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ABSTRACT
The intent of this thesis is to provide theory behind the design and development of

an improved two-axis meso-scale electro-magnetic actuator for a low cost metal flexure
nano-positioner. Three such 2-axis actuators can be combined to give the nano-positioner
6-degrees of freedom. The developed system will remove the cost barrier to technologies
that require high precision actuation, like optics alignment and data storage. This work
involves use of a new combination of the following technologies 1) Electro-magnetic
Lorentz coil actuation (moving magnet), 2) flexural bearings and 3) rapid printed circuit
board (PCB) heat dissipation. Simulations using Solidworks and Matlab were employed
to determine how the actuator system behaved. It was determined that the actuator was
required to provide 0.17N and 0.12N in plane and out of plane forces, respectively, to
provide the target ± 20gm range of motion. The actuator dissipates 11W of heat when
achieving maximum range, which raises the temperature of the Lorentz coils from room
temperature to 369K, a temperature below the maximum permitted temperature of 413K.
The analysis has shown that it is feasible to design and make a two-axis electro-magnetic
actuator that can be incorporated into a six-axis flexure based nano-positioner.

Thesis Supervisor: Martin L. Culpepper
Title: Associate Professor of Mechanical Engineering

3



4



AcKNOWLEDGEMENTS

This work was only made possible through the great support that I received

during the duration of this project. First of all I would like to thank Robert Panas, who

introduced me to the PCSL lab three years ago as his UROP. He has served as a great

mentor and advisor to me not only for this project but also for navigating my way through

the opportunities available at MIT.

I also would like to thank Lucy Du for all the help she gave me with the

simulations and for listening to and offering feedback on some ideas that I had during the

project.

I would also like to thank Professor Martin Culpepper for the mentorship and

guidance over the past three years that he has been my UROP PI. His advice has been

invaluable for both this project and in defining my goals for after MIT.

Lastly I would like to thank the Mechanical Department for the great instruction,

support and opportunities that they have provided during the past four years that I have

ee aL VIi I.

5



CONTENTS

Contents
ABSTRACT ........................................................................................................................... 3

Acknowledgem ents ............................................................................................................. 5

Contents .............................................................................................................................. 6

Figures ................................................................................................................................. 8

Tables .................................................................................................................................. 8

Chapter 1 ........................................................................................................................... 10

M otivation ..................................................................................................................... 10

Figure 1. 1: HEXFLEX flexure bearing ........................................................................ 11

1. 1 Prior art and actuator selection ............................................................................... 11

1.2.1 Piezoelectric Actuators .................................................................................... 12

1.2.2 Electrotherm al Actuators ................................................................................. 12

1.2.3 Electrostatic actuators ...................................................................................... 12

1.2.4 Electrom agnetic actuators ................................................................................ 13

1.2.5 A ctuator Sum m ary ........................................................................................... 14

Chapter 2 ........................................................................................................................... 16

2.1 Electrom agnetic actuators ....................................................................................... 16

2.2 Lorentz coil forces .................................................................................................. 16

Chapter 3 ........................................................................................................................... 19

3.1 Flexure bearing ....................................................................................................... 19

3. 1.1 Flexure bearing properties ............................................................................... 20

3.1.2 Flexure theory .................................................................................................. 21

3.2 HEXFLEX .............................................................................................................. 22

3.3 Final HEXFLEX design .......................................................................................... 23

Chapter 4 ........................................................................................................................... 25

4.1 Printed circuit board design .................................................................................... 25

4.2 Therm al dissipation m odes ..................................................................................... 25

4.2.1 Conduction ....................................................................................................... 26

4.2.2 Convection ....................................................................................................... 28

4.2.3 Radiation .......................................................................................................... 28

6



4.3Therm al resistance m odel ..................................................................................... 29

4.4 Therm al Design for printed circuit boards........................................................... 30

4.4.1 Printed circuit lam inate................................................................................. 32

4.4.2 Copper Pour ................................................................................................. 32

4.4.3 Therm al Vias................................................................................................. 32

Chapter 5........................................................................................................................... 34

5.1 Flexure/HEXFLEX Sim ulation .............................................................................. 34

5.2 EM sim ulation......................................................................................................... 37

5.2.2 Sim ulation results and analysis .................................................................... 38

5.2.3 Sum m ary of results ..................................................................................... 42

5.3 Therm al sim ulation............................................................................................ 43

5.4 Sum m ary of results ............................................................................................ 46

Chapter 6........................................................................................................................... 48

7.1 Sum m ary of design and developm ent.................................................................. 48

7.2 Future W ork............................................................................................................ 49

7



FIGURES

Figure 2.1: a) Cross section view of a three pole alternating magnet configuration with

actuator coils suspended above the magnets. b) Individual plan views of the stacked

coil actuator architecture.................................................................................... ........ 17

Figure 2.2: Close up view of the 3 pole magnetic actuator architecture. [5]............. 18

Figure 3.1: shows a cantilevered beam deforming under a load P [10].................... 21

Figure 3.2: Spring model for actuator and flexure bearings .................................... 22

Figure3.3: HEXFLEX developed by Culpepper et al. showing example displacements

for give tab displacements. (x) shows direction into plane, (.) shows directions out of

plane, hollow arrows show actuator inputs and shaded arrows show stage

displacem ents............................................................................................... .. 23

Figure 3.4: Redesigned HEXFLEX showing its key features .................................. 24

Figure 4.1: Heat transfer via the copper walls of a thermal via................................ 33

Figure 5.1: a) General meshing used for the simulation. b) local mesh control applied

to flexures to improve simulation accuracy ............................................................. 35

Figure 5.2: In plane actuation of HEXFLEX with 0.17N applied to two of the paddles.
Arrows show the direction in which the forces are applied....................................... 36

Figure 5.3: Out of plane actuation of HEXFLEX with 0.12N applied to normal to all

three paddles. .................................................................................... .... --..............-... 36

Figure 5.4: Results for X-Actuator simulation Ftotalx vs. bcoil including variation in

parasitic force error as a percentage of Ftotalx. This graph is similar to the one for

Ftotalz vs. bcoil.................................................................................. .... .... 39

Figure 5.5: Results for Z-Actuator simulation Ftotalz vs. tcoilCuweight including

variation in parasitic force error as a percentage of Ftotalz. This graph is similar to

the one for Ftotalx vs. tcoilCuweight.................................................................. 40

Figure 5.6: Results for Z-Actuator simulation Ftotalz vs. Current including variation

in parasitic force error as a percentage of Ftotalz. This graph is similar to the one for

Ftotalx vs. C urrent. ......................................................................................... .... 41

Figure 5.7 :Results for Z-Actuator simulation Ftotalz vs. height of coils above magnet

surface above including variation in parasitic force error as a percentage of Ftotal_z

with Current=8A. This graph is similar to the one for Ftotalx vs. Height.............. 42

Figure 5.8: Holes used to allow the introduction of copper posts into the PCB..... 44

Figure 5.9: Thermal chart for results of one of the simulations................................. 44

Figure 5.10: The highest temperature occurs along the sides that do not have copper

posts and these points along the same plane as the coils. ........................................ 45

Figure 5.11: Final maximum temperature for 1.575mm PCB board vs. the number of

copper posts in the PCB ............................................................................................ 46

8



TABLES

Table 1.1 Qualitative comparisons of electromagnetic actuator species ................... 14

Table 1.2 Typical small scale Nano-positioner actuator performance [6]................. 15

Table 5.1: Results from flexure simulation............................................................... 36

Table 5.2: Parameters for Lorentz coils simulation.................................................. 38

Table 5.3: Standard simulation values ..................................................................... 38

Table 5.4 Summary of simulation results ................................................................. 42

Table 5.5: Comparison between 0.787mm PCB and 1.575mm PCB ....................... 46

9



CHAPTER

1
INTRODUCTION

Motivation
The intent of this thesis is to provide theory behind the design and development

an improved 2-axis electro-magnetic actuator for a low cost metal flexure nano-

positioner. The 2-axis actuators if properly designed can then be employed to produce 6-

axis motion of a HEXFLEX stage [1]. This work involved use of a new combination of

the following technologies 1) Electro-magnetic Lorentz coil actuation (moving magnet)

2) flexural bearings 3) rapid printed circuit board (PCB) heat dissipation. These

technologies will be combined to produce an inexpensive way of providing nano-meter

accurate motions over a range of about 20pm x 20gm x 20m and at a bandwidth of

100Hz while maintaining nano-meter range repeatability. The flexure design will involve

special consideration to make it compatible with the attachment of silicon based strain

gauges that being developed by Panas [2]. The gauges will provide better control of the

actuation because of the feedback capabilities that will allow closed loop control.

The results of this thesis could prove useful to removing the barriers to some

technologies that require high precision actuation or manipulation but are hindered by the

high costs of current nano-positioners. Some of the technologies include fiber optic

aligners, manufacture of small components, data storage and biomedical research. The

addition of compatibility with silicon strain gauges that have a high gauge factor will

allow for even better actuation control at a much lower price [2].

The reduction in the cost of the nano-positioner, actuator and sensor combination,

will provide a better performance to cost ratio for nano-positioners. This development
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could lead to removal of one barrier hindering the economic feasibility of nano-

positioners for new applications in research and in industry.

One of the biggest issues that this thesis work will tackle is the range limitation of

current actuators. The range of the actuator is dependent on the design of the HEXFLEX

shown in figure 1.1, and the force the actuators can provide. This thesis project will

mainly focus on the actuator part and so most of the design work will entail finding ways

to increase the force generated by the actuator. The maximum force is dependent the

amount of current that can be safely passed through the coils, without overheating and the

design of the coils.

/

Figure 1.1: HEXFLEX flexure bearing

1.1 Prior art and actuator selection
A number of different meso- scale actuator designs have been developed to

achieve nano-level accuracy and precision. The designs can be divided into four main

categories 1) Piezoelectric, 2) Electrothermal, 3) Electrostatic and 4) Electromagnetic.

These different actuators have their own unique pros and cons.
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1.2.1 Piezoelectric Actuators
Piezoelectric actuators are made from materials that undergo dimensional changes

when a voltage is applied across them. The change in dimension is typically directly

proportional to the electric field applied across the material[3].Piezoelectric actuator are

have high levels of resolution and can achieve sub-nanometer level resolution. The

actuators produce high levels force and emit a couple of mill-watts of power [4]. This

means that the actuators have a high level of efficiency. Piezoelectric actuators have a

fast response but can only operate over a limited distance. The fabrication process and

integration of piezoelectric actuators into an actuation system is complex [5] [6]. Also

errors are introduced into the system because hysteresis and steady state drift making it

necessary for feedback loop to be used.

1.2.2 Electrothermal Actuators
Electrothermal actuators take advantage of thermal expansion in materials as a

means to provide actuation. Electrothermal actuator can produce high forces but like

piezoelectric actuators, they can only produce small displacements. Electrothermal

actuators have been successfully used to drive six-axis nano-positioners [5]. The

fabrication process is complex as electrothermal actuators are normally made using a

silicon micro-fabrication process [6]. Response time of these actuators is limited by how

fast the material can be heated or cooled. Electrothermal actuators are unsuitable for

manipulating temperature sensitive materials since they operate at high temperatures of

around 6000 C [5]. The heat operating temperatures can also cause thermal gradients and

hence lead to thermal error in both the bearings and sensors.

1.2.3 Electrostatic actuators
Electrostatic actuators rely on the principle of electrostatic attraction. Electric

charge is deposited on two surfaces that are in close proximity to each other, the resulting

electric force is what is used for actuating the system. These actuators have a simple

fabrication process but are will be difficult to integrate into nano-positioner systems.

Electrostatic actuators tend to have lower forces compared to the other actuator types.

The major problems with this type of actuator are gap field breakdown, gap
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contamination and the need to use high voltages in the order of lOs-lOOs of volts [5].

Electrostatic actuators also suffer from limited in- and out-of-plane range making it

difficult apply them to more than 2 degree-of-freedom applications. There exist example

of systems that have used electrostatic actuator for 6-axis actuation but their range of

motion was limited [5].

1.2.4 Electromagnetic actuators
Electromagnetic actuators rely on the interaction of electric and magnetic fields to

produce forces. Electromagnetic actuators can provide large forces over a large range of

motion [6]. These actuators can be designed in such a way that they can provide a force

with high degree of linearity with current that the need to use sensors for some

applications can be eliminated [5]. Electromagnetic actuators have lower command

voltages compared to electrostatic actuator making them easier to implement. There are

three main types of electromagnetic actuators that were are going to consider; 1) variable

reluctance, 2) moving magnet and 3) moving coil.

1.2.4.1 Variable Reluctance Actuator
Variable reluctance actuators work of the reluctance principle in magnetic

circuits. They are capable of producing high forces and have high resolution. The main

limitation with variable reluctance actuators is that can only operate in one axis.

1.2.4.2 Moving-Magnet Actuator
Moving magnet actuators, unlike variable reluctance actuators, can provide both

single and multi-axis actuation. Moving magnet and moving coil actuators are similar but

differ in where the permanent magnets and coils are placed. In moving magnet actuators,

magnets are attached to the flexure bearings, allowing them to move with bearings, and

the coils are in a fixed position, hence the name moving magnet actuator. Having the

coils in a fixed position makes it easier to transfer dissipated heat from the coils allowing

more current to safely flow through the coils without overheating. At the same time

addition of magnets/mass to the flexure causes the system to have a low resonance

frequency [5].
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1.2.4.3 Moving-Coil Actuator
Moving coil actuator is similar to the moving magnet actuator described in section

1.2.4.2 above. The main difference is now the coils are the ones that are attached to the

flexure and the magnets are attached to a fixed position. This is easier to fabricate

compared to moving -magnet actuator [6]. Cooling the coils in moving-coil actuators is

more difficult leading to a lower safe current limit for moving-coil actuators compared to

moving-magnet actuator. Because of the lower current limit, the force generated by

moving-coil actuators is lower than the force generated by moving- magnet actuators.

Power dissipation from the moving coils goes through the flexure bearings causing

thermal errors in both the sensors and flexure repeatability.

1.2.5 Actuator Summary
The three most often used electromagnetic micro-actuators are 1) variable

reluctance, 2) moving magnet and 3) moving coil. Table 1.1 below shows the qualitative

comparison of the three actuators [5].

Table 1.1 Qualitative comparisons of electromagnetic actuator species
Heat

Type Speed Force Multi-axis dissipation Fabrication

Variable
Fast High No Low Difficult

Reluctance

Moving Moderate High Yes Low Moderate
Magnet

Moving Coil Fast Moderate Yes Moderate Moderate

Variable reluctance actuators have great response, high force output and low thermal heat

dissipation. These qualities would have made variable reluctance actuator an idea for 6-

axis nano-positioners but the fact the fact that they only have one axis actuation rules

them out of further consideration for use in six-axis nano-positioner. Moving coil and
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moving magnet actuators can both be used for six-axis nano-positioner actuation and so

will be compared with other types of actuators.

As seen from table 1.1 above variable reluctance actuators are not suitable for

multi-axis actuation. The summary of the performance of the remaining actuators,

Electrostatic (ES), Moving coil, Moving magnet, Piezoelectric (PE) and Electrothermal

(ET), are summarized in the table 1.2 below [6]

Table 1.2 Typical small scale Nano-positioner actuator performance [6]
Ease of

Stoke Bandwidth Force Footprint Heat Ease of
Type MDOF

(Pm) (kHz) (mN) (pm2) Dissipation fabrication
integration*

ES 100 10 0.001 104  Low Good Difficult

Moving 10 1 0.1 106 Moderate Difficult Good
coil

Moving 100 0.1 10 106 Low Good Good
magnet

PE 1 100 0.1 102 Low Difficult Difficult

ET 100 1 10 102 High Good Good

*Note: MODF integration is a qualitative measure of how easily the actuator can be

integrated in a Multi-Degrees of Freedom system.

Piezoelectric actuator and moving coil actuator have ranges that are less than the

required ±20pm range of motion and so can be crossed out even though they might have

good qualities like high force and MODF integration respectively. Electrothermal

actuators have high operating temperatures that make unsuitable for manipulation of

temperature sensitive material like biological cells. This leaves electrostatic actuators and

moving magnet actuators as the remaining options. Moving magnet actuator has a better

ease of MDOF integration whereas electrostatic have a limited range when applied to

multi-actuation. Moving magnet is the best option of the actuators that considered in this

section. Section 2 will look into the theory governing how they work.

15



CHAPTER

2
THEORY- ELECTROMAGNETIC ACTUATOR

2.1 Electromagnetic actuators
Electromagnetic actuators, as described in section 1.2.4, generate forces through

interaction between electric and magnetic fields. They are capable of generating high

forces and can be designed to have a high current to force linearity. Three main types of

electromagnetic actuators were considered namely variable reluctance, moving magnet

and moving coil actuators. It was shown in section 1.2.5 that moving magnet actuator is

the most suitable actuator for this project because of its

" High force output

" Compatibility with multi axis actuation

* Low heat dissipation

* Ease of fabrication

Moving magnet actuator generates it forces as a result of Lorentz coil forces.

2.2 Lorentz coil forces

A force is generated on a charged particle when it moves relative to a permanent

magnetic field. Lorentz coil forces employ the same principle to produce forces whereas

this case the moving charged particles are electrons moving through a conductor. The

windings are fixed and so cannot move relative to each other, this means that the

magnetic fields that are caused by current going through the winds do not contribute to

the Lorentz forces [5]. Therefore the Lorentz forces will only depend on magnetic fields

16



caused by permanent magnets. The total Lorentz forces are calculated by integrating the

following equation:

Fcol = fo il(r) x B(r)dl 2.1

Also total moment about a reference point 0 is

Mcoilo = f (r - ro) x il(r) x B(r)dl 2.2

where i is the current flowing through the windings, r is the position vector of the current,

I is the current direction, B is the local magnetic field at the current increment, dl is the

length increment, r, is the position vector of the reference point, and L is the length of the

coil.

The actuator has a three pole alternating magnet configuration that is described

by Golda [5] shown the figure 2.1 a below. The actuator consists of three permanent

magnets and two sets of actuator coils. The design of the coils is shown in figure 2. 1b

below.

.

B-Field-
ZActuatorCoil

X Actuator Coil
N F g I

\S N S

a) b)

Figure 2.1: a) Cross section view of a three pole alternating magnet configuration

with actuator coils suspended above the magnets. b) Individual plan views of the

stacked coil actuator architecture.

The coils are stacked on top of each other separated by an electrical insulator. The coils

are capable of generating forces along different axes independent of each other allowing

for two axes actuation. Actuator forces are primarily generated by the segments that are

17



parallel to the y- direction. Coil segments that are parallel to the x- direction generate

negligible forces because they are in regions that have negligible magnet fields.

The interaction of magnetic fields of the individual magnets produces a magnetic

an overall magnetic field that is different from that of an individual magnet. Fourier

transform was used to simulate and model the 3-dimensional magnetic field generated by

the magnetic array. Figure 2.2 below shows a close up view of the 3 pole alternating

magnetic array.

cY(x,y,c/2).,

x z

M MC
Mt

Figure 2.2: Close up view of the 3 pole magnetic actuator architecture. [5]

The 3 pole alternating magnetic architecture has an even surface charge distribution

function of a(x,y,1 c) that consists of three top-hat functions [5]. The double Fourier

transform of this distribution is [5]

0(k. , k,) = Sin! -bky(sinak. - sin 2ak.,) 2.3
kxk 22 2

where a, b, c are dimensions of the magnets, M is the uniform magnetization along

the z-direction of the magnet, ky and k, are separation constants. Equation 2.3 is

going to be used in developing the simulation to predict the forces that are

generated by the actuator.
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CHAPTER

3
HEXFLEX DESIGN AND THEORY

3.1 Flexure bearing
Bearing design is extremely important not only to designing a high precision

manipulation system like a nano-positioner, but to all mechanical systems that have

moving components. Bearings allow components in a system to move relative to each

other. Without bearings movement of components relative to each other would be

hindered and some mechanical systems would either stop working or fail regularly.

Some of the main considerations when con sidering a bearing design for a system include:

" Range of motion: What are the limits on how system can move?

* Speed and acceleration limits: How fast components will move relative to each

other?

* Applied loads: What are the safe loads for the system?

* Repeatability: Is motion reproducible?

* Accuracy: Does the bearing allow or hinder desired motion or positioning?

* Resolution: Are small increments in motion possible?

* Friction- causes wearing and dissipates heat

* Thermal performance: How does temperature variation affect the system?

* Cost?

* Required life: Will the bearing maintain its level of performance?

19



3.1.1 Flexure bearing properties
Flexure bearings have distinct advantages over sliding, rolling, and fluid bearings.

Surface finish limits the performance of sliding and rolling bearing; since it's impossible

to have a perfect surface these bearing tend to be not suitable for high precision

applications. Fluid bearings are prone to dynamic and thermal effects and so they also are

not suitable for some high precision applications. Flexure bearings work based of

stretching of billions of atomic bonds. The large number of bonds involved in the relative

motion, average out the motion producing a smooth motion with sub-angstrom resolution

[4]. Here are some of the important properties of flexure bearings:

* Speed and acceleration: Is limited the natural frequency of the system and stress

levels in the flexures.

* Range of motion: Is generally small because flexures operate in the elastic regime

of the material to prevent permanent deformation of the flexures. Monolithic

flexures bearings have a range of motion to bearing size ratio on the order of

1/100[4]. The limit in range is normally not a problem for systems that require

very high precision over short ranges, and will not be a problem for the nano-

positioner design.

* Applied load: Flexure bearings can be designed support huge loads. That being

said the expected load has to be taken into consideration when designing the

flexure.

* Accuracy: This is dependent on the machining process for making the flexure.

Perfect motion for monolithic flexures is unattainable because of inaccuracies in

machining, bending of structure and external applied loads.

* Repeatability: Monolithic flexures are highly repeatable down to sub-angstrom

range [4]. Repeatability influenced by stress level and bending hysteresis which

could lead to permanent deformation of in the flexure.

* Resolution: As mentioned before flexures have very fine because of the averaging

out of motion that occurs at the atomic scale within the material. Therefore system

resolution is limited by the resolution of the actuators.

* Require life: Is infinite as long the flexure is properly designed to prevent

excessive strains and stresses.
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* Cost and manufacturability: Flexures are easy to manufacture and are generally

inexpensive.

3.1.2 Flexure theory
In the simplest form flexure bearings are deforming beams. Because the flexure

bearings' similarity to beams, beam-bending equation can be applied to them to analyze

how they are going to behave. The figure 3.1 below shows a cantilevered beam bending

under a load

lamp L

Unloaded Beam h I

t Loaded Beam

Figure 3.1: shows a cantilevered beam deforming under a load P [10]
The deflection of the tip of the beam is defined by the following equation

P L3

6 = -- 3.13EI

where 8 is the tip deflection, P is the load applied to the beam, L is the length of the
beam, E is the Young's modulus of the material and I is the moment area of inertia. L and
I depend on the geometry of the beam and E is a material property. Therefore the
behavior of the bearing is dependent on material properties and the geometry of the
flexure and not on surface finish that is hard to control. The behavior of flexure bearings
is also dependent on the boundary conditions of the beam. The example of the
cantilevered beam above is a fixed end and free end boundary condition.

For small deflection 4, the displacement of the beam tip is almost in a straight
downwards in the direction of the applied load P. Since geometric and material properties
of the beam are constant, 5 is directly proportional to the applied load P. The beam or
flexure can be modeled as a spring that obeys Hooke's Law.

F = -k6 3.2
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Where F is the resorting force from the beam, k is the spring constant that is given by

k = 33.3

for the cantilever example. Figure 3.2 below shows the model for a first order flexure

bearing. Some flexure bearings have more than one beam and so system can be modeled

as a system of springs. One such flexure bearing that has multiple beams is the

HEXFLEX that will be further described in the next section.

F, 6 *F,

E, I, L f M I ... I M

ActUator k

Figure 3.2: Spring model for actuator and flexure bearings

3.2 HEXFLEX
The HEXFLEX is a flexure based nano-positioner platform or bearing. Its design

allows high resolution, repeatable and accurate 6 degrees of freedom motion [1]. An

example of a HEXFLEX developed by Culpeper et al. is shown in figure 3.3. Figure 3.3

shows the resulting displacements for different actuator inputs. From the figure 3.3, it can

be seen that a set of three actuators or actuator systems, capable of perfuming two-axis

actuation is required for HEXFLEXes to attain 6 degrees of freedom motion. Section 3.4

below will talk about the final HEXFLEX that was adopted.
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T1

F2

T3T

Figure3.3: HEXFLEX developed by Culpepper et al. showing example
displacements for give tab displacements. (x) shows direction into plane, (0) shows
directions out of plane, hollow arrows show actuator inputs and shaded arrows
show stage displacements

3.3 Final HEXFLEX design
The HEXFLEX design that is going to be used for the actuator system is largely

going to be designed to be compatible with sensors that are being developed by Robert

Panas [2]. Figure 3.4 shows the new HEXFLEX design. Because of this fact the

HEXFLEX design is already fixed and is described by Panas [2]. The work of this thesis
is going to concentrate on developing actuators that are compatible with the HEXFLEX

design developed by Panas
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0 0

Nano-po itio er ex es
stage

0 0

0 0

Actuator paddles

Figure 3.4: Redesigned HEXFLEX showing its key features
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CHAPTER

4
THERMAL CONSIDERATIONS- WAYS OF IMPROVING

THERMAL DISSIPATION

4.1 Printed circuit board design
The printed circuit boards (PCB) are used to as mechanical supports circuits. The

PCB provide a much needed backing to keep electrical components fixed and allow for

connections between the circuit components. Connections between components are

maintained by copper traces that have different thickness. The copper thicknesses are

rated in terms copper ounce weight per square foot. One oz. of copper corresponds to

1.4mils or 35.56 microns. In this project the PCB will only have traces and vias; no

additional electrical components are needed for making the Lorenz coils described in

chapter 2. The functional requirements for the PCB are:

* Mechanical support: Provide mechanical support for the traces both from

external loads and internal loads. Internal loads coming from interaction of

magnetic fields around each current carrying trace.

" Heat dissipation pathway: The PCB is also very important route for heat

dissipation. Current passing through the traces cause heating up of the

traces that could lead to damage in the PCB.

4.2 Thermal dissipation modes
The heat dissipation capability of the printed circuit board is very important for

the safe and repeatable use of the actuators. There are three main ways that heat can be

transferred away from the coils, namely conduction, radiation and convection.
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4.2.1 Conduction
Conduction is the transfer of heat through solids and stationery fluids. This heat

transfer is a result of particles (atoms, molecules and ions) being at different energetic

levels. The more energetic particles will impact some other their energy to less energetic

particles through direct interaction between the particles. Conduction mechanisms are

different depending on the material properties of the substance and the phase of the

substance. In gases conduction is from random collisions between gases particles. Faster

particles transfer some of their energy to slower particles that they collide with.

Conduction in liquids is similar to that of liquids but collisions are more frequent because

particles are more densely packed in liquids than in gases. Solids have a different

mechanism since the atoms are in fixed positions. Heat is conducted through solids by

means of lattice vibrations cause be atomic motion. Atoms at a higher temperature have

high atomic motion and they pass on some of their energy to neighboring atoms. This

interaction is more frequent that collisions in fluids and so solids tend to be better at

conducting heat than the other phases.

Heat is conducted through matter only when there is a temperature gradient. Heat

is conducted from a high temperature to a low temperature. For one dimensional

conduction heat transfer is described by the Fourier's law below:

q k = -k4.1

where q "X is the heat flux, the heat energy being transferred in the x direction per unit

area per unit time given in W/m2. is the temperature gradient, heat in the opposite

direction of the gradient (hot to cold) and hence the negative sign in the equation. k is the

thermal conductivity coefficient measured in Watts per meter-Kelvin (W/m.K). The

thermal conductivity is a material property of the substance. For three dimensional heat

conduction is given by the following equation:

q -kAT = -k(iL+jIT+k 4.2
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Combining the above equation 4.2 and the first law of thermodynamic for an energy

balance gives:

k + ak + k + . T 4.3

This equation is known as the heat equation. p is the density of the material in kilograms

per cubic meter (kg/M3) and cp is the specific heat capacity of the material

with units of Joules per kilogram-Kelvin (J/kg.K). The right hand side of the equation

represents rate of change in retained in a system [7]. The solution from the heat equation

can be used to predict the thermal distribution of a material as a function of time. 4 is the

rate at which heat is being generated within the system with units of Watts per unit

volume (W/m3). Special note, the thermal conductivity can be directional for materials

that are anisotropic. The heat equation is complicated to solve is normally simplified

whenever possible by making suitable assumptions depending on the system.

Transient states of thermal conductions even though useful, will be left out in the

thermal analysis of the printed circuit board (PCB) because the PCB is going to be

designed to be able to survive long periods of time at max actuator force. The laminate

- I - - . - - ' - - - - I 1 .- - r.~
used to make the 0- board is going to be assumed to be isotropic even though there is a

slight directional dependence in the thermal conductivity value. Assuming steady state

and isotopic material the heat equation above can be simplified to:

a2T + 2 T + 2 Tq
+1+ = 0 4.4O X2  ay2  aZ2  k

The printed circuit board has a planar geometry meaning that the board thickness is much

smaller compared to the length and the width of the board. The rate at which heat is

transferred q is given by the following equation:

q = Aq" 4.5

This means that most of the heat is going to be transferred perpendicular to the face that

is defined the length and the width of the plane because it has the greatest area compared

to the other faces. Because heat generation4, only occurs in the coils it can be isolated to

get an equation for the PCB that has zero heat generation. Equation 4.4 above can be

reduced, by assuming one dimensional heat conduction and no heat generation to give:

- k d= 0 4.6
dx dx

or
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___= 0 4.7
dx

Therefore there is no change in heat flux in the direction on heat transfer.

4.2.2 Convection
Convection is a result of the motion of fluid particles and occurs from a surface to

moving fluid. Convection is a mix of random fluid particle mixing (diffusion) and bulk

motion of fluid particles (advection). The rate at which heat transferred by convection is

given by the following equation:

q = hAs(Ts - Tco) 4.8

where q is the heat transferred rate in Watts. A, is the surface area that is exposed to

convection in meters. T, and Tc, are the temperatures of the surface and the bulk

temperature of the fluid respectively. h is the convection coefficient in Watts per square

meter-Kelvin (W/m2K). The convection coefficient depends is given by the following

equation:

Nu = 4.9
kf

where Nu is the Nusselt number, which is the ratio convectional heat transfer to fluid

conduction heat transfer. The Nusselt number is a dimensionless number that depends on

material properties of the fluid, geometry of the surface and the type of flow of fluid

across the surface. L is the characteristic length of the surface in meters. kf is the thermal

conduction coefficient if the fluid in Watts per meter-Kelvin (W/m.K).

Convection heat transfer is going to be an important mechanism for carrying heat

away from the surface of the PCB. Careful considerations the convective coefficient is

going to be taken into consideration when designing the heat sink for the system.

4.2.3 Radiation
Thermal radiation results from oscillations and transitions of electrons between

different energy states. These oscillations and transition result in atoms and molecules

emitting energy in the form of electromagnetic waves. All forms of matter with a

temperature above absolute zero emit radiation. Since radiation is transmitted in the form

28



of electromagnetic radiation no matter is required for heat transfer to occur. Radiation is

mostly surface phenomenon except in the gases and semitransparent solids where is it a

volumetric phenomenon. For the purposes of this thesis assume radiation as a surface

phenomenon with the heat transfer given by:

q = E 4As(s - T 4 )0

where q is the rate at which heat is being transferred from the body in Watts. a is the

Stefan-Boltzmann constant that is equal to 5.67x10-8 W.m-2K~4. T, and T are the

temperatures of the surface of the body and the temperature of the environment

respectively in Kelvins. A, is the surface area of the body in square meters. E is the

thermal emissivity of the surface which is the ratio between the radiation energy emitted

by a material to the radiation emitted by a black body. Since the temperature of the

surface of the PCB will not be significantly greater than the temperature of the

surroundings heat transfer through radiation is going to be less that of the other heat

transfer methods. Calculating the heat transfer through radiation is more complicated than

the other types of heat because of the fact that it depends on surface properties of not only

the PCB but includes those of the surroundings. Radiation heat transfer will not be

considered any further when analyzing the thermal properties of the actuator system

because of its complexity to calculate and the fact that it is going to be smaller than the

heat transferred to through other modes. Heat transfer through radiation is going to act as

a safety buffer for the system, assuming that the surrounding temperatures are lower than

those of the actuator system.

4.3Thermal resistance model
From equation 4.7 shows that heat flux traveling through a system is constant

assuming one directional heat transfer. This means that at any particular cross-sectional

area, that is perpendicular to the direction of heat transfer, the algebraic sum of the heat

transfer to that area is equal to zero. This is similar to the circuit model for electricity

where according to Kirchhoff's first law; the algebraic sum of current at a node is equal

to zero. Applying the same model to thermal situations current will correspond to rate of

heat transfer q and voltage will correspond to the temperature different across the body.

In electrical circuits voltage and current are related by the following equation:
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V = IR 4.11

where V is the voltage given in Volts and I is the current given in Amperes. R is the

electrical resistance of the conductor and is given in Ohms. For the case of the heat

transfer similar equation can be made since heat transfer rate is also directly propositional

to the temperature different across the material. Therefore the corresponding equation for

heat transfer is:

AT = q x R 4.12

where R is the thermal resistance of the material and has units of Watts per Kelvin. The

lower the thermal resistance is the higher the heat transfer rate. The corresponding

thermal resistances of conduction and convection heat transfer modes are shown below:

Conduction

R = 4.13
kA

Convection

R= 1  4.14
hA

These resistance values can be used in networks applying Kirchhoffs laws to calculate

the heat flow or the steady state temperature the same way as they are used in electric

circuits [8]

4.4 Thermal Design for printed circuit boards
The printed circuit board (PCB) has to be designed in such a way that reduces the

thermal resistance in the board. Almost all the heat transfer within the PCB is going to be

through conduction. Looking at equation 4.13 above there are three ways to improve

thermal heat through the material; 1) decrease the conduction length, 2) increase the area

perpendicular to the conduction direction and 3) increase the thermal conduction of the

material.

Analyzing at these options individually; decreasing the conduction length seems

like one of the simplest one ways to decrease the thermal resistance but it has some

complications of its own. In the case of PCB the conduction length for getting heat

generated to the heat sink the thickness of the PCB. The conduction length is limited by

PCB manufacturing capabilities. The standard PCB has a finished thickness of
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0.062inches or 1.57milimeters but the thickness of PCBs can vary from as small as

0.010inches to 0.250inches or 0.254milimeters to 6.35milimeters [9]. Picking one of

smallest thickness is the best way to reduce the thermal resistance since thermal

resistance is directly proportional to the conductive length. Purchasing these thin PCBs

can be very expensive because producing thin PCBs requires special equipment and is

not supported by all the PCB manufacturers. This means that there is a tradeoff between

cost and thermal performance. The reduction in the thickness of the PCB means a

decrease in the mechanical strength of the PCB but this should not be a major issue since

the attachment of the PCB to a heat sink will provide more than the needed mechanical

support.

Increasing the area perpendicular to the direction of heat transfer can be achieved

either spreading the heat dissipating elements over the area of the board or spreading the

heat dissipated by these elements cross that plane of the PCB board through in plane

conduction. Spreading dissipative elements over the surface of the PCB is not ideal for

this case because the coils have to be located in a specific area to maximize the force that

they generate. The latter option spreading the dissipative heat through in plane

conduction is the most practical in this case. This is achieved by reducing the in plane

thermal resistance, allowing the heat to spread over a wide area before it is finally

conducted along the thickness of the PCB to the heat sink.

The last means of decreasing the thermal resistance of the PCB is by increasing

the thermal conductive coefficient of the PCB. There is a limitation on the type of

materials that can be used in making PCB boards. This constraint is based on both the

functional requirements of PCBs and on what materials PCB manufactures typically use

to make PCBs. The main material used in making PCBs is the laminate material than it

used to keep components in a fixed position relative to each other while making sure that

the components electrically insulated from each other. Other materials can be added to

the laminate that can be used to improve the thermal conductivity of the PCB. One

material that is easily added to the laminate to improve the thermal conductive properties

of the PCB is copper since it has a high thermal conductivity. Copper can be introduced

into the laminate by adding copper elements that do not have that do not have any

31



functions in the electrical circuit like copper pours that will be discussed in section 4.5.2

below.

4.4.1 Printed circuit laminate
PCB manufactures support making PCBs from a number of materials but FR-4 is

by far the most common and widely used. For purposes of this work we are going to

restrict PCB material to just FR-4 because it reliability and low cost to make into PCBs.

FR-4 has a thermal conductivity of 0.25W/m-K, which is significantly than the thermal

conductivity of copper of 335W/m-K. So adding copper features to FR-4 greatly

improves the heat transfer of the PCBs.

4.4.2 Copper Pour
As mentioned in section 4.5.1 above copper has a thermal conductive that is 3

orders of magnitude greater than that of FR-4, which is the material that the laminate is

made from. One simple way of adding copper to the PCBs is incorporating copper pours

into the board design. Copper pours are polygon shapes that are filled with copper that

can be added to circuit boards to improve thermal conductivity. Copper pours are in the

same plane as electrical traces and so help with spreading the heat across the plane.

Copper pours, like electrical traces, do not go between different planes and so have a

greater impact on in plane thermal conduction as opposed to thermal conduction along

the thickness of the PCB. The thickness of the copper pour is that same as the thickness

of the electrical traces

4.4.3 Thermal Vias
Thermal vias, shown in figure 4.1 below, unlike copper pours cross different

planes in PCBs. This makes them very important increasing thermal conductivity along

the thickness of the PCB. Vias are holes that go through PCBs. Vias can be either plated

with copper or non-plated. Plated vias are used for either forming electrical connections

between traces in different layers or as thermal vias where the vias are not electrically

connected to anything and are there for the sole purpose of improving thermal

conductivity. The effectiveness of thermal vias is increased mostly by increasing the
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plating (barrel) thickness and decreasing the spacing between adjacent vias allowing for

more thermal vias to be put onto the via [10]

Heat flux

L

Figure 4.1: Heat transfer via the copper walls of a thermal via
Since thermal vias are just holes through the PCB there is a possibility of making

them more conductive by filling them up with solder or adding other conductive material

like copper posts. This thesis will look into the possibility of sticking copper posts into

thermal vias; copper posts have a thermal conductivity that is almost 10times as large as

that of regular solder. Thermal grease can be used to decrease the contact resistance

between the copper posts and the vias to a negligible level. The result is an increase

effective conductivity of the via that will be analyzed in section 5.3
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CHAPTER

5
SIMULATIONS AND DESIGN OPTIMIZATION

Stress-strain, electromagnetic and thermal simulations were conducted to

determine the feasibility of the design.

5.1 Flexure/HEXFLEX Simulation
Finite Element Analysis (FEA) simulations, using Solidworks, were conducted on

the HEXFLEX to determine the forces that the actuators must provide to allow for

±20pm translation allow along all three axes. A mesh was applied to the model with a

control mesh being applied to the flexures to account for their smaller dimension in

comparison to the rest of the model. Figure 5.1a) below shows the mesh for the whole

HEXFLEX and Figure 5.lb) below shows the comparison between regular mesh area and

area where mesh control was applied.
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a) b)

Figure 5.1: a) General meshing used for the simulation. b) local mesh control
applied to flexures to improve simulation accuracy
Figures 5.2and 5.3 below show the results of the simulations for in plane and out of plane

actuation. The three out of plane actuators need to each provide 0.12N to provide the

required maximum displacement. In plane actuators on the other hand need to provide

0.17N to achieve the required maximum displacement. In all these cases the maximum

stress of the flexure has been below 5% of the yield stress of titanium, which means that

the bearing is not being over stressed. Table 5.1 summarizes the results from the

simulations
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of plane actuation of HEXFLEX with 0.12N applied to normal to all

Table 5.1: Results from flexure simulation
Actuator Force (N) displacement (pm)

In-plane (z-axis) 0.12 21

out of plane (x-axis) 0.17 21

36



5.2 EM simulation
The system actuators work off interactions between electrical and magnetic fields,

as described in section 2. The Lorentz coil forces can be calculated using the equations

2.1 and 2.2. The simulation of the forces generated by these coils was developed by

Golda [5]. In the simulation Fourier transform model and trapezoidal numerical methods

are used to compute the field generated by the permanent magnets. Coil segments are

broken up into segments by an algorithm and equations 2.1 and 2.2 are applied to these

equations to calculate the force and moment on each segment. The total Lorentz force on

the coils is calculated by summing up all the forces on all the segments. The total

moment force is calculated by summing up all moments on all the segments and

summing up all the moments contributed by forces on each segment.

5.2.1 Simulation parameters

Simulations were ran to determine the how the force generated by Lorentz coils

varied. Looking at equation 2.1 the force output is directly proportional to the amount of

current that flows through the coils. At the same it the more current that passes through

the coil the higher the Joule heating that is given by the equation below:

q = i2 R 5.1

Where q is the dissipated heat, i is the current flowing through the coils, and R is the

total electrical resistance of the coils. Therefore heat dissipated is directly proportional to

the square of the current, whereas the force output is only directly proportional to current

as shown in equation 2.1. This means increasing current will result in a greater change in

the heat dissipated than the change in force output. Simulations were conducted on both

in plane actuator(X-actuator) and out of plane actuator (Z-actuator) Table 5.1 below is the

list of parameters that can be varied in the actuator design
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Table 5.2: Parameters for Lorentz coils simulation

Parameter

tcoilCu weight

bcoil

Jmax

Current

dcoil

al

Br

h

nL

Simulations were run to determine

following default values should be

Value

Copper weight or trace thickness

width of coil

maximum current density(0.001 for copper)

current through the coils

spacing between coil windings

width of magnet

Remnance

height of coils above surface of magnets

number of integration point=1000

the effects of varying these parameters but the

assumed unless otherwise noted.

Table 5.3: Standard simulation values
Parameter

tcoilCu-weight

bcoil

Jmax

Current

dcoil

al

Br

h

nL

Value

2oz copper per square ft

300pm

0.00lA/pm 2

5A

144pm +bcoil*

3.175mm

1.25T

120pm

1000

*There has to be a minimum spacing of 144pm needed between 2oz copper traces

5.2.2 Simulation results and analysis
The simulations were run and the results are shown in figures 5.4to figure 5.6

below. The "Max percentage force error" is the maximum parasitic error force divided by
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the force output. Figure 5.4 shows that the force output decreases as the width of the coil

increases, while the percentage error from parasitic forces also increases. Increase in coil

width results in a decrease in the number of coil turns which also leads to less force being

generated. The increase in parasitic forces could be attributed to the fact that as the coils

get wider there are some sections of the coil that will end up in regions that don't have

uniform magnet fields. On other hand as the coil width increases there is a drop in power

dissipated by the coils because the resistance of the coils is inversely proportional to coil

width. The drop in resistance means more current can be carried for the same power

generation
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Figure 5.4: Results for X-Actuator simulation Ftotalx vs. bcoil including variation
in parasitic force error as a percentage of Ftotalx. This graph is similar to the one
for Ftotalz vs. bcoil.

Figure 5.5 below shows that as the force output of the coils decreases as copper
weight increases. This could be attributed to the fact that as copper weight increases there
is a drop in the current density in the coils (current per unit cross-sectional area). The
drop in current density could lead to weaker interactions between the magnetic field and
the moving charges. On the other hand, like the case with increasing coil width,
increasing copper weight will result in a decrease in the power dissipated. Copper
thickness is also inversely proportional to resistance.
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Figure 5.5: Results for Z-Actuator simulation Ftotalz vs. tcoilCuweight including
variation in parasitic force error as a percentage of Ftotalz. This graph is similar
to the one for Ftotalx vs. tcoilCuweight.

Figure 5.6 below shows that force output increases linearly with increasing

current. This is predicted from equation 2.1, that force output is directly proportional to

current. There doesn't seem to be a clear trend in the variation of the percentage error.

The variation the force error very small, it only changes by about 0.07% meaning that it

can be assumed that percentage force error does not depend on current.
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Figure 5.6: Results for Z-Actuator simulation Ftotal_.z vs. Current including
variation in parasitic force error as a percentage of Ftotal_z. This graph is similar to
the one for Ftotalx vs. Current.

Figure 5.7 below shows that the force out is directly proportional to the negative

of height the coils above the surface of the magnets. This linear relationship force output

to height has an R-squared value of almost 0.99. This relationship results from the fact

that the magnetic field decreases linear for distances that are less than its characteristic

length. In this case the characteristic length of the magnet, al, is 3.175mm so this

approximation is safe to assume for distance around 10% of this value [5].
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Figure 5.7 :Results for Z-Actuator simulation Ftotal_z vs. height of coils above
magnet surface above including variation in parasitic force error as a percentage of
Ftotalz with Current=8A. This graph is similar to the one for Ftotalx vs. Height.

5.2.3 Summary of results
The force and power dissipated by the coils is depends on a number of parameters

as described in table 5.1. Careful selection of these parameters to maximize force and

minimize heat dissipation is required. Also the maximum parasitic force error from the

simulations has been less than 5% error, which is good. After considering the plots above

the following parameters show in table 5.2 were chosen. Table 5.3 shows the force

values, required current and the power dissipated for this configuration

Table 5.4 Summary of simulation results
Force required Power dissipated

Actuator type ()Current (A)(W
(N) (W)

X-actuator 0.173 7 6.28

Z-actuator 0.120 8 4.22

From table 5.3 It can be seen that the total power dissipated is going to be 10.50W. A

value of 11W was used for the thermal simulations.
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5.3 Thermal simulation
Thermal simulation was conducted on a 0.5in by 1.5in PCB to determine the

effects of adding thermal vias with copper posts stuck in them. As described in section

4.5.3 the introduction of copper post should decrease the effective thermal resistance of

the PCB. The PCB is going to be a four-layer board with the coils being on two of these

layers. The other two layers as a route to get current out of the middle of the coils. The

PCB model consists of four alternating layers of laminate made out of FR-4 and copper

layers. Two of the copper layers contain the heat dissipating coils surrounded by copper

pour and the other two layers are layers of copper. These layers are stacked on top of

each other with a laminate layer being at the bottom and a copper layer at the top of the

PCB. The thickness of the copper layers is 2oz copper per square foot or 71.12 microns.

The thickness of the laminates depends on overall thickness of the PCB. PCBs with

overall thickness of 0.787mm and 1.575 have laminates of thickness of 0.125mm and

0.323mm, respectively. The bottom of the PCB will also have a copper plate that will

model heat sink attached to the system.

Thermal contact resistance is assumed to be negligible between within the model.

This is a fair assumption considering that FR-4 has a high thermal resistance and will

most probably contribute more to the resistance of the system than contact resistance. The

thermal interaction between the copper pour and coil is modeled as a distributed thermal

resistance of 0.608x10 K-m2 /W due to the fact that there is a thin layer of laminate,

about 0.152mm thick, that provides electrical insulation between the copper pour and the

coil.

Thermal inputs into the system include 5.5W dissipation from each coil producing

a total 11W, which corresponds to the value found in section 5.2. Convection heat

transfer assumed to occur at both the top face of the PCB, and at the bottom of the "heat

sink" plate attach to bottom of the PCB. The top of the PCB has a convective coefficient

of 10W/M2 -K, which conservative estimate of free convection [7] and the "heat sink" has

a convective heat transfer coefficient of 1000W/m 2-K, which is an achievable value for

an active convection coefficient and fins combination, attached to the "heat sink".

Ambient temperature is assumed to be 298K.
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The PCB also includes 14 holes where a varying number of thermal vias/copper

post can be introduced into the PCB. The holes have a diameter of 0.6mm. The holes are

on either side of where the copper coils are as shown in figure 5.8 below.

Figure 5.8: Holes used to allow the introduction of copper posts into the PCB.

A thermal simulation was run in Solidworks to determine the steady state

temperature. Figure 5.9 below shows the thermal chart of the results of one of the

simulation.
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Figure 5.9: Thermal chart for results of one of the simulations
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There is higher temperature for the zone over the coils. Figure 5.10 below also shows that

the highest temperatures occur along the sides of the PCB board that don't have the

copper posts. Adding copper posts to the sides will also improve the thermal

performance.

Figure 5.10: The highest temperature occurs along the sides that do not have copper
posts and these points along the same plane as the coils.

The results from the simulation are shown the figure 5.11 below is for the

1.575mm PCB. The maximum final temperature decreases as more and more posts are

introduce into the PCB. The maximum operating temperature of FR-4 is 413K. Without

the copper posts the PCB would over heat and fail.
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Figure 5.11: Final maximum temperature for 1.575mm PCB board vs. the number
of copper posts in the PCB.

Another simulation was run for the thinner 0.787mm PCB and the results are

shown the table 5.4 below. For a good number of copper posts in the PCB the board

thickness doesn't significantly affect the final temperature of the system. This is

important because thinner boards cost more than thicker boards. So copper posts can be

used to as a way of reducing the need to a thinner board.

Table 5.5: Comparison between 0.787mm PCB and 1.575mm PCB
PCB thickness(mm) Number of posts Final temperature (K)

.787 14 362

1.58 14 369

5.4 Summary of results
Simulations were conducted to determine key pieces of information needed for

design the actuator. Stress-strain finite element analysis was conducted in Solidworks to

determine that X-actuators need to provide 0.17N each and Z-actuators needed to provide

0. 12N each to achieve the maximum range of ±20pm.
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To provide these forces electromagnetic simulation were done in Matlab using

Fourier transforms and numerical methods to arrive at the right values of force while

minimizing the heat that is dissipated by the system. The best option that was found to

obtaining the right forces generated 6.28W and 4.22W of heat for the Xactuator and

Z_actuator respectively. Giving a total of 10.5W of heat per coils set.

Lastly a thermal simulation in Solidworks was done to determine the effects of

adding thermal vias to PCBs. With the aim of being able to successfully dissipate the

produced heat without exceeding the maximum operation temperature FR-4, which is the

material that is used for the laminate. The thermal vias were successful improving the

heat dissipation of the PCB and the temperature of the PCB remained below 140C which

is the maximum operation temperature of FR-4.
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CHAPTER

6
CONCLUSION

7.1 Summary of design and development
The goal of this thesis was to develop the theory for design and development of a

two-axis electro-magnetic nano-positioner actuator. Simulations were conducted to

determine the feasibility of building an electro-magnetic actuator that could be

successfully used with low cost flexure based nano-positioner.

The first simulation that was conducted was FEA in Soildworks that determined

the force output that was required from the actuator to be 0.17N per actuator and 0.12N

per actuator, for in plane actuation and out of plane actuation respectively.

Electromagnetic simulation on Lorentz coils, in a permanent magnetic field, determined

that to be able to provide the required forces, 7A and 8A of current have to be ran

through both the in plane actuator and the out of plane actuator respectively. The

electromagnetic simulations also showed the parasitic forces stayed below 5% of the

main force output, which is a manageable level of error that can be eliminated by using

feedback control

The flow of current through the actuator coils leads to Joule heating, which

increases the temperature of the system. Thermal simulations in Soildworks were

performed to determine ways to quickly dissipate the heat that is generated by the system.

The simulations showed that implementing well designed system of thermal vias

prevented the temperature of the system from surpassing the systems maximum operating

temperature of 413K.
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All the analysis and simulation work leads to the conclusion that the two-axis

electro-magnetic actuator that can be incorporated into a flexure based nano-positioner is

feasible.

7.2 Future Work
Future work has to be done to building and testing the device. The simulations

prove that the design is feasible but experimental data needs to be collected to determine

if there were any errors or if there was an over simplification in the models that were

used in this work.
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