Implementation of GPS Based Trajectory Control of an
Autonomous Sailboat

by
Jackson O. Wirekoh
SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

AT THE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
JUNE 2013 ARCHIVES
, . (AAASSACHUSETTS INSTITUTE|
©2013 Jackson O. Wirekoh. All rights reserved. i OF TECHNOLOGY
o
The author hereby grants to MIT permission to reproduce ©JUL 3 12013
and to distribute publicly paper and electronic o

copies of this thesis document in whole or in part |
in any medium now known or hereafter created. ’ Lol

Signature of Author:

/ - - D;pa;rin';'ent of Mechanical Engineering
May 10, 2013

Certified by: .
/ John J. Leonard

Professor’of Mechanical and Ocean Engineering
Thesis Supervisor

Accepted by:

7 v v .
! v Annette Hosoi

Professor of Mechanical Engineering
Undergraduate Office

Implementation of GPS Based Trajectory Control of an Autonomous Sailboat

by

Jackson O. Wirekoh

Submitted to the Department of Mechanical Engineering
on May 10, 2013 in Partial Fulfillment of
the Requirements for the Degree of Bachelor of Science in
Mechanical Engineering

Abstract

Autonomous robotic systems are increasingly becoming a major component of modern society. In
order to gain a better understanding of the capabilities of these autonomous systems, experimentation was
conducted using a miniature robotic sailboat. GPS based trajectory control was implemented on this
system to test the ability of the sailboat to travel to desired locations when placed in different starting
positions. Ultimately, the sailboat was able to trave! the desired 30 feet in the shortest amount of time
when it began with its angle heading projected towards the desired location without any obstacles to
avoid.

Thesis Supervisor: John J. Leonard
Title: Professor of Mechanical and Ocean Engineering

2. Background

2.1.

3. Experimental Apparatus

3.1.

3.2.

3.3 Software Design

4. Experime

Table of Contents

Sailing

Mechanical Design

3.1.1. System Architecture

3.1.2. Mechanical Power

Electrical Design

3.2.1. Circuit

ntal Procedure

5. Results & Conclusion

Bibliography

Appendix A
Appendix B

Appendix C

4-5

4-5

10

11-15

16-17

18-24

1. Introduction

Robotic systems have become an
integral part of modern society. The numerous
capabilities and versatility of said systems have
made them a cornerstone in industry, as well as
in the home. These systems aid humans across
the planet with manufacturing, surveillance,
home maintenance, as well as in other various
sectors of life. In many cases, these systems
complete their tasks by following predetermined
parameters. This includes preprogrammed paths
of motion that the robot will enact continuously
until its power supply has been depleted or it has
been directed to stop.

In other cases these systems act
autonomously. Autonomous robotic systems are
capable of reacting to their environments in
ways that the systems previously mentioned are
not. These autonomous systems are capable of
analyzing their environment using sensors, and
then executing an action that best fits their
needs. This allows for robotic systems to
perform complex tasks, such as mowing a lawn,
deep sea exploration, or autonomous navigation,
the latter being explored throughout this study.
Using a handmade sailboat as the plant, Global
Positioning Satellite based control was enacted
to provide the sailboat with coherent
autonomous logic. Furthermore, the ability of
the sailboat to traverse obstacles en route to
desired locations was tested.

2. Background
2.1. Sailing

Sailing is a form of propulsion which is
powered by the force and speed of the wind.
This method of propulsion has been employed
since the 6" millennium B.C., and has been
instrumental in allowing humanity to expand its
earlier civilizations around the world. The
impact of sailing has been most profound in
maritime travel. With the creation of vessels
capable of using the wind for both power and
control, seamen gained a valuable means to
navigate the Earth’s seas. These vessels, which
are today known as sailboats, combined various
systems to make wind-aided travel both safe and
reliable. Figure 1 provides a diagram of a
sailboat. '

Mast

Forestay
(Headstay)
(Jibstay)

Figure 1: Diagram of the structure of a simple
sailboat.'

A typical sailboat is composed of four
major components. These components include
the hull, the keel, the masts/sails, and the rudder.
The hull, which can be produced from a mixture
of wood, metal, fiberglass, or composite
materials, is the frame of the sailboat. It provides
the boat with its unique shape and is designed to
ensure the boat can remain buoyant through
tumultuous sea conditions. Sailboats can be
designed with numerous different hull designs.
The most common, which can be seen in Figure
2, is known as a monohull. In addition, Figure 3
provides an example of a multihull vessel.

Figure 2: Image of typical monohull design, which
is incredibly resistant to capsizing.

Figure 3: Image of a trimaran, one of many
different types of multihull designs.’

The keel forms the backbone of the hull, as well
as a hydrodynamic balancing agent for the boat.
A weight is fitted to the endpoint of the keel, to
serve as ballast in order to counteract the leeway
force of the wind on the sails. Subsequently, the
sails provide the major power source for the
sailboat. Utilizing various configurations and
sizes, the sails can be used to change the
direction that the boat travels in, as well as the
speed of the boat relative to the wind force.
Additionally, skilled seamen are capable of
traversing in the opposite direction of the wind
(upwind) by tacking. Alongside the rudder,
which allows a boat to turn around its center of
mass, the sails can be maneuvered to propel the
boat upwind at varying angles of attack. This
versatility, when coupled with proper navigation
systems has produced an innovative maritime
creation.

2.2. Global Positioning Satellite

Global Positioning Satellite, or GPS, is a
satellite based navigation system that was
originally developed for the United States
Department of Defense in 1973, and has since
found its way into multiple facets of modern
society. Currently GPS operates using 24 to 32
Intermediate Circular Orbit (ICO) satellites, at
altitudes between 2000 kilometers and 35,786
kilometers, to perform measurements. Through
the use of these satellites revolving around the
Earth, the latitude, longitude, and altitude of any
point on the planet can be pinpointed. Figure 4
provides a representation of the orbital satellite
system used.

Figure 4: Artistic representation of the ICO
satellite system used to calculate GPS based
location on Earth.’

In order for these measurements to be accurate
however, at least four satellites must be detected
by the user operated GPS receiver (i.e. cell
phone, car GPS, etc.). Once the appropriate
number of satellites has been detected, a GPS
receiver requests information from the satellites
including the time of the message and the
location of the satellite when the message was
sent. This allows the GPS unit to calculate the
transit time of each message and calculate the
distance to each satellite using the speed of
light ¢, and the navigation equation

(E+b=tde)’ =c—x)?+ v —y? (D
+ (Z - Zl')2

where x;, y;, and z;, are components of the
satellite position, t; is the time component of the
satellite, b is the receiver’s time delay, £, is the
true reception time, and i ranges from 1 to at
least 4 different satellites. Equation 1 can then
be solved for the receiver position x, y, and z,
andb.

GPS based navigation provides accurate
high resolution coordinates, in addition to being
effective in all weather conditions. As long the
line of sight between the GPS receiver and at
least four satellites is clear, the GPS will
produce reliable information for navigational
purposes. These factors have made GPS based
control ideal for this study.

3. Experimental Apparatus

GPS based trajectory control was
implemented on a model sailboat, the
experimental apparatus, in order to allow the
sailboat to travel to desired locations
autonomously. The system was outfitted with
sensors, motors, and servos in order to provide
enough freedom for the boat to operate
efficiently. Subsequent sections detail the
mechanical, electrical, and software design
components of the experimental apparatus.

3.1. Mechanical Design
3.1.1. System Architecture

The design of the sailboat was inspired
by the MIT Tech racing sailboat. The hull was
directly modeled from the hull lines used to
create the Tech sailboat with minor adjustments.
The hull is 18” x 8” x 3 at its longest points,
and was created from three 3D printed sections
made of ABS plastic. These sections were
connected using a combination of epoxy,
fiberglass, and bolts. In addition, casings and
inserts were designed into the hull to hold the
mast, keel, rudder, and electronics (Arduino,
servos, motors, sensors, etc.). Figure 5 provides
a solid model of the hull design.

Figure 5: SolidWorks model of the monohull used.
Ribs were designed to provide stability to the hull,
while different sections were created to various

components.

Other main features of the boat are
modified versions of the keel, rudder, and
mast/sail system incorporated into the Tech
design. Figure 6 provides a dimensioned solid

model of the keel, while Figure 7 provides a
scaled image of the actual boat. The keel is
composed of birch wood connected to an iron
mass by epoxy and fiberglass, while the rudder
is composed of a balsa wood rod connected to a
birch wood baseplate. The mast is made from
balsa wood and is connected to the Mylar sails
by sailing tape. Furthermore, these sails can be
adjusted to optimize the wind fi on the boat.

Figure 6: Dimensioned solid model of the Keel
which is formed by joining a wooden base plate to
a weight through a combination of a rabbet joint
and fiberglass.

Figure 7: Scaled image of the completed Sailboat.

6

3.1.2. Mechanical Power

Power is provided to the sailboat
through two means. First, the sails drive the
sailboat through the use of wind power.
Adjusting the sails allows the boat to flow with
the wind when traveling downwind or tack while
traveling upwind. A secondary power source is
provided by a brushed DC motor capable of
producing a speed of 1 knot. The DC motor is
connected by a jack shaft to a plastic propeller in
order to produce enough force to move the
sailboat forward.

3.2 Electrical Design
3.2.1. Circuit

Figure 8: Image of a portion the integrated circuit
used to operate the sailboat.

The circuitry for this system employs a
complex parallel circuit. A battery pack,
providing 7.4 volts, powers an Arduino Uno
microcontroller board, an XBee electronics
shield, and an Adafruit GPS shield.
Subsequently these boards provide power to 3
servo motors, a brushed DC motor, 3 IR
Sensors, and 2 anemometers. Graphical
representation of the circuitry elements can be
found in Appendix B.

3.2.2. Electrical Power

Electrical power is provided to the
circuit by a rechargeable Lithium Polymer
battery pack. The battery pack generates 7.4
volts for the system and holds an expected life of
1900 milliamp-hours. Figure 9 provides an
image of the battery used.

Figure 9: Thunder Power DC LIPO 1900mAh
battery.5

Based on these specifications, this battery
provides a reasonable power supply for the boat.
Under operating conditions, the sailboat can be
powered for up to 2 hours.

3.2.3. Electrical Loads

Three HS-322HD Standard Deluxe
servos, depicted in Figure 10, are used to control
different onboard systems. These servos operate
the rudder, turning the boat in desired directions,
the wench, which pulls the sails in and out, and
rotate the pseudo-LIDAR system at the front of
the boat. This servo was chosen to complete
these tasks due to its 180° range of motion as
well as its ability to provide enough torque to
compete with forces felt on the sails or rudder.
Additionally, these servos operate between 4.6V
and 6V which is in the range of the battery.

Figure 10: A HS-322HD Standard Deluxe motor,
similar to the servos used to operate the LIDAR,
wench, and rudder of the sailboat.’

A 110 RPPM Micro Gearmotor is also
integrated into the system. This actuator has a
stall torque of 32 oz-in and can be digitally
controlled by the Arduino Uno. Running at an
operational voltage of 6V, this motor is capable
of producing a velocity of up to 1 knot. Other

loads include the 3 Sharp IR Sensors and 2
Modern Devices anemometers. The IR Sensors
are medium range distance sensors that can
accurately measure distances between 4 inches
and 34 inches. The anemometers measure the
speed of incoming wind, producing larger
voltage readings with increasing wind velocity.
These devices both operate at 5V, and provide
readable electrical signals to the Arduino
microcontroller. Further specifications, in
addition to images, for the HS-322HD Servo, the
Micro Gearmotor, and the anemometer can be
found in Appendix A.

3.3 Software Design

Using Arduino Processing language, a
program was created to provide the sailboat with
autonomous navigational operation. Initially this
program waits until enough satellites have been
detected for the Adafruit GPS shield. Once this
has occurred, the system sets the current location
of the sailboat as the home position, and begins
calculating its trajectory to the desired location.
However, should there be any form of
impedance detected by the IR sensors; the
sailboat will enact an obstacle avoidance
program before plotting a new trajectory to the
desired location. This trajectory is continually
updated using intermediate GPS measurements
of the sailboats current location, in order to
ensure that actuators work together to provide
the sailboat the optimal trajectory. Figure 11
provides a graphical representation of the values
used in the control logic.

Figure 11: Displays a graphical representation of
control logic. Sailboat determines required angle

heading change by finding the angle difference
between the temporary position and actual
position, as well as the actual position and the
desired position.

This control logic was chosen due to the
difficulty of controlling this system without a
sensor to detect the angle heading of the boat.
By using a temporary position, calculated at
about 10 second intervals, and the equations,

—1 [Yact = Ytemp (2)
Otemp = tan™ ! [————F
Xact — Xtemp

Bact =L (ydestred yact) (3)
Xdesired — Xact

the controller detects which direction the boat is
moving in. Additionally, the desired angle
heading is also calculated. This ensures that the
sailboat understands how long it must have both
the motor on and the rudder turned in order to
reach the desired heading. Further information
on the control logic and implementation can be
found in Appendix B, while the actual program
is found in Appendix C.

4. Experimental Procedure

The ability of this controller to travel to
a desired location 30 feet away was tested. In
addition, the time it took to reach the
destination, was recorded and compared to a
theoretical value equal to 17.775 seconds. This
value was calculated based on the speed of the
sail boat (1 knot) and the total distance it had to
travel (30 feet). A total of 30 trials were
conducted. 5 trials were conducted with the
heading of the boat pointed in the desired
direction, with the heading offset by 45 degrees,
and with the heading offset by -45 degrees. In
addition, these trails were also conducted with
an obstacle blocking the path of the sailboat at
10 feet away.

5. Results & Conclusion

The time it took to travel to the
desired location was the least, when the boat
heading was aligned with the desired point.
It took the boat an average 20.12 seconds to
reach the desired location. Further results
can be viewed in Tablel and Table 2.

Table 1: Data Collected

Trial | Test | Test | Test | Test | Test
Start 1 2 3 4 5
Position
-45° 209 {2091 | 21.6 | 21.09 | 21.78
offset 058 |34 324 |75 5
Headon |20.5 [19.95]19.9 | 20.15 | 19.97

469 |75 649 | 76 06
45° offset | 20.9 | 21.48 | 20.8 | 21.14 | 21.42
572 | 54 003 | 19 18
-45° with | 24.8 | 24.90 | 25.1 | 2491 | 25.63
obstacle 147 | 58 270 | 34 24
Head on | 23.0 | 23.27 [23.5 | 22.95 { 22.96
with 975 | 85 469 | 75 49
obstacle
45° with | 25.1 124.97 | 24.9 | 24.48 | 24.80
obstacle 576 | 06 572 | 54 03
Table 2: Average
Start Position | Average (s)
-45° offset 21267+ 414
Head on
20.12 £ .253
45° offset 21.161 £ .294
-45° with
obstacle 25.079 £ .33
Head on with
obstacle 23.169 + .248
45° with
obstacle 24.874 + 252

The sailboat was able to correctly sail to desired
locations. However, these locations had to be
specified in the program initially. In order to
better test the navigational capabilities of the
control logic, a system should be installed to
allow the user to change desired locations while
in the midst of travel.

" Image taken from: http://www.frugal-
mariner.com/Boat_and_Ship_Rigs.html

* Image taken from:
http://www.sunsail.com/fleet/sunsail-32i-2-cabin-
monochull-yacht

* Image taken from:
http://yachtpals.com/monster-multihulls-9004

4 Image taken from:
http://www.nist.gov/pml/div688/grp40/gpsarchive.c
fm

* Image taken from:
http://www.amazon.com/Thunder-Power-RC-
1900mAh-Receiver/dp/B0O051BTRCO

® Image taken from:
http://www.servocity.com/index.html

Bibliography

Bancroft, S. (1985). An algebraic Solution of the GPS Equations. Aerospace and Electronic Systems,
IEEE Transactions on, AES-21 (1), 56-
59.http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4104017

Carter, R. (2006). Boat remains and maritime trade in the Persian Gulf during the sixth and fifth millennia
BC. Antiguity, 80 (307), 52-
63. http://search.proquest.com.libproxy.mit.edu/docview/2 175799057 accountid=12492

Parkinson, B. W. (1996). Global Positioning System: Theory and Applications, Volume 1. Washington,
DC: American Institute of Aeronautics and Astronautics.

10

Appendix A

Arduino Uno

Microcontroller ATmega328

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 14 (of which 6 provide PWM output)
Analog Input Pins 6

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB (ATmega328) of which 0.5 KB used by bootloader
SRAM 2 KB (ATmega328)

EEPROM 1 KB (ATmega328)

Clock Speed 16 MHz

Site: arduino.cc/en/Main/arduinoBoardUno

10 Expansion Shield V5 XBee Sensor Shield RS485

* Dimensions: 2.24inx2.09inx 0.71 in (5.7cm x 5.3 cm x 1.8 cm)

= Weight: 0.92 0z (26 g)

= Extends of 14 digital IO port (12 Servo Interface),power, and 6 analog 1O ports and power
Site: http://www.dhgate.com/arduino-xbee-shield-v5-expansion-shield-v5/p-
ff8080813916f097013922f589d00646.htm|

11

Adafruit GPS Shield

= 165 dBm sensitivity, 10 Hz updates, 66 channels
= Low power module - only 20mA current draw, half of most GPS's
Assembled & tested shield for Arduino Uno/Duemilanove/Diecimila/Leonardo (not for use with
Mega/ADK/Due)
MicroSD card slot for datalogging onto a removable card
RTC battery included, for up to 7 years backup
Built-in datalogging to flashPPS output on fix>25Km altitude
Internal patch antenna + u.FL connector for external active antenna
Power, Pin #13 and Fix status LED
Big prototyping area
Dimensions(PCB only): 69mm x 53mm x 6.7mm (2.7in x 2.1in x 0.26in)
Weight (w/o GPS module): 24g
Site: http://www.adafruit.com/products/1272#Technical Details

HS-322HD Standard Deluxe

» 1950usec
45°

g
@)

1500usec Neutral
This servo can operate 180° when given a pulse signal ranging from 600usec to 2400usec.

90" X 2400usec

Detailed Specifications

Control System: +Pulse Width Control 1500usec Neutral
Required Pulse: 3-5 Volt Peak to Peak Square Wave
Operating Voltage: 4.8-6.0 Volts

12

Operating Temperature Range: -20 to +60 Degree C

Operating Speed (4.8V): 0.19sec/60° at no load

Operating Speed (6.0V): 0.15sec/60° at no load

Stall Torque (4.8V): 42 oz/in (3.0 kg/cm)

Stall Torque (6.0V): 51 oz/in (3.7 kg/cm)

Current Drain (4.8V): 7.4mA/idle and 160mA no load operating
Current Drain (6.0V): 7.7mA/idle and 180mA no load operating
Dead Band Width: Susec

Operating Angle: 40 Deg. one side pulse traveling 400usec
Direction: Clockwise/Pulse Traveling 1500 to 1900usec

Motor Type: Cored Metal Brush

Potentiometer Drive: 4 Slider/Direct Drive

Bearing Type: Top/Resin Bushing

Gear Type: Heavy Duty Resin

360 Modifiable: Yes

Connector Wire Length: 11.81" (300mm)

Dimensions: See Schematics

Weight: 1.520z (43g)

Site: http://www.servocity.com/index.html|

< A —P < E
Diameter (L) ’l /SemoSpllne (shatft)
) S
E h G
K G
j rr’:’ s . |
F H
<t— M —p
-

A =.780"
(19.82mm)
B =.530
(13.47mm)
C=133"
(33.79mm)
D = .400”
(10.17mm)
E =.380"
(9.66mm)
F=1.19"
(30.22mm)
G = .460”
(11.68mm)
H=1.05"
(26.67mm)
J=2.08"
(52.84mm)
K=.368"
(9.35mm)
L=.172"
(4.38mm)
M=1.57"
(39.88mm)
X=.120"
(3.05mm)

13

110 RPM Micro GearmotorBlocks

Operating Range: 6VDC

Torque @ Stall: 32 oz-in.@ 6VDC

Torque @ Stall: 60 oz-in.@ 12VDC

0.118” (3mm) Diameter “D* Shaft

No load current: 30mA (6VDC)

No load current: 70mA (12VDC)

Stall current: 360mA (6VDC)

Stall current: 1600mA (12VDC)

No load speed: 55 RPM @ 6VDC

No load speed: 110 RPM @ 12VDC

Gear ratio: 250:1

Motor size: 1.147 x 1.00” x 0.50”

Shaft size: 0.118" (3mm) Dia. x 0.393” (10mm) L
Weight: 0.6 0z (17g)

DC reversible motors

Pre-tinned wire leads (6”)

Site: http://www.servocity.com/html/110_rpm_micro_gearmotorblocks.html

I‘f 100" —

I [— 7T — — 114" —of
-—— | I ’ : E

- O e 1O of arf o
—

]
- 8.«-—4—-—---—

Sharp IR Sensor 2Y0A21F1Y

The Sharp GP2Y0A21YKOF infrared distance measuring sensor uses a beam of infrared light to reflect
off an object to measure its distance. Because it uses triangulation of the beam of light to calculate the
distance, it is able to provide consistent and reliable readings which are less sensitive to temperature
variation or the object’s reflectivity. The sensor outputs an analog voltage corresponding to the distance
of the object, and can easily be read using an inexpensive analog to digital converter (ADC) chip.
The Sharp IR Sensor Stand kit (725-28995) provides a very convenient method of mounting the sensor,
and the Sharp IR Sensor to Servo Cable (805-28995) makes it easy to wire up to a breadboard or
microcontroller board.
Features:

= Distance measurement range: 10 to 80 cm (3.9 to 31.5 inches)

* Analog output voltage corresponds to distance

= Operates on 5 V supply

= Convenient 3-pin interface

= Two mounting holes spaced 1.46 inches (37 mm) apart
Application Ideas:

* Distance sensor for autonomous robots

= Non-contact optical switch

= Industrial automation and controls
Key Specifications:
Power requirements: 5 VDC, 30 mA (typ.)

* Communication: Analog output voltage (typically 0.4 to 2.3 V range)

= Overall Dimensions: 1.75 x0.74 x 0.53 in (4.45x 1.89 x 1.35 ¢m)

» Operating temp range: +14 to +140 °F (-10 to +60 °C)
Site:
http://www.parallax.com/StoreSearchResults/tabid/768/List/0/SortField/4/ProductID/776/Default.aspx ?tx
tSearch=sharptir+sensor

Modern Devices Anemometer MD0550

g

Specifications

¢ Dimensions: .68" x 1.590" x 25"

¢ Supply Voltage: 4 — 10 volts

e Supply current: 20 — 40 mA (depending on wind speed)
¢ Output signal: analog, 0 to VCC

Site: http://shop.moderndevice.com/products/wind-sensor

15

Appendix B
Circuit Diagram

s.l.z.so.i::: to Anemometer
Nearest Object Record Wind Speed Perpendicular to other Anemometer
IR Sensor Anemometer
Sense Distance to S.I'E.SQI'ISO:‘Q Record Wind Speed Perpendicular to other Anemometer
Nearest Object Nearest Object =
]
Semeor Servo Mot Arduino Uno with Winch s‘”;:”““
nsor Servo r . . Cretrol
Rotste IR Sensors, Regort XBee Radio Shield and
Position Adafruit GPS Shield Rudder Servo Motor
h---~ Control Rudder/Report Rudder
I Position
Battery Pack
Propeller Motor
Control Propelier
Logic Diagram

Has GPS fix
been found?

Sethome

position

Trajectory

Has an
Qbstacle been
found?

Is current
position desired
position?

Find current

Control

16

Control Diagram

Pl

Plant

Controller

t
—

Sensors

Pact

W

1574

Appendix C

/**

* @file: SailboatCode
* @author: Jackson Wirekoh (jwirekoh@mit.edu)
* (@date: 3/27/2013

*®

* (@description: Controls components of autnomous Sailboat

*

* @hardware: 3 Servos, | Dc motor, 1 GPS chip, | gyroscope, 3 IR Sensors, 2 Wind Sensors
* (@software: Processing

* (@libraries: Servo, Software, Adafruit_GPS, Math

*%/

#include <Servo.h>
#include <SoftwareSerial.h>
#include <Adafruit GPS.h>
#include <math.h>

// Creation and implementation of servo, sensor, and actuator components

/! Create Servo Objects
Servo lidarServo;
Servo sailServo;

Servo rudderServo;

/I Assign Output Pins
int 1s=2;

int ss=3;

int motorOut=4;

int rs=5;

// Set position values for Servos
int neutral = 1485;

int left = 1000;

int right = 1800,

int in =2400;

int out = 1000;

/! Assign Input Pins
int motorIn=AS5;

int centerlR=A4;
int leftIR=A3;

int rightIR=A2;

int frontWind=Al;
int backWind=A0;

// Declare variables to read inputs
int cenRead=0, leftRead=0, rightRead=0, fWind=0, bWind=0;

// Creation and implementation of GPS and SoftwareSerial objects

18

/! Create GPS Objects
SoftwareSerial mySerial(8,7);
Adafruit GPS GPS(&mySerial);

// Set GPSECHO to 'false’ to turn off echoing the GPS data to the Serial console
#define GPSECHO false

// InComplete

uint32_t timer = millis();
// Setup boolean value
boolean findPosition = true;

//Set home position

float xh,yh;

// Set desired locations

float xd=7105.07042, yd=4220.63238;

//Set actual values

float x,y;

float theta;

float actDist;

// trajectory control values

float xtemp, ytemp, thetaTemp, tempDist;

// Boat speed during motor on in meters pper second

float velocity = .5144; // meters/sec

float radius = .2286; // distance in meters around which boat spins
float angVel = velocity/radius*180; // in degrees per second

/! Setup Pins
void setup(){
Serial.begin(115200); //Send data at 9600 bps(bits per second)

//Sets pins as outputs

//Pins will not take input from soure (i.e. computer)
pinMode(1s,OUTPUT);

pinMode(ss,OUTPUT);

pinMode(motorOut, OUTPUT);

pinMode(rs, OUTPUT);

/I Attach servos to ouput pins
lidarServo.attach(ls);
sailServo.attach(ss);
rudderServo.attach(rs);

// Set Servos to neutral postition
lidarServo.writeMicroseconds(1500);
sailServo.writeMicroseconds(neutral);
rudderServo.writeMicroseconds(neutral);
Serial.printIn("Servos Ready");
delay(800);

19

//Sets pins as inputs

// pins will take readings from sensors
pinMode(motorin, INPUT);
pinMode(centerIR,INPUT);
pinMode(leftIR,INPUT);
pinMode(rightIR,INPUT);
pinMode(frontWind,INPUT);
pinMode(backWind,INPUT);
Serial.printin("Sensors Ready");
delay(800);

// 9600 NMEA is the default baud rate for Adafruit MTK GPS's- some use 4800

GPS . begin(9600);

// uncomment this line to turn on RMC (recommended minimum) and GGA (fix data) including altitude

GPS.sendCommand(PMTK _SET NMEA OUTPUT RMCONLYY);
/! Set the update rate

GPS.sendCommand(PMTK_SET NMEA UPDATE 1HZ); // 1 Hz update rate
// For the parsing code to work nicely and have time to sort thru the data, and

// Request updates on antenna status, comment out to keep quiet
GPS.sendCommand(PGCMD_ ANTENNA);

/I the nice thing about this code is you can have a timer0 interrupt go off
// every 1 millisecond, and read data from the GPS for you. that makes the
/! loop code a heck of a lot easier!

delay(800);

/1 Ask for firmware version
mySerial.printin(PMTK_Q RELEASE);
delay(800);

while(findPosition){position();}
findPosition=true;

xh=GPS.longitude; yh=GPS latitude;
Serial.print("Home: ");
Serial.print(xh,4); Serial.print(", ");
Serial.println(yh,4),

3

int counter=0;
void loop(){
digital Write(motorOut, HIGH);
//find its current position
while(findPosition){position();}
if (counter%2==0){
xtemp=GPS.longitude;
ytemp=GPS.latitude;
}
// 1f current position is equal to desired position stop and come back home
if(abs(xd-x)<=.0001 && abs(yd-y)<=.0001){
delay(2000);

20

xd=xh;
yd=yh;

if(abs(xh-x)<=.0001 && abs(yh-y)<=.0001){

Serial.println("I'm Home"),

}
}

/1 If boat is not at destination do this

else{

// Check to see if there are any obstacles in the way

senseObstacle();

//if there are obstaacles begin obstacle avoidance
if (cenRead<10 |lleftRead<10 || rightRead<10){

obstacleAvoid;

}

// I no obstacles calculate and follow trajectory to desired location

elsef

travel();

}
findPosition=true;
counter++;

}
}

// Test end

// May not be used

void upWind(){
sailServo.writeMicroseconds(in);
delay(200);
digitalWrite(motorOut,HIGH);
delay(200);
//Tack

}

//May not be used

void downWind(){
digital Write(motorOut, LOW);
delay(200);
sailServo.writeMicroseconds(out);
delay(200);

}

// command used to avoid obstacles

void obstacleAvoid(){
sailServo.writeMicroseconds(in);
delay(200);

// Decide on direction to turn

//Pull in Sails to begin pbstacle avoidance

if (cenRead<12 && rightRead<12 || rightRead<12){

21

rudderServo.writeMicroseconds(left);
}
else if(cenRead<12 & & leftRead<12 || leftRead<12){
rudderServo.writeMicroseconds(right);
b
/lelse if(cenRead<12 &&leftRead>12&& rightRead>12){}
else{ delay(500);}

// Begin avoiding obstacles using motor for speed
digital Write(motorOut,HIGH);
delay(200);

}

/f command used to request information from IR Sensors

void senseObstacle(){
Serial.println("Sensing Obstacles");
/! Read Analog inputs
cenRead=analogRead(centerIR);
leftRead=analogRead(leftIR);
rightRead=analogRead(rightIR);
delay(200);
/! Map analog values to inches
cenRead=map(cenRead,0,600,31,6);
leftRead=map(leftRead,0,600,31,6);
rightRead=map(rightRead,0,600,31,6);
delay(500);
Serial.printIn("left: ");
Serial.printin(leftRead);
Serial.printIn("center: ");
Serial.println(cenRead);
Serial.println("right: ");
Serial.printIn(rightRead);
delay(1000);

}

void position(){

// read data from the GPS in the 'main loop'
char ¢ = GPS.read();
// if you want to debug, this is a good time to do it!
if (GPSECHO)

if (¢) Serial.print(c);

if (GPS.newNMEAreceived()) {
// a tricky thing here is if we print the NMEA sentence, or data
/f we end up not listening and catching other sentences!
// so be very wary if using OUTPUT _ALLDATA and trytng to print out data
//Serial.printin(GPS.1astNMEA()); // this also sets the newNMEAreceived() flag to false

if (!GPS.parse(GPS.lastNMEA())) // this also sets the newNMEAreceived() flag to false
return; // we can fail to parse a sentence in which case we should just wait for another

}

22

/1 it millis() or timer wraps around, we'll just reset it
if (timer > millis()) timer = millis();

// approximately every 2 seconds or so, print out the current stats
if (millis() - timer > 5000) {
timer = millis(); // reset the timer
if (GPS.fix) {
x=GPS.longitude; y=GPS.latitude;
Serial.print("Location: ");
Serial.print(GPS.longitude, 4); Serial.print(GPS.lon);
Serial.print(", "),
Serial.print(GPS latitude, 4);Serial.println(GPS.lat);
// Serial.println(GPS.angle);

findPosition=false;
3
i
}

float calcAngle(float x1, float y1, float x2, float y2){
float ydist=(int(y2/100)+(y2/100-int(y2/100))/.600)-(int(y 1/100)+(y 1/100-int(y 1/100))/.600);
float xdist=(int(x2/100)+(x2/100-int(x2/100))/.600)-(int(x 1/100)+(x 1/100-int(x 1/100))/.600);
float calcTheta;
if(ydist>=0 && xdist>=0){calcTheta=atan(ydist/xdist)*180/M_PI;}
else if(ydist>=0 && xdist<0){calcTheta=180+atan(ydist/xdist)*180/M_PI;}
else if(ydist<0 && xdist<0){calcTheta=180+atan(ydist/xdist)*180/M_PI;}
else if(ydist<0 && xdist>=0){calcTheta=360+atan(ydist/xdist)*180/M_PI;}
return calcTheta;
}
// determine travel trajectory
void travel(){
thetaTemp=calcAngle(xtemp,ytemp,x,y);
theta=calcAngle(x,y,xd,yd);
float thetaDiff=(theta-thetaTemp);
float wait=0;

if (thetaTemp>theta && abs(thetaDiff)<=180){
rudderServo.writeMicroseconds(right);
wait=abs(theta-thetaTemp)/angVel*1000;

}

else if(thetaTemp>theta && abs(thetaDiff)>180){
rudderServo.writeMicroseconds(left);
wait=(360-abs(theta-thetaTemp))/angVel*1000;

}

if (thetaTemp<theta && abs(thetaDiff)<=180){
rudderServo.writeMicroseconds(left);
wait=abs(theta-thetaTemp)/angVel*1000;

}

clse if(thetaTemp<theta && abs(thetaDiff)>180){
rudderServo.writeMicroseconds(left);

23

wait=(360-abs(theta-thetaTemp))/angVel*1000;
}
Serial.print("wait: "); Serial.printIn(int(wait));
Serial.print("angular velocity: "); Serial.printIn(angVel);
digital Write(motorOut,HIGH);
delay(wait);
rudderServo.writeMicroseconds(neutral);

24

