
Control of the Hybrid Engine of the REMUS 600

by

Cindy E. Oh

Submitted to the
Department of Mechanical Engineering

in Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science in Mechanical Engineering

at the

Massachusetts Institute of Technology

June 2013

ARCM
iINrT1E

* AR E!li

© 2013 Massachusetts Institute of Technology. All rights reserved.

Signature of Author:

Certified by:

D&Artient of Mechanical Engineering

May 13t, 2013

(Douglas Hart)
(Professor in the Department of Mechanical Engineering)

Thesis Supervisor

Anette Hosoi
Professor of Mechanical Engineering

Undergraduate Officer

Accepted by:

Control of the Hybrid Engine of the REMUS 600

by

Cindy E. Oh

Submitted to the Department of Mechanical Engineering
on May 13th, 2013 in Partial Fulfillment of the

Requirements for the Degree of

Bachelor of Science in Mechanical Engineering

ABSTRACT

The objective of this thesis was to determine the behavior of the engine of the REMUS 600, an
autonomous underwater vehicle. The first step was to evaluate the closing and opening of the
choke and throttle valve and write a code that allows the user to easily control the stepper motors
that attach to each valve. Then, the engine was to be started, brought up to an ideal speed, and
stabilized. All these processes were done through a PIC C compiler and a microcontroller.
Testing revealed that it took 10.3 ± 0.2 and 113.6 ± 1.7 steps to open the choke and throttle
respectively and 4.5 + 0.1 and 206.4 ± 2.2 to close the choke and throttle respectively. Code to
perform the aforementioned has been preliminarily tested and successful, which should allow
future users to maintain control of the engine speed and power output.

Thesis Supervisor: (Douglas Hart)
Tile: (Professor in the Department of Mechanical Engineering)

Acknowledgments

The author would like to thank Professor Doug Hart and Mariah Murray for their extensive help
in writing this thesis. It was a pleasure working with Mariah and Cappie, and this work could not
have been completed without them. Lastly, the author would like to thank her wonderful family
and friends who, although helped her procrastinate, also empowered her to finish. Thank you.

Table of Contents
1. Introduction ... 5

1. 1 History of Underwater Vehicles .. 6

1.2 Autonom ous Underwater Vehicle Technology Overview ... 7

1.2.1 Autonomy ... 7

1.2.3 Energy ... 8

1.2.3 Navigation .. 8

1.2.4 Sensor Systems ... 9

1.2.5 Com m unication .. 10

2. Purpose .. 10

2.1 Vehicle Overview ... 11

2.1.1 Engine System .. 11

2.1.2 Fuel System .. 12

2.1.3 Snorkel System ... 13

2.1.4 Control System ... 13

3. Engine Control ... 13

3.1 Choke & Throttle Control .. 13

3.1.2 Issues Encountered During Testing .. 19

3.2 Starting the Engine .. 19

3.3 Engine Rotational Speed & Control Loop .. 21

4. Results & Conclusions .. 25

References ... 26

Appendix .. 27

AM ... 27

A1.2 ... 29

A1.3 ... 30

[Type text]

1. Introduction

Underwater vehicles have proven to be an important development for navies all

around the world. They allow engineers to bypass a multitude of constraints that a team of

human divers have in underwater endeavors, allowing an infinite amount of knowledge to

be more readily available. Hydrographic reconnaissance, the study of an area of water to

determine key characteristics governing the water depths, costal features, beach gradients,

and marine life as well as the location of natural ocean plants and manmade obstacles, has

grown significantly after the development of efficient underwater vehicles. Additionally,

oceanographers have equipped these vehicles with sensors that can measure properties

such as the ocean's conductivity, turbulence, pollutants, dissolved oxygen content, and

temperature. With a more accurate measurement technique of these parameters,

meteorologists can obtain a better understanding about weather events (ie hurricanes),

scientists can manage the water quality with more ease, and climate modelers can have a

better understanding of changes over time. 3

The most essential advantage that underwater vehicles provide, and likely the

biggest motivation to expand this technology, though, is that expanded access of

underwater information gives crucial information to navies and mine countermeasures

forces. Underwater vehicles can detect mines via high frequency and high-resolution sonar

along with low light level television. After detection, the vehicles are able to dispose of or

neutralize mines using cable cutters and explosive charges. Although the development of

5

[Type text}

underwater vehicles is relatively new, already they are looking to be promising option for

ocean-based research and in mine countermeasures because they are able to gather data

from water shallower than what a boat can access, as well as water deeper than what a

human diver or tethered vehicle can reach.

1.1 History of Underwater Vehicles

Although there is quite a variety in underwater vehicles, they can be categorized into

two main classes: manned and unmanned systems. Focusing on unmanned systems, there

are furthermore two subsections within this category: remotely operated underwater

vehicles and autonomous underwater vehicles. This thesis will focus on the latter. It is

informative to understand the development of autonomous underwater vehicles, because it

gives insight into why the technology has evolved into what it is today.

Although Robert Whitehead is credited with the first autonomous underwater

vehicle (1866), the vast development of these vehicles began in the 1960s. At this stage,

most vehicles could only perform very basic and very specific applications, but many were

motivated by the need to obtain oceanographic data along with precise trajectories. Within

the next 10 years, a number of testbeds were built, and a great amount of funds were

allocated in hopes of understanding the potential of these autonomous systems. During the

1980s, experiments were done with proof of concept prototypes. Concurrently,

exponentially smaller and more powerful computing power was available which offered the

potential of implementing complex guidance and control algorithms on autonomous

platforms. As funding for these projects increased, the technology of the operational

6

[Type text]

systems improved significantly. This decade was especially a turning point in regard to the

implementation of a vision system of these autonomous underwater vehicles. A particularly

famous system called the 'Advanced Unmanned Search System' (AUSS) carried 20 kilowatt-

hours of energy with the use of silver zinc batteries. Moving forward, there were advances

made that allowed for more precise control as well as more defined missions. Autonomous

underwater vehicles are now widely used in navies and even available commercially. 4

1.2 Autonomous Underwater Vehicle Technology Overview

Because this field is still relatively new, there are many opportunities and necessary

improvements still to be made. There are five main technologies that blanket the system and

they include: autonomy, energy, navigation, sensors, and communications. Of course this is

by no means an all-inclusive list, but rather a categorization of the most important aspects.

1.2.1 Autonomy

In the 1980s, autonomous underwater vehicles did not have the ability to accomplish

the assigned tasks because they did not possess the level of intelligence and control

necessary. Mission planning had to be extremely strategic in order to allow a vehicle to

understand a string of simple commands and perform a relatively involved task. Additionally,

the vehicle had to have sufficient perception and situation assessment abilities so that it

could respond accordingly during a mission. This presented a unique challenge because

engineers were not able to preprogram a set list of commands with absolutely certainty of

what the machine would encounter. There was considerable effort but diminished results in

regard to intelligent systems architecture design. To date, the challenge autonomy presents

7

[Type text]

is still overwhelming, and although there have certainly been advances in autonomy, these

have not been integrated into autonomous underwater vehicle technology.

1.2.3 Energy

Since the value of autonomous underwater vehicles come from the ability to remain

untethered, the energy system and energy management is extremely important and often a

limiting factor. In the early 1970s, only a few hours of underwater life was achieved by the

vast majority of autonomous vehicles. Over the course of the last few decades, some

systems were made to be capable of missions on the order of magnitude of days. Most can

achieve the life span of 10s of hours, and a very few can endure years underwater. In earlier

years, most systems used Lead Acid batteries. Some used Silver Zinc batteries, but this was

almost an order of magnitude more expensive. Lead Acid evolved into Lithium primary

batteries, but in the late 1980s, advances in Nickel-metal hydride batteries presented a

promising direction. Battery power is to date the most/ only feasible option for autonomous

underwater vehicles, but solar and heat energy technologies are also being taken advantage

of to assist in increasing the life span of each vehicle.

1.2.3 Navigation

Navigation is undoubtedly crucial for being able to autonomously complete missions.

The earlier systems used dead reckoning for their navigation, meaning that the vehicle

would calculate its current position by using a previously determined position. Not only did

this method accumulate errors very quickly, it also needed precise input for speed and

direction. Acoustic transponder navigation systems and inertial navigation systems were an

8

[Type text]

improvement in performance but were significantly more costly. Recently, Global Positioning

Systems (GPS) has been integrated with many autonomous underwater vehicles, allowing it

to be possible to obtain accurate positioning data when the vehicle surfaces. Navigation is

the area that has made the most improvement since the early autonomous systems.

1.2.4 Sensor Systems

Sensors necessary for carrying out fundamental functions of an autonomous

underwater vehicle fall into the other categories of autonomy, energy management, and

navigation. In this subsection, only the sensors used to take data are addressed. Most efforts

have been made to incorporate already existing sensors into an autonomous underwater

platform, but basic sensor technologies have by far preceded the reliable vehicle operation

technologies. With the evolution of autonomous systems, it became blatantly clear that

underwater autonomy imposed large constraints and that entirely new sensors needed to be

developed. Improving the sensor's ability to intake/output more data, to consume less

power, to be more reliable, and to be smaller in size would prove exponentially

advantageous to overall machine performance.

Additionally, vision systems are continuously being made with higher and higher

resolution imaging, both optically and acoustically. The technology to acquire high resolution

data at a distance exists, but the perception technology does not. The limiting factor is the

vehicle's lack of ability to autonomously process this data and utilize it for real-time guidance

and control decisions.

9

[Type text]

1.2.5 Communication

Laser communication (at short ranges) and radio frequency current field

communications (at long ranges) are available and utilized, but by far the most widespread

system is acoustic communications. In the past few decades, there has been exponential

growth in acoustic communication which has allowed it to have a range on the order of

kilometers and relatively low error rates. Acoustics relies on hydrophones which are

designed to record, listen to, and analyze, underwater sound via a piezoelectric transducer.

It's crucial for communication systems to be standardized and for the design to be guided by

the mission tasked to the vehicle. 2

2. Purpose

The autonomous underwater vehicle that will be the focus of this thesis is the REMUS

600. There were four major considerations in the design of this project. The first was an

energy system that would allow the autonomous system to engage in missions for 40

consecutive 12 hour missions before a necessary surfacing to recharge. Although as

mentioned in section 1.2.3, the energy systems for autonomous underwater vehicles have

drastically improved, most vehicles are still extremely limited by the lack of storable energy.

The second consideration was safety. High power density proves useful in such systems, but

since there will be no inspection during mission, it was important to have a high factor of

safety. The third consideration was feasibility. The end goal was to produce a working

prototype, so newborn technologies that would require extensive funding and time were not

considered. While there exist future recommendations with technologies that may be

10

[Type text]

superior to what was chosen for the REMUS 600, it was prioritized as a short term design

project. Lastly, the fourth consideration was size. The REMUS 600 is less than thirteen inches

in diameter, so the design called for a compact and dense architecture.

2.1 Vehicle Overview

The engine supplies the power for the REMUS 600 to perform its missions. In order to

stably and reliably output power, it needs the correct composition of air and fuel. The

subsequent subsystems contribute to this regulation of fuel composition or the stabilizing of

the vehicle itself.

2.1.1 Engine System

The engine used in the REMUS 600 is a Honda GXH50 because of its availability, size,

and power output. This engine was taken from a Honda EU1000i generator, but then

modified in order to suit this autonomous underwater application. The generator was

modified with hand-wound coils as shown below in Figure 1. With this, it was possible to

change the crank start motor to an autonomous brushless motor. The generator produces

about 1 kiloWatt of power at about 16% efficiency. Within the engine system, there is a

modified fluid heat exchanger. In its original application, the Honda engine is cooled by

forced convection, but as the engine is mounted internally, a water heat exchanger had to

be integrated. Lastly, a Hall effects sensor was incorporated in order to acquire rotational

speed data.

11

[Type text]

Figure 1: Customized, hand wound generator. (Modified from a GXH5O)

2.1.2 Fuel System

The fuel is stored in bladders found in a sealed tank at either end of the REMUS 600.

This fuel is supplied to the engine via the passive regulation of piping, pumps and valves.

However, as the fuel is consumed by the engine, the reduction of weight (of the entire

vehicle) presents a problem. In order for the vehicle to maintain a zero moment and as well

as its original weight (which will maintain neutral buoyancy), the REMUS 600 must intake

water and air to replace the consumed mass of the fuel. The fuel system delivers fuel to the

engine as it fills another bladder with water. The design used in the REMUS 600 minimizes

the opening in the hull.

12

[Type text]

2.1.3 Snorkel System

The snorkel system assists the fuel system in maintain neutral buoyancy by intaking

air. This system also intakes water and routes it to the cooling system (the aforementioned

heat exchanger) to maintain proper engine temperatures. With this system, the REMUS 600

is able to operate in harsh rough seas with integrated redundancies for safety reasons and a

series of valves and baffles which remove water from the airflow.

2.1.4 Control System

This is the final overarching governing system which manages the power generation

of the REMUS 600. It controls the entire process of recharging. A control board interfaces

with the REMUS computer, and it runs commands and manages system errors. An engine

mounted starter-generator generates power, which is then filtered into a form that can

charge the batteries and supply power to other systems.

3. Engine Control

3.1 Choke & Throttle Control

While all previous systems are involved with the engine, there exists a more internal

method of control within the engine system. The direct control of the engine fuel intake is

done by the choke and the throttle. The choke valve allows or prevents intake of air and the

throttle valve allows or prevents the intake of gasoline. Figure 2 below shows the engine and

the location of the choke and throttle.

13

[Type text]

SPARK PLG
CHOKE LEVER

AIR CLEANER

THROTTLE LEVER

OI ILRCAP/DIPSTICK

OIL DRAIN PLUG STARTER GRIP RECOIL STARTER

Figure 2: Diagram of the original Honda GXHSO motor used. In the REMUS 600, the fuel tank is removed and stored
separately. The choke lever and throttle level are control with two stepper motors that are fixed to one mount. (Ref:
Honda Manual)

In the REMUS 600 engine system, the stepper motor that controls the opening and

closing of the choke valve was modified. Figure 3 below shows both the choke and throttle

lever arms. These connect to two stepper motors shown in section 3.1.2 in Figure 6.

Throttle
Leverarm

Choke
Lever arm

Figure 3: Top view of the engine showing the choke and throttle valves and lever arms. These lever arms connect to the
stepper motors shown in Figure 6.

14

[Type text]

Before any control of the engine could be performed, testing had to be done in order

to know precisely how many steps it takes for the stepper motors to completely open and

completely close each respective valve. The results for the choke and throttle are shown

below in Table 1, with 95% confidence.

Table 1: Results (with 95% confidence) of the number of steps it takes for the choke and throttle valves to completely
open or close.

Choke Throttle

Open 10.3 ± 0.2 113.6 ± 1.7

Close 4.5 ± 0.1 206.4 ± 2.2

The setup and a block diagram are shown beneath in Figure 4. As demonstrated the

microcontroller is connected to each stepper motor driver via two pins: the step line and

direction line. Each will be explained at the end of this section as the code controlling this

setup is explained.

Motor 1

stepper
motor driver

0
V.

Motor 2

Stepper
motor driver

0
4j

WE

Microcontroller

Figure 4: Block diagram showing the setup to test the stepper motors. The user communicates with the microcontroller
which then sends commands to the stepper motor board (outline in dashed box). This board ultimately communicates

with the choke and throttle.

15

[Type text]

The code which controls the stepper motor is given in full in the appendix A1.1. The

first 3 lines call header files and define the microcontroller. With these included, the code

can identify other commands and can understand the functions it must carry out. Lines 7

through 11 define the pins on the board. Both the throttle valve and the choke valve have

two pins to control it. The pins beginning with ' stepDir' tell the valve which direction to

move and the pins beginning with 'stepper' tell the valve when to move.

The point of the code is to provide the user with an easy way to control both the

choke and throttle valves and subsequently, control the speed of the engine. It recognizes a

keyboard input and with one keystroke will open or close either the throttle or choke.

Because the throttle takes hundreds of steps to close or open, the code is designed to move

the step the throttle multiple times with one keystroke. The variable 'NumOf Steps' can be

inputted before running the code in order to control how many steps the throttle will move

in response to one keyboard event. The tests were run with 'NumOf Steps' equal to eight.

When there is a signal sent to a 'stepDir' pin, the microcontroller will know

which direction the stepper motor should move, but will not move it until the 'stepper'

pin receives a signal. In the code 'outputhigh' sends the signal, and conversely

'outputlow' stops it. The proper signal for the stepper pin is a square wave. Therefore,

the code calls for 'outputhigh' and then 'output-low' with a 15 millisecond delay

after each.

16

[Type text]

There are also 4 variables defined apart from the key strokes. These are in lines 27 to

30 and allow the user to easily keep track of how many steps have been taken. These are:

'tclose,' 'topen,' 'c_close,' and 'c_open,' and they count the number of steps the

throttle or choke have been opened or closed.

The table 2 below shows which keyboard inputs are important in this code.

Table 2: Shows 5 key strokes that control the microcontroller. 'y' and 'r' control the throttle valve, and 'v' and 'x control
the choke.

Keyboard Input Action

Y Opens throttle

R Closes throttle

V Openschoke

X Closes choke

F Clears values

Every time a 'y 'r' 'V or 'x' is pressed, an if-loop is initiated and runs the correct set of

commands. The if-loop acts as a keystroke detector as the user only communicates to the

microprocessor if an appropriate key is struck. With this if-loop, 'y' or 'r' will increase

't_ open' or 't-close' (respectively) by 'Numof Steps. ' Alternatively, 'V or 'x'

will increase 'c_open' or ' c_close' by one step. The key 'T will clear all set all four

variables to zero so that the user may reset the count. A simplified flow chart of this code is

shown in Figure 5.

17

[Type text]

Initialize
Code

[Tun On Green LED
Set all signals to low

Initialize:
t_close
t_open
c_close
c_open

Print "Enter a letter:"
wait for input

If 'y' is If 'r' is If 'v' is If 'x' is
pressed pressed pressed pressed

Open throttle Close throttle
,N~ ,tps , ,ostps Open choke Close choke

N steps N steps one step one step
steps steps

Increase Increase Increase Increase
't open'by 't close'by 'c_open'by 'c_close'by

'NumOfSteps' 'NumofSteps' one one

Figure 5: Flow chart of the code. After initialization, the code waits for user input and sends according signals to the
microcontroller.

18

[Type text]

3.1.2 Issues Encountered During Testing

Excess forces on the Lever Arms

After unreliable results of testing the throttle, it was evident that the stepper motor

would stall for an unpredictable amount of steps at a time. The best possible explanation

was that the orientation of the stepper motors put excess loads on the valve levers that

exceed the output force of the stepper motor. By drilling and tapping more holes and

allowing for different orientations, experiments were run to optimize the mounting position

of the motors. Figure 6 below shows the revised mount with the extra allowable positions.

Connects to
throttle lever

Connects to
choke lever

Figure 6: Mount of the stepper motor controlling the opening and closing of the choke and throttle valves. Additional
drilled and tapped holes allow the user to change motor orientation.

3.2 Starting the Engine

As mentioned in the engine description, the engine was modified to be a brushless

autonomous start engine. As the generator starts the engine, the engine must draw fuel via

19

[Type text]

the throttle and begin its cycle so that the engine can run independently from the generator.

The code that allows the user to communicate to the microcontroller and the generator is

given in the appendix A1.2. The preamble is identical to the other codes. When the code

initiates, it prompts the user to press 's' to start the engine. Once the input is received, a

single square wave is sent to the proper pin. The variable 'delay' determines the pulse

width. Through extensive testing, it has been determined that the optimum value of

'delay' is 1000 or 1 seconds. (1000 microseconds). With a variance of fuel-air ratios, it is

recommended that the user tries different values of this delay, to obtain a reliable engine

start. Figure 7 below shows a block diagram of the set-up used.

- -- - - - - -

I Plug Hall I
Effect

Iensor
Engine

Generator:

Motor
Controller

Batter Battery

Figure 7: Block diagram showing the test setup used to start and time the engine.

Auto-
Ignition Box

I

Microcontroller

mm Switch

20

[Type text]

3.3 Engine Rotational Speed & Control Loop

Once there is full control of the choke and throttle valves, the next step is to acquire

data about the rotational speed of the motor. As mention in section 2.1.1, a Hall effect

sensor was integrated into the engine system. A Hall effect sensor is a transducer that

responds to a change in a magnetic field by output a variable voltage. There is a magnet that

rotates with the engine in the system, and every time that magnet passes the Hall effect

sensor, the sensor outputs a signal to a pin. The magnet and Hall effect sensor can be seen

in the circled part of figure 8.

Figure 8: Highlighted in this figure is the magnet and Hall effect sensor. As the magnet passes the sensor, a signal is sent
to the microcontroller.

The code that acquires rotational speed data is included in the appendix A1.3. As the magnet

passes the Hall effect sensor, a signal is generated in the form of a peak over a finite amount

21

[Type text]

of time. Figure 9 below is a simplified version of the general shape of the signal. Time1 is the

duration of time that the magnet is in close enough proximity of the Hall effect sensor, and

Time2 is the duration of time in which the rest of cycle is happening. Thus, the duration of

one cycle is the sum of both times and will be referred to as cycle time.

Time 2

Time 1

Figure 9: Typical shape of signal due to the magnet passing the Hall effect sensor. The peak last for a finite amount of
time that must be measured.

The code shown in the appendix is used to obtain this cycle time. Line 1- 10 is an

identical preamble which is explained in section 3.1. By using an internal timer called

'setup_timerl' the user is able to time the length of any event. The interrupts that are

enabled and disabled in lines 28, 31, 36 and 44 are set in place in order to account for the

possibility of the timer running out of memory. The code sets the variable

'overflowcount' to zero before the initialization of the timer (this is essentially the

memory limit). As the timer's memory fills up, the magnitude of the variable

'overflow-count' also increases. Lines 38 and 46 of the code allow the user to keep

22

[Type text]

track of the time even if the timer memory overflows and resets. (Line 38 does so for time1

and line 46 does so for time 2.) Table 3 below more thoroughly explains the syntax of the

code.

Table 3: Explanation of fundamental syntax include in the code (Appendix A1.3)

Syntax Explanation

unsigned int 16 unsigned means that the variable can only take on (+) values; 16 bit

memory

while(input(magnet)) code runs only as long as there is a signal from the magnet passing the

Hall effect sensor

while(!input(magnet)) code runs only as long as there is no signal from the magnet passing the

Hall effect sensor

get timerl() Reads the time off the timer

The first portion of the code (lines 51 and previous) obtains the time it takes for one

engine revolution to occur. The second portion of the code (everything thereafter) stabilizes

the engine speed. The user sets an ideal time by setting the variable 'ideal' to the

desired cycle time in line 16. Then, if the engine is running too fast, ie. the averaged cycle

time of 10 cycles is smaller than the ideal cycle time, the throttle will open four steps to

intake more fuel and increase the speed. Conversely, if the engine is running too quickly, the

throttle valve will close four steps, and slow the engine down. A simplified flow chart of this

code is shown below in Figure 10.

23

[Type text]

Initialize Code

Turn On Green LED
and initialize all variables

Set Up timer and
enable interrupts

Time peak portion (see figure 9)
of cycle i and set variable

timel

Time flat portion (see figure 9)
of cycle i+1 and set variable

time2

Set variable 'c
the sum tot

ycle' equal to
he two times

If engine
is too slow

Open throttle
four steps

Gather data for 10
cycles (until
'count' is set to
10) and set
'cycleavg' as
average cycle timeIf engine

is too fast

Close throttle
four steps

Figure 10: Flow chart of code used to control and stabilize engine speed. Ten cycles are averaged and then compared to
the ideal cycle time.

24

I I

[Type text]

4. Results & Conclusions

The engine and engine control of the REMUS 600 are crucial because they regulate

the power allocation through the duration of the mission. The combination of written and

tested codes allows the user to control the throttle and choke valve, and consequently the

engine speed. Testing revealed that it took 10.3 ± 0.2 and 113.6 ± 1.7 steps to open the

choke and throttle respectively and 4.5 ± 0.1 and 206.4 ± 2.2 to close the choke and throttle

respectively. After creating an internal timer to measure the cycle speed via the Hall effect

sensor, it was possible to write a simple control loop for the engine by opening or closing the

throttle appropriately. Lastly, by rewiring the engine switch to the microcontroller, code was

written such that the user can start the engine with a keystroke.

Further tests should be run to calculate the ideal speed of the engine. This may

depend on the mission at hand; for this reason, the written code was made such that the

user could easily define the stable engine speed. Future recommendations include a control

loop that allows steady increase or decrease of the engine rather than a set ideal speed. In

addition, it is worth nothing that the code is currently set so that the speed of 10 cycles is

averaged and then compared to the ideal speed. The trade-off between increasing and

decreasing this number is that a greater number allows for more reliable data, but a lower

number allows for a quicker feedback loop. In the future, it'd be advantageous to run tests

with a various number of averaged cycles, and thus optimize stability.

25

[Type text]

References
2.013 Engineering Systems Design, MIT Rapid Development Group. "Internal Combustion Engine

Hybrid Recharging System." Critical Design Review (2012): Web. 14 May 2013.

Blidberg, Richard. "The Development of Autonomous Underwater Vehicles (AUV); A Brief Summary."

ICRA (200): 12. Print.

Crimmins, Denise, and Justin Manley. "NOAA Ocean Explorer: AUVfest 2008: What Are AUVs, and

Why Are They Used?." NOAA Ocean Explorer Home. N.p., 25 Aug. 2010. Web. 6 May 2013.

<http://oceanexplorer.noaa.gov/explorations/08auvfest/background/auvs/auvs.html>.

von Alt, Christopher. "Autonomous Underwater Vehicles." Autonomous Underwater Lagrangian

Platforms and Sensors Workshop 1 (2003): n. pag. Geo-Prose. Web. 6 May 2013.

26

[Type text]

Appendix

A1.1
*include <24HJ28GP306.h>
#include <prototype .h>
#include <matb.h>
tfuses HS,NOWDT,PR
tuse delay (clock=20000000)

#define stepperthrottle PINGO
#define stepper-choke PING2
*define stepDir throttle PIN G1
define stepDir choke PIN G3
*define GREEN LED PIN B4

[main (void){
#use STANDARDIO (U) //set up keyboard input
*use STANDARDIO (G)
#use STANDARD10 (F)

char start;
int i;

output high (PIN B4); //turns on green LED
outputlow(PIN_GO); //start with all pins no signal
outputlow (PIN_GI);
outputlow(PING2) ;
outputlow (PIN_G3) ;

int t close=O;
int topen=O;
int c close=O;
Int c oper=0;
int NumOfSteps=S;

-while (TRUE) {
printf ("\r\n Enter a letter: ");
start=getc (;

if (start=='r'
printf (w\r\n Throttle Close 8 Steps");
outputhigh (stepDirthrottle);
t close +=NumOfSteps;

f or (i=O; i<NumofSteps; i++) f
output_high (stepperthrottle);
delayms(15);
outputlow (stepperthrottle);
delay ms(15);

27

[Type text]

if (start=='y'){
printf("\r\n Throttle Open 8 Steps");
outputlow (stepDir throttle);
t_open +=NumOfSteps;

for (i=0; i<NuxOfSteps;i++) {
outputhigh (stepperthrottle);
delayms(15);*
outputlow (stepperthrottle);
delayms(15);

}

if (start==x'
printf("\r\n Choke Close I Step");

outputhigh(stepDirchoke);
cclose +=1;

for (i=; il; i+±)l
outputhigh (stepper_choke);
delayms(25);
outputlow (stepperchoke);
delayms(25);

if (start'v'){
printf("\r\n Choke Open 1 Step");
outputlow (stepDir choke);
c_open +=1;

for (i=0; i<1; i++) {

outputhigh (stepperchoke);
delayms(20);
outputlow (stepperchoke);
delayms(20);

}

if (start=='f') {

t_open=O;

t_close=O;

c_open=O;
c close=O;

printf("\r\n topen %i" ,t open);

printf("\r\n tclose %i", tclose);
printf("\r\n copen %i", copen);

printf("\r\n c close %i", c close);

I

28

[Type text]

A1.2
tinclude <24HJ128GP306.h>
#include <prototype.h>
*include <math.h>
;fuses HS,NOWDT,PR
#use delay (clock=20000000)
//#use rs232 (baud=9600, UARTI, stream=PORT.)

#define GREENLED PINB4
#define engineswitch PING7

void main (void) {
#use STANDARD_10 (D)
*use STANDARDIO (G)
#use STANDARD_10 (F)
output high (PIN B4);

char start;
int delay=1000;
-while (TRUE)

printf("\r\n Press s to start");
start=getc 9;

if (start=='s') {
printf("\r\n Engine has been started!");

outputhigh (engineswitch);
delayms(delay);
outputlow (engine switch);

29

[Type text]

A1.3
#include <24HJ128GP306.h>
#include <prototype.h>
#fuses HSNOWDT,PR
#include <math.h>
#use delay (clock=20000000)
#define stepperthrottle PINGO
#define stepperchoke PING2
#define stepDir throttle PIN G1
#define stepDir choke PING3
*define magnet PIN G6

unsigned intl6 overflow count;
int i;
int cycle;
int ideal=1000;

#int timeri
Mvoid timerl isr(){
overflowcount++;

void mainO){
unsigned int32 timel;
unsigned int32 time2;

setup timerl(TMR INTERNAL THR DIV BY 1);
enable interrupts (inttimerl);

- while (TRUE) {
enable interrupts (INTRGLOBAL);

while (input (magnet));
overflowcount=0;

set timerl (0) ;
while (! input (magnet));

disable interrupts (INTRGLOBAL);
timel=gettimerlQ;
time1=time-+ ((unsigned int32)overflow count<<16);
timel-=15;

while (! input (magnet));
overflowcount=O;
settimerl (0);

while (input (magnet)) ;
disable interrupts (INTR GLOBAL);
time2=get timerl9;
time2=time2+((unsigned int32)overflowcount<<16);
time2-15;
cycle=timel+time2;
int count=0;
count++;

printf("Speed is %lu.%06lu rpm. \r\n", (600000000/(time+time2)),

(600/ (timel+time2)) %1000000);
while (count <10) (
int cycleavg;
cycleavg=(cycle+cycle)/10;

30

[Type text]

if (count=10) {
break;

if (cycleavg < ideal){
for (i=O; i<4;i++) {

outputhigh (stepperthrottle);
delayms(15);
outputlow (stepperthrottle);
delayms(15);

if (cycleavg > ideal)(
for(i=0; i<4;i++){

outputhigh (stepperthrottle);
delayms(15);
output low (stepperthrottle);
delayms (15);

}

I}

31

