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ABSTRACT

Mixing in a micro-scale coaxial turbulent jet mixer for the fabrication of nanoparticles for
drug delivery was experimentally characterized. Rapid mixing due to turbulence offers
improved control of nanoparticle production over conventional bulk nanoprecipitation
methods.

Mixing time was determined based on photographs of mixing of an acidic solution and a
basic solution in the device, with phenolphtalein used as an indicator of the extent of
mixing. The average Reynolds number and velocity ratio were varied. The velocity ratio
varied between 0.1 and 10. The Reynolds number varied between 200 and 1800. Mixing
times on the order of 1 to 50 ms were measured in the device. The mixing time was found
to be proportional to average velocity to the -3/2 power. The data showed some
agreement with predicted mixing time based on the EDD model for turbulent
micromixing in the jetting regime.

Thesis Supervisor: Rohit Karnik
Title: Associate Professor of Mechanical Engineering
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1. Introduction

Nanoparticles have shown promise as a vehicle for delivering drugs to target cells within

the body. In comparison to bulk nanoprecipitation methods, microfluidic devices for

nanoparticle fabrication have demonstrated a good ability to control physiochemical

properties of therapeutic nanoparticles, which strongly affect their in vivo fate."2

A significant hurdle in the further clinical acceptance of nanoparticles for medical

applications is the development of consistent, high-throughput devices for nanoparticle

fabrication. 3 This study focuses on the mixing of two fluids in a novel coaxial turbulent

jet mixer for the production of nanoparticles, which allows high throughput and control

of the product's physicochemical properties. We characterize the mixing time in the

device as a function of the net Reynolds number and the velocity ratio of the input flows.

1.1 Nanoparticles in Medicine

Nanoparticles are well-suited to medical applications because they are on the same scale

as the biological processes typically disrupted by disease.4 In particular, nanoparticles

have much to offer in the areas of drug delivery and imaging. Loaded liposomes and

polymeric nanoparticles have been used to deliver drugs to specific types of cells,5 while

metallic nanoparticles, especially iron oxide nanoparticles, have been developed for use

as contrast agents for magnetic resonance imaging (MRI)6 .

One key advantage of nanoparticles is that they can be engineered to target specific

cells. This is important both for drug delivery and imaging applications. Many drugs,

especially cancer-fighting drugs, are toxic to healthy cells and diseased cells alike, so the

maximum dosage is limited by the need to minimize side effects such as the necrosis of

healthy cells. 7 A method of drug delivery that specifically targets diseased cells

practically circumvents that limit. Targeting is also useful for imaging, where the ability

to visually distinguish between healthy and diseased tissue is advantageous for diagnostic
6purposes.

Physicochemical properties of nanoparticles determine their ability to target diseased

cells. The enhanced permeability and retention (EPR) effect describes cancerous tissue's

tendency to allow greater permeation of large molecules from the bloodstream, and to
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retain these molecules for a longer time, relative to healthy tissue. Cancer cells can thus

be passively targeted based on nanoparticles' size.5 Cells can also be actively targeted

using surface modifications that enhance binding to or uptake by specific kinds of cells.3

The size of nanoparticles in such applications partially determines their

effectiveness. The size of iron oxide nanoparticles used as MRI contrast agents governs

the speed of uptake by organs, so the nanoparticles' size is engineered to suit the imaging

of specific organs and structures. Size also contributes to the fate of nanoparticles used

for targeted drug delivery.5 Consequently, good control of the size and size distribution of

nanoparticles is required of nanoparticle production processes.

1.2 Methods for Fabrication of Nanoparticles

A wide range of processes are used for the fabrication of nanoparticles. Two-step

methods first emulsify and then form nanoparticles from the emulsion. Emulsification

may be carried out by a variety of methods and technologies, such as droplet extrusion or

the use of a colloidal mill. Nanoparticles can then be formed from the emulsified droplets

by such methods as evaporation of solvent and polymerization of the nanoparticle.8

A simpler, less energy-intensive method for forming nanoparticles is

nanoprecipitation, which adds a polymer in its non-solvent to the polymer's solvent,

causing polymer nanoparticles to precipitate out in a simple and repeatable way.' This

process may be done in bulk, but microfluidic devices offer greater control over the

mixing process and the resulting particles.3 Microfluidic mixing devices using flow

focusing' and impinging jets'" 1 have been proposed and studied.

1.3 The Coaxial Jet Mixer

The coaxial jet mixing device under consideration here is shown below in Figure 1.

Its geometry is simple: two flows enter the device through coaxial tubes, and mixing

occurs at the termination of the inner tube. The behavior of the device depends on the

velocities of the flows into the device. The mixer may function as an axially symmetric 3-

dimensional flow-focusing device, where a focused inner flow is mixed with the outer

flow by diffusion. Alternatively, if the velocities are high enough, turbulence may induce

rapid mixing. Rapid mixing is desirable in such devices because it accelerates throughput,

12



allows the fabrication of more complicated composite nanoparticles, and reduces the need

for nanoparticle storage.' 2

b

Figure 1: Schematic illustration of the coaxial jet mixer, showing two distinct
flow regimes: (a) turbulent flow and (b) eddy flow. Mixing occurs after the
inner flow is injected into the coaxial outer flow.

Mixing time depends on the fluid properties and input flow velocities, but the way in

which the mixing time may scale with input parameters is difficult to determine

analytically. Baldyga and Bourne demonstrate a computational approach to a similar

problem.' 3 This project examines experimental data on mixing time in the device for a

range of velocity ratios and Reynolds numbers, in order to characterize mixing in the

device.
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2. Predicting mixing time

Mixing is the process of homogenizing the distribution of one material in another. As

mixing occurs, the length scale of inhomogeneities shrinks.' 3 Depending on the Reynolds

number and flow rate ratio, mixing may occur due to turbulence or due to flow focusing.

To determine which effect dominates, it is useful to compare the expected mixing time

for each of these regimes.

2.1 Problem Summary

The flow in the device is depicted in Figure 2.

Figure 2: Flow through the coaxial jet mixer.

In the case examined here, the two fluids have approximately the same density p and

kinematic viscosity v. The kinematic viscosity of the water-ethanol mixture used in the

experiments (see Section 3.1) was assumed to be 2.589 X 10-6 , based on the work of
S

Khattab et al.'14 The device geometry is described by D, the diameter of the outer tube,

14
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and di and d,, the inner diameter and outer diameter, respectively, of the inner tube. The

device's length is much greater than its diameter or any observed mixing length, except

in some cases when the flow is not turbulent. The two input velocities Uj and U0 may be

fully defined by setting the dimensionless velocity ratio R" and average-velocity

Reynolds number Reave where

U-
RU = U(1)

UO

and

Reave = UaveD (2)

Here Uave is the average velocity over a cross-section of the device:

(D2 - di )UO + dU(
Uave = 2 (3)

2.2 Mixing due to flow focusing

Flow focusing is expected to be the dominant mixing phenomenon when the velocity

ratio and Reynolds number are small. Extending the correlation for mixing time in a two-

dimensional flow focusing device given by Kamik et al.,' we find a correlation for the

mixing time due to flow focusing in a cylindrical flow focusing device:

d~X 2, (4)

where df is the focused diameter of the inner flow, and D is the mass diffusivity.

The focused diameter of the inner flow is

df = d i (5)
f e v ve

from the conservation of mass.
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2.3 Turbulent Mixing

Description of mixing is complicated by the fact that length scales on different orders of

magnitude contribute to the problem.' 5 The engulfment, deformation, diffusion (EDD)

turbulent micromixing model considers mixing to be a process in which unmixed fluid is

entrained into turbulent vortices, the vortices stir the fluid at their characteristic

frequency, creating a layered structure, and, once the layers are small enough, molecular

diffusion finishes the mixing process.13 The characteristic time for this process is given as

12 (6)

where (E) is the average turbulent kinetic energy dissipation rate. The energy dissipation

rate in the core of a pipe flow can be estimated as

ii3

= 0.0668 (7)
Re 1/4 D

where U is the average velocity in the axial direction.16 The Reynolds number used in this

analysis is the average-velocity Reynolds number Reave.

3. Testing mixing time predictions

3.1 Experimental procedure

The experimental device was a coaxial jet mixer shown previously in Figure 1. The

inner flow was injected through a 23-Gauge needle into the coaxial outer flow through

1/8"-diameter tubing. The inner diameter and outer diameter of the needle were 0.6414

mm and 0.337 mm, respectively. Three syringe pumps drove the inner and outer flows at

a set inner and outer velocity. For each velocity ratio, which ranged from U = 0.1 to 10,
U0

tests were carried out at an outer velocity varying from 100 to 1000 mm/s.

The mixing of an acidic outer flow with a basic inner flow was tracked using the pH

indicator phenolphthalein, which is purple in basic solutions and becomes transparent in

neutral or acidic solutions. The inner flow solution contained by volume 10% IN NaOH,

23.3% phenolphthalein solution, and 66.7% ethanol. The phenolphthalein solution
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contained 1% phenolphthalein (mass per volume) in water. The outer flow solution

contained by volume 10% HCl, 23.3% water and 66.7% ethanol.

As mixing occurred during testing, the HC1 neutralized the NaOH, and the color of

the fluid indicated the degree of mixing: an unmixed jet appeared purple, and as mixing

enabled a change in pH, the color weakened until the jet became indistinguishable in

color from the surrounding fluid.

The mixing in the device was photographed several times for each combination of

velocities. A right angle prism mirror placed next to the device, shown in Figure 3

enabled photographs to capture a view from above the device and a view from the side of

the device simultaneously.

Figure 3: Photograph of experimental setup. Flow is driven by three syringe
pumps. The device is boxed in red. The right-angle prism mirror is located
just below the device.

These photographs support the assumption that the density of the two flows is almost

the same: the vertical drift of the mixing flow is very small, indicating negligible buoyant

forces and thus a negligible difference in the densities of the two flows.
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3.2 Image Analysis

A characteristic mixing length was determined from photos of the device taken

under different flow conditions (velocity ratio and average velocity were varied

systematically). Since the phenolphthalein appears fuchsia, the complementary green

channel of the RGB images was analyzed in ImageJ to extract a mixing length for each

photo, as shown in Figure 4.

4)
cc

original
mixing length Image

split
green
channel

100 profile
0.9 h h plot

distance
Figure 4: Method for determining mixing time. The mixing length is shown
superimposed on the original image (top). This mixing length is the length at
which the gray value of the RGB green channel is 90% of its maximum value
h, both relative to the initial value (bottom). The selected distance is chosen
somewhere after the flow is visibly fully mixed, but before any major change
in the glare in the photographs.

The intensity profile of the green color channel of the image was found along the

centerline of the jet, and the mixing length L was defined as the length at which the

difference between it and the beginning of the jet was 90% of the intensity difference

between the completely mixed flow far downstream and the beginning of the jet.
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No mixing time was estimated for the tests for which the flow was still unmixed at

the rightmost edge of the image.

3.3 Determining Mixing Time

From the mixing lengths, determined in as described above, mixing times were estimated

using the following equation:

L
Tmix Uae. (8)

The use of (8) assumes that the particles being mixed travel at uave as their average

velocity throughout the mixing process. This is not strictly true: though the particles'

speed far downstream is Uave, they enter the device at the inner flow velocity Uj. If Uj

and uave are not equal, any one particle's time-average velocity will not be uave -

However, this assumption allows us to make simplified statements about the scaling of

the mixing in the devices.

4. Results and Discussion

The mixing time was plotted and compared to the predictions of the EDD model

described above.

4.1 Mixing Time

The mixing times are plotted as a function of Reave for each velocity ratio in Figure 5.
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Figure 5: Mixing time data, plotted versus average-velocity Reynolds number
Reave. Mixing times are averaged over multiple photographs. Error bars
indicate one standard deviation. Absence of error bars indicates that the error
bar is within the symbol size.

Mixing is clearly expedited as the Reynolds number increases, but the scaling is not

obvious from the data presented in Figure 5.

The mixing time was non-dimensionalized by dividing it by i,, given in (6). This

dimensionless mixing time is plotted versus Reave in Figure 6.
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Figure 6: Mixing time, non-dimensionalized using rw. Error bars indicate one
standard deviation. Absence of error bars indicates that the error bar is
within the symbol size.

For velocity ratios R, > 1, the data have more nearly collapsed onto the line 'mx = 1,

especially at Reave above about 800. For these higher Reynolds numbers and flow rate

ratios, the measured mixing time is within 40% of the predicted value. For R, ; 1, there

is considerably more scatter. The flow in this region may be better described by another

model that accounts for the vortices generated at the end of the inner tube.

4.3 Future Work

The low-Reynolds number, low-velocity ratio flows, which are believed to be dominated

by flow focusing, can not be analyzed because mixing was not complete before the end of
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the image. Additional experiments, designed to capture a longer distance, would allow

investigation of the flow-focusing regime, which was not possible with the data collected

in this project. The effect of the assumption in Equation (8), which was used to calculate

mixing time, needs to be looked into.

Further investigation into mixing theory could shed light on the nature of the mixing

at velocity ratios less than 1.

5. Conclusion

Mixing in the coaxial jet mixer was characterized based on experimentally determined

mixing times. In the jetting regime, these mixing times were approximately consistent

with those predicted by the EDD model.
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