and its
variants

This chapter is mainly technical. We review the traditional definition of the little disk

operad. Then we define a topological space of embeddings between framed manifolds,

possibly with boundary or cone-like singularities. These space of embeddings enter in the

definition of various interesting operads.

The operad of little disks was invented by Boardman, Vogt (see [BV68]). The swiss-

cheese operad is due to Voronov ([Vor99]). The operad denoted S7 Mod in this work is a

particular case of the very general versions of Ed developed by Ayala, Francis and Tanaka

in [AFT12].

2.1 Traditional definition

In this section, we give a traditional definition of the little d-disk operad Dd as well as a

definition of the swiss-cheese operad SCd which we denote Da. The swiss-cheese operad,
originally defined by Voronov (see [Vor99] for a definition when d = 2 and [TholO] for a

definition in all dimensions), is a variant of the little d-disk operad which describes the

action of an Sd-algebra on an Sd-_-algebra.

Space of rectilinear embeddings

Let D denote the open disk of dimension d, D = {x E Rd,||X| < 11.

2.1.1 Definition. Let U and V be connected subsets of Rd, let iu and iv denote the

inclusion into R. We say that f : U -+ V is a rectilinear embedding if there is an element L

in the subgroup of Aut(Rd) generated by translation and dilations with positive factor such

that
ivof = Loiu

We extend this definition to disjoint unions of open subsets of Rd:
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2.1.2 Definition. Let U1,..., U, and V1 ,..., Vm be finite families of connected subsets

of Rd. The notation U1 U ... U U, denotes the coproduct of U1 ,... U" in the category of

topological spaces. We say that a map from U1 U ... U U, to V1 U ... U Vm is a rectilinear

embedding if it satisfies the following properties:

1. Its restriction to each component can be factored as Ui -+ Vj - V1 U ... U Vm where

the second map is the obvious inclusion and the first map is a rectilinear embedding

Ui - Vj.

2. The underlying map of sets is injective.

We denote by Embjn (Ui U ... U Un, Vi U.. . U Vm) the subspace of Map(Ui L ... Li Un, Vi U

... U Vm) whose points are rectilinear embeddings.

Observe that rectilinear embeddings are stable under composition.

The d-disk operad

2.1.3 Definition. The linear d-disk operad, denoted Dd, is the operad in topological spaces

whose n-th space is Embli, (Dun, D) with the composition induced from the composition of

rectilinear embeddings.

There are variants of this definition but they are all equivalent to this one. In the above

definition Dd is an operad in topological spaces. By applying the functor Sing, we get an

operad in S. We use the same notation for the topological and the simplicial operad.

The Swiss-cheese operad

As before, we denote by D, the d-dimensional disk and by H the d-dimensional half-disk

H = {x = (x1, .. . , Xd}), 11XI < 1, X > 0}

2.1.4 Definition. The linear d-dimensional swiss-cheese operad, denoted D's, has two col-

ors z and h and its mapping spaces are

D9(zMn, z) = Embiin(DLn, D)

Do(zAn ED hm, h) = Emboin(Dun U Hum, H)

where the a superscript means that we restrict to embeddings preserving the boundary.

2.1.5 Proposition. The full suboperad of D9 on the color z is isomorphic to Dd and the

full suboperad on the color h is isomorphic to Dd-1.
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2.1.6 Proposition. The evaluation at the center of the disks induces a weak equivalence

D,9(zf ED hm", h) -+ Conf(m, H) x Conf (n, H - 4H)

Proof. This map is a Hurewicz fibration whose fibers are contractible. El

2.2 Homotopy pullback in Topw

The material of this section can be found in [Andlo]. We have included it mainly for the

reader's convenience and also to give a proof of 2.2.4 which is mentioned without proof in

[AndlO].

Homotopy pullback in Top

Let us start by recalling the following well-known proposition:

2.2.1 Proposition. Let

x

Y 9 . Z

be a diagram in Top. The homotopy pullback of that diagram can be constructed as the

space of triples (x, p, y) where x is a point in X, y is a point in Y and p is a path from f (x)

to g(y) in Z. I

Homotopy pullback in Topw

Let W be a topological space. There is a model structure on Topw the category of topo-

logical spaces over W in which cofibrations, fibrations and weak equivalences are reflected

by the forgetful functor Topw -> Top. We want to study homotopy pullbacks in Topw

We denote a space over W by a single capital letter like X and we write px for the

structure map X -+ W.

Let I = [0, 1], for Y an object of Topw, we denote by Y' the cotensor in the category

Topw. Concretely, Y' is the space of paths in Y whose image in W is a constant path.

2.2.2 Definition. Let f : X - Y be a map in Topw. We denote by Nf the following

pullback in Topw:

Nf - yI

IfI

Concretely, Nf is the space of pairs (x, p) where x is a point in X and p is a path in Y

whose value at 0 is f(x) and lying over a constant path in W.
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2.2.3 Proposition. Let

X

Y Z

be a diagram in Topw in which X and Z are fibrant (i.e. the structure maps px and pz are

fibrations) then the pullback of the following diagram in Topw is a model for the homotopy

pullback:

N f

Y >Z

Concretely, this proposition is saying that the homotopy pullback is the space of triple

(x,p, y) where x is a point in X, y is a point in Y and p is a path in Z between f(x) and

g(y) lying over a constant path in W.

Proof of the proposition. The proof is similar to the analogous result in Top, it suffices

to check that the map Nf -- Z is a fibration in Topw which is weakly equivalent to

X -+ Z. Since the category Topw is right proper, a pullback along a cofibration is always

a homotopy pullback. E

From now on when we talk about a homotopy pullback in the category Topw, we mean

the above specific model. Note that even though it looks like the map f plays a special

role, this construction is symmetric in X and Y.

Comparison of homotopy pullbacks in Top and in Topw

For a diagram

x

in Top (resp. Topw), we denote by hpb(X -+ Z +- Y) (resp.

above model of homotopy pullback in Top (resp. Topw).
Note that there is an obvious inclusion

hpbw(X -+ Z <- Y)) the

hpbw(X -+ X <- Y) - hpb(X -+ Z <- Y)

which sends a path (which happens to be constant in W) to itself.

2.2.4 Proposition. Let W be a topological space and X -+ Y +- Z be a diagram in Topw

in which the structure maps X -* W and Y -+ W are fibrations, then the inclusion

hpbw(X -+ Y +- Z) -+ hpb(X -+ Y +- Z)
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is a weak equivalence.

Proof. 1 Let us consider the following commutative diagram

hopbw(X -+ Y +- Z)-: hopb(X - Y +- Z)-> X

hopbw(Y -+ Y +- Z) > hopb(Y -- Y +- Z)-> Y

W >'WI

The map hopb(Y -+ Y +- Z) -+ WI sends a triple (y,p, z) to the image of the path p in
W. The map W -+ W' sends a point in W to the constant map at that point. All other
maps should be clear.

It is straightforward to check that each square is cartesian.
The category Topw is right proper. This implies that a pullback along a fibration is

always a homotopy pullback.

Now we make the following three observations:
(1) The map hopb(Y -+ Y +- Z) -+ W' is a fibration. Indeed it can be identified with

the obvious map Yx y Z -+ W' x w W and Y' -+ W' and Z -+ W are fibrations. This

implies that the bottom square is homotopy cartesian.

(2) The map hopb(Y -+ Y <- Z) -+ Y is a fibration. This is almost tautological.

We know that fibrations are preserved by pullbacks. In order to construct the homotopy
pullback, we replace one of the maps by a fibration and then take the ordinary pullback,
so the projection maps from the homotopy pullback to the two factors are fibrations. This
implies that the right-hand side square is homotopy cartesian.

(3) The middle line of the diagram hopbw(Y -+ Y +- Z) -+ Y is a fibration for the
same reason. A priori it is a fibration in Topw but this is equivalent to being a fibration

in Top. This implies that the big horizontal rectangle is homotopy cartesian.

If we combine (2) and (3) we find that the top left-hand side square is homotopy carte-
sian. If we combine that with (1), we find that the big horizontal rectangle is homotopy
cartesian. The map W -+ W' is a weak equivalence. Therefore the map

hopbw(X -+ Y <- Z) -+ hopb(X -+ Y +- Z)

is a weak equivalence as well. L

2.3 Embeddings between structured manifolds

This section again owes a lot to [And10]. In particular, the definition 2.3.3 can be found

in that reference. We then make analogous definitions of embedding spaces for framed

'The following proof is due to Ricardo Andrade
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manifolds with boundary and Sr-manifolds which are straightforward generalizations of

Andrade's construction.

Topological space of embeddings

There is a topological category whose objects are d-manifolds possibly with boundary and

mapping object between M and N is Emb(M, N), the topological space of smooth embed-

dings with the weak C' topology. The reader should look at [Hir76] for a definition of this

topology. We want to emphasize that this topology is metrizable, in particular Emb(M, N)

is paracompact.

2.3.1 Remark. If one is only interested in the homotopy type of this topological space. One

could take instead the Cr-topology for any r (even r = oo). The choice of taking the weak

(as opposed to strong topology) however is a serious one. The two topologies coincide when

the domain is compact. However the strong topology does not have continuous composition

maps
Emb(M, N) x Emb(N, P) -+ Emb(M, P)

when M is not compact.

Embeddings between framed manifolds

2.3.2 Definition. A framed d-manifold is a pair (M, oM) where M is a d-manifold and

am is a smooth section of the GL(d)-principal bundle Fr(TM).

If M and N are two framed d-manifolds, we define a space of framed embeddings denoted

by Embf(M, N) as in [And10]:

2.3.3 Definition. Let M and N be two framed d-dimensional manifolds. The topological

space of framed embeddings from M to N, denoted Embj (M, N), is given by the following

homotopy pullback in the category of topological spaces over Map(M, N):

Embf (M, N) Map(M, N)

I I
Emb(M, N) - MapGL(d)(Fr(TM), Fr(TN))

The right hand side map is obtained as the composition

Map(M, N) -+ MapGL(d)(M x GL(d), N x GL(d)) e MapGL(d)(Fr(TM), Fr(TN))

where the first map is obtained by taking the product with GL(d) and the second map is

induced by the identification Fr(TM) r M x GL(d) and Fr(TN) e N x GL(d).

It is not hard to show that there are well defined composition maps

Embf (M, N) x Embf (N, P) -+ Embf (M, P)
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allowing the construction of a topological category fMand (see [And10]).

2.3.4 Remark. Taking a homotopy pullback in the category of spaces over Map(M, N) is not

strictly necessary. Taking the homotopy pullback of the underlying diagram of spaces would

have given the same homotopy type by 2.2.4. However, this definition has the psychological

advantage that any point in the space Embf (M, N) lies over a point in Map(M, N) in a

canonical way. If we had taken the homotopy pullback in the category of spaces, the resulting

object would have had two distinct maps to Map(M, N), one given by the upper horizontal

arrow and the other given as the composition Embf (M, N) -4 Emb(M, N) -+ Map(M, N).

Embeddings between framed manifolds with boundary

If N is a manifold with boundary, n a point of the boundary, and v is a vector in TNn -
T(aN)n, we say that v is pointing inward if it can be represented as the tangent vector at

0 of a curve - : [0, 1) -+ N with -y(O) = n.

2.3.5 Definition. A d-manifold with boundary is a pair (N, #) where N is a d-manifold

with boundary in the traditional sense and # is an isomorphism of d-dimensional vector

bundles over oN
#: T(aN) e R -* TN|aN

which is required to restrict to the canonical inclusion T(ON) -+ TNIDN, and which is such

that for any n on the boundary, the point 1 E R is sent to an inward pointing vector through

the composition

R -- Tn aN) E) R --n Tn N

2.3.6 Definition. Let (M, #) and (N, O) be two d-manifolds with boundary, we define

Emb(M, N) to be the topological space of smooth embeddings from M into N sending OM
to ON, preserving the splitting of the tangent bundles along the boundary T(OM) IR 

T(ON) E R. The topology on this space is the weak Cl-topology.

We now introduce framings on manifolds with boundary. We require a framing to

interact well with the boundary.

2.3.7 Definition. Let (N, #) be a d-manifold with boundary. We say that a section o-N of
Fr(TN) is compatible with the boundary if for each point n on the boundary of N there is
a splitting-preserving isomorphism

Tn(aN) (DR - TN 24 Rd-, R

A framed d-manifold with boundary is a d-manifold with boundary together with the
datum of a compatible framing.

In particular, if OM is empty, Emb(M, N) = Emb(M, N - ON). If ON is empty and

OM is not empty, Emb(M, N) = 0.
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2.3.8 Definition. Let M and N be two framed d-manifolds with boundary. We denote

by MapaGL(d) (Fr(TM), Fr(TN)) the topological space of GL(d)-equivariant maps sending

Fr(TMaM) to Fr(TNaN) and preserving the GL(d - 1)-subbundle consisting of framings

that are compatible with the boundary.

2.3.9 Definition. Let M and N be two framed d-manifolds with boundary. The topological

space of framed embeddings from M to N, denoted Embj (M, N), is the following homotopy

pullback in the category of topological spaces over Map((M, OM), (N, ON))

Embf (M, N) > Map((M, M), (N, ON))

I I
Emb(M, N) > MapGL(d)(Fr(TM), Fr(TN))

Concretely, a point in Embf (M, N) is a pair (#, p) where # : M -+ N is an embedding

of manifolds with boundary and p is the data at each point m of M of a path between the

two trivializations of TmM (the one given by the framing of M and the one induced by

#). These paths are required to vary smoothly with m. Moreover if m is a point on the

boundary, the path between the two trivializations of TmM must be such that at any time,
the first d - 1-vectors are in TmOM C TmM.

The simplicial category Mana is the category whose objects are manifolds with bound-

ary and whose space of morphism from M to N is the space Emb(M, N). Similarly, the

simplicial category fMan9 is the category whose objects are framed manifolds with bound-

ary and whose space of morphism from M to N is Emba(M, N). Note that Mana contains

Mand as a full subcategory and similarly fMand contains fMand as a full subcategory.

Manifolds with fixed boundary

In this subsection S is a compact (d - 1)-manifold.

2.3.10 Definition. An S-manifold is a triple (M, #, f) where (M, q) is a d-manifold with

boundary and f : S -+ OM is a diffeomorphism.

2.3.11 Definition. A collared S-manifold is a triple (M, #, f) where (M, #) is a d-manifold

with boundary and f : S x [0, 1) -+ M is an embedding whose restriction to the boundary

induces a diffeomorphism S ' OM

If we restrict the collar to the boundary, a collared S-manifolds is an S-manifold. More-

over, it is a standard fact that the space of collars for a given S-manifold is non-empty and

contractible. Therefore up to homotopy the two notions are the same.

2.3.12 Definition. A d-framing of a (d - 1)-manifold S is a trivialization of the d-

dimensional bundle TS e R where R is a trivial line bundle.
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2.3.13 Definition. Let r be a d-framing of S. A framed ST-manifold is an S-manifolds

(M, #, f) with the datum of a framing of TM such that the following composition

TS e R Tf-R T(OM) E R -- + TMIM

sends T to the given framing on the right-hand side.

2.3.14 Definition. A framed collared Sr -manifold is a collared S-manifold (M, #, f) with
the datum of a framing of TM such that for some real number e in (0,1), the following

composition of embeddings

S x [0,,e) -+ S x [0, 1) -+ M

preserves the framing when we give S x [0, e) the framing -r.

2.3.15 Remark. We want to emphasize that a framed ST-manifold is not necessarily a framed

manifold with boundary. It is a manifold with boundary as well as a framed manifold but

the two structures are not required to be compatible.

2.3.16 Definition. Let (M, #, f) and (M, 4, g) be two framed Sr-manifolds. The topo-

logical space of framed embeddings from M to N, denoted Embsr (M, N), is the following

homotopy pullback taken in the category of topological spaces over MapS (M, N):

Embsr (M, N) > Maps (M, N)

EmbS (M, N) > Map >d)(Fr(TM), Fr(TN))

Any time we use the S superscript, we mean that we are considering the subspace of

maps commuting with the given map from S. The topological space in the lower right

corner is the space of morphisms of GL(d)-bundles inducing the identity T -+ r over the

boundary.

2.3.17 Definition. Let (M, q, f) and (M, 4, g) be two collared framed ST-manifolds.

We define Mapcs (M, N) to be the subspace of Maps (M, N) consisting of maps inducing

the identity on S x [0, e] for some e. We define EmbCs(M, N) and MapsT (Fr(TM), Fr(TN))

in a similar fashion.

The topological space of framed embeddings from M to N, denoted Embfsr (M, N), is the

following homotopy pullback taken in the category of topological spaces over Mapes (M, N):

Emb7's (M, N) > Mapcs (M, N)

Embcs (M, N) > MapcS(d)(Fr(TM), Fr(TN))
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We can extend the notation EmbS(-, -) or EmbcS(-, -) to manifolds without bound-

ary:

* Embs(M, N) = Emb(M, N) if M is a manifold without boundary and N is either an

S-manifold or a manifold without boundary.

* 0 if M is an S-manifold and N is a manifold without boundary.

Using these as spaces of morphisms, there is a simplicical category Mans (resp. Man's)

whose objects are S-manifolds (resp. collared S-manifolds). Similarly, we can extend the

notation EmbSr (-, -) and EmbcSr to framed manifolds without boundary as above and

construct a simplicical category fMan T (resp. fManST) whose objects are framed Sr-

manifolds (resp. collared framed Sr-manifolds).

2.3.18 Remark. When there is no ambiguity, we sometimes allow ourselves to drop the

framing notation and write S instead of Sr to keep the notation simple.

2.4 Homotopy type of spaces of embeddings

We want to analyse the homotopy type of spaces of embeddings described in the previous

section. None of the result presented here are surprising. Some of them are proved in greater

generality in [Cer61]. However the author of [Cer6l] is working with the strong topology

on spaces of embeddings and for our purposes, we needed to use the weak topology.

As usual, D denotes the d-dimensional open disk of radius 1 and H is the upper half-disk

of radius 1

We will make use of the following two lemmas.

2.4.1 Lemma. Let X be a topological space with an increasing filtration by open subsets

X = Un U,. Let Y be another space and f : X -+ Y be a continuous map such that for all

n, the restriction of f to Un is a weak equivalence. Then f is a weak equivalence.

Proof. It suffices to show that the induced map f, : [K, X] -+ [K, Y] is an isomorphism for

all finite CW-complexes.

Since flu, is a weak equivalence, the composition [K, U1] -+ [K, X] -+ [K, Y] is surjective

this forces [K, X] -* [K, Y] to be surjective.

Let a, b be two points in [K, X] whose image in [K, Y] are equal, let a, # be continuous

maps K -+ X representing a and b and such that f o a is homotopical to f o 0. Since the

topological space K is compact, a and 0 are maps K -+ Un for some n. The composite

Un --+ X f+ Y is a weak equivalence, thus a is homotopical to / in Un. This implies that

a is homotopical to / in X or equivalently that a = b. E

2.4.2 Lemma. (Cerf) Let G be a topological group and let p : E -+ B be a map of G-

topological spaces. Assume that for any x E B, there is a neighborhood of x on which there
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is a section of the map:

G --+ B

Then if we forget the action, the map p is a locally trivial fibration. In particular, if B is

paracompact, it is a Hurewicz fibration.

Proof. See [Cer62]. L

Let Emb*(D, D) (resp. Emb9,* (H, H)) be the topological space of self embeddings of D

(resp. H) mapping 0 to 0.

2.4.3 Proposition. The "derivative at the origin" map

Emb*(D, D) -- GL(d)

is a Hurewicz fibration and a weak equivalence. The analogous result for the map

Emb* (H, H) -- GL(d - 1)

also holds.

Proof. Let us first show that the derivative map

Emb*(D, D) -+ GL(d)

is a Hurewicz fibration.

The group GL(d) acts on the source and the target and the derivative map commutes

with this action. We use lemma 2.4.2, it suffices to show that for any u E GL(d), we can

define a section of the multiplication by u map

GL(d) -- GL(d)

which is trivial.

Now we show that the fibers are contractible. Let u E GL(d) and let Embu(D, D) be

the space of embedding whose derivative at 0 is u, we want to prove that Embu (D, D) is

contractible. It is equivalent but more convenient to work with R d instead of D. Let us

consider the following homotopy:

(0, 1] -+ Emb(Rd, Rd)

(f , t) - (X -
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At t = 1 this is the identity of Embu(D, D). We can extend this homotopy by declaring

that its value at 0 is constant with value the linear map u. Therefore, the inclusion {u} -+

Embu (D, D) is a deformation retract.

The proof for H is similar.

2.4.4 Proposition. Let M be a manifold (possibly with boundary). The map

Emb(D, M) -+ Fr(TM)

is a weak equivalence and a Hurewicz fibrations. Similarly the map

Emb(H, M) - Fr(TOM)

is a weak equivalence and a Hurewicz fibration.

Proof. The fact that these maps are Hurewicz fibrations will follow again from lemma 2.4.2.

We will assume that M has a framing because this will make the proof easier and and we will

only apply this result with framed manifolds. However the result remains true in general.

Let's do the proof for D. The derivative map

Emb(D, M) -+ Fr(TM) 2 M x GL(d)

is equivariant with respect to the action of the group Diff(M) x GL(d). It suffices to show

that for any x E Fr(TM), the "action on x" map

Diff(M) x GL(d) - M x GL(d)

has a section in a neighborhood of x. Clearly it is enough to show that for any x in M, the

"action on x" map

Diff(M) -+ M

has a section in a neighborhood of x

We can restrict to neighborhoods U such that U C U C V C M in which U and V are

diffeomorphic to Rd
Let us consider the group Diffc(V) of diffeomorphisms of V that are the identity outside

a compact subset of V. Clearly we can prolong one of these diffeomorphism by the identity

and there is a well define inclusion of topological groups

Diffc(V) -+ Diff(M)

Now we have made the situation local. It is equivalent to construct a map

#$: D -+ Diffc(Rd)

with the property that O(x)(0) = x.
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Let f be a smooth function from Rd to R which is such that

* f(0) = 1

* I|Vf < 2

* f is compactly supported

We claim that

(x)(u) = f(u)x + u

satisfies the requirement which proves that

Emb(D, M) -+ Fr(TM)

is a Hurewicz fibration. The case of H is similar.

Now let us prove that this derivative maps are weak equivalences.

We have the following commutative diagram:

Emb(D, M) > Fr(TM)

M >M

Each of the vertical map is a Hurewicz fibration, therefore it suffices to check that the
induced map on fibers is a weak equivalence. We denote by Embm(D, M) the subspace
consisting of those embeddings sending 0 to m. Hence all we have to do is prove that for
any point m E M the derivative map Embm (D, M) -a FrTmM is a weak equivalence. If
M is D, this is the previous proposition. In general, we pick an embedding f : D -+ M
centered at m. Let U, C Embm (D, M) be the subspace of embeddings mapping D" to the
image of f (where D, C D is the subspace of points of norm at most 1/n). Clearly U, is
open in Emb m (D, M) and U,, Un = Embm (D, M), by 2.4.1 it suffices to show that the map
U, -+ Fr(TmM) is a weak equivalence for all n.

Clearly the inclusion U1 -+ U, is a deformation retract for all n, therefore, it suffices
to check that U1 -+ Fr(TmM) is a weak equivalence. Equivalently, it suffices to prove that
Embo(D, D) -+ GL(d) is a weak equivalence and this is the previous proposition. L

This result extends to disjoint union of copies of H and D.

2.4.5 Proposition. The derivative map

Emb(DUP U H'-q, M) -+ Fr(TConf(p, M - DM)) x Fr(TConf(q, &M))

is a weak equivalence and a Hurewicz fibration.
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2.4.6 Proposition. The evaluation at the center of the disks induces a weak equivalence

Embf(DUP LJ HLq, M) -+ Conf(p, M - aM) x Conf(q,aM)

Proof. To simplify notations, we restrict to studying Embf (H, M), the general case is sim-

ilar. By definition 2.3.9 and proposition 2.2.4, we need to study the following homotopy

pullback:
Map((H, OH), (M, aM))

Emb(H, M) > MapGL(d-1)(Fr(TH), Fr(TM))

This diagram is weakly equivalent to

aM

Fr(T(OM)) > R(T(aM))

where the bottom map is the identity. Therefore, Embf (H, M) ~ OM. 0

Now we want to study the spaces Embs(M, N) and Embs7T (M, N). Note that the

manifold S x [0, 1) is canonically an S-manifold and even a collared S-manifolds whose

collar is the identity.

The splitting of TS D R on the boundary comes from the identification

T(S x [0, 1)) TS e T([0, 1)) 2 TS D R

If r is a framing of TS E R, the above identification makes S x [0, 1) into a framed

S,-manifold and a collared Sr-manifold.

2.4.7 Lemma. Let M be an S-manifold with S compact. The space Embs(S x [0,1), M)

is weakly contractible. Similarly, the space EmbcS(S x [0,1), M) is weakly contractible.

Proof. We do the proof for Embs. The case of Embs is easier.

Let us choose one of these embeddings q : S x [0, 1) -+ M and let's denote its image

by C. For n > 0, let Un be the subset of Embs(S x [0, 1), M) consisting of embeddings

f with the property that f(S x [0, 1]) C C. By definition of the weak Cl-topology, Un is

open in EmbS(S x [0, 1), M), moreover Embs(S x [0, 1), M) = Un Un, therefore by 2.4.1, it

is enough to prove that Un is contractible for all n.
Let us consider the following homotopy:

H: [, 1 - 1x U--+ Un
0 n.
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It is a homotopy between the identity of U, and the inclusion U1 C U". Therefore U1 is
a deformation retract of each of the U,, and all we have to prove is that U1 is contractible.
But each element of U1 factors through C = Imo, hence all we need to do is prove the

lemma when M = S x [0, 1). It is equivalent and notationally simpler to do it for S x R>o2.
For t E- (0, 1], let ht : S x R> 0 -+ S x R>0 be the diffeomorphism sending (s, u) to (s, tu)

Let us consider the following homotopy:

(0, 1] x Embs(S x R>o, S x R>o) -+ Embs(S x R>o, S x R>o)

(t, f) -+ h 1 t o f o ht

At time 1, this is the identity of Embs(S x [0, +oo), S x [0, +oo)). At time 0 it has as
limit the map

(s, 1U) 8 s, U (s,0)

that lies in the subspace of Embs(S x [0, +oo), S x [0, +oo)) consisting of element which
are of the form (s, u) H-+ (s, a(s)u) for some smooth function a : S -+ R>O. This space
is obviously contractible and we have shown that it is deformation retract of Embs(S x
[0, +00), S x [0, +00)). L

A similar proof yields the following proposition:

2.4.8 Proposition. Let M be a d-manifold with compact boundary. The "restriction to

the boundary" map

Emba(S x [0, 1), M) -+ Emb(S, OM)

is a weak equivalence. l

2.4.9 Proposition. Let M be a framed d-manifold with compact boundary. The "restriction

to the boundary" map

Embo(S x [0, 1), M) -+ Embf (S, OM)

is a weak equivalence.

Proof. There is a restriction map comparing the pullback diagram defining Embf (S x

[0, 1), M) to the pullback diagram defining Embf (S, 4M). Each of the three maps is a
weak equivalence (one of them because of the previous proposition) therefore, the homo-
topy pullbacks are equivalent. 0

2.4.10 Lemma. Let N be a framed S,-manifold. The space Embfr (S x [0, 1), N) is con-

tractible. Similarly if N is collared, the space Embs'r (S x [0, 1), N) is contractible.

Proof. Again we do the proof for Embr (S x [0,1), N), the case of Embfs- (S x [0,1), N)
being similar.

2 The following was suggested to us by Soren Galatius
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This space is homotopy equivalent to the following homotopy pullback by 2.2.4:

Maps(S x [0,1), N)

if
Embs(S x [0,1), N) : Maps(d)(Fr(T(S x [0, 1))), Fr(TN))

The upper right corner is obviously contractible and by the previous lemma, the lower

left corner is contractible. The bottom right corner is equal to

Maps(S x [0,1), N x GL(d))

where S -* N x GL(d) is the product of the map f : S -+ N and a constant map S -+ GL(d).

This space is clearly contractible. Therefore, the pullback has to be contractible. L

We are now ready to define the operads Ed, Edo.

2.4.11 Definition. The operad Ed of little d-disks is the simplicial operad whose n-th space

is Embf (Du", D). Equivalently, Ed is the endomorphism operad of D in fMand.

Note that there is an inclusion of operads

Dd -- E

2.4.12 Proposition. This map is a weak equivalence of operads.

Proof. It is enough to check it degreewise. The map

Dd -+ Conf(n, D)

is a weak equivalence which factors through Ed(n) by 2.4.6, the map Ed(n) -+ Conf(n, D) is

a weak equivalence. L

Recall that H is the following subspace of Rd

H = {(X1,.. ., xd) E R d, I1x| < 1,Xd > 0}

2.4.13 Definition. We define the operad SdO to be the full suboperad of fMana on the

colors D and H.

2.4.14 Proposition. The obvious inclusion of operads

is a weak equivalence of operads.

Proof. Similar to 2.4.12. El

50



Chapter 3

Factorization homology

Factorization homology is a family of pairings between geometric objects and algebraic

objects. The general idea is to start with a (simplicial) category with coproducts M and

a full subcategory E with typically a small number of objects. The objects of E are the

"basic" objects of M in the sense that each object of M is obtained by "glueing" objects

of E. Then, one can consider the suboperad of (C, L) on the objects of E. Any algebra

over that operad can be pushed forward to the operad (C, L) and evaluated at a particular

object. This process is called factorization homology.

If we try to do that for the category of d-manifolds and embeddings, the reasonable set

of basic objects is the singleton consisting of the manifold Rd. The endomorphism operad

of Rd is the (framed) little d-disk operad. Factorization homology is then a pairing between

manifolds and algebras over the framed little disk operad. We could also work with framed

d-manifolds. In that case factorization homology would be a pairing between framed d-

manifolds and Ed-algebras. One should refer to [Fra12] for a good overview of the subject.

There are lots of variants of this idea. One could change the tangential structure on the

manifolds or allow manifolds with certain singularities (like boundary, corners, base point,
etc.). A very general theory of factorization homology for singular manifolds is developed

in [AFT12].

We can also define factorization homology for spaces. Any space can be constructed by

glueing contractible cells. In this sense it is reasonable to take the point as our unique basic

objects. The endomorphism operad of the point in S is the commutative operad. Hence

in this case, factorization homology is a pairing between spaces and commutative algebras.

We show that factorization homology of a commutative algebra over a space which happens

to have a d-manifold structure coincides with the factorization homology of the underlying

Ed-algebra. A similar construction can be found in [GTZ10].

Using factorization homology of spaces, we extract from a commutative algebra a functor

from the category of cospans of spaces to the category of model categories. The observation

that in a commutative situation, the category of cospans of spaces should play the role of

the cobordism category appears in section 6 of [BZFN10].
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We give a definition of factorization homology for framed manifolds possibly with bound-

ary and for Sr-manifolds for S a (d - 1)-manifold with a d-framing. The difference between

this chapter and [AFT12] is that we use model categories instead of quasi-category. Note

that a model category version of factorization homology for ordinary d-manifolds can be

found in [And10]. The definition of [AndO] is slightly different from ours since it is de-

fined as an ordinary left Kan extension instead of an operadic left Kan extension. The two

definitions coincide as is explained in B.3.12 but we found our definition easier to work with.

3.1 Preliminaries

Let V be the set of framed d manifolds whose underlying manifold is a submanifold of R1.

Note that 9A contains at least an element of each diffeomorphism class of framed d-manifold.

3.1.1 Definition. We denote by fMand an operad whose set of colors is 9)1 and with

mapping objects:

fMand({M1, .. . , Mn}, M) = Emb1 (Mi U ... U Mn, M)

As usual, we denote by fMand the free symmetric monoidal category on the operad

Manf.

We can see D c Rd c R' as an element of 9. We denote by Ed the full suboperad of

fMand on the color D. The category Ed is the full subcategory of fMand on objects of

the form Dun with n a nonnegative integer.

Similarly, we define 9)a to be the set of submanifold of R' possibly with boundary.

9X1 contains at least an element of each diffeomorphism class of framed d-manifold with

boundary.

3.1.2 Definition. We denote by fMana the operad whose set of colors is 9)19 and with

mapping objects:

fMani({M1,... , Mn}, M) = Emb1 (Mi U ... U M, M)

We denote by fMana the free symmetric monoidal category on the operad fMani.

We define the suboperad Ed as the full suboperad of fMand on the colors D and H.

Let S be a compact (d - 1)-manifold and r be a d-framing on S. Let 9S)1 be the set of

Sr-manifolds whose underlying manifold is a submanifold of R*.

3.1.3 Definition. The operad fMansr has the set 9A U 9 ASt as set of colors. Its spaces
of operations are given by:

fMain 7({Mi}icI; N) = 0, if {Mi}iEI contains more than 1 element of T3 SMr

= Embfsr (U MT, N) otherwise
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One can consider the full suboperad on the colors D and S x [0, 1) and check that it is

isomorphic to S£Mod (see 4.1.1).

3.2 Definition of factorization homology

In this section and the following, we assume that C is a cofibrantly generated symmetric

monoidal simplicial model category with a good theory of algebras over E-cofibrant operads.

3.2.1 Definition. Let A be an object of C[Ed]. We define factorization homology with

coefficients in A to be the derived operadic left Kan extension of A along the map of

operads Ed -+ fMand.
We denote by M '-4 fM A the symmetric monoidal functor fMand -+ C induced by

that pushforward.

We have fM A = Embf(-, M) OEd QA where QA - A is a cofibrant replacement in

the category C[Sd]. We use the fact that the operad Ed is E-cofibrant and that the right

module Embf(-, M) is E-cofibrant.

We can define factorization homology of an object of fMand with coefficients in an

algebra over Ea.

3.2.2 Definition. Let (B, A) be an algebra over S9 in C. Factorization homology with

coefficients in (B, A) is the derived operadic left Kan extension of (B, A) along the obvious

inclusion of operads S' -+ fMan9. We write fM (B, A) to denote the value at M E fMana

of the induced functor.

Again, we have fM(B, A) = Emba(-, M) OEa Q(B, A) where Q(B, A) -- (B, A) is a

cofibrant replacement in the category C[E ]. We use the fact that S'9 is E-cofibrant and

that Emba(-, M) is E-cofibrant as a right module over Sa.
We can define, in a similar fashion, factorization homology on an Sr-manifold. This

gives a pairing between S 7-manifolds and SMod-algebras (see 4.1.1 for a definition of the

operad SMod).

3.2.3 Definition. Let (A, M) be an SMod-algebra in C. Factorization homology with

coefficients in (A, M) is the derived operadic left Kan extension of (A, M) along the map

of operad
SMod -+ f Mans,

We write f, (A, M) for the value at W E STMod of factorization homology with coef-

ficients in (A, M).

3.3 Factorization homology as a homotopy colimit

In this section, we show that factorization homology can be expressed as the homotopy

colimit of a certain functor on the poset of open sets of M that are diffeomorphic to a
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CHAPTER 3. FACTORIZATION HOMOLOGY

disjoint union of disks. Note that this result in the case of manifolds without boundary is

proved in [Lurli].
We will rely heavily on the following theorem:

3.3.1 Theorem. Let X be a topological space and U(X) be the poset of open subsets of

X. Let x : A -+ U(X) be a functor from a small discrete category A. For a point x E X,

denote by Ax the full subcategory of A whose objects are those that are mapped by x to open

sets containing x. Assume that for all x, the nerve of Ax is contractible. Then the obvious

map:

hocolimX -+ X

is a weak equivalence.

Proof. See [Lurli] Theorem A.3.1. p. 971.

Let M be an object of fMand. Let D(M) the poset of subset of M that are diffeo-

morphic to a disjoint union of disks. Let us choose for each object V of D(M) a framed

diffeomorphism V ~ Dun for some uniquely determined n. Each inclusion V C V' in D(M)

induces a morphism Dun -+ Dun' in Ed by composing with the chosen parametrization.

Therefore each choice of parametrization induces a functor D(M) -+ Ed. Up to homotopy

this choice is unique since the space of automorphisms of D in Ed is contractible.

In the following we assume that we have one of these functors 6: D(M) -+ Ed. We fix
a cofibrant algebra A: Ed -+ C.

3.3.2 Lemma. The obvious map:

hocolimvED(M)Embf(-, V) -+ Embj(-, M)

is a weak equivalence in Fun(Ed, S).

Proof. It suffices to prove that for each n, there is a weak equivalence in spaces:

hocolimvED(M)Embf (Dun, V) ~ Embf (Dun, M)

We can apply theorem 3.3.1 to the functor:

D(M) -+ U(Emb1 (Dun, M))

sending V to Embf (Dun, V) c Embf (Dun, M). For a given point # in Embf(Dun, M), we
have to show that the poset of open sets V E D(M) such that im(#) c V is contractible.
But this poset is filtered, thus its nerve is contractible. L

3.3.3 Corollary. We have:

IM A hocolimVED(M) 6(V A
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Proof. By B.3.12, we know that fM A is weakly equivalent to the Bar construction

B(Embf (-, M), Ed, A). Therefore we have:

IM A ~ B(*, D(M), B(Embf(-, -), Ed, A))

The right hand side is the realization of a bisimplicial object and its value is independant
of the order in which we do the realization. E

3.3.4 Corollary. There is a weak equivalence:

M A ~ hocolimvED(M)A(J(V))

Proof. By 3.3.3 the left-hand side is weakly equivalent to:

hocolimVED(M) I A
36(V)

Let U be an object of Ed. The object fu A is the coend:

Embf (-, U) 0E, A

Yoneda's lemma implies that this coend is isomorphic to A(U). Moreover, this isomor-

phism is functorial in U. Therefore we have the desired identity. l

We want to use a similar approach for manifolds with boundaries. Let M be an object

of fMand and let M x [0, 1) be the object of fMand whose framing is the direct sum of

the framing of M and the obvious framing of [0, 1). We identify D(M) with the poset of

open sets of M x [0, 1) of the form V x [0, 1) with V an open set of M that is diffeomorphic

to a disjoint union of disks. As before we can pick a functor 6: D(M) -+ Ea.

3.3.5 Lemma. The obvious map:

hocolimVED(M)Embf(-, V x [0,1)) -+ Embf(-, M x [0, 1))

is a weak equivalence in Fun((Ea)*P, S).

Proof. It suffices to prove that for each p, q, there is a weak equivalence in spaces:

hocolimVED(M)Embf (DUP Li HU, V x [0, 1)) ~ Embf (DUP Li HUq M x [0, 1))

It suffices to show, by 3.3.1, that for any q E Emb(DUP U H U, M x [0, 1)), the poset
D(M)o (which is the subposet of D(M) on open sets V that are such that V x [0,1) C
M x [0, 1) contains the image of #) is contractible. But it is easy to see that D(M)o is

filtered. Thus it is contractible. 0
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3.3.6 Proposition. Let (B, A) : EO -+ C be a cofibrant Ed-algebra, then we have:

'Mx [0,1) (B, A) ~ hocolimVED(M) (B, A) (J(V))

Proof. The proof is a straightforward modification of 3.3.4. E

There is a morphism of operad Ed-1 -+ 'E sending the unique color of Ed-, to H. Indeed

H is diffeomorphic to the product of the (d - 1)-dimensional disk with [0, 1).

3.3.7 Corollary. Let (B, A) be an £d-algebra, then we have a weak equivalence:

JMx[0,1) IM

Proof. Because of the previous proposition, the left hand side is weakly equivalent to

hocolimVED(M)A( 6 (V)) which by 3.3.4 is weakly equivalent to fM A 0

We have an analogous assertion for Sr-manifolds. Let S, be a d-framed (d- 1)-manifold.

Let W be an Sr-manifold. Let D(W) be the poset of open subsets of W which are diffeomor-

phic to S x [0, 1) U Dun under a diffeomorphism of Sr-manifold. Let 6 : D(W) -+ S-Mod be

any parametrization. As before, it turns out that the space of choices of such parametriza-

tions is contractible.

3.3.8 Proposition. We have a weak equivalence in Fun(SrMod, S)

hocolimUED(W)Embfr (-, U) ~ Embsr (-W)

Proof. This is analogous to 3.3.2. E

3.3.9 Corollary. Let (A, M) be a cofibrant algebra over S£Mod. Then there is a weak

equivalence:

J (A, M) ~ hocolimUED(W)(A, M)(3(V))

Proof. The proof follows from the previous proposition exactly as in 3.3.4. D

3.4 Factorization homology of spaces

We define a version of factorization homology which allows to work over a general simplicial

set, on the other hand, we need to restrict to commutative algebras as coefficients. The defi-

nition is a straightforward variant of factorization homology. Such a construction was made

by Pirashvili (see [PirOO]) in the category of chain complexes over a field of characteristic

zero. See also [GTZ10].

In this section and the following (C, ®, 1lc) denotes a symmetric monoidal simplicial

cofibrantly generated model category with a good theory of algebras.
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Let 6 be a set of connected simplicial sets containing the point, we denote S5 the

operad with colors 6 and with spaces of operations:

Space'({s} iEI; t) := Map(ULsi, t)

Note that the full suboperad on the point is precisely the operad Com, therefore, we

have a morphism of operads:

Com -+ Space6

We assume that C is a symmetric monoidal model category in which the commutative
algebras have a.transferred model structure. Note that this is quite restrictive. For instance

it does not work for S. It does work for Spec and Ch>o(R) with R a Q-algebra.

3.4.1 Definition. Let A be a commutative algebra in C, let X be an object of the sym-
metric monoidal category Space6 , we define fX A to be the operadic left Kan extension of

A along the map Com -+ Space6 .

Note that the value of fX A is:

Map(-, X) OFin QA

where QA -+ A is a cofibrant replacement of A as a commutative algebra. In particular, it

is independant of the set 6. In the following we will write fX A for any simplicial set X

without mentioning the set 6.

3.4.2 Proposition. The functor X - fX A preserves weak equivalences.

Proof. The functor X H-+ Map(-, X) sends any weak equivalence in S to a weak equivalence

in Fun(FinP, S). The result then follows from B.3.11. L

We now want to compare fX A with fM A where M is a framed manifold.

3.4.3 Lemma. There is a weak equivalence:

hocolimD(M)Fin(S, lro(-)) ~ Map(S, M)

Proof. Note that for U E D(M), we have Fin(S, 7ro(U)) ~ Map(S, U), thus, we are reduced

to showing:

hocolimUED(M)Map(S, U) ~ Map(S, M)

We use 3.3.1 again, there is a functor D(M) -+ U(Map(S, M)) sending U to the open set

of maps whose image is contained in U. For f c Map(S, M), the subcategory of U E D(M)

containing the image of f is filtered, therefore, it is contractible. El

Let F be any functor Fin -+ C. We have the following diagram:

D(M) - Fin C
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3.4.4 Proposition. There is a weak equivalence:

hocolimD(M)a*F ~ Map(-, M) 0oj, F

Proof. The hocolim can be written as a coend:

* 0D(M) a*F

We use the adjuction induced by a, and find:

hocolimD(M)a*F ~- Lai(*) OFin F

Now Lai(*) is the functor whose value at S is:

Fin0 (ro (-), S) ®D(M)OP * ~ hocolimD(M)Fin(S, 7ro(-))

The results then follows from the previous lemma.

3.4.5 Corollary. Let M be a framed manifold and A a commutative algebra in C, then

fsing(M) A is weakly equivalent to fM A

Proof. We have by 3.3.4:

IM A ~ hocolimD(M)a*A

By B.3.12:

J/n()A ~ Map(-, Sing(M)) (A A
Sing(M)

Hence the result is a trivial corollary of the previous proposition. EZ

Comparison with McClure, Schwdnzl and Vogt description of THH.

In [MSV97], the authors show that THH of a commutative ring spectrum R coincides with

the tensor S 1 0 R in the simplicial category of commutative ring spectra. We want to

generalize this result and show that for a commutative algebra A, there is a natural weak

equivalence of commutative algebras:

/x A~-_X &A

Let X be a simplicial set. There is a category A/X called the category of simplices of X

whose objects are pairs ([n], x) where x is a point of X and whose morphisms from ([n], x)

to ([m], y) are maps d : [n] -4 [m] in A such that d*y = x. Note that there is a functor:

Fx : AX -+ S

sending ([n], x) to A [n].- The colimit of that functor is obviously X again.
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3.4.6 Theorem. The map:

hocolimA/xFx -+ colimA/xFx ~ X

is a weak equivalence.

Proof. see [Lur09a], proposition 4.2.3.14. L

3.4.7 Corollary. Let U be a functor from S to a model category Y. Assume that U

preserves weak equivalences and homotopy colimits. Then U is weakly equivalent to:

X + hocolimA/xU(*)

In particular, if U and V are two such functors, and U(*) ~ V(*), then U(X) ~ V(X) for

any simplicial set X.

Proof. Since U preserves weak equivalences and homotopy colimits, we have a weak equiv-

alence:
hocolimA/xU(*) ~ U(hocolimA/x*) ~ U(X)

We now have the following theorem:

3.4.8 Theorem. Let A be a cofibrant commutative algebra in C. The functor X -+ fx A
and the functor X - X & A are weakly equivalent as functors from S to C[Com].

Proof. The two functors obviously coincide on the point. In order to apply 3.4.7, we need

to check that both functors preserve weak equivalences and homotopy colimits.

Since A is cofibrant and C is simplicial, X -+ X 9 A preserves weak equivalences

between cofibrant objects of S. Since all simplicial sets are cofibrant it preserves all weak

equivalences. The functor X -+ fx A also preserves weak equivalences by 3.4.2, the result

then follows from B.3.11.

Now assume Y ~ hocolimAF where F is some functor from a small category A to S,
then Y ~ B(*, A, F). Tensoring with A preserves colimits since it is a left adjoint, therefore,
we have:

Y & A ~ B. (*, A, F(-))| I A

~ (A[-] 0oA B.(*, A, F(-))) o A

~ z[-] &Asp B.(*, A, F(-) 0 A)

~ hocolimAF(-) 0 A

Therefore X H-+ X 0 A preserves homotopy colimit. Similarly, one can prove that P -*

P OFin A preserves homotopy colimits in the variable P E Modcom. Moreover, Y ~

hocolimAF implies the identity Map(-, Y) ~ hocolimAMap(-, F) in Modcom. This con-

cludes the proof. El
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3.5 The commutative field theory

This section is a toy-example of what we are going to consider in the fourth chapter. Let

us define first the large category Cospan(S).

If X is a space, we denote by SX, the category of simplicial sets under X with the model

structure whose cofibrations, fibrations and weak equivalences are reflected by the forgetful

functor SX -+ S.

The objects of Cospan(S) are the objects S.

The morphisms space Mapcospan(s)(X, Y) is the nerve of the category of weak equiva-

lences between cofibrant objects in SX'Y. More concretely, it is the nerve of the category

whose objects are diagrams of cofibrations:

X -+U +-Y

and whose morphisms are commutative diagrams:

U

X Y

V

whose middle arrow is a weak equivalence.

The composition:

Mapcospan(s) (X, Y) x MapCospan(s) (Y, Z) -+ Mapcospan(s) (X, Z)

is deduced from the Quillen bifunctor:

SX"y X SYuz g 5 XUz

taking (X -> A +-Y,r Y -+ B - Z) to X -+ A ly B <- Z.

The category Cospan(S) is the underlying category of an operad Cospan(S).
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A multi-cospan from {Xi}JiG to Y is a diagram:

xi

Xj

Xk

where all the objects Xi for i E I appear on the left of the diagram.

There is a model category on multi-cospans from {Xi}I to Y.

The space of multi-morphisms from {Xi}iEI to Y in the operad Cospan(S) is the nerve

of the category of weak equivalences between cofibrant multi-cospans from {Xi}iEi to Y.

3.5.1 Theorem. Let A be a cofibrant commutative algebra in C. There is a morphism of

operad Cospan(S) -+ ModCat sending X to Modf A.

Proof. Let us first construct a morphism of operad

Cospan(S) -+ BiMod(ModCom)

We do this by sending the color X to the right Com-module Map(-, X). Map(-, X) is

a commutative algebra in Modcom and any map of simplicial sets X -+ Y induces a com-

mutative algebra map Map(-, X) -+ Map(-, Y) making Map(-, Y) into a left module over

Map(-, X). This observation implies that any multicospan from {Xi}iEI to Y represents

an object of Xi}iEI Mody.

Moreover observe that if X +- U -+ Y is a diagram in S in which both maps are

cofibrations, then the functor on finite sets Map(-, X LUu Y) is isomorphic (not just weakly

equivalent) to the functor Map(-, X) OMap(-,U) Map(-, Y). Indeed, both functors can be

identified with the following functor:

S H [_ Map((A, A n B), (X, U)) x Map(AnB,U) Map((B, A n B), (Y, U))
S=AUB

This proves that the assignment X -+ Map(-, X) is a morphism of operads from Cospan(S)

to BiMod(Modcom).

We have already constructed a morphism of operad from BiMod(Modcom) to ModCat

in the first chapter. We can compose it with the map we have just constructed. E
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Chapter 4

Modules over algebras over the
little disks operad

In this chapter, we specialize the theory of the first chapter to the case of the operad Ed. We
do not study the full operad BiMod(Sd) but a certain suboperad which is closely related
to the cobordism category. More precisely, we construct categories of modules indexed by
(d - 1)-manifolds and functors between these categories indexed by bordism between the
corresponding manifolds.

The idea of extracting a topological field theory from an ESd-algebra seems to be due to
Lurie (see [Lur09b]).

In this chapter (C, 0, Ec) is a symmetric monoid simplicial cofibrantly generated model
category with a good theory of algebras over E-cofibrant operads.

4.1 Definition

Let S be a compact (d - 1)-manifold and let r be a d-framing of S.

4.1.1 Definition. The right Ed-module S, is given by

S, (n) = EmbT (D" U S x [0, 1), S x [0, 1))

It is clearly a right modules over Ed. Moreover, we have a composition

-0- : ST(n) x Sr(m) - S,(n + m)

which makes S, into an associative algebra in right Sr-modules.

4.1.2 Construction. We construct the multiplicative structure of S,.
Let # be an element of ST(m) and 4 be an element of S,(n). Let OS be the restriction

of 0 to S x [0, 1). We define 00 to be the element of S,(m + n) whose restriction to
S x [0, 1) U Du" is 4s o q and whose restriction to Du" is 4' IDun.
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The general theory of the first chapter gives rise to an operad S-Mod and for any

Ed-algebra A in C, a category SModA.

4.1.3 Example. The unit sphere inclusion Sd-1 -* Rd has a trivial normal bundle. This

induces a d-framing on Sd-1 which we denote K. Using 4.1.1, we can construct an operad

Sid- 1Mod. We will show in 4.3.1 that the theory of modules defined by this operad is

equivalent to the theory of operadic modules over Ed.

Recall that S1P denotes the associative algebra in right modules with

SO*P(n) = Sr(n)

but with the opposite associative algebra structure. Unfortunately, SP cannot be expressed

as T,, for a certain d-framed (d - 1)-manifold T. This is unpleasant since this prevents us

from applying the theory of the first chapter directly.

However, we have the following construction which plays an analogous role:

4.1.4 Construction. Let V be a (d - 1)-dimensional real vector space and r be a basis of

V e R. We define by -r the basis of V 0 R which is the image of r under the unique linear

transformation of V e R whose restriction to V is the identity and whose restriction to R

is the opposite of the identity.

More generally, if S is a (d - 1)-manifold and r is a d-framing, we denote by -r the

d-framing obtained by applying the above procedure fiberwise in TS E R

4.2 Linearization of embeddings

In this section, we construct a smaller model of the right module S,. We use this model

to compare the universal enveloping algebra of S-shaped modules to the factorization

homology over a certain manifold.

We will need the following technical result which insures that certain maps are fibrations.

4.2.1 Proposition. Let N be an ST-manifold and let M be an object of S Mod which can

be expressed as a disjoint union
M=PJQ

in which one of the factor is an ST-manifold and the other is a manifold without boundary.

Then the restriction maps

Embs- (M, N) -+ Embsr (P, N)

is a fibration.

Recall that we have extended the definition of EmbSr to manifolds without boundary.

The above proposition can be applied in the case where P and Q are both manifolds without

boundary.
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Proof. By the enriched Yoneda's lemma, the space Embs' (M, N) can be identified with the

space of natural transformations

MapFun(SModP,S) (Emb r (-, M), Embsr (-, N))

and similarly for Embsr (P, N) and Emb s (Q, N). The category Fun(SModP, S) is a sym-
metric monoidal model category in which fibrations and weak equivalences are objectwise.

In fact, more generally, if A is a small simplicial symmetric monoidal category, the cat-
egory of simplicial functors to simplicial sets Fun(A, S) with the projective model structure
and the Day tensor product is a symmetric monoidal model category (this is proved in
[IsaO9] proposition 2.2.15). It is easy to check that in this model structure, a representable
functor is automatically cofibrant (this comes from the characterization in terms of lifting
against trivial fibrations together with the fact that trivial fibration in S are epimorphisms).
Moreover, we have the identity

Embr (-, M) = Embs- (-, P) 0 EmbsT(, Q)

This immediatly implies that

Embsr (-, P) -+ Embsr(, M)

is a cofibration in Fun(SModP, S). But the category Fun(STModP, S) is also a model
category enriched in S, therefore, the induced map

MapFun(SModP,S) (Emb > (-, M), Emb T (-, N))

- MapFun(SModoP,S) (Embsr (-, P), Embs- (-, N))

is a fibration by the pushout-product property. 0

Let S be a (d - 1)-manifold, we define the topological space lEmb8 (S x [0, 1), S x [0, 1))
to be the space of embedding whose underlying map is of the form

(s, It) - (s, at)

for some fixed number a c (0, 1].
If -r is a d-framing of S, there is an obvious map

lEmbs(S x [0, 1), S x [0, 1)) -+ EmbsT (S x [0, 1), S x [0, 1))f

we denote its image by lEmb r (S x [0, 1), S x [0, 1)).
More generally, we denote by lEmbS(S x [0, 1) U Du", S x [0, 1)) the space of embeddings

whose restriction to S x [0, 1) is a point of lEmbS(S x [0, 1), S x [0, 1)). We define lEmb s (S x
[0, 1) Li Dun, S x [0, 1)) in a similar fashion.
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4.2.2 Definition. For any d-framing -r of S, we define an associative algebra in right

module over Ed denoted iS,:

1S,(n) = lEmbsr (S x [0, 1) U Dun, S x [0, 1))

4.2.3 Theorem. The inclusion of right modules lS, -+ S, is a weak equivalences of asso-

ciative algebra in right modules over Ed.

Proof. The map is obviously a map of associative algebras in right Ed-modules. All we have

to do is check that they are objectwise weakly equivalent.

For a given n, we want to show that the inclusion 1S,(n) -+ S, (n) is a weak equivalence.

The restriction map S, (n) -+ Embf(DUn, S x [0,1)) is a fibration and similarly for the

restriction map lS,(n) -+ Embf (Dun, S x [0, 1)). We have the following pullback diagram

where the right vertical map is a fibration by 4.2.1:

1S,(n) >Sr(n)

I I
(0, 1] >Embs (S x [0, 1), S x [0, 1))

The bottom map sends a number a to the product of the identity of S with t -4 at.

Since the category of spaces is right proper and the bottom map is a weak equivalence by

2.4.10, the top map is a weak equivalence. E

Let S be a (d - 1)-manifold and let r be a d-framing of S. Let A be an Ed-algebra, the

factorization homology fsx(0,1) A is an Si algebra. Indeed there is a morphism of operad:

EndfMan1 ((0, 1)) -+ EndfMand(S X (0, 1))

obtained by taking the product with the identity of S.

4.2.4 Proposition. The map S, -+ Embf(-, S x (0,1)) is a weak equivalence of right

Ed-modules

Proof. This is clear. E

4.2.5 Corollary. For a cofibrant Ed-algebra A, there is a weak equivalence

UAr ~- + x(0,1) A

Proof. By the previous proposition, there is a weak equivalence of right Ed-modules

Sr -=_4 Embf(-, S x (0,1))

Then it suffices to apply B.3.11 to this map.
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We would like to say that this map is an equivalence of Ei-algebra but it is not one

on the nose. However, we show in the next proposition that this is a map of Sr-shaped

modules.

4.2.6 Proposition. There is an Sr-shaped module structure on fsx(0,1) A which is such

that the map

A~ fs x (0,1)

is a weak equivalence of Sr-shaped module.

Proof. Let us describe the Sr-shaped module structure on fsx(0,1) A. Let q be a point in

Embs(S x [0, 1) U Dun, S x [0, 1)). By forgeting about the boundary, # defines a point in

Embf (S x (0, 1) U Dun, S x (0, 1)) which induces a map

(f A) 9 A - j A
isx(O,1) iS X (O,1)

It is clear that these map for various # give fS x (0,1) A the structure of an Sr-shaped

module. The second half of the proposition is obvious from our description of the Sr-shaped

module structure on fsx(o'l) A. E

4.3 Equivalence with operadic modules

In this section, we prove the following theorem (see [Fral] for a similar result):

4.3.1 Theorem. S--1 and Ed[1] are weakly equivalent as associative algebras in right mod-

ules over Ed. In particular, for a cofibrant Ed-algebra A, the category S- 1 ModA is con-

nected to Ld[1]ModA by a zig-zag of Quillen equivalences.

Proof. We have a chain of weak equivalences:

Sd[1] +- Ed* +- Ed* __+ lSd-1 __+ Sd-1

The definition of the intermediate terms and the proof of the weak equivalences is done

in the remaining of the section. L

4.3.2 Definition. Let Ed be the right ESd-module

Ed(n) = Emb*(Df" U D*, D*)

where D* is the manifold D pointed at 0 and Emb* denotes the space of framed embeddings

preserving the base point.

There is clearly a map of right Ed-modules Ed -+ Sd[1].

4.3.3 Proposition. This map is a weak equivalence.
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Proof. It suffices to check it for any n. We have a commutative diagram where the right

vertical map is a fibration by 4.2.1

Ed*(n) >Ed[1)(n)

Emb*(D*, D*) ~ Embf (D, D)

Moreover, this diagram is by definition a pullback square. Since the category of spaces

is right proper, the top map is a weak equivalence. 3

4.3.4 Definition. Let lW, be the right module over Ed whose value at n is the following

pullback
1Wd*(n) Ed*(n

I I
(0, 1] > Emb*(D*, D*)

where the bottom horizontal map sends a to the multiplicaiton by a and the right vertical

map is the restriction on the D*-component. In other words, lEd (n) is the subspace of Ed* (n)

whose points are the embeddings whose restriction to D* is linear.

4.3.5 Proposition. The obvious inclusion of right Ed-modules 1.d -+ Ed* is a weak equiva-

lence.

Proof. The fact that this is a map of right module is easy. Therefore, it suffices to check that

it is a degreewise weak equivalence. The right vertical map in the pullback diagram of the

previous definition is a fibration by 4.2.1, moreover the bottom map is a weak equivalence

since both sides are contractible. Since the category of spaces is right proper, the top

horizontal map is a weak equivalence. E

We now want to compare lS.-1 to lCj.
Let n be a nonnegative integer. We construct a map lSd-l(n) -+ lEd*(n). A point in the

left-hand-side is a pair (a, f) where a is a point in (0, 1] and f is an embedding of Du" in

the complement of Sd-I x [0, a], a point in the right hand side is a pair (b, g) where b is a

point in (0, 1] and g is an embedding of Du" in the complement of the disk of center 0 and

radius b in D. There is an obvious diffeomorphism Oa from the complement of [0, a] x Sd-1

in [0, 1) x Sd-1 to the complement of the disk of radius a in D obtained by passing to polar
coordinate. Moreover this diffeomorphism preserves the framing on the nose if [0, 1) x Sd-1

is given the framing r. We thus define the image of (a, f) to be (a, Oa 0 f).

4.3.6 Proposition. The above maps are weak equivalences for any n. Moreover they

assemble into a morphism of associative algebras in right Ed-modules.
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Proof. There is a commutative diagram

1,Ed*(n) > lSd-l(n)

(0, 1] >- (0, 1]

in which the vertical maps are fibrations. The construction of the top horizontal map makes

it clear that it is a fiberwise weak equivalence (even a homeomorphism) therefore it is a

weak equivalence.

It is clear that the map lEd, - lS -1 is a morphism of right Ed-modules. A straightfor-

ward computation shows that it preserves the associative algebra structure. El

4.4 Homomorphism object

In this section C is a closed symmetric monoidal category whose inner Hom is denoted

Hom and whose cotensor is denoted hom. Let A be an Ed-algebra which we assume to be

cofibrant and M and N be two ST-shaped modules. Our goal is to construct a functor

Homs x[0,1] : SModP x SModA - C

which is weakly equivalent to RHomsMOdA(-, -) but with a more geometric flavour.

4.4.1 Construction. We define a functor

J(M, A, N) : (Sr U S.r)Mod*P -+ C

its value on S x [0, 1)" U Du" U S x (-1, 0]"E' is Hom(MO' 0 A®n, N&E').

Notice that any map in (S, U S-,)Mod can be decomposed as a disjoint union of
embeddings of the following three types:

o An embedding S x [0,1) U Duk - S x [0,1).

* An embedding Dul -+ D.

* An embedding Dul U S x (0,1] -+ S x (0,1].

Let # be an embedding S x [0, 1) U Dun U S x (0, 1 -+ S x [0, 1) U Dum U S x (0, 1] and let

4= $_ U 01 U ... U Or U $+

be its decomposition with 0_ of the first type, 0+ of the third type and O/ of the second

type for each i. We need to extract from this data a map

Hom(M 9 AO', N) -+ Hom(M 0 A®", N)
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The action of #- and of the Oi are constructed in an obvious way from the Ed-structure

of A and the S 7-shaped module structure on M. The only non trivial part is the action

of 0+. We can hence assume that q = idSx[0,1)UDUP Li 0+ where 0+ is an embedding

Dun U S x (0,1] -+ S x (0, 1]. We want to construct

Hom(M 0 A®P, N) -+ Hom(M 0 A®I 0 A®n, N)

To do that, notice that Hom(M 0 AOP, N) has the structure of an Sr-shaped A module

induced from N. Thus, the map #+ induces a map:

Hom(M 0 A®&, N) 0 A®n -+ Hom(M 0 A®P, N)

This map is adjoint to

Hom(M 0 A®P, N) -+ Hom(M 0 A&P 0 A@", N)

which we define to be the action of 0.

Let A be a small category, F a functor from A to S and G a functor from A to C. We

denote by homA(F, G) the end

I hom(F(-), G(-))
JA

4.4.2 Definition. We define RHomsX[O,11(M, N) to be the homotopy end

Rhom(Sus-,)ModoP (Emb rus- (-, S x [0,1]), 1(QM, A, RN))

where QM -+ M is a cofibrant replacement as an Sr-shaped module over A and N -+ RN

is a fibrant replacement.

We denote by Z the right module over Ei induced by the one-point manifold and the

negative framing. More precisely, this is the framing on T(*) G R ' R given by the real

number -1. Similarly, we define 'Z to be the right-module over El induced by the one-point

manifold and the positive framing.

4.4.3 Definition. A left modules over an El-algebra A is an object of the category L ModA.
Similarly, a right module over A is an object of 'RModA.

As a particular case of the above construction, we can define Homl' 1 '(M, N) for an

Li-algebra A and M and N two right modules over A.

Comparison with the homomorphisms of modules over an associative algebra

4.4.4 Definition. The category of non-commutative intervals denoted Ass-+ is a skeleton

of the category whose objects are finite sets containing a subset of {-, +} and whose mor-

phisms are maps of finite sets f preserving - and + whenever this makes sense together
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with the extra data of a linear ordering of each fiber which is such that - (resp. +) is the
smallest (resp. largest) element in the fiber over - (resp +).

Note that the functor 1ro which sends a disjoint union of intervals to the set of connected
components is an equivalence of simplicial categories from SOMod to Ass-+. In fact, we
could have defined Ass-+ as the homotopy category of SoMod.

Let A be an associative algebra and M and N be right modules over it. We define
F(M, A, N) to be the obvious functor (Ass-+)P -+ C sending {-, 1,... , n, +} to Hom(Mo
A®O, N).

Recall that A P can be described as a skeleton of the category whose objects are linearly
ordered sets with at least two elements and morphisms are order preserving morphisms
preserving the minimal and maximal element.

With this description, there is an obvious functor AoP - Ass-+ which sends a totally

ordered set with minimal element - and maximal element + to the underlying finite set

and an order preserving map to the underlying map with the data of the linear ordering of

each fiber.

4.4.5 Proposition. Let A be an associative algebra and M and N be right modules over

it. The composition of F(M, A, N) with the above functor A -+ (Ass-+)OP is the cobar

construction C* (M, A, N)

Proof. Trivial. El

We denote by P : (Ass-+)OP -+ S the left Kan extension of the constant cosimplicial

set [n] -+ * along this map. Concretely P sends a finite set with - and + to the set of

linear oredring of that set whose smallest element is - and largest element is +.

4.4.6 Corollary. Let A be a cofibrant associative algebra and M and N be right modules

over it. Then

RHomA(M, N) ~ RhomAss-+ (P, F(M, A, N))

Proof. Assume that M is cofibrant and N is fibrant. If they are not , we take an appropriate

replacement. The left hand side is

Tot([n] -+ Cn(M, A, N) = Hom(M 0 A*n, N))

According to the cofibrancy/fibrancy assumption, this cosimplicial functor is Reedy
fibrant, therefore the totalization coincides with the homotopy limit. Hence we have

RHomA(M, N) ~ RhomA(*, C*(M, A, N)) ~ RhomASS-+ (P, F(M, A, N))

MI
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4.4.7 Proposition. Let A be a cofibrant associative algebra and M and N be right modules

over it. Then there is a weak equivalence

10"li I(M, N) RHom (M, N)

Proof. First notice that if A is cofibrant as an associative algebra, then the underlying E1-

algebra is cofibrant. Let us assume that M and N are respectively cofibrant and fibrant

(otherwise take the appropriate replacement).

The left hand-side is the derived end

RhomAss-+ (P, F(M, A, N))

which can be computed as the totalization of the Reedy fibrant cosimplicial object

C*(P, Ass-+, F(M, A, N))

Similarly, the right hand side is the totalization of the Reedy fibrant cosimplicial object

Co(EmbsO((-, [0, 1]), S2Mod, T(M, A, N))

There is an obvious map of cosimplicial objects

Co(Embso (-, [0, 1]), SoMod, J(M, A, N)) - Co(P, Ass-+, F(M, A, N))

which is degreewise a weak equivalence. Therefore, there is a weak equivalence between the

totalizations

RHomA'N (M, N) RHom (M, N)

4.4.8 Corollary. Let A be a cofibrant Si -algebra and N a right module. Let A' be A seen

as a right A-module over itself. Then

RHomi'Ul (A m , N) ~ N

Proof. The triple (A, A m , N) forms an algebra over (JZ 0 'R)Mod. The operad 'RMod is

weakly equivalent to the operad RMod. This implies that we can find a pair (A', N')

consisting of an associative algebra and a right module together with a weak equivalence of

('Z 0 R)Mod-algebra

(A, Am N) prviu (A', A', N')

Using the previous proposition, we have

RHomi'11 (A m , N) ~ RHomA/(A',N') ~ N' ~ N

72



4.4. HOMOMORPHISM OBJECT

Let D([0, 1]) be the poset of open sets of [0, 1] that are diffeomorphic to [0, 1) U (0, 1)nL U

(0, 1] for some n. Let us choose a functor

5 : D([0, 1]) -+- SoMod

by picking a parametrization of each object of D([0, 1]).

4.4.9 Proposition. There is a weak equivalence

RHoml' 11 (M, N) ~ holimUED([,1})OPY(M, A, N) (6U)

Proof. This is analogous to 3.3.4. We can assume that M is cofibrant and N is fibrant.

First, we have the equivalence

RHom '1 ' (M, N) ~ holimUED([0,1])oPIRHom'(M, N)

which follows easily from the equivalence of right SoMod-module

Emb '(-, [0, 1]) ~ hocolimuED([0,1)Embso (-, U)

Then we notice, using Yoneda's lemma, that U + RHomU (M, N) is weakly equivalent

as a functor to U " T(M, A, N)(6U). E

Comparison with the actual homomorphisms

In this subsection, A is a cofibrant Ed-algebra. We want to compare RHom S'[0,11 (M, N)

with RHomsTModA(M, N).

4.4.10 Construction. Let M be an ST-shaped module over an Ed-algebra A. We give M

the structure of a right module over the Li-algebra fsx gel) A. Let

[0, 1) Li (0, 1 )Lfl -+ [0, 1)

be a framed embedding. We can take the product with S and get an embedding in fManT

S x [0, 1) U (S x (0, 1))Un - S x [0, 1)

Evaluating f- (M, A) over this embedding, we find a map

M&(jsx(0,1)

All these maps give M the structure of a right fSx(0,1) A-module.
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4.4.11 Proposition. Let M and N be two Sr-shaped module over A. There is a weak

equivalence

RHom X[0,1 (M, N) ~ holimUED([0,1])oP'(M, A, N)

where M and N are given the structure of right fsx(O,1) A-modules using the previous con-

struction.

Proof. This is a straightforward variant of 4.4.9. One first proves that

RHom SX[0,1](M, N) ~_ holimUcD([0,])oPRHomSx U(M, N)

which follows from the equivalence as right S, U S-,Mod-module

hoColiMUED([0,1])Emb rs-(-,S x U) ~ Emb S(-,S x [0, 11)

and then, using Yoneda's lemma it is easy to check that the functor

U + RHomAX (M, N)

is weakly equivalent to

U - 'T(M, sx(j AI N) (U)

4.4.12 Corollary. There is a weak equivalence

RHom[0 1 ] (M, N) ~ RHom X [0,1 (M, N)

Proof. Both sides are weakly equivalent to

holimUED([0,1])oPi(M, f A, N)(S x U)

One side by the previous proposition and the other by 4.4.9. El

We are now ready to prove the main theorem of this section:

4.4.13 Theorem. There is a weak equivalence:

RHoms X[0,1](M, N) ~ RHomsModA (M, N)

Proof. If we fix A and a fibrant Sr-shaped module N and let M vary, we want to compare
two functors from STModA to C. Both functors preserve weak equivalences and turn

homotopy colimits into homotopy limits, therefore, it suffices to check that both functors

are weakly equivalent on the generator of the category of Sr-shaped modules. In other
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word, it is enough to prove that

RHomsx [0,1 (UA7, N) ~ RHomsModA (UA, N)

The right hand side of the above equation can be rewritten as RHomus (UA, N) which

is trivially weakly equivalent to N.
We know from 4.2.6 that as Sr-shaped module, there is a weak equivalence

-* isx(0,1) A

Therefore, it is enough to prove that there is a weak equivalence

RHom X[O(sx(O) A, N) ~ N

According to the previous proposition, it is equivalent to prove that there is a weak

equivalence:

RHom As( 0 1 ) A, N) ~ N

which follows directly from 4.4.8.

4.5 Functor induced by a bordism

Let S, and T, be two (d - 1)-manifold with a d-framing.

4.5.1 Definition. A bordism from S, to T is a collared S, U T_,-manifold.

4.5.2 Construction. Let W be a bordism from S, to T,. We construct a functor Pw from

cSModA to cTModA.

Pw (M) = EmbPa (-, W) OcSMod (A, M)

W denotes the manifold W UT T x [0, 1). This is an cS,-manifold. The pair (A, M) is an

algebra over cSMod or equivalently a symmetric monoidal functor from cSMod to C.

Thus the above coend makes sense.

We claim that Pw(M) is a cT,-module. Let # be an element of cT(n) i.e. a collared

embedding from T x [0, 1) U Dun to T x [0, 1). We can glue # to W along their common

boundary and extract from this an embedding

W U Dun -+ W

If we take the relative composition product of the right module map represented by this

map with (A, M) we get a map

Pw(M) 0 A®n -+ Pw(M)
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All these maps for various q endow Pw(M) with the structure of a cT,-module.

As usual Pw(-) can be derived by restricting it to cofibrant cS,-shaped modules (this

uses 1.3.5 and B.3.11). Note that there is an isomorphism

fi (A, M) ~ LPw(M)

by definition of factorization homology over an S,-manifold.

We now want to study composition of functors of the form Pw.

4.5.3 Definition. Let W be a bordism from S, to T, and W' be a bordism from T, to U,.

We define W' o W to be the manifold:

W UT W'

Note that, with its obvious framing, W' o W is a bordism from S, to U,.

4.5.4 Proposition. Let M be a S,-module, then there is a weak equivalence:

LPw'(LPw(M)) ~_ LPw'ow(M)

Proof. First notice, that Pw sends cofibrant modules to cofibrant modules, therefore, we

can assume that M is cofibrant and prove that Pw' o Pw(M) ~ Pw'ow(M).

According to 3.3.9. We have

Pw (Pw (M)) ~_ hocolim ~,(A, Pw(M))

Let E be the category of open sets of W' o W of the form Z Li Dun where Z is a

submanifold of W' o W which contains W and which is such that there is a diffeomorphism

Z ~ W inducing the identity on W. In other words, Z is W together with a collar of the

T boundary which is contained in the W' side.

We claim that

Pw'0 w(M) ~ hocolimEEE (A, M)

The proof of this claim is entirely analogous to 3.3.9.
If E is of the form Z U Dun and Z is as in the previous paragraph, we have fE(A, M) ~

Pw (M) ® A®n. Moreover, the category E is isomorphic to D(W') under the map sending

E to the intersection of E with the W' half of W' o W.
Thus, we have identified both Pjy o Pw(M) and Pwrow(M) with the same homotopy

colimit. E

We can generalize the definition 4.4.2.

4.5.5 Construction. Let W be bordism from S, to T. Let M be an cS,-shaped module
over A and N be a cTh,-shaped module. We can construct a functor c3T(M, A, N) from
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(cS, U cTT,)ModP to C which sends S x [0, 1)L' U DUn U T x (0, 1]"' to Hom(Mo' 0

A0n, N&'). We define RHom'W (M, N) to be the homotopy end

RHomI(M, N) = Rhom(cSuLcT_,)ModoP (EmbcfS'UcT-'(-, W), c~(M, A, N))

This construction has the following nice interpretation:

4.5.6 Theorem. Let W be a bordism from S, to T. There is a weak equivalence:

RHomcw (M, N) ~ RHomc( 7 x[OT ' (LPw (M), N)

Proof. This is a variant of 4.4.13.

The following theorem has exactly the same proof as 4.4.13

4.5.7 Theorem. There is a weak equivalence:

RHomsx [0,1](M, N) ~ RHom SModA (M, N)

We now introduce the definition of higher Hochschild cohomology.

4.5.8 Definition. Let A be a cofibrant ESd-algebra in C. The Ed-Hochschild cohomology of

A is

HHad(A) = RHomsd-1ModA (A, A)

4.5.9 Proposition. Let D be the closed unit ball in Rd seen as a bordism from the empty

manifold to Sd-1. There is a weak equivalence:

HHd (A, M) ~ RHomcb (Ec, M)

Proof. fic is an object of 0ModA and LP(Ic) is weakly equivalent to A. Then it suffices

to apply 4.5.6 and 4.5.7. El

This has the following surprising consequence. Observe that Embsd '-(D, D) is home-

omorphic to Diffsd -1 (D).

4.5.10 Corollary. The group DiffCSd-1 (D) acts on HHgd(A, M).

4.5.11 Remark. Note that there is a fiber sequence

Diff jdl-(D) -+ Diffcsd 1(D) -+ OdO(d)

Rationally, the homotopy groups of DiffcSd-1 (D) have been computed in a certain range

by Farrell and Hsiang (see [FH78]). The rational homotopy groups of QdO(d) can be

computed as well. Using these computations, it is not hard to show that Diff Sd-~ (D) is a

non-trivial group.
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4.6 The cobordism category

Let Se, and T, be two (d - 1)-manifold with a d-framing. For a bordism W between S and

T, DiffSUT(W) is the group of diffeomorphisms of W as an S, U T_,-manifold. Note that

any embedding from a compact manifold to itself is surjective. Therefore DiffsurT(W) -
Embf T(W, W).

We define fCobd(S, T) as the disjoint union over all diffeomorphism classes of framed

bordisms W from S, to T, of the space BDiffSuT(W).

The cobordism category fCobd is a simplicial category whose objects are diffeomor-

phism classes of (d - 1)-manifolds with a d-framing and whose space of morphism from S

to T is equivalent to fCobd(S, T) and whose composition is given by glueing of bordisms.

See [GMTWO9] for a precise definition.

An embedding calculus version of the cobordism category

Embedding calculus replaces framed manifold by the functor they represent on Ed. In that

sense, we can see the category Modd as a category of "generalized manifolds". The functor

fMand - Moded is symmetric monoidal. The cobordism category f Cobd has a "shadow"

in the world of right modules over Ed that we now describe.

4.6.1 Definition. Let S, and T, be two d-framed, (d - 1)-manifolds. A pseudo-bordism

from Se, to T, is a right cSMod-module W with the additional data of the structure of an

cT,-algebra in the category of right modules over cSMod on the pair (Emb1 (-, D), W).

More precisely, for any embedding E E EmbfTT (T x [0, 1) U Dun, T x [0, 1)) there is a

map of of right modules over cSMod

W 0 Embf(-, D)®o -+ W

And moreover, these maps are compatible with composition of embeddings in the obvious

way.

Note that if V is a bordism from S, to T, the functor Emb's(-, f) is naturally a

pseudo-bordism from S, to T. A pseudo-bordism which is isomorphic to Emb' (-, V) for

some V is called representable.

4.6.2 Construction. We construct a simplicial category fC.obd
Its objects are (d - 1)-manifolds with a d-framing. For S, and T, two objects of fCobd,

the space Map(Sa, T) is the nerve of the category Qob(S S, T) that we describe next.

We define the set of objects of tob(Se, T,) to be the set of pseudo-bordism from S, to

T, that are weakly equivalent to a representable pseudo-bordism.

The morphism between objects of Qo b(S, T,) are weak equivalences between right mod-

ules over cSaMod preserving the extra structure.
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The composition is obtained by taking the nerve of a functor

eo b(S, T') x Co b(T", U') -* Eo b(S, U')

defined as follows. Let W be an object of (ob(S, T) and W' be an object of Cob(T, U).
Their composition W' o W as a right module over cS, is

W' OcTMod (Embf (-, D), W)

The structure of an cUMod-algebra on (Embf(-, D), W' o W) is induced by the one
on (W', Embf (-, D)).

Finally note that if W is represented by a bordism V and W' is represented by a bordism

V', their composition is weakly equivalent to the right module represented by V o V' which
insures that the composition is well defined.

Note that fCobd has the structure of a symmetric monoidal category for the tensor

product of right modules. We denote by fCobd the underlying operad.

4.6.3 Remark. Now let us compare fCobd and f .Cobd In the two categories the objects
are the same, namely (d - 1)-manifolds with a d-framing. In fCobd, the space of maps

from S, to T, is equivalent to:

H BDiffSuT(V)
V

where the disjoint union is taken over all diffeomorphism classes of bordisms.

In fCobd, the space of maps from S, to T, is equivalent to:

LBAuth(Embs(-, V))
V

where the disjoint union is taken over the same set and the homotopy automorphisms are

taken in the model category of pseudo-bordisms from S, to T,. There is an obvious map

Diff SUT(V) -+ Auth(Embs(-, V))

which can be interpreted as the map from the group of diffeomorphisms to a certain ap-

proximation with an embedding calculus flavour.

Unfortunately we were not able to produce an explicit map

fCobd -+ fCobd

but we hope that the previous remark convinced the reader that fCobd is closely related

to fCobd.

4.6.4 Theorem. Let A be a cofibrant Ed-algebra in C. There is a map of operad

fCobd -- ModCat
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mapping the color S, to cSOModA.

Proof. We already know what this map is on colors. Let W be an object of Qob(S,, T),

we have the functor Pw from cSModA to cTModA defined by

PW(M) = W cSMod (A, M)

This defines a functor f Cobd - ModCat. Extending this to a map of operad is straight-

forward. E]



Chapter 5

Computations of higher Hochschild
cohomology

We give a method for computing factorization homology. We then show how to compute

higher Hochschild homology and cohomology when the algebra is 6tale in a sense that we

make precise. As an application, we compute higher Hochschild cohomology of the Lubin-

Tate ring spectrum.

Note that the paper [Fra12] suggests other methods of computations of factorization

homology using embedding calculus or Goodwillie calculus of functors.

5.1 Pirashvili's higher Hochschild homology

We will need a version of fX A for commutative algebras in Ch>o(R) (the category of non-

negatively graded chain complexes over a commutative ring R) where R is not necessarily a

Q-algebra. In this case there is not necessarily a model structure on commutative algebras

in Ch>o(R). Nevertheless, we have the projective model category structure on functors

Fin -+ Ch>o(R), in which weak equivalences are objectwise and fibrations are objectwise

epimorphisms. The following definition is due to Pirashvilli (see [PirOO], [GTZ10])

5.1.1 Definition. Let A be a degreewise projective commutative algebra in Ch>o(R) where

R is any commutative ring and let X be a simplicial set. We denote by HHX(AIR) the

homotopy coend

Map(-, X) (F A

By B.3.12, if R is a Q-algebra, then HHX (A) is quasi-isomorphic to fX A. The advantage

of this construction is that it is defined for any R. In practice, we can take HHX (A) to be

the realization of the simplicial object:

B.(Map(-, X), Fin, AO)
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This construction preserves quasi-isomorphism between degreewise projective commutative

algebras.

5.1.2 Proposition. Let A be a degreewise projective commutative algebra in Ch>o(R),
then HHX(AIR) is a commutative algebra in Ch>o(R) naturally in the variable X.

Proof. The category Fun(FinP, S) equipped with the convolution tensor product is a sym-

metric monoidal model category. It is easy to check that there is an isomorphism:

Map(-, X) 0 Map(-, Y) ~ Map(-, X H Y)

Moreover A: Fin -4 Chro(R) is a commutative algebra for the convolution tensor product,
this makes HHX (A IR) into a symmetric monoidal in the X variable. To conclude, it suffices

to observe that any simplicial set is a commutative monoid with respect to the disjoint union

in a unique way and this structure is natural. Therefore, HHX(AIR) is a commutative

algebra. 0

5.1.3 Proposition. Let A be a degreewise projective commutative algebra in Ch>o(R). Let

X >Z

Y P

be a homotopy pushout of Kan complexes. Then there is a weak equivalence:

HHP(A IR) ~ IB.(HHY(AIR), HHX(AIR), HHZ(AIR))I

Proof. First, notice that the maps X -+ Z and X -* Y induce commutative algebra maps

HHX(AIR) -+ HHY(AIR) and HHX(AIR) -+ HHZ(AIR). In particular HHz(AIR) and

HH (AIR) are modules over HHX(AIR). This explains the bar construction in the state-

ment of the proposition.

We can explicitely construct P as the realization of the following simplicial space:

[p] 4 Y XLP U Z

For a finite set S, and any simplicial space U., there is an isomorphism:

lU.i ~U.s

Therefore, there is a weak equivalence of functors on Fin:

Map(-, P) ~ IB.(Map(-, Y), Map(-, X), Map(-, Z))I

where the bar construction on the right hand side is in the category Fun(Fin, S) with the

convolution tensor product.
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Now, we have the bisimplicial object:

B. (B.(Map(-, Y), Map(-, X), Map(-, Z)), Fin, A)

By the previous observation, if we first realize with respect to the inner simplicial variable

and then the outer one, we find something equivalent to HHP(AIR). If we first realize with

respect to the outer variable, we find:

B.(HH (AIE), HHX (AIE), HHz(AIE))

The two realizations are equivalent which concludes the proof.

5.1.4 Corollary. Let A be a degreewise projective commutative algebra in Chgo(R), then

HHS1 (A) is quasi-isomorphic to HH(A).

Proof. We can write S as the homotopy pushout of:

So - pt

pt

If S is a finite set HHS(A) = AOS with the obvious commutative algebra structure. In

particular, the previous theorem gives

HHS'(A) B.(A, A 9 A, A)|

Since A = A0P, the right hand side is quasi-isomorphic to A 0%AoL A L

5.2 The spectral sequence

We construct a spectral sequence converging to factorization homology with Pirashvili's

higher Hochschild homology as the E2-page.

5.2.1 Definition. Let I be a small discrete category and F : I -+ grModR be a functor

landing in the category of graded modules over a (possibly graded) associative ring. We

define the homology of I with coefficients in F to be the homology groups of the homotopy

colimit of F seen as a functor from I to Ch>o(R).

We write HR(I, F) for the homology of I with coefficients in F.

Note that since we consider graded modules, the chain complexes are graded objects in

chain complexes and the homology groups are bigraded.

There is an explicit model for this homology. We construct the simplicial object of
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grModR whose p simplices are

Bb(R, I, F) = 1 F(ip)
i0-+...-+iP

The realization of this simplicial object is an object of Ch>o(R) which models the

homotopy colimit of F. In particular, its homology groups are the homology groups of I

with coefficients in F.

5.2.2 Proposition. Let F : I -+ ModE be a functor from a discrete category to the

category of right modules over an associative algebra in symmetric spectra E. There is a

spectral sequence of E, -modules

E5,t ~- H1*(I 7r*(F)[t]) =-+, 7r,+t (hocolimIF)

Proof. The homotopy colimit can be computed by taking an objectwise cofibrant replacem-

ment of F and then take the realization of the Bar construction

hocolim 1F ~ IB.(*, I, QF(-))I

We can then use the standard spectral sequence associated to a simplicial object E

Now assume that E is commutative. Let A be an Ed-algebra in ModE. Let M be a

framed manifold and let D(M) be the poset of open sets of M that are diffeomorphic to a

disjoint union of copies of D. Up to a choice of framed diffeomorphism U -+ Duk there is a

functor D(M) -+ Ed. We proved in 3.3.4 that the factorization homology of A over M can
be computed as the homotopy colimit of the composition:

D(M) -+ Ed 4 ModE

We are in a situation where we can apply the previous proposition:

5.2.3 Proposition. There is a spectral sequence of E,-modules

HE*(D(M),7r*(A)) ==- 7rr( A)

We want to exploit the fact that A is a monoidal functor to obtain a more explicit model
for the left hand side in some cases. Let K be an associative algebra in ring spectra with a
Z/2-equivariant Kiinneth isomorphism.

Example of such spectra are the Eilenberg-MacLane spectra Hk for any field k or K(n)
the Morava K-theory of height n at odd primes. The previous proposition can be rewritten
as:
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5.2.4 Proposition. There is a spectral sequence of K,(E) -modules

H KE E(D (M), K* (A)) -=> K* ( A)

Proof. We just smash the simplicial object computing hocolimD(M)A with K in each degree

and take the associated spectral sequence.

Now we want to identify K*(A) as a functor on D(M).

5.2.5 Proposition. Let 0 be an operad. Let R be a homotopy commutative ring spectrum.

Let A be an 0-algebra in ModE, then R*A is an iro(0)-algebra in R*E-modules.

Proof. The functor R* is lax monoidal. Hence it is easy to see that R*A is an R*(E'O)-

algebra. But the unit map S -+ R induces a morphism of operad

<r(O+) - R*(E'0)

where r'(X) = [S, EZX].

There are obvious maps of operad

7ro(0) -+ 7r'(O+) -+ <r(O+)

Therefore, the R*(E'O)-algebra structure induces a 7ro(0)-algebra structure. 0

5.2.6 Corollary. If d > 1, K*(A) is a commutative algebra in the category of K*E-modules.

If d = 1, K*(A) is an associative algebra in K*E-modules.

Proof. This follows from the fact that 7ro(8i) 2 Ass and ro(Ed) a Com if d > 2. 0

5.2.7 Remark. One can show that for any n, the spectrum E'Sd(n) splits as a wedge of

spheres. The homology of Ed is the operad of (d - 1)-Gerstenhaber algebras (i.e. Gersten-

haber algebras with a degree (d - 1) Lie bracket). This computation has the consequence

that for any ring spectrum R, the operad R*((EitnftyEd) is the operad of (d-1)-Gerstenhaber

algebras in R*-modules. In particular, K* (A) is not only a commutative algebra. It also has

a degree (d - 1) Lie bracket which is a derivation in both variables. It would be interesting

to understand how this structure interacts with the spectral sequence.

5.2.8 Proposition. The functor K*(A) : D(M) -+ ModK*E is induced by the Ed-algebra

structure on K*(A) which is the restriction of the Com-algebra structure.

Proof. The category Fin is the free symmetric monoidal category on the operad Com,

therefore the commutative algebra K*A gives rise to a monoidal functor

Fin -+ ModK*E
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It is easy to check that the functor KA: D(M) -+ ModK.E factors as

D(M) -+ Ed -+ Fin -+ ModK.E

where the functor Ed -* Fin comes from the map of operads Ed -+ Com. E

5.2.9 Corollary. There is an isomorphism

H (D (M),I KA) ~11 H * (K*A|K*E)

Multiplicative structure

Let us start with the general homotopy colimit spectral sequence

5.2.10 Proposition. Let F : I - ModE and G : -+ ModE be functors. We have the

following equivalence

hocolimlx jF OE G ~ (hocolimF) OE (hocolimjG)

Proof. Assume F and G are objectwise cofibrant. The right-hand side is the homotopy

colimit over AoP x AOP of
B.(*, I, F) x B.(*, J, G)

The diagonal of this bisimplicial object is exactly

B.(*, I x J, F OE G)

Since A0 P -+ A 0P x A'P is homotopy cofinal, we are done. 0

We denote by E* (I, F) the spectral sequence computing the homotopy colimit of F.

5.2.11 Proposition. We keep the notations of the previous proposition. There is a pairing

of spectral sequences of E*-modules

E(I, F) ®E* Er,(J, G) -+ E,(I x J, F OE G)

Proof. It suffices to write the simplicial object computing the hocolim over I x J as the

objectwise tensor product of the simplicial object computing the hocolim over I with the

simplicial object computing the hocolim over J as in the proof of the previous proposition.

The result is then a standard fact about pairing of spectral sequences associated to simplicial

objects (see for instance [PalO7]). E

Let us specialize to the case of factorization homology. We consider an Ed-algebra A

in ModE a homology theory with Z/2-equivariant Kiinneth isomorphism K and a framed

manifold of dimension d M. We denote by E* (M, A, K) the spectral sequence of the

previous section.
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5.2.12 Proposition. Let M and N be two framed d-manifolds. There is a pairing of

spectral sequences

Ei,(M, A, K) ®K.E E(N, A, K) -+ Er,(M U N, A, K)

Proof. This follows from the previous proposition as well as the observation that D(M Li

N) ' D(M) x D(N) and the fact that A (E A as a functor on D(M) x D(N) is equivalent

to A as a functor on D(M Li N).

In other words, we have proved that the spectral sequence Er (M, A, K) is a lax monoidal

functor of the variable M. In particular it preserves associative algebras.

Assume now that M is an associative algebra up to isotopy in fMand. One possible

example is to take M = N x R with a framing induced from a framing of TN e R. In that

case, M is an E1-algebra in fMand.

5.2.13 Proposition. Let M be an associative algebra up to isotopy of dimension at least 2.

The spectral sequence Er,(M, A, K) has a commutative multiplicative structure converging

to the associative algebra structure on K, fM A.

On the E2-page, this multiplication is induced by the unique commutative algebra struc-

ture on Sing(M) in the category (S, U).

Moreover this structure is functorial with respect to embeddings of d-manifolds M -+ M'

preserving the multiplication up to isotopy.

Proof. According to the previous proposition there is a multiplicative structure on the

spectral sequence converging to the associative algebra structure on K" fM A.

It is easy to see that the multiplication on the E2 -page is what is stated. Since Sing(M)
is commutative, the multiplication on the E2-page is commutative. The homology of a com-

mutative differential graded algebra is a commutative algebra, therefore the multiplication

is commutative on each page.

The functoriality is clear. L

Now we want to construct an edge homomorphism

Let S be a (d- 1)-manifold with a d-framing r. Let # be a framed embedding of Rd-1 x R

into S x R commuting with the projection to R. Applying factorization homology we get a

map of Si-algebras:

up:Au f A-*j Au~ 'JRd-1xR A - sxRA

On the other hand for any point x of S x R, we get a morphism of commutative algebra

over KE:

ux : K*(A) - HHPt(K*AIKE) -+ HHsing(s)(K*AIK*E)

5.2.14 Proposition. For any framed embedding # : Rd-1 x R -+ S x R, there is a edge

homomorphism
K.A - E',*(S x R,A,K)
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On the E2 -page it is identified with the KE-algebra homomorphism

u,(0,0): K*(A) -+ HHPt(K*A|KE) -+ HHsing(s)(KAjK*E)

and it converges to the K*E-algebra homomorphism

K*(up) : KA -+ K LJRA

Proof. The spectral sequence computing K* fRd-1xR A has its E 2-page K*A concentrated

on the 0-th column. For degree reason, it is degenerate.

Then the result follows directly from the functoriality of the spectral sequence applied

to the map #. 0

Note that the edge homomorphism only depends on the connected component of the

image of 0.
In the case of the sphere Sd-1 x R with the framing r,, we can say more:

5.2.15 Lemma. For any framed embedding # : Rd-1 x R - (Sd-1 x R), commuting with

the projection to R, the map

u~p: A fsd-lxR A

has a splitting in the homotopy category of ModE

Proof. There is an embedding:

Sd-1 x R -+ Rd

sending (0, x) to exO. This embedding preserves the framing. Moreover, the composition:

Rd 4+ Sd- x R -+ Rd

is isotopic to the identity (because Embf (Rd, Rd) is contractible). We can apply f_ A to

this sequence of morphisms of framed manifolds and we obtain the desired splitting. 0

Although we will not need it, this has the following corollary:

5.2.16 Corollary. The image of the edge homomorphism in E',((Sd-1 x R)K, A, K) consists

of permanent cycles.

Another interesting structure that we will not use is the following:

5.2.17 Proposition. Let G be a topological group acting on the manifold M through framed
diffeomorphisms. The spectral sequence E' (M, A, K) has a K* (G) -module structure which
on the E2 -page is induced by the action of G on Sing(M) and on the E -page is induced by
the action of G on M.

Proof. Obviously, G acts on the simplicial object generating the spectral sequence. L
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We also have the following proposition whose proof will appear somewhere else:

5.2.18 Proposition. If M = S, the spectral sequence

HH '(K*A|K*E) ~ HH*(K*AjK * E) ==> K*(THH(AIE))

coincides with the B6kstedt spectral sequence.

This has the following corollary:

5.2.19 Proposition. The Bdkstedt spectral sequence has a differential of degree (1,0),
which coincides on the E2-page with the Connes differential and on the E*-page with the
K*(S 1 )-action on K*(THH(-)).

Proof. This follows directly from the previous two propositions. We have a K, (Sl)
K*[e]/e 2 at each page which is what we claim on the E2 and E*-page. E

5.2.20 Remark. Our geometric description of higher Hochschild cohomology can be used
to construct a similar spectral sequence converging to K*HHcd(A) and whose E2-page is a
cohomological version of higher Hochschild cohomology defined in [Gin08].

5.3 Computations

5.3.1 Proposition. Let A* be a degreewise projective commutative graded algebra over a
commutative graded ring R*. Assume that A* is a sequential colimit of etale algebras over
R*. Then, for all d > 1, the unit map

A, -+ HHsd(A*IR*)

is a quasi isomorphism of commutative R*-algebras.

Proof. We proceed by induction on d. For d = 1, HHS1 (A* I R*) is quasi-isomorphic to the
ordinary Hochschild homology HH(A* R*) (5.1.4). If A* is 6tale, the result is well-known

(see for instance [WG91]). If A* is a sequential colimit of 4tale algebras, the result follows
from the fact that Hochschild homology commutes with sequential colimits.

Now assume that A* -+ HHSd 1(A*IR*) is a quasi-isomorphism of commutative algebras.
The sphere Sd is part of the following homotopy pushout diagram:

Sd-1 - pt

W I
pt > Sd

Applying 5.1.3, we find:

HHSd (A*IR) ~ IB.(A, HHSd-1 (A*IR*), A*)I
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The quasi-isomorphism A. -+ HHSd I (A. I R,) induces a degreewise quasi-isomorphism be-

tween Reedy cofibrant simplicial objects:

B.(A,, A., A*) -+ B.(A, HHSd- 1(A*IR*), A*)

This induces a quasi-isomorphism between their realization:

A* _ HH Sd (A*jR*)

G

5.3.2 Corollary. Let A be an Ed-algebra in Spec such that K*(A) is a directed colimits of

etale algebras over K*, then the unit map:

A - fs-x A
A- Sd-lxR

is a K-local equivalence.

Proof. It suffices to check that the K-homology of this map is an isomorphism. This can be

computed as the edge homomorphism of the spectral sequence E 2 (Sd-I x R, A, K). By the

previous proposition, the edge homomorphism is an isomorphism on the E 2-page. Therefore,
the spectral sequence collapses at the E2-page for degree reasons. E

Let us fix a prime p. We denote by En, the Lubin-Tate ring spectrum of height n at p

and K(n) the Morava K-theory of height n. Recall that

(En)* W(Fpn)[[Uo,... , un1]][u'], luil = 0 Jul = 2

K (n) * F_[vni], 1v n = 2 (p" - 1)

The spectrum En is known to have a unique E1-structure inducing the correct multi-

plication on homotopy groups (this is a theorem of Hopkins and Miller, see [Rez98]) and

a unique Com-structure (see [GH04]). As far as we know, there is no published proof that

the space of Ed-structure for d > 2 is contractible although evidence suggests that it is the

case.

Recall also that K(n) has a Z/2-equivariant Kiinneth isomorphism if p is odd. If p = 2,
the equivariance is not satisfied. However, this is true if we restrict K(n), to spectra whose

K(n)-homology is concentrated in even degree like En and our argument works modulo this

minor modification.

5.3.3 Corollary. For any positive integer n, and any Ed-algebra structure on En inducing

the unique 91-structure, the unit map

En -+ fs-x En
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is an equivalence in the K(n)-local category.

Proof. For any such ESd-structure on E, K(n)*(En) ~ K[ti, t 2 ,- ]/(A n- tk - t, k ;

(see [Rav92], Theorem B.7.4) which is obviously a sequential colimit of 4tale algebras over

K*.

5.3.4 Corollary. Same notations, the action map HHgs(En) -+ En is an equivalence.

Proof. We have

HHg I(En) ~ RHom 1  , E, (En, En)

This can be computed as the end

homsoMod(EmbSo(-, [0, 1]), (En, Sd-1xR En, En))

The spectrum En is K(n)-local, therefore, Hom(-, En) sends K(n)-equivalences to

equivalences. This implies that

7(En, En, En) ~ T(En, En, En)

Therefore, we have

HHEd (En) ~ RHomEn (En, En)

Let E(n) = BP/(Vn+l, Vn+ 2 , .. .)[v 1] be the Johnson-Wilson spectrum. Let f(n) be

LK(,)E(n). An anologous proof yields the following result:

5.3.5 Proposition. For any Ed-algebra structure on E(n) inducing the unique S 1 -structure,

the action map

HHEd( (n)) -+ E(n)

is a weak equivalence.

5.4 Etale base change for Hochschild cohomology

In this section we assume that (C, ®) is the category ModE of modules over some com-

mutative symmetric spectrum. We want to put the previous result in the wider context of

derived algebraic geometry over ESd-algebra ([Frall]).

Let a : S1 -+ ESd be the morphism of operad sending (0, 1) to (0, 1) x Rd-.

Recall that Z is the associative algebra in ModE, parametrizing left modules over an

E-algebra. The pushforward a, (L) = L o, ESd is an associative algebra in ModcE. If A is an

ESd-algebra, the category a!LModA can be identified with the category of left modules over

the undelying (induced by a) Si-algebra of A. There is a morphism of associative algebra
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in Moded from c!L to Si-1 which encodes the fact that an Sf- 1-module over A has the

structure of a left module over the underlying Ei-algebra of A.

Using this morphism, there is an adjunction

F : LMod,* A t-; S- 1 ModA : G

5.4.1 Proposition. Let A be an Ed-algebra in spectra. Recall that A is Sd-1-module over

itself. The comonad FG applied to A is equivalent to fsd-I xR A.

Proof. See Francis ([Fral]). L

5.4.2 Definition. The cotangent complex LA of A over E is defined to be the n-fold

desuspension of the cofiber of the counit map

Sd-1 xR

Francis actually defines the cotangent complex as the object representing the derivations:

RHomsd-1ModA (LA, M) ~ RHomMOdE [IdI/A (A, A @ M) := Der(A, M)

The fact that the two definitions coincide is a theorem of Francis (see [Fral]).

5.4.3 Proposition. The map fsd-1X(o,1) A -+ A ~- fRd A used in the definition of the

cotangent complex coincides with the map

1 A -+A ~ A
JSd-1x(0,1) A JRd

induced by the "polar coordinate" embedding Sd-1 x (0,1) + Rd.

Proof. Both sides of the map commutes with colimits of Ed-algebras, therefore it suffices to

check it for free Ed-algebras. Francis in [Fral] computes fsd-lxR A for a free Ed-algebra.

The proposition follows easily from his explicit computation. l

5.4.4 Definition. We say that an Ed-algebra A is 6tale over E if LA is contractible.

Equivalently A is 6tale if the unit map A -4 fsd_1 x (0,1) A is an equivalence. Indeed we

have shown in 5.2.15 that the unit map is a section of fsd-1X(0,1) A -+ A.

5.4.5 Proposition. If A is a commutative algebra and is etale as an Ed-algebra, then it is

etale as an Ed+,1-algebra.

Proof. This is very similar to 5.3.1. 11

5.4.6 Remark. It does not seem that being 6tale as an Ei-algebra is a reasonable thing to

require. This amounts to checking that the multiplication map

A E A -+ A
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is a weak equivalence and we do not know any interesting example where this is the case.

5.4.7 Remark. If A is a commutative algebra, then A is 6tale as an 92-algebra if and only

if it is THH-6tale (see [Rog08]). Indeed, for commutative algebras (and in fact for an S3-

algebras), THH(A) coincides with fSixR A. Note that is is not true for 92 -algebras as the

product framing on S1 x R is not connected to the n-framing in the space of framings of

S1 x R.

5.4.8 Remark. If A is a commutative algebra, fsd-1X(1) A ~ Sd 3 A. Therefore, A is 6tale

as an Ed+1-algebra if and only if the space MapModE[com] (A, B) is d-truncated for any B.

The main theorem of this section is the following:

5.4.9 Theorem. Let T be a commutative algebra in C = ModE that is etale as an ESd-
algebras, then for any Ed-algebra A over T, the base-change map

HHg,(AIE) 4 HHgd(AIT)

is an equivalence

Proof. We write AlT whenever we want to emphasize the fact that we are seeing A as an

ESd-algebra over T.

By Francis ([Rail]), there is cofiber sequence

U!LT -+ LA -+ LAIT

where u : T -+ A is the unit map and u! is the corresponding functor

U! : Sd lModT _ Sd-ModA

By hypothesis LT is contractible, therefore LA - LAIT is an equivalence.

We have a base-change map of cofiber sequences

Ed-1LA - fSd-1x(0,1) A > A E LdLA

d-I I { id Ed
jd-1LAIT f fsd-1x(0,1) AlT - A > LAIT

This implies that fsd-1x(0,1) A * fSd- x(0,1) AIT is a weak equivalence of associative alge-

bras. Therefore, the category Sd-lModAIT is equivalent to Sd-lModA. The theorem is a

particular case of this fact. 0

5.4.10 Remark. The computation of the previous section shows that LK(fl)S -+ E" is an

6tale morphism of ESd-algebras for all d in the K(n)-local category. Therefore, given a K(n)-

local Er-algebra A, one can compute its (higher) Hochschild cohomology over E, or over

S without affecting the result. This fact is used by Angeltveit (see [Ang08]) in the case of

ordinary Hochschild cohomology.
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5.5 A rational computation

We end up this chapter with a rational computation. Let K = K(1) and E = (1).

Angeltveit (see [Ang08]) computes the homotopy groups of HH,1 (K) for p odd

7r*HHel (KIE) = Zp[vj , q]/(qP-1 - pv1)

where q is some class of degree 2.

This is an isomorphism of E*-algebra. From the homotopy group we see that HHg, (K E)

is a wedge of copies of E. Therefore if we write H for HQ, we find

H(HHs, (KIE)) = Qp[vt, q]/(qP- - pvl)

Again this is true as an H(E)-algebra.

5.5.1 Proposition. The graded algebra H(HHe,1 (K|E)) is an stale algebra over H(E)

Qp[vl]

Proof. We can apply the Jacobian criterion. Let f(q) = qP-1 - pvi. We have

H(HHe, (KIE)) = H(E)[q]/(f(q))

We need to prove that f'(q) = (p - 1)qP- 2 is invertible in H(HH1 (KIE)). It suffices to

prove that it is prime to f(q). We have

qf'(q) - (p - 1)f (q) = pvl

Since pvi is a unit we are done. L

Unfortunately K(1),(HH 1 (KIE)) is not 4tale over K(1),(E) which makes a K(1)-local

computation a lot more complicated.

By Deligne's conjecture, HHe1 (KIE) has an e2-structure. We can compute the unit map

HHg1 (KIE) -+ f1 xR HHg (KIE). By 5.3.2, this unit map is a rational equivalence. This

implies a rational equivalence

HHe2 (HHe 1 (KIE)) -+ HH1s (KIE)

The same argument can be iterated to give a proof of the following:

5.5.2 Proposition. For all n the rational homology of the iterated centers HH do HHE d_ 10

.. -o HHg (KIE) is isomorphic to H(HH, (KIE)).



Chapter 6

Calculus a la Kontsevich Soibelman

Let A be an associative algebra over a field k. The Hochschild Kostant Rosenberg theorem

(see [HKR09]) suggests that the Hochschild homology of A should be interpreted as the

graded vector space of differential forms on the non commutative space "SpecA". Similarly,
the Hochschild cohomology of A should be interpreted as the space of polyvector fields on

SpecA.

If M is a smooth manifold, let , (M) be the (homologically graded) vector space of

de Rham differential forms and V*(M) be the vector space of polyvector fields (i.e. global

sections of the exterior algebra on TM). This pair of graded vector spaces supports the

following structure:

" The de Rham differential : d: Q,(M) -+ Q, 1 (M).

" The cup product of vector fields: -.- : V'(M) 0 Vi(M) -+ Vi+j(M).

" The Schouten-Nijenhuis bracket: [-, -] : V Vi -+ V+j-1

" The cap product : Qj 0 Vi -+ Qi_ denoted by w 0 X -+ ixw.

" The Lie derivative : Qj 0 Vi -+ Qi-j+1 denoted by w 0 X i Lxw.

This structure satisfies some properties:

" The de Rham differential is a differential, i.e. d o d = 0.

" The cup product and the Schouten-Nijenhuis bracket make V*(M) into a Gersten-

haber algebra. More precisely, the cup product is graded commutative and the bracket

is a derivation in each variable.

" The cap product and the Lie derivative make Q*(M) into a Gerstenhaber V*(M)-

module.
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The Gerstenhaber module structure means that the following formulas are satisfied:

L[x,y] = [Lx, Ly]

i[x,y] = [ix,Ly]

iX.y = ixiy

Lx.y = Lxiy + (--1)IxixLy

Finally we have the following formula called Cartan's formula relating the Lie derivative,
the exterior product and the de Rham differential:

Lx = [d,ix]

Note that there is even more structure available in this situation. For example, the

de Rham differential forms are equipped with a commutative differential graded algebra

structure. However we will ignore this additional structure since it is not available in the

non commutative case.

There is an operad Calc in graded vector spaces such that a Calc-algebra is a pair (V*, Q*)

together with all the structure we have just mentioned.

It turns out that any associative algebra gives rise to a Calc-algebra pair:

6.0.3 Theorem. Let A be an associative algebra over a field k, let HH, (A) (resp. HH* (A))

denote the Hochschild homology (resp. cohomology) of A, then the pair (HH* (A), HH* (A))

is an algebra over Calc.

A natural question is to lift this action to an action at the level of chains inducing the

Calc-action in homology in the same way that there is an D2-action on Hochshild cochains

inducing the Gerstenhaber structure on Hochschild cohomology.

Kontsevich and Soibelman in [KSO9] have constructed a topological operad denoted KS

whose homology is Calc. The purpose of this chapter is to construct an action of KS on the

pair consisting of topological Hochschild cohomology and topological Hochschild homology.

We also construct obvious higher dimensional analogues of the operad ICS and show that

they describe the action of higher Hochschild cohomology on chiral homology.

6.1 KS and its higher versions.

In this section, we recall the definition of the operad KS defined in [KS09]. We construct

an equivalent version of that operad as well as higher dimensional analogues of it.

6.1.1 Definition. Let D be the 2-dimensional disk. An injective continuous map D -+

S x (0, 1) is said to be rectilinear if it can be factored as

D 1 + R x (0,1) -+ R x (0,1)/Z = S' x (0,1)
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where the map 1 is rectilinear and the second map is the quotient by the Z-action.

We say that an embedding Si x [0,1) -* S' x [0, 1) is rectilinear if it is of the form

(z, t) - (z + zo, at) for some fixed zo E S1 and a E (0, 1).
We denote by Embos(S1 x [0, 1)U Dun, Si x [0, 1) the topological space of injective maps

whose restriction to each disk and to S1 x [0, 1) is rectilinear.

6.1.2 Definition. We define Q, an associative algebra in right modules over 'D2 by

Q(n) = Embi9(S 1 x [0,1) U Eun, S1 x [0, 1))

We define the Kontsevich-Soibelman's operad KS by

KS = QMod

Now we define generalizations of KS.

6.1.3 Definition. Let S be a (d - 1)-manifold with framing r. We define SO to be the

associative algebra in right module defined by

S (n) = Emb9(S x [0, 1) U Du", S x [0, 1))

6.1.4 Remark. There is a map S, -+ Sf. S should be thought of as an extension of S, by
the group of framed diffeomorphisms of S.

Note that a linear embedding preserves the framing on the nose. Therefore, there is a

well defined inclusion

KS -+ (S )"

6.1.5 Proposition. This map is a weak equivalence.

Proof. There is an obvious restriction map

S0 (n) -+ Embf (Dun, S x [0, 1))

This map is a fibration by an argument similar to 4.2.1. Its fiber over a particular con-

figuration of disks is the space of embeddings of S x [0, 1) into the complement of that
configuration. By 2.4.9, this space is weakly equivalent to Embf (S, ) through the obvious
map.

We have a diagram

Emb'9(S 1 x [0,1) U D", S1 x [0, 1) > Embf(Sl x [0, 1) U Dun, S1 x [0, 1))

I _ _ _ I
Emblin (Dun',S1 x (0, 1)) Embf (Dun' S1 x (0, 1))
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Both vertical maps are fibrations. The bottom map is a weak equivalence since both sides

are weakly equivalent to Conf(n, S1 x (0, 1)). The map induced on fibers is weakly equivalent

to the inclusion
S1 -+ Emb1 (S', S')

Showing that this map is an equivalence is a standard exercise. 0

6.2 Action of the higher version of ICS

Let (B, A) be an algebra over the operad Edo in the category C. Let M be a framed (d - 1)-

manifold and r be the product framing on TM D R.

6.2.1 Theorem. The pair (B, fM A) is weakly equivalent to an algebra over the operad

M Mod.

Proof. The construction f_ (B, A) is a simplicial functor fMani -+ C. Hence, f (B, A) is

a functor from the full subcategory of fMand spanned by disjoint unions of copies of D and

M x [0, 1) to C. Moreover this functor is symmetric monoidal. The operad M has a map

to the endomorphism operad of the pair D, M x [0,1) in the symmetric monoidal category

fMand, therefore (fD(B, A), fM x [,1) (B, A)) is an algebra over M 9 . To conclude, we use

the fact that fD(B, A) a B by Yoneda's lemma and f x[o, (B, A) fM A by 3.3.7. 0

This theorem is mainly interesting because of the following theorem due to Thomas (see

[TholO]):

6.2.2 Theorem. Let A be an Ed-algebra in C, then there is an algebra (B', A') over Ed
such that B' is weakly equivalent to HH,,d(A) and A' is weakly equivalent to A.

This has the following immediate corollary:

6.2.3 Corollary. We keep the notations of 6.2.1. The pair (H Hed(A), fM A) is weakly

equivalent to an algebra over the operad MOMod.
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Appendix A

A few facts about model categories

A.1 Cofibrantly generated model categories

A.1.1 Definition. A cofibrantly generated model category is a model category X with the

extra data of two sets I and J of arrows of X. Such that

" The set I and J permit the small object argument.

" The fibrations are the map with the right lifting property with respect to the maps

of J.

* The trivial fibrations are the map with the right lifting property with respect to the

maps of I.

We will not spell out what is meant by "permit the small object argument". If the domain

of the elements of I and J are compact, then they permit the small object argument. A

cofibrantly generated model category has functorial factorization of maps as a cofibration

followed by a trivial fibration or as a trivial cofibration followed by a fibration. In particular

there is a fibrant replacement functor and a cofibrant replacement functor. See [Hov99] for

more details.

Let X be a cofibrantly generated model category and

F : X ±: Y: U

be an adjunction.

A.1.2 Definition. The transferred model category structure on Y is the model category

structure satisfying one of the following equivalent conditions:

* The fibrations (resp. weak equivalences) are the maps whose image under U are

fibrations resp. weak equivalences

" It is the cofibrantly generated model category whose generating cofibrations (resp.

generating trivial cofibrations) are FI (resp. FJ).

99



APPENDIX A. A FEW FACTS ABOUT MODEL CATEGORIES

Note that this model structure does not necessarily exist but if it does, it is unique.

Moreover, notice that if the transferred model category structure exists, the adjunction is

a Quillen adjunction.

In practice, one often uses the following lemma to prove that the transferred model

structure exists.

A.1.3 Lemma. Let

F:X +Y:U

be an adjunction in which X is cofibrantly generated. Assume that

" U preserves colimit indexed over ordinals.

" For any (trivial) cofibration i in X and any pushout diagram in Y

F(X) Y

F(i)I

F(X')

the functor U sends the pushout of F(i) to a (trivial) cofibration in X.

Then the transferred model structure exists on Y and U preserves cofibrations and trivial

cofibrations.

Proof. See [Fre09], 11.1.14 El

A.2 Monoidal and enriched model categories

A.2.1 Definition. Let X, Y and Z be three model categories. A pairing T: X x Y -+ Z
is said to satisfies the pushout-product axiom if for each pair of cofibrations f : A -+ B of

X and g : K -+ L of Y, the induced map

T(B, K) jT(AK) T(A, L) -+ T(B, L)

is a cofibration which is trivial if one of f and g is.

We say that T is a left Quillen bifunctor if it satisfies the pushout-product axiom and
if it is a left adjoint when one variable is fixed.

One useful consequence of the pushout-product axiom is that if A is cofibrant T(A, -)
preserves trivial cofibrations between cofibrant objects. Then by Ken Brown's lemma (see
[Hov99]) it preserves all weak equivalences between cofibrant objects.

A.2.2 Definition. A (closed) monoidal model category is a model category structure on a
(closed) monoidal category (V, 0, R) which is such that
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" The functor - 0 - : V x V -+ V satisfies the pushout-product axiom.

" The map QI[ --+ I induces a weak equivalence QI 0 V -+ V for each V.

A symmetric monoidal model category is a model category structure on a symmetric

monoidal category which makes the underlying monoidal category into a monoidal model

category.

Recall that if X is a model category, X0 P has a canonical model structure in which

(trivial) fibrations are opposite of (trivial) cofibrations.

A.2.3 Definition. Let V be a monoidal model category. Let (X, Homx(-, -)) be a V-

enriched category. A V-enriched model structure on X is a model category structure on the

underlying category of X that is such that the functor

Homxp : X x X --+ V p

is a left Quillen bifunctor.

Note that in a V-enriched model category X, we have a tensor and cotensor functor:

VxX -+X, V*PxX-+X

fitting into the usual two variables adjunction.

A.2.4 Definition. A symmetric monoidal simplicial model category is a category with a

simplicial enrichment, a symmetric monoidal structure and a model category structure such

that

" It is a symmetric monoidal model category.

" It is a simplicial model category.

" The simplicial and monoidal structure are compatible in the sense that the functor

K H-+ K 0 1 from S to C is symmetric monoidal.

A.2.5 Definition. Let (X, Homx) be a V-enriched category. Let T be a monad on X. Let

us define the following equalizer:

Homx[T] (X, Y) -+ Homx(X, Y) --: Homx(TX, Y)

where the top map is obtained by precomposition with the structure map TX -+ X and

the bottom map is the composition

Homx(X, Y) -+ Homx(TX, TY) -+ Homx(TX, Y)
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A.2.6 Proposition. Let V be a monoidal model category and (X, Homx) be a V-enriched

model category. Let X be a cofibrantly generated model category. If the category X[T] can

be given the transferred model structure. Then X[T] equipped with Homx[T] is a V-enriched

model category.

Proof. Let f : U -+ V be a (trivial) cofibration and p : X -+ Y be a fibration in C [T]. We

want to show that the obvious map

Homx[T] (V, X) -+ Homx[T] (U, X) XIox[T] (UY) Homx[T] (V, Y)

is a (trivial) fibration in V. It suffices to do it for all generating (trivial) cofibration f.
Hence it suffices to do this for a free map f = Tm : TA -- TB where m is a (trivial)

cofibration in X. But then the statement reduces to proving that

Homc (B, X) -- Homc (A, X) X HoIc(A,Y) Homc (B, Y)

is a (trivial) fibration which is true because C is a V-enriched model category. E

The following definition is due to Muro (see [Mur13]).

A.2.7 Definition. Let C be a symmetric monoidal model category. We say that an object

X of C is pseudo-cofibrant if tensoring with C preserves cofibrations and trivial cofibrations.

A.2.8 Proposition. We have:

* Cofibrant objects are pseudo-cofibrant.

* The unit is pseudo-cofibrant.

" A tensor product of pseudo-cofibrant objects is pseudo-cofibrant.

* If C is a simplicial symmetric monoidal model category, objects of the form K 0 R,
where K is any simplicial set, are pseudo-cofibrant.

" If X -+ Y is a cofibration and X is pseudo-cofibrant, then Y is pseudo-cofibrant.

Proof. Only the last claim is not entirely trivial. It follows easily from an application of the
pushout product axiom (see [Mur13] for a proof). 0

A.2.9 Proposition. Let V be a cofibrantly generated monoidal model category. Let R be an
associative algebra in V whose underlying object is pseudo-cofibrant. Then the transferred
model structure on the category ModR of right R-modules in V exists. Moreover, if V
is symmetric monoidal and R is a commutative algebra, ModR is a symmetric monoidal
model category for the relative tensor product - OR -.
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Proof. The forgetful functor ModR -+ V preserves any colimit, therefore by A.1.3, it suffices

to check that for any (trivial) cofibration f in V, the map R 0 f is a (trivial) cofibration in

V. This is exactly saying that R is pseudo-cofibrant.

To check that - OR - satisfies the pushout-product axiom, it suffices to do it on gener-
ating (trivial) cofibrations which is trivial.

A.3 Homotopy colimits and bar construction

See [DHKS05] or [Shu06] for a general definition of derived functors. We will use the

following:

A.3.1 Proposition. Let X be a model category tensored over S and sX be the category

of simplicial objects in X with the Reedy model structure. Then the geomeotric realization

functor

- : sX -+ X

is left Quillen

Proof. See [GJ09] VII.3.6. L

A.3.2 Proposition. Let X be a simplicial model category, let K be a simplicial category

and let F : K - X and W : K0 P -+ S be simplicial functors. Then the Bar construction

B.(W, K, F)

is Reedy cofibrant if F is objectwise cofibrant.

Proof. See [Shu06]. El

A.3.3 Definition. Same notation as in the previous proposition. Assume that X has a

simplicial cofibrant replacement functor Q. We denote by W ®n F the realization of the

simplicial object

B.(W,K,FoQ)

This object is homotopy invariant in the following strong sense:

A.3.4 Proposition. Let (W, K, F) and (W', K', F) be two triple whose middle term is a

simplicial category whose left term is a contravariant functor from that simplicial category

to S and whose right term is a covariant functor from that simplicial category to X. Let

a : K -+ K' be a simplicial functor which is weakly fully faithful and an isomorphism on

objects and F -* a*F' and W -- a*W' be two objectwise weak equivalences. Then the

obvious map

W(A F -+ W' (gL, F'

is a weak equivalence.
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Proof. This map is the realization of a weak equivalence between simplicial objects of X

which are both Reedy cofibrant. 0

Note that this proposition is already useful when a = id. Finally let us mention the

following proposition which insures that having a simplicial cofibrant replacement diagram

is not a strong restriction:

A.3.5 Proposition. Let X be a cofibrantly generated simplicial model category. Then X

has a simplicial cofibrant replacement functor.

Proof. See [BR12], theorem 6.1. 0

The bar construction is often useful because of the following result:

A.3.6 Proposition. Let X be a simplicial model category. Let a: K -+ L be a simplicial

functor. Let F : K -+ X be a simplicial functor. The functor

1 - L(a(-),l) OL F

is the homotopy left Kan extension of F along a. l

A.4 Model structure on symmetric spectra

Let E be a an associative algebra in symmetric spectra. Then ModE has (at least) two

simplicial cofibrantly generated model category structures in which the weak equivalences

are the stable equivalences of the underlying symmetric spectrum:

" The positive model structure pModE.

* The absolute model structure aModE-

Moreover if E is commutative, both are closed symmetric monoidal model categories.

The identity functor induces a Quillen equivalence

pModE t aModE

Both model structures have their advantages. The absolute model structure has more

cofibrant objects (for instance E itself is cofibrant which is often convenient). On the

other hand the positive model structure has few cofibrant objects but a very well-bahaved

monoidal structure. A very pleasant property of this monoidal model structure is described

in proposition A.4.5.

A.4.1 Proposition. A morphism f : E -+ F of algebras in symmetric spectra induces a

Quillen adjunction:

f! : ModE t ModF : f

in the positive or absolute model structure. Moreover, this is a Quillen equivalence if f is a

weak equivalence of the underlying symmetric spectra.
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Proof. See [Sch07]. D

Now let Z be a positively cofibrant symmetric spectrum. We say that a map f of

symmetric spectra is a Z-equivalence if Z 9 f is a weak equivalence.

A.4.2 Proposition. For any algebra in symmetric spectra E, there is a simplicial model

category structure on ModE denoted LzModE whose cofibrations are positive (resp. ab-

solute) cofibrations in ModE and whose weak equivalences are Z-equivalences. Moreover

if E is commutative, both these model categories are closed symmetric monoidal categories

for the relative tensor product - E-

Proof. See [Bar10]. E

A.4.3 Proposition. A morphism f : E -+ F of algebras in symmetric spectra induces a

Quillen adjunction:

f! : LzModE t LzModF

in the positive or absolute Z-local model structure. Moreover, this is a Quillen equivalence

if f is a Z equivalence of the underlying symmetric spectra.

Proof. The following proof works indifferently for the positive and absolute model structure.

The functor f! preserves cofibrations since they are the same in ModE and LzModE-
Notice that the fibrant objects in LzModE or LzModF are exactly the objects that

are Z-local and fibrant as spectra. Let M -* N be a Z-equivalence and a cofibration in

ModE. Let L be a Z-local fibrant F-module, then we want to show that the map

MapModF (N &E F, L) -+ MapModF (M (E F, L)

is an equivalence in S. But by adjunction, this map is

MapModE (N, L) -+ MapModE (M, L)

which is an equivalence since L is Z-local and fibrant in ModE- 0

See 1.6.6 for the definition of C. Note that if f is a map in a model category C, the

map C(f,... , f) with n copies of f is naturally a map in the category CE- of objects of C

with a En-action.
The following definition is due to Lurie (see [Luri1]):

A.4.4 Definition. Let C be a cofibrantly generated symmetric monoidal model category.

A map f : X -+ Y is said to be a power cofibration if, for each n, the map C(f,..., f) is a

cofibration in CEn with the projective model structure.

A.4.5 Proposition. In the category ModE with the positive model structure, any cofibra-

tion is a power cofibration. The same is true for the positive model structure of LzModE

for any Z.
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Proof. The appendix of [Per13] proves it in the case if E is the sphere spectrum. To

prove the result for ModE, it suffices to check it for generating cofibrations. Generating

cofibrations in ModE can be chosen of the form f 0 E where E is a cofibration in Spec,

therefore, the result follows from the case of Spec.

To take care of the Z local case, it suffices to notice that, for any finite group G, we

have the identity as model categories:

(LzModE)G = Lz(ModE)

indeed in both cases the weak equivalences are the Z-equivalences and the generating cofi-

brations are the maps G 0 f where f is a generating cofibration of ModE- M

In particular, this property is saying that if X is cofibrant in ModE, then XOEn is

cofibrant in Modin. This situation is very specific to symmetric monoidal model structures

on spectra. It fails in S and Top.



Appendix B

Operads and modules

B.1 Colored operad

We recall the definition of a colored operad (also called a multicategory). In this paper we

will restrict ourselves to the case of operads in S but the same definitions could be made

in any symmetric monoidal category. Note that we use the word "operad" even when the

operad has several colors. When we want to specifically talk about operads with only one

color, we say "one-color operad".

B.1.1 Definition. An operad in the category of simplicial sets consists of:

" a set of colors Col(M)

" for any finite sequence {ai}is in Col(M) indexed by a finite set I, and any color b,
a simplicial set:

M ({ai I ; b)

" a base point * -+ M(a; a) for any color a

" for any map of finite sets f : I -+ J, whose fiber over j E J is denoted Ij, compositions

operations

( MjA({ajiiEjj; bj) x M({bj~jEJ; C) -+M({agiiEI; C)
jEJ

All these data are required to satisfy unitality and associativity conditions (see for

instance [Lurli] Definition 2.1.1.1.).

A map of operads M -+ K is a map f : Col(M) -+ Col(Af) together with the data of

maps

M({ai}I; b) -+ .A({f(ai)}I; f (b))

compatible with the compositions and units.
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With the above definition, it is not clear that there is a category of operads since there

is no set of finite sets. However it is easy to fix this by checking that the only data needed

is the value M({ai}ei; b) on sets I of the form {1,... , n}. The above definition has the

advantage of avoiding unnatural identification between finite sets.

Note that the last point of the definition can be used with an automorphism o : I -+ I.
Using the unitality and associativity of the composition structure, it is not hard to see that

M({ai}Ei; b) supports an action of the group Aut(I). This is another advantage of this

definition. We do not need to include this action as extra structure.

B.1.2 Definition. Let M be an operad. The underlying simplicial category of M denoted

M is the simplicial category whose objects are the colors of M and with

Mapm (m, n) = M({m}; n)

We define the following notation which is useful to write operads explicitely:

Let {ai}iEi and {bj}jEJ be two sequences of colors of M. We denote by {ai}icIEWbj}jEJ
the sequence indexed over IL J whose restriction to I (resp. to J) is {ai} iE (resp. {bj}jE J).

For instance if we have two colors a and b, we can write aMnE bmm to denote the sequence

{a,... , a, b, ... , b}{1,...,n+m} with n a's and m b's.

Any symmetric monoidal category can be seen as an operad:

B.1.3 Definition. Let (A, 0, RA) be a small symmetric monoidal category enriched in S.
Then A has an underlying operad UA whose colors are the objects of A and whose spaces

of operations are given by

UA({ai}iEI; b) = MapA( ai, b)
iEI

B.1.4 Definition. We denote by Fin the category whose objects are nonnegative integers

n and whose morphisms n - m are maps of finite sets

{ 1, . .. ,n} -+ 1 .. ,m

We allow ourselves to write i E n when we mean i E .. . , n}.

The construction A '-+ UA sending a symmetric monoidal category to an operad has a
left adjoint that we define now. The underlying category of the left adjoint applied to M
is M. For this reason, we can safely use the letter M to denote that symmetric monoidal
category.

B.1.5 Definition. Let M be an operad, the objects of the free symmetric monoidal cate-
gory M are given by

Ob(M) = Col(M)n
nEOb(Fin)
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Morphisms are given by

M({ai}ien, {bj}jem) = A4 7 M({aJ} je (i); bi)
f:n-+m iEm

It is easy to check that there is a functor M 2 -+ M which on objects is

({ai}ien, {bj}jem) F-+ {ai..., an, bi, ... bm}

B.1.6 Proposition. This functor can be extended to a symmetric monoidal structure on
M.

We define an algebra over an operad with value in a symmetric monoidal category
(C, g, c):

B.1.7 Definition. Let S be a set, and let A : S -+ Ob(C) be a map. We define the
endomorphism operad EndA of A to be the operad with set of colors S and with

EndA({ai}iel; b) = C(O®eiA(ai), A(b))

B.1.8 Definition. Let M be an operad. We define the category of M-algebras in C.

Its objects are functions A: Col(M) -- Ob(C) together with maps of operads inducing

the identity on colors:

M -+ 9ndA

A morphism f : A -+ B is the data of a map f, : A(c) -+ B(c) for each color c of M such

that the following triangle of operads commutes:

M :~- EndA

9ndB

We denote by C[M] the category of M-algebras in C.

Equivalently, an M-algebra in C is a map of operads M --+ UC. With this definition,
it is tautologous that an algebra over M induces a (symmetric monoidal) functor M -+ C.

We will use the same notation for the two objects and allow oursleves to switch between

them without mentioning it.

B.2 Right modules over operads

B.2.1 Definition. Let M be an operad. A right M-module is a simplicial functor

R: M0 P -+ S
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When 0 is a single-color operad, we denote by Modo the category of right modules

over 0.

B.2.2 Remark. If 0 is a single-color operad, it is easy to verify that the category of right

modules over 0 in the above sense is isomorphic to the category of right modules over 0

in the usual sense (i.e. a right module over the monoid 0 with respect to the monoidal

structure on symmetric sequences given by the composition product).

Let E be the category whose objects are the finite sets {1,... , n} with n E Z>o and

morphisms are bijections. E is a symmetric monoidal category for the disjoint union oper-

ation.
Let I be the initial one-color operad (i.e. 1(1) = * and 1(k) = 0 for k $ 1). It is clear

that the free symmetric monoidal category associated to I is the category E. Let 0 be an

operad and 0 be the free symmetric monoidal category associated to 0. By functoriality of

the free symmetric monoidal category construction, there is a symmetric monoidal functor

E -+ 0 which induces a functor

Fun(O*P, S) -+ Fun(E P, S)

Recall the definition of the Day tensor product:

B.2.3 Definition. Let (A, D, l[A) be a small symmetric monoidal category, then the cat-

egory Fun(A, S) is a symmetric monoidal category for the operation 0 defined as the fol-

lowing coend:
F 0 G(a) = A(-O-, a) OAxA F(-) x G(-)

Now we can make the following proposition:

B.2.4 Proposition. Let 0 be a single-color operad. The category of right 0-modules has

a symmetric monoidal structure such that the restriction functor

Fun(O*P, S) -+ Fun(EP, S)

is symmetric monoidal when the target is equipped with the Day tensor product.

Proof. We have the following identity for three symmetric sequences in S (see [Fre09] 2.2.3.):

(MON)oPN (MOP)o(NOP)

If P is an operad, this identity gives a right P-module structure on the tensor product
M 0 N.

The category Modo is a symmetric monoidal category tensored over S. Therefore if P
is another operad, we can talk about the category Modo[P].

It is easy to check that the category Modo[P] is isomorphic to the category of P-0-
bimodules in the category of symmetric sequences in S.
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From now on, we assume that C is cocomplete and that the tensor product preserves

colimits in both variables.

Any right module R over a single-color operad 0 gives rise to a functor C[0] --+ C

A i- R oo A = coeq(R o O(A) --: R(A))

Here the first map of the coequalizer is given by the 0-algebra structure on A and the

second one by the right 0-action on R.

It is sometimes psychologically easier to describe R oo X as an enriched coend. The

next proposition does this:

B.2.5 Proposition. There is an isomorphism

R oo A e Ro o A

This kind of coend often occurs because of the following proposition:

B.2.6 Proposition. Let a: M -+ A a map of operads, the forgetful functor C[N ] -+ C[M]

has a left adjoint a!.

For A E C[M], the value at the color n of Col(Ar) of aA is given by

a!A(n) = N(a(-), n) oM A(-)

B.2.7 Definition. We keep the notations of the previous proposition. The K-algebra

a (A) is called the operadic left Kan extension of A along a.

B.2.8 Proposition. Let R be a P-algebra in Modo. The functor A F-4 R oo A factors
through the forgetful functor C[P] -+ C.

Proof. This functor is defined as a reflexive coequalizer. The forgetful functor C[P] -+ C
preserves reflexive coequalizer (this is because the category defining reflexive coequalizers

is sifted). Each term in this reflexive coequalizer is a P-algebra. Therefore, the coequalizer

has a P-algebra structure.

B.3 Homotopy theory of operads and modules

B.3.1 Definition. An operad M is said to be E-cofibrant if for any sequence of colors

{ai}ien and any color b, the space M({ai}; b) is a cofibrant object in S with its projective
model structure for the En-action described in B.1.

Similarly, a right module P over M is E-cofibrant if for any sequence of colors {ai}en,
the E-simplicial set P({aij) is cofibrant in SE.
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B.3.2 Remark. A G-simplicial set is cofibrant if the G-action is free. In this work, anytime,

we claim that a simplicial set is G-cofibrant, we use this fact.

B.3.3 Definition. A weak equivalence between operads is a morphism of operad f : M -4

K which satisfies:

* (Homotopical fully faithfulness) For each {mi}Ei a finite set of colors of M and each

m a color of M, the map

M({mi}; m) -+ K({f(mi)}; f(m))

is a weak equivalence.

" (Essential surjectivity) The underlying map of simplicial categories M -+ N is essan-

tially surjective (i.e. it is such when we apply 1ro to each space of maps).

B.3.4 Remark. The homotopy theory of simplicial operads with respect to the above defini-

tion of weak equivalences can be structured into a model category (see [CM11] or [Robl1])

but we will not use this fact in this work.

B.3.5 Definition. A cofibrantly generated symmetric monoidal model category (C, 0, R)

has a good theory of algebras (resp. a good theory of algebras over E-cofibrant operads) if:

e For any operad M (resp. E-cofibrant operad) in S, the category C[M] of M-algebras

in C has a model category structure where weak equivalences and fibrations are created

by the forgetful functors C[M] -* C[Col(M)].

* If a : M -4 K is a is a weak equivalence of operad (resp. E-cofibrant operads), the
adjunction

ai : C[M] : C[N] : a*

is a Quillen equivalence.

9 For any operad M (resp. E-cofibrant operad) in S, the right adjoint C[Col(M)] t

C [M] preserves cofibrations.

B.3.6 Remark. In practice, one proves the first point of this definition by using the lemma

A.1.3. In that case, the third point is automatically satisfied. Note that the third point

implies that if A is a cofibrant M-algebra, the value of A at a given color is a pseudo-

cofibrant object of C.

B. 3.7 Remark. The category S [Com] has a tranferred model structure as is proved in [BM03].

However, this model structure does not encode the homotopy theory of S,-spaces. The

second axiom of the above definition is here to insure that the homotopy theory underlying

these model structure is homotopically correct.

Let us mention two families of examples where these conditions are satisfied:
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B.3.8 Theorem. Let C be a symmetric monoidal simplicial cofibrantly generated model

category. Assume that C has a monoidal fibrant replacement functor and a cofibrant unit.

Then C has a good theory of algebras over E-cofibrant operads.

Proof. The proof is essentially done in [BM05]. The idea is that H = Sing([O, 1]) is a

cocommutative monoid in S, therefore for any M-algebra A, the object AH is a path object

in C[M].

B. 3.9 Remark. For instance S and Top obviously satisfy the conditions. If R is a Q-algebra,
the category Ch>o(R) with its projective model structure (i.e., the model structure for which

weak equivalences are quasi-isomorphisms and fibrations are degreewise epimorphisms) sat-

isfies the condition. One can take C.([O, 1]) as interval object.

If C satisfies the conditions of the theorem, and I is any small simplicial category. Then

Fun(I, C) with the objectwise tensor product and projective model structure also satisfies

the conditions.

B.3.10 Proposition. Let E be a commutative symmetric ring spectrum and Z be any

symmetric spectrum. Then the positive model structure on ModE has a good theory of

algebras. Similarly, the Bousfield localization LZModE with the positive model structure

has a good theory of algebras.

Proof. The paper [EM06] only deals with modules over the sphere spectrum but it is easy to

check that their proof can be adapted to this more general situtation. The main ingredient

is A.4.5. l

B.3.11 Proposition. Let C be a symmetric monoidal model category with a good theory

of algebras (resp. with a good theory of algebras over E-cofibrant operads). Let M be an

operad (resp. E-cofibrant operad) and let M be the free symetric monoidal category on M.
Let A: M --+ C be an algebra. Then

1. Let P : MOP -+ S be a right module (resp. E-cofibrant right module). Then P 0M -

preserves weak equivalences between cofibrant M-algebras.

2. Let P : MOP -+ S be a right module (resp. E-cofibrant right module). Then P &M -

sends cofibrant M-algebras to pseudo-cofibrant objects of C.

3. If A is a cofibrant algebra, the functor - &M A is a left Quillen functor from right

modules over M to C.

4. Moreover the functor - Om A preserves all weak equivalences between right modules

(resp. E -cofibrant right modules).
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Proof. For P any simplicial functor M0 P -+ C, we denote by Mp the operad whose colors

are Col(M) U oo and whose spaces of operations are the following:

M ({m, ... , mk}, n) = M({m1, - -- , mk , ) if oo V {m,... ,mk}

MI({m,..., mk}, n) = 0 if oo Em, . . ., mk}

MIp({m, ... ,mk}; o) = P({m1, . , mk})

It is easy to see that there is an operad map ap : M -+ Mp. Moreover by B.2.6 we

have

evoo(ap)!A = P OM A

Proof of the first claim. If A -+ B is a weak equivalence between cofibrant M-algebras,
then (ap)!A is weakly equivalent to (ap)!B by the previous theorem. Since evoc preserves

all weak equivalences, we are done.

Proof of the second claim. Since (ap)! is a left Quillen functor, (ap)!A is a cofibrant

Mp-algebra and by B.3.5, evoc(ap)!A is pseudo-cofibrant in C.

Proof of the third claim. To show that P '- P &M A is left Quillen it suffices to check

that it sends generating (trivial) cofibrations to (trivial) cofibrations.

For m E Ob(M), denote by Lm the functor S -+ Fun(Ob(M), S) sending X to the

functor sending m to X and everything else to 0. Denote by FM the left Kan extension

functor

FM : Fun(Ob(M)P, S) -+ Fun(MP, S)

We can take as generating (trivial) cofibrations are the maps of the form FMtml

(FMomJ). We have:

FmtmL mM A e I A(m)

Since A is cofibrant as an algebra its value at each object of M is pseudo-cofibrant. Moreover,
the left tensoring S x C is a Quillen bifunctor by hypothesis, therefore FMtml0M A consists

of cofibrations. Similarly, FMtmJ &M A consists of trivial cofibrations.

Proof of the fourth claim. Let P -+ Q be a weak equivalence between functors M0 P -+

S. This induces a weak equivalence between operads # : Mp -+ MQ. It is clear that
aQ= o ap, therefore (aQ)!A = 0! (ap)!A. We apply #* to both side and get

/*#!(ap)!A = 0*(aQ)!A

Since (ap)!A is cofibrant, the adjunction map (ap)!A -+ /*/(ap)!A is a weak equiva-
lence by definition of a Quillen equivalence. Therefore the obvious map

(ap)!A -+ #*(aQ)!A

is a weak equivalence.
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If we evaluate this at the color oo, we find a weak equivalence

Pom A-* Q®m A

Operadic vs categorical homotopy left Kan extension

B.3.12 Proposition. Assume C has a good theory of algebras (resp. a good theory of

algebras over E-cofibrant operads) and assume that C has a cofibrant unit. Let M 4' K
be a morphism of simplicial operads (resp. E-cofibrant operads). Let A be an algebra over

M. The derived operadic left Kan extension ai (A) is weakly equivalent to the homotopy left

Kan extension of A: M -+ C along the induced map M -+ N.

Proof. Let QA -+ A be a cofibrant replacement of A as an M-algebra. The value at n of

the homotopy left Kan extension of A can be computed as the geometric realization of the

Bar construction

B.(N(a-,n),M, QA)

By B.3.5, QA is objectwise cofibrant (we use the fact that a tensor product of cofibrant

objects is cofibrant) or the unit lc. Therefore, the bar construction is Reedy-cofibrant

(A.3.2) if ffc is cofibrant.

We can rewrite this simplicial object as

B.(N(a-, n), M, M) oM A

The geometric realization is

IB.(N(a-, n), M, M)I oM A

It is a classical fact that the map

B.(N(a-, n), M, M)J --+ N(a-, n)

is a weak equivalence of functors on E'P. Therefore by B.3.11, the Bar construction is

weakly equivalent to aiA. E

This result is also true in LzpModE:

B.3.13 Proposition. Let A be an object of LzpModE[M]. The derived operadic left Kan

extension a!(A) is weakly equivalent to the homotopy left Kan extension of A : M -+ C

along the induced map M -+ N.

Proof. We can consider the bar construction as an object of LzaModE. In that case, it

is Reedy cofibrant and the rest of the argument of the previous proposition works. Since
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the weak equivalences are the same in LzpModE and LzaModE, the derived functors

coincide.
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