
Diagrams of Affine Permutations

and Their Labellings

by

Taedong Yun

Submitted to the Department of Mathematics

MACH~NST w
OFJ 2 E 41OO

JUL~ 2 5 01

---- 1

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013

@ Taedong Yun, MMXIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document

in whole or in part in any medium now known or hereafter created.

A u th or ................................................... ..........
Department of Mathematics

April 29, 2013

Certified by............. ......
. ... . . . .. .... ... .... .. ... ......ichard P. Stanley

Professor of Applied Mathematics
Thesis Supervisor

A ccepted by .........................................................
Paul Seidel

Chairman, Department Committee on Graduate Theses



2



Diagrams of Affine Permutations

and Their Labellings

by

Taedong Yun

Submitted to the Department of Mathematics
on April 29, 2013, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

We study affine permutation diagrams and their labellings with positive integers. Bal-

anced labellings of a Rothe diagram of a finite permutation were defined by Fomin-

Greene-Reiner-Shimozono, and we extend this notion to affine permutations. The

balanced labellings give a natural encoding of the reduced decompositions of affine

permutations. We show that the sum of weight monomials of the column-strict bal-

anced labellings is the affine Stanley symmetric function which plays an important

role in the geometry of the affine Grassmannian. Furthermore, we define set-valued

balanced labellings in which the labels are sets of positive integers, and we investi-

gate the relations between set-valued balanced labellings and nilHecke words in the

nilHecke algebra. A signed generating function of column-strict set-valued balanced

labellings is shown to coincide with the affine stable Grothendieck polynomial which

is related to the K-theory of the affine Grassmannian. Moreover, for finite permu-

tations, we show that the usual Grothendieck polynomial of Lascoux-Schiitzenberger

can be obtained by flagged column-strict set-valued balanced labellings. Using the

theory of balanced labellings, we give a necessary and sufficient condition for a di-

agram to be a permutation diagram. An affine diagram is an affine permutation

diagram if and only if it is North-West and admits a special content map. We also

characterize and enumerate the patterns of permutation diagrams.

Thesis Supervisor: Richard P. Stanley
Title: Professor of Applied Mathematics
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Chapter 1

Introduction

The Rothe diagram of a permutation is a widely used tool to visualize the inver-

sions of a permutation in a square grid. It is well known that there is a one-to-one

correspondence between permutations and their inversion sets.

The balanced labellings of Fomin-Greene-Reiner-Shimozono [4] are labellings of

the Rothe diagram D(w) of a permutation w E E,, with positive integers such that

each box of the diagram is balanced. An injective balanced labelling is a generaliza-

tion of both standard Young tableaux and Edelman-Greene's balanced tableaux [3],

and it encodes a reduced decomposition of w. Moreover, the column-strict balanced

labellings generalize semi-standard Young tableaux and they yield symmetric func-

tions in the same way semi-standard Young tableaux yield Schur functions. In fact,

these symmetric functions Fe(x) are the Stanley symmetric functions, which were

introduced in [16] to enumerate the reduced decompositions of w E En. The Stan-

ley symmetric function coincides with the Schur function when w is a Grassmannian

permutation. Furthermore, after one imposes appropriate flag conditions on column-

strict labellings, they yield Schubert polynomials of Lascoux and Schfitzenberger [11].

One can directly observe the limiting behaviour of Schubert polynomials (e.g. sta-

bility, convergence to F. (x), etc.) in this context. In [4] it was also shown that the

flagged balanced labellings form a basis of the Schubert modules whose characters

are the Schubert polynomials.

11



In Chapter 2, we extended this concept of balanced labellings to affine permuta-

tions in the affine symmetric group Xn. An affine permutation is a bijection from Z to

Z satisfying certain normality conditions and is a generalization of a (finite) permu-

tation. One can define inversions, length, and diagrams of affine permutations with

similar methods, and study reduced decompositions of affine permutations. Following

the footsteps of [4], we show that the column-strict labellings on affine permutation

diagrams yield the affine Stanley symmetric function defined by Lam in [6]. When

an affine permutation is 321-avoiding, the balanced labellings coincide with semi-

standard cylindric tableaux, and they yield the cylindric Schur function of Postnikov

[13]. One of the most interesting aspects of this approach is that once we find suitable

flag conditions on the balanced labellings of affine permutation diagrams, we may be

able to define the notion of affine Schubert polynomials, which we hope to relate to

the geometry of the affine flag variety.

We introduce an even further generalization of balanced labellings in Chapter 3

called set-valued balanced labellings. Buch [2] defined set-valued tableaux of a skew-

partition which he used to give a formula for the stable Grothendieck polynomi-

als index by skew-partitions or, equivalently, 321-avoiding permutations. Stable

Grothendieck polynomials were originally introduced by Lascoux-Schiitzenberger [10]

in their study of K-theory Schubert calculus. Lam [6] generalized this function and

defined affine stable Grothendieck polynomials which were later shown to be related

to the K-theory of the affine Grassmannian [9]. We show that our definition of

the set-valued balanced labellings gives a monomial expansion of the affine stable

Grothendieck polynomials indexed by any affine permutation. This result specializes

to the expansion of stable Grothendieck polynomials using the natural embedding of

En into Z, so this can be seen as a generalization of Buch's result. Furthermore, for

a finite permutations in En, we also obtain a formula for Grothendieck polynomials

by imposing suitable flag conditions on set-valued balanced labellings.

In Chapter 4, we study various properties of (affine) permutation diagrams using

the tools we have developed in the previous chapters. The results in Chapter 2 lead

us to a complete characterization of affine permutation diagrams using the notion

12



of a content. A content is a map from the boxes of an affine diagram to integers

satisfying certain conditions. We also introduce the notion of a wiring diagram of

an affine permutation diagram in the process, which generalizes Postnikov's wiring

diagram of Grassmannian permutations [14]. We conclude that a diagram is an affine

permutation diagram if and only if it satisfies the North- West condition and admits

a content map.

The patterns or subdiagrams of (affine) permutation diagrams are also studied

in Chapter 4 in an attempt to classify them via pattern avoidance of matrices. In

fact, we prove a negative result that affine diagrams cannot be classified by avoid-

ance of finite number of patterns. More precisely, the set of all patterns in affine

permutation diagrams are exactly the set of North-West patterns. Since not every

North-West diagram is a diagram of an affine permutation, the usual notion of ma-

trix pattern avoidance is not sufficient for the classification. Additionally, we give a

precise enumeration of the patterns of permutation diagrams.

13
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Chapter 2

Affine Permutation Diagrams and

Balanced Labellings

In this chapter we study balanced labellings and their relation to reduced words

and affine Stanley symmetric functions. Our terms, lemmas, and theorems will be

in parallel with [4], extending them from finite to affine permutations. Although

most of the definitions in [4] will remain the same with slight modifications, we state

them here for the sake of completeness. This chapter is based on the joint work with

Hwanchul Yoo [17].

2.1 Permutations and Affine Permutations

Let E,, denote the symmetric group, the group of all permutations of size n. En

is generated by the simple reflections si, ... , s1n-, where si is the permutation which

interchanges the entries i and i + 1, and the following relations.

s?=1 for all i

sisi+si = si+1sisi+1 for all i

sis, = sjsi for i - jI > 2

15



In this thesis, we will often call a permutation a finite permutation and the symmetric

group the finite symmetric group to distinguish them from its affine counterpart.

On the other hand, the affine symmetric group Zn is the group of all affine per-

mutations of period n. A bijection w : Z -+ Z is called an affine permutation of

period n if w(i + n) = w(i) + n and ZD_1 w(i) = n(n + 1)/2. An affine permuation

is uniquely determined by its window, [w(1), ... , w(n)], and by abuse of notation we

write w = [w(1),. .. , w(n)] (window notation).

We can describe the group Zn by its generators and relations as we did with

En. The generators are so, si,... , s1 where si interchanges all the periodic pairs

{(kn + i, kn + i + 1) 1 k E Z}. With these generators we have exactly the same

relations

s? = 1 for all i

sisi+1si = si+1sisi+1 for all i

sisj = sjsi for ji - jj > 2

but here all the indices are taken modulo n, i.e. sn+i = si. Note that the symmetric

group can be embedded into the affine symmetric group by sending si to si. With

this embedding, we will identify a finite permutation w = [wi, .. , wn] with the affine

permutation [wi,. .. , wn] written in the window notation.

A reduced decomposition of w is a decomposition w = si- si, where e is the

minimal number for which such a decomposition exists. In this case, f is called the

length of w and denoted by f(w). The word i1 i 2 --- ie is called a reduced word of w. It

is well-known that the length of an affine permutation w is the same as the cardinality

of the set of inversions, {(ij) I 1 < i < n, i < j, w(i) > w(j)}.

The affine permutation diagram, or simply diagram, of w E Z2 is the set

D(w) = {(i, w(j)) I i < j, w(i) > w(j)} C Z x Z.

This is a natural generalization of the Rothe diagram for finite permutations. When w

16
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Figure 2-1: diagram of [2,5,0,7,3,4] E

is finite, D(w) consists of infinite number of identical copies of the Rothe diagram of w

diagonally. From the construction it is clear that (i, j) E D(w) '- (i~n, j~n) E D(w).

Throughout this thesis, we will use a matrix-like coordinate system on Z x Z:

The vertical axis corresponds to the first coordinate increasing as one moves toward

south, and the horizontal axis corresponds to the second coordinate increasing as one

moves toward east. We will visualize D(w) as a collection of unit square lattice boxes

on Z x Z whose coordinates are given by D(w).

2.2 Diagrams and Balanced Labellings

We call a collection D of unit square lattice boxes on Z x Z an affine diagram

(of period n) if there are finite number of cells on each row and column, and (i, j) E

D # (i + n~j ± n) E D. Obviously D(w) is an affine diagram of period n. In an

affine diagram D, the collection of boxes { (i ± in, j ± in) Ir E Z} is called a cell of

D, and denoted (ij). From the periodicity, we can take the representative of each

cell (i, j) in the first n rows { 17 2, ... , n} x Z, called the fundamental window. Each

17



H
Figure 2-2: balanced hook

horizontal strip { 1+rn, - -- , n + rn} x Z for some r E Z will be called a window. The

intersection of D and the fundamental window will be denoted by [D]. The boxes in

[D] are the natural representatives of the cells of D. An affine diagram D is said to

be of the size f if the number of boxes in [D] is f. Note that the size of D(w) for

w E Z, is the length of w.

Example 2.2.1. The length of an affine permutation w = [2,5,0, 7,3, 4] E E6 in

Figure 2-1 is 7, e.g. w = sOs 4 s 5 s 3s 4sis2 , and hence its fundamental window (shaded

region) contains 7 boxes. The dots represent the permutation and the square boxes

represent the diagram in the figure.

To each cell (i, j) of an affine diagram D, we associate the

consisting of the cells (i', j') of D such that either i' = i and

= j. The cell (i, j) is called the corner of Hij.

Definition 2.2.2 (Balanced hooks). A labelling of the cells

integers is called balanced if it satisfies the following condition:

labels in the hook so that they weakly increase from right to

bottom, then the corner label remains unchanged.

hook Hi, := Hjj(D)

j' > j or i' > i and

of Hj,5 with positive

if one rearranges the

left and from top to

A labelling of an affine diagram is a map T : D -4 Z>O from the boxes of D to the

positive integers such that T(i, j) = T(i + n, j + n) for all (i, j) E D. In other words,

it sends each cell (i, j) to some positive integer. Therefore if D has size f, there can

be at most f different numbers for the labels of the boxes in D.

Definition 2.2.3 (Balanced labellings). Let D be an affine diagram of the size f.

18
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Figure 2-3: injective balanced labelling

1. A labelling of D is balanced if each hook H is balanced for all (i, j) E D.

2. A balanced labelling is injective if each of the labels 1, -- , f appears exactly

once in [D].

3. A balanced labelling is column-strict if no column contains two equal labels.

2.3 Reduced Words and Canonical Labellings

Given w E En and its reduced decomposition w = Sal ... we read from left to

right and interpret sk as adjacent transpositions switching the numbers at the (k+rn)-

th and (k + 1 + rn)-th positions, for all r E Z. In other words, w can be obtained by

applying the sequence of transpositions Sal, Sa2 , ... , Sa to the identity permutation.

It is clear that each si corresponds to a unique inversion of w. Here, an inversion of

w is a family of pairs {(w(i + rn), w(j + rn)) | r E Z} where i < j and w(i) > w(j).

Note that w(i + rn) > w(j + rn) < w(i) > w(j). Often we will ignore r and use a

representative pair when we talk about the inversions. On the other hand, each cell

19



*I F]i il

I *1I

I I

S2

I F2

S208
I I

*2 1 I

I Ii I

0 I

I I

I Ie

~2~2

3 4F 1 i

2

3a

IF 3
S28818

I

I2 0 1 W

Figure 2-4: canonical labelling of s 2s 0s 1s 0 E t3

of D(w) also corresponds to a unique inversion of w. In fact, (i, j) E D(w) if and

only if (w(i), j) is an inversion of w.

Definition 2.3.1 (Canonical labelling). Let w E E, be of length f, and a = a 1 a2 ... at

be a reduced word of w. Let Ta : D -+ {1, - - - , f} be the injective labelling defined by

setting Ta(i, w(j)) = k if sak transposes w(i) and w(j) in the partial product sa, - - - sak

where w(i) > w(j). Then Ta is called the canonical labelling of D(w) induced by a.

Proposition 2.3.2. A canonical labelling of a reduced word of an affine permutation

w is an injective balanced labelling.

Before we give a proof of Proposition 2.3.2, we introduce our main tool for proving

20



that a given labelling is balanced. The following lemma is closely related to the notion

of normal ordering in a root system.

Lemma 2.3.3 (Localization). Let w E En and let T be a column-strict labelling of

D(w). Then T is balanced if and only if for all integers i < j < k the restriction

of T to the sub-diagram of D(w) determined by the intersections of rows i, j, k and

columns w(i), w(j), w(k) is balanced.

Proof. (=) Given a labelling T of a diagram of an affine permutation w, suppose

that the labelling is balanced for all subdiagrams Dik determined by rows {i, j, k}

and columns {w(i), w(j), w(k)}. Let (i, w(j)) be an arbitrary box in the diagram such

that i < j and w(i) > w(j) and let a = T(i, w(j)). By abuse of notation, we will

denote by a the box itself. Let us call all the boxes to the right of a in the same row

the right-arm of a, and all the boxes below a in the same column the bottom-arm of a.

To show that the diagram is balanced at a, we need to show that there is a injection

0ka from the set B, of all boxes in the bottom-arm of a whose labelling is less than

a, into the set Rg of all boxes in the right-arm of a whose labelling is greater than or

equal to a, such that the image of Oa contains the set Ra' of all boxes in the right-arm

of a whose labelling is greater than a. Let (p, w(j)) be a box in the bottom hook of

a such that T(i,p) < a. By the balancedness of the Dip, w(i) > w(p) > w(j) and

T(i, w(p)) > a. Let Oq be the map defined by (p, w(j)) - (i, w(p)). It is easy to see

that every box on the right-arm of a whose labelling is greater than a should be an

image of Oa by a similar argument so Oa is the desired injection.

(==>) Suppose a labelling T of a diagram of an affine permutation w is balanced.

Since the diagram is balanced at any point x, there is a bijection 0#2 from B.< to a

subset M of the boxes in the right-arm of x such that R> C M C RJ. For an element

y in M, we will write Ok,(y) instead of #f (y) for simplicity.

The nine points in Diik (i < j < k) may contain 0, 1, 2, or 3 boxes (since the

maximum number of inversions of size 3 permutations is 3.) Let p < q < r be the

rearrangement of w(i), w(j), w(k). The labelling of the boxes of the intersection is

clearly balanced when it has 0 or 1 boxes, or when it has 2 boxes and both labellings

21



are the same. Therefore we only need to consider the following three cases.

Case 1. Two boxes at (i, p) and (i, q) (i.e. w(j) < w(k) < w(i)).

a = T(i, p), b = T(i, q). To show a > b, we use induction on j - i. When

j - i = 1, the balancedness at a directly implies a > b.

Suppose a < b for contradiction. Let c = 0,a(b) be the box in the bottom-arm

of a which corresponds to b via Oa (thus c < a), and let f be the row index of

the box c. Here we have two cases.

(1) p < w(e) < q

Let e be the box at the intersection of the right-arm of a and the column

w(e). Applying induction hypothesis to Di,e,k, we get e > b(> a). Hence,

we may apply 0,a to e and let c1 = ,(e).

(2) q < w(f)

Let d be the box at (f, q). By induction hypothesis to Dj,k, we get d <

c(< a < b). Since d < b, let e = Ob(d). Here, e > b > a so let cj = 0a(e).

In both case we get a box ci in the bottom-arm of a, which is less than a and

distinct from c. We may repeat the same process with c1 as we did with c,

and compute another point c2 in the bottom-arm of a, which is less than a and

distinct from c and ci, and we can continue this process. The construction of

cj ensures that c is distinct from any of c, cl,... , ci-1. This is a contradiction

since there are finite number of boxes in the bottom-arm of a.

Case 2. Two boxes at (i, p) and (j, p) (i.e. w(k) < w(i) < w(j)).

The symmetric version of the proof of Case 1 will work here if we switch rows

with columns and reverse all the inequalities.

Case 3. Three boxes at (i, p), (i, q), and (j, p) (i.e. w(k) < w(j) < w(i)).

We use induction on min{k - i, r - p}. Let T(i, p) = a, T(i, q) = b, and

T(j, p) = c.

22



For the base case where min{k - i, r - p} = 2, we may assume r - p = 2 by

symmetry. Note that q = p + 1 and r = q + 1. If a is not balanced in the

Di,j,k, then both b and c should be greater than a. (If both b and c are smaller

than a, than the hook at a cannot be balanced.) This implies that there is a

box #a(b) = d on the bottom-arm of a such that d < a. If d is above c, then a

and d contradicts the result in Case 2. If d is below c, then c is not balanced

in the diagram, which contradicts the assumption. This completes the proof of

the base case.

Now, let a be smaller than both b and c. As before, there is a box 0,a(b) = di

on the bottom-arm of a such that d, < a. Let the row index of d, be f.

(1) f < j and w(f) < q.

Let e be the label of the box (i, w(f)). By applying the result of Case 1 to

e and b, we get e > b(> a). Thus there must be another d 2 = 0a(e) in the

bottom-arm of a such that a > d2 -

(2) f < j and q < w(e) < r.

Let e be the label of the box (i, w(e)), and f be the label of the box (f, q). By

the induction hypothesis, D,,k is balanced, so d, > f. This implies f < b,

and by the induction hypothesis, D,,,3 also form a balanced subdiagram.

Hence e > b(> a). Therefore we have another box Oa(e) = d2 such that

a > d 2 .

(3) f < j and r < w().

This is impossible because a < d, by Case 2, which contradicts our choice

of dj.

(4) f > j and w(f) < q.

Let e = T(i, w(f)), and f = T(j, w(f)). By the induction hypothesis, f, c, d,

form a balanced subdiagram, so c < f. Similarly, b, e, f form a balanced

subdiagram. Since b and f are both greater than a, so is e. Therefore we

have 0,a(e) = d2 < a on the bottom-arm of a.

23



(5) f > j and w(e) > q.

This case is impossible because c > d by Case 2 which is a contradiction.

After we get d2 in the above, we can repeat the argument for d2 instead of dj.

The construction of d, ensures that di is distinct from any of di, ... , di_ 1. This

is a contradiction since there are finite number of boxes in the bottom-arm of

a.

When a is greater than both b and c, the transposed version of the above

argument works by symmetry. So we are done.

Now we are ready to prove our proposition.

Proof of Proposition 2.3.2. A canonical labelling is injective by its construction. By

Lemma 2.3.3, it is enough to show that for any triple i < j < k the intersection Dijk of

the canonical labelling of D(w) with the rows i, j, k and the columns w(i), w(j), w(k)

is balanced.

Let p < q < r be the rearrangement of w(i), w(j), w(k). As we have seen in the

proof of Lemma 2.3.3, I is clearly balanced when I contains 0 or 1 boxes, hence we

only need to consider the following three cases.

(1) w(j) < w(k) < w(i), two horizontal boxes in Dijk

In this case w = [... ,r, ... , p,... , q,...] if one write down the affine permutation.

When we apply simple reflections in a reduced word of w one-by-one from left

to right, to get w from the identity permutation [...., p,.. . , q, ... , r, .. .], r should

pass through q before it passes through p (because the relative order of p and q

should stay the same throughout the process). This implies that the canonical

labelling of the right box is less than the canonical labelling of the left box, and

hence Dijk is balanced.

(2) w(k) < w(i) < w(j), two vertical boxes in Di1k

In this case w = [... , q, ... , r, ... ,p...]. By a similar argument p should pass
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through q before it passes through r when we apply simple reflections. This

implies the canonical labelling of the bottom box is greater than the canonical

labelling of the top box.

(3) w(k) < w(j) < w(i), three boxes in Dijk in "F"-shape

w = [... , r, ... , q...,p,... ] in this case. If p passes through q before r passes

through q, then r should pass through p before it passes through q. This implies

that the canonical labelling of the corner box lies between the labellings of other

two boxes. If r passes through q before p passes through q, then again by a similar

argument the corner box lies between the labelling of other two boxes. Hence,

Dijk is balanced.

We have shown that Dijk is balanced for every triple i, j, k and thus by Lemma 2.3.3

the canonical labelling of D(w) is balanced. E

Conversely, suppose we are given an injective labelling of an affine permutation

diagram D(w). Is every injective labelling a canonical labelling of a reduced word?

To answer this question we introduce some more terminology.

Definition 2.3.4 (Border cell). Let w E E, and (i, j) be a cell of D(w). If w(i+1) = j

then the cell (i, j) is called a border cell of D(w).

The border cells correspond to the (right) descents of w, i.e. the simple reflections

that can appear at the end of some reduced decomposition of w. When we multiply

a descent of w to w from the right, we get an affine permutations whose length is

f(w) - 1. It is easy to see that this operation transforms the diagram in the following

manner.

Lemma 2.3.5. Let si be a descent of w, and a = (i, j) be the corresponding border

cell of D(w). Let D(w) \ a denote the diagram obtained from D(w) by deleting every

boxes (i + rn, j + rn) and exchanging rows (i + rn) and (i + 1 + rn), for all r Z.

Then the diagram D(ws ) is D(w) \ a. E
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Lemma 2.3.6. Let T be a column-strict balanced labelling of D(w) with largest la-

bel M. Then every row containing an M must contain an M in a border cell. In

particular, if i is the index of such row, then i must be a descent of w.

Proof. Suppose that the row i contains an M. First we show that i is a descent of

w. If i is not a descent, i.e. w(i) < w(i + 1), then let (i, j) be the rightmost box in

row i whose labelling is M. Since w(i) < w(i + 1), there is a box at (i + 1, j). By

column-strictness no box below (i, j) has label M and no box to the right of (i, j) has

label M by the assumption. Hence the diagram is not balanced at (i, j), which is a

contradiction. Therefore i must be a descent of w.

Let w(i + 1) = j, i.e. (ij) is a border cell. We must show that T(ij) = M.

If T(i, j) < M, then the rightmost occurrence of M cannot be to the right of (i, j)

because the hook Hij is horizontal. On the other hand, if the rightmost occurrence of

M is to the left of (i, j), then there must be a box below that rightmost M and the

hook at that M is not balanced by the argument in the previous paragraph. Hence,

T(ij) = M. 0

Theorem 2.3.7. Let T be a column-strict labelling of D(w), and assume some border

cell a contains the largest label M in T. Let T \ a be the result of deleting all the

boxes of a and switching pairs of rows (i + rn, i ± 1 + rn) for all r E Z from T. Then

T is balanced if and only if T \ a is balanced.

Proof. Let a = (i, j) be the border cell, and w' = wsi so that T \ a is a labelling of

D(w'). By Lemma 2.3.3, it suffices to show that for all a < b < c the restriction Tabc of

T to the subdiagram of D(w) determined by rows a, b, c and columns w(a), w(b), w(c)

is balanced if and only if the restriction (T \ a)sa,sib,sic is balanced.

Note that for every (r, s) the (r, w(s))-entry of T coincides with the (sir, w(s))-

entry of T \ a unless (r, w,) = (i ± rn, j + rn) for some r E Z. Hence Tc will be the

same as (T \ a)sia,sib,sc unless i + rn E {a, b, c} and j + rn E {(w(a), w(b), w(c)} for

some r E Z. Therefore we may assume we are in this case, so (T \ a)sia,sib,sic has one

fewer box than Tabc. Furthermore, if Tabc has at most two boxes (and (T \ a)sja,sb,sjc

has at most one box), then the verification is trivial since M is the largest label and

26



(i, j) is a border cell.

Thus we may assume that Tbe has three boxes and (T\a)sia,sib,,c has two boxes, so

w(c) < w(b) < w(a) and either (a, b) = (i+rn, i+1+rn) or (b, c) = (i+rn, i+1+rn)

for some r E Z. In the first case Tabc being balanced and (T \ a)abc being balanced

are both equivalent to the condition T(a, w(c)) T(b, w(c)), and in the second case

they are both equivalent to the condition T(a, w(c)) > T(a, w(b)). E

Combining Proposition 2.3.2, Lemma 2.3.6 and Theorem 2.3.7, we obtain the main

theorem of this section.

Theorem 2.3.8. Let R(w) denote the set of reduced words of w E Zn, and B(D)

denote the set of injective balanced labellings of the affine diagram D. The correspon-

dence a H+ T is a bijection between R(w) and B(D(w)). 0

More direct algorithm to decode the reduced word from a balanced labelling will

be given in Section 2.5. Another immediate corollary of Theorem 2.3.7 is a recurrence

relation on the number of injective balanced labellings.

Corollary 2.3.9. Let bD(w) denote the number of injective balanced labellings of D(w).

Then,

bD(w) = D(w)\a,

where the sum is over all border cells a of D(w). l

2.4 Affine Stanley Symmetric Functions

In this section we consider column-strict balanced labellings of affine permutation

diagrams. We show that they give us the affine Stanley symmetric function in the

same way the semi-standard Young tableaux give us the Schur function.

Affine Stanley symmetric functions are symmetric functions parametrized by affine

permutations. They are defined in [6] as an affine counterpart of the Stanley sym-

metric function [16]. Like Stanley symmetric functions, they play an important role
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in combinatorics of reduced words. The affine Stanley symmetric functions also have

a natural geometric interpretation [7], namely they are pullbacks of the cohomol-

ogy Schubert classes of the affine flag variety LSU(n)/T to the affine Grassmannian

QSU(n) under the natural map QSU(n) -+ LSU(n)/T. There are various ways to

define the affine Stanley symmetric function, including the geometric one above. For

our purpose, we use one of the two combinatorial definitions in [8].

A word aia2 - - -a, with letters in Z/nZ is called cyclically decreasing if (1) each

letter appears at most once, and (2) whenever i and i + 1 both appear in the word,

i + 1 precedes i. An affine permutation w E ZT is called cyclically decreasing if it has

a cyclically decreasing reduced word. We call w = v 1 v2 ... vr a cyclically decreasing

factorization of w if each vi E Xn is cyclically decreasing, and f(w) = E'=1 f(vi). We

call (f(vi), f(v 2), ... , f(V,)) the type of the cyclically decreasing factorization.

Definition 2.4.1 ([8]). Let w E Za be an affine permutation. The affine Stanley

symmetric function Fw(x) corresponding to w is defined by

F,(x) F,,(xiX 2 , X1. X2 .. ~r)
W=VlV2 ..Vr

where the sum is over all cyclically decreasing factorization of w.

Given an affine diagram D, let CB(D) denote the set of column-strict balanced

labellings of D. Now we can state the main theorem of this section.

Theorem 2.4.2. Let w E Z, be an affine permutation. Then

Fw(x) = S xT

TECB(D(w))

where xT denotes the monomial H(ij)E[D(w)] XT(ij)

Proof. Given a column-strict balanced labelling T, we call the sequence ([the number

of l's in T], [the number of 2's in T], . .. ) the type of the labelling. It is enough to show

that there is a type-preserving bijection # from a column-strict balanced labelling of

D(w) to a cyclically decreasing factorization of w.
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Let us construct 0 as follows. Given a column-strict labelling T with t cells, there

is a (not necessarily unique) border cell ci which contains the largest label of T by

Lemma 2.3.6. Let r(c1) be the row index of ci in the fundamental window. By

Theorem 2.3.7, we obtain a column-strict balanced labelling T \ c1 by removing the

cell ci and switching all pairs of rows (r(cl) + kn, r(cl) + kn + 1) for all k E Z. The

diagram of this labelling corresponds to the affine permutation wsr(ci) with length

t - 1. In T \ c, we again pick a border cell c2 containing the largest label of T \ ci and

remove the cell to get a labelling T \ c1 \ c2 of WSr(c 1)Sr(c2 ). We continue this process

removing cells c1 , c2 , ... , c until we get the empty diagram which corresponds to the

identity permutation. Then, W = Sr(c)Sr(cj 1) * - , Sr(c1 ) is a reduced decomposition

of w. Now in this reduced decomposition, group the terms together in parentheses

if they correspond to removing the same largest label of the diagram in the process

and this will give you a factorization O(T) of w. We will show that this is indeed a

cyclically decreasing factorization and that this map is well-defined.

We first show that the words inside each pair of parentheses are cyclically decreas-

ing. If the indices i = r(c.) and i + 1 = r(cy) are in the same pair of parentheses in

O(T), then they correspond to removing the border cells of the same largest labelling

M in the above process. We want to show that i +1 precedes i inside the parenthesis.

If i precede i + 1 in the parentheses, then it implies we unwind the descent at i + 1

before we unwind the descent at i during the process. Then at the time when we

removed the border cell c at the (i + 1)-st row with label M, the cell right above c,

was c. with label M. This contradicts the column-strictness of the diagram, so i + 1

should always precede i if they are inside the same parentheses.

Now we show that # is well-defined. It is enough to show that if we had two border

cells c, and c., with the same largest labelling at some point (so we had a choice of

taking one before another) then Ir(c.) - r(cy)j ;> 2 so the corresponding simple

reflections commute inside a pair of parentheses in O(T). Suppose Ir(cx) - r(cy) = 1

and assume r(cx) = i and r(cy) = i + 1. If we let b be the box right above c, in

the i-th row, the label of b must be equal to M by the balancedness at b. This is

impossible because the labelling is column-strict.
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To show that < is a bijection, we construct the inverse map 0 from a cyclically

decreasing factorization to a column-strict balanced labelling. Given a cyclically

decreasing factorization w = VV2 ... Vq take any cyclically decreasing reduced decom-

position of vi for each i and multiply them to get a reduced decomposition of w, e.g.,

W = (SaSbSc)(Sd)(id)(SeSf) - - -. By Theorem 2.3.8, this reduced decomposition corre-

sponds to a unique injective labelling of D(w). Now change the labels in the injective

labelling so that the labels corresponding to simple reflections in the k-th pair of

parentheses will have the same label k. For example if w = (SaSbSc)(sd)(id)(Sesf) - - -

then change the labels {1, 2, 3} to {1, 1, 1}, {4} to {2}, {5, 6} to {4} and so on. The

resulting labelling is defined to be the image of the given cyclically decreasing factor-

ization under V). It is easy to see that this labelling is also balanced, so it remains to

show that this labelling is column-strict and that the map is well-defined, because a

cyclically decreasing decomposition of an affine permutation is not unique.

Given any label M, suppose we are at the point at which we have removed all the

boxes with labels greater than M during the above procedure, and suppose that there

are two boxes cz, c, of the same label M in the same column j, where c., is below

c.. These two boxes must be removed before we remove any other boxes with labels

less than M, so to make c. a border cell, every box between c, and cy (including

cX) should be removed before c, gets removed. This implies that every box between

cx and c, has label M. Let cx = (i, j). Then the box (i - 1, j) should also have

the label M, and it gets removed after the box c, is removed. This implies that the

index i - 1 preceded i inside a parenthesis in the original reduced decomposition,

which contradicts the fact that each parenthesis came from a cyclically decreasing

decomposition. Thus the image of 0 is column-strict.

Finally, we show that the map V' is well-defined. One easy fact from affine symmet-

ric group theory is that any two cyclically decreasing decomposition of a given affine

permutation can be obtained from each other via applying commuting relations only.

Thus it is enough to show that the column-strict labellings coming from two reduced

decompositions ( ... ) ... (... sis - ) -... (.- -) and ( ... ) ... (... sjsi ... ) ... ( ... ) coin-

cides if ji - ji > 2 modulo n. This is straightforward because the operation of
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switching the pairs of rows (i + rk, i + 1 + rk), k E Z is disjoint from the operation

of switching the pairs of rows (j + rk, j + 1 + rk), k E Z.

From Theorem 2.3.8 and from the construction of q and 4, one can easily see that

# and 0 are inverses of each other. This gives the desired bijection. 5

2.5 Encoding and Decoding of Reduced Words

In this section we present a direct combinatorial formula for decoding reduced

words from injective balanced labellings of affine permutation diagrams. Again, the

theorem in [4] extends to the affine case naturally.

Definition 2.5.1. Let T be an injective balanced labelling of D(w), where w E

has length e. For each k = 1,2,..., f, let ak be the box in [D(w)] labelled by k, and

let

I(k) the row index of ak,

R+(k) the number of entries k' > k in the same row of ak,

U+(k) the number of entries k' > k above ak in the same column.

Theorem 2.5.2. Let T be an injective balanced labelling of D(w), where w E Zn has

length f, and let a = a1a2 .. - at be the reduced word of w whose canonical labelling is

T. Then, for each k = 1,2,..., e,

ak = I(k) + R+(k) - U+(k)( mod n).

Proof. Our claim is that

I(k) = ak + U+(k) - R+(k)( mod n).
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We will show that this formula is valid for all k by induction on f. The formula is

obvious if f = 0 or 1.

Let ?i = wsa, so that tb has length f - 1. The above formula holds for a =

a1a 2 - - at 1 , i.e.,

I(k) = ak + O+(k) - N+(k)( mod n),

where the hatted expressions correspond to the word d. We now analyze the change

in the quantities on the left-hand and right-hand side of our claim.

(1) If k = f, then U+(k) = R+(k) = 0 and obviously 1(f) = at.

(2) If k < f and k does not occur in rows at or at + 1 of D((w)), then none of the

quantities change.

(3) If k < f and k occurs in row a1, then 1(k) = I(k) + 1 and R+(k) = R+(k). Note

that the entry k' right below k in D(7i) is greater than k by Lemma 2.3.3 and it

will move up when we do the exchange Sa,. Thus U+(k) = U+(k) + 1, and the

changes on the two sides of the equation match.

(4) If k < f and k occurs in row at + 1, then I(k) = I(k) - 1 and R+(k) = R+(k) + 1.

Note that the entry k' right above k in D(tb) is less than k by Lemma 2.3.3 so it

did not get counted in U+(k). Thus U+(k) = U+(k), and the changes on the two

sides of the equation match.

5

Remark 2.5.3. For a reduced word a = a1a 2 - - at of w and the corresponding

canonical labelling Ta, the reversed word a- 1 := atat_1 ... a1 is a reduced word of

w- 1. It is not hard to see that the canonical labelling Ta-i corresponding to a- 1 can

be obtained by taking the reflection of T with respect to the diagonal y = x and

then reversing the order of the labels by i -+ f + 1 - i. This implies that

ak = J(k)+C-(k) - L-(k) mod n
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where

J(k) the row index of ak,

C-(k) the number of entries k' < k in the same column of ak,

L-(k) the number of entries k' < k to the left ak in the same row.

With careful examination one can show that the equation I(k) + R+(k) - U+(k) =

J(k) + C-(k) - L-(k) is equivalent to the balanced condition.
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Chapter 3

Set-Valued Balanced Labellings

Whereas Schubert polynomials are representatives for the cohomology of the flag

variety, Grothendieck polynomials are representatives for the K-theory of the flag

variety. In the same way that Stanley symmetric functions are stable Schubert

polynomials, one can define stable Grothendieck polynomials as a stable limit of

Grothendieck polynomials. Furthermore, Lam [6] generalized this notion to the affine

stable Grothendieck polynomials and showed that they are symmetric functions. In

this chapter we define a notion of set-valued (s-v) balanced labellings of an affine

permutation diagram and show that affine stable Grothendieck polynomials are the

generating functions of column-strict s-v balanced labellings. Note that every re-

sult in this section can be applied to the usual stable Grothendieck polynomials if

we restrict ourselves to the diagram of finite permutations. This can be seen as a

generalization of set-valued tableaux of Buch [2], which he defined to give a formula

for stable Grothendieck polynomials indexed by 321-avoiding permutations (in other

words, skew diagrams A/t where A and ft are partitions.) This chapter is based on

the joint work with Hwanchul Yoo [17].
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3.1 Set-Valued Labellings

Let w be an affine permutation and let D(w) be its diagram. A set-valued (s-v)

labelling of D(w) is a map T : D(w) -+ 2Z>O from the boxes of D(w) to subsets of

positive integers such that T(i, j) = T(i + n, j + n). The length ITI of a labelling T

is the sum of the cardinalities E T(b)I over all boxes b E [D(w)] in the fundamental

window.

A s-v labelling T is called injective if

U T(b)=f1,2,...,ITI}
bE[D(w)]

(hence the union is necessarily a disjoint union.) T is called column-strict if for any

two distinct boxes a and b in the same column of D(w), T(a) n T(b) = 0.

Definition 3.1.1. For a box a E D(w) let Ha be the hook at a as before. Let {bi}iel

be the boxes in the right-arm of a and let {cj}jEj be the boxes in the bottom-arm

of a. Let rmina := min{Ui T(bi)} and bmina := min{Uj T(cj)} where min 0 := oo.

In each box in Ha, we are allowed to pick one label from the box under the following

conditions:

(1) in box a, we may pick any element in T(a),

(2) in box bi, we may pick min T(bi) or any element x E T(bi) such that x < bmina,

(3) in box cj, we may pick min T(cj) or any element y E T(cj) such that y < rmina.

An s-v hook Ha is called balanced if the hook is balanced (in the sense of Defini-

tion 2.2.2) for every choice of a label in each box under the above conditions.

Definition 3.1.2. Let w = [w 1 , W2 , W3] be a permutation in E3 . A s-v labelling T of

D(w) is called balanced if every hook in D(w) is balanced.

Definition 3.1.3 (S-V Balanced Labellings). Let w be any affine permutation and

let T be a s-v labelling of D(w). T is called balanced if the 3 x 3 subdiagram Di,j,k
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{3} {5} {1, 4}

{2} *

Figure 3-1: non-balanced s-v diagram

determined by rows i, j, k and columns w(i), w(j), w(k) is balanced for every i < j <

k. (cf. Lemma 2.3.3.)

Note that when w is a 321-avoiding finite permutation, Definition 3.1.3 is equiva-

lent to the set-valued tableaux of Buch [2].

Lemma 3.1.4. If T is a s-v balanced labelling, then every hook of T is balanced.

Proof. The first half of the proof of Lemma 2.3.3 will work here if one replaces single-

valued labels with set-valued labels. 5

Remark 3.1.5. If every label set consists of a single element, then Definition 3.1.3 is

equivalent to the original definition of (single-valued) balanced labellings by Lemma 2.3.3.

One may wonder why we must take this local definition of checking all the 3 x 3 sub-

diagrams rather than simply requiring that every hook in the diagram is balanced

globally as we did for single-valued diagrams. Lemma 3.1.4 shows that that the global

definition is weaker than the local definition in the set-valued case and, in fact, it is

strictly weaker. Figure 3-1 is an example of a diagram in which every hook is balanced

globally but it is not balanced in our definition if we take the subdiagram determined

by rows 1, 3, 4. We will show in the following sections that this local definition is the

"right" definition for s-v balanced labellings.
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3.2 NilHecke Words and Canonical S-V Labellings

Whereas a balanced labelling is an encoding of a reduced word of an affine permu-

tations, a s-v balanced labelling is an encoding of a nilHecke word. Let us recall the

definition of the affine nilHecke algebra. An affine nilHecke algebra U4 is generated

over Z by the generators UO, u1 ,. ... , .n- and relations

U. = Ui for all i

Uini+1Ui = ui+1uiui+1 for all i

uinu = ujui for li-j >2

where indices are taken modulo n. A sequence of indices a,, a 2 , ... ak E [0, n - 1} is

called a nilHecke word, and it defines an element Uai Ua 2 ... Uak in l-n4. n is a free

Z-module with basis {u, I w E Zn} where uw = uili2 ... ui, for any reduced word

(i1 , i 2 , ... , it) of w. The multiplication under this basis is given by

u ,w if i is not a descent of w,
'ujuw =

uw if i is a descent of w.

Note that for any nilHecke word a,, a 2 ,..., ak in 14, there is a unique affine permuta-

tion w E n such that uw = UajUa2 - Uak. In this case we denote S(ai, a 2 , ... ,ak) =

w.

Definition 3.2.1 (Canonical s-v labelling). Let w E Zn be an affine permutation and

let a = (a,, a 2, ... , ak) be a nilHecke word in Un such that S(a) = w. Let w' = S(a')

where a' = (a, a2,. .. , ak-1). Define a s-v injective labelling Ta : D(w) -+ 2f 1,-A1

recursively as follows.

(1) If ak is a decent of w', then D(w) = D(w'). Add a label k to the sets Ta'(ak +

rn, w'(ak - 1) - rn)), r E Z.

(2) If ak is not a decent of w', then D(w) is obtained from D(w') by switching the

pairs of rows (ak - rn, ak+1+rn), r E Z and adding a cell (ak, w(ak + 1)). Label
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the newly appeared boxes (ak + rn, w(ak + 1) + rn), r E Z, by a single element

set {k}.

We call T the canonical s-v labelling of a.

The following results are set-valued generalizations of Proposition 2.3.2, Lemma 2.3.6,

and Theorem 2.3.7.

Proposition 3.2.2. Let w E E,,. A canonical labelling of a nilHecke word a in ln

with S(a) = w is a s-v injective balanced labelling of D(w).

Proof. We show that for any triple i < j < k the intersection Dijk of the canonical

labelling of a with the rows i, j, k and the columns w(i), w(j), w(k) is balanced. Let

p < q < r be the rearrangement of w(i), w(j), w(k).

If w(j) < w(k) < w(i) or w(k) < w(i) < w(j) so that there are two boxes

in Dijk, then the same arguments we used in the proof of Proposition 2.3.2 will

work. If w(k) < w(j) < w(i) so that there are three boxes in D 3 k in ""-shape,

then w = [_.. , r,... , q,..., p,...] in this case. If p passes through q before r passes

through q, then r should pass through p before it passes through q. This implies that

every label in the box (j, p) which is less than the minimal label of (i, q) is less than

any label of (i, p). Also, every label of (i, q) is larger than any label of (i, p). Hence,

Dijk is balanced. A similar argument will work for the case where r passes through q

before p passes through q. L

Lemma 3.2.3. Let T be a s-v column-strict balanced labelling of D(w) with largest

label M, then every row containing an M must contain an M in a border cell. In

particular, if i is the index of such row, then i must be a descent of w. Futhermore, if

a border cell containing M contains two or more labels, then it must be the only cell

in row i which contains an M.

Proof. Suppose that the row i contains a label M. First we show that i is a descent of

w. If i is not a descent, i.e. w(i) < w(i+ 1), then let (i, j) be the rightmost box in row

i whose label set contains M. By the balancedness of the subdiagram Di,i+,g,-(j)7
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labels of the box (i+1, j) must be greater than M, which is a contradiction. Therefore,

i is a decent.

Let w(i + 1) = j, i.e. (i, j) is a border cell. We must show that M E T(i, j). If

every label of T(i, j) is less than M, then a label M cannot occur in the right-arm of

(i, j) by the balancedness. Let (i, k), k < j, be the rightmost occurrence of M in the

i-th row. Then the subdiagram Di,i+,,-1(k) is not balanced.

For the last sentence of the lemma, let (i, j) be a border cell such that M E T(i, j)

and IT(i, j) I > 2. One can follow the argument in the previous paragraphs to show

that there cannot be an occurence of M to the right of (i, j) and to the left of (i, j)

in row i. 0

Definition 3.2.4. Given a s-v column-strict balanced labelling T with largest label

M, a border cell containing M is called a type-I maximal cell if it has a single label

M, and type-II maximal cell if it contains more than one labels.

Theorem 3.2.5. Let T be a s-v column-strict labelling of D(w), and let a be a border

cell containing the largest label M in T. Let T \ a be the s-v labelling we obtain from

T as follows: If a is a type-II maximal cell, then simply delete the label M from the

label set of a. If a is a type-I maximal cell, then delete all the boxes of a and switch

pairs of rows (i +rn, i + 1 + rn) for all r E Z from T. Then T is balanced if and only

if T \ a is balanced.

Proof. This is a routine verification following the arguments we used for the proof of

Theorem 2.3.7. Definition 3.1.3 replaces Lemma 2.3.3 in the set-valued case. Note

that removing the largest label M from a type-II maximal cell does not affect the

balancedness of the diagram. 0

Now we present the main theorem of this section.

Theorem 3.2.6. Let w E En be an affine permutation. The map a H+ T is a

bijection from the set of all nilHecke words a in i-, with S(a) = w to the set of all s-v

injective balanced labellings of D(w).
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Proof. This is a direct consequence of Lemma 2.3.5, Proposition 3.2.2, Lemma 3.2.3,

and Theorem 3.2.5. 0

As in the case of single-valued labellings, we have a direct formula for decoding

niliecke words from s-v injective balanced labellings. The following theorem is a

set-valued generalization of Theorem 2.5.2

Theorem 3.2.7. Let T be a s-v injective balanced labelling of D(w) with |TI = k,

w E E,. For each t = 1,2, ... , k, let at be the box in [D(w)] labelled by t and define

I(t), R+(t), and U+(t) as follows.

1(t) the row index of at.

R+(t) the number of boxes in the same row of at,

whose minimal label is greater than t.

U+(t) := the number of boxes above at in the same column,

whose minimal label is greater than t.

Let a = (a1, a2 ,... , ak) be the nilHecke word whose canonical labelling is T. Then,

for each t = 1,2,..., k,

at = 1(t) + R+(t) - U+(t) mod n.

Proof. Our claim is that I(t) = at + U+(t) - R+(t) mod n. We will show that this

formula is valid for all t by induction on k. The formula is obvious if k = 0 or 1.

Let & = (a,, a2,... , ak_1). If ak is a descent of S(&), then S(e) = w = S(a) and

Ta is obtained from T by simply adding the largest label k to the (already existing)

border cell in the ak-th row. In this case, it is clear that I(t), R+(t), and U+(t) stays

the same for t = 1, 2, .. ., k - 1 and that ak = I(k), so the formula holds by induction.

Now suppose ak is not a descent of S(e) so S(d) = wsa, =: tb. Again by induction,

the above formula holds for & so

I(t) = at + U+(t) - R+(t) mod n,
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where the hatted expressions correspond to the labelling Ta. We now analyze the

change in the quantities on the left-hand side and the right-hand side of our claim.

(1) If t = k, then U+(k) = R+(k) = 0 and obviously I(k) = ak.

(2) If t < k and t does not occur in rows ak or ak + 1 of D(Z), then none of the

quantities change.

(3) If t < k and t occurs in row ak, then I(t) = i(t) + 1 and R+(t) = R+(t). Note

that the minimal entry t' of the box right below t in D(tb) is greater than t and

it will move up when we do the exchange sak. Thus U+(t) = U+(t) + 1, and the

changes on the two sides of the equation match.

(4) If t < k and t occurs in row ak + 1, then 1(t) = i(t) - 1 and R+(t) = R+(t) + 1.

Note that the minimal entry t' of the box right above t in D('z) is less than t so

it did not get counted in &+(t). Thus U+(t) = 6+(t), and the changes on the

two sides of the equation match.

5

3.3 Affine Stable Grothendieck Polynomials

An affine stable Grothendieck polynomial of Lam [6] can be defined in terms of words

in the affine nilHecke algebra (see also [9] and [12]).

Let w be an affine permutation in 5 n. A cyclically decreasing nilHecke factoriza-

tion a of w is a factorization u, = u, 1 u 2 - -' UV, where each vi is a cyclically decreasing

affine permutation in 5Xr. The sequence (f(v1), f(v 2), ... , f(Vk)) is called the type of

a. Let |aI := f (v 1) + e(v 2 ) + --- + f (vk). The affine stable Grothendieck polynomial

G, is defined by

= (_7 \IckI(W) e(V)t(V2) .. eX(Vk)

where the sum is over all cyclically decreasing nilHecke factorization a : u =

UVV2 ... unk of w. Note that this function is a generalization of the usual stable
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Grothendieck polynomial and that its minimal degree terms (Ial = f(w)) form the

affine Stanley symmetric function. Lam [6] showed that this function is a symmet-

ric function and Lam-Schilling-Shimozono [9] related it to the K-theory of the affine

Grassmannian.

In this section, we show that affine stable Grothendieck polynomials are the gen-

erating functions of the column-strict s-v balanced labellings.

Theorem 3.3.1. Let w E i be an affine permutation. Then

G,(x) = Z( -)T -(w)xT,
T

where the sum is over all column-strict s-v balanced labellings T of D(w), and x Tis

the monomial ~bE[D(w)] HkET(b) Xk-

Before we give a proof of the theorem, we state a general fact about column-strict

s-v balanced labellings.

Lemma 3.3.2. Let T be a column-strict s-v balanced labelling of D(w) where w E tn.

Let M be the largest label of T. Then, there exists p E {1, 2,... , n} such that there is

no label M in the p-th row of T.

Proof. By the column-strictness and the periodicity of the diagram, there can be at

most n M's in the fundamental window {1, 2, ... ,n} x Z. If the number of M's in

the fundamental window is less than n, then the lemma is true.

Suppose the number of M's in the fundamental windows is exactly n. If there

is a row containing two or more M's, then again the proof follows. If each row

p E {1, 2, ... , n} contains exactly one M, then by Lemma 3.2.3 every p is a descent,

which is impossible. l

Proof of Theorem 3.3.1. Given a column-strict s-v balanced labelling T, we call the

sequence ([the number of l's in T], [the number of 2's in T], ... ) the type of the

labelling. It is enough to show that there is a type-preserving bijection < from a

column-strict s-v labelling of D(w) to a cyclically decreasing nilHecke factorization

of w.
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Let us construct q as follows. Given a column-strict s-v labelling T with t = TI,

let M be its largest label. If T has a type-I maximal cell, then let ci to be any of

those type-I maximal cells. If all the border cells with label M of T is type-II, then

let ci to be a maximal cell in some row i such that there is no M in the i - 1-st row

(by Lemma 3.3.2). Let r(c1) be the row index of ci in the fundamental window. By

Theorem 3.2.5, we obtain a column-strict s-v balanced labelling T\ci by (1) removing

the cell ci and switching all pairs of rows (r(ci)+kn, r(c1)+kn+1) for all k E Z if c1 is

type-I, or (2) simply removing M from the label set of ci if ci is type-II. The resulting

labelling T \ ci is a labelling of length t - 1 of the diagram of the affine permutation

WSr(cl) in case (1), or of w in case (2). In T\ci, we again pick a maximal cell c2 by the

same procedure (by Theorem 3.2.5) and obtain the labelling T \ c1 \ c2 of length t -2.

We continue this process removing labels in cells c1 , c2 ,..., Ct until we get the empty

digram which corresponds to the identity permutation. Then, r(ct), r(ct_), ... , r(c1)

is a nilHecke word such that w = S(r(ct), r(ct_1), ... , r(c1)). Now in this nilHecke

word, group the terms together in the parenthesis if they correspond to removing the

same largest label of the digram in the process and this will give you a factorization

of u,. With careful examination, one can see that words in the same parenthesis is

cyclically decreasing so this gives a cyclically decreasing nilHecke factorization of w

corresponding to T under .

Now we show that 4 is well-defined regardless of the choice of ci's in the process.

It is enough to show that if we had a choice of taking one of the two border cells

cx and c with the same largest labelling at some point, then Ir(cx) - r(cY) ;> 2 so

the corresponding simple reflections commute inside a parenthesis in O(T). Suppose

jr(cx) - r(cy)I = 1 and assume r(cx) = i and r(c.) = i + 1. By construction, this can

only happen when both cx and c, are type-I maximal cells. If we let b be the box

right above c, in the i-th row, the label of b must be equal to M by the balancedness

at b. This is impossible because the labelling is column-strict.

To show that q is a bijection, we construct the inverse map '0 from a cyclically

decreasing nilHecke factorization to a column-strict s-v balanced labelling. Given a

cyclically decreasing nilHecke factorization u, = u,,u,2 - - -UVq, take any cyclically
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decreasing reduced decomposition of vi for each i inside a parenthesis, and then their

concatenation is a nilHecke word which multiplies to u,. By Theorem 3.2.6, this

nilHecke word corresponds to a unique injective s-v labelling of D(w). Now change

the labels in the injective s-v labelling so that the labels corresponding to ui's in the

k-th parenthesis will have the same label k. The resulting s-v labelling is defined to

be the image of the given cyclically decreasing niliecke factorization under 0. It is

easy to see that this s-v labelling is also balanced so it remains to show that this s-v

labelling is column-strict and that the map is well-defined.

Given any label M, suppose we are at the point at which we have removed all the

labels greater than M during the above procedure, and suppose that there are two

boxes c,, c. which contains the same label M in the same column j, where c,, is below

c~y. These two boxes must be removed before we remove any other boxes with labels

less than M, so to make c, a border cell, every boxes between c, and c, (including c,)

should be removed before c, gets removed. This implies that every box between c.,

and c. has a single label {M}. Let c,; = (i,j). Then the box (i - 1, j) should also have

a label M and it gets removed after the box c., is removed. This implies that the index

i - 1 preceded i inside a parenthesis in the original nilHecke word, which contradict

the fact that each parenthesis came from a cyclically decreasing decomposition. Thus

the image of 0 is column-strict.

Finally, we show that the map * is well-defined. One easy fact from affine symmet-

ric group theory is that any two cyclically decreasing decomposition of a given affine

permutation can be obtained from each other via applying commuting relations only.

Thus it is enough to show that the column-strict labellings coming from two reduced

decompositions ( ... ) ... (...u iu -.. ) ... ( ... ) and ( ... ) ... (. - -uui ... ) ... ( ... ) co-

incides if Ji - jJ > 2 modulo n. This is straightforward because the operation of

switching the pairs of rows (i + rk, i + 1 + rk), k E Z is disjoint from the operation

of switching the pairs of rows (j + rk, j + 1 + rk), k E Z.

From Theorem 3.2.6 and from the construction of # and V), one can easily see that

# and 4 are inverses of each other. This gives the desired bijection. 0
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3.4 Grothendieck Polynomials

Let us restrict our attention to finite permutations w E E, for this section. In this

case, there is a type-preserving bijection from column-strict labellings to decreas-

ing nilHecke factorizations of w, i.e., uw = uVI uV2 ... uVk in the nilHecke algebra

1n = (ui, u 2 , - - -, Un- 1 ), where each vi are permutations having decreasing reduced

word. Theorem 3.3.1 reduces to a monomial expansion of the stable Grothendieck

polynomial Gw(x) in terms of column-strict s-v labellings of (finite) Rothe diagram

of w.

Let Ow(x) be the Grothendieck polynomial of Lascoux-Schiltzenberger [10]. Fomin-

Kirillov [5] showed that

O )= Z( 0,I- (W)X(V1) x t(v2) ... xt(Vk) (3.1)

where the sum is over all flagged decreasing nilHecke factorization # : U3 = UV.UV2 - U Vk

of w, i.e., each vi has a decreasing reduced word a 1 a2 ... a(v,1) such that a ;> i for all

2.

We show in this section that this formula leads to another combinatorial expression

for Ow involving just a single sum over column-strict s-v balanced labellings with flag

conditions.

Theorem 3.4.1. Let w E En be a finite permutation. Then

O (X ) = Z(-1)JT-t(w)xT,
T

where the sum is over all column-strict s-v balanced labellings T of D(w) such that

for every label t E T(ij), t < i.

The content of Theorem 3.4.1 is that the flag condition in (3.1) translates to

the flag condition t < i, Vt E T(i, j). To be precise, the following lemma implies

Theorem 3.4.1. (Note that the sequence il i2 5 - - - 5 ik in the lemma corresponds

to the column-strict labels we construct in the proof of Theorem 3.3.1.)
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Lemma 3.4.2. Suppose that a = (a1, a2 ,... , ak) is a nilHecke word in 14, and let

Ta be a s-v balanced labelling corresponding to a. Let i1 , i 2 ,... ,ik be a sequence of

positive integers satisfying i1 ! i2 5 - ik. Then,

i t < at (3.2)

holds for all t = 1, 2,..., k if and only if

i t < I(t) (3.3)

holds for all t = 1, 2, ... ,k. As before, 1(t) denotes the row index of the box containing

the label t in Ta.

Proof. We have at = I(t) + R+(t) - U+(t) for all t by Theorem 3.2.7. Suppose (3.2)

holds. We want to show it 1(t).

If R+(t) = 0, then it at = 1(t) - U+(t) 5 I(t). If R+(t) > 0, then let t' > t be

the largest label in row I(k). Clearly R+(t') = 0, so it, < I(t'). Thus

it < it, < I(e') = I(t ).

This completes one direction of the lemma.

Next, suppose (3.3) holds. We have it < I(t) = at - R+(t) + U+(t) and we

want to show it < at. If U+(t) = 0, then the proof follows immediately. Suppose

U+(t) = d > 0. Then there are d boxes above t in the same column, whose minimal

label is larger than t. If t' be the one in the highest row, then 1(t') < I(t) - d.

Therefore,

i t  it, < 1(t') < 1(t) - d = at - R+(t) < at.

This completes the proof of Theorem 3.4.1.
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Chapter 4

Properties of Permutation

Diagrams

One unexpected application of balanced labellings is a nice characterization of

affine permutation diagrams. In this chapter we introduce the notion of the content

map of an affine diagram, which generalizes the classical notion of content of a Young

diagram. We will conclude that the existence of such map, along with the North-

West property, completely characterizes the affine permutation diagrams. Using this

criterion, we characterize and enumerate all patterns of affine or finite permutation

diagrams. Section 4.1 and 4.2 of this chapter is based on the joint work with Hwanchul

Yoo [17].

4.1 Content Map

Given an affine diagram D of size M, the oriental labelling of D will denote the

injective labelling of the diagram with numbers from 1 to M such that the numbers

increase as we read the boxes in [D] from top to bottom, and from right to left. See

Figure 4-1. (This reading order reminds us of the traditional way to write and read
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a book in some East Asian countries such as Korea, China, or Japan, and hence the

term "oriental".)

Lemma 4.1.1. The oriental labelling of an affine (or finite) diagram is a balanced

labelling.

Proof. It is clear that every hook in the oriental labelling will stay the same after

rearrangement. 0

Now, suppose we start from an affine permutations and we construct the oriental

labelling of the diagram of the permutation. For example, let w = [2, 6, 1, 4, 3, 7, 8, 5] E

E8 C E8. Figure 4-1 shows the oriental labelling of the diagram of w, where the box

labelled by 7 is at the (1,1)-coordinate.

Following the spirit of Theorem 2.5.2, for each box with label k in the diagram,

let us write down the integer ak E {0, 1, . . . , n - 1} where ak = I(k) + R+ (k) - U+ (k)

mod n. Recall that 1(k) is the row index, R+(k) the number of entries greater than

k in the same row, U+(k) the number of entries greater than k and located above k

in the same column. The formula is actually much simpler in the case of the oriental

labelling, since U+(k) vanishes and R+(k) is simply the number of boxes to the left

of the box labelled by k. Figure 4-2 illustrates the diagram filled with ak instead of k.

From Theorem 2.5.2, we already know that we can recover the affine permutation we

started with by ak's. For example, w = [2, 6,1,4, 3, 7, 8, 5] = s5 s 6 s7 s 4s 3s 4 s1 s 2 , where

the right hand side comes from reading the Figure 4-2 "orientally" modulo 8.

Motivated by this example, we define a special way of assigning integers to each

box of a diagram, which will take a crucial role in the rest of this section.

15 4 1 3 4 5

6 41

Figure 4-1: oriental labelling of a finite Figure 4-2: ak's of the oriental la-
diagram belling
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Definition 4.1.2. Let D be an affine diagram with period n. A map C : D -* Z is

called a content map if it satisfies the following four conditions.

(Cl) If boxes b1 and b2 are in the same row (respectively, column), b2 being to the

east (resp., south) to bi, and there are no boxes between b1 and b2 , then C(b 2) -

C(bi) = 1.

(C2) If b2 is strictly to the southeast of bl, then C(b 2) - C(bi) > 2.

(C3) If b1 = (i, j) and b2 = (i + n, j + n) coordinate-wise, then C(b 2 ) - C(bi) = n.

(C4) For each row (resp., column), the content of the leftmost (resp., topmost) box

is equal to the row (resp., column) index.

Proposition 4.1.3. Let D be the diagram of an affine permutation w E n. Then,

D has a unique content map.

Proof. By the conditions (Cl) and (C4), a content map is unique when it exists. As

we have seen in Figure 4-1 and Figure 4-2, give the oriental labelling to D(w) and

define C by C(b) := I(b) + R+(b) - U+(b) mod n as before. In the case of the oriental

labelling R+(b) is just the number of boxes to the left of b and U+(b) = 0. Thus

C(b) = (row index of b) + (number of boxes to the left of b) mod n
(4.1)

= (column index of b) + (number of boxes above b) mod n

where the second equality is from Remark 2.5.3.

(Cl) is immediate for two horizontally consecutive boxes. Suppose two boxes b1

and b2 are in the same column, b2 being to the south to bi, and there are no boxes

between b1 and b2 . Let i 1 and i2 be the row indexes of b, and b2 , and let j be

their column index. Since there are no boxes between b1 and b2 , the dots (points

corresponding to w) in row i 1 + 1,ii + 2, ... ,i 2 - 1 are placed all to the left of the

column j. These dots exactly correspond to the columns k <j such that (ii, k) has

a box but (Z2 , k) is empty. This implies that R+(bi) - R+(b2 ) = i 2 - il - 1. We also

have I(b 2 ) - I(bi) = i2 - ii. Hence, C(b 2) - C(bi) = 1.

51



For (C2), let b1 = (iiji), b2 = (i2 ,j 2 ) be two boxes with i1 < i 2 and ji < j2, and

our claim is that C(b 2 ) - C(bi) > 2. We may assume that there are no boxes inside

the rectangle (iiji), (ii,]2 ), (i2 ,ji), (i2 ,j 2 ) since it suffices to show the claim for such

pairs. Since there is no box at (i2 , ii) there must be a dot at column ji somewhere

between (ii+ 1, ji) and (i 2 - 1, ji). Hence, there are at most i 2 - i1 -2 dots to the left

of column j, in rows i 1 +1, i1 +2, .. .,i 2 -1. This implies R+(bi) - R+(b 2 ) < i 2 - il-2

and therefore C(b 2) - C(bi) > 2.

(C3) and (C4) is clear from (4.1). L

4.2 Wiring Diagram and Classification of Permu-

tation Diagrams

We start this section by recalling a well-known property of (affine) permutation

diagrams.

Definition 4.2.1. An affine diagram is called North-West (or N-W) if, whenever

there is a box at (i, j) and at (k, f) with the condition i < k and j > f, there is a box

at (i, f).

It is easy to see that every affine permutation diagram is North-West. In fact, if

(i, w- 1(j)) and (kW - 1(f)) is an inversion and i < k, j > f, then (i, w- 1(f)) is also an

inversion since i < k < w- 1 (f) and w(i) > j > f. The main theorem of this section is

that the content map and the North-West property completely characterize the affine

permutation diagrams.

Theorem 4.2.2. An aftine diagram is an affine permutation diagram if and only if

it is North- West and admits a content map.

In fact, given a North-West affine diagram D of period n with a content map, we

will introduce a combinatorial algorithm to recover the affine permutation w E n
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corresponding to D. This will turn out to be a generalization of the wiring diagram

appeared in the section 19 of [14], which gave a bijection between Grassmannian

permutations and the partitions.

Let D be a North-West affine diagram of period n with a content map. A northern

edge of a box b in D will be called a N-boundary of D if

(1) b is the northeast-most box among all the boxes with the same content and

(2) there is no box above b on the same column.

Similarly, an eastern edge of a box b in D will be called a E-boundary of D if

(1) b is the northeast-most box among all the boxes with the same content and

(2) there is no box to the right of b on the same row.

A northern or eastern edge of a box in D will be called a NE-boundary if it is either a

N-boundary or an E-boundary. We can define an S-boundary, W-boundary, and SW-

boundary in the same manner by replacing "north" by "south", "east" by "west",

"above" by "below", "right" by "left", etc.

Now, from the midpoint of each NE-boundary, we draw an infinite ray to NE-

direction (red rays in Figure 4-3) and index the ray "i" if it is a N-boundary of a

box of content i, and "i + 1" if it is an E-boundary of a box of content i. We call

such rays NE-rays. Similarly, a SW-ray is an infinite ray from the midpoint of each

SW-boundary to SW-direction (blue rays in Figure 4-3), indexed "wi" if it is a W-

boundary of a box of content i, and "wj 1 " if it is a S-boundary of a box of content

i.

Lemma 4.2.3. No two NE-rays (respectively, SW-rays) have the same index, and

the indices increase as we read the rays from NW to SE direction.

Proof. If two NE-rays have the same index i, then it must be the case in which one

ray is an E-boundary of a box b1 with content i-I and the other ray is an N-boundary

of a box b2 with content i. Our claim is that two boxes b, and b2 should be in the

same row or in the same column.

53



1 2 3 4 5 6

1-st row- 3 5

W3/ 4

6'

6 W 7 8 ( 9) 10

Figure 4-3: content, (NE/SW-) boundaries, and rays

If one of the box is strictly to the southeast of the other, than it contradicts (C2).

Thus one of the box should be strictly to the northeast of the other. If b1 is to the

northeast of b2 , then there must be a box b3 above b2 in the same row of b1 by the

NW condition and this contradicts that b2 has N-boundary. On the other hand, if b2

is to the northeast of bi, then there is a box b3 above b1 in the same row of b2 and

the content of b3 is less than i - 1. This implies that there is a box with content i - 1

between b3 and b2 . This contradicts the fact that b1 is the northeast-most box among

all the boxes with content i - 1.

We showed that b1 and b2 should be in the same row or in the same column.

However, if they are in the same row then b1 cannot have an E-boundary and if in

the same column then b2 cannot have an N-boundary. Hence, no two NE-rays can

have the same index.

Finally, it is clear from (Cl) and (C2) that the indices increase as we read the

rays from NW to SE direction. The transposed version of the above argument will

work for SW-rays. 5

Lemma 4.2.4. There is no NE-ray of index k if and only if there is no SW-ray of

index Wk.

Proof. We will show that the followings are equivalent.
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1 2 3 4 5 6

Uf6 1167 ((5)

Figure 4-4: wiring diagram

(1) There is no N-boundary with content k and no E-boundary of content k - 1.

(2) There is no S-boundary with content k - 1 and no W-boundary with content k

(3) There are no boxes with content k or k - 1.

It is clear that (3) implies the other two. For (1)=>(3), suppose there is at least

one box with content k. Then, take the NE-most box b with content k and by the

assumption there must be a box above b with content k - 1. Then, take the NE-most

box c with content k - 1. By construction, this box c cannot have a box to its right

so the eastern edge of c is an E-boundary, which is a contradiction. Similar argument

shows that there are no box with content k - 1.

The transposed version of the above argument shows (2)=-(3). E

Now, given a North-West affine diagram D with a content map, we construct the

wiring diagram of D through the following procedure.

(a) (Rays) Draw NE- and SW-rays.

(b) (The "Crosses") Draw a "+" sign inside each box, i.e., connect the midpointof

the western edge to the midpoint of the eastern edge, and the midpoint of the

northern edge to the midpoint of the southern edge of each box.
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(c) (Horizontal Movement) If the box a and the box b are in the same row (a is to

the left of b) and there are no boxes between them, then connect the midpoint of

the eastern edge of a to the midpoint of the western edge of b.

(d) (Vertical Movement) If the box a and the box b are in the same column (a is

above b) and there are no boxes between them, then connect the midpoint of the

southern edge of a to the midpoint of the northern edge of b.

(e) (The "Tunnels") Suppose that the box a of content k is not the northeast-most

box among all the boxes with content k and that there is no box on the same row

to the right of a. Let b be the closest box to a such that it is to the northeast

of b and has content k. For every such pair a and b, connect the midpoint of the

eastern edge of a to the midpoint of the southern edge of b.

Lemma 4.2.5. Each midpoint of an edge of a box in D is connected to exactly two

line segments of (a), (b), (c), (d), and (e).

Proof. Note that NE- and SW-rays are drawn only when the horizontal/vertical move-

ment is impossible at that midpoint. After one draws rays, crosses, horizontal/vertical

lines, the remaining midpoints are connected by the tunnels. f

Figure 4-4 illustrates the wiring diagram of the affine diagram of period 9 in Figure

4-2. Note that the curved line connecting two boxes of content 4 is a "tunnel". Once

we draw this wiring diagram of a North-West affine diagram with a content, it is

very easy to recover the affine permutation corresponding to the diagram. From a

NE-ray indexed by i, proceed to the southwest direction following the lines in the

wiring diagram until we meet a SW-ray of index wj. This translates to wj = i in the

corresponding affine permutation. If there is no NE-ray of index i (equivalently, no

SW-ray of index wi), then let wi = i. For instance, Figure 4-4 corresponds to the

affine permutation w = [w 1 , w2 , .. ., W9] = [2, 6,1,4,3, 7,8, 5, 9] E E C E9.

Proposition 4.2.6. The wiring diagram gives a bijection between the North-West

affine diagrams of period n with a content map, and the affine permutations in En.

56



Proof. Let D be an North-West affine diagram of period n with a content map and

suppose we drew a wiring diagram on D by the above rules. For every k not appearing

in the indices of NE-rays, draw a "fixed point" ray from northeast to southwest with

NE index k and SW index Wk using Lemma 4.2.4 (see Figure 4-4, w9 = 9.) Now

the indices of the NE- and SW-rays will cover all integers, and there is a one-to-one

correspondence between NE-rays and SW-rays following the wires (Lemma 4.2.5).

Let f(a) = b if the NE-ray b corresponds to the SW-ray wa following the wires. We

will show that w = (f(i))iEZ is the affine permutation whose diagram is D.

Consider two wires corresponding to SW-rays wi and wj, i < j. It is easy to

see that two wires intersect at most once, and the crosses inside the boxes exactly

correspond to these intersections. This implies the two wires intersect if and only if

(i, j) is an inversion, and each box corresponds to these inversions. Moreover, the

SW-ray wi must enter into a W-boundary of a box with content i and the NE-ray

f(j) should come out from a N-boundary of a box with content f(j). Hence the

intersection should occur in the box with coordinate (i, f(j)). This concludes that

the diagram D is indeed a diagram of an affine permutation w. E

Our main result of this chapter, Theorem 4.2.2, is a direct consequence of Propo-

sition 4.2.6.

4.3 Patterns in Permutation Diagrams

In this section, we consider patterns (or subdiagrams) of the diagrams of affine permu-

tations using the tools we developed in the previous sections. We will only consider

finite diagrams for our analysis but all results in this section can be extended to

affine diagrams (see Remark 4.3.4.) Note that the content map for a finite diagram

is defined by conditions (Cl), (C2), and (C3) since (C4) is already given.

For an n x n diagram D and a k1 x k2 diagram P, ki, k2 < n, we say D contains

a pattern P if we can find k, rows 1 < il < i 2 < ... < Zk, < n and k2 columns

1 Ji < j2 < ... < k 2 5 n such that the restriction of D to these rows and columns
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is exactly P (i.e. P is a submatrix of D when written as a 0-1 matrix.)

The main result of this section is the following theorem.

Theorem 4.3.1. Let Pk1 ,k2 be the set of all k1 x k2 patterns in all permutation

diagrams of all size (or, equivalently, of size 2 max(ki, k2 )). Then,

Pk 1 ,k2 = { all North-West k1 x k2 diagrams}.

Remark 4.3.2. It is clear that every pattern in a permutation diagram is North-

West. Theorem 4.3.1 asserts that any North-West diagram is a pattern of some per-

mutation diagram. This theorem implies that it is impossible to classify permutation

diagrams by pattern avoidance.

To prove the theorem we need the following lemma.

Lemma 4.3.3. Let D be a North-West finite diagram such that there is a map C

on the boxes on D satisfying conditions (Cl) and (C2). Then there is a permutation

diagram D' which can be obtained from D by translation and by adding or removing

empty rows and columns to the diagram.

Proof. First note that adding or removing empty rows and columns does not affect

condition (CI) and (C2). Let bi be the topmost box in column i in diagram D (if

exists.) By assumption, C(bi) < C(b) for i < j. Hence we can add or remove empty

columns to D and translate the diagram so that bi is in C(bi)-th column. Let D1 be

the resulting diagram.

Now let ci be the leftmost box in row i and similarly add or remove empty rows

to D 1 and translate D 1 so that ci is in C(bi)-th row. The resulting diagram D' is

North-West and admits a content map so by Theorem 4.2.2 D' is a diagram of a

permutation. 0

Proof of Theorem 4.3.1. Let P be any k1 x k2 North-West diagram and let ri, r 2 , ... , rk1

be the rows of P. We will add new rows between each ri and rj+1 by the following

algorithm.
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Figure 4-5: from N-W diagram to permutation diagram

Note that there is a column j in which there is a box at (i + 1, j) but no box at

(i, j), then every boxes in ri must be placed completely to the left of the column j by

the North-West condition. Let el, e2 , . . . , et be the columns in which there is a box

in ri but no box in ri+i, from left to right. Between ri and ri+i, we will add one row

for each eh for h = 1,2,... , t (see Figure 4-5).

For each eh, h = 1, 2,... t, make a copy of ri+i, remove every box to the right of

eh, and then add this partial copy between the rows ri and ri+i, from top to bottom.

It is easy to see that we can label the resulting diagram with t + 2 rows so that the

label will satisfy conditions (Cl) and (C2) of the definition of the content map. Now,

P' be the diagram we get from P after performing this procedure for every pair of

consecutive rows ri and rj+1, i = 1, 2,. .. , - 1.

By its construction P' is a North-West diagram which admits a map C satisfying

conditions (Cl) and (C2). Hence, we can get a permutation diagram P" from P' by

adding or removing empty rows and columns by Lemma 4.3.3. It is clear that P is

a pattern of P" and thus every North-West diagram is a pattern of a permutation

diagram. 5

Remark 4.3.4. Let Pk,k2 be the set of all k, x k2 patterns in all affine permutation

diagrams. Then P C P C {all North-West k, x k2 diagrams}. Theorem 4.3.1 implies

59

0 r



that they all coincide.

We may regard a k, x k2 North-West diagrams as a k, x k2 zero-one matrix (1 for

a box and 0 for empty spot) which avoids two 2 x 2 patterns {{ 1, 0 1}.

Here we make a quick digression to the theory of pattern avoidance of zero-one

matrices. A zero-one matrix is called a lonesum matrix if there is no other zero-

one matrix with the same column-sum vector and the same row-sum vector. Ryser

[15] proved that a zero-one matrix is lonesum if and only if it avoids two patterns

Let B-k be the poly-Bernoulli number of negative index, which can be defined as

follows.

B- - (-1)+mm!S(n, m)(m + I)k

m=0
min(n,k)

= E (j!)2S(n+1,j+1)S(k+1,j+1),
j=0

where S(n, m) is the Stirling number of the second kind, the number of ways to

partition n elements into m non-empty subsets. Brewbaker [1] proves that the number

of n x k lonesum matrices is B -k.

The following lemma can be seen as a special case of a much more general theory of

Le-diagrams of Postnikov [14] drawn in a Young diagram. In our case of rectangular

matrices, we provide an elementary proof of this fact.

Lemma 4.3.5. The set of n x k zero-one matrices avoiding { , } and the set

of n x k zero-one matrices avoiding {6, } are equinumerous.

Proof. Let f(n, k) be the number of n x k zero-one matrices avoiding { 0 1, 1 }. It

is clear that f (1, k) = Bi- = 0. We will prove f(n, k) = B [k by induction on n.

... 01 ... 10... O 00. 00
k-j

Suppose that in the first row there are f l's and that the last position of 1 is at the

j-th position. For any O's on the first row which has a 1 on its right, every element
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below that 0 is determined to be 0. Hence, we have the following recurrence.

k .

f(nk) =f(n-1,k) + EL (j )f(n-I 1,k-j+f).
j=1 f=1

One can check that Bn-k satisfy the same recurrence using the first formula of (4.2)

and the recurrence S(n, k) = kS(n - 1, k) + S(n - 1, k - 1). l

The following is an immediate corollary of Thereom 4.3.1 and Lemma 4.3.5.

Corollary 4.3.6. The number of all k1 x k2 patterns of all permutation diagrams is

the poly-Bernoulli number of negative index B-k2
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