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SOME RESULTS RELATED TO THE QUANTUM GEOMETRIC
LANGLANDS PROGRAM

BHAIRAV SINGH

ABSTRACT. One of the fundamental results in geometric representation theory is the

geometric Satake equivalence, between the category of spherical perverse sheaves on

the affine Grassmannian of a reductive group G and the category of representations

of its Langlands dual group. The category of spherical perverse sheaves sits naturally

in an equivariant derived category, and this larger category was described in terms of

the dual group by Bezrukavnikov-Finkelberg. Recently, Finkelberg-Lysenko proved a

"twisted" version of the geometric Satake equivalence, which involves perverse sheaves

associated to twisted local systems on a line bundle over the affine Grassmannian.

In this thesis we extend the Bezrukavnikov-Finkelberg description of the equivari-

ant derived category to the twisted setting. Our method builds on theirs, but some

additional subtleties arise. In particular, we cannot use Ginzburg's results on equivari-

ant cohomology. We get around this by using localization techniques in equivariant

cohomology in a more detailed way, allowing as to reduce certain computations to

those of Ginzburg and Bezrukavnikov-Finkelberg.

We also use show how our methods can be extended to explain an equivalence be-

tween Iwahori-equivariant peverse sheaves and twisted Iwahori-equivariant perverse

sheaves on dual affine Grassmannians. This equivalence was observed earlier by

Arkhipov-Bezrukavnikov-Ginzburg by combining several deep results, and they posed

the problem of finding a more direct explanation. Finally, we explain how our results

fit into the (quantum) geometric Langlands program.
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1. INTRODUCTION

In this thesis, we prove some results related to the geometric Langlands program,

more specifically its quantum version at a root of unity/rational parameter. The start-

ing point for our investigation is the twisted geometric Satake equivalence of Finkelberg-

Lysenko (also proven and generalized by Reich), which extends the geometric Satake

equivalence of Lusztig, Ginzburg, Mirkovic-Vilonen, and Beilinson-Drinfeld. Let us

summarize the results of this paper:

In the non-twisted setting, the equivariant derived category containing the Satake

category as the heart of the perverse t-structure was described (in terms of the dual

group) by Ginzburg and Bezrukavnikov-Finkelberg. Their proof makes use of the ac-

tion of of the equivariant cohomology of the affine Grassmannian on the equivariant

cohomology of an IC-sheaf and a description of these cohomologies in terms of the dual

group. In the twisted setting the global cohomology of an IC-sheaf is zero, so the naive

generalization of this approach does not work. In the non-twisted case, global cohomol-

ogy is the fiber functor that gives the geometric Satake equivalence, and equivariant

cohomology can be seen as an enhancement of it (since in this case we can recover ordi-

nary cohomology by setting the equivariant parameters to zero), which carries a natural

action of the equivariant cohomology of the underlying space. Following a suggestion

of Bezrukavnikov, we describe a sheaf, which we denote T, such that Ext(T, -) coin-

cides with the fiber functor of Finkelberg-Lysenko. The functor ExtaxGm(T, -) carries

a natural action of Ext (C[-1])>Gm(.,), which allows us to argue along the lines of

Bezrukavnikov-Finkelberg.

1.1. Background and notation. Throughout this paper G and H will denote split

reductive groups over a field, typically the complex numbers. Let B D T denote a

Borel subgroup and maximal torus of G. 0 will denote the ring of formal power series,

and X its fraction field, the field of Laurent series. The affine Grassmannian GrG is
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an ind-scheme whose C-points are G(X)/G(). Under the left G(O)-action, its orbits

are indexed by X,+(T), the set of dominant coweights of G or equivalently the set of

dominant weight of its Langlands dual goup Gv. A subscript of H or a ' will be used

throughout this paper to denote corresponding objects for H. Let PervG(O) (GrG) be the

abelian category of G(O) equivariant perverse sheaves on GrG with finite dimensional

support. In [LI], [G], [MV], [BD], following ideas of Lusztig [LI], PervG(O)(GrG) is given

the structure of a tensor (symmetric monoidal) category. Consider the diagram

GrG x GrG 4- G(X) x GrG -4 G(X) xG (O)GrG 7 GrG

Here p is projection G(X) -+ GrG times the identity, G(X) xG (0)GrG is the quotient

of G(X) x GrG under the the action h - (g, xG(()) = (gh-1 , hxG()), q is the quotient

map, and m is the multiplication map. If A, 3 E PervG(O)(GrG), p*A Z 3 is G()-

equivariant (for the action h - (g, xG(()) = (gh- 1, hxG(())), so there is a unique sheaf

Ak3 on G(X) xG (O)GrG such that q*(Ak3) = p*A Z 3. We define the convolution

A * 3 to be mi(Ak3). This gives the monoidal structure on PervG(O)(GrG)-

Our starting point is the geometric Satake equivalence (Lusztig, Drinfeld, Ginzburg

Mirkovic-Vilonen),

PervG(O)(GrG) ~ Rep(GV)

an equivalence of tensor categories. A natural question (posed by Drinfeld) in the

framework of the geometric Langlands program is to give a Langlands dual description

of the larger equivariant derived category D6(0 (GrG). Based on results of Ginzburg

([Gi], G2]), this question was answered in [BF], where the a dual description of the

loop-equivariant derived category was also given.
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Finkelberg and Lysenko [FL] gave a geometric analogue of the Satake isomorphism

for metaplectic groups, which they called the twisted geometric Satake equivalence.

One of our goals in this thesis is to general the equivalence of [BF] to this setting.

1.2. Statement of the results of Bezrukavnikov-Finkelberg. Let G be a split

reductive group over C, and Gv its Langlands dual. In [BF] the authors prove an

equivalence of monoidal categories

DG(o)(GrG) ~ DpG(SymO(gv))

Here, the right hand side is the dg-category of perfect complexes of GV equivariant

coherent sheaves on gv* with trivial differential. In particular their results includes a

statement about the dg-structure on the left hand side. The proof builds calculations

of Ginzburg [G] to relate the Ext groups in the two categories, as well as a purity

argument (also due to Ginzburg [G2]) to deduce the dg-formality.

Note that every object of PervG(o)(GrG) is automatically equivariant with respect to

the "loop-rotation" action of Gm, namely the Gm acts by rescaling the formal parameter

t. By extending the Ext calculations to the G(O) x Gm equivariant case, the authors

are also able to give a description of the loop equivariant category

DG()>xG .(GrG ) ~ DP'-rf(Ur ,

where the right hand side is defined as follows: Let Ur be the "graded enveloping

algebra" of gv, the graded C[h]-algebra generated by gv with the relations xy - yx =

h[x, y]. Then Ds 1 (Up) is the subcategory of perfect complexes in the derived category

of GV-equivariant Un-modules, where Ur means the algebra is considered as a dg-module

with zero differential.

We introduce a related definition: Let 'J-CC be the category of finitely generated "h-

Harish-Chandra bimodules", that is Uh 9 Uh-modules with a compatible G-action. The
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full subcategory of JCh of objects where h acts by zero is equivalent to CohGv (gV*)

the category of coherent sheaves on gv* equivariant under the coadjoint action, so

that h corresponds to the extra loop rotation parameter. Finally, let JcCf be the

full subcategory generated by objects of the form Ur 0 V, V E Rep(Gv). Examining

the definitions, one sees that an element M E J-CCh is the same as a Sv-equivariant

Us-module

To prove the above equivalence of categories, one needs to examine the Ext groups

on both sides. The Ext groups on the left hand side are naturally a module over the

equivariant cohomology of GrG, so the first the is to compute this in terms of the dual

group. We have

Theorem 1.1. (Theorem 1 of [BF])

HJ(O)>AG,, (GrG) = ®ri(G)A (CohG, (N(t*/W)2A))

where CohGm(N(t*/W)2A) is the ring of functions on the deformation to the normal

cone of the diagonal in tv*/W x tv*/W. The deformation to the normal cone is equipped

with a morphism to A1 , such that the fiber over 0 E A' is T(tv*/W), the total space

to the tangent bundle of tv*/W.

Let # Uh -+ C[h] be a non-degenerate character. We extend it to Uh(nv) 2 by

letting is be trivial on the second factor. Define the Kostant functor ih : He -

Coh(tv*/W x /T/W x A1) by

L N
Is(M) = (M QUh(nv)2 (-0))NX

To see that the image is an 0(tv*/W x /T/W x A1 )-module, note that th(M) has

an action of Z(U) ®c[rl Z(U) and use the Harish-Chandra isomorphism. One can see

(see [BF] 2.3) that this action extends to an action of CohGm (N(f*/w)2A), the ring of
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functions on the deformation to the normal cone of the diagonal inside tv*/W. We then

have

Theorem 1.2. (Theorem 2 of /BF]) The functor S : Rep(Gv) -+ PervG(c)J>Gm(GrG)

(given by the inverse of the geometric Satake equivalence) extends to a full imbedding

Sr :'Cfr -4 DG(O)AGm(GrG) such that

r' ~ H0(O).G. 0 Sh

The extension is unique for each such isomorphism of functors.

In the limit as h -+ 0, r, becomes the functor , : CohGvXGm(gv*Coh mTGm(t*/W)).

Here TGm (tv*/W) is the total space of the tangent bundle of tv*/W. We then have

Theorem 1.3. (Theorem 4 of [BFj) The functor S: Rep(Gv) -+ PervG(0)(GrG) given

by the inverse of the geometric Satake equivalence extends to a full imbedding §qc

CohG' xG" (9 v*) -4 DG(O)(GrG), such that

r,~ H (O) 0 §qe

The extension is unique for each such isomorphism of functors.

1.3. Statement of the results of Finkelberg-Lysenko. Let G be a split almost

simple group, and let GrG be the associated affine Grassmannian. Its Picard group is

isomorphic to Z, and it carries a natural G(O)-equivariant line bundle det, the deter-

minant line bundle associated to the adjoint representation of G [Ku]. It is the 2hth

power of an ample generator of Pic(GrG), where h is the dual Coxeter number of G.

Let GraG be the punctured total space of det. Fix an integer N, and let ( be a fixed

2Nh/dth order character, where d is the divisor of h defined below. Let Z( be the rank

one local system on Gm corresponding to C. Finkelberg and Lysenko consider PervN,
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the category of G(O)-equivariant perverse sheaves on GraG shifted one degree to the

left, which are (Gm, ZC)-equivariant, and prove

PervN ~ Rep(G')

Here, G' is a split almost simple group which depends on N. For example, if

G = SL(2), G' = PGL(2) if N is odd and = SL(2) if N is even. A comprehen-

sive list of examples if given in [FL]. The proof follows the arguments of [MV] with

some modifications. In particular, one can't use H'(.) as the fiber functor, but one still

can do the analogue of integrating along the "semi-infinite" N(X)-orbits. The descrip-

tion of the simple objects of PervN is as follows: Let t : X.(T) -+ X*(T) 9 Q be the

map induced by the pairing (_, .) : X,(Tsc) x X,(TC) -+ Z such that (a, a) = 2 for a

short coroot a. Let d be the smallest positive integer such that dt(X,(T)) C X*(T).

Let X, (T) denote the weight lattice of G, and let

X*+(Tv) = {A E X:+(T)Idt (A) E NX*(T)}

Then according to [FL] Lemma 2, the orbits Gras admits a G(O)-equivariant, (Gm, LC)-

equivariant local system if and only if A E X*+(Tv). The is chosen because of X*(TN)

turns out to be the weight lattice of Tv, the maximal torus of GJ.
out N'

The authors also note the following useful 'adjunction' formula between Ext groups

(always in the derived caegory)

Ext*(A, * A 2, A 3) ~ Ext*(A 1 , (A2 )V * A3 )

Here (.)v is the involution given by the composition of the pullback along inversion

map of G(X) and Verdier duality. For example, (AA)v =

1.4. Statement of the results of Arkhipov-Bezrukavnikov-Ginzburg. Let I be

the Iwahori subgroup of G(X), that is the preimage of B under the map G(O) -+ G. In
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[ABG] the authors consider the category of GrG constructible along the stratification

by I-orbits, and prove the following chain of equivalences of triangulated categories.

Note that in [ABG] the roles of G and GV are reversed

DSchubert(GrG) ~ D G (N) ~ Dquatum(V)

Here, the middle term is related to the Gv-equivariant bounded derived category of

coherent sheaves on the Springer resolution associated to the Langlands dual group

Gv, and the right hand term is the derived category of the principal block of finite

dimensional representation of the quantized enveloping algebra of gV at an (any) odd

root of unity. In addition, they prove that the combined equivalence is compatible with

the t-structures on both sides, hence induces an equivalence

Pervschuert(GrG) ~ block(gV)

of abelian categories. They also note that combined with (deep) results of Kazhdan-

Lusztig and Kashiwara-Tanisaki, one gets an equivalence

Pervschubert (GrG) ~ Pervchubert (Gracv)

where the right hand side is a definied analogously using LC-equivariant sheaves. One

of our goals is to explain this equivalence only using the methods of [ABG].

1.5. Main results and strategy of the proof. Our goal is to extend the result of

[BF] to the twisted setting. The method of [BF] relies on looking at the equivariant

hypercohomology of the irreducible perverse sheaves as modules over H (O) (GrG) (resp.

H (0 ).,(GrG)) and computing this module structure in terms of Gv. However the

(equivariant) hypercohomology of an LC-equivariant sheaf will be zero for trivial reasons.

Therefore we have to modify their approach. Notice that the functor H*(.) is the

same as the functor Ext*(C, -). The idea, suggested by Bezrukavnikov, is to replace
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C with a suitable ZC equivariant sheaf defined below, which we denote by 'T. Then

we can analyze the action of Ext*(Y, T) on Ext*(, AA) (and its equivariant versions),

but some additional technicalities arise. This is somewhat analogous to integrating a

genuine representation against an anti-genuine function in the setting of metaplectic

groups.

Recall that G' is the twisted dual group of [FL]. Let H be its Langlands dual.

Since the LC-equivariant geometry of GraG is related to the representation theory of H,

we expect it to behave like the geometry of Grg. In fact, we will take the approach of

directly comparing GraG and GrH, and then deduce our results from the results of [BF].

We will use this frequently without comment to identify weight lattices, equivariant

parameters, etc.

Our first main result is

Theorem 1.4. There are equivalences of DG-categories (here Ur is the graded envelop-

ing algebra for g')

Db O (GraG) DGN ( (O

D O)G (GraG) ~ D;r (Ur)

Our second main result is a proof of

Theorem 1.5.

Pervschubert ( GrG) 3 Perv~chubert ( Gracv)

While this result is already already known, our contribution is to give a proof com-

pletely within the framework of [ABG}. In particular we don't have to appeal to the

deep results of Kahiwara-Tanisaki and Kazhdan-Lusztig.

Note that LC-equivariant sheaves are (by definition) not equivariant with respect to

the natural Gm action on the fibers of GraG, but they are equivariant with respect to
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the Nth power of this action. All Ext groups between such sheaves are assumed to

be equivariant with respect to this latter action, which will be suppressed from our

notation (we do this to avoid confusion with the Gm loop equivariance). All other

equivariances will be made explicit.

1.6. Localization in equivariant cohomology. We will make frequent use of the

localization techniques in equivariant cohomology, based on the method of Chang and

Skjelbred . Our reference for this is [GKM1], though many of the ideas go back much

further (see [GKM1] for the history and references). Let X be a space with the action

of a torus T. Let A E DT(X). Then H (X; A) is naturally a module over S, the

equivariant cohomology ring of a point. If H (X; A) is a free S module - in this case

we say A is "equivariantly formal" - the localization theorem takes a particularly nice

form. Let X0 be the fixed point set of T acting on X, and let X1 be the union of the

fixed points and 1-dimensional T-orbits.

Theorem 1.6. ([GKM1] Theorem 6.3) Suppose A is equivariant formal. Then the

following sequence of S-modules

0 -+ H (X; A) -* H (X0, A) -+ H;(Xi, Xo; A)

is exact.

Note that for general A, if we tensor with the fraction field of S, the last term

disappears and we have an isomorphism

H;(X; A) os Frac(S) -+ H;(X0 , A) ®s Frac(S)

however inverted the equivariant parameters a lot of information. For reason reason

equivariantly formal sheaves are especially nice to work with. Equivariant formality

holds for a A pure, and for A such that H*(X; A) vanishes in odd degrees. The latter
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condition holds for example when A is constructible along a stratification by affine

linear spaces, and the cohomology sheaves of A restricted to any stratum vanish in a

given parity. For a an exhaustive list of sufficient condition for equivariant formality,

see [GKM1] Section 14.

We will need to apply this idea below to groups of the form Ext (A, ') between two

T equivariant sheaves. Suppose that Ext4(A, B) is a free S-module. For example this

holds if Ext*(A, B) = H*Fxt(A, 3) vanishes in odd degrees, which will always hold in

the cases we consider. Then the proof of [GKM1] Theorem 6.3 can be adapted to show

0 -+ Ext (A, B) -+ Ext (Xo; A, B) -+ Ext 4 (Xi, Xo; A, B)

is exact. For a sheaf-theotretic definition of relative cohomology and Ext groups,

see [GKM1] Section 5.7. If G is a reductive group with maximal torus T and Weyl

group W, we can recover G-equivariant cohomoology from T-equivariant cohomology

by taking W invariants. Conversely we can recover T equivariant cohomology form

G-equivariant cohomology by tensoring with S over Sw.

2. DESCRIPTION OF THE TWISTED DERIVED SATAKE CATEGORY

2.1. The sheaf T. Consider the moduli stack of G-bundles on PI1, BunG(P 1)- It is well

known that it has a presentation as a double quotient

BunG(Pl) = G(C[t-1])\G(X)/G(0)

The G(C[t-1 ])-orbits on GrG are parametrized by dominant coweights of G, so that

GrG = UGrG

The orbits satisfy the closure relation
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GrA = U Gr"

Thus as a set BunG(Pl) is a union of points indexed by X+(T). Similar descrip-

tions hold for BunG(P), the punctured total space of the determinant line bundle on

BunG(P) (see [Ku]), for and Graa. One shows analogously to [FL] Lemma 2 that

GraA admits a G(C[t- 1])-equivariant local system with Gm-monodromy (a if and only

if A E X*+(TN) = X (H). Let I c A E X*+(TNv) - X (H) be the set of minimal

elements in the dominance order, namely the basepoints of the connected components

of GrH. Define T to be the Goresky-MacPherson extension to BunG(PI) of the direct

sum over A E I of the local system Z(C on each Gr .

The sheaf T can also be thought of a pro-object of the G x Gm-equivariant derived

category of GraG, so that we can take Ext*GxGm(-, -) of G(()-equivariant sheaves. Our

motivation for introducing it is that the functor Ext*(, -) is non-zero on PervN- In

this way, T plays the same role that the constant sheaf does in the non-twisted setting.

As in [FL] Lemma 2, the G(C[t- 1]) orbits that support a non-zero LC-equivariant local

system correspond exactly to A E X*(TN). Therefore, T can only have non-zero stalks

on these orbits. Suppose we were working in the non-twisted case on BunH(P 1 ). Then

since BunH(PIl) is smooth, T would just be the constant sheaf, and these stalks would

be 1-dimensional. The stalks of T can also be described by inverse Kazhdan-Lusztig

polynomials for the affine Weyl group (see [KT] Section 5). These polynomials will be

the same in the twisted case for G and non-twisted case for H, hence all non-zero stalks

of T will be 1-dimensional in the twisted case as well.

Theorem 2.1.

EXt*G(C[t-1J)AG,,-, ('T7 -T) (DZ(Gv)0Av*/Wxtv-/WA) - H (O) AG, (GrH)
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EXtT (T,-)~ H*HxGm( GrH)

Proof. Let I- be the subgroup of G(C[t-1]) of elements that are in B- when t -+ 00.

Consider the spectral sequence associated to the filtration of GraG by I--orbits. By

Theorem 5.3.5 of [KT], the stalks of T satisfy parity-vanishing, so this spectral sequence

degenerates. Via X*(TN) ~ X,(TH), the I--orbits where Y is non-zero correspond

exactly to the corresponding orbits in GrH, and by [KT] (5.3.10), so do the degrees

of the stalks/costalks. Therefore Ext*(:T, T) is computed by the same (degenerate)

spectral sequence as H*(GrH), and in particular is isomorphic to H*(GrH) as a graded

vector space. Note that according to [GI], the latter is a polynomial algebra in variables

whose degrees are twice the exponents of O)N.

We now argue exactly as in [BF] 3.1. We have two morphisms pr*, pr : (.(t)7/W) -+

ExtG(C[t-1])AGm(T, ), and a morphism pr* : C[h] -4 ExtG(C[lt-])Gm(Y, T) We claim

that pr*I=O = pr; a~o. To see this, note that the parity vanishing of _T implies par-

ity vanishing of Fxt(,T, Y), so the latter is equivariantly formal, so EXtT(Y,Y)

EDExt*(Xo; Y-T) = EPAHTxGm(A). By [BF] 3.2 (which is doesn't depend on their

3.1), the left 0(t)*)-action and the right 0(t)*/W)-action on HTxGm(A) commute when

h = 0, which proves the claim.

The claim implies that the morphism (pr*, pr*, pr*) factors through a morphism a:

(Dz(Gy)(Ntv-/Wxtv*/WA) -+ Ext*(C[t-1])AG(T, I . Since the localization

C : (DZ(Gy)O9(NVp/wXt*/wA) Oo(ty*/WxA1) Frac(O(tv* x A'))

- Ext*(C[t-1])AGm(3,:;3) (0(tv*/WxA1) Frac(O(tv* x A'))

is injective, so is a. Since ExtG(C[t-1])AGm (Y, Y) has the same graded dimension as

H O)A.(GrH), which by [BF] 3.1 has the same graded dimension as DZ(G)O(Ntv/wxty/WA),

16
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a is an isomorphism. The second statement of the theorem follows by tensoring both

sides with 0(t'*) over (9(t*/W). El

Remark 2.2. Notice that if G' is not adjoint, Ext*(T,:T) looks like the cohomology of

a disconnected space, even though GraG may be connected (e.g. for G = SL 2 , N = 2).

One we to see this as is follows: by parity vanishing, the sheaf E xt(Y, T) is equivariantly

formal in the sense of [GKM1], hence its cohomology embeds into the its cohomology

restricted to the fixed points, and further Ext*(Y, T) is defined as the kernel of the

boundary map to X 1 , the union of 0- and 1-dimensional orbits. The components of X1

are labeled by Z(G'). This is why we have to take a direct sum in the definition of T.

2.2. Fiber functor and canonical filtration. We first recall the fiber functor of

Finkelberg-Lysenko. The N_(X)-orbits on GraG are indexed by A E X,(T). We denote

the orbit through A by J,\ We will only need to consider A E X*(TN) C X,(T). Write i\

for the locally closed embedding of J\ into GraG, and p : JA -+ p-'(A). For A E PervN,

let F\(A) be the stalk of pA!iZ*(A) at A. If j, is the inclusion of A into J\, then by

the hyperbolic localization theorem of Braden [Br], F\(A) = j*i!(A). The Finkelberg-

Lysenko fiber functor is defined by F = EDAFA.

Each N_(X)-orbit is contained in a G(C[t-'])-orbits, so _T is constant along these

orbits with 1-dimensional stalks. Using the filtration by N (X)-orbits, one sees that

F(A) = Ext*(T, A,). This proves

Theorem 2.3. (Forgetting the grading), the functor Ext*(Y,-) coincides with the fiber

functor F.

By definition, there is a natural action of 0(t'* x t)*/W x A1 ) on ExtrxGm(T A),

and for A = A, this action factors through the diagonal morphism

(9(tv,*/W x t'*/W x A1) -+ (Z(G)(9(Nvp/WXt7/WA) ~ ExtTxGm( 3
Y7,)
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Let r: *-+ t*/W denote the projection. Thus (wr*, Id, Id) is the natural map from

G- to T-equivariant cohomology. Let 1A C tv* x tv* x A' be the subscheme defined by

the equation x 2 = x, + aA.

Following [BF] 3.2 we define the canonical filtration on ExtixG (Y, A) for any A E

PervN. Let %A be inverse image under p of the semi-infinite N ('K)-orbit through A.

We filter ExtG (,T, A) by the closures of %,. The associated graded of this filtration

is

(D Exti,TxGm(TA)
AEX* (TN$)

Let i\ be the locally closed embedding of %A in GraG, and jA the embedding of p 1 A

in A. Then

ExtTAxGm(, A) = ExtG FA(A)

On p-1 A both j*i*, and j*i!A reduce to LC, and EXtxGm (j.i*'*,, j*ilA) e H~xGm (A)

(Id, 7r, Id)*O(EA) by [BF] 3.2. If A = S(V), where V is a representation of Gv, then

FA(A) is the A weight space of V, which we write VA. This proves

Lemma 2.4. For V E Rep(Gv), the (9(tv* x (tvN*/W) x A 1)-module ExtxGm( AA)

has a canonical filtration with associated graded ED(Id,,r, Id)*O(]FPA) OVA, in particular

ExtxG.(,T, A,) is flat as an 0((TN x A 1)-module.

This canonical filtration is compatible with the restriction to a Levi subgroup. Let M

be a Levi subgroup of G, and M$ corresponding subgroup of Gv by [FL]. Let PT4 be the

parabolic subgroup of G generated by M and B-, and let rUM t*/WM -+ tv*/W be the

projection. Let XM (T) c X* (T) be the coweights of T that are dominant for M. This

set indexes the Pp-orbits on GraG, and the oribts which admit an M(O)-equivariant

local system with monodromy C are indexed by
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X*+(T ) :={A E X+m (T)Idt(A) E NX*(T)}

Let JM,A denote the P, -orbit through A, and pA : JM, - Gram the natural projec-

tion. Now (7rm, Id, Id)*Extxm (3T, A) = Ext*XG (Y, A,) is filtered by the JM,A, with

associated graded

0 EXt'MA,MxGm(T7S(V))
AEX-(TN )

(D Ext' x(Gram p
AEX* (TN$)

(Id, 7rm, Id)*Ext',IxG (GraM, SM(VMv))

The following are proved exactly as in [BF] 3.4 and 3.5.

Lemma 2.5. The canonical filtration is compatible with restriction to a Levi subgroup.

Lemma 2.6. The canonical filtration is compatible with the tensor structure on Ext', ( -)

given by convolution.

2.3. The rank one case. We begin by recalling some results of Goresky-Kottwitz-

Macpherson. In [GKM2], which was the inspirationfor our argument, they use the

localization techniques of [GKM1] to study affine Springer fibers. Their proofs involve

a detailed study of the rank one case.

Lemma 2.7. (5.12 of [GKM2]) The union of 0- and 1-dimensional orbits of T on GrG

is

X1= GrG

If a, E (b+ and a 4 3, then GrGa U GrG, = X,(T).
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Lemma 2.8. (6.4 of [GKM2]) Let G = SL(2). For any two A, f E X,(T), there exists

a unique 1-dimensional T x G,-orbit (,,, which connects them. These are all of the

T x Gm in GrG.

We apply Lemma 2.8 to the rank one case, but first we explain another way to

compute ExtT(3,Y). Let i : Xo -+ GraG denotes the union of the fibers over the

T-fixed points and j : X1 -+ Gra0 denote the union of the fibers over the 0- and 1-

dimensional orbits. By a parity vanishing argument, Ext(, T) is equivariantly formal

in the sense of [GKM1I. Therefore we have an exact sequence

0 -+ ExtT(5,7) -4 EXtx,TxGO XG(j* ,j!1) -+ ExtxTTxGm(j* TJ1T)

For a given A E X*(TN) = X*(TH), i jY is a local system of rank one. By Lemmas

2.7, 2.8 there is a unique one-dimensional orbit connecting each pair of fixed points

A and y on GrG. Let t)* be the lie algebra of the stabilizer of such a connecting

orbit. The above exact sequence says that ExtT(37,) is the subalgebra of functions in

(fx) e C [tv* , h] 9 C, such that fftc[t , ] = lc[ for all pairs A, ft. One can see

that this argument applied to GrH gives the exact same answer.

We now assume that G has rank one, so Gv does as well.

Lemma 2.9. Ext* G (T, An) ~_ HTHXGm (A) as (9(t* x tvN* x A')-modules in a way

that is compatible with the canonical filtrations on each. This isomorphism intertwines

the actions of ExtT(TY) and HTH XGm (GrH).

Proof. Using a filtration and parity the vanishing of stalks, one sees that Ext*(T, An)

vanishes in odd degrees, hence the sheaf Fxt(, An) is equivariantly formal. Let i :

Xo -+ GraG denotes the union of the T-fixed points and j : X 1 -+ GraG denote the

union of the 0- and 1-dimensional orbits. Applying (6.3) of [GKM1] gives

0 -+ Ext;Xtn (T, An) -+ ExtO,TxGm (i*Y, i'An) - Exti, (j* j!An)
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Here the middle term is equal to (D<,, [TN]IV9 , and the last term by Z3 <i n 0 (t*j)(

Ci, where tv* is the Lie algebra of the stabilizer of a 1-dimensional orbits between points

over i and j. Here i runs over the weights of the representation Vn of Gv, and V' is

the corresponding one-dimensional weight space. We can write down the corresponding

exact sequence for H

0 -+ HTHxGm(A) -+ HXOH,TXGm(i'An) - HxH,TxGm(jn)

Here the middle sequence is also given by e 0n0[tv*] 9 V', and the last term by

eyjisnO(tV*i ) 0V', and we can canonically identify the middle and last terms of these

two exact sequences as 0(ty* x A 1 )-modules, as well as the boundary between them.

Equating the kernels of the boundary maps, this allows us to identify ExtG' (, An)

and HTxGm(A ) as 0(tv* x A')-modules, where the action is via (ir*(pr*),pr*). A

similar argument, considering GraG as a left quotient by G(O) shows the same where

the action is via (7r*(pr*), pr*). Thus we can identify ExtxGm(, An) and HT xGm(A')

as filtered 0(tv* x tv* x A1 )-modules without passing to the associated graded. In

particular, it implies that if s is the non-trivial element of W, the action s on the

associated graded of the canonical filtration coming from GraG is the same as the action

coming from GrH. Since the actions of ExtT(Y,Y) and HTxGm(GrH) are determined

by the action of ((tv* x tv* x A1 ), these actions also coincide.

Remark 2.10. The proof of the above lemma relies on the fact that the stalks of An,

A' are one-dimensional. In general we know that the stalks of both A, and A' at p

have the same dimension as the p weight space of V, but we don't have a natural way to

identify the stalks themselves. If we can define a Hopf algebra structure on Ext*(3, T)

and show that this Hopf algebra is isomorphic to the enveloping algebra of the centralizer

of a principal nilpotent in gv, one can use the Brylinski filtration to canonically identify

the stalks of A, and A'. It should be possible to do this using the Beilinson-Drinfeld
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Grassmannian. Another possible approach to the general case might be to use Lusztig's

canonical basis of the representation V, combined with it geometric realization in /BG].

2.4. Comaprison of Ext groups. Following the method of [BF] section 6, we deduce

the general case from the rank one case.

Theorem 2.11. We have a natural isomorphism of the 0(t'*/W x /ty*/W x A')-

modules Ext*G .(J,AA) and H(O)yG (A') that preserves the canonical filtrations and

induces the identity on the associated graded pieces.

Proof. We follow [BF] Theorem 6. We have

(7r, Id, Id)*ExtGxGm (,A) (90(tv*xAl) k(tv* x A') =

gr(ir, Id, Id)*ExtGxGm (,A) 0 0(tv*xA1) k(tv* x A') =

ED(Id, 7r, Id)o0(rA) (A V 0(tv*x Al) k(tv* x A') =
A

gr(7r, Id, Id)*HTHXGm(AI) 0(V*xAl) k(tv* x A') =

(7, Id, Id)*HT xGm (A') O(tv*xAl) k(tv* x A')

By Lemma 2.9, and compatibility with Levi subgroups (Lemma 2.5), the action of

simple reflection s E W on

(Id, 7r, Id)*O(FA) OA V @0(tv*xA1) k(tv* x A')
A

coming from

(7r, Id, Id)*ExtGxGn (7, A) 0Q(tv*xAl) k(tv* x A1 )

is the same as the action coming from

(7, Id, Id)*HT x G,(A') (0(tv*xA1) k(tv* x A')



SOME RESULTS RELATED TO THE QUANTUM GEOMETRIC LANGLANDS PROGRAM 23

hence we have a naturally defined action of W.

Recall the submodule nfw(Mo) C EA(Id, 7r, Id)* (9 () ( (XV) Q0(tv*xA1) k(tv* x A').

By [BF] 5.2 (7) nrw(M.) contains (r, Id, Id)*HTHxGm (A')QO(fv*xA1) k(tv* X A'), so by

Lemma 2.9 it also contains (7r, Id, Id)*ExtGxGm (-TA 0A(tv* xAl) k(tv* x A'). By [BF],

any section of ncew(Ma) is regular away from a codimension 2 subvariety. By Lemma

2.4 and [BF] 3.3, both (7r, Id, Id)*Ext*XG (T, A) and (7, Id, Id)*HTHxGm (A') are flat

0(tv* x A')-modules that equal nOw(Ma) after tensoring with k(tv* x A'), hence both

are in fact equal to nOw(Ma).

2.5. Purity and the derived category. Using a Gm-action, one may show that the

Ax are pointwise pure (see e.g. [KT], remark preceding Theorem 5.3.5). Recall the

following "adjunction" formula from [FL]

Ext*(A, * A2 , A 3 ) ~ Ext*(A,, A 3 * Av)

Taking A, = A0 (corresponding to the trivial representation of Gv), A 2 = A,, and

A 3 = A, we have

Ext*(A, A,) ~ Ext*(Ao * A,, A,) ~ Ext*(Ao, A,, * A) ~ (Ext*(Ao, A,) 0 V(v)

for some multiplicity spaces V(v). The pointwise purity of the Av at 0 then implies

that Ext*(AA, A,,) is pure. To extend this to T x Gm-equivariant Ext's, let P be finite

dimensional approximations to the classifying space of T x Gm, so that we have ind-

varieties P2GraG fibred over P with fiber GraG such that PA be the sheaf on PGraG

giving the equivariant structure on A. By defining a suitable Gm-action, one can show

the sheaf PA is also pointwise pure. By definition,



BHAIRAV SINGH

ExtXGx(Ax, A,) = lim ExtG (PiA , PA)+ ira 0

We have a corresponding 'adjunction' formula on each PiGraG, due to the degeneracy

of the Leray-Hirsch spectral sequence, which allows us to prove purity by the same

argument in the equivariant case.

We now turn to the computation of ExtixG (A,, A,). We have a canonical map

a : ExtixG (A,, A,) -+ Hom*Et (,7)(ExtxG, (T, A,), ExtixG (T, A,,))

Theorem 2.12. a is an isomorphism of graded vector spaces.

Proof. Let # be a composed with the natural inclusion

Hom*EXtT( ,T) (Ext;x G (,T, A,\), Ext;x G,,(T, A,)) " Hom e (Ext x Gm (-T, A,\), Ext x G..(-T, AO))

Consider the filtration given by I-orbits indexed by p, along which A, is locally

constant. By parity considerations this spectral sequence degenerates. Suppose we have

f E ExtyGm (A,, A,,) such that #3(f) = 0. Since the spectral sequence degenerates, for

each p we have

0 = (ip,,if) E Hom (Extm (T, ipilA,), ExtGm (,' iP'i At))

Since each orbit p contains at most a single fixed point, this implies that 0 = i f E

Ext>G ,,(*A, ii Aj,). By induction on the filtration as in [BGS] 3.4.2, we conclude

that f = 0, so # and hence a is injective. To see that a is surjective, it suffices to note

that both sides have the same graded dimensions:

24
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By [L2], Ext*(A, A,) = Ext*(Ao,A) and Ext*(A', A') = Ext*(A',A') have the

same graded dimensions, so by equivariant formality ExtxG, (A\, A,) and ExtH xG G ' (Al A)

do as well.

By Theorem 2.11

HomEXtT(,_) (EXt xGm (T, As), Extixam(, A,,)) Hom*H xm (HTH x m (A'), HTH xGm (A'

and by [BF] we have

EXtH XGm (A,) ~ Hom*THxGm(GrH)(HTHXGm(A), HH xGm(A'))

Putting these together gives the desired equality of graded dimensions.

Corollary 2.13. ExtXGn ( A,, A,) and ExtHxGm(A',A') are canonically isomorphic,

and respect the composition of Ext's.

Proof. The isomorphisms

ExtGx,,(A,\, A,) ~ Hom'EXtT (7 (ExtxGn (-T, A,\), ExtxGm(-T, Att))

~ Hom* (HTH xGm (A), HTH XG (A)) ~ ExtiHXGAtA%

are all canonical. The first and last isomorphisms respect the composition of Ext's by

functoriality. The middle isomorphism respects the composition of Hom's by Theorem

2.11. El

We can now prove Theorem 1.4.

Proof. (of 1.4)

Let P, be the endomorphism algebra of the sum of the simple objects of D b,C (GraG)G(O)tGm

over <t A. Let E' be the corresponding algebra for D bO>l (GrH). The above that



EA ~ E'. Let D" O)G (GraG)A be the sub triangulated category of objects supported

on orbits < A. By the purity of the equivariant Ext groups, and Proposition 6 of [BF],

we have a natural functor D\ : D,,f(E,) -+ D ob( (GraG) A that sends the free

module to the EDAA,, and induces and isomorphism on Ext groups by Theorem 4.10,

4.11, so D is an isomorphism. An identical argument for F', and taking the direct

limit over A gives

D (GraG) ~_ lim Dp,, (E,\) ~_ lim Dr,.((,') ~- DG)G(G )~ D- y(Uh)

It remains to show the compatibility of the monoidal structures. By [BF] Proposition

7, Remark 2, this follows from the fact that functors from 2 (resp. 3) to the con-

volution (resp. triple convolution) space given by [BF] Proposition 6 are given by the

twisted external product of D, which in turn follows from [BF] Proposition 6, Remark

3.

Similar arguments give the result for D b,(GraG).

2.6. Quantum geometric Langlands duality for P. Let Gv be the dual group of

G. Let M be an integer relatively prime to N. Let (' be an (2Mh/d)h order character,

and let PervM be defined exactly as PervN, but with GV and M replacing G and N.

Here, h is the dual Coxeter number of GV, which is just the Coxeter number of G. Let

(Gv)M be the twisted dual group of Gv. Suppose that (Gv)M = G)(. Then by [FL]

and Theorem 3.4 respectively

PervN -_ PervM

DG()(GraG) ~ DGV( 0)(GraGv)

Furthermore by the argument of [La], the latter can be used to show that

26 BHAIRAV SINGH
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DC(BunG(PIl)) DC'(BUnGv (P 1))

According to the quantum geometric Langlands conjecture (see [Sto]), not only should

this equivalence be true, but it should be be realized by an explicit kernel on GraG X

GraGv. It would be a very interesting problem to find this kernel (the author would

like to Sergey Lysenko for pointing this out).

2.7. Factorizable structure of T. The purpose of this section is to indicate a possible

for generalizing the results of [Gi] the the twisted setting, which would allow one to

imitate the proofs of [BF] and [ABG] directly. We will not give detailed proofs in this

section, nor will we use it later.

Let -T be the sheaf defined above. We would like to put a Hopf algebra structure on

Ext*(T, T). To do this we need a factorizable version of the 'thick' Grassmannian (see

[Zh]). We note that the determinant line bundle is factorizable [FL].

Let GrG,A2 -+ A 2 be the Beilinson-Drinfeld (factorizable) Grassmannian whose fiber

is given by GrG over the diagonal A and by Gr 0 x GrG over A2 \A, and ir : GraGA2 -+ A2

its base change to GraG.

Let GA2 be the group scheme over A2 classifying {Xi, X2 ) E A 2 , a}, where a is an

automorphism of the trivial principal G-bundle restricted to the complement of f{1, X2}

in A1 . Using the action of 92 on GraG,A2 one can define 3 a factorizable analogue of

the sheaf T. Let 9 be the sheaf Ext(3T, VA). Then 7r.9 has stalks Ext*(T, ) at points

of A, and Ext*(T, ) x Ext*(Y, 3) at points of A 2 \ A. The cospecialization between

these stalks gives a comultiplication map, and this can be shown to give Ext*(Y, ) a

Hopf algebra structure.

3. DESCRIPTION OF THE TWISTED IWAHORI-EQUIVARIANT DERIVED CATEGORY

3.1. Recollection of [ABG]. In this section we recall the equivalence Dbert ",(Gra) -

Dw(N) in some more detail. Recall that the left hand is the bounded derived category
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of perverse sheaves on GrG that are smooth along the stratification by I orbits. The

right hand side is a certain DG-enhancement of of the G-equivariant bounded derived

category of coherent sheaves on N (see [ABG] 3.2). Note that in [ABG] the roles of G

and Gv are reversed.

For a DG-algebra A with the action of GV, we let DGMV f(A) be the category of

differential graded A-modules M such that the GV-action preserves the grading and

commutes with the differential of M, and such that H'(M) is a finitely generated

H*(A) module. We let Dfv(A) be the triangulated category obtained by localizing

DGMV G(A) at quasi-isomorphisms.

As a corollary of the proof in [ABG], there are equivalences ([ABG] (9.7.6), Theorem

9.1.4)

DSchubert(GrG) ~ Df (E(1, 1)) ~ Dcjh(N)

where E(1, 1) is a certain DG-algebra built from the Ext groups between perverse

sheaves on GrG. Our strategy will be to definite an analogue of the functor from the

twsited version of Dchubert(GrG) to Dv(E(1, 1)). The fact that we land in DG-modules

over the same algebra will follow from the comparison of Ext groups in the first half.

We will not need to work with the dual nilpotent cone directly, but we will sometimes

mention it for motivation. We will switch notations below and use the groups G and

H on the perverse side, and G' on the coherent side.

3.2. Definitions and Notations. Recall that GraG is the punctured total space of

the line bundle det over GrG. Recall the Iwahori subgroup I c G(0), defined as the

preimage of B under

t - 0: G(O9) -+ G
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The affine flag variety of G, FIG is the ind-scheme whose C-points are G(X)/I. Let

Wa1 1 be the extended affine Weyl group of G, and let W be the finite Weyl group. Then

under the left action of I, FIG decomposes into orbits indexed by w E Waf. The orbit

corresponding to w is an affine space of dimension f(w). There is a natural projection

p : FIG -4 GrG with fibers isomorphic to the finite flag variety G/B. We can pull back

det under p to get a line bundle on FlG. Let FlaG be the punctured total space of this

line bundle. By abuse of notation we will also use o to denote the projection from FlaG

to GraG.

The stratification of GraG by I-orbits, the Schubert stratification, gives a refinement

of the stratification by G(O)-orbits. The I orbits are affine space labelled by elements

A E X*(T). The G(O)-orbit containing the I-orbit corresponding to A corresponds to

the unique dominant coweight in the WO-orbit of A.

We now recall some results of Lusztig [L2] about perverse sheaves constructible along

the Schubert stratification of GraG, which are (Gm, Z)-equivariant along the fibers of

det. Lusztig works with the affine flag variety, but his results apply to our situation. The

orbit 0,\ admits a unique (up to isomorphism) (Gm, Lc)-equivariant local system of rank

one ZC. Let 3 , be the Goresky-Macpherson extension of of ZC. For another coweight

p, Proposition 5.4 of [L2] implies that the stalk of 93 at p vanishing if A + X*(TN) $

p + X*(TNV).

Consider the category of (Gm, Lc)-equivariant perverse sheaves on GraG constructible

along the Schubert stratification. Let PervC(GraG) be the subcategory of sheaves 3,

such that simple subquotients of 3 are of the form 3 A, A E X*(TN). By the above

vanishing, it splits off as a direct summand.

3.3. The Regular sheaf. Let (e, h, f) be a principal S12-triple in gv. By Theorem 2.1

and [ABG] Corollary 6.5.4 we have that

Ext*(, 3') ~ H*(GrH) ~ U((cV)')



BHAIRAV SINGH

are isomorphisms of graded algebras, and that the grading on V = Ext*(,~, AA)

corresponds to the eigenvalues of the action of h on V.

Consider the Ind-object of PervN corresponding to C[G'] = EDAV\ 0 V* under the

twisted Satake equivalence, namely

'Z := EX(T)A 9 V*

Let 1 = A 0 . Right translation by an element of G' gives an action of Gv on C[G ,

and hence by the twisted Satake equivalence an action of 'R, and hence for any A, 3 an

action on Ext* (A, 3 * 'Z).

The multiplication map m : C[G] C[Gv ] induces a map, which by abuse we write

m : 'R -+ 'Z. We define a graded algebra structure on Ext*(1, R) exactly as in [ABG]

7.2:

Let x and y be elements of Ext*(1, 'Z) considered as "derived morphisms" in DbPervC(GraG)

of degrees i and j. Then y - x is defined as the composition

1 4 Z[j] = ('R * 1)[j] *r) [ij] 4 +

Let N be the nilpotent cone of gv and N the Springer resolution.. Recall that H

denotes the Langlands dual group of Gv. Then Theorem 4.10 implies that

Ext* (1,'9Z) ~ Ext* (1H, 7 H)cC[N

by [ABG] 7.3.1. Here we have used the indentification of Yoneda Ext's from Section

4, as well as the identification of m with mH (since both come from the multiplication

map on C[G].

3.4. Wakimoto sheaves and an Ext algebra. This section restates several defini-

tions and results of [ABG] 8 in the twisted setting. We will omit many proofs in the

cases that they are completely identical to those [ABG].

30
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Let FlaG be the pull back of det to the affine flag variety of G. Let I be the Iwahori

subgroup of G(O). The I orbits on FlaG are paramterized by the extended affine Weyl

group = X,(T) x W. Let jw be the includsion of the corresponding orbit, which is

isomorphic to a f(w)-dimensional vector space.

Let 4E be a (Gm, £C)-equivariant rank-one local system on the I-orbit corresponding

to w. For w E WN define Mw = jw!£4[f(w) + 1] and M- = jw.C [f(w) ± 11. Since jw is

affine, Mw and Mv are perverse. For A E X*(TN), write A = p -v with p, v E X* (TN)

and define

WA = Mv * M

This definition does not depend on the choice of [t and v.

Theorem 3.1. (I. Mirkovic)

W\ * WA = W\+,

For a proof see [ABGJ and [AB]. While the work in the non-twisted setting, the proof

carries over immediately.

Notice that for any A E DI(GrG), W,\ * A E DI(GrG). For any A 1 ,A 2 E DI(GrG),

we define

E(A1,,A 2) = (DAEx(TXv)Ext*(A1, WA * A 2 * R)

We will be particularly interested in

E(1, 1) = (AeX (Tv)Ext*(1, W * 'R)

Using an analogous construction to the previous section, and Theorem 3.1, one can

give E(1, 1) a graded algebra structure. For A E X*(TN)

W-, * 1 = g*W-A = o.M-A = A[-l(w)]
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Since (W- *WA) is the identity functor, (W-*) is an equivalence of categories hence

preserves the Ext groups, and we have

Ext*(1, W * 3Z) = Ext*(W- * 1, W-, * WA * JZ)

= Ext*(W-A * 1, 9R) = Ext*(AA[-(w)], 9)

Now for any A

Ext*(A-_\, A) = Ext*(p- 1 (-A); LC, iLA A[l(w) + ht(A)])

So

Ext* (1, WA * R) = Ext.+ht(A) (p-1 (A);Z £C,!_A[ht(A)])

Here, ht(A) = height(A). By the results of the first part, this last group is isomorphic

to

H.+ht(A) (GrH; iH,_YARH)

It remains to check that the resulting isomorphism on E is compatible with the

product map: From Lemma 2.11-2.13, it follows that the isomorphism

Ext.9+ht(,\) (- 1(A); L, i!_ A[ht (A)]) ~ H.P+ht(A) (Grff; i ,A')

where A E PervN and A' E PervH(O) (GrH) correspond to the same representation of

G)(, is compatible with the product map. Then we can conclude as on [ABG] pg. 55.

Recall Theorem 2.11. By taking a direct limit we an isomorphism

Ext'(,, A) c- H*H(A')
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that is compatible with the canonical filtration. Specializing C[T] to a regular

element t, gives, by the localization theorem

(DExt*(p-'(A); Z C, i-,\A) ~- Ext*(_, A) ~_ Ht*A)~ex,(l'

which identifies the A-graded pieces, which are now filtered (but not graded) by

degree). Taking the associated graded of this filtration on each A-graded part gives the

desired identification, which by Lemma 2.6 is compatible with the product structure.

This combined with [ABG] 8.7 proves

Theorem 3.2. Let E(1H,1H) ~ (DAEX+(THExt*(1H, W ® IRH). Then we have an

isomorphism

E(1, 1) ~ E(1H, 1H)

3.5. The comparison. In this section we recall some constructions from [ABG] section

9.

Let PervcShubert(GraG) be the category of perverse sheaves that are constructible

along the pullback to GraG of the Schubert stratification, which have finite dimensional

support, and which have Gm-monodromy LC. Recall the full subcategory PervC(GraG).

The goal of this section is to prove Theorem 1.5., which states

4PervC(GraG) ~ Perv(GrH)

The idea is to realize both categories (more precisely their derived versions) using

dg-categories of modules over certain algebras. These algebras will turn out to be

E(1, 1) and E(1H, 1H) respectively. By the calculation in the previous section, these

algebras are isomorphic. This was raelization was given for Perv(GrH) in [ABG] 9.7.6

and Theorem 9.1.4. Below we will repeat their construction (which is more or less

identical) for PervC(GraG). Since many of the proofs translate verbatim, we will omit

many details, and refer the reader the the corresponding sections of [ABG]. A priori,
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we don't know that the map from DbPervC(GraG) is an equivalence, but we will show

that it is fully faithful, and that the images of of a set of generating objects for both

sides coincide, which is enough to conclude Theorem 1.5.

The proof of [BGS] Corollary 3.3.2 adapts to give

Exterv((Gra) (A1 ,A 2 ) - Ext*,b(Gra) A1, A2)

We also have

Lemma 3.3. ([ABG] Lemma 9.3.4) Any A E PervC(GraG) is a quotient of a projective

pro-object P

Let D,,0 ,(GraG) be the full subcategory of the homotopy category of complexes

C= (- -+ C -+ C+ 1 
-... ) in limp,, PervC(GraG) such that C' = 0 for i >> 0 and

Hi(C') = 0 for i < 0.

Theorem 3.4. ([ABG] Corollary 9.3.8) The natural functor E: D,(Gra) -+

DbPervC (GraG), induced by the natural functor from the homotopy category to the de-

rived category, is an equivalence.

By Lemma 3.3 we have a projective resolution

... P-1 -+ P0 -- I

Define P = Ei<OP'. P is a projective pro-object in PervC(GraG. Using the differen-

tial in the resolution, we can consider P as a dg-object quasi-isomorphic to 1.

Theorem 3.5. (Lusztig [LS]) For any Schubert-constructible perverse sheaf A on GraG

with Gn-monodromy £C, and any A 0 E PervN, A * A 0 is perverse

Proof. One can check that the proof of [L3] carries over to the twisted case. 0
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Lemma 3.6. ([ABG] Lemma 9.3.6) For P1, P2 E lim,,.oj Perv (GraG), A, p E X*(TN)

Exe (P,WA * P2 * At) = 0

for n # 0.

By Lemma 3.6

E(P, P) =D (Ext 0 (P', W\ * Pi * R)
nEZ {(ij)EZ2 i-j=n,AEX(Tv)}

Let

E"(p, p) =D Ext0 (P', WA * Pi * R)

{(ij)EZ2 i-j-n,AEX*(TN)}

The map d : En(P, P) -+ En+1(P, P), defined by taking the commutator of an

element of En(P, P) with the differential of P*, gives a differential making E(P, P) into

a dg-algebra

Theorem 3.7. (ABG] Proposition 9.5.2) The dg-algebra is formal: it is quasi-isomorphic

to E(1, 1) with zero differential.

The proof is that of [ABG] verbatim, but we should remark that we are surpressing

a lot of detail: one has to introduce a mixed version of of the category Perv(Grac),

and use the additional grading on the Ext groups combined with a purity argument to

deduce formality. Since this would force us to introduce a lot of extra notation without

any original arguments, we refer the reader to [ABG] Section 9 for the details.

Let ModGvN(E(P, P)) be the category of G'-equivariant (via the Gv action on 'R

defined above) algebraic E(P, P) modules, and let Comp GN (E(P, P)) be the homotopy

category of finitely generated G'-equivariant algebraic differential E(P, P) modules.

We make the same definitions for E(1, 1).
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Consider the map

C F-+ E(P, C) : Dp,,o(GraG) -+ CompGvN(E(P, P))

This defines a functor Dpj (GraG) -+ Comp GvN(E(P, P)).

By Theorem 5.7

CompGN(E(P, P)) ~ CompG (E(1, 1))

We have a natural functor

Comp N (E(1, 1)) - Df (E(1, 1))

Now define x as the composition

x : D j,, (GraG) ~ Do (GraG) _+ CompGvN(E(P, P))

~ CompGN(E(1, 1)) -* Df (E(1, 1))

The corresponding functor

XH: DbPerv(GrH) - DbModGvN(E(1H, 1H)) DbModGvN(E(1, 1))

was defined in [ABG Section 9.

From [ABG] 9.7.5, we know that XH is an equivalence. A priori, we don't know that

x is an equivalence, but it is enough for out purposes to show that X is fully faithful

and that the images of x and XH coincide.

Let XH be the set

XH :{H*W', VA 0; W' * A', Vp E X* (TN), A E PervH(O)(GrH)}

36
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According to [ABG] Lemma 9.8.4, the smallest triangulated subcategory in DbPerv(GrH)

that contains XH is the whole DbPerv(GrH). If we define

X := {p*WA, VA 0; W/ * A, Vp E X* (TNv ), A E PervN}

then the same holds for DbPervC(GraG)-

Lemma 3.8. ([ABGJ Lemma 9.8.8 (i)) Ext*(1, gW\) = 0 for A 0.

Proof. Recall that WA is an equivalence for any [ E X* (Ti). Take p such that both p

and and A are anti-dominant, so that 1,W = j,, and gW,+A = ,+,!+. For y

sufficiently anti-dominant, Gra" % Gra'+A, so that = 0. Then

Ext*(1, gpWA) = Ext*(W,, .W,+\)

= Ext*(j,,!f-, j,+A,! 1) = j!j,+=,!, = 0

The analogous result for W' is [ABG] Lemma 9.8.8 (i), so these Ext groups agree.

The equality of Ext's for W, * A (pu E X* (TN), A E PervN) follows from the argument

of 3.4:

Ext*(1, W,\ * R) = Ext.+ht() -1(A);C(,i!_\A[ht(A)])

H.+ht()(GrH; -,_ A') = Ext*(1H, W'A * JZH)

Now consider the map

a := XH o x: DbPervC(GraG) -+ D6Perv(GrH)

The proof of [ABG] Proposition 9.8.1 shows that for any '3 E DbPervC(GraG) and

V E Rep(G))
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a(WA * A * S(V)) = W'L * a(A) * SH(V)

and a(1) = 1 H. Combined with the above, this shows that a sends a set of gener-

ating objects X to a set of generating objects XH, and for any A E X, Ext*(1, A) ~

Ext*(a(1), a(A)). Now let 3 E DbPervC(GraG) be arbitrary, and let p E X*(TN). Since

X generates DbPervC(GraG), Ext*(1, W, * 3) ~ Ext*(a(1), W'a(3)).

Now since a takes W,* to W',*, and both are equivalences of categories, we get

Ext* (W,, 7 3) ~ Ext*,(W',, 7a (B))

for arbitrary p and 3. Finally, since W, and W' generate their respective categories

as p runs though X*(Tv), we get that

Ext* (A, B) ~_ Ext* (oz(A),7 a(93))

for arbitrary A, 3. This proves that a is fully faithful. Since we already showed

that a sends a generating set to a generating set, a is an equivalence of triangulated

categories. This proves

DbPervC(GraG) ~ DbPerv(GrH)

Proof. (of Theorem 1.5) It remains to show that the equivalence of trangulated cate-

gories is compatible with the perverse t-structures. For A E X* (T), let DbPervC(GraG)A

and DbPerv(GrH)A respectively be the full triangulated subcategories of objects sup-

ported on GraG,A and GrH,A respectively. Then we have an equivalence

D bPervC(GraG)A ~ D bPerv(GrH)<A

38
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We also know that a sends Ax to A'. This shows that the conditions of [ABG

Lemma 9.10.5 are satisfied, so the compatibility of t-structures follows from [ABG]

Lemma 9.10.6.

REFERENCES

[ABG] S. Arkhipov, R. Bezrukavnikov, and V. Ginzburg. Quantum groups, the Loop Grassmannian,

and the Springer resolution. J. Amer. Math. Soc. 17:595-678, 2004

[BF] R. Bezruakvnikov and M. Finkelberg. Equivariant satake category and Kostant-Whittaker re-

duction. arXiv:0707.3799

[BGS] A. Beilinson, V. Ginzburg, and W. Soergel. Koszul duality patterns in representation theory.

J. Amer. Math. Soc. 9(2):473-525, 1996

[Br] T. Braden. Hyperbolic localization of intersection cohomology. Transformation Groups 8(3):209-

216, 2003

[FL] M. Finkelberg and S. Lysenko. Twisted geometric Satake equivalence. arXiv:0809:3738

[G1] V. Ginzburg. Perverse sheaves on a loop group and Langlands' duality. arXiv:alg-geom/9511007

[G2] V. Ginzburg. Perverse sheaves and Cx actions. J. Amer. Math. Soc. 4(3):483-490, 1991

[GKM1] M. Goresky, R. Kottwitz, R. MacPherson. Equivariant cohomology, Koszul duality, and the

localization theorem. Invent. Math. 131:25-83, 1998

[GKM2] M. Goresky, R. Kottwitz, R. MacPherson. Homology of affine Springer fibers in the unramified

case. Duke Math. J. 121(3):509-561, 2004

[KT] M. Kashiwara and T. Tanisaki. Kazhdan-Lusztig conjecture for symmetrizable Kac-Moody al-

gebras III: positive rational case. arXiv:math/9812053

[Ku] S. Kumar. Infinite Grassmannians and Moduli spaces of G-bundles. In Vector Bundles on Curves

- New Directions Springer Verlag, 1997

[LI] G. Lusztig. Singularities, character formulas, and a q-analogues of wieght-multiplicity. Astrisque

(101-102):208-229, 1993

[L2] G. Lusztig. Monodromic systems on affine flag manifolds. Proc.Roy.Soc.Lond. (A) (445):231-246,

1994

[L3] G. Lusztig. Cells in affine Weyl groups and tensor categories. Adv. in Math. 129(1):85-98, 1997



40 BHAIRAV SINGH

[La] V. Lafforgue. Quelques calculs relies a la correspondance de Langlands geometrique sur P'.

preprint

[MV] I. Mirkovic and K. Vilonen. Geometric Langlands duality and representations of algebraic groups

over commnutative rings. Ann. of Math. (2) 166(1):95-143, 2007

[R] R. Reich. Twisted geometric Satake equivalence via gerbes on the factorizable Grassmannian.

Represent. Theory 16:345-449, 2012

[Sto] V. Stoyanovsky. Quantum Langlands duality and conformal field theory. arXiv:math/0610974

[Zh] X. Zhu. The geometric Satake correspondence for ramified groups. arXiv:1107.5762


