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Abstract

Capillary instability (Plateau-Rayleigh instability) has been playing an important
role in experimental work such as multimaterial fiber drawing and multilayer particle
fabrication. Motivated by complex multi-fluid geometries currently being explored in
these applications, we theoretically and computationally studied capillary instabili-
ties in concentric cylindrical flows of N fluids with arbitrary viscosities, thicknesses,
densities, and surface tensions in both the Stokes regime and for the full Navier-Stokes
problem. The resulting mathematical model, based on linear-stability analysis, can
quickly predict the breakup lengthscale and timescale of concentric cylindrical fluids,
and provides useful guidance for material selections and design parameters in fiber-
drawing experiments. A three-fluid system with competing breakup processes at very
different length scales is demonstrated with a full Stokes flow simulation.

In the second half of this thesis, we study large-scale PDE-constrained microcavity
topology optimization. Applications such as lasers and nonlinear devices require
optical microcavities with long lifetimes Q and small modal volumes V. While most
microcavities are designed mostly by hand using some understanding of the physical
principles of the confinement, we let the computer discover its own structures. We
formulate and solve a full 3d optimization scheme over all possible 2d-lithography
patterns in a thin dielectric film. The key to our formulation is a frequency-averaged
local density of states (LDOS), where the frequency averaging corresponds to the
desired bandwidth, evaluated by a novel technique: solving a single electromagnetic
wave scattering problem at a complex frequency.

Thesis Supervisor: Steven G. Johnson
Title: Associate Professor of Applied Mathematics
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Chapter 1

Introduction

A JOURNEY WITH EPSILONO

Small Quantity * Boundary Layer Machine Precision Dielectric Permittivity

Asymptotic Analysis Fluid Mechanics High Performance Computing Electromagnetism

Mathematical Modelling Computational Fluid Dynamics Computational Electrodynamics

This thesis is a journey of epsilon (E). In mathematics, epsilon may represent a

small quantity, as the one in the E-6 definition of limits from freshman mathematical

analysis. By identifying different orders of small quantities (e.g., E, F2, 3, .... ), we

can use asymptotic analysis to analyze problems. By dropping smaller terms, we

can simplify real problems and build mathematically solvable models. In computa-

tion, epsilon may represent the machine precision, a tiny number giving the upper

bound of the relative round-off errors (the relative difference between the computer

approximation of a number and its exact mathematical value). To let the computer

help us solve equations correctly and efficiently, we have to understand this epsilon

well. In physics, epsilon may represent the dielectric permittivity (the square of re-

fractive index) in electromagnetism and the thickness of the boundary layer in fluid

mechanics. In applied mathematics, it seems that everything is connected by epsilon,

such as mathematical modeling, computational fluid mechanics, and computational

electromagnetism.

21



In the first half of this thesis (chapters 2-3), we use epsilon for analytical and

numerical tools to study the instability phenomena due to surface tension in concentric

cylindrical flows. In the second half (chapters 4-5), we design a structure by arranging

different materials (namely, different dielectric constants E) to trap light for a long

time in a small volume.

1.1 Capillary instability

Chapters 2-3 of this thesis attack the problem of capillary instability in concentric

multi-fluid systems. Capillary instability, also known as the Plateau-Rayleigh insta-

bility, is the instability induced by surface tension, which causes fluid cylinders to

break up into droplets in order to reduce their surface area [36, 37, 68]. Figure 1-1

illustrates the breakup of a water jet due to surface tension at three different wave-

lengths [106]. Because the breakup point in the bottom picture is closer to the nozzle

(on the left) than in the top two pictures, it implies that the perturbations with that

wavelength grow much faster than at the other wavelengths. [36].

Plateau [97] first recognized the important role of surface tension in this breakup

process [39]. Plateau used simple geometrical arguments based on comparing surface

energies (surface areas) before and after small perturbations to show that, whenever a

cylindrical jet's length exceeds its circumference, it is always unstable due to surface

tension.

However, Plateau did not obtain the most unstable wavelength among all the

unstable ones. The most unstable mode and its growth rate were obtained by Lord

Rayleigh, who first introduced the powerful tool of linear stability analysis [33] and

reconsidered inviscid water jets [101] and viscous liquid jets [102]. However, Lord

Rayleigh only considered a single fluid jet in air. By considering the effect of the

surrounding fluid, Ref. [117] generalized this analysis to a cylindrical viscous liquid

surrounded by another viscous fluid.

All these analysis were for one- or two- fluid systems. However, current experi-

mental research is looking at increasingly complicated fluid systems involving three
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Figure 1-1: The breakup of a water jet at different wavelengths excited by a loud-
speaker [120]. It illustrates that perturbations with different wavelengths grow at
different rates, inferred from the distance between the breakup point and the nozzle
at the left end. (Van Dyke, An Album of Fluid Motion, 1982, figure 122.)

or more fluid layers (of two or more fluids). For example, Ref. [119] recently demon-

strated the fabrication of double emulsions (droplets within droplets) by exploring

instabilities in three-fluid system (figure 1-2a). Because the available theory was lim-

ited to equal viscosities [112], the experimental researchers chose only fluids in that

regime.

The capillary instability analysis for multi-fluid analysis in this thesis was mo-

tivated by complex multi-fluid geometries currently being explored in fiber-device

manufacturing. In fiber drawing (figure 1-2b), a scale model (preform) of the desired

device is heated to a viscous state and then pulled (drawn) to yield a long fiber with

(ordinarily) identical cross-section but much smaller diameter. For example, con-

centric layers of different polymers and glasses can be drawn into a long fiber with

submicron-scale layers that act as optical devices for wavelengths on the same scale as

the layer thicknesses [1]. Other devices, such as photodetectors [110], semiconductor

filaments [29, 30], and piezoelectric pressure sensors [40] have similarly been incor-

porated into microstructured fiber devices. That work motivates greater theoretical
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investigation of multi-fluid geometries, and in particular the stability (or instability

time scale) of different geometries is critical in order to predict whether they can be

fabricated successfully.

Outer Fluid.. . Middle Fluid

4 . 0 0 0 0 .4.........................
Macroscopic
preform

Collectbon Tube Inle-0on Iubt

Thermal
drawing

} Kilometre-long
nanostructured fibre

(a) Double emulsions generated from a microcap- (b) Multiple-material fiber-

illary device [119]. drawing [1].

Figure 1-2: Capillary instability in multiple-fluid devices. Figure (a) demonstrates the

fabrication of double emulsions (droplets within droplets) by exploring instabilities

in three equal-viscosity fluids system [119]. Figure (b) sketches the fiber-drawing

process: a preform of the desired device is heated to a viscous state and then pulled

to yield a long fiber with identical cross-section but much smaller diameter [1].

In fiber drawing, one wants to keep the long drawn fiber intact instead of dis-

integrating. Therefore, the drawing time should be much smaller than the typical

breakup time. In contrast, breakup is desired in particle fabrication. Reference [58]

harnesses the inherent scalability of fiber production and in-fiber capillary instability

for the fabrication of uniformly sized, structured spherical particles (figure 3-1).

In all of these applications, it is critical to understand the possible instabilities

and the lengthscales and timescales of the growth modes, and have a quick way to

explore different material parameters in order to design new devices and phenomena.

Unfortunately, not much theoretical and computational work on capillary instability

in multiple-fluid system had been done. Reference [112] analyzed the three-fluid

(N = 3) Stokes cylinder problem, but only for equal viscosities. Reference [19]

analyzed the N = 3 case where the inner two fluids have arbitrary viscosities and the
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outermost fluid is inviscid gas, taking into account the full Navier-Stokes equations.

The goal of this part of my thesis, in chapters 2-3, is to fully generalize the

analysis: study capillary instabilities in concentric cylindrical flows of N fluids with

arbitrary viscosities, thicknesses, densities, and surface tensions in both the Stokes

regime and for the full Navier-Stokes problem. The results of our linear stability

analysis is a small semi-analytical expression for the growth modes and growth rates

in terms of a small matrix problem. We check analytically that it reduces to the

previous results for N = 2 and N = 3 cases. We also validate the analysis with full

three-dimensional numerical simulations. Semi-analytical methods and large-scale

Stokes flow simulations are complementary in studying capillary instabilities, since the

former allow rapid exploration of wide parameter regimes (e.g. for materials design)

as well as rigorous asymptotic results, while the latter can capture the culmination

of the breakup process as it grows beyond the linear regime.

Almost no systems with three or more fluids have been analyzed before, so there

are lots of possibilities to be explored. For a three fluid system with extremely thin

shell (section 2.6.2), we show a connection to the classic single-cylinder and flat-plane

results, consistent with a similar result for air-clad two-fluid jets [19]. In another

three-fluid system, we exhibit an interesting case in which two growth modes at dif-

ferent wavelengths have the same effective growth rate, leading to competing breakup

processes that we demonstrate with full 3-dimensional Stokes-flow simulations (sec-

tion 2.7). We also consider some many-layer cases, including a limiting situation of a

continuously varying viscosity (section 2.9).

The theoretical and computational tools we developed in this thesis are readily

applicable to explain various experimental phenomena. For example, an interesting

azimuthal (instead of typical axial) breakup process was observed experimentally [29]

and has yet to be explained [28]; however, we show (section 2.2) that azimuthal

instability does not arise in purely cylindrical geometries and must stem from the rapid

taper of the fiber radius from centimeters to millimeters (the drawn-down "neck"),

or some other physical influence (e.g., elastic effects, thermal gradients, or long-range

van der Waals interactions). As a preliminary step, we study this problem as 2d
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thin-film instability under the influences of surface tension and van der Waals forces

in section 2.12. In chapter 3, we show its applications to multiple-layer particle

fabrication, providing guidance on geometry parameters and material selections in

experiments, as well as predicting the size of experimentally fabricated particles.

1.2 Micro-cavity optimization

Chapters 4-5 of this thesis are concerned with large-scale optimization of microcav-

ities. What is a microcavity? A microcavity is an arrangement of materials (with

different dielectric constants E) that traps light for a long time in a small volume. A

few examples of real fabricated cavities in silicon are shown in figure 1-3.

aece).b) ed microcavity f e U i

-00 0 0 c00

TJ [aJ 0 0 0 0 0 0

(a) Ring resonator [69]. (b) Cavity from Id PhC [128]. (c) Cavity from 2d PhC [126].

Figure 1-3: Examples of real fabricated silicon cavities. (a) A simple ring resonator (a
waveguide bent into a circle). (b) A fabricated microcavity formed by the introduc-

tion of a point defect (adding dielectric materials between two holes) into a periodic
array of holes in the silicon waveguide [128]. (c) A fabricated microcavity formed by
changing the radii of defect holes in 2d photonic crystals [126].

The simplest example is a ring resonator (figure 1-3a) [100]: just a waveguide bent

into a circle. Whenever you bend the waveguide, light escapes into radiation, and

the more tightly you bend it the faster the light escapes. There are two key figures

of merit for a microcavity, Q and V. The quality factor Q, which is a dimensionless

lifetime, is the number of optical periods that elapse before the energy decays by e- 2 ,

and 1/Q is a dimensionless decay rate. The mode volume V is simply a measurement

of how big the mode is [a more precise definition is given in (4.3)]. The ring resonator

example illustrates a common tradeoff1 between the quality factor Q (which grows

'There are counter examples to this tradeoff, cavities with complete photonic bandgap [54] and
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exponentially with the radius in this structure) and mode volume V (proportional to

the circumference) [78]. For most applications with light-matter interactions (such as

lasers, sensors, and nonlinear frequency conversions), maximal lifetime Q and minimal

mode volume V are desirable.

Recently, people have looked at a wide variety of complicated patterns (figures 1-3b

and 1-3c) to improve this Q versus V trade-off [4, 126, 128]. It turns out that many of

these designs are based on starting with a periodic structure, called a photonic crystal,

and then introducing a defect into the periodicity that traps light using something

called a photonic bandgap [54]. However, in this thesis, we will develop algorithms to

let the computer to discover these kinds of structure, periodic or not, using large-scale

optimization.

We are interested in designing cavities that can be fabricated by lithography.

With lithography, one starts with a planar slab of some material, and then etches

some two-dimensional pattern into this planar slab (figure 1-4). The design question

is what 2d pattern we should etch to trap a mode for as long as possible and in a

volume as small as possible.

Figure 1-4: The sketch of a slab structure, which can be fabricated by lithography.
The design question is what 2d pattern to etch so that it can trap a mode for as long
as possible in a volume as small as possible.

To apply large-scale optimization, there are a few challenges we need to address.

First, what precise optimization problem are we solving? It turns out extra care is

needed to be well-posed. Once we formulate the problem, is it practical to apply

cavities with a special choice of dielectric constants [127], but neither can be realized in 3d with a
single 2d lithography step.
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large-scale topology optimization? We will show that choosing the right problem is

the key to enable efficient algorithms. Given that cavities in silicon slabs have been

heavily studied for more than 20 years [50, 54, 73, 87], can we obtain better results

than these hand designs?

1.2.1 Previous work

Let me briefly review previous work on microcavity optimization. First of all, most

cavities are designed "by hand" using some understanding of the physical principles

of the confinement [4, 125]. Given a hand design, many groups [5, 89] have applied

small-scale optimization, where they optimize a few parameters, such as the positions

of a few air holes, to improve the performance (figure 1-5). However, this method

mainly optimizes Q for a given V, because slightly changes in the structure typically

do not change V much.

More recently, a few authors have studied large-scale topology optimization, where

the patterns are essentially completely determined by the computer. Reference [32]

minimized V for the 2d Maxwell equations subject to Dirichlet boundary conditions

and there was no radiation loss in the system. Reference [57] maximized in-plane Q

by imposing the radiation boundary conditions. However, V is not in the objective

function and only implicitly bounded by the size of the optimized region. We are

interested in optimizing Q and V together somehow, and including out of plane losses

in 3d.

To avoid the expensive calculation in 3d, Ref. [75] proposed a so-called 2.5 op-

timization: do a 2d calculation and use a simple heuristic approximation for out of

plane losses. They minimized the mode volume V subject to the constraint that there

is no heuristic loss. But zero radiation loss in 2d turns into finite loss in 3d due to

the imperfect approximation for the loss. For example, the optimized structure (fig-

ure 1-6) they obtained with this 2.5d formulation has Q = 8000 and V = 0.31(A/n) 3.

Reference [41] performed real 3d calculations with finite element solver to optimize

the Q by altering the hole shapes in the defect photonic crystal cavity. Instead of
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(a) Optimization on the position of one (b) Optimization on the positions of three
hole in L3 cavity [5]. Q=50000 and V holes in L3 cavity [5]. Q=100000 and V =
0.7(A/n) 3. 0.7(A/n) 3.

(c) Optimization on the positions of five holes
in Ho cavity [89]. Q=280000 and V
0.23(A/n) 3.

Figure 1-5: Small-scale microcavity optimization on the positions of a few air holes
in L3 and Ho cavities.
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12.25 -

Figure 1-6: The structure obtained by large-scale 2.5d optimization (Q 8000 and

V = 0.31(A/n) 3) [75]. The idea is to do a 2d calculation and use a simple heuristic

approximation for out of plane losses.

solving for a mode or Q, they minimized the outgoing power of a line current near

the center, taking the worst values at three frequencies. We will use similar ideas

of solving a scattering problem rather than an eigenproblem, and of looking at a

finite bandwidth. However, we believe that there are some fundamental changes

that are required in their figure of merit. First, their work included an unphysical

absorbing material within the cavity itself, leading to a heuristic objective whose

calculation does not appear to have a rigorous quantitative relationship to relevant

cavity properties. Second, even if the unphysical absorbing material is removed, we

argue that the outgoing power should really be maximized, not minimized, in order

to obtain high Q cavities.

1.2.2 Our approach

Unlike previous optimization work which focused on Q and/or V, in chapter 4 we

start with a more fundamental quantity: the local density of states LDOS(x, w) (the

number of states per unit volume per frequency) [50], defined precisely in section 4.3.

We show that the LDOS or its variants are the most relevant figures of merit for light-

matter interaction applications. The well-known Purcell factor Q/V and variations
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thereof (sections 4.3 and B.1) are only approximations of the LDOS in the limit of

high-Q cavities. Another advantage of the LDOS is its ease to compute, because it is

well-known that the LDOS is related to the imaginary part of the Green's function,

which is a solution to an electromagnetic scattering problem [25, 79, 90].

What does the LDOS look like? For a system without any loss, the LDOS(x, W)

is simply a sum of Dirac delta functions at the eigenfrequencies, as described in

section B.2. For a system with loss, the eigenvalues to the Maxwell eigenproblem

are complex, and the LDOS(x, w) becomes a sum of Lorentzian peaks centered at

its resonant frequencies. For illustration purpose, we plot the LDOS(x, w) at the

center of a photonic crystal cavity (inset of figure 1-7) versus w as the blue curve in

figure 1-7.
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Figure 1-7: The illustration of the LDOS and frequency-averaged LDOS versus w.
The blue curve is the plot of the LDOS (at the center of a cavity, sketched in the inset),
as a function of w. The frequency-averaged LDOS with a bandwidth F = w/80, is
computed by two methods: 1) direct integration (red curve), involving evaluating the
LDOS at many real frequencies; 2) contour integration (black dots), only requiring
the LDOS at one complex frequency.
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Merely maximizing the LDOS at a single frequency, or equivalently the Q/V ratio

(Purcell factor) of a cavity, is an uninteresting design problem because it has a trivial

answer: infinity (e.g. for a ring resonator of infinite radius, in which Q diverges

exponentially while V grows only linearly). Of course, one cannot achieve this in

practice: Q is bounded in reality because of fabrication imperfections and material

absorption, for example. Moreover, given a desired bandwidth and a loss tolerance,

the required Q of the cavity is bounded and one is more interested in minimizing

V given this Q. Equivalently, we want to maximize the LDOS over a given finite

bandwidth, as described in section 4.4. In particular, we will maximize the mean of

the LDOS(w) over this bandwidth L - f LDOS(w)W(w)dw, where W(w) is some

weight/window function we choose, which has a peak around design frequency CD with

bandwidth F (section 4.5). In our simple 2d cavity example, for a window function

(the square of a Lorentzian with F = C/80) given in (4.26), the frequency-averaged

LDOS is computed by direct numerical integration and plotted as the red curve in

figure 1-7.

This direct method for computing the average L requires the LDOS over all W,

which involves solving scattering problems at many frequencies in the bandwidth.

However, with the technique of contour integration in complex analysis, we convert

the evaluation of the frequency-averaged LDOS (in section 4.4) into a single scattering

problem at a complex frequency. Again, in our simple 2d PhC cavity example, the

black dots in figure 1-7 are the frequency-averaged LDOS computed by this contour

integration technique, and they agree quite well with direct numerical integration.

Although such an application of complex analysis and contour integration to elec-

tromagnetic scattering problem is rather unusual, it is related to approaches more

common in quantum field theory [96] and Casimir interactions in quantum field the-

ory [56], and related ideas were recently applied to frequency averaged scattering

cross-section in electromagnetism [47, 83].

Before we implement the parallel finite difference frequency domain (FDFD)

Maxwell solver and run simulations with standard gradient-based optimization schemes

in section 4.7, there is another important transformation to be applied. We show that
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minimizing 1/LDOS is a better objective than maximizing LDOS, because this sim-

ple transformation turns a difficult narrow-ridge optimization problem into a simple

shallow-valley one [86]. For silicon slabs, our numerical simulations discover a struc-

ture (figure 5-8) at reasonable large Q = 30000 with modal volume 0.06(A/n) 3, four

times smaller than the smallest modal volume at same order of Q found in the liter-

ature [89].
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Chapter 2

Capillary instabilities for

concentric cylindrical shells

2.1 Introduction

In this chapter, which was published in [66], we generalize previous linear stability

analyses [19, 101, 102, 112, 117] of Plateau-Rayleigh (capillary) instabilities in fluid

cylinders to handle any number (N) of concentric cylindrical fluid shells with arbitrary

thicknesses, viscosities, densities, and surface tensions. This analysis is motivated by

the fact that experimental work is currently studying increasingly complicated fluid

systems for device-fabrication applications, such as drawing of micro-structured opti-

cal fibers with concentric shells of different glasses/polymers [1, 29, 46, 63, 98, 110] or

generating double emulsions [107, 119]. Although real experimental geometries may

not be exactly concentric, we show that surface tension alone, in the absence of other

forces, will tend to eliminate small deviations from concentricity. We show that our

solution reduces to known results in several limiting cases, and we also validate it

with full 3-dimensional Stokes-flow simulations. In addition, we show results for a

number of situations that have not been previously studied. For the limiting case of

a thin shell, we show a connection to the classic single-cylinder and flat-plane results,

consistent with a similar result for air-clad two-fluid jets [19]. In a three-fluid system,

we exhibit an interesting case in which two growth modes at different wavelengths
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have the same effective growth rate, leading to competing breakup processes that we

demonstrate with full 3-dimensional Stokes-flow simulations. We also consider some

many-layer cases, including a limiting situation of a continuously varying viscosity.

Using a simple geometrical argument, we generalize previous results [17, 97, 101] to

show that only axial (not azimuthal) instabilities need be considered for cylindrical

shells. Numerically, we show that the stability analysis in the Stokes regime can

be reduced to a generalized eigenproblem whose solutions are the growth modes,

which is easily tractable even for large numbers of layers. Like several previous au-

thors [44, 45, 112, 117], we begin by considering the Stokes (low-Reynolds) regime,

which is consistent with the high viscosities found in drawn-fiber devices [1, 29]. In

section 2.11, we generalize the analysis to the full incompressible Navier-Stokes prob-

lem, which turns out to be a relatively minor modification once the Stokes problem

is understood, although it has the complication of yielding an unavoidably nonlinear

eigenproblem for the growth modes.

Let me begin by briefly reviewing the powerful tool, linear stability analysis, first

introduced by Lord Rayleigh [101]. In linear stability analysis, one expands the

radius R as a function of axial coordinate z in the form R(z) Ro + Rei kz -iwt , where

6R < RO, 27r/k is a wavelength of the instability, and o- Im o is an exponential

growth rate. Given a geometry, one solves for the dispersion relation(s) W(k) and

considers the most unstable growth mode with the growth rate o-max to determine the

time scale of the breakup process. The wavelength 27r/k corresponding to o-max has

been experimentally verified to match the disintegration size of liquid jets [37].

We now formulate the mathematical problem that we solve, as depicted schemat-

ically in figure 2-1. The total number of viscous fluids is N and the viscosity of n-th

(n = 1, 2, ... , N) fluid is p(). The surface-tension coefficient between the n-th and

(n + 1) - th fluid is denoted by 1(n). For the unperturbed steady state (figure 2-1b),

we assume that the n-th fluid is in a cylindrical shell geometry with outer radius

RW and inner radius R(n- 1 ) < R(n). The first (n = 1) fluid is the innermost core

and the N-th fluid is the outermost one (extending to infinity), so we set R(0 ) = 0

and R(N) +o. To begin with, this system is analyzed in the Stokes regime (low
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(a) Azimuthal cross-section (b) Steady state (c) Perturbed state

Figure 2-1: Schematic of the concentric-cylinder geometry considered in this chapter.
(a) cross-section of N layers and corresponding radii R('), viscosities j(n), and surface
tensions -y(n). Starting with the perfect cylindrical geometry (b), we then introduce
small sinusoidal perturbations (c) and analyze their growth with linear stability anal-
ysis.

Reynolds number) and we also neglect gravity [in the large Froude number limit,

valid for fiber-drawing [28]], so the fluid densities are irrelevant. In Section 2.11,

we extend this analysis to the Navier-Stokes regime, including an inertia term for

each layer (with density p(")). As noted above, linear stability analysis consists of

perturbing each interface RCn) by a small sinusoidal amount 6R(")eikz-iwt, to lowest

order in 6R(n). Stokes' equations are then solved in each layer in terms of Bessel

functions, and matching boundary conditions yields a set of equations relating W and

k. Although these equations can be cast in the form of a polynomial root-finding

problem, similar to [117], such a formulation turns out to be ill-conditioned for large

N, and instead we formulate it in the Stokes regime as a generalized eigenproblem

of the form M2 (k) = iwM1(k) , which is easily solved for the dispersion relations

w(k) (with the corresponding eigenvectors yielding the relative amplitudes of each

layer). In the Navier-Stokes regime, this becomes a nonlinear eigenproblem.

2.2 Azimuthal stability

For any coupled-fluids system of the type described in figure 2-1, a natural question

to ask is whether that system is stable subject to a small perturbation. If an inter-
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face with area S has surface energy -yS, then a simple way to check stability is to

compare surface energies (areas) for an initial configuration and a slightly deformed

configuration with the same volume. In this way, it was shown that any azimuthal

deformation is stable for a single cylindrical jet [17, 101]. Here, we employ a sim-

ilar approach to demonstrate that same property also holds for multiple concentric

cylindrical shells. Note that this analysis only indicates whether a system is stable;

in order to determine the time scale of an instability, we must use linear stability

analysis as described in subsequent sections.

For the unperturbed system, we define the level-set function 5(n) = r - R(')

O(n) = 0 defines the interface between the n-th and (n + 1)-th fluids. Similarly, we

define the level-set function for the perturbed interface (figure 2-1c) between the n-th

and (n + 1)-th fluids by

O(n)(T., Z, # ) = r - ((n) (Z, #). (2.1)

Following the method of normal modes [33], in the limit of small perturbations, a

disturbed interface (n) can be chosen in the form

C( (z, #) ")- + 6R(n)ei(kz+m4) + o[(6R("))2 ], (2.2)

Assuming incompressible fluids in each layer so that volume is conserved (and assum-

ing that the cylinder is much longer than its diameter so that any inflow/outflow at

the end facets is negligible), we obtain a relation between ((n) and RC")

((n)(z, () ) + 6R (n)ei(kz+mO) 4 (6R(n))2 + o[(6R ()) 3]. (2.3)4R(n)

Let S(O(")) denote the surface area of O(n)(r, z, #) = 0 in one wavelength 27r/k. From

equations (2.1) and (2.2), SQO(#)) can be expressed in cylindrical coordinates as:

(,( )z + ( 1 )2dqdz. (2.4)
- j jt (nera(a energy b n) he9

Now we can compare the total interfacial energy between the unperturbed system
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S = N-_j j (n) (n)) and the perturbed system E = EN-1 <(n)SQ(n)

N-1

1E - 5 (") [S(O(n)) - S( 0(n))]

n=1 (2.5)
N-1 () ()22(kR (n))2 +M2 _n)31

= y(Mo ")r kR(n) + 0[(6RC")
n=1

From the surface-energy point of view, small perturbations will grow only if E -S < 0.

Therefore, from (2.5), we can conclude that all the non-axisymmetric perturbations

(m $ 0) will be stable. There is one special case that needs additional consideration:

if k 0 and m =1 in (2.5), the first term is zero, so one must consider the next-order

term in order to show that this case is indeed stable (i.e. elliptical perturbations de-

cay). Even more straightforwardly, however, k = 0 corresponds to a two-dimensional

problem, in which case it is well known that the minimal surface enclosing a given

area is a circle.

2.3 Linear stability analysis

In the previous section, we showed that only axisymmetric perturbations can lead to

instability of concentric cylinders. Now we will use linear stability analysis to find

out how fast the axisymmetric perturbations grow and estimate the break-up time

scale for a coupled N-layer system.

Here, we consider fluids in the low Reynolds number regime [valid for fiber-drawing

[1, 29]] and thus the governing equations of motion for each fluid are the Stokes equa-

tions [91]. The full Navier-Stokes equations are considered in Section 2.11. For the ax-

isymmetric flow, the velocity profile of the n-th fluid is u(") = [u(,)(r, z, t), U(,)(Y, z, t)],

where un) is the radial component of the velocity and Zn) is the axial component of

the velocity. The dynamic pressure in the n-th fluid is denoted by p(n). The Stokes
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equations [12] are:

(,2 U( n) (n) (n)

p(n) + - Ur
rr2 r r r

(n) 2U(n)

Yr2

1 Un) 02U n)
+ - + I

r Or Oz 2

and the continuity equation (for incompressible fluids) is

I,,-' ~

U
(~, ~'

2.3.1 Steady state

Because of the no-slip boundary conditions of viscous fluids, without loss of generality,

we can take the equilibrium state of the outermost fluid to be

i(N) 0  i(N= 0  -(N) = o
r zP

for r > R(N- 1 ), and of the n-th (n < N) fluid to be

f(n) - 0 j n) =) = N-
r z El R Ut~)

j3

(2.9)

for R < r < R (In Section 2.11, we generalize this to nonzero initial relative

velocities for the case of inviscid fluids, where no-slip boundary conditions are not

applied.)

2.3.2 Perturbed state

The perturbed interface, corresponding to the level set #(n) - r (n) = 0, with an

axisymmetric perturbation, takes the form

((n)(Z, t) = R (") + SR (n)ei(kz-wt) + [(6R ("))2]. (2.10)

40

022 n)
+ OZ (2.6a)

(2.6b)

T) n)
- + = 0.
r Dz
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Similarly, the perturbed velocity and pressure are of the form

[") (r, z, t) 1

U() (r, z, t)

p()(r, Z t)

(n)
Utr

(n)

p(fl

(U5 ) ()
+ (n) (r) ei(kz-wt)

Zp")r
(2.11)

Note that the Stokes equations (2.6) and continuity equation (2.7) imply that

D 2p(rn) I Op(n) + 2P() 0
-Dr2- + -r + Z2 (2.12)

Substituting the third row of (2.11) into (2.12), we obtain an ordinary differential

equation for 6p(n)(r)
d2

Kdr2
+I d -k2 6~) 0

r dr (2.13)

Clearly, 6p(") (r) satisfies the modified Bessel equation of order zero in terms of kr.

Therefore, we have

(2.14)

where Ko(-) and Io(-) are modified Bessel functions of the first and second kind (KO

is exponentially decreasing and singular at origin; 1o is exponentially growing), and

(n) and c") are constants to be determined. Inserting 6p(f)(r) into (2.6) and solving

two inhomogeneous differential equations, we obtain the radial component of velocity

+ C(n) rIo(kr)
2 2,u() + C(n) K1 (kr)

3 2p(n)k (n) Ii(kr)+ 2ptt)k

and the axial component of velocity

6"(n)(r) - C(n) [iKo(kr)
L (n)k

irK1 (kr)
2(n) I

+ C (n) +l~r iI(r
2 p(n)k 2/,(")

i (n)iKo(kr)+ (n]io(kr)
-3 2p("n)k +c4 2p(n)k
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(n)(r) )rKO(kr)
Ur M= C12pt") (2.15)
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where c() and c ") are constants to be determined. Imposing the conditions that the

velocity and pressure must be finite at r = 0 and r +oo, we immediately have

(1) = C = c (N) = C(N)
c1  c3  c 2  c 4  ~.(.7

2.3.3 Boundary conditions

In order to determine the unknown constants 1 = ( , ), 7), 4")) in each layer,

we close the system by imposing boundary conditions at each interface. Let n(") be

the unit outward normal vector of interface r = ((n)(Z, t) and t(n) be the unit tangent

vector. Formulas for n(') and t(") are given by equations (A.1) and (A.2) of Appendix

A.1. First, the normal component of the velocity is continuous at the interface, since

there is no mass transfer across the interface, and so

U(n) .,= (n) = U(n+1)_ (n). (2.18)

For the at-rest steady state (2.8) and (2.9), this condition is equivalent (to first order)

to the continuity of radial velocity:

U(n) (r, z, t)1 r() = Un+1) (r, Z, t)Z r(. (2.19)

Second, the no-slip boundary condition implies that the tangential component of the

velocity is continuous at the interface:

U(n) t(n) = U(n+l) t(n). (2.20)

(The generalization to inviscid fluids, where no-slip boundary conditions are not ap-

plied, is considered in Section 2.11.) For the at-rest steady state (2.8) and (2.9), this

is equivalent (to first order) to the continuity of axial velocity:

Z Zi (r, rz, ))(n) (,>,= U n+1) (r, ZI t),_t> (2.21)
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Third, the tangential stress of the fluid is continuous at the interface. The stress

tensor of the n-th fluid in cylindrical coordinates for axisymmetric flow [62] can be

expressed as

-p(") + 2p (n) P () auL +
T ( -=r p 9) ar (2.22)

(n)(2L + -L p (n) + 2/1(n) qzn

The continuity of the tangential stress at the interface implies that

n(n) . T(" I = (n) t(n. (n+) . t("), (2.23)

The leading term of (2.23) leads to

P (n) + On ) (n+1) (,_(-). (2.24)
( 49Z O Z 9 O

Fourth, the jump of the normal stress across the interface must be balanced by the

surface-tension force per unit area. The equation for normal stress balance at the

interface is

n(n) - (T(n+ - T (n)) .n) ^Y (- (n) (2.25)

where (n) (r, z, t) is the mean curvature of the interface. The curvature can be calcu-

lated directly from the unit outward normal vector of the interface by r,(n) = V -n(n)

(see Appendix A.1). Substituting (2.22), (A.1), and (A.5) into (2.25), we have follow-

ing equation (accurate to first order in 6R(n)) for the dynamic boundary condition:

_p("+) + 2p/-+t _ _P(n) + 2/1

R1) 5u,."(R(")) ~2 1\ kt
= (n) 1 6 -k (2 _ e i(kz-wt) . (2.26)R(n) --+ (R(n))2

2.3.4 Dispersion relation

Substituting (2.11) and (2.14)-(2.16) into the boundary conditions [(2.19), (2.21),

(2.24) and (2.26)] and keeping the leading terms, we obtain a linear system in terms of
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the unknown constants c(') = (Cn), ci ), , C4n)). After some algebraic manipulation,

these equations can be put into a matrix form:

A(n,n)
+ IB n) C(n) - A(n,n+- C(n+l = 0, (2.27)

where A(n,n') and B(n) are 4 x 4 matrices given below.

kR(-) KO")

2K'n) -kR(-)K,(-

kR (n)K (n) -K (n)

kR(")K (n

-7n)k(1 
- (kR(n))2)

BC2 1u(=)

kR (n) I'( n)

p(n)

kR (n) I + I

-kR(n)I n

0

0

K()

K)

K(n)

K + K(-)
0+1
Ik T kR(n)

0

0

0 0

0 0

0 0 0 0

kR (n)K ()kR (n)I (n K (n I (n

1

I(n)

,(n )

(nn)

0 + k@

Here, K (), K () I () and In) denote the corresponding modified Bessel functions

evaluated at kRC(). Combining the boundary conditions from all N - 1 interfaces, we

have the matrix equation

M(N) 0 (2.30)
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for the undetermined constants = (C2 , C , ), , , c(N 1), C3N), C N)), with

M(N) M (N) + M2
-1W

A(',') -A(,2)

A (,2) -- A(23)

A(N-2,N-2) -A(N-2,N-1)

A (N-1,N-1) A(N-1,N)

B5') 0

B2  0
1

+ -- .-. -. , (2.31)

B(N- 2 ) 0

B(N- 1 ) 0

where AU'"l and 501 are the second and fourth columns of A(',' and B(), and A(N-1,N)

is the first and third columns of A(N-1,N). To obtain a non-trivial solution of equation

(2.30), the coefficient matrix M(N) must be singular, namely

det(M(N)) - 0. (2.32)

Since B(') is zero except in its fourth row, w only occurs in the 4th, 8th, --- , 4(N - 1)-

th rows of M(N). The Leibniz formula implies that equation (2.32) is a polynomial in

1/w with degree N - 1. Therefore, we could obtain the dispersion relation W = w(k)

by solving the polynomial equation (2.32). Instead, to counteract roundoff-error

problems, we solve the corresponding generalized eigenvalue problem as described in

§ 2.4.

2.3.5 Eigen-amplitude and maximum growth rate

The N - I roots of (2.32) are denoted by wj (k), where j = 1, 2, - -. , N - 1. Since M(N)

is singular when w = wj, can be determined by equation (2.30) up to a proportional-
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ity constant. Therefore, for each w3 (k), the corresponding perturbed amplitude 6R ()

on the n-th interface can also be determined up to a proportionality constant by equa-

tions (2.15) and (A.4). Let us call the vector 3Rj = (6R '), 6RSm,... , 6R ,. ,6R N--)

where we normalize 1l1 =Rj 1 1, the "eigen-amplitudes" of frequency Wj. Any arbi-

trary initial perturbation amplitudes A - (A( 1), A 2 , -... , A(N-1)) can be decomposed

into a linear combination of eigen-amplitudes, namely A = .,- 1 aj3Rj for some a3 .

Since the whole coupled system is linear, the small initial perturbation Aeikz will

grow as z aj6Rjei[kz-wi(k)t].

The growth rate for a single mode is oj (k) =Im w (k) since our time dependence

is e-iwt. If ou > 0, then the mode is unstable. As described above, for an N-layer

system, we have N - 1 different growth rates for a single k, and we denote the largest

growth rate by omax(k) = maxj [u3 (k)]. Moreover, the maximum growth rate over

all k is denoted by rmax = maxk[Omax(k)] = maxj,k[93 (k)], and the corresponding

eigen-amplitudes of this most-unstable mode are denoted by 6 Rmax. kmax denotes

the corresponding wavenumber.

2.4 Generalized eigenvalue problem

It is well known that finding the roots of a polynomial via its coefficients is badly

ill-conditioned [118]. Correspondingly, we find that solving the determinant equation

(2.32) directly, by treating it as a polynomial, is highly susceptible to roundoff errors

when N is not small. In particular, it is tempting to use the block structure of

M(N) to reduce (2.32) to a 4 x 4 determinant problem via a recurrence. However,

the entries of this 4 x 4 matrix are high-degree polynomials in W whose coefficients

thereby introduce roundoff ill-conditioning. Instead, we can turn this ill-conditioned

root-finding problem into a generalized eigenvalue problem by exploiting the matrix-

pencil structure of M(N):

M(N) = 0 - M(N)(k) iW M (N)(k) . (2.33)
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Thus, finding the dispersion relation w(k) turns out to be a generalized eigenvalue

problem with matrices (M(N), M(N)). Since M(N) is non-singular, this (regular) gen-

eralized eigenvalue problem is typically well-conditioned [27] and can be solved via

available numerical methods [6]. In principle, further efficiency gains could be ob-

tained by exploiting the sparsity of this pencil, but dense solvers are easily fast enough

for N up to hundreds.

2.5 Validation of our formulation

As a validation check, our N-layer results can be checked against known analyti-

cal results in various special cases. We can also compare to previous finite-element

calculations [28].

2.5.1 Tomotika's case: N = 2

[117] discussed the instability of one viscous cylindrical thread surrounded by another

viscous fluid, which is equivalent to our model with N = 2. It is easy to verify that

det(M( 2)) = 0, where M(2) - [A( 1)+ I b(i), D(1)], gives the same determinant equation

as (34) in [117].

Compared with the Stokes-equations approach, Tomotika begun with the full

Navier-Stokes equations, treating the densities of the inner fluid p' and the outer

fluid p as small parameters and taking a limit to reach the Stokes regime. How-

ever, special procedures must be taken in order to obtain a meaningful determinant

equation in this limit, because substituting p' = 0 and p = 0 directly would result in

dependent columns in the determinant. Tomotika proposed a procedure of expanding

various functions in ascending powers of p and p', subtracting the leading terms in

dependent columns, dividing a quantity proportional to pp', and finally taking limit of

p -+ 0 and p' -+ 0. We generalize this idea to the N-shell problem in Section 2.11, but

such procedures are unnecessary if the Stokes equations are used from the beginning.

47



2.5.2 N = 3 with equal viscosities pi) = P ) = 1(3)

This equal-viscosity case was first discussed by [112]. Putting this special case t(l)

p(2 ) = P(3) into (2.32) and solving it with Matlab's Symbolic Math Toolbox (MuPad),

we obtain the same solution as equation (8) in [112].

2.5.3 Navier-Stokes and inviscid cases

In Section 2.11, we validate the generalized form of our instability analysis against

previous results for inviscid and/or Navier-Stokes problems. For example, we find

identical results to [19] for the N = 3 case of a two-fluid compound jet surrounded

by air (with negligible air density and viscosity).

2.5.4 Comparison with numerical experiments

[28] studied axisymmetric capillary instabilities of the concentric cylindrical shell

problem (N = 3) for various viscosity contrasts by solving the full Navier-Stokes

equation via finite-element methods. [The Stokes equation is a good approximation

for their model, in which the Reynolds number is extremely low (Re ~ 10-10).] In

particular, they input a fixed initial perturbation wavenumber ko, evolve the axisym-

metric equations, and fit the short-time behavior to an exponential in order to obtain

a growth rate. With their parameters RM1 = 60 pm, R(2) = 120pm, <1) = 72) =

0.6N/m, p() = 105 Pa-s, and pi) = P ) = i 2) (I = 10-4, 10-3, . . . , 103), we com-

pute the maximum growth rate amax for each ratio q via the equation det(M(3 )) = 0.

For comparison, we also compute the growth rate amax(ko) for their fixed ko =

7.9 x 10 3 m-1. [Because numerical noise and boundary artifacts in the simulations

will excite unstable modes at k # ko, it is possible that amax and not omax(ko) will

dominate in the simulations even at short times if the former is much larger.] The in-

set of figure 2-2 plots the wavenumber kmax that results in the maximum growth rate

versus the viscosity ratio T (P(13)/[(2)). In figure 2-2, we see that the growth rate ob-

tained by [28] (represented by blue circles) agrees well with the growth rate omax(ko)

predicted by linear stability analysis (labeled by blue line) except at large viscosity
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Figure 2-2: Comparison between linear stability analysis and numerical experiments
[data from [28]] for N = 3 cylindrical-shell model. The growth rate -max(ko) com-
puted by [28] numerically via the finite-element method (blue circles) agrees well with
the growth rate predicted by linear stability analysis (dashed blue line), except for
small discrepancies in the regime of large viscosity contrast where accurate numerical
simulation is difficult. The red line indicates the maximum growth rate Omax obtained
by linear stability analysis. In the inset, the red line shows the wavenumbers kmax
for various viscosity-ratio contrasts and the dashed blue line represents the fixed ko
used in numerical simulations. Model parameters: R 1 = 60 pm, R(2) = 120pm,

() = 7(2) = 0.6N/m, ,(2) = 105 Pa-s, p0() p(3) 7(2) (7 = 10i4 10- 3, . . . , 10),
and ko = 7.9 x 10 3m- 1.

contrasts (q >> 1 or rj < 1). These small discrepancies are due to the well-known

numerical difficulties in accurately solving a problem with large discontinuities.

2.6 N = 3 examples

In this section, we study the three-fluid (N = 3) problem. Three or more concentric

layers are increasingly common in novel fiber-drawing processes [1, 29, 46, 63, 98]. By

exploring a couple of interesting limiting cases, in terms of shell viscosity and shell

thickness, we reveal strong connections between the N = 3 case and the classic N = 2

problem.
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2.6.1 Case N = 3 and p(2)/p, 3) -+ 0: shell viscosity < cladding

viscosity

We first consider the limiting case in which the shell viscosity P2) is much smaller than

the cladding viscosities t 1 ) and [j 3). Substituting pj 2)/P(l) = 0 and /_t( 2)/P(3) - 0

into M(3), equation (2.32) gives simple formulas for the growth rates

a- (k) = 1 (2.34)
2pu(1)R(l) 1 + (kRW) 2 - (kR 0))2

and
,(2) 1 - (k (2))2

(T (k) = . (2.35)
2p(3)R(2 ) 1 + (kR(2)) 2 - (kR(2))2K2(kR( 2))

Note that ui(k) is independent of (2), R(), and p (3), while u 2(k) is independent of

1), ~R), and p('). In particular, these growth rates are exactly the single-cylinder

results predicted by Tomotika's model, as if the inner and outer layers were entirely

decoupled. This result is not entirely obvious, because even if the shell viscosity can

be neglected, it is still incompressible and hence might be thought to couple the inner

and outer interfaces. [[28] conjectured a similar decoupling, but only in the form of a

dimensional analysis.]

Case N = 3, p 2 )/ft(1, 3 ) -± 0 and R(2) - oC - N = 2 and Pout/Pin -± 0

In the regime that the shell viscosity p() is much smaller than the cladding viscosities

p) and [p3 ), we further consider the limit R(2 ) -+ 00. It corresponds to the case

N = 2 with a high viscous fluid embedded in another low viscosity fluid, which must

of course correspond exactly to Tomotika's case. From the asymptotic formulas of

modified Bessel functions Ko(z) and K 1 (z) for large arguments [2], we obtain

12). k2 *+CO
0 2 (k) ~ - (3) < 0 as R - +00. (2.36)

Thus, the growth rate of possible unstable modes is given by u 1 (k) in equation (2.34).

Tomotika discussed this limiting case (N = 2) and gave a formula (37) [117], which
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is exactly (2.34).

Case N = 3, P (2)/pt,3) 0 and R(') -± 0 m N 2 and /out/pil --+0

The limit RM1 -+ 0 is equivalent to N = 2 with a low-viscous fluid embedded in a

high-viscosity fluid. For this case, it is easy to check that 02(k) in equation (2.35)

agrees with formula (36) in [117]. However, we still have another unstable mode with

a growth rate oi(k). Using the asymptotic formulas for Io(z) and Ii(z) with small

arguments [2], we obtain

ai(k) ~6p R 1 ) as R - 0. (2.37)

This extra unstable mode ui(k) results from the instability of a viscous cylinder with

infinitesimally small radius RM. In other words, (2.37) is the growth rate of a viscous

cylinder in the air with a tiny but nonzero radius, which is also given by equation

(35) of [102].

2.6.2 Thin shell case: R = R( 1)( + E), E -+ 0

Next, we study a three-layer structure with a very thin middle shell; that is, R (2)

RM (1+ E) with6 -± 0. A sketch of such a geometry is given in figure 2-3a. This is

motivated by a number of experimental drawn-fiber devices, which use very thin (sub-

micron) layers in shells hundreds of microns in diameter in order to exploit optical

interference effects [46, 63, 98].

Considering E as a small parameter, we expand the determinant equation (2.32)

in powers of E. For a given wavenumber k, the two roots of this equation are u+(k) =

uo(k) + O(E) and o (k) = O(E2), where uo(k) can be computed analytically by

dropping the terms of order O(E2) in the determinant equation (2.32). After some

algebraic manipulation, we find that oo(k) actually is the solution for the N = 2

structure (i.e., ignoring the thin shell) with a modified surface-tension coefficient

71) + 2). It is also interesting to consider a limit in which P (2) grows as E shrinks. In

this case, we find the same asymptotic results as long as 1 (2 )/pi1 3 ) grows more slowly
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Figure 2-3: (a) Sketch of a very thin shell in a three-layer structure with radius

R2) - R(1)(1 + F), surface-tension coefficients y1) and i(2). (b) In the limit of

infinitesimal F, we obtain an equivalent N = 2 geometry with a modified surface-

tension coefficient 11) + y(2).

than 1/6. Conversely, if it grows faster than 1/E, then the thin-shell fluid acts like

a "hard wall" and all growth rates vanish. Instead presenting a lengthy expression

for u+(k), we demonstrate a numerical verification in figure 2-4. As indicated in

figure 2-4a, the growth rate c.+(k = 0.5) for N = 3 approaches to the growth rate of

N = 2 with the summed surface-tension coefficients as F -+ 0. The parameters are

RM) = 1, ) = 1, 7(2 ) = 2, [p) = 1 P 2 ) = 2 and P 3 ) = 3. In figure 2-4b, we show

that the growth rate o -(k) decreases like 62 as E -±0.

To better understand these two modes, we consider the eigen-amplitudes at the

two interfaces. For the mode with growth rate u+(k), two interfaces are moving

exactly in phase. Since the thickness of this shell is so thin, it is not surprising that one

can treat two interfaces as one with a modified surface-tension coefficient -Y(l) +y2) for

this mode (see figure 2-3b and the inset of figure 2-4a). The eigen-amplitude (defined

in section 2.3.5) corresponding to this in-phase mode is (1/2, 1/2), independent of <1)

and -y( 2). For the other mode, with growth rate o -(k), the two interfaces are moving

out of phase (see the inset of figure 2-4b). The eigen-amplitude for this out-of-phase

mode is found to be (-y(2), 11()/(y ()+7 () ), which means that the two interfaces are

moving in opposite directions with amplitudes inversely proportional to their surface

tensions. Due to the tiny thickness of the shell compared to its radius of curvature,

this case approaches the case of a flat sheet, which is known to be always stable [33],
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Figure 2-4: Two modes o+ and a- for thin shell layer geometry, with R(') - 1,
R2) = R )(1 + 6), .(') = ,y( 2) - 2, A) - 1, p( 2 ) - 2, P() = 3 and k = 0.5. (a)
illustrates that the growth rate of the in-phase mode u+(k) for N = 3 approaches to
the growth rate of N = 2 structure with the summed surface-tension coefficients as
c -+ 0. (b) demonstrates that the out-of-phase growth rate u -(k) decreases like 6

2 as
& - 0.

as can be proved via a surface-energy argument.

A related thin-shell problem was investigated by [19] for the Navier-Stokes equa-

tions with an inviscid (gaseous) outer fluid. Those authors also found that the problem

reduced to N = 2 instabilities (single fluid surrounded by gas) with a summed surface

tension.

2.7 Effective growth rate and competing modes

In previous work on linear stability analysis, most authors identified the maximum a

with the dominant breakup process [101, 102, 117]. This exclusive emphasis on the

maximum o was continued in recent studies of N = 3 systems [19, 112], but here

we argue that the breakup process is more complicated for N > 2. In a multi-layer

situation, however, there is a geometric factor that complicates this comparison: not

only are there different growth rates o, but there are also different length scales R(n)

over which breakup occurs. As a result, it is natural to instead compare a breakup

time scale given by a distance (f) divided by a velocity, where R is some average

53



0.08

0.07 1 =25

0.06-

0

0.05-

15

0.04- 1

0.03 -

C0.02

0.1 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
wavenumber k (units of 1/R 1 )

Figure 2-5: Maximum effective growth rates vs. wavenumber k. For a three-layer

structure with R 1  = 1, R(2) = 5, Pu) = (2> 1, and <1) - 1, the maximum

effective growth rates n (k) are plotted for several values of -y(2 ). For y( 2) = 12.19

(magenta line), there are two equal maximum effective growth rates ox (k1 ~~ 0.58)
01~k2 ~ 0.114).

radius for a given growth mode (weighted by the unit-norm eigen-amplitudes 6RC())

In our case, we find that a harmonic-mean radius R is convenient, and we define an

effective growth rate (~ 1/breakup time ~ velocity/R) by:

N-1 6R (n)

of (k) = o (k) ) . (2.38)
n=1

Now, it is tempting to wonder what happens if two different wavenumbers k,

and k2 have the same maximum effective growth rates, a question that does not

seem to have been considered in previous linear stability analysis. Let us consider a

particular three-layer structure with RM1 = 1, R(2 ) = 5,[ pu) = p(2) - 1, and (1) - 1.

The maximum effective growth rates a" (k) = max,[ouj(k)] vs. k are plotted in

figure 2-5 for several values of <(2). For example, at _(2) - 12.19, we find that

Ojef(ki 0.58) = o (k2 ~ 0.114), so that there are two competing modes at very

different length scales 27r/k 1 = 10.83 and 2wr/k 2 = 55.12. In contrast, for <(2) = 6

we see that the short length-scale instability should dominate, while at <(2) = 25 the

long length scale instability should dominate.

To test our predictions, we implemented a full 3-dimensional Stokes-flow numer-
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Figure 2-6: Numerical Stokes-flow simulations for three-layer systems with different

1(2). (a) Initial white-noise perturbations of the interfaces. As predicted by maximum
effective growth rates, the systems with 1(2) = 6 (b) and Y(2) = 25 (d) exhibit breakup
initially via the short- and long-scale modes, respectively (which are dominated by
motion of the inner and outer cylinders, respectively). Near-simultaneous breakup
occurs for 1(2) - 15 (c).

ical scheme to simulate the breakup process of this cylindrical-shell system. A brief

description of this hybrid scheme, a combined spectral and level-set method, is given

in Section 2.10. We use initial white-noise perturbations on both interfaces RM1

and R(2) (see figure 2-6a). The computational box is 16 x 16 x 108 with resolutions

160 x 160 x 480 pixels. As predicted, 1(2) = 6 and 1(2) = 25 exhibit breakup initially via

the short- and long-scale modes, respectively (which are dominated by motion of the

inner and outer cylinders, respectively). It is interesting to estimate the intermediate

1(2) where the two breakup processes occur simultaneously. Linear stability analysis

predicts y(2) 1 12.19, and indeed we find numerically that near-simultaneous breakup

occurs for 1(2) ~ 15 (see figure 2-6c). In contrast, simply looking at amax rather than

0eff would lead one to predict that simultaneous breakup occurs at 1(2) ~ 4.15, in

which case all three 1(2) values in figure 2-6 would have looked like figure 2-6d (large

scale dominating). In the case of near-simultaneous breakup timescales, the domi-

nant breakup process may be strongly influenced by the initial conditions (i.e., the
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initial amplitudes of the modes), which offers the possibility of sensitive experimental

tunability of the breakup process.

The final breakup of the fluid neck is described by a self-similar scaling theory

for the case of a single fluid jet [38], and so it is interesting to examine numerically

to what extent a similar description is possible for the N = 3 system. In particular,

at the last stage of a single-cylinder breakup process, a singularity develops at the

point of breakup which does not possess a characteristic scale, and hence a set of

self-similar profiles can be predicted [37]. For both a viscous jet in gas [38] and a

viscous thread in another viscous fluid (N = 2) [22, 70], these principles predict that

the neck radius h(t) vanishes linearly with time as h(t)p/ ~ (to - t) where to is the

breakup time. However, there is no available scaling theory for N > 3 systems. Here,

we simply use our numerical simulations above to study the rate at which the neck

radius vanishes in an N = 3 system. For all three cases with different -Y( 2), the neck

radius of the outer interface vanishes with time in an asymptotically linear fashion as

the breakup time is approached (see figure 2-7). This is not surprising in the <(2) = 6

case where the inner surface has already broken up-the breakup of the outer surface

reduces to an N = 2 problem when the neck becomes thin enough-and we find that

h(t)p/ (2) ~~ 0.024(to - t), in reasonable agreement with the 0.033 value predicted

analytically [22] given the low spatial resolution with which we resolve the breakup

singularity (h/R(2) = 0.1 corresponds to 5 pixels). Moreover, we find that in this

equal-viscosity N = 3 system, all three <(2) values yield slopes of h(t)pu/y( 2) that are

within 10% of one another, indicating that the inner-surface tension <1) = 1 has a

relatively small impact on the outer-surface breakup.

2.8 Breakup analysis for each interface

In previous section, we introduce the effective growth rate (2.38) to include the ge-

ometric factor from different length scales RW over which breakup occurs. In this

section, we study the breakup timescale and lengthscale for each interface. More-

over, we treat the problem more rigorously: given a statistical distribution of initial
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Figure 2-7: Radius of the fluid neck versus time during the final phase of the breakup
of the outermost interface, from the 3-dimensional Stokes simulations of figure 2-6.
This breakup is asymptotically linear with time, similar to the predictions of the
scaling theory for N = 2 systems [22, 70].
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perturbations, we determine the mean effect of each mode on each interface and the

corresponding mean breakup times.

For the j-th mode with growth rate a-(k) at wavelength k, the corresponding

eigen-amplitudes is 6 Rj = (6R(), Rj (2), , R) ", -, (N-1))T, where we nor-

malize 116Rlli = 1. Any initial perturbations can be decomposed into a linear

combination of eigen-amplitudes, namely A = ag6Rj for some aj. Since

the whole coupled system is linear, the small initial perturbation Aeikz will grow

as Z-| aj6Rje [kz-w(k)t].

We examine two possible hypotheses for the statistics of the initial perturbation.

First, one possibility is that the perturbations of each interface are proportional to

the radius of that interface, e.g. if the interfaces have some random fractional el-

lipticity. More precisely, we consider the case where the perturbation of the n-th

(n = 1, 2, ... , N - 1) interface is R(')X(n), where X(n) are independent identical ran-

dom variables. For this kind of perturbation, we can express aj in terms of random

variables, namely,

a, X(1)

a 2  X(2)

- M , (2.39)
as X(n)

aN-1 X(N- 1)

where

M = (R1, R2, 6R3 , --- ,6JRN-i1-

R(N1)

(2.40)
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Another possible scenario is that of random perturbations of the same amplitude for

all interfaces, independent of radius, e.g. for small-scale surface roughness. That

would correspond to perturbations X(") (uniform perturbations on all the interfaces),

in which case M = (6R 1 , 6R 2 , ... , 6R3, ... ,6RN-1-'.

The j-th row of (2.39) implies that aj = E, MjX("). Since X(') are identical

independent random variables with (X) = 0, we have (a) = ? M (X2). Without

loss of generality, we assume (X 2 ) 1. Therefore we have j = (a) >L M .

Now we can define the breakup time of n-th interface due to j-th mode at wave-

length k as a distance [R(n)] divided by the velocity from j-th mode [o- (k)&d (k)R "n) (k)]:

T n)(k) (n) (2.41)
o-j ( k) dj (k) 6 oR "(k )

Therefore, the breakup time of n-th interface due to perturbations at wavenumber

k is

T(")(k) = min T.)(k). (2.42)

Among all the wavenumbers k, we define k(') , the dominant mode for the n-th

interface, as the wavenumber leading to shortest breakup time for that interface:

kax = arg min T() (k). Hence, the breakup lengthscale of n-th interface is " -

27r/kax, and the breakup timescale of n-th interface is

T ) = min T() (k) = min min TT) (k). (2.43)
k k j i

If we define the dominant mode kmax as the mode leading to the shortest breakup

time of any one interface, and this shortest time T as the breakup time for the whole

system, we have

T = min T(') - min min min T(n) (k), (2.44)
n n k j3

and the dominant mode kmax = arg min T(k). We checked that when N = 2, this

definition agrees with the normal definition given in section 2.3.5. An application of

this analysis to core-shell particle fabrication is discussed in section 3.3.
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Figure 2-8: Growth rates of an ABABAB.-.-. alternating structure. Both omax (black

line) and oi (red line) converge to finite asymptotic values as N -+ oc, although
in the former case the asymptotic value depends on the parity of N. The differences

between o~mfx (red line) and (cr-max)eff (blue line) imply that the modes corresponding

to omax and ou, are not always the same. The right inset shows the eigen-amplitudes
6Rmax (black dots) and 6Remfa (red dices) for N- 70, corresponding to u-a and

max cirmax

c-rst respectively. The left inset depicts the structure whose parameters are R -)

1 + 0.2(m - 1), 7.(fl) = 1, and p("l) = 1 if n is odd or -() 2 otherwise.

2.9 N-Layer structures

Since all previous work has studied only N= 2 or N= 3, it is interesting to consider

the opposite limit of N -+ o. We consider two examples: a repeating structure of two

alternating layers, and a structure with continuously varying viscosity, both of which

are approached as N -+ oc. In fact, concentric-shell structures with dozens of alter-

nating fluid layers have been used experimentally in optical fibers [46, 63]. However,

the motivation of this section is primarily exploratory, rather than engineering-to

begin to discover what new phenomena may arise for large N.

2.9.1 Alternating structure

First we consider an ABABAB - structure of two alternating, repeating layers A

and B as shown schematically in the left inset of figure 2-8. We choose p"= 1 if

is odd and p( ) = 2 otherwise. The other parameters are ( 1+ 0.2(n - 1) and
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=n) 1.

For this multilayer structure, we find that both the maximum growth rate Umax

of the fastest-growing mode and equation (2.38)'s maximum effective growth rate

max (corresponding to the shortest breakup time scale) apparently converge to finite

asymptotic values as N -± oo (figure 2-8). (We have checked that the absolute value

of the slope of Umax is monotonically decreasing for a broader range N values up to

N = 120, and the slope is ~ 10' for N = 120. A rigorous proof of convergence

requires a more difficult analysis, however.) The oscillations in figure 2-8 are due to

the varying viscosity of the ambient fluid, which depends on the parity of N. It is

interesting to know whether the fastest-growing mode and the mode with maximum

effective growth are identical for a given N. To see this, we plot the effective growth

rate of the fastest-growing mode (Umax)eff vs. N and compare it with Uefx vs. N in

figure 2-8. Note that (Umax)eff {maxjk[Uj(k)]} and cra- maxjk[o(k)]. From

figure 2-8, we can see that (max)eff and Uefa are different for large N, which implies

that the modes corresponding to Umax and -x are not always the same.

In the right inset of figure 2-8, we plot the eigen-amplitudes 6Rmax and 6R*ff

for N =70, corresponding to -max and eff respectively. The mode Umax is mostly

motion of outer interfaces, while the mode -eff is mostly motion of inner interfaces.

The mostly outer-interface motion for Umax explains why the value of Umax oscillates

depending on the ambient fluid. Physically, the association of oax with the inner

interfaces makes sense because, in our definition (2.38) of effective breakup rate, it

is easier to break up at smaller radii (a smaller distance to break up). Alternatively,

if we defined "breakup distance" in terms of the thickness of individual layers, then

Umax would make more sense.

2.9.2 N-Layer structure for a continuous model

In this subsection, we build an N-layer model to approximate a three-layer structure

with a continuous viscosity. The viscosity of intermediate layer pmid of this three-layer

structure is continuously varying from the viscosity of inner core pi" to the viscosity of

ambient fluid pfout. A simple example is the linearly varying Pmid, namely, Pmid (r) =
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Figure 2-9: Growth rates for a continuous N-layer structure. Both omax and Umax

approach constants as N -4 co. The right inset plots the corresponding eigen-

amplitudes 6Rmax and 6Rax (for N=70). The left inset sketches the N-layer struc-

ture: radius R() = Rin, R(N- 1 ) Rout, + R(N- _() (n +1), and viscosity

(1) = [in, P(N) Pout, and p(n) t(i + 'U.()() (n-1), approximating a continuously

and linearly varying three-layer viscosity.

/in + Rol t-in (r - Rin), where Rin < r < Rout. The N-layer structure (left inset of

figure 2-9) with radius RM1  Rin, R(N- 1 ) Rout, R(n) = R M + R(N--_R(l)(

and viscosity p() = [tin, [(N) tout, and p (n) = A (1) +/ (N) _AM (n -1) approaches this

continuous model for large N. In order to obtain a physically realistic continuous-

viscosity model with an energy that is both finite and extensive (proportional to

volume), we postulate a volume energy density 77cont analogous to surface energy. We

approximate this by an N-layer model constructed to have the same total interfacial

energy:
/Rout N-1

T/co nt 27rrdr - y("27R"), (2.45)
Rin1

where ct7con is an appropriate energy (per unit volume) of the inhomogeneity. Corre-

sponding to a uniform tqcont, the surface-tension coefficient in this N-layer structure

is same on all the interfaces: namely -y(n) = y(N) for all n. From (2.45), we obtain

62

ilk



the equivalent surface tension y(N) in a N-layer structure

1 cont ~f o" rdr i
-y(N) -'"R -1 -( . (2.46)

N1 [Rin + Ro" -Rin (n -)] N

With the parameters described above, we compute the maximum growth rate Umax

and the maximum effective growth rate Uefx for this N-layer structure. As shown

in figure 2-9, both -max and oUax approach constants as N -+ oo, which should be

the corresponding growth rates of the continuous three-layer model. In this example,

Umax and (Umax)eff are the same for all N. The corresponding eigen-amplitudes 3 Rmax

and 6R mfa (for N=70) are plotted in the right inset of figure 2-9.

2.10 Full 3-dimensional Stokes-flow numerical sim-

ulation scheme for coupled cylindrical-shell

system

In this section, we briefly present the numerical scheme that we used in § 2.7 to sim-

ulate the instabilities of coupled cylindrical-shell systems. We adopt a 3-dimensional

Cartesian level-set approach. We use a separate level-set function O(n) to denote each

interface, and generalize the formulation of [18] to N fluids by using N - 1 level-set

functions governed by the following equations:

N-i

-Vp + V . [p(VU + VUT)] Z (")6(#()) N 1 (2.47)

and

+ U. V() = 0, (2.48)
at

where U is velocity, p is pressure, #(n) = 0 denotes the interface between the n-th

and (n + 1)-th layers, y(n) is the surface-tension coefficient of the n-th interface, 6(-)

is a Dirac delta function, K is curvature, and p is viscosity.
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The viscosity y, now defined in the whole coupled system, is

N-1

+ 1 (,(n+1) - P (n))H(O(n)(x)), (2.49)
n=1

where H(.) is the Heaviside step function. The curvature i,(q(n)) can be computed

directly by i(O(n)) = V () , since 7 is the unit outward normal vector of the

n-th interface.

Given the level-set function 0(n) (x, t) at time t, we first solve the steady Stokes

equations (2.47) to obtain the velocity U(x, t). With the known velocity U(x, t) at

time t, the level-set function #(n)(X, t-+At) can be obtained by solving the convection

equation (2.48).

In our implementation, the computation cell is a box with dimensions a x a x f in

Cartesian coordinates, with periodic boundary conditions. We choose a and f large

enough such that the periodicity does not substantially affect the breakup process.

We solve equations (2.47) by a spectral method: we represent U and p by Fourier

series (discrete Fourier transforms). For the constant pu case of § 2.7, (2.47) is diagonal

in Fourier space and can be solved in one step by fast Fourier transforms (FFTs).

More generally, for variable viscosity, we find that an iterative solver such as GMRES

or BiCGSTAB [11] converges in a few iterations with a constant /I preconditioner

(i.e., block Jacobi) using the average p. The level-set functions are described on the

same grid, but using finite differences [WENO [72] in space, RK3-TVD [108] in time].

The 6(-) function is smoothed over 3 pixels with a raised-cosine shape [93]. We use

the reinitialization scheme of [114] to preserve the signed distance-function property

JV#(n) I= 1 of 0(n) after each time step.

Our simulation code is validated against a well-studied case: the evolution of a 2-

dimensional elliptical blob [23, 24, 49, 61, 116]. It is known that the plane Stokes flow,

initially bounded by a simple smooth closed elliptic curve, will eventually become

circular under the effect of surface tension. [23] illustrated that the evolution via

a series of ellipse shapes is remarkably good approximation to the dynamics of a

sintering ellipse [even though [49] showed that the exact evolution shapes are not
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strictly elliptical]. Suppose the plane Stokes flow is bounded by the ellipse x 2/4+y 2

1 at t = 0. The viscosity of the elliptical blob pi, = 1, the viscosity of ambient fluid

[out = 0, and the surface tension -y = 1. [15] implemented the conformal mapping

method [23, 24, 116] and computed the evolution of the boundaries. The aspect ratio

(the major axis over the minor axis) of the ellipses vs. time is plotted (the black curve)

in figure 2-10. Since our simulation code only works for non-zero Aj(n), the evolution

under p() = 1 and p(2) -+ 0 is expected to converge to the black evolution curve

obtained by the conformal mapping. In figure 2-10, we also plotted the evolution

curves from our method with p(2) = 0.1 and resolution 256 x 256 (the green curve),

-(2) = 0.01 and resolution 256 x 256 (the blue curve), and pj(2) = 0.01 and resolution

512 x 512 (the red curve). With high resolutions and small p(2), the evolution curves

obtained by our simulation codes converge to the one given by a different method

with an independent implementation.

2.11 Linear stability analysis for concentric fluid

shells governed by the full Navier-Stokes equa-

tions

In this section, we extended our linear stability analysis to concentric cylindrical

fluid-shells governed by the full Navier-Stokes equations. Let p(n) and p(f) denote

the density and viscosity of the n-th fluid. u,?)(z) is the radial component of the

velocity and uz? (z) is the axial component of the velocity. Following a linear stability

analysis similar to § 2.3.2, we find that the pressure p(n)(z) in the n-th fluid still

satisfies Laplace's equation (2.12). Therefore, the perturbed pressure still satisfies

the modified Bessel equation (2.13) and the solution in (2.14) is still valid. The

velocity is obtained by solving the linearized Navier-Stokes equations

a(n) 9D2UPn) I Oa(n) (n) 92U(n) )

±p(n) r+ p() + r + ) (2.50)
at ar2 r __r_ - r2 + z2 Or
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and
U (n)

-P(n) ' at
) ( (a2() I iau ") a2 (n)

SOr2 r Or OZ2
(2.51)

Note that the nonlinear convection terms do not appear in the linearized equations

(2.50) and (2.51) because the basic steady state [(2.8)-(2.9)] is at rest. Substituting

the perturbed pressure (2.14) into equations (2.50)-(2.51), we find that the radial

component of the perturbed velocity in (2.15) is replaced by

(n)K,(kr) - Ki(k(n)r)
C I -iwp(n)/k

(n)Il(kr) - Ii(k(n)r)
2 -iwp(n)/k

+ K1 (k(")r)
3 2p(n) k

(n) Ii (k(n)r)
+ C )k

and the axial component of the perturbed velocity in (2.16) now becomes

Ko(kr) - A(n)Ko(k(n)r)

p(n)w/k
(n)Jo(kr) - A(n)Io(k(")r)

C2 p(n)W/k

iA()KO(k(n)r) (n)iA(n)Io(k(")r)
C3 2pitn)k + C 2p-,(n) k

-iWP(n)
1 + V and k(") = An)k

After matching boundary conditions [(2.19), (2.21), (2.24) and (2.26)], we can obtain
the dispersion relation by solving the same determinant equation (2.32), except that
ACn'n') and BC() from (2.28) and (2.29) are replaced by

K -Ki [k (n')R n)]

P(n')/2k
2

K() - ( ) KO[k(")R

-p("') /2k
2

K a(" KI [k(?L' R(]

p 1 /21(T')k2

L1 A

I(- " - 11[k(TL)R (n)]
(f') /2k

2

-p(n')/2k2

I () "( I1[k-(n)RCn ]

_p(')/21,(')k2

A2

5ul )(r) =-

6U5Z)(r) = C

(2.52)

where

(2.53)

(2.54)

where

11i[k (") RT")]

p (n

A(n) (n')R(1)

A 4A 3

(2.55)

1 +±
2 p(n' ) k2

(2.56)

67

Ki [k(-" Rf~r]
,,(n')

A ("')KO[ k ("n') 
_ ,,(n')



A1 (n')Kn) + K (n)/kR(n) A("')Ko[k("')R(")] + K1 [k(n')R(")]/kR(n) (257)
p(n' ) / 2/p(n')k 2 P(W') /2/p(n') k 2

A Z (n')I (n) - I (n/kR(C) -AV"')Io[k(n')R ()] + I [k(n')R(n)]/kR C)
A - 1 -p (2.58)

2Pt"' ) /2/,(n'/) k 2 Pta () / 2/(n' )k 2

L3 A C"')KO[k(n' )R (n)] + K,1[k(n' R (") ]/kR (n) (2.59)

A 4  -A("')IO[k(n')R(n)] + 1i[k("'R (n)]/k R (n) (2.60)

and

(n) )k i (kR (n))2

Bns 2

0 0 0 0

x 0 0 0 0 . (2.61)
0 0 0 0

K (n) -K1 [k (n)R (n)] _,n I -11 [k (n) R (n)] K1[k ( n) R (n) Ii [k (n) R (n))

_ p(n)/2k2 p(n)/2k2 4(n) p(n)

Note that, because of the w in A(') and k(), the matrix M(N) becomes nonlinear

in w (or 1/w), and can no longer be reduced to a generalized eigenproblem. Instead,

one must solve the nonlinear eigenproblem M(N) (k, w) = iwM(N)(k, w) . Numerous

methods have been developed for such problems [7, 43, 67, 105, 121].

The formulas (2.28) and (2.29) of A(n'n') and B(") for Stokes flow can be obtained

directly from the formulas (2.55) and (2.61) of A ' and BGns for general flow by

taking the limit p(f) -+ 0. As mentioned in § 2.5.1, the most straightforward formu-

lation of the Navier-Stokes matrices yields dependent columns when p -+ 0. Here,

we have chosen an appropriate linear combination of columns to avoid this difficulty,

which is equivalent to the procedure suggested by [117].

However, the corresponding formulas for inviscid fluids cannot be obtained by sim-

ply taking the limit /i(n) -+ 0. For any small but nonzero p(n), the current formulation

takes into account the boundary-layer effects [12] by imposing a no-slip condition. For

inviscid flows, we cannot assume that the axial velocities are continuous across the

interfaces, since no-slip boundary conditions are not applied. Whenever the no-slip
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boundary condition is not applied, one has an additional degree of freedom, the

equilibrium-state velocities ii1" of the layers. This is easily incorporated, because it

merely converts several w expressions to w - uz ) k. This happens in two places. First,

the velocity adds an additional inertial term -p(n) in) to the left side of (2.50)

and -(n)in) a) to the left side of (2.51). Second, it adds a new first-order term

to equation (2.18) for continuity of normal velocity, since there is a term from u"

multiplied by the 6R(n) in the numerator of (A.1) for the normal vector. These terms

change w to w - iti) k in (2.54) for AC") and to w - i ")k in (2.56) for oj"', and

they also multiply every B () matrix (including B5')) by w/(w - u(7)k) [canceling the

1/w factor multiplying M(N) in (2.31)]; the Akngn/ and B () matrices are otherwise

unchanged, since u " must be equal for adjacent viscous layers. If the n-th fluid is

inviscid while the (n - 1)-th and/or (n + 1)-th fluids are viscous, then Ak7 1's 1 ) and

B )s , and/or Ans , respectively, become 3 x 4 matrices that can be obtained from

(2.55) and (2.61) by eliminating the second row (corresponding to continuity of the

tangential component of the velocity). If the n-th layer is inviscid, regardless of the

adjacent layers, A in and B nsd are 3 x 2 matrices: not only has continuity of the

tangential component of the velocity disappeared, but also the 0/ar derivatives of

the velocities in the momentum equations (2.50) and (2.51) disappear when 1(n) = 0,

eliminating the c degrees of freedom. (This eliminates the need for the linear

combinations of columns mentioned above, further simplifying these matrices.) More

explicitly, the A sd and B ns matrices for an inviscid n-th layer are obtained byinvsd invsd
matching the boundary conditions (2.18), (2.24), and (2.26), giving

Wuftk K -f k

- n p(n)/2k
2  (nk p(n)/2k

2

A[n sd 0 0 (2.62)

-i(W - itz )k)K ' -i(W - it, )k)I 0

F 1 1 0 0

Binvsd 2 (kR()) 2  0 . (2.63)
S- z )k 2K-) I ()

_p(n)/2k 2 p(n)/2k2
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For the special case u2 ) = 0 (at-rest steady state), the above formulas are equivalent

to the ones obtained by eliminating the second row, eliminating the third and fourth

columns, then taking the limit p(n) - 0 in the general formulas (2.55) and (2.61).

More precisely, for the viscosity term in (2.50) and (2.51) to be negligible, one must

have p(n) < wp(")/k 2 . (Note that this is length- and time-scale dependent, so the

validity of neglecting viscosity terms depends on the w and k of the dominant growth

mode.) It is also interesting to consider a Galilean transformation in which a constant

V, is added to it,() for all n, which cannot change the physical results. Here, because

all w factors are accompanied by -i4k, it is clear that such a transformation merely

shifts all of the mode frequencies w1 (k) by f2k, which does not change the growth

rates (the imaginary part), while the shift in the real frequency is simply due to the

frequency-k spatial oscillations moving past any fixed z at velocity V2.

As a validation check, we find that our formulation gives the same dispersion

relations for various Navier-Stokes cases discussed in the previous literature: e.g., a

single inviscid jet in air (ignoring the air density and viscosity) [101], a single viscous

jet in air (ignoring the air density and viscosity) [102], a single viscous jet with high

velocity in air (considering the air density but ignoring the viscosity) [111] and a

compound jet in air (ignoring the air density and viscosity) [19].

2.12 Azimuthal instability revisited: a 2d thin film

approach

In this section, we revisit the azimuthal stability/instability. In section 2.2, we showed

that surface tension can only drive axisymmetric instabilities. In other words, the

surface tension alone can only lead to axial, not azimuthal, breakup. However, in re-

cent experiments [29], it was found that when the shells' thicknesses are in nanometer

scales (more precisely, sub-100 nm Se layer in Se/PSU combination and 3 nm As 2Se 3

layer in As2 Se 3/PES combination), the thin shells break up in the azimuthal direc-

tion. Our previous analysis implies that this instability must stem from the rapid
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taper of the fiber radius from centimeters to millimeters (the drawn-down "neck"),

or some other physical influence (e.g., elastic effects, thermal gradients, or long-range

van der Waals interaction). As a first study, we focus on the effects of van der Waals

interaction. Since the shell thickness (nanometers) is much smaller than the fiber

diameter (millimeters), the curvature effect due to the fiber radius is negligible, and

we can treat this instability problem as a 2d thin film problem.

2.12.1 Linear stability analysis for 2d thin film under van der

Waals interactions

Pi fluid I

ho P2 fluid 11

fluid I

Figure 2-11: Sketch of 2d thin film with small perturbations.

In this section, we study the stability of a thin film with height ho embedded in

two semi-infinite fluids (sketched in figure 2-11) under the effects of surface tension

and van der Waals forces. Since both the top and bottom fluids in experiments are

the same polymer in viscous state [29], we choose same fluid properties (viscosities

PM and surface tension -y) for both top and bottom fluids.

Many researchers had looked at the thin film breakups due to van der Waals

forces. References [104, 122] analyzed a thin film on a substrate (top layer air and

bottom layer solid) for long wavelength mode (kho < 1) with lubrication theory,

Ref. [104, 124] studied the thin free liquid film problems (both top and bottom layers

are air), and Ref. [76, 77, 123] analyzed the three-fluid layer problem with linear sta-

bility analysis staring from the full Navier-Stokes equations. Reference [14] presented
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the overview of wetting/dewetting phenomena and Ref. [92] reviewed the long-scale

evolution of thin liquid film.

Although the results from Ref. [77] applied to our problem, we found that the lin-

ear stability analysis staring from the Stokes formulation, instead of the full Navier-

Stokes equations, makes the analysis more convenient and easier, since the real prob-

lem we are interested in is in the Stokes regime. By using approaches similar to those

we presented in section 2.3, namely solving the linearized equations in each fluid layer

and matching four boundary conditions at the interfaces, we obtain the growth rate

o- (k):

a(k) -yeIfk p2(cosh(kho) - 1) + j(sinh(kho) - kho) (2.64)
2 pu(sinh(kho) + kho) + 2 piP2 cosh(kho) + p2(sinh(kho) - kho)

Here yef is the effective surface tension: the effects of both surface tension and van

der Waals interactions
2 d2 G

Yeff = k2 O dh2 h~ho, (2.65)

where -y is the regular surface tension between two fluids and G(h) is the van der Waals

potential energy per unit area as a function of spacing h. A typical representation

for G(h) is in terms of the Hamaker constant A [51], namely

A
G(h) = - . (2.66)

127h2

This is accurate in the limit of sufficiently small h, whereas for large h the energy

will go as 1/h 3 and is called a Casimir energy [16]. More generally, the full G(h) in

both regimes can be computed (in the "proximity force approximation" [31], which

neglects the curvature of the surface and is valid when the radius of curvature is much

greater h) using the Lifshitz formula for the Casimir interaction between two planar

semi-infinite dielectric materials, assuming the absorption spectrum of the materials

is known over a wide enough bandwidth [35, 84].

For a mode with wavenumber k or wavelength A = 27r/k, it will grow if -(k) > 0.

Therefore, the critical wavenumber k, and critical wavelength Ac can be determined
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by

2 d2G 7 d2G -
r(kc) = 0 -> kc = and A = 27 - d2) (2.67)

-y dh2 ( 2 d h2

Note that this critical wavelength can also be determined from a simple energy com-

parison argument: for a small sinusoidal perturbation with wave number k to grow,

the total sum of surface energy and van der Waals potential energy must be decreas-

ing, which will give exactly the same kc and Ac.

To obtain the fastest growth mode kmax (or Amax) that maximizes the growth rate

a(k) given in (2.64) , we need to solve this optimization problem numerically. Under

the assumptions that kho < i/p 2 and kho< P2/Pli, Ref. [77, 123] showed that

ykkffkOh k ho 2 d2 G 3/2k (k) kmax ~ -- and Omax8pi /3 6p 37 dh 2

(2.68)

When the viscosity ratio p1/P 2 is not of order one (for example, the ratio is around

10' in the PSU/Se case), these assumptions are not valid and the fastest mode must

be found numerically. We will demonstrate such a case in the following section.

2.12.2 Comparison with azimuthal breakup experiments

In Ref. [29], it was observed that As 2Se 3 layer (in pair with PES) breaks up around

5 nm (between 3 nm and 14 nm), and Se layer (in pair with PSU) breaks up around

100 nm (between 96 nm and 700 nm). The typical fiber drawing time in these exper-

iments are around 120 seconds. The goal of this section is to predict these threshold

thicknesses and understand the mechanism for the threshold difference (5 nm versus

100 nm) in these two configurations.

In the following calculations, we use y 0.1 N/m, the viscosity of polymers

105 Pa -s, the viscosity of As 2 Se 3 105 Pa - s, and viscosity of Se 1 Pa - s. The typical

range of the Hamaker constant A is [0.4, 4] x 10- 9 J [51].

As mentioned above, a more general expression for the long-range interaction is

the Lifshitz formula [35, 84], which gives both the Hamaker expression for small h
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and the Casimir interaction for large h. Evaluation of the Lifshitz formula requires

the complete dispersion relation E(w) for the materials used. (Technically, it requires

E along the imaginary-w axis, which can be determined from Im[E] along the real-o

axis, which is the absorption spectrum.) Unfortunately, we do not currently have

the absorption spectrum of the materials used in these experiments over a broad

enough spectrum to apply the Lifshitz formula accurately. As a simple approximation,

however, we can neglect material dispersion and suppose that the materials have

frequency-independent refractive indices of 1.6 for the polymer and 2.2-3.5 for the

glass. For nondispersive materials, the Lifshitz expression simplifies to a Casimir

energy of the form:
03 hc
G~h)= 3 a ,(2.69)

where h is Planck constant, c is the speed of light, and C3 is a dimensionless number.

For these refractive indices (1.6 for polymer and 3.5 for glass), the dimensionless

constant C3 is around 0.002.

In the experiments, a thin, circular semiconductor shell is embedded in the poly-

mer with shell diameter 0.5 mm. Since this diameter is so much larger than the thick-

ness h, we can consider it to be a flat film but with finite length L - -F x 0.5 - 1.57 mm

(with periodic boundaries). Therefore, the critical wavelength A, should be smaller

than the length of the thin film L, which implies that

y (d2G) 300-500 nm, Hamaker theory eq. 2.66
Ac =27r< L ho ~

1200 nm, Casimir theory eq 2.69.

(2.70)

Note that in these two different combinations PES/As 2Se3 and PSU/Se, the vis-

cosities of the polymers PES and PSU are roughly the same, while the viscosity of

Se is five orders of magnitude smaller than that of As2Se 3 . In order to understand

the effect of this viscosity contrast, we choose three different film thicknesses, say

ho = 5,10, 25 nm, and compute the breakup times T(A) =1/o-(A) for these two com-

binations with both Hamaker theory and Casimir theory. From figure 2-12, we can see

that both As2Se 3 (red curve) and Se (blue curve) layer with thickness ho = 5 nm can
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break up within the typical fiber drawing time 120 seconds (black curve). However,

the breakup time for the Se layer is three orders of magnitude smaller than that of the

As 2Se3 layer, which is purely from the viscosity difference (low viscosity of Se 1 Pa -s

and high viscosity of As 2 Se3 10' Pa -s). When the glass layer thickness is increased

to 10 nm, the shortest breakup time for Se is still below the threshold, while this is

not the case for As 2Se 3 layer (figure 2-13). If the layer thickness is increased further

to 25 nm, even the Se layer can barely breakup during the typical drawing time (fig-

ure 2-14). From these calculations, our model implies that within the drawing time

120 seconds, the threshold thickness for azimuthal breakup is 5nm for As 2Se 3 and

25nm for Se. Comparing with experimental data, this prediction agrees with As 2Se 3

case and within a factor of 4 for the Se case. To improve this model, one may need

to consider the dispersion of the material (refractive index as a function frequency),

viscoelasticity, the rapid taper of the fiber, as well as the dynamics beyond the linear

regime.

breakup time vs. wavelength for film thickness = 5nm

/
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Figure 2-12: Breakup time versus wavelength for film thickness ho = 5 nm, com-
puted for a planar film under competing influences of surface tension (which resists
breakup) and attractive long-range (van der Waals/Casimir) interactions (which favor
breakup), as discussed in section 2.12.1.
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Figure 2-13: Breakup time vs wavelength for film thickness ho = 10 nm, com-

puted for a planar film under competing influences of surface tension (which resists

breakup) and attractive long-range (van der Waals/Casimir) interactions (which favor

breakup), as discussed in section 2.12.1.

breakup time vs. wavelength for film thickness = 25nm
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Figure 2-14: Breakup time vs wavelength for film thickness ho = 25 nm, com-

puted for a planar film under competing influences of surface tension (which resists

breakup) and attractive long-range (van der Waals/Casimir) interactions (which favor

breakup), as discussed in section 2.12.1.
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2.13 Conclusions

In this chapter, we presented a complete linear stability analysis of concentric cylin-

drical shells in the Stokes regime (with the Navier-Stokes regime in Section 2.11) and

considered a few interesting examples and limiting cases. Many possibilities present

themselves for future work. First, even in the cylindrical Stokes regime, only a few

combinations of thicknesses and material properties have been considered so far-it

seems quite possible that consideration of larger parameter spaces, perhaps aided by

computational optimization, could identify additional regimes for breakup processes,

such as competitions between additional length scales or "effective" properties in

many-layer systems that differ substantially from the constituent materials. Second,

one could extend this work beyond the incompressible Navier-Stokes regime to in-

clude fluid compressibility or even other physical phenomena such as viscoelasticity

that may play a role in experiments (for example, fibers are drawn under tension).

Third, one could consider non-cylindrical geometries. This seems especially important

in light of the recent experimental observations of azimuthal breakup in cylindrical

thin-shell fiber structures [29], since this chapter points out that azimuthal breakup

cannot arise in purely cylindrical structures (at least, not from surface tension alone).

Instead, one may need to consider the "neck-down" structure of the fiber-drawing

process, in which a large preform is pulled to a long strand with a much smaller

diameter. More generally, such intriguing experimental results indicate that a rich

variety of new instability phenomena may arise in emerging multi-fluid systems, with

corresponding new opportunities for theoretical analysis.
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Chapter 3

Applications of in-fiber capillary

instability

In this chapter, we describe how our theoretical approach was successfully applied to

experimental micro- and nano- particle fabrication recently performed by our collab-

orators and published in [58]. By controlling the in-fiber fluid instability, our collab-

orators recently developed a novel technique to fabricate uniformly sized, structured

spherical particles spanning an exceptionally wide range of sizes from millimeters

down to nanometers [58]. With this new approach, they also produced compos-

ite spherical particles, such as core-shell particles (figure 3-3) and two-compartment

Janus particles (figure 3-7). We first review this approach of particle fabrication in

section 3.1, then apply our theoretical and computational tools developed in chap-

ter 2 into these experimental breakup processes (sections 3.2 and 3.4), and predict

consistent results for the size of core-shell particles (section 3.2).

3.1 In-fiber fluid instability

Here we briefly describe the experimental approach to particle generation with capil-

lary instability. The first step is to prepare the preform, which is assembled from the

intended particle constituent materials encased in a supporting cladding. The next

step is to heat the preform to viscous state and thermally draw it into an extend fiber
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-o qc
(D

f

Figure 3-1: Fluid capillary instabilities in multimaterial fibers as a route to size-

tunable particle fabrication (Kaufman, et al. 2012). (a) A preform is drawn into a

fiber. (c) The capillary instability induced breakup of the fiber core with a tempera-

ture gradient. (e-f) SEM images of microparticles and nanoparticles.
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until the core diameter approaches the required particle size (figure 3-1a). Finally,

these extended fibers are put into furnace and heated (figure 3-1b). As the tem-

perature increases, surface tension dominates and a sinusoidal perturbation grows,

causing the core to break up into a string of particles (figure 3-1c). Depending on the

diameter of the fiber put into the furnace, one can get a wide range of particles from

millimeter to nanometer scales. (figures 3-le-f).

b

10 P

Figure 3-2: Scalable fabrication of micro- and nano-scale spherical particles (Kauf-
man, et al. 2012). (a) SEM micrograph of 12 20-micron glass cores. (b) Transmission
optical micrograph of the fiber side-view, after the global heating of the fiber. (c)
SEM image of glass particles (averages diameter 40-pm). (d) SEM micrograph of
27000 200-nm glass cores. (e-f) SEM images of glass particles (average diameter
400-nm).

One key aspect of the in-fiber breakup process is its scalability, that is the ability

to produce large number of particles by parallelizing the simultaneous breakup of

many cores occupying the same long fiber. Staring from a 1 mm preform and using

the stack-and-draw approach, our collaborators were able to produce either 12 20-

micron glass cores (figure 3-2a) or 27000 200-nm diameter glass cores (figure 3-2d),

and break up all cores simultaneously into particles. The SEM images of the resulting

particles are shown in figures 3-2c, f.

Another characteristic of this approach is the ease to produce complicated struc-

tured particles, like the core-shell particle (figure 3-3) and Janus particles (figure 3-7).
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Because the preform is constructed at the centimeter scale, complex preform geome-

tries may be readily designed and realized, so that the capillary instability driven

breakup in the drawn fiber produces a desired particle structure.

3.2 Core-shell particles

In this section, we analyze the breakup process for core-shell particles reported in

[58] with two techniques developed in previous chapter: linear stability analysis and

full 3d Stokes simulations. The preform used to produce the core-shell particles

consists of a polymer-core (diameter D1) and glass cladding (diameter D2 = 2.5D 1 ),

surrounded by a polymer matrix (figure 3-3a; cross-sections shown in figure 3-3b,

c). The polymer core and glass shell undergo a correlated capillary instability driven

breakup that results in core-shell particles, observed experimentally (figures 3-3d, e,

g, h).

The key quantity to determine is the wavelength of the growth mode with the

fastest growth rate, which should determine the size of the generated droplets [101].

(Here, because there are two interfaces, we use the "effective" growth rate defined in

section 2.7 which weights the growth rates by the relative amplitudes of the motion

of each interface.) The dominant breakup wavelength, in units of the initial outer

diameter, is plotted as a function of the viscosity ratio in figure 3-4. For much of the

viscosity range, we actually find two growth modes that have very similar growth rates

but at different lengthscales, which indicates that there may be competing breakup

processes, offering the future possibility of controlling the droplet size by switching

between these processes via changes in temperature or other parameters. The breakup

lengthscale is consistent with the experimentally measured lengthscale A as inferred

from the final droplet radius D' and the initial diameter D1 by conservation of mass

(-rD' 3/6 = A7rD 1
2/4). Highlighted regions reflect the experimental uncertainty in D1

(20-25 pm) and in the viscosity contrast due to the variation in temperature during

the experiment, resulting in an uncertainty in A.

Linear stability analysis only describes the initial growth of small perturbations.
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Figure 3-3: Polymer-core/glass-shell spherical particle fabrication (Kaufman, et al.
2012). (a) Schematic of the fiber structure. (b-c) SEM images of fiber cross-
sections. (d) SEM image of glass-shell outer interface. (e) SEM image of inner
polymer/glass interface and outer glass/polymer interface. (f) Three snapshots from
a three-dimensional simulation of the Stokes equations using a representative fiber
structure, illustrating the full breakup process. Time progresses from top to bottom.
Dark green, polymer core; light green, glass shell; the outer polymer scaffold cladding
is made transparent for clarity. (g-h) SEM top and front views of four differently
sized core-shell particles.
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Figure 3-4: The dominant breakup wavelength, in units of the initial outer diameter,
plotted as a function of the viscosity ratio. The breakup lengthscale (mode 1) is
consistent with the experimentally measured lengthscale, within the uncertainties
(highlighted region) in initial diameter D1 and viscosity contrast.

To describe the full breakup process, particularly in the presence of competing growth

modes, we turn to full 3d simulations of the Stokes equations (valid here since the

Reynolds number is low [28]) by a level-set/spectral method described in our earlier

work [661. For illustration purposes, we picked parameters corresponding to equal

viscosities pi =iO0 and an initial diameter d =23 1um. Three snapshots of the

simulation (starting from a white-noise initial perturbation) are shown in figure 3-

3f, and illustrate the complexity of the breakup process. The inner interface breaks

up first, as predicted from stability analysis and observed experimentally. As in

the experimental image (figure 3-3e) at intermediate times we see droplets formning in

some regions while the core is still connected in other regions, and we also occasionally

observe small "satellite" droplets forming in between the larger droplets.
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3.3 Design for single-droplet embedded core-shell

particles

In this section, we propose a geometric criterion to have exactly one polymer (PES)

droplet inside the glass (As 2 Se 3) shell (figure 3-5a). More precisely, given the inner

diameter D1 and viscosities, we determine the range of D2 to ensure single PES

particle embedded in the As 2Se 3 shell.

(a) Single droplet embedded in one core-shell particle.

(b) Multiple droplets embedded in one core-shell particle.

Figure 3-5: Sketches for (a) single and (b) multiple droplets embedded in one core-
shell particle during breakup processes.

The analysis in section 2.8 can be applied to predict the breakup lengthscales of

inner and outer interfaces (1) and A(2). A possible choice of figure of merit is FOM =

(A( 2) - A( 1))/(A( 2) +A( 1))/2, a dimensionless measure of the difference between breakup

wavelengths of inner and outer interfaces. In figure 3-6, we plot the value of FOM

as the map of viscosity ratio /Ishell/lcore and the diameter difference (D2 - D1 )/D 1.

The contours FOM = 0.2, 0.3, 0.4 are indicated by black curves. Note that figure 3-6a

is for the case where the initial perturbations on inner and outer interfaces have the

same amplitudes, while figure 3-6b assumes the initial perturbations on interfaces are

proportional to their radii, as described in section 2.8.

If we choose some reasonable threshold, say FOM < 0.4, as the criterion for the

formation of single-droplet embedded in core-shell particles, it predicts that struc-

tures with (D2 - D1)/D1 < 1.5 or D2 < 2.5D 1 are candidates to have single-droplet

in each core-shell particle. The experimental observations of fabricated core-shell par-

85



FOM=(X 2 -12+X )/2

1. 5

0.1 0.2 0.3 0,4 0.5 0.6 0.7
viscosity constrast: sheI/,Pcore

0.8 0,9 1

(a) Map of FOM for the case same initial perturbation am-
plitudes on both interfaces.

FOM=(X2 -1)/(X2+XI)/2
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(b) Map of FOM for the case initial perturbation amplitudes
on interfaces proportional to radii.

Figure 3-6: Maps of the figure of merit (FOM = (A( 2 ) - A('))/(A( 2) + A(1))/2), a
dimensionless measurement of the difference between breakup wavelengths of inner
and outer interfaces, as a function of viscosity ratio Pshell//tcore and diameter difference
(D2 - D1)/D 1. Figures (a) and (b) are based on different assumptions of initial
perturbation amplitudes on inner and outer interfaces (independent or proportional
to radii).
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ticles in section 3.2 support this prediction, and more experiments with different shell

thicknesses are to be performed to further check this prediction. The same analysis

can also be easily applied to the design of multi-layer (N > 3) nested particles.

3.4 Janus particles

Another interesting structured particle produced in [58] is a broken-symmetry, spher-

ical Janus particle, comprising two hemispheres of different optical glasses (figure 3-

7).The preform core is constructed of two half cylinders, each of a different semi-

conducting glass with distinct complex refractive index (figure 3-7a-c). The induced

breakup produces spherical Janus particles held immobilized with the same orienta-

tion in the cladding (figure 3-7d). Figure 3-7e shows a reflection optical micrograph

of a single Janus particle removed from the cladding.

a G2

G1

e f
10pm

4DG2
G1

Figure 3-7: Broken-symmetry Janus particle fabrication (Kaufman, et al. 2012).
(a) Schematic of the Janus preform. (e) Reflection optical micrograph of an Janus
particle. (f) Optical micrographs of multiple sections at different depths within a
single Janus particle.

Modeling Janus-particle formation is difficult because it involves a point where

three fluids meet, so that sophisticated level-set techniques are required to describe

the interfaces [109]. The physics of such a contact point is not well understood [34],

although it is likely to be less relevant in the Stokes regime [26, 51]. Nevertheless,
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energy considerations yield some qualitative predictions. A large glass-glass surface

tension, compared to that between glass and polymer, would make it energetically

favorable for the Janus particles to pinch in the center. On the other hand, for

negligible glass-glass tension, if the glass-polymer surface tension were very different

for the two glasses, energy would be lowered if one glass were to flow to envelop

the other. As neither of these scenarios is observed experimentally (figures 3-7d, e),

we can conclude that the observed breakup process is consistent with low glassglass

surface tension and similar glass-polymer tensions. These considerations indicate a

general strategy for the construction of particles with even more complex geometry.
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Chapter 4

Microcavity optimization via the

frequency-averaged local density of

states

4.1 Introduction

In this chapter, we formulate a full 3d microcavity optimization problem with a novel

technique involving a frequency-averaged local density of states (LDOS) [90]; in the

next chapter, we solve this 3d optimization problem over all possible 2d-lithography

patterns in a thin dielectric film and obtain a structure with lifetime Q = 30000 and

modal volume V = 0.06(A/n) 3 . Unlike previous optimization work [5, 32, 41, 57, 89]

which focused on Q and/or V (and was mainly limited to 2d computations), we start

with a more fundamental physical quantity: the local density of states. With this new

formulation, we are able to circumvent some difficulties in the Q and V approaches.

For example, the simple formulation of maximizing Q/V leads to an ill-posed problem,

because the maximum of Q/V is oo, for example via a ring resonator (figure 1-3a)

with infinite radius [78]. If Q/V is optimized, the finite Q and V obtained are just

an artifact of the finite computation domain. In practice, there is an upper bound

on the usable Q due to manufacturing constraints and other considerations discussed
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in section 4.2, which we incorporate indirectly by optimizing a frequency-averaged

LDOS as discussed below. Furthermore, for any optimization formulation involving Q

and V through solving the Maxwell eigenproblem, there is a fundamental question of

which eigenvalue should be optimized; simply asking for a mode closest to some design

frequency C leads to discontinuities. We avoid these difficulties by optimizing the local

density of states or its variants (depending on specific applications), which involves

solving only a scattering problem (a linear equation) rather than an eigenproblem. As

we review below, the LDOS is related to the imaginary part of the Green's function,

which is a solution to Maxwell's scattering problem [25, 79, 90], and in fact, the LDOS

is actually proportional to the power radiated by an oscillating dipole current [50, 90].

Moreover, by exploring the causality of the scattering problem [the electric fields come

after (not before) the current] in section 4.4.1, we turn the problem of maximizing

the LDOS over some bandwidth, which seems to involve solving scattering problems

at many frequencies in the bandwidth, into a single scattering problem at a complex

frequency, using the technique of contour integration. In section 4.3, we propose

different figures of merit in terms of the LDOS based on different real applications,

e.g., a dipole at a fixed point with a fixed polarization (equivalent of optimizing

Purcell factor), a dipole at a fixed point with random polarization, or dipoles randomly

distributed in some region following some distribution. Since causality applies to all of

these situations, the same frequency-averaging technique works for all of them. From

the optimization perspective, we show in section 4.7.2 that minimizing 1/LDOS is

a better objective than maximizing the LDOS, because this simple transformation

turns the difficult narrow-ridge optimization problem into a simpler shallow-valley

one. Numerically, we implement a parallel finite difference frequency domain (FDFD)

solver for Maxwell's scattering problem with the sparse-matrix library PETSc [8,

9, 10] and spare-direct solver library PaStiX [48] as described in section 4.7. We

use the standard gradient-based optimization methods (e.g., quasi-Newton algorithm

LBFGS [71] and conservative convex separable approximation (CCSA) methods [115])

with our in-house optimization toolkit NLOPT [55] as described in section 4.7.2.

As presented in the next chapter, our numerical simulations discover a silicon-slab
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structure at reasonable large Q = 30000 with modal volume 0.06(A/n) 3 , four times

smaller than the smallest modal volume (at same order of Q) found in the literature

[89]. We obtained promising results for heavily studied silicon slabs in infrared, for

which various small-parameter hand optimizations had been performed for more than

20 years [54]. If our large-scale optimization is applied to less studied material regimes,

e.g. metal-coated dielectrics (surface plasmon modes), or lower-index materials for

visible light (weak or no 2d photonic bandgaps [54] to build off of), the potential

gains seem even greater.

This chapter is organized as follows. To circumvent the difficulties of eigenproblem

formulation for cavity optimization (section 4.2), we introduce our novel LDOS for-

mulation (section 4.3) and propose a technique to obtain frequency-averaged LDOS

by solving a single scattering problem (section 4.4). We summarize our LDOS for-

mulation in section 4.6 and discuss the numerical implementation for FDFD solver

as well as optimization schemes in section 4.7.

4.2 Eigenproblem formulation

There are two key figures of merit for a resonant mode E"(x) of a cavity: quality factor

Q and modal volume V. The quality factor Q is a dimensionless lifetime, and 1/Q is a

dimensionless decay rate [54]. Mathematically, Q is related to the frequency-domain

Maxwell eigenvalue problem:

1
V X V x E"(x) = w 2E (x) E"(x) (4.1)

pu(x)

with radiation boundary conditions. Because of the lossy boundary conditions, the

eigenproblem is non-Hermitian and the eigenvalues are complex. The Q for the mode

E"(x) with eigenfrequency w, [54] is

Q =(4.2)-2 Im[L]
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The modal volume V [21], defined as

V = f E(x) E (x)F dx (4.3)
max{E(x) En(x)} (4.

is a measurement for how big the mode is. The Purcell factor [99], known as the

enhancement of spontaneous emission rate, can be written as [60, 90]

F= - .Q(A) (4.4)
47r'y n

Here A is the wavelength, and n is the index of refraction.

For most applications with light-matter interactions (such as lasers, sensors, and

nonlinear frequency converters), maximal life time Q and minimal modal volume V

are desirable. It is tempting to use the Purcell factor F in (4.4) or Q/V as the

figure of merit for cavity optimization. Unfortunately, maximizing Q/V leads to an

ill-posed problem, because the maximum of Q/V is oc as in the example of a perfect

ring resonator with infinite radius. Reference [78] showed that there is a trade-off

between V (proportional to the circumference) and Q (proportional to exponential

of the radius). In practice, any optimization in a finite computation cell will obtain

a finite Q and V, but the values are just an artifact of the finite computational

domain. In this sense, maximizing Q/V is not well-posed because the solution does

not converge as you increase the size of the computational domain.

In practice, however, there is an upper bound on the useful Q for two reasons.

First, besides the intrinsic radiation loss (Qrad), there are also radiation losses due

to surface roughness (Qroughness) and material absorption (Qabsorption). The total loss

rate 1/QOss is the sum of these three effects:

1 1 1 1
Q ls Qrad+ Q + . (4.5)

Q1OSS Qrad Qroughness Qabsorption

In real applications, the Qioss cannot be arbitrarily large. For example, in integrated

optics it is difficult to get QlOss more than a few million due to surface roughness.

Second, there is another quality factor in the system. For any cavity based device,
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the cavity is always intentionally coupled to some channels (e.g., waveguides) to get

light in and out. That coupling process will be described by its own life time Qcouphng.

It turns out that the losses in this coupled device go like Qcoupling/QIoss. Once these

losses are decreased below some threshold, it does not matter in practice if we decrease

them further.

Now we have a better formulation:

min V
(4.6)

s.t.Q ; Q,

where Q is determined by the bandwidth and loss tolerance of applications. By

solving the non-Hermitian Maxwell eigen-problem (4.1), we can obtain Q and V

from eigenvectors E"(x) and eigenvalues w, through (4.2) and (4.3). Then a natural

question to ask is which eigenvalue we should optimize. In practice, we have some

design frequency W given by the application, so we should optimize the eigenvalue

closest to C. (Note that Maxwell's equations are scale invariant. We can just rescale

the structure to put any eigenvalue at any frequency we want, so we can just pick CJ

arbitrarily. The only real computational choice is the resolution: the number of pixels

per wavelength.) However, asking for the mode closest to Co leads to discontinuities:

as the structure changes during optimization, it will tend to hop discontinuously

between modes. Although there are some ways to deal with this [32], the problem

becomes worse when we simulate the radiation loss, because in this case the finite

cell is approximating a continuum of radiation modes above and below the slab. As

a result, there are more and more closely spaced modes as the cell size increases.

Hence, we want to circumvent this difficulty by adopting a new approach: turning

the eigenproblem into a linear scattering problem.

4.3 LDOS formulation

The Local Density of States (LDOS) (the number of states per unit volume per unit

frequency) [50] is a more fundamental physical quantity than Q/V or the Purcell
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factor (4.4). For example, in quantum electrodynamics, the spontaneous emission

rate of an oscillating dipole (6(x - x')eiWt*j) is proportional to the partial local

density of states (or local density of states per polarization) LDOSj. Mathematically,

LDOSj is easy to compute because it is well known that it only depends on the dyadic

Green's tensor G(x, x'):

6w
L DO Sj (w, x') = -- Im [6j - G (x', x') -8j]. (4.7)

7F

The Green's tensor satisfies

V x 1 V x -E(x)w2 G(x, x') = 16(x - x'). (4.8)

In appendix B.2, we reviewed the derivation that the integration of LDOSj over all

the polarizations and the space gives the density of states (DOS).

One can also understand the LDOS from another point of view [50, 90]: it is

proportional to the power radiated or dissipated by a point dipole J(x) = 6(x -x')j.

Poynting's theorem [52] implies that the power radiated by a dipole J(x) is

Pi (P, x') = IjR [J* (x) -E(x)] dx, (4.9)

where E(x) is the total electric field solving the frequency-domain scattering problem

M4(E, w) E(x) = Iw J(x)
1

M (E, w) = V x V x -E(x)w 2  (4.10)

J(x) - 6(x - x')86.

Because the dyadic Green's tensor is precisely proportional to this solution E by

definition, it is easy to see that P(W, x') is proportional to LDOSj

P(W, x') =- JR [J*(x)M -1(iwJ(x))] dx = Im[8j - G(x', x'), 2

(4.11)
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We propose that LDOSj or its variants can be used as figure of merit for the

characterization and optimization of a microcavity. Note that the figure of merit

should really depend on the application. For example, if we are interested in the

spontaneous emission rate for the dipole at a specific position x' with a specific

polarization 6j, then LDOSj(w, x') is the most relevant figure of merit. The Purcell

factor or Q/V is actually an approximation to this LDOSj, valid for the system

with high Q [42, 60], as reviewed in Appendix B.1, assuming that the point x' of

maximum EE(x) 2 is used to evaluate the LDOS. If the application is for a dipole

at a specific point x' with a randomly distributed polarization, then the figure of

merit would be mean. LDOSj(w,x') or min LDOSj(w,x'). Instead of at a single

point x', if the dipoles of interest are distributed [with probability density function

s(x)] in a region V with polarization 8j, the most relevant figure of merit in this

case is f LDOSj(w, x)s(x)dx. Depending on the applications for enhancement or

inhibition, we should maximize or minimize the figure of merit correspondingly.

For all the applications we mentioned, the LDOSj is really the basic building block.

We are going to mainly focus on this case: maximize the spontaneous emission rate

for a dipole at a point x' with polarization 6j. For simplicity, from now on, we shall

omit the explicit j and x' dependence from LDOSj (w, x'), and simply write LDOS(w)

to denote this figure of merit, namely

6 F
LDOS(w) = I J*(x) . E(x)dx. (4.12)

In section 5.2, however, we will also demonstrate a case where the dipole polarization

is randomly distributed.

4.4 Frequency-averaged LDOS

In previous section, we proposed that one way of framing the problem of microcavity

design is to maximize the local density of states around some design frequency C.
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As explained in section 4.2, we wish to impose only a lower bound Q on the cavity

lifetime. In terms of the LDOS, this is essentially equivalent to maximizing average

LDOS over a finite bandwidth F = C/2Q. In particular, we will maximize an average

L given by:

L j LDOS(w)W(w)dw. (4.13)

Here, W(w) is some weight function or window function we choose, which is peaked

around the design frequency C' and decays rapidly (with a finite integral) outside of

a bandwidth F around W. At first glance, it seems that computing the average L

requires a numerical integration over all w, which would involve solving scattering

problems at many frequencies in the bandwidth. It turns out, however, that we only

need to solve one scattering problem to obtain the mean LDOS with the technique

of contour integration. This simplification, combined with the fact that we need not

solve any eigenproblem, makes this formulation far more practical to implement than

imposing an explicit bound on Q.

4.4.1 Causality and analyticity

Before we proceed, we first define a function f(w), which is a complex version of

LDOS(w):

f (w, x') J*(x) - E(x, w)dx. (4.14)

Comparing with (4.12), it is clear that LDOS(w) = R{f(w)]. [Here we omitted the

x' dependency of f(w, x').] Note that the operator M(E, w) is an linear operator

relating the electric field E(x, w) to the (time-harmonic) input electric current J(x)

at a given frequency w. Causality [the electric field E(x, w) comes after (not before)

the current J(x)] implies that E(x, w) is analytic in the upper-half complex-w plane

[64]. Therefore, f(w) is also analytic in the upper-half complex-o plane.
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Figure 4-1: Contour integration path. The frequency-averaged LDOS is the path
integral along arc A1 . By choosing the proper window/weight function W(w), the
contribution along arcs A2 and A3 can be negligible comparing to the one from A1 .
Therefore, the residues at poles 6 k enclosed by this contour can be used to approxi-
mate the averaged LDOS.

4.4.2 Contour integration

In this section, we are going to compute the mean L by exploiting the analyticity of

f(W)

L = LDOS(w)W(w)dw R[f(w)]W(w)dw p.v. f(w)W(w)dw .

(4.15)

Here p.v. denotes the Cauchy principle value, because the imaginary part of f(w)

may have singularity at w = 0, as in the case of f(w) in free space [20, 52, 79, 85].

Now we want to complete our integration contour (Figure 4-1) in the upper-half plane

and evaluate L by residue theorem [3]

A1 + JI 2 + fA3
f(w)W(w)dw -- 27ri Res f(W)W(w), Wk]

k

Here Wk denotes the poles of W(w) in the upper-half plane and the residue can be

calculated as

1 ds- 1
Res[g(w),W9k] = 1 lim [(s

(s - 1)! 1W--Cs dws- [(b Wk)Sg ()] (4.17)
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given that Wk is a pole of order s.

For the weight function W(w), if it decays faster than 1/wl3 for large W, the

contribution from arc A3 will be zero since LDOS(w) is proportional to w2 in 3d (or

w in 2d) free space and f(w)W(w) will decay faster than 1/ wl on arc A3. We can

obtain the contribution from arc A2 by evaluating the residue due to the simple pole

of f (w) at w = 0

f(w)W(w)dw = 27iW(0) lim wf (w). (4.18)/ 1

A 2 2 W-+0

The factor -1/2 comes from the fact that the integration is along a clockwise semicir-

cle. Since the weight function is peaked around design frequency CO with some narrow

bandwidth F, we should expect that W(O) is small, and the contribution from A2 is

negligible comparing to the residues at k1. From (4.15), L is just the path integral

along the path A1 [64]. Therefore, we have

L = R 27ri ZRes [f(w)W(), ] - (j + j f(W)W(w)dw)

-(4.19)

~R 2 7ri Res [f (W)W(W), Wk]
k

4.4.3 Scattering problem at complex frequency

To compute the residue at the complex poles, we need to solve the scattering problem

at complex frequencies. More precisely, the scattering problem (4.10) at complex

frequency cD + iF can be written as

1(v X V x -E(x)(CO + iF)2 E(x, o + iF) = i( + iF)J(x)

1 
-> V x ( )V x -c(x) 2 I + -) E(x, W + iF) = iCJ(x) (4.20)

( 1
+- I x x -E(x) I1+ --- Q2 E (x , c + i F) = iCDJ (x).

P()( + i) 20
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We denote this complex scattering operator by M (E, C), namely

M(Eco) = V X -EX) 1+ _ 2 '2.
S(x)(1 + ) 2Q A(x)X

(4.21)

Clearly, this is equivalent to solving a scattering problem at real frequency Co with

materials f(x) = E(x)(1 + i/2Q) and f(x) = p(x)(1 + i/2Q). (In fact, any change

to the frequency can be converted into a change of materials.) In particular, adding

a positive imaginary part to c' corresponds to a positive imaginary part in 5(x) and

/(x), which corresponds (with our e-" convention) to an absorption loss.

Therefore, solving scattering problems at a frequency in the upper-half complex

plane is equivalent to solving a real frequency scattering problem where absorption

losses have been added everywhere in space. There is an intuitive physical explanation

for why this corresponds to requesting a cavity with quality factors > Q (which was

the motivation in section 4.4 for computing the mean LDOS). If we add an absorption

loss with quality factor Q into the system, the LDOS optimization will not benefit

from making Qrad > Qabsorption Q (see eq. (4.5)). So Qrad is effectively bounded,

which is exactly we want.

In summary, with complex analysis, we convert the evaluation of frequency-

averaged LDOS into a single scattering problem at a complex frequency: Moreover, we

relate this complex-frequency scattering problem at a real frequency with transformed

complex materials. Although such an application of complex analysis and contour

integration to electromagnetic scattering problem is rather unusual, it is related to

approaches more common in quantum field theory [96] and Casimir interactions in

quantum field theory [56], and related ideas were recently applied to frequency aver-

aged scattering cross-section in electromagnetism [47, 83].

4.5 Possible window functions

In this section, we discuss several window functions: a simple Lorentzian, the differ-

ence of two Lorenztians, the square of a Lorentzian.
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4.5.1 A simple Lorentzian

A simple window function is a Lorentzian centered at Co with half-width F. The

frequency-average LDOS against this weight is

L LDOS(w) (~± 2 = ff(- +iF)], (4.22)
(P - O) 2+ 2 R

which only requires solving the scattering problem (4.20) once. L1 is a perfectly

finite, well-defined quantity in a discretized simulation with a finite spatial resolution

(finite grid). However, a careful examination reveals that this simple average does not

converge as the resolution increases. There are two equivalent ways to understand

this. First, in a continuous medium, the integral does not converge because the

window function decays like 1/w12 while LDOS(w) behaves like jwj (in 2d free space)

or lwl 2 (in 3d free space) for large jwj. (In a finite spatial resolution, there is an

upper frequency cutoff that eliminates this divergence.) Second, from the relationship

between the complex-frequency scattering and lossy material discussed in the previous

section, we know that the residue R[f(W + iF)] is actually the power emitted by a

dipole in lossy material, which is the sum of the power radiating to the outside of

the cavity and the power absorbed by the lossy material in the cavity [25]. It is

known that this absorbed power is infinite because E(x) is divergent like 1/r 3 in the

neighborhood of the dipole (in 3d free space) [20, 79]. (In a lossless medium, only

Im[E(x)] diverges as I/r 3 , so LDOS ~ R[E(x)] is finite.) In discretized space, the

Green's function is finite and diverges as (resolution) 3 in 3d.

To avoid this singularity, we need to choose window functions which decay faster

than Jw13 at large jwj. Two natural candidates are the difference of two Lorentzians

and the square of a Lorentzian.

4.5.2 Difference of two Lorentzians

The divergence of L1 can also be interpreted from the time domain analysis. With

Fourier analysis, we can show that for a time domain real dipole current J(x, t) =
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J(x)s(t), the corresponding work done by this current is

J J(x, t)E(x, t)dxdt j LDOS(w)ls(w) 2dw, (4.23)

where s(w) is the Fourier transform of s(t). It is easy to see that L1 is actually

proportional to the work done by an oscillating decay current, e-t cos(ot), turned

on at t = 0. The abrupt jump of this current at t = 0 causes this infinite amount of

work. If the currdnt is turned on at t = 0 in a continuous way, say e- sin(cDt), the

work done by this current should be finite. Therefore, the new weight function

Is(p) 2 2f(C 2 + f 2

W2 (W) = F'2+F)7(4.24)
f Js(C) 2 dw (w 2 

- g2 - F 2 ) 2 + 41 2 2

should produce the finite frequency-averaged LDOS. We check that this is indeed the

case:

J LDOS() 2F(6J2 + F2)/7F d
(w2 _ 2 - F2 )2 + 4F 2w 2

( LDOS(W + if) LDOS(-C + if) 2+2
2 Co + IF - C + iF Cj2

Mathematically, the weight function W2(w) decays like Jw14 for large |wJ, therefore

the contour integration technique works and the corresponding average is finite. Note

that the weight function W2 (w) can also be approximated by the difference of two

Lorentzian functions with centers at C + if and -Ci + if. As we discussed in the

previous section, the average LDOS(uo + if) corresponds to add lossy material in the

system, and the one LDOS(-CD + if) corresponds to add gain material to the system.

Therefore, the singularities from the absorbed power in LDOS(C. + if) and from the

gain power in LDOS(-D + if) will cancel each other in the sum, and the average L 2

will be finite.

The only complication of this window function W2(w) is that computing the

LDOS(-Ci + if) requires solving scattering problem in systems with gain materials,

which needs extra care to impose the radiating boundary condition [more precisely,
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the perfect matched layer (PML) technique in truncating the computational domain

needs to be modified correspondingly]. Instead, we propose an alternative, the square

of a Lorentzian.

4.5.3 Square of a Lorentzian

The choice of the window function W(w) is not unique, and any function that satisfies

the criteria we discussed in section 4.4.2 is fine. To ensure that the W(w) decays faster

than 1/Iw 3, we propose the window function,

2F 3/wrW(W) = 2(4.26)

((P - C4)2 + ]r2)21

which is a normalized square of a Lorentzian function. This window function has a

double-pole at w = C + if in the upper-half plane. With residue theorem (4.17),

(4.19) and (4.26), we have

L = LDOS(w)W(w)dw ~ R [f (C + if) - iff'(P + iF)], (4.27)

where f'(-) denotes the differentiation with respect to w. In appendix B.3, we showed

that

f'(w, x = ' + i E(x)ET (X, w)E(x, w)dx. (4.28)
W 7r

From (4.14) and (4.28), it is clear that both f(Co+ if) and f'(CO + if) can be obtained

from the scattering solution E(x, CD + if) (see appendix B.4) and

f(+i)-if'( iF)= (--)8& E(x',+iF)+ FE(x)ET(x,+i)E(x,C+i)dx.

(4.29)

In summary, we can obtain the entire frequency-averaged LDOS by solving a single

scattering problem (4.20) at a complex frequency C + if.

We know that (4.26) gives a finite average LDOS because it decays fast enough

with w, but it is interesting to also consider how it fixes the divergence from the

second viewpoint in section 4.5.1 (that of the infinite power absorption from a dipole

in a lossy medium). The explanation is essentially that the second term in (4.29)
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is roughly a subtraction of the divergent absorbed power from the first term: FE is

w Im(?) from section 4.5.1, and w Im(?) E 2 is absorbed power [25]. (A subtlety arises

from having +ETE, rather than -E 12, but the 1/r 3 divergence at r -± 0 should be

dominant in Im(E) for small F so one should have ETE - Im(ET) Im(E) ~ - E 2

as r -± 0.)

Since the role of the second term in (4.29) is essentially to subtract off the divergent

absorbed power in lossy f medium, and this divergence comes from the i/r 3 field

divergence that is independent of geometries (the scattered field from the surrounding

geometry is finite at r = 0), one might expect that the second term in (4.29) plays

little role in geometry optimization at a fixed resolution. Indeed, we find in numerical

experiments that the optimizations with and without the second terms in (4.29) for

the 2d TE case (discussed in section 5.2) discover similar structures.

Therefore, in chapter 5 we optimize the simpler single Lorentzian objective of

section 4.5.1, although eq. (4.29) is computationally feasible if it were needed.

4.6 A preliminary formulation

Now we have a preliminary formulation for our cavity optimization in terms of fre-

quency averaged local density of states:

00

max L = LDOS(w)W(w)dw. (4.30)
{designs} _J 0

We can evaluate the objective L by contour integration, which only requires solving

the complex scattering problem (4.20) once. If we choose the window function W(w)

from (4.26), then the problem can be reformulated as

max L [f f (C + iF) - iff'( + iF)] . (4.31)
{designs}

Mathematically, to compute the objective in (4.31), we need

1. For given E(x), C and F, solve the complex scattering problem (4.20) to obtain

E(x, C + if).
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2. Obtain f from the solution E(x, 6D + if) through the formula (4.29).

3. take the real part of f to get L.

To speed up the optimization, we had better have the gradient of the objective

or the sensitivity of the objective to the design parameter Fk, which is the dielectric

constant at x = Xk. It turns out that with the standard technique of adjoint method

[113], one more solving for the same operator M (F, cD) with a different source term is

sufficient to get all the gradient information. We put the detailed calculation in the

appendix B.4 and summarize the procedure here:

1. Solve the complex scattering problem

AM(F, c)A(x, 6 + if) = F(x)E(x, + if) (4.32)

to obtain A(x, o + if).

2. The sensitivity Of/&Ok is a combination of E(x, cD + if) and A(x, C + if), and

can be obtained from the formula (see appendix B.4 for details)

E1) 2 T
= i+ - -ET(xkW+if)E(xk4,HCif+

Oek Q 7r
120 ( i T

+ 1 (+ - AT(xk, +if)E(xk,C + if). (4.33)
7T Q 2Q

3. Take the real part oOfDL/&ek to have aL/aOk.

Note that the scattering operator (4.32) in the sensitivity analysis is the same as the

operator in the objective evaluation. We can take advantage of this by reusing the

information (e.g., preconditioner or LU factorization) from the solution of eq. (4.20).

We will discuss this in detail in section 4.7.1.

4.7 Numerical scheme for cavity optimization

In this section, we discuss the numerical implementation for our frequency-averaged

LDOS formulation given in section 4.6. In order to solve this PDE-constrained op-
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timization problem computationally, we need fast and efficient implementations for

objective evaluation, gradient evaluation, and optimization.

4.7.1 Objective and gradient evaluation

As we discussed in section 4.6, evaluating the objective LDOS is essentially equivalent

to solving the scattering problem (4.20). We can apply any standard frequency-

domain solver technique to this problem (e.g., finite difference, finite element, or

boundary element method). Here we simply adopt the finite difference approach.

If we impose mirror planes in the system, we can obtain an 8 times reduction (see

figure 5-7).

For the finite difference frequency domain (FDFD) scattering, the most robust

solver is a sparse-direct solver, which is excellent in 2d, but expensive (in both memory

and time) in 3d. In contrast to direct solvers, the iterative solvers (e.g., GMRES and

BiCGStab) work quite well if we have a good preconditioner. Unfortunately, it is

hard to precondition for wave-propagation (Helmholtz-like) problem. But during the

optimization, we resolve many times for slightly different structures. Therefore, we

can use sparse-direct factorization from one step as a preconditioner for iterative

solvers in following many steps. Here is an outline for our FDFD solver:

1. In the first 100 optimization steps, solve the scattering problem with sparse-

direct solver.

2. After 100 steps, first try iterative solver with 15 iterations and with the precon-

ditioner from the LU factorization in the previous sparse-direct solving.

(a) If the iterative solver converges within 15 steps, then go to the next opti-

mization step.

(b) Otherwise, solve the problem with sparse direct solver and store the LU

factorization information as a preconditioner for next step.

We implemented the FDFD scattering solver with fast parallel sparse-matrix li-

brary PETSc [8, 9, 10] and parallel sparse-direct solver PaStiX [48]. It turns out that
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moderate resolution problems are solvable on workstations and large systems are solv-

able on parallel supercomputers. For example, for a computational cell 90 x 90 x 45

(corresponding matrix size 2 million by 2 million, since real and imaginary part of

E fields stored separately), it takes 1.5 minutes for symbolic factorization and 2.5

minutes for numerical factorization on supercomputer Kraken with 250 (2.6 GHz)

processors. For the same problem, 15 iterations with iterative solver takes less than

25 seconds. From our experience, in the late optimization stages, it only needs to

perform one sparse-direct factorization for every 30-100 steps.

For the gradient evaluation, it is equivalent to solving the same scattering prob-

lem with a different source term E(x)E(x, c0i + iF) instead of J(x), as described in

appendix B.4. Therefore the preconditioner for the objective will work equally well

for this gradient evaluation.

4.7.2 Optimization scheme

There are many gradient-based optimization algorithms we can use, for example,

the quasi-Newton algorithm LBFGS [71] and conservative convex separable approx-

imation (CCSA) methods [115]. However, if we apply these optimization methods

directly, we typically observed slow or stalled convergence for Q > 1000.

Let's look at our objective LDOS more closely. From eq. (B.8), we have a rough

estimate of the LDOS(w) when w is near the resonance w,

3 I m[w ]L DO0S (w) ~r_ - E"(x') -8jl 2 W .mW, (4.34)
7r ( - !R[Cj,_])2 + (IM[Cj"])2'

From this expression, LDOS(w) behaves near resonance like a Lorentzian with band-

width 1/Q, since Im[w,] is proportional to 1/Q. LDOS(w) is therefore a narrow

ridge along some manifold in the parameter space (see figure 4-2 for a simple two-

parameter schematic illustration). Moving off of this ridge is equivalent to shifting

the resonant frequency away from w. For optimization, we wish to move along the

ridge in order to find the highest point (the best LDOS within the manifold corre-

sponding to a given resonant mode). Unfortunately, it is well known that optimizing
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LDOS

parameter 2

parameter 1

Figure 4-2: Illustration of LDOS(w) in two parameter space. When w is near reso-
nance, LDOS(w) looks like a narrow ridge (sharply peaked Lorentzian) along some
curves with ups and downs.

an objective with a narrow ridge without exploiting second-derivative information

tends to zigzag, moving back and forth perpendicular to the ridge [86]. Therefore,

the convergence may be extremely slow. Quasi-Newton methods estimate the second

derivatives precisely to deal with such problems, but for Q reaches 1000 or so, the

standard quasi-Newton methods are not good enough, because of the huge Hessian,

which is of order Q3 (see appendix B.5 for the estimation). That is, the Hessian

matrix is becoming ill-conditioned, which seems to cause numerical difficulties for

Newton schemes. We could incorporate this asymptotic approximation for the Hes-

sian into a special-purpose optimization algorithm. However, it turns out that there

is an even simpler solution: a transformation from maximizing LDOS to minimizing

1/LDOS:

max L = LDOS(w)W(w)dw - min 1(4.35)
{designs} _J {designs} L f LDOS(w)W(w)dw

Clearly, they are equivalent since LDOS is strictly positive. We know that LDOS is

sharply peaked in a narrow region when Q is large (figure 4-3a). Once the transfor-
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Figure 4-3: The illustration of Lorentzians with narrow bandwidth [figure (a)] and

its inverse [figure (b)]. The transformation (taking the inverse) changes the objective

from narrow ridges to shallow valleys.
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mation is applied, the new objective becomes a shallow valley (figure 4-3b), which

is easier to optimize. For example, in the 2d TM optimization to be discussed in

section 5.1, because the quality factor Q of the initial guess (a photonic crystal cav-

ity) is very high (order of 10'), maximizing L does not make any improvement while

minimizing l/L does.
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Chapter 5

Results for cavity optimization

In this chapter, we present some 2d and 3d results from the cavity optimization

schemes developed in previous sections. We start with high-resolution 2d cases, and

run simulations with different initial guess (vacuum, photonic crystal with a defect

and random structures) and different dipole polarizations (TM, TE and random). In

the region to be optimized, we allow each pixel to be one degree of freedom (figure 5-

la). For 2d TE case, the optimization discovers similar structures for maximizing the

spontaneous emission rate of a specific dipole polarization and a randomly polarized

dipole. In another scenario of 2d, to get the Q versus V trade off analogues to 3d,

we limit the degrees of freedom in one direction and choose a thin strip, instead of

a square, as the region for optimization (figure 5-1b). We also use this thin strip

case to study the relationship between Q and the degrees of freedom. As the degrees

of freedom increases, the radiation Q first increases and then becomes saturated,

which may be limited by the numerical precision in the computation. Finally, we ran

the 3d optimization on supercomputer and obtained a structure with quality factor

Q = 30000 and extremely small mode volume V = 0.06(A/n) 3.

5.1 2D TM case

In this section, we want to maximize the spontaneous emission rate of a dipole with

TM polarization (out of plane) in a 2d setting (figure 5-1a). One popular candidate for
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(a) A square region for degrees of free- (b) A thin strip region for degrees of

doi. freedom.

Figure 5-1: Sketch of regions for degrees of freedom.

such applications is a photonic crystal with a defect, like the one shown in figure 5-2a.

It is a periodic arrangement (periodicity a) of dielectric silicon rods (radius 0.2a and

permittivity E = 12.4) with one defect rod at the center (radius 0.1a). The defect TM

mode is at frequency 0.32(27w/a), with quality factor Q=1.41e+8 and mode volume

V = 0.097(A/n) 2. With this structure as an initial guess, we run the optimization

and obtain a nested ring structure (figure 5-2b) with quality factor Q=1.01e+10 and

mode volume V = 0.075(A/n) 2 . Clearly, the optimization itself discovers a periodic

structure with periodicity in radial direction, reminiscent of a Bragg onion [129] . We

also run the optimization with vacuum as initial guess and obtain similar structure

(figure 5-3 ) with Q=1.30e+9 and V = 0.075(A/n) 2.

In these two optimizations, we gradually increase the absorption Q (or decrease the

bandwidth 1/Q) from 1e+1 to le+5. The optimization at Q=le+1 actually gives a

high Q cavity (almost the same radiation Q) with the resonance at about 1.003C1. The

optimizations at higher Q simply tune this structure so that the resonant frequency

becomes much closer to C,.

Note that in the optimization scheme, we allow the dielectric permittivity of each

pixel to vary continuously from Ernin = 1.0 to Emax = 12.4, but almost all the pixels

(except few ones in the interfaces) are at either Emi, or Emax in the optimized struc-
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(b) 2d TM optimized structure: Q=1.O1e+10 and V = 0.075(A/n)2.

Figure 5-2: 2d TM optimization from PhC cavity initial guess.
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from vacuum initial guess. Q=1.30e+9 and V =

ture. This phenomenon (reminiscent of "bang-bang" problems in control theory) had

also been observed in other cavity-related optimization work. Not only has a simi-

lar phenomenon been observed empirically in topology optimization for electromag-

netism [13, 74, 941, but there has been some recent progress in proving theoretically

that this is the expected solution. In particular, Ref. [95] recently analyzed optimiza-

tion problems for scalar waves, and showed that maximizing an energy confinement

time over the permittivity at every point in space generally leads to a solution in

which the permittivity is either the maximum or the minimum allowed value at every

point, excepting a set of measure zero (at the interfaces between regions).

5.2 2D TE case

In this section, we consider the 2d TE polarization. Let us first look at the case

where the dipole is polarized in the , direction. In other words, we want to maximize

LDOS(w; 8). From a vacuum initial guess, the optimization discovers the structure

shown in figure 5-4a. This structure has quality factor Q=5.16e+8 and mode volume

V = 0.092(A/n) 2. [Again, the Q =e+1 gives an equally high Q cavity with resonant
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frequency at 1.0007cD. The optimizations at higher Q=le+2 to le+5 simply tune the

resonant frequency to cD.] Clearly, if we optimize the 8y polarization case, we get a

structure like figure 5-4b, just a 90' rotation of the structure from 8,-polarization

optimization.

5.2.1 Optimization for a randomly polarized dipole

We just considered the dipole polarization in a specific direction 6 or 8Y. Now we

want to study the case in which the dipole is randomly polarized in the plane. Naively,

one might expect the optimization to find a symmetric structure in this case. It is

easy to show [90, problem 8.6] that maximizing the LDOS for a random polarization

by averaging all polarizations is equivalent to maximizing the sum of 8, and 8y polar-

izations, namely max [LDOS(w; 8) + LDOS(w;8 )]. For this new objective, we ran

10 different simulations with different random initial guess (each pixel is randomly

chosen between Emin and Emax). We found that 4 out of 10 give similar structure as ex

polarization (figure 5-4a), while 6 out of 10 give structures similar to 8y polarization

(figure 5-4b). From these results, it seems that the optimization, instead of favoring

both 8x and 8y polarization simultaneously, simply randomly picks one direction and

optimizes it. That is, there is a spontaneous symmetry breaking: it is better to op-

timize one polarization at the expense of the other than to try to obtain a doubly

degenerate cavity that resonates for both polarizations. Apparently, the LDOS of

the best single-polarization (non-degenerate) cavity is more than twice as big as the

LDOS of the best doubly degenerate cavity--an interesting result!

Another interesting case would be maximizing the minimum (instead of the sum)

of LDOS at these two polarizations, namely, max min(LDOS(w; 2x), LDOS(w; 8y)) and

we conjecture that this objective might give a symmetric (C4,) structure. We will

study this case in future work.
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(b) Optimized structure for d polarization.

Figure 5-4: 2d TE optimization for 8, [figure (a)] and 8y [figure (b)] polarizations.
The structures have Q=5.16e+8 and V = 0.092(A/n) 2.
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5.3 2D TE thin strip case

In previous 2d TM and TE polarization cases, we expect and obtain almost no Q
versus V trade off since the cavity can be surrounded by complete photonic bandgap

or a Bragg onion. In 2d setting, to get the Q versus V trade off analogues to 3d slabs,

we need to limit the degrees of freedom in one direction in order to force the possibility

of radiation loss. In this section, we choose the region for degrees of freedom as a

thin strip (figure 5-1b). In a region with dimensions 5A-by-1A, we obtain a structure

(figure 5-5) with quality factor Q=1.00e+7 and mode volume V = 0.056(A/n) 2. [The

absorption Q used in the optimization is gradually increased from le+1 to le+6.]

0.8 , .: ,- -10

Z0.6 -- 8

S 0.46

0.2-

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
(unit X)

Figure 5-5: 2d TE thin strip optimization: Q=1.00e+7 and V 0.056(A/n) 2 . Dif-
ferent from previous 2d TE optimization, here the degrees of freedom are limited in
one dimension.

As we discussed in section 4.4.3, if we add absorption loss with quality factor

Q into the system, the optimization will not benefit from making Qrad > Q and

therefore Qrad is effectively bounded. Therefore, if we increase Q in the optimization,

we expect higher and higher Qrad until Qrad is limited by the degrees of freedom

(figure 5-6). Then another interesting question to ask is as we increase the degrees

of freedom, will we get higher and higher Qrad? In theory, it is possible as in the

example of a slowly tapering structure [80, 81, 82]. In our numerical experiment, we

found that as we increase the degrees of freedom, Qrad first gets higher and higher, but

becomes saturated at some level around 107 (figure 5-6). It may be due to the finite

numerical precision in the computation, particularly in solving large linear system.

[Note that the data in figure 5-6 are from the optimization result for the objective

E(x')LDOS(w,x'), which is proportional to Q/V, since LDOS(w,x') is proportional

to Q/E(x')V given in equation B.8.1
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5.4 3D case

(a) Sketch of the region for degrees of freedom in 3d
slab.

(b) Sketch for 3d slab corn-
putational domain (with mirror-
symmetry imposed).

Figure 5-7: Sketch for 3d slab optimization: physical model and computational do-
main.

With the computation and optimization tools developed in previous sections, we

run large-scale simulations on 3d slab case (with in-plane polarization). Here we

choose the dimensions of the slab to be 3A-3A-0.19A, where the thickness is 0.19A. A

sketch of the physical model is shown in figure 5-7a, and the real computation domain

(with mirror symmetry reductions) is illustrated in figure 5-7b. The optimization dis-

covers a structure (figure 5-8) with quality factor Q=30000 and extremely small mode

volume V = 0.06(A/n)3. [This result is obtained from optimizations with absorption

Q gradually increasing from le+i to le+4. The optimization discovers structures

with radiation Q=1.18e+4 at Q=le+2, with radiation Q=2.55e+4 at Q=e+3, and

with radiation Q=2.98e+4 at Q=le+4.]

A comparison with other large- or small-scale optimization work, such as 2.5d

optimization [74], L3-type cavity [5] and Ho-type cavity [89] optimization are given

in table 5.1. Clearly, the optimization was able to achieve four times smaller mode

volume than the smallest mode volume (at the same order of Q) we found in the

literature [89].
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Figure 5-8: Optimized pattern for a
and V = 0.06(A/n) 3.
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2 2.5 3

3d slab with dimensions 3A-3A-0.19A: Q=30000

Optimization Quality Factor Q Mode Volume V (A/n)3

2.5d optimization 8000 0.32

L3-type cavity optimization 100000 0.70

Ho-type cavity optimization 280000 0.23

LDOS optimization 30000 0.06

Table 5.1: Comparison of Q and V for structures from various optimizations.
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5.4.1 Post-processing to remove tiny features

Note that in the optimized structure, there are some tiny hair/fingers, which make

the fabrication difficult. As a first try, we manually remove some small features by

hand and have a structure (figure 5-9) with Q = 10000 and roughly same V. Compar-

ing these two structures, it seems that we had removed some important connecting

bridges, which affects the Q. Instead of post-processing the structure, we will consider

suppress these tiny (one- or two- pixel) features by new algorithm (such as filters or

global regularization [53]) in future work.

2.5
10

2

8

S1.5

-4

0.52

0.5 1 1.5 2 2.5 3
(unit X)

Figure 5-9: 3d slab structure after manually removing tiny features: Q 10000 and
V = 0.06(A/n) 3.

5.4.2 Comparison with air-slot cavity

All these cavities listed in table 5.1 are dielectric cavities. In other words, the centers

of these cavities are high-dielectric materials (Si and GaAs) and these cavities are

useful for dipoles/emitters lying in these materials. It is also reflected in the unit

of mode volume. For example, the mode volume of the cavity we obtain is V

0.06(A/n) 3 = 0.06(A/nsi )3 .
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It is known that air-slot cavities [59, 65, 88, 103] have extremely small volumes. For

example, Ref. [88] reported an air-slot cavity with Q=4.8e+6 and V = 0.015(A/nair) 3 .

Although 0.015 is smaller than 0.06, these two kinds of cavities are not comparable in

two ways. First, the two mode volumes are in different units (A/nair) 3 versus (A/nsi)3

Second, these two types of cavities are for different applications: air-slot cavities are

useful for emitters lying in air, while the semiconductor-based cavities are designed

for emitters lying in Si and GaAs.

If the application is for emitters lying in air, in theory, we can also introduce an

infinitesimal air-slot, at the center oriented perpendicular to the electric field, into

our structure. As discussed in Ref. [103], after the introduction of an air-slot, the

unitless mode volume decreases by a factor of (nsi/nair)5 . [In our case, this factor

is about 541, and the new mode volume is 1.le-4(A/nair) 3 .] Because the resolution

we used (46-pixel per wavelength in air) is not that high, the optimization discovers

a dielectric cavity, instead of one with air-slot type. In future work, we will run

the optimizations with high resolutions (at least in 2d cases) to investigate whether

air-slot structures can be discovered.

In summary, we obtained promising results for heavily studied silicon slabs in

infrared, for which various small-parameter hand optimizations had been performed

for more than 20 years. If our large-scale optimization is applied to less studied

material regimes, e.g. metal-coated dielectrics (surface plasmon modes), or lower-

index materials for visible light (weak or no 2d photonic bandgaps [54] to build off

of), the potential gains seem even greater.
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Appendix A

Appendix for capillary instability

A.1 Computations of the curvature

Here we derive the curvature terms in (2.25). The level-set function O(")(r, z, t) = 0

corresponds to the n-th interface. The unit outward normal vector of this interface is

n(n) -(n (n) (n))

|Vq$()
O(r(L>2 + (20))2oBr a2

(1 -ikOR[R())

V1 + 0[(6R(n))2]

and the unit tangential vector is

-() = (n$"), -n(")) =

The curvature rjn) can now be computed as

) (n) (n) (n
cn."- n - Onz±

r1() 
1n(n) +-+

Or 1 0

ik1R )e k-t) )-1

V1 + 0[(6R(n))2]

6R(n)k 2ei(kz-wt)
+ + 0 [(MoR y

1 + 0 [(6R(n)) 2] R(n) + 6R(n)ei(kz-wt) VI + 0 [ (R(n)) 2]

= + R k2 (R())2 ei(kzwt) + 0 [(6R (n)) 2]

(A.3)
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The normal velocity of the fluids on the interface must equal to the normal velocity

of that interface, and thus )= u( ) nn on the interface r = ((n) (z, t), where u(')Ot

is the velocity vector. For the at-rest steady state (2.8) and (2.9), to the lowest order

in R, this gives

-iw6Rn) - ou n)(R(")). (A.4)

Note that (A.4) establishes the relation between the displacement amplitude 6R(n)

and the interface velocity 6nur (R(")). Substituting (A.4) into (A.3), we obtain the

lowest-order curvature 1 (n) in terms of the interface velocity 6tt$"(R(")):

1 - nR)(R(n)) (s(") = +2 _ i(kz-wt). A5
W (n) - iW ( (R(n)) 2)e(A5
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Appendix B

Appendix for cavity optimization

B.1 LDOS, Purcell factor and Q/V

In this section, we are going to review the relationship between LDOS(w) given in eq.

(4.12) and Purcell factor in eq. (4.4) [42, 60].

First, let us construct the scattering solution E(x) from the eigenfunctions. For

a dielectric structure E(x), we assume that there is a complete orthonormal basis of

eigenfunctions E"(x):

1
V x V x E"(x) = og(x)En(x),

p1(x)
(B.1)

where f E(x)En* (x)Em(x) = 6nm. Now we expand the scattering solution E(x) and

dipole current J(x) = 6(x - x')6j in terms of eigenfunctions

00

E(x) = dnE'(x)
n=1

00

6 (x - Z' j (Em* (x') 6jE(xEmx)

M=1

(B.2)

(B.3)

To determine the unknown coefficient dn, we substitute (B.2) and (B.3) into the
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scattering equation (4.10) and obtain

d = iw (En*(x') . 6j)
W2 - W 2

n

Therefore we have

J*(x) - E(x)dx = e -E(x')

S2 E"(x')

-iJ E"(x') . 6j 2

2

I
= d,,& - E"n(x') =

n=1

n=1

n=1

+

00

-oo - wn

-iE n(X') . 6j12

Note that in the last step we just relabel the eigenfrequencies by c_- = -Wn.

For a resonant mode E" (x), the radiation boundary condition implies that the

eigenfrequency wn is complex and the corresponding quality factor Q is

Q = [w" .
-21M[Wn]

(B.6)

In other words,

Wn = R[,] w 1 -

Therefore, from (4.3), (4.12), (B.5) and (B.7), we have

LDOS(w, x') =
6 6
R[f J*(x) -E(x)dx] = F R[6

6 1 -iJE E (x') -6j 12

7T W - on 2

-3 E"(x') . 6j 2
n

3 E n 22Q

6 Q
7rW6(x') V'

R[Cn] /2Q

(W - R[Wn])2 + (R[Ln]/2Q)
2

6Q JEn(x') . 8j 2

7rw f E(x')IEn(x') 2dx'
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where the approximation is valid when Q is large and w is near the resonance (w is

close to !R~wn]). We also assume that the polarization of the dipole 6j is aligned with

the resonant mode field E"(x').

Note that the Purcell factor is defined as the enhancement of the spontaneous

emission decay rate in the cavity comparing to the one in the bulk material with

refraction index n. From (4.7), we know that

6w 2wnw nw2

LDOSree(w) Im[6j - Gfree(X', x') - 8] 2 (B.9)

Combining (B.8) and (B.9), we have

LDOS(w) 6Q 72 3 Q (Y3 1 (B.10)
LDOSfree(W) rwF(x')V nW2  47r2 y n '

which is exactly the Purcell factor given in (4.4).

B.2 LDOS and Density of States

In this section, we verified that the integration of LDOSj over all the polarization

and the space gives the density of states [90].

The radiation boundary condition for (4.10) implies that no incoming waves from

infinity or E(x) -± 0 at infinity. Mathematically, it is equivalent to add infinitesimal

dissipation everywhere by F - + iO+ and w, -± w - O+. From distribution theory,

we have

1 . w- w i~y
lim lim

Y + L - (Pn - iy) 7-0+ (w - Wn) 2 + y2 (w - Wn) 2 + 12 (B.11)

= p.v.i- i7( - on),(B.ni)

where p.v. denotes the Cauchy principle value in the distribution sense. Combining
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(B.5) and (B.11), we obtain

S J*(x) -E(x)dx - R I -ijE"n(x') . &j 12

W - Wn + iO+ 2

= En(x') . 2).

n

If the polarization of the dipole 6j is randomly distributed in space, then

1
averages IE"(x') e2 - E"(x')2

3

Therefore,

averages LDOSj (w, x')dx' J e(x')

Je(x')

averagej ( 6)
R [ J*(x) -E(x)dxl dx'

>3 E"(x')12 6 (W - w,)dx'
n

=3 6(w - Wn) J e(x') E"(x') 2 dx'
n

6 (w - W')

(B.14)

B.3 Computation of f'(w, x')

In this section, we will compute f'(w, x'), the differentiation of f(w, x') given in

equation (4.14) with respect to w. Differentiating on both sides of (4.10), we have

M4 (O wE(x, w)
M(~,w)9W + M (E, W) E(x, w) = iJ(x)

wE(x , W ) _ (E , W ) E x ,= M
_____> - M1 y2 (x) -E (x, w)) 1 (iJ(x) + 2wE(x)E(x, w)).

(B.15)
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Now differentiating on (4.14), we have

J*(x) dxf'(w, x') =

J*(x)M/J '(iwJ(x))dx + 2w I J*(x)M cE(x)E(x, w)dxl

6 J IJ*(x)E(x, w)dx + i- J (M- 1(i

+ f f x E(x)ET (x, w)E(x, w)dx.

Note that we use the properties that M(E, W) is complex symmetric (M

both real and complex w and J(x) is real (J*(x) = JT(x)).

B.4 Computation of the objective and its gradient

In this section, we compute the objective L = R [ff(W + if) - if f'(,5 + if)] defined in

section 4.5.3 as well as its gradient. The gradient of the objective or the sensitivity of

the objective to the design parameters are calculated with standard adjoint methods

[113].

Let us denote its complex version by = f(Co + if)

and (4.28), we can simplify it as

f= f(c + if) - iff'(O + if)

f(C + if) - if (~ +iF x/) + i-- J
CD+ iF 7r

12 -
f p + if)+ 1 F ]E(x)ET(x,O

CD 6 12

(-8-E(x', C + iF) + -F
W + iF 7 7

E(x)ET(x, C + if)E(x, cD

+ if)E(x, c' + if)dx.

if)E(x, Co + if)dx.

In the rest of this section, we are going to compute the gradient of f with respect to

the design parameter Ek, which is the dielectric constant at x = Xk. To obtain the
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S(x)E(x, w)dx

(B.16)

MT) for

iff'(9 + if). From (4.14)

+ if)dx)

(B.17)

E(x)E T(x, O +



sensitivity of E(x, C + if) to Ek, we differentiate (4.20) with respect to Ek

OE(x, o + if) ___(_, C)E

A4(E Co Ek + Ek .~x C+IT=0

&E(x, Cj' + if) __ -- 2 1 + 6(X - Xk)E(x, CD + F).
OEk - K K I + 2Q

Therefore, from (4.14), (4.28) and (B.18), we have

9 f J*(x)E(x, C + iF)dx

i9Ek

= - +1

(B.18)

(E(x, + iF) dx
OEk

() (M1J(x))T6(x - Xk)E(x, C + iF)dx
2Q

+ i) J E"(x, CZ + iF)6(x - Xk)E(x, D + if)dx

+ 2Q)E T(xk, C + if)E(xk, C + i(
2Q

(B. 19)

and

O f E(x)ET Edx = 2 J(x)E TE(xW +i) dx+ J(x
S2 JE(x)ETMA

- 2C'2 ±1+
2 Ci)

Xk)ET(X, CO + iF)E(x, CD + if)dx

-1 02 1+ i )(x-xk)E(x,C + if)

+ ET(xk, C+ if)E(k,O + iF)

.A~- [E(x)E(x, O + if))] (x - Xk)E(x, C + iF)dx

+ ET (xk, O + if)E(xk, C + if).

(B.20)

Combining (B.17), (B.19) and (B.20), we have

CE k
+ -) -ET (x, O + if)E(xk, LC + if)

Q+i

+ ~ 1+ ~ A (xk, O1, +A TiF)E(xk, C + iF),7 Q 2Q
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where A(x, C + if) satisfies the scattering equation

M4(E,Co)A(xo + if) = E(x)E(x,C u+ if). (B.22)

B.5 Hessian of the LDOS

In this section, we show that when near resonance [w is close to !R(w,)], the Hessian

of the LDOS with respect to E(x) is of order Q3 , namely B02 LDOS O(Q 3 ). We area&klaEk2

not aware of any previous work that remarks on this fact.

Before we proceed, let us establish the relationship between the small changes in

the system's dielectric constant F(x) and the corresponding changes in the eigenvalue

wn (up to first order). From first order perturbation theory or variational theorem [54],

it is easy to show that
AwZ _ f AE(x) E"(x) 2dx

f E(x)lEn(x)1 2dx
(B. 23)

Therefore, the sensitivity of eigenvalue wn to the dielectric constant at x =- Xk is

-wn- _ I- En(x)1 2

(9Fk 2
(B.24)

From (B.8), we know that when near resonance, the LDOS can be approximated

by
3

LDOS(w, x') ~ -- E"(x')
7T

1 1
-8512 IM[ -

I - In
(B.25)
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Therefore, the Hessian of the LDOS can be approximated by

3 , -
-- E(x) . 6j 2 IM

7Ir

2 9 aw- ( 02, 1
aEkl (ek2 (w - Eki &k 2

P W)3
Lw -- n

3

3 n (
~ E ((r

- 2 awn - 1
- 152 Im I Ek1 Ek23(W - Wn)

2- 2En(xkl) 2|En(xk2) 2
j2 2 (Im[Wn] )3

12Q 3  |En(xk) 2 |En(xk 2 ) 2

WV3 E(x') 3  jEn(x') 6j 14

- O((-)3).
V
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