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Abstract

Cell cycle transitions during mitosis and meiosis must proceed in an irreversible
manner. At the heart of this is the Anaphase Promoting Complex/Cyclosome (APC/C),
an E3 ubiquitin ligase. The APC/C targets its substrates for degradation, and thus
progresses the cell cycle irreversibly forward. Many substrates of the APC/C have been
identified in mitosis, but how the APC/C regulates meiosis is less well understood. The
Drosophila gene cortex encodes a female, meiosis-specific activator of the APC/C. We
set out to identify specific substrates of APCcor both genetically and biochemically. A
genetic screen identified five deficiencies that suppress an arrest caused by low APCcot
activity. In some cases, these deficiencies could be narrowed to regions containing only
a few genes. IP/mass-spectrometry was also performed to identify interactors of
Cortex. One hit was Matrimony, a potent inhibitor of Polo kinase during prophase 1.
Cort and Mtrm can interact directly in vitro, while a mitotic APC/C activator, fzy/cdc20,
cannot. Mtrm proteins levels are drastically reduced upon completion of meiosis, and
this reduction is dependent on cort. When expressed in cell culture, Cort causes a
proteasome dependent decrease in Matrimony protein levels. Cort and Mtrm also
interact genetically, and overexpression of Mtrm in the early embryo causes
developmental defects in a subset of embryos. This work contributes to our
understanding of the meiotic cell cycle and the specific regulation that distinguishes it
from mitosis.

Thesis Supervisor: Terry L. Orr-Weaver
Title: Professor of Biology
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I. The role of the Anaphase Promoting Complex/Cyclosome in Cell Division

Mitosis is the incredibly intricate and beautiful process by which a cell divides to

form two daughter cells. During mitosis, duplicated sister chromosomes are captured by

the microtubules of the mitotic spindle and aligned along the metaphase plate. Once all

sisters are attached and aligned properly, anaphase is rapidly induced and

chromosomes are segregated toward opposite ends of the cell. Cytokinesis then serves

to divide the cell in half, creating two cells with identical genomic content. Importantly,

mitosis (and the entire cell cycle for that matter) proceeds only in a forward, irreversible

direction. At the heart of this irreversibility is active protein degradation.

Degradation of cell cycle regulators at the appropriate time during mitosis

ensures irreversible mitotic progression. Entry into mitosis and maintenance of the

mitotic state is, in part, regulated by the mitotic Cyclins (Cyclin A and Cyclin B) together

with their Cyclin dependent kinase (Cdk) partner. A host of substrates are

phosphorylated by these complexes to drive entry and progression through mitosis

(Errico et al., 2010). Chromosome condensation, an early event in mitosis, is driven

initially by Cyclin A/Cdk1 and later by Cyclin B/Cdk1 by phosphorylation of condensin

subunits (Kimura et al., 1998; Morgan, 2007). Upon entry into the nucleus, Cyclin

B/Cdk1 phosphorylates nuclear lamins of the nuclear envelop to promote one of the

hallmarks of mitotic entry, nuclear envelope breakdown (NEB) (Heald and McKeon,

1990; Peter et al., 1990). Cyclin B also promotes centrosome separation and spindle

assembly through phosphoregulation of kinesin motors (Blangy et al., 1997).

Cyclin/Cdk activity eventually leads to replicated sister chromatids aligned along the

metaphase plate by the mitotic spindle. High Cyclin/Cdk activity maintains cells in this
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mitotic state, and so there must be efficient mechanisms to shut off Cyclin/Cdk activity

upon anaphase onset and mitotic exit.

The Anaphase Promoting Complex/Cyclosome (APC/C) is responsible for

ubiquitylating many cell cycle regulators (including the mitotic cyclins), marking them for

degradation by the 26S proteasome and thus progressing the cell cycle forward.

Degradation of Cyclins lowers Cdk activity so that mitotic exit can proceed normally, but

not before Cyclin/Cdks themselves activate the APC/C (Hershko et al., 1994; Rudner

and Murray, 2000). Phosphorylation by Cyclin/Cdk plays a role in activating the APC/C

as well as regulating co-activator binding (Schteinberg et al. 1999). These co-activators

(discussed below), bind the APC/C and confer to it substrate specificity. The APC/C

also takes a more direct role in promoting anaphase onset by ubiquitylating the

separase inhibitor securin (Nasmyth, 2002). Once securin is degraded, separase

cleaves the cohesin complex which normally encircles replicated sister chromatids.

Cleavage of cohesin allows sisters to physically separate at anaphase and segregate

away from each other (Gruber et al., 2003; Haering et al., 2008; Haering et al., 2002).

These are just a few examples of a myriad of known APC/C substrates that must be

recognized and ubiquitylated at a precise time during the cell cycle. Recent structural

studies of the APC/C have given insight into APC/C substrate recognition and

regulation.

II. Structure of the APC/C

The Anaphase Promoting Complex is a large, multi-subunit E3 ubiquitin ligase. It

is composed of around 15 subunits (Pines, 2011) (Table 1-1), which together form an
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overall triangular shape containing a central cavity (Schreiber et al., 2011)

(Figure 1-1A). The individual subunits of the APC/C act in protein binding/recruitment,

catalysis, and structural support. The tetratricopeptide repeat (TRP) containing subunits

primarily serve as scaffolding, with Apc3/Cdc27 and Apc8/Cdc23 also helping to bind

Apcl 0/Doc1 and/or the APC/C co-activators (to be discussed below) (Matyskiela and

Morgan, 2009; Vodermaier et al., 2003; Wendt et al., 2001). The TPR subunits

(Apc3/Cdc27, Apc6/Cdcl6, Apc8/Cdc23) exist as dimers (Schreiber et al., 2011), with

the N-termini of Cdc16, Cdc27, and Cdc23 directing homodimerization (Zhang et al.,

2013; Zhang et al., 2010a; Zhang et al., 2010b). These three dimers stack on top of

one another in the APC/C, forming a left-handed suprahelix (Zhang et al., 2013). This

suprahelix of TPR subunits forms the backbone and roof of the central cavity (often

called the arc lamp) (Figure 1-1A).

Another section of the APC/C consists of the Cullin and RING subunits Apc2 and

Apcl 1 respectively. Apc2 binds Apcl 1, which in turn activates the E2 ubiquitin

conjugating enzyme (Tang et al., 2001). Between these two domains is the PC repeat

containing Apcl, which serves to bridge the catalytic (APC2 and 11) and structural

(TPR subunits) halves (Pines, 2011; Thornton et al., 2006; Vodermaier et al., 2003).

Recombinant protein complexes of portions of the S. cerevisiae APC/C form stable

structures without needing to be within in the context of the entire APC/C (Schreiber et

al., 2011). This supports the APC/C having distinct regions of activity within the holo-

enzyme. These subunits make up the majority of the APC/C, but additional core and

non-core subunits are needed for substrate recruitment (Figure 1-1A). Known

interactions between all APC/C subunits are listed in Table 1-1.
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Table 1

APC/C Subunit Interactors Reference(s)
Apcl Apc8/Cdc23 (Schreiber et al., 2011)

Apc4 (Schreiber et al., 2011)

Apc2 (Schreiber et al., 2011)
ApOO/Dod (Buschhorn et al., 2011)

Apc2 Apcl (Schreiber et al., 2011)

Apcl1 (Thornton et al., 2006)
Apcl 0/Dod (Thornton et al., 2006)

Cdhl (Schreiber et al., 2011)

Cdc20 (Schreiber et al., 2011)

Apc3/Cdc27 Apc3/Cdc27 (Zhang et al., 201 Ob)
Apc6/Cdcl6 (Thornton et al., 2006)

Apc9* (Schreiber et al., 2011; Thornton et al., 2006).
Apcl0/Doc1 (Buschhorn et al., 2011)

Cdc20 (Izawa and Pines, 2011; Matyskiela and Morgan, 2009)
Cdhl (Izawa and Pines, 2011; Matyskiela and Morgan, 2009)

Apc7 (Yu et al., 1998)

Apc4 Apc5 (Schreiber et al., 2011)

Apcl (Schreiber et al., 2011)

Apcl5/Mnd2 (Hall et al., 2003; Uzunova et al., 2012)

Apc5 Apc4 (Schreiber et al., 2011)
Apc8/Cdc23 (Schreiber et al., 2011)

Apcl5/Mnd2 (Hall et al., 2003; Uzunova et al., 2012)

Apc6/Cdcl6 Cdc16 (Zhang et al., 2010a)

Cdc27 (Thornton et al., 2006)

Cdc23 (Thornton et al., 2006)
Cdc26 (Zhang et al., 2010a)

Apcl3/Swm1 (Schreiber et al., 2011)

Apcl0/Doc1 (Buschhom et al., 2011)

Apc7 * Cdc20 (Vodermaier et al., 2003)

Cdhl (Vodermaier et al., 2003)

Apc3/Cdc27 (Yu et al., 1998)
Table 1-1 (continued on next page)
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Apc8/Cdc23 Cdc23 Zhang 2013
Cdc16 (Thornton et al., 2006)

Apcl3/Swml (Hall et al., 2003; Schreiber et al., 2011)
Apci (Schreiber et al., 2011)

Apcl5/Mnd2 (Hall et al., 2003; Schreiber et al., 2011)
Cdc20 (Izawa and Pines, 2011; Matyskiela and Morgan, 2009)
Cdhi (Izawa and Pines, 2011; Matyskiela and Morgan, 2009)

Apc5 (Schreiber et al., 2011)

Apc9** Apc3/Cdc27 (Schreiber et al., 2011; Thornton et al., 2006)

ApclO/Docl Cdc16 (Buschhorn et al., 2011)
Apcl (Buschhorn et al., 2011)

Cdc27 (Buschhorn et al., 2011)

Apc2 (Thornton et al., 2006)

Apcl1 Apc2 (Thornton et al., 2006)

Cdc26 Cdc16 (Zhang et al., 2010a)

Apcl3/Swml Apc8/Cdc23 (Hall et al., 2003; Schreiber et al., 2011)

Apc6/Cdcl6 (Schreiber et al., 2011)

Apcl5/Mnd2 Apc8/Cdc23 (Hall et al., 2003; Schreiber et al., 2011)
Apc4 (Hall et al., 2003; Uzunova et al., 2012)

Apc5 (Hall et al., 2003; Uzunova et al., 2012)

None
Apcl6 Reported

Cdc20 Apc2 (Schreiber et al., 2011)
Cdc23 (tzawa and Pines, 2011; Matyskiela and Morgan, 2009)
Cdc27 (Izawa and Pines, 2011; Matyskiela and Morgan, 2009)

Apc7 (Vodermaier et al., 2003)

Cdhl Apc2 (Schreiber et al., 2011)
Cdc23 (tzawa and Pines, 2011; Matyskiela and Morgan, 2009)
Cdc27 (tzawa and Pines, 2011; Matyskiela and Morgan, 2009)

Apc 7 (Vodermaier et al., 2003)
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Table 1-1. List of Interactions Between Subunits of the APC/C
A list of known interactions between subunits of the APC/C, including activators.
* Apc7 is found only in metazoans.
**Apc9 seems to be specific to S. cerevisiae

A B

Mad2
X 'Safety Belt'
0

Cdc20 WD40

Platform Domain

Figure 1-1. Layout of the APC/C and MCC-Cdc20

A) A 2D schematic of select subunits found within the APC/C. Cdc23, Cdc 6, and

Cdc27 exist as homodimers. Substrates are bound between the activator (Cdc20 or

Cdh1) and Apcl0. The substrate can then be ubiquitylated by an E2 ubiquitin

conjugating enzyme recruited by Apcl 1.

B) A diagram representing highlights of the MCC's interaction with Cdc20. Cdc20's

WD40 repeats (thin black lines/arrows) are viewed in 2D from the side. The KEN box

binding site of Mad3 (and likely substrates themselves) lies on top of the propeller

structure. The proposed D-box receptor lies between two separate blades of the

propeller. Cdc20's N-terminus (with the Mad2-binding motif) is sequestered by the

Mad2 'safety belt.' Based on structures in Chao et al. 2012 and Tian et al. 2012.
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III. Recognition of APC/C substrates

a. Role of APC/C activators and Apc10/Doc1

The APC/C makes use of co-activators, subunits that are not part of the core

APC/C enzyme but instead bind at precise times during the cell cycle to aid in substrate

recruitment. In mitosis, these activators are Cdc20 and Cdhl (Visintin et al., 1997).

There are common features shared by all APC/C activators. The most notable is the

presence of a WD40 domain, which forms a bladed propeller structure typically used to

mediate protein interactions (Smith et al., 1999). The WD40 domain of APC/C activators

is thought to mediate substrate binding (see below). Additionally, APC/C activators

contain a C-box and an IR-tail that stabilizes activator binding to the APC/C (Schwab et

al., 2001; Vodermaier et al., 2003). Despite these common motifs, the substrates

targeted by APCCdC 20 and APCCdh1 do not completely overlap.

Mutational analysis and crosslinking studies showed that the WD40 domain of

Cdhl binds directly to its substrates, specifically the destruction box of Cyclin B (Kraft et

al., 2005). The destruction box is one of many motifs recognized by APC co-activators,

and is discussed in more detail below. Other studies also implicated components of the

APC/C itself, specifically Apcl 0/Doc1, in APC/C substrate recognition (Carroll and

Morgan, 2002; Passmore et al., 2003). APC/C lacking ApclO/Docl is significantly

reduced in its ubiquitylation processivity, and has a decreased affinity for substrates but

not components of the APC/C itself (Carroll and Morgan, 2002; Passmore et al., 2003).

Different residues within Apcl 0/Doc1 were also identified that affected either its

association with the APC/C or the APC/C's ability to bind substrates (Carroll et al.,

2005). More recently though, our understanding of the precise way in which the APC/C
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and it activator recognize substrates has been greatly facilitated by structural analysis of

the APC/C.

b. Structural insight into binding of APC/C substrates

Two studies confirmed structurally that Cdhi and Apc1O/Doc1 form the

destruction box (discussed below) receptor in budding yeast and/or vertebrates.

Buschhorn and colleagues (Buschhorn et al., 2011) performed single particle electron

microscopy (EM), along with crosslinking and 3D reconstruction to gain a better picture

of Apcl 0/Doc1's location within the APC/C. Using in vitro translated Apcl 0/Doc

containing specific crosslinkable residues, ApclO/Docl was found to contact/interact

with Cdc27, Cdc16, and Apcl. Cryo-negative EM was then used to determine the

precise location of Apcl 0/Doc1 within the APC/C itself (both human and yeast).

Comparing structures of APC/Cv, APC/CPC1/Doc1, or APC/C where Apcl 0/Doc1 was

N-terminally tagged, Apcl0/Docl was located at the surface of the cavity where

ubiquitylation is believed to occur.

Next, substrate binding to human APC/C with Cdh1 as the co-activator was

analyzed. By cryo-EM, the APC/C substrate Hsll was found to bind stably between

Cdh1 and Apcl0/Docl. Interestingly, this caused a structural shift of Apc2 toward Cdh1

near its substrate binding site (Buschhorn et al., 2011). A similar study was also

performed by da Fonseca and colleagues primarily using yeast APC/C (da Fonseca et

al., 2011). They too found ApclO/Docl and the activator Cdh1 situated close to each

other in the central cavity of the APC/C. Interestingly, the density of Cdh1 decreased in

APC/CA Apo1O/Doc1, hinting at a possibility for structural stabilization between ApclO/Docl

and APC/C co-activators (at least Cdhi). Consistent with the results of Buschhorn et al.,
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a fragment of Hsll also was found to intercalate between ApclO/Docl and Cdhi.

Furthermore, the presence of Hsll causes a shift of Cdhi toward ApclO/Docl, and

additionally results in new connections between the two proteins.

c. Role of specific motifs in APC/C mediated recognition

The APC/C relies on the presence of particular motifs within its substrates for

recognition. The destruction box (D-box) (Glotzer et al., 1991) (RxxLxx(IN/x)xN) and the

KEN box (Pfleger and Kirschner, 2000) (KEN) are the two most well-known and well-

characterized APC/C recognition motifs. The above structural studies addressed the

role these motifs played in the APC/C's ability to recognize the Hsll substrate. Because

Hsll contains both a KEN and D-box, deFonseca et al. examined synthetic peptides

containing either a D-box or a KEN box. The D-box peptide behaved similarly to Hsll,

while the synthetic KEN box peptide caused a shift of Cdh1 toward Docl/Apcl0 but

without forming new connections. Lastly, a direct interaction between Docl/ApclO and a

Dbox containing peptide was shown by HSQC NMR. This interaction is dependent on

the presence of a Dbox and does not happen with a KEN box containing peptide (da

Fonseca et al., 2011).

The above study indicates the KEN box is not recognized as well by the Cdh1-

Apcl 0 receptor. Specific studies focusing on the binding of KEN box substrates to the

APC/C are needed to understand alternative substrate recognition mechanisms

employed by the APC/C. Studies of the structure of the Mitotic Checkpoint Complex, a

cellular machine used to inhibit the APC/C, have begun to address binding of the KEN

box by the APC/C (Chao et al., 2012) (see below).
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In addition to the D-box and KEN box, other varied recognition motifs have also

been identified (Pines, 2011). The Xenopus chromokinesin Xkid is required for

chromosome congression, but it is degraded by the APC/C at anaphase onset (Funabiki

and Murray, 2000). This degradation is dependent on a non-canonical recognition motif

GxEN (Castro et al., 2003). When this motif is mutated, Xkid is stabilized both in vivo

and in vitro. Interestingly, peptides containing the GxEN motif are able to inhibit

degradation of Cyclin B by competition, suggesting that the GxEN motif functions in

APC/C substrate recognition (Castro et al., 2003). Another non-canonical APC/C motif

was found in the meiosis-specific yeast protein Spol3 (Katis et al., 2004; Lee et al.,

2002; Shonn et al., 2002; Sullivan and Morgan, 2007). The motif LxExxxN is necessary

for Spol3 degradation by the APC/C at anaphase 1. Mutation of this motif stabilizes the

protein both in vitro and in vivo. Interestingly, stabilized Spo13 had little effect on

progression through meiosis, but negatively affected mitosis (Sullivan and Morgan,

2007). Whether these motifs are recognized by the APC/C in similar ways to the D-box

is yet to be determined, but should provide interesting insights into how the APC/C is

able to recognize so many substrates at different times during the cell cycle.

IV. Spindle Assembly Checkpoint mediated inhibition of the APC/C

a. SAC inhibition of Cdc20 through the Mitotic Checkpoint Complex

Given the irreversible consequences of APC/C activity, there must be a

mechanism to inhibit the APC/C until chromosome segregation is ready to occur. The

spindle assembly checkpoint (SAC) exists for just this reason (Murray, 2011). Many

core components of the SAC were initially identified genetically in screens for mutants

that failed to arrest in the presence of microtubule poisons (Hoyt et al., 1991; Li and
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Murray, 1991). The SAC functions by inhibiting the activity of Cdc20, the APC/C

activator responsible for triggering the onset of anaphase (Fang et al., 1998; Hwang et

al., 1998; Kim et al., 1998). Unattached kinetochores are bound by the SAC component

Mad1, which in turn recruits Mad2. Mad2 can exist in two states, open and closed. It is

thought that binding of Mad2 to Mad1 at unattached kinetochores induces a change

from the open to closed confirmation. Closed Mad2 (c-Mad2) not bound to Mad1 is able

to diffuse and inhibit Cdc20 (De Antoni et al., 2005; Kulukian et al., 2009; Morgan,

2007). Mad2 bound to Cdc20 (via Cdc20's Mad2 binding motif and the 'safety belt' of

Mad2) can help stabilize the formation of the mitotic checkpoint complex (MCC) (Chao

et al., 2012; Luo et al., 2002; Sironi et al., 2002). The MCC consists of Mad2,

Mad3/BubR1, Bub3, and Cdc20 (Murray, 2011). Mad3 contains a KEN box that is

essential to MCC inhibition of ApCCdc20, likely by acting as a pseudo-substrate (Burton

and Solomon, 2007; King et al., 2007; Sczaniecka et al., 2008). Mechanistic insights

into the MCC's function, however, were lacking until recently.

b. Structural insights into MCC mediated inhibition of the APC/C

Structural studies have again elicited a deeper understanding of how the MCC

inhibits Cdc20 function. Chao et al. solved the structure of the Schizosaccharomyces

pombe MCC, consisting of Mad2, Mad3, and Cdc20 (Bub3 was left out due it its non-

essentiality in fission yeast) (Chao et al., 2012). As expected, Mad2 bound to Cdc20's

Mad2 binding motif using its 'safety belt.' Interestingly, the structure of the MCC reveals

both a KEN and D-box binding site on Cdc20. The KEN box of Mad3 sits atop the

WD40 propeller structure of Cdc20 (Figure 1-1 B). The residues within Cdc20 that

contact the KEN box are conserved within Cdh1, hinting at a conserved mode of binding
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to KEN boxes in substrates. Importantly, mutation of these KEN box contacting residues

inhibits Cdc20's ability to activate the APC/C. This suggests two things. One, that these

residues likely bind the KEN box in actual substrates, and two, that Mad3 functions as a

pseudo-substrate inhibitor of the APC.

These structural MCC studies also shed light on specific residues involved in D-

box recognition. Somewhat fortuitously, MCC crystallization caused the C-terminus of

Mad3 to interact with the WD40 domain of a neighboring crystallized Cdc20 (Chao et

al., 2012). This interaction fell between blades 1 and 7 of the Cdc20 WD40 repeat, and

the authors hypothesized that the C-terminus of Mad3 was simulating a D-box peptide

(Figure 1-1 B). They went on to show that mutation of residues within these blades

inhibited APCCdc20 ubiquitylation of Securin. Again, this suggests that the space

between blades 1 and 7 of the WD40 propeller may be the endogenous D-box receptor

(Chao et al., 2012). Very similar KEN and D-box binding sites were found for human

Cdc20, further suggesting these modes of substrate recognition are conserved

evolutionarily (Tian et al., 2012) (Figure 1-1B).

c. APC/C mediated degradation while the SAC is active

The rigorous inhibition of the APC/C by the SAC creates a paradox with respect

to how some of the APC/C's earlier substrates (namely Cyclin A) are still degraded

normally while the SAC is active. Cyclin A binds to Cdc20 during prometaphase (SAC is

active) and Cyclin A's N-terminus is required for its degradation (den Elzen and Pines,

2001; Geley et al., 2001; Jacobs et al., 2001; Wolthuis et al., 2008). Di Fiore and Pines

found a precise region of Cyclin A's N-terminus that can bind to Cdc20 both in vivo and

in vitro (Di Fiore and Pines, 2010). Furthermore, this fragment of Cyclin A is able to
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APC

APC

Figure 1-2. Inhibition and Release of Cdc20 by the MCC

Cdc20 is inhibited by the MCC (upper left). Constant turnover of MCC-Cdc20 by Cdc20

autoubiquitylation/degradation and new protein synthesis allows rapid APC/C activation

upon fulfillment of the SAC and Mad2 inhibition by p31 comet (bottom right). During

prometaphase, Cyclin A is still ubiquitylated and degraded because it can bind Cdc20

and compete it away from the MCC (upper right). After Cyclin A degradation, free

APCCdr20 is quickly inhibited by the MCC.
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compete with the SAC (specifically BubR1) for binding of Cdc20. This sets up a model

whereby Cyclin A displaces the SAC complex from Cdc20, and together with Cdk1 and

its small subunit Cksl (which is required for degradation of Cyclin A) (Swan and

Schupbach, 2007; Wolthuis et al., 2008), bind to the APC/C and trigger Cyclin A

ubiquitylation (Di Fiore and Pines, 2010) (Figure 1-2, top half). Other APC/C substrates

are degraded also while the SAC is active, such as Nek2A. Nek2A binds to the APC/C

directly as a dimer, but this binding is unable to complete away the SAC (Sedgwick et

al., 2013). It is therefore proposed that Nek2A binds to a pool of APC/C without MCC

bound, and then is ubiquitylated by a small fraction of Cdc20 that has escaped the MCC

during prometaphase (Sedgwick et al., 2013).

d. Release of APCCdc 2O inhibition by the SAC

There are multiple mechanisms by which Cdc20 inhibition is relieved once the

SAC is fulfilled. Numerous studies have implicated the ubiquitylation and/or degradation

of Cdc20 itself by the APC/C during prometaphase as a means to escape from MCCs

(Nilsson et al., 2008; Reddy et al., 2007; Visconti et al., 2010). This creates a cyclical

model where Cdc20 is inhibited by the MCC, degraded (thus disassembling MCCs), and

then resynthesized (to again be inhibited by the MCC). Once the SAC is fulfilled, the

MCC is inhibited, and resynthesized Cdc20 can rapidly activate the APC/C and initiate

anaphase onset (Figure 1-2). Recently, a number of groups have reported on the role of

Apcl 5/Mnd2 in promoting Cdc20 turnover for inactivation of the SAC (Foster and

Morgan, 2012; Mansfeld et al., 2011; Uzunova et al., 2012). Apcl5 was shown to be a

core component of the APC/C, and knockdown of Apc15 lengthens the time from

nuclear envelope breakdown to anaphase (Mansfeld et al., 2011; Uzunova et al., 2012).
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Lack of Apcl 5 also results in stabilization of the levels of Cyclin B1 and Cdc20 itself, but

not Cyclin A, indicative of a role in the SAC. Inhibition of the SAC alleviated the delay in

Apcl 5 knockdown cells, and it was further shown that Apcl 5 regulates the APC/C

specifically through the SAC (Mansfeld et al., 2011; Uzunova et al., 2012). Without

Apcl 5, components of the MCC remain bound to the APC/C, hinting at its role in MCC

turnover. Apcl 5/Mnd2 is required for efficient APCMCC driven auto-ubiquitylation of

Cdc20 (Foster and Morgan, 2012; Uzunova et al., 2012), which directly leads to

increased turnover of Cdc20 (degradation and release from MCCs) (Uzunova et al.,

2012). Constant turnover of Cdc20 allows it to rapidly activate the APC/C after

fulfillment of the SAC. Without turnover, Cdc20 remains bound to MCCs, and cannot

properly trigger release from the SAC (Foster and Morgan, 2012; Mansfeld et al., 2011;

Uzunova et al., 2012).

In addition to autoubiquitylation/degradation of Cdc20, other mechanisms exist to

help relieve SAC inhibition. p31comet is known to structurally mimic the open

conformation of Mad2, thus binding c-Mad2 and relieving the closed form's inhibition of

Cdc20 (Habu et al., 2002; Mapelli et al., 2006; Xia et al., 2004; Yang et al., 2007)

(Figure 1-2). The protein Cuedc2 was also found to play a part in SAC inactivation. After

being phosphorylated by Cdkl, Cuedc2 is able to bind to Cdc20 and promote its release

from the MCC (Mad2 specifically) (Gao et al., 2011).

V. Role of the APC/C outside of mitosis

a. The APC/C in regulation of the endocycle and other differentiated cell types

The APC/C has also been shown to play roles outside of the canonical mitotic

cell cycle (Eguren et al., 2011). In Drosophila, the gene morula encodes Apc2, part of
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the catalytic domain of the APC/C (Kashevsky et al., 2002b; Reed and Orr-Weaver,

1997). Female-sterile alleles of morula revealed defects in endoreduplication of the

polyploid nurse cells in female ovaries. Without Morula/Apc2, endocycling nurse cells

aberrantly reenter the mitotic state (Kashevsky et al., 2002b; Reed and Orr-Weaver,

1997). Furthermore, mutants of Fzr/Cdhl are completely unable to enter the endocycle

in Drosophila larval salivary glands (Sigrist and Lehner, 1997). Similarly, mice mutant

for Cdh1 have placentas with underdeveloped endocycling trophoblast giant (Garcia-

Higuera et al., 2008; Li et al., 2008). Cdhl has been further implicated in even more

developmental processes, including muscle differentiation and neuron development

(Eguren et al., 2011; Gieffers et al., 1999; Li et al., 2007). In Drosophila, Cdhiacts

within neuromuscular synapses to regulate both growth and transmission (van Roessel

et al., 2004). Furthermore, Cdhi regulates glial migration in Drosophila neurons,

through regulation of the adhesion molecule Fas2 (Silies and Klambt, 2010). More

recently, Cdc20 has also been shown to play a role in neurogenesis, regulating both

dendrite morphogenesis and presynaptic differentiation (Kim et al., 2009; Yang et al.,

2009).

b. The APC/C in meiosis

Perhaps the most well-known non-mitotic role of the APC/C is its regulation of

meiosis (Pesin and Orr-Weaver, 2008).In contrast to mitosis, meiosis serves to create

cells with half of their normal genetic content. In higher organisms, these cells are the

sperm and egg, which will eventually fuse to once again produce a diploid organism.

Meiosis is composed of two consecutive cell divisions without an intervening S-phase.

Before meiosis, sister chromatids are replicated during pre-meiotic S-phase, similar to
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S-phase in mitosis. The first division of meiosis, known as meiosis I, begins with the

recently replicated homologous chromosome pairs undergoing meiotic recombination.

These recombination events serve to physically link the homolog pairs together,

ensuring they align opposite each other at the metaphase plate of meiosis I and

properly segregate away from each other at anaphase 1. Meiotic recombination is aided

by formation of the synaptonemal complex, a meshwork of proteins that forms a

transient, zipper-like structure between homologous chromosome pairs and stabilizes

them while meiotic recombination takes place (Fraune et al., 2012).

Pre-meiotic S-phase, as well as meiotic recombination, occurs within the nucleus

of the cell. After completion of recombination, nuclear envelope breakdown (also known

as germinal vesicle breakdown (GVBD) in oocytes) occurs and the meiotic divisions

begin. With newfound access to the DNA, the meiotic spindle takes shape and aligns

homologous chromosome pairs along the metaphase plate in meiosis I. In contrast to

mitosis, meiosis I requires segregation of homologs, and thus kinetochores of

duplicated sister chromatids must orient toward the same pole (known as mono-

orientation). Anaphase I onset at the hands of the APC/C (see below) triggers

homologs to segregate away from each other. During meiosis II, a more mitotic like

division occurs in which sister chromatids segregate from each other. Because no S-

phase takes place between meiosis I and II, the genetic content of cells completing

meiosis is halved.

The APC/C is known to play key roles in entry, maintenance, and progression

through meiosis. APCCdC20 regulates meiotic entry in budding yeast by degrading Ume6

(Mallory et al., 2007). Ume6 is a transcriptional inhibitor that shuts down early meiotic
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genes during vegetative growth (Strich et al., 1994). Cdc20-mediated degradation of

Ume6 is required to induce the proper meiotic transcriptional program, whereas non-

degradable, D-box mutant forms of Ume6 block meiotic induction (Mallory et al., 2007).

Recently, complete degradation of Ume6 by APCCdC20 was found to occur as a two-step

process (Mallory et al., 2012). Ume6 is first degraded upon a switch from glucose to

acetate-containing media, and this degradation is dependent on its acetylation by Gcn5.

The remaining Ume6 is degraded upon entry into meiosis (nitrogen deprivation) and its

association with Imel (Mallory et al., 2007; Mallory et al., 2012). Other early steps in

meiosis, such as meiotic recombination, are also regulated by the APC/C (Okaz et al.,

2012; Trickey et al., 2008).

During oogenesis in higher organisms, progression of meiosis must be

coordinated with development. Female meiosis typically arrests at two distinct points:

first during prophase I and second at metaphase I or 1I (discussed below). Maintenance

of the prophase I arrest in mouse by the APC/C seems to rely primarily on the activity of

APCCdh1. Mice with Cdh1 specifically knocked out in the oocyte show precocious

resumption of meiosis from prophase I (Holt et al., 2011). Additionally, these oocytes

contain increased levels of Cyclin B1, but not Securin or Cdc25B. These data are

consistent with Cdhi being necessary for maintaining low levels of Cyclin B1 to prevent

premature meiotic resumption. However, knockdown of Cyclin B1 in Cdhi knockout

oocytes did not completely restore proper prophase I arrest, and so there are likely

other APCCdhi substrates that need to be kept at low levels (Holt et al., 2011). It also

has been proposed that competition between endogenous APC/C substrates (securin

and Cyclin B) plays a role in managing the time of prophase I release (and cell cycle
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transitions in general) (Marangos and Carroll, 2008). Overexpression of securin in

prophase I arrested mouse oocytes stabilized Cyclin B1 and increased the rate of

germinal vesicle breakdown/prophase I release. Conversely, knockdown of securin

resulted in decreased Cyclin B1 levels and delayed prophase I release. Marangos and

Carroll suggest the presence of other endogenous APC/C substrates (such as Securin)

competes the APC/C away from Cyclin B, thus helping to finely tune its levels

(Marangos and Carroll, 2008).

c. Meiosis-specific activators of the APC/C

The APC/C also functions during the remainder of meiosis, where it targets some

of the same substrates for degradation as it does in mitosis (Pesin and Orr-Weaver,

2008). Although much of the APC/C's function during meiosis is regulated by Cdc20

and Cdh1, meiosis-specific APC/C activators have been found in a number of

organisms (Table 1-2). S. cerevisiae contains Amal (Cooper et al., 2000),

Schizosaccharomyces pombe has Mfr1 (Blanco et al., 2001), and Fzr2 (Jacobs et al.,

2002) and Cortex (Chu et al., 2001; Page and Orr-Weaver, 1996) are found in

Drosophila melanogaster (further discussed below). Study of these proteins has shed

light on some of the meiosis-specific roles of the APC/C.

The budding yeast APC/C activator Anal initially was characterized as having a

role later in meiosis during spore formation (Cooper et al., 2000). It capable of

degrading CIb1 (Cooper et al., 2000), Pdsl/Securin (Oelschlaegel et al., 2005; Penkner

et al., 2005), and Cdc20 itself at the end of meiosis (Tan et al., 2011). However, more

recently Amal has been shown to play a role in prophase I of meiosis as well (Okaz et

al., 2012). ama1A cells progress through prophase I and begin assembly of the meiosis
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I spindle much faster than wild-type cells. Normally, prophase I is prolonged to permit

homolog pairing and recombination. Release from prophase I is usually dependent on

the activity of the transcription factor Ndt80 (Chu and Herskowitz, 1998). In ndt80A

ama1A double mutants, however, cells exit prophase I and assemble a meiotic spindle.

Additionally, these cells accumulate the mitotic Cyclins as well as Cdc5/Polo kinase,

whose expression normally requires Ndt80. These data indicate deletion of amal

bypasses the requirement of Ndt80. Okaz et al. found that APCAma1 normally

suppresses the levels of the mitosis-inducing Nddl protein during early prophase 1, thus

delaying induction of mitotic proteins (M-phase Cyclins and Cdc5). Amal was also

found to trigger proteolysis of the M-phase Cyclins and Cdc5 directly. Additionally,

Amal plays a role in proper formation of the synaptonemal complex (through

suppression of Cdc5), proper segregation of homologs at meiosis I (through its ability to

promote SC formation and proper crossing over), and for activation of the

Recombination Checkpoint in response to double-strand breaks (Okaz et al., 2012).

Mnd2 is an inhibitor of APCAmal, whose activity is crucial to regulate meiotic

events. Amal protein appears in pre-meiotic S-phase, but its activity must be partially

repressed to prevent premature ubiquitylation and degradation of securin (Oelschlaegel

et al., 2005; Penkner et al., 2005). It is currently unknown how Amal can be inhibited by

Mnd2, but still carry out its role in prophase 1. It is possible the situation mirrors that of

Cdc20, which still targets Cyclin A and Nek2A for degradation during prometaphase

despite being inhibited by the SAC (Di Fiore and Pines, 2010; Sedgwick et al., 2013)

(discussed above). Nevertheless, Mnd2 binds and inhibits APCAmal during prophase I,
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Table 2

Activator Sfecies Substrates Timina of Dearadation Reference(s)

Amal S. cerevisiae Clb1 Prophase I Okaz et aL, 2012

Clb4 Prophase I (Okaz et al., 2012)
Cdc20 Anaphase Il/Meiotic Exit (Tan et al., 2011)

(Oelschlaegel et
Prophase I (normally inhibited al., 2005; Penkner

Pdsl/Securin by Mnd2) et al., 2005)
Ndd1 Prophase I (Okaz et al., 2012)

Cdc5/Polo Prophase I (Okaz et al., 2012)
(Diamond et al.,

Ssp1 Cytokinesis/meiotic exit 2009)

(Pesin and Orr-
Weaver, 2007;

D. melanogaster Oocyte Maturation Swan and
Cortex (female-specific) Cyclin A (prometaphase 1) Schupbach, 2007)

(Pesin and Orr-
Weaver, 2007;

Egg activation (likely Swan and
Cyclin B anaphase of Ml and M11) Schupbach, 2007)

(Pesin and Orr-
Weaver, 2007;

Egg activation (likely Swan and
Cyclin B3 anaphase of MI and M11) Schupbach, 2007)

Egg activation (likely (Pesin and Orr-
Pimples/Securin anaphase of Ml and M11) Weaver, 2007)

Table 1-2. Meiosis-Specific APC/C activators and Their Substrates

A list of currently known meiosis-specific APC/C activators, their known substrates, and

time of action.
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but the protein is lost from meiotic cells at anaphase II (Oelschlaegel et al., 2005;

Penkner et al., 2005). This loss of Mnd2 likely allows Amal to control spore formation

and degradation of Cdc20 (Oelschlaegel et al., 2005; Penkner et al., 2005; Tan et al.,

2011) later in meiosis. Further work is necessary to explore how Mnd2 prevents

APCAmal from targeting substrates like Pdsl/Securin, but allows it to target its prophase

I substrates (Nddl, Cdc5, and Clb4).

Another known meiosis-specific APC/C activator exists in Schizosaccharomyces

pombe. Mfr1 (sometimes referred to as Fzrl) mRNA and protein appear only during late

meiosis I and into meiosis 11. It is required for the degradation of Cdcl3/Cyclin B at

anaphase 11, whose downregulation as a mitotic Cyclin is necessary for meiotic exit and

spore formation (Blanco et al., 2001). Mfr1 is regulated by the specific APC/C inhibitor,

Mes1 (Izawa et al., 2005; Kimata et al., 2011). Based on double mutant studies of Mes1

and Cdc20/Slp1or Mes1 and Fzr1/Mfrl, Kimata et al. determined that Mesi's primary

function in meiosis I is to inhibit Fzrl/Mfrl. In vitro however, Mes1 can equally inhibit

APC/C ubiquitylation mediated by either SIp1 or Fzrl/Mfrl. However, APCSIp1 can

uniquely mediate the degradation of Mesl, thus overcoming its inhibition. Therefore, it is

proposed that Mes1 functions primarily as an inhibitor of Mfrl/Fzrl until meiosis 11.

Upon Mes1's complete degradation during meiosis 11, APCMfr1/Fzrl is freed to mediate

onset of anaphase ll.(Kimata et al., 2011).

A remarkable situation is found in Drosophila, where not only do two meiosis-

specific activators exist, but they also show sex specific expression. While the male

meiosis specific activator fizzy-related 2 (fzr2) is not well characterized (Jacobs et al.,

2002), the female, meiosis-specific regulator cortex (cort) has been better studied.
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Cortex was shown to be an activator of the APC/C (Chu et al., 2001; Pesin and Orr-

Weaver, 2007; Swan and Schupbach, 2007), and is required for proper progression

through meiosis in female Drosophila (Page and Orr-Weaver, 1996; Swan and

Schopbach, 2007). cort mutant females are viable but completely sterile. In contrast to

wild-type oocytes that normally arrest at metaphase I and then complete meiosis after

egg activation (Horner and Wolfner, 2008b), cort mutant eggs arrest indefinitely after

activation at metaphase II (Page and Orr-Weaver, 1996). Cdc20/Fizzy also is active

during Drosophila oogenesis, and leaky/hypomorphic alleles of fizzy cause arrest at

anaphase II (Swan and Schupbach, 2007). Only mutation of both cort and fzy causes

significant arrest in meiosis 1. This led to the hypothesis that Cort and Fzy serve

functionally redundant roles in meiosis I, but have non-overlapping roles during meiosis

II (Swan and Schupbach, 2007). The requirement of Cortex specifically during meiosis

means it likely plays a unique role in promoting the oocyte-to-embryo transition.

VI. The Oocyte-to-Embryo Transition

a. Overview

During the oocyte-to-embryo transition, an egg ultimately becomes capable of

supporting the rapid mitotic divisions of early embryogenesis. Early embryos are

typically transcriptionally silent, and so their proper development relies on 'stockpiles' of

nutrients, mRNAs, and proteins synthesized during oogenesis. This stockpiling of

molecules occurs concurrently with meiotic progression, and so must be coordinated

with development. Two major developmental transitions contribute to the oocyte-to-

embryo transition (in most sexual organisms): oocyte maturation and egg activation.

Degradation and synthesis of both mRNA and protein are actively controlled during
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these processes to ensure the correct molecules are loaded into the embryo. Numerous

regulatory networks exist to coordinate meiosis with development of the oocyte.

b. Prophase I and Meiotic Maturation

During prophase 1, an oocyte begins to prepare itself for progression through the

remainder of meiosis. DNA recombination between homologous chromosome pairs sets

the oocyte up for proper chromosome segregation during meiosis I (Kurahashi et al.,

2012). After completing recombination, oocytes typically arrest in diplotene of prophase

I (Lesch and Page, 2012). During this time an oocyte generates tremendous maternal

stockpiles of mRNAs and proteins, reflected by a period of physical growth.

The growth of an oocyte is coordinated by cross-talk between the oocyte itself

and its surrounding somatic cells (together termed a follicle) (Von Stetina and Orr-

Weaver, 2011). In rodents, many factors have been implicated in the initiation of oocyte

growth including Kit Ligand and Leukemia Inhibitory Factor, as well as numerous factors

from the TGF-Beta family (Knight and Glister, 2006). Without proper soma-germline

crosstalk and oocyte growth, defects in meiotic progression and chromosome

segregation occur. LHPCTP mutant mice exhibit an abnormal endocrine signaling

environment surrounding their follicles. This directly leads to disrupted follicular growth.

(Hodges et al., 2002; Hunt et al., 2003).

To ensure proper coordination of meiotic progression with development, and to

allow adequate time for growth, the prophase I arrest must be properly maintained. This

arrest can last from days in Drosophila to decades in humans (Von Stetina and Orr-

Weaver, 2011), and so a robust mechanism is required to prevent premature prophase I
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exit. Originally deemed Maturation Promoting Factor, Cyclin B/Cdkl's activity must be

kept off to prevent re-entry into meiosis (Nurse, 1990; Sagata, 1996). The activity of the

Anaphase Promoting Complex/Cyclosome (APC/C) acts to keep Cyclin levels (and thus

Cdk activity) low (Holt et al., 2011) (discussed above). Additionally, mammalian oocytes

must maintain high levels of Cyclic AMP (cAMP). cAMP activates Protein Kinase A

(PKA), which in turn activates an inhibitor of Cdk1 (Weel) and inhibits an activator

(Cdc25) (Verlhac et al., 2010; Von Stetina and Orr-Weaver, 2011).

Drosophila oocytes also contain a variety of mechanisms to properly maintain the

prophase I arrest. The Cdk inhibitor Dacapo is differentially regulated between the

oocyte itself and its supporting nurse cells. Within the oocyte Dacapo is maintained at

high levels to inhibit CycE/Cdk2, thus preventing re-replication (Hong et al., 2003).

Additionally, the mitotic Cyclins are kept at low levels in the oocyte through the action of

the translation repressor Bruno. In the absence of Bruno, oocytes exit meiosis,

accumulate mitotic Cyclins, and begin to divide mitotically. It is hypothesized that Bruno

acts together with the APC/C to downregulate Cyclin levels in developing ovarian cysts

(Kashevsky et al., 2002a; Sugimura and Lilly, 2006). Mutants of the gene Matrimony

(Mtrm) prematurely undergo Germinal Vesicle Breakdown (GVBD) and exit the

prophase I arrest (Xiang et al., 2007). Mtrm mutants were initially discovered as being

haplo-insufficient for achiasmate (non-recombinant) chromosome segregation, and

Mtrm was later characterized to function as an inhibitor of Polo kinase (Harris et al.,

2003; Xiang et al., 2007). In the absence of Matrimony, Polo is prematurely activated

and likely activates Cdc25, thus activating CycB/Cdk1 and triggering GVBD.
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The signal to exit prophase I properly and resume meiosis differs between

organisms. In mouse, a cyclical hormonal surge of luteinizing hormone (LH) triggers the

resumption of meiosis. This pathway is activated initially in the somatic cells of the

follicle, and the message is transmitted through gap junctions to the oocyte (Von Stetina

and Orr-Weaver, 2011). This triggers an intricate, multifaceted cascade ultimately

leading to reduced levels of cAMP, and thus increased Cdk activity (Norris et al., 2009;

Zhang et al., 2008).

In Drosophila, the initial signal that triggers meiotic maturation remains unknown.

However, many of the players involved in exit from prophase I are beginning to be

elucidated (Figure 1-3A). Similar to mammals, the Cdk1 activating phosphatase

Cdc25/Twine is at the center of this pathway. Twine mutants are greatly delayed in

exiting prophase I (Von Stetina et al., 2008; Xiang et al., 2007). The protein kinase

Greatwall (Yu et al., 2004) directly phosphorylates and activates the small

phosphoprotein alpha-Endosulphine, which in turn antagonizes the protein phosphatase

PP2A (Gharbi-Ayachi et al., 2010; Mochida et al., 2010; Rangone et al., 2011).

Inhibition of PP2A allows for activated Cdc25 to build up, thus activating Cdk1 and

leading to prophase I exit (Glover, 2012).

c. Establishment and maintenance of the secondary meiotic arrest

After release of the initial prophase I arrest, most organisms go on to arrest at a

secondary point in meiosis. In most vertebrates, this secondary arrest occurs in

metaphase of meiosis 11. Insects, however, come to their secondary arrest at

metaphase I (Von Stetina and Orr-Weaver, 2011). No matter the point in meiosis the
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Figure 1-3. The Oocyte-to-Embryo Transition in Drosophila and Vertebrates
A) Depiction of meiotic maturation and activation in Drosophila melanogaster. Meiosis initially arrests in prophase 1, and then
comes to its secondary arrest at metaphase 1. The nuclear envelope (red) breaks down upon release from prophase 1. The
metaphase I spindle is shown with microtubules (green) and DNA (blue).

B) Outline of egg activation in vertebrates. CSF arrest is maintained through the action of Cyclin/Cdk complexes.
Phosphorylation of a host of proteins, including Mos kinase and the nuclear lamins, maintains the meiotic arrest. Fertilization
triggers release of calcium and activation of CamKII and CaN. These proteins lead to the inhibition of Cdk activity and a
reversal of the egg's global phosphorylation state.
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secondary arrest occurs, it must be properly maintained to retain coordination between

development and meiotic progression. The existence of a 'cytostatic factor' responsible

for maintaining the arrest of frog oocytes was originally hypothesized by Masui and

Markert (Masui and Markert, 1971). The cytostatic factor was shown to involve the

Mos/MapK cascade many years later (Sagata et al., 1989). Since then, many more

factors have been found to play a role in the CSF arrest of various organisms, including

the APC/C inhibitor Emi2, the spindle assembly checkpoint (SAC), and Cdk2 (Gabrielli

et al., 1993; Grimison et al., 2006; Schmidt et al., 2005). In short, Mos kinase triggers a

phosphorylation cascade leading to the activation of the p 9 0 RSK kinase. p90RRSK

inhibits APC/C activity through activation of the SAC as well as Emi2 (Horner and

Wolfner, 2008b). More recently in mouse oocytes, the role of maintaining proper steady

state phosphorylation of Cdkl (independent of Cyclin degradation) has also been

implicated in properly maintaining the CSF arrest (Oh et al., 2013).

In Drosophila, maintenance of the metaphase I arrest also is reliant on some of

these mechanisms. Mutants for a component of the spindle assembly checkpoint,

Mpsl, do not arrest in metaphase I and proceed directly to anaphase I (Gilliland et al.,

2007). Additionally, other components of the SAC show defects in female meiosis

(Malmanche et al., 2007), though whether these effects are by inhibition of the APC/C

has been called into question (Batiha and Swan, 2012). Physical forces must also be

maintained between the chromosomes at the metaphase I plate to ensure proper arrest

in Drosophila oocytes. Mutants in two genes involved in meiotic recombination (mei-9

and mei-218) show reduced frequency of crossover formation, and these mutants

eventually bypass the secondary metaphase I arrest (McKim et al., 1993). Without the

34



tension generated at bi-oriented kinetochores with proper chiasmata, the metaphase I

arrest is not maintained (Jang et al., 1995).

d. Egg Activation

Egg activation is the process by which an oocyte at its secondary arrest re-

initiates and completes meiosis (Horner and Wolfner, 2008b). This process requires

fertilization in vertebrates but is independent of fertilization in insects. In vertebrates,

fertilization sets off a cascade of events to trigger the resumption and completion of

meiosis (Figure 1-3B). In mouse, sperm is thought to bring in an activated

phospholipase that eventually leads to the release of Ca 2
+ from the ER (Saunders et al.,

2002; Swann and Lai, 2013). Calcium triggers relief of the CSF-mediated metaphase 11

arrest by activating calmodulin kinase I (CamKll) (Markoulaki et al., 2004; Tatone et al.,

2002) and the phosphatase calcineurin (CaN) (Mochida and Hunt, 2007; Nishiyama et

al., 2007). Active CamKll phosphorylates the APC/C inhibitor Emi2, leading to further

phosphorylation by Polo kinase and eventual SCF-mediated degradation (Liu and

Maller, 2005; Rauh et al., 2005). CaN likely acts by 'reversing' the phosphorylations

helping to maintain the CSF arrest. In addition to dephosphorylating Fzy/Cdc20 and the

APC itself, the levels of nearly all reactive anti-MPM2 and anti-phosphoSer-Pro species

were increased when an inhibitor of Calcineurin was added to Ca2+ activated Xenopus

egg extracts (Mochida and Hunt, 2007). These data indicate Calcineurin acts 'globally'

to undo the mitotic phosphorylation state of the activated egg.

In Drosophila, exit from the secondary arrest at metaphase I is not dependent on

fertilization. Rather, mechanical stimulation and osmotic pressure trigger resumption

and completion of meiosis. Although the molecular mechanism linking mechanical
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stimulation and meiotic resumption is not known (Horner and Wolfner, 2008b), some of

the downstream players have been identified (Figure 1-3A). As discussed above, proper

progression past the metaphase I arrest relies on the activity of both APCCdc20/Fzy and

APCcof (Page and Orr-Weaver, 1996; Swan and Schupbach, 2007). Despite playing a

pivotal role in vertebrate activation, no direct ties to calcium signaling have been made

in Drosophila. However, mutants of the Calcineurin regulator sarah (sra) or germline

clones missing components of Calcineurin itself (canB2, or both canA subunits) arrest at

anaphase I after egg activation (Horner et al., 2006; Takeo et al., 2010; Takeo et al.,

2006). These genetic data support Sra acting as an activator of Calcineurin. In vivo,

Sarah is phosphorylated by glycogen synthase kinase 3P (gs3k3/shaggy), which serves

to activate Sra at egg activation. Presumably, the activation signal (mechanical

stimulation and/or swelling of the egg) feeds into activation of shaggy through a yet

unknown mechanism (Takeo et al., 2012). Calcium was also shown to play a more

direct role in activation of Drosophila oocytes in vitro. Oocytes can be activated by

application of hydrostatic or osmotic pressure (Horner and Wolfner, 2008a; Mahowald et

al., 1983; Page and Orr-Weaver, 1997). Horner and Wolfner (Horner and Wolfner,

2008a) found that complete depletion of Ca 2 from the activating buffers severely

inhibited activation, as judged by membrane cross-linking and protein translation. These

data support a direct role for calcium signaling in Drosophila egg activation.

e. Post-transcriptional control of protein activity during egg activation

Given the key role phosphorylation plays in the regulation of egg activation,

Krauchunas et al. investigated the phosphorylation changes that take place during egg

activation in Drosophila (Krauchunas et al., 2012). Using 2D-gel analysis combined with
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mass spectrometry, a number of proteins were identified whose phosphorylation state

either increase or decrease during egg activation. Many of these proteins were

determined to be necessary for proper oogenesis and/or embryogenesis (Krauchunas

et al., 2012). Whereas protein phosphorylation is a key regulator of the oocyte-to-

embryo transition, many other post-transcriptional and post-translational changes are

known to occur also. These changes are particularly important given the transcriptional

silence of oocytes and the early embryo.

At the mRNA level, poly-adenylation of transcripts' poly-A tails promotes their

translation (Kronja and Orr-Weaver, 2011). The Cytoplasmic Polyadenlyation Element

Binding protein (CPEB) binds a CPE in the 3'UTR of an mRNA, and recruits Symplekin

and CPSF. Additionally, both a polyA polymerase and deadenylase are recruited prior

to maturation, though deadenylase activity wins out and tail length is kept short. At

oocyte maturation, a phosphorylation driven removal of the deadenylase allows poly-

adenylation to occur (Barnard et al., 2004; Richter, 2007). This method of regulation

allows specific proteins to increase upon meiotic maturation. The Drosophila GId2-type

polyA polymerase Wispy is required for proper progression through meiosis and early

embryogenesis (Benoit et al., 2008; Brent et al., 2000; Cui et al., 2008). This is likely

due to its role in promoting the polyadenylation of a number of meiotic and maternal

genes such as bicoid (Benoit et al., 2008), dmos (Cui et al., 2008), and cortex (Benoit et

al., 2008). Poly-A tails of sufficient length help promote efficient translation. Translation

initiation and elongation are controlled by a wide variety of both inhibitors and activators

(Kronja and Orr-Weaver, 2011). In addition to Bruno (mentioned above), Drosophila

also utilizes the Pan Gu (PNG) kinase complex and the translational repressor Pumilio
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(Pum) to regulate translation of messages (Gerber et al., 2006; Vardy and Orr-Weaver,

2007). Pum is known to associate with hundreds of mRNAs, with much focus on its

regulation of Cyclin A and B translation (Gerber et al., 2006; Vardy and Orr-Weaver,

2007; Vardy et al., 2009). PNG enhances translation of Cyclin A during oogenesis and

early embryogenesis by affecting poly-A tail length, likely by counteracting the activity of

Pum (Vardy et al., 2009). In a similar manner, PNG also regulates translation of Cyclin

B during egg activation, though this occurs by both poly-A dependent and independent

mechanisms (Vardy and Orr-Weaver, 2007). Polyadenylation followed by translation

directly leads to the appearance of proteins, but degrading proteins is also crucial in

regulating the oocyte-to-embryo transition.

Protein degradation plays a key role during the oocyte-to-embryo transition in a

large number of organisms (DeRenzo and Seydoux, 2004). In addition to advancing the

meiotic cell cycle, as previously discussed, it is also thought that degradation of

maternal proteins helps to set the stage for proper embryogenesis. In C. elegans, the

microtubule severing proteins MEl-1 and MEI-2 act in complex to regulate meiotic

spindle formation (Srayko et al., 2000), but are degraded upon the completion of

meiosis (Clark-Maguire and Mains, 1994; Kurz et al., 2002). This degradation is

necessary for robust mitotic spindles to form (in contrast to the shorter spindles of C.

elegans meiosis) (Dow and Mains, 1998; Pellettieri et al., 2003). The proteins OMA-1

and OMA-2 function redundantly to promote oocyte maturation in C. elegans (Detwiler

et al., 2001). OMA-1 and -2 continue to function at the 1-cell embryo stage, but are then

rapidly degraded (Nishi and Lin, 2005; Pellettieri et al., 2003). Delayed degradation of

OMA-1 results in embryonic lethality and cell fate specification problems between the C-
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and EMS-blastomeres (Lin, 2003). It is clear that certain meiotic proteins must be

cleared away for the proper embryogenesis to proceed.

VII. Summary of Thesis

The existence of sex and meiosis-specific activators of the Anaphase Promoting

Complex in Drosophila suggests a specific role for the APC/C during meiotic

progression. I focused on Cortex, the female, meiosis-specific activator of the APC/C in

Drosophila melanogaster. Given the key role of active protein degradation in meiotic

progression, and Cortex's narrow window of developmental expression, identifying

substrates of APCcOr should give unique insight into meiosis-specific regulation of cell

division.

In this thesis, I set out to find substrates of the Cortex form of the APC/C. First, I

followed up on a genetic screen to identify substrates of APCcOrt. Next,mass

spectrometry was used to identify Cortex interacting proteins. I then focused on one of

the hits, Matrimony, and further characterize its relationship to Cortex. I found that

degradation of Matrimony during the oocyte-to-embryo transition by APCcOII is important

for proper embryogenesis.
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Abstract

The APC/C targets specific proteins for degradation to progress the cell cycle

forward irreversibly. Identification of APC/C substrates sheds light on the specific

regulatory mechanisms controlling the cell cycle. A deficiency screen was carried out to

identify substrates of a female, meiosis-specific form of the APC/C (APCcortex). Five

deficiencies were identified that suppressed the arrest in eggs with low APCcOrt activity.

These large deficiencies were narrowed down to smaller regions, and finally individual

genes were tested for their ability to suppress. Despite narrowing some regions down

to only a few candidate genes, no single gene tested so far suppressed consistently.

With the growing resources available to the Drosophila community, testing mutants of

the remaining genes within these regions may soon be possible.
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Introduction

The APC/C's role in mitosis has been and continues to be extensively characterized,

but its role in meiosis is only just starting to be elucidated. Much of the APC/C's role in

meiosis has stemmed from the study of meiosis-specific activators and their unique role

in meiotic progression (Blanco et al., 2001; Okaz et al., 2012; Pesin and Orr-Weaver,

2007, 2008; Swan and Schupbach, 2007). There are many aspects of meiosis that

distinguish it from mitosis (particularly in oogenesis), and these unique aspects likely

require meiosis-specific regulation. Here we highlight examples of regulators that may

be subject to meiosis-specific degradation.

Whereas the job of mitosis is to segregate sister chromatids, meiosis must first

segregate homologous chromosome pairs in meiosis I, and then segregate sister

chromatids in meiosis 11. The 'reductional' division of meiosis I is unique in that it

requires both kinetochores of a single pair of sisters to align toward the same spindle

pole. In S. cerevisiae, this is accomplished by the monopolin complex (Rabitsch et al.,

2003; Toth et al., 2000). One hypothesis is that Monopolin serves as a sort of 'clamp,'

crosslinking microtubule binding sites of sister kinetochores together to ensure they

maintain the same orientation (Corbett et al., 2010; Watanabe, 2012). The meiosis-

specific Spol 3 protein is required for proper localization of the Monopolin complex

(Katis et al., 2004; Lee et al., 2004). Similar sister kinetochore mono-orientation also

occurs in higher eukaryotes.

Although monopolin has not been identified in higher eukaryotes, other proteins

have been shown to facilitate sister kinetochore co-orientation. In some higher

eukaryotes, the meiosis-specific cohesin subunit Rec8 is necessary for sister-chromatid
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co-orientation (Chelysheva et al., 2005; Severson et al., 2009). In Drosophila, the

proteins Solo and Ord are known to be required for sister-chromatid cohesion and sister

kinetochore co-orientation (Goldstein, 1980; Miyazaki and Orr-Weaver, 1992; Yan et al.,

2010). The requirement for sister-chromatid co-orientation is a unique aspect of

meiosis, and thus these components may need to be degraded after meiosis.

Supporting this hypothesis, Spol 3 is targeted for APC/C mediated degradation at

anaphase I (though not by Ama1, the meosis-specific APC/C activator in budding yeast)

(Sullivan and Morgan, 2007). Rec 8 is cleaved in meiosis, but it is not clear whether

Solo or Ord are subjected to regulated degradation.

In addition to differences between mitosis and meiosis, there are also key

differences between meiosis in oocytes and spermatocytes. Meiotic progression in

oocytes contains distinct arrest points (in prophase I and metaphase I or II) that allow

for the coordination of meiotic progression and development (Von Stetina and Orr-

Weaver, 2011). The maintenance and release of these arrests is directly tied to the

APC/C activity (Pesin and Orr-Weaver, 2008).

Another major difference between male and female meiosis is the structure of the

meiotic spindle. In spermatocytes, a centriole-containing microtubule organizing center

(MTOC) nucleates and organizes the spindle, as in mitosis. Female meiotic spindles

are acentriolar, however, and assemble their spindles without the aid of complete

centrosomes (Manandhar et al., 2005; Schatten, 1994). Depending on the organism,

meiotic spindles in the female are nucleated and organized in varying ways. The ability

of chromatin itself to direct spindle assembly was demonstrated in Xenopus egg

extracts (Heald et al., 1996). In mouse oocytes, numerous MTOCs cluster together and
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self-organize to form a bipolar spindle surrounding the DNA (Schuh and Ellenberg,

2007). These MTOCs are acentriolar, but do contain some components of the

pericentriolar material (Carabatsos et al., 2000; Gueth-Hallonet et al., 1993; Palacios et

al., 1993). In Drosophila, microtubule asters along with the motor protein Nonclaret

disjunctional (Ncd) associate with the germinal vesicle and activate microtubule

nucleation (Skold et al., 2005) , which eventually forms the arrested metaphase I

spindle in Drosophila oocytes (Matthies et al., 1996; Theurkauf and Hawley, 1992).

Protein degradation is known to play a role in centrjole maintenance during mitosis,

where APC/C and SCF mediated degradation prevent centriole over-duplication (Pagan

and Pagano, 2011). Given the need to rid the oocyte of centrioles during oogenesis,

proteins responsible for centriole biogenesis could also be regulated by degradation in a

meiosis-specific manner.

Two molecular pathways are known to play a role in triggering microtubule

nucleation in female meiotic spindles. When GTP bound, the small GTPase Ran is

thought to locally release spindle assembly factors (SAFs) to help trigger microtubule

nucleation. The presence of Ran's GEF, RCC1, on chromatin ensures a gradient of high

Ran-GTP near the DNA, and thus SAFs are released close to chromatin (Clarke and

Zhang, 2008). Inhibition of the Ran gradient disrupts spindle assembly in a variety of

organisms (Cesario and McKim, 2011; Dumont and Desai, 2012; Kalab et al., 2006;

Ohba et al., 1999). In addition to the Ran gradient, the chromosomal passenger

complex (CPC) also regulates microtubule nucleation. Its components help to localize

the kinase Aurora B to the centromere and microtubules (Sampath et al., 2004; Tseng
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et al., 2010), where it phosphorylates and inhibits inhibitors of spindle assembly (Budde

et al., 2001; Kelly et al., 2007; Rivera et al., 2012).

In addition to these differences in spindle organization, the mechanisms of

homolog segregation in meiosis I are dramatically different between Drosophila females

and males. In oogenesis, as in most other examples of meiosis, homologs pair and

then synapse via the synaptonemal complex (SC), followed by recombination between

homologs (Szekvolgyi and Nicolas, 2010). In contrast, Drosophila males do not

undergo meiotic recombination and instead pair at specific pairing sites independent of

the SC (McKee et al., 2012). Such stark differences between recombination and pairing

mechanisms in male and females could hint at a need for both sex- and meiosis-specific

regulation.

The discovery of sex-specific, meiosis-specific APC/C activators in Drosophila

(Chu et al., 2001; Jacobs et al., 2002; Page and Orr-Weaver, 1996) provides a unique

opportunity to truly tease apart specific regulation that occurs not just during meiosis,

but during female and male meiosis. As highlighted above, male and female meiosis

differ in many regards, any of which has the potential to be regulated by the meiotic

APC/C. There is a predicted Drosophila male meiosis activator of the APC/C, Fzr2, but

its substrates have not been identified. Cortex, the female, meiosis-specific activator of

the APC/C in Drosophila, is known to target Cyclin A, B, B3, and Pimples/Secruin for

degradation during meiosis (Pesin and Orr-Weaver, 2007; Swan and Schopbach,

2007). However, these substrates are also regulated by Fizzy/Cdc20 (Swan and

Schupbach, 2007) and thus it is likely that Cortex has other unique substrates to justify

its incredibly specific expression pattern.
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A genetic screen was carried out to find deficiencies on the third chromosome

that suppress the meiotic arrest caused by low APCcoI activity. This screen has the

potential to identify substrates and negative regulators of Cortex whose loci reside on

chromosome three.

Results

I. Rational for suppression screen

The screen was carried not in a cort mutant background, but rather in eggs laid

by females mutant for the gene grauzone. Grauzone serves as Cortex's dedicated

transcription factor (Harms et al., 2000). Cortex seems to be Grauzone's only essential

target, because the grau phenotype can be rescued by inserting additional copies of the

cortex gene into the genome (Harms et al., 2000). grau mutant eggs arrest at

metaphase 11, phenocopying cort mutant eggs, further illustrating that Grauzone's only

crucial target is cort (Page and Orr-Weaver, 1996). Importantly, grau eggs contain low

levels of residual Cortex protein (Pesin and Orr-Weaver, 2007), and about 3% of grau

eggs go on to develop (Harms et al., 2000), suggesting that these eggs are just on the

cusp of having enough APCcor activity to properly develop. Therefore, grau serves as a

sensitized background ideal for a genetic screen.

We hypothesized this screen would uncover substrates and negative regulators

of APCcor activity. grau eggs contain some, but not enough, Cort protein to progress

properly through meiosis. In this sensitized background, if a deficiency removes half of

the genomic copies encoding an APCcor substrate, the reduction in substrate levels

may 'free up' the little APCcor present to properly degrade its remaining substrates.

Alternatively, if one substrate must be degraded to permit exit from meiosis, reduction of
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the levels of this protein could permit adequate degradation of the remainder for

completion of meiosis. In either of these cases, the metaphase 11 arrest of grau mutants

would be relieved and meiosis completed. A distinct mechanism could involve a

repressor of Cort function. If a deficiency uncovers such an inhibitor of Cortex, the

resulting increase in APCcor activity could allow for sufficient substrate degradation to

occur and meiosis to be completed. A key aspect of this screen is that it requires the

presence of residual APCcor activity, preventing the use of known cort alleles, which are

nulls (Page and Orr-Weaver, 1996).

The screen was performed using a collection of deficiencies spanning the 3rd

chromosome (representing 40% of the total genome). Suppression was scored by

DAPI staining embryos and scoring for development past metaphase II (i.e. suppression

of the grauzone arrest).

II. Df(3R)p-XT103 identified as first hit in grauzone suppression screen

The deficiency screen covered 93% of the 3rd chromosome and required

dominant suppression (Figure 2-1). This approach initially identified one strongly

suppressing deficiency: Df(3R)p-XT103 (Figure 2-2). Because the goal of this screen

was to identify single genes responsible for the suppression, smaller deficiencies of the

region eliminated by p-XT103 were used to narrow down the suppressing region (Figure

2-3C). However, all three deficiencies spanning the region also suppressed, indicating

that more than a single gene was responsible for suppression of grau by p-XT103

(Pesin, 2007).
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grauQQ36  Ki + Df

CyO TM6, Hu + Balancer

grauQQ36  Df
+ Ki

grauQ036  Df

grauRM61 +

grauRM61 +

CyO +

vs.
grauQ036  +

grauRM61 Ki

Collect activated eggs and score for suppression

Figure 2-1. Overview of Deficiency Screen Crosses

Schematic for testing a given deficiency's ability to dominantly suppress the metaphase

I arrest in grau mutant eggs. Adult grauQQ36 RM 6 1 females were collected and sorted

based on presence of the deficiency or the dominant marker Kinked (Ki) (known as the

sibling control). Development of eggs laid by these females was monitored by

immunofluorescence.
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Ill. Verification of other potential hits identified in the screen

During the initial screen, other possible suppressing deficiencies were identified:

Df(3L)XG5, Df(3R)ExeI6144, Df(3R)Exe19012, Df(3R)BSC137, Df(3R)H-B79, and

Df(3L)fz-GF3b. Of these, Df(3L)XG5, Df(3R)Exe16144, Df(3R)Exe9012, and

Df(3R)BSC137 were confirmed to suppress the grauzone arrest to varying degrees.

Figure 2-2 summarizes the locations of the five confirmed suppressing deficiencies. As

with p-XT103, it was necessary to narrow down the regions within these deficiencies

responsible for suppression. Given the large collections of stocks bearing specific

chromosomal deletions available to the Drosophila community (Cook et al., 2012; Roote

and Russell, 2012), smaller deficiencies were obtained that together spanned much of

the initial larger deficiencies (with the exception of BSC137, which has not been

followed up yet) (Figure 2-3).

IV. Narrowing down regions of the suppressing deficiencies

In all cases tested, the suppressing regions could be narrowed down to a smaller

region (Table 2-1, Figure 2-3). Df(3L)XG5 was narrowed down to a region containing

about 34 genes. Interestingly, the smaller deficiency (Df(3L)BSC575) suppressed better

than the 'parental' Df(3L)XG5 (Table 2-1). One possible explanation for this is that a

second gene within XG5 (but not BSC575) normally has a positive role on Cortex

activity or protein levels. By reducing its copy number in XG5, Cort activity is even

further reduced and thereby suppression of grau is reduced as well. This is supported

by a specific increase in Cort protein levels in grauQQ36/RM61; BSC575/+ eggs (Figure 2-

4A). Cort protein levels remained low in grauQQ36/RM 61; XG5/+ eggs (Figure 2-4B). Given

these data, it would follow that the gene within both XG5 and
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Df(3R)pXT103 Df(3R)BSC137

3L -- 3RDf(3R)Exe16144 Df(3R)ExeI9012

Figure 2-2. Location of the Five Hits from the Deficiency Screen

The 3 rd chromosome is indicated by the blue bar. Relative locations of the five

deficiencies are indicated by red lines (not to scale).
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BSC575 is a negative regulator of Cortex protein levels (i.e. not likely to be a substrate).

Next, Df(3R)Exel6144 was narrowed down to an interval containing only seven

genes (Df(3R)ED5177). The levels of suppression by Exel6144 and ED5177 varied

from experiment to experiment, but were usually comparable to each other. Finally,

Df(3R)Exel9012 was narrowed down to a genomic region containing only one gene. It is

worth noting, however, that Exel9012 was narrowed down by a lack of suppression in

neighboring deficiencies, rather than finding a smaller deficiency that did suppress (as

in the previous cases).

V. Testing of individual mutants within the smaller suppressing regions

With the suppressing deficiencies narrowed down to more manageable sizes, it

was possible to begin testing mutants of single genes within the deficiencies. Given that

surrounding deficiencies did not show suppression of grau, Exel9012's region of

suppression was narrowed down to the cytological location 94E11-94E13, a span of

about 50kb (another deficiency, Df(3R)BSC619, contains the entirety of Exel9012 and

also suppresses) (Figure 2-3). Only one gene, pointed (pnt), is annotated within this

region. pnt is a transcription factor involved in both eye and glial differentiation (Brunner

et al., 1994; Klambt, 1993; O'Neill et al., 1994). A null allele of pnt, pntA88(Scholz et al.,

1993), was tested for its ability to suppress the grau arrest. Unfortunately, pnt188 was

unable to suppress the metaphase I arrest in grau mutants (Table 2-2). Given that

pntA88 is a null allele, the lack of suppression should not be due to not using a strong

enough allele. It is possible that the suppression observed with the deficiency is

73



A) Df (3L)XG5 171C2-72C1)

no8 78 W1 723 723 7v

Df(3L)XG4p1CI-71E1)

Df3L)xGI [7IC3-71F5

Dff3L)B8C57571FI-72C1 )

DAtY3LA18 8M17103-72A )

B) Df(3R)Exe16144 [83A6-8386]

Df(3R)BSCITO (8346482)s

f3(W)ED10O57 1834748 4)

DA3R)ED6177 830439J

C) Df(3R)p-XTI03 j85A1-85C1 

Dff3R)Ex.8149 (85A2-5A5)

Dr3RExel143 (85- 58261

Df3RM&ErM50O(85A5-58)

D) Df(3R)Ex.19012194E9-94E13)

Df(R)ExM6280194E5-94E11)

D&3R)ED105949-04E1 )

E) Df(3R)BSC137 94F1-95A4]

94713 $"7 M44 974- 3

Figure 2-3. Narrowing Down of the Suppressing Deficiencies

The 'parental' deficiency is indicated at the top of each panel in red. Cytological location

along the 3rd chromosome is shown beneath (courtesy of FlyBase). The relative

locations of the smaller deficiencies used to narrow down the 'parental' deficiency are

shown underneath.
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due to removal of a regulatory region(s) of a gene whose coding sequence lies outside

the suppressing region. The pntA88 allele may not affect this regulatory element.

About seven genes are uncovered by the suppressing deficiency Df(3R)

ED5177, spanning a region of 24kb. Of these genes, two stood out as good candidates

to be responsible for the suppression. The asterless (as) gene is required for proper

centriole assembly, and so could require specific regulation during the acentriolar

meiotic divisions in females. The gene krasavietz/extra bases (kra/exba) is also

uncovered by ED5177. Kra is a translational inhibitor involved in directing proper

movement of CNS axons. Interestingly, females containing germline clones mutant for

Kra stall in oogenesis, illustrating a role for Kra during oogenesis as well (Lee et al.,

2007). Null (or very strong hypomorphic) alleles for both of these genes (asMecD and

kra1) (Blachon et al., 2008; Lee et al., 2007) were tested for their ability to suppress

grauzone. However, neither of these two alleles could overcome the grauzone arrest

(Table 2-2). Other genes also fall within the suppressing region of ED5177. The gene

Regena (Rga) is a homolog of the transcriptional regulator Cdc36/Not2 in yeast, and is

necessary for proper expression levels of numerous genes, including white (Frolov et

al., 1998). A P-element insertion allele of Rga, Rga03834, did not suppress the grauzone

phenotype (Table 2-2). This allele is thought to be a null (Frolov et al., 1998; Temme et

al., 2004), and so Rga is not likely to have been responsible for suppression in ED5177.

Another transcription unit (Atu) also is found in this region, and this gene has been

implicated in hemocyte proliferation through its genetic interaction with AML1-ETO

(Sinenko et al., 2010). To date, no alleles of Atu have been tested for their ability to

suppress grauzone.
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A) B) O

CORT -50 CORT

_ _ _Ovaries
TUB

Ovaries

Figure 2-4. Cortex Protein Levels are Partially Restored by BSC575 but not XG5

A) Western blot showing Cortex protein levels in the indicated genetic background.

grauRM61/+ and OrR are used as controls for normal Cortex protein levels. Tubulin

serves as a loading control. * indicates a non-specific band.

B) Western blot showing Cortex protein levels are not restored by the presence of

Df (3L)XG5. The grauRM61/+ background is used as a control and the non-specific band

is used as a loading control.
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Lastly, Df(3L)BSC575 is a strongly suppressing deficiency that uncovers about

34 genes. The best candidate within this region is early girl (elgi), a putative E3 ubiquitin

ligase identified by yeast two-hybrid as an interactor with a-endosulfine (endos) (Von

Stetina et al., 2008). elgi mutants undergo premature nuclear envelop breakdown during

oogenesis and progress quickly into metaphase 1. Given its role in meiotic maturation,

two alleles of early girl were tested for suppression of grauzone. Both elgi and elgi2

were previously generated by imprecise excision of a P-element inserted upstream of

the elgi coding sequence (Von Stetina et al., 2008). elgi is presumably a null and

results in no elgi transcript, whereas the elgi2 locus still generates a small amount of

transcript encoding a truncated form of the protein. elgil did not produce significant

suppression of grau. elgi2 , however, did exhibit suppression (though much lower than

the BSC575) (Table 2-2). Given that elgil is a stronger allele than elgi2 , it is difficult to

explain the discrepancy. The truncated protein generated by elgi2 is thought to act in a

dominant-negative fashion (Von Stetina et al., 2008), and so could be a possible reason

for the difference between the two alleles. The lack of suppression by elgil, however,

indicated that elgi was unlikely to be the gene responsible for suppression in BSC575.

Discussion

The initial deficiency screen identified numerous putative hits in addition to p-

XT103. Of the six additional hits, four consistently suppressed the grau phenotype. To

identify the specific gene(s) responsible for suppression, smaller deficiencies were used

to narrow down the suppressing region. The suppressing region was successfully

delineated in three cases (with the fourth still to be studied). In these cases, mutants of

single genes were tested for suppression activity.
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Percent
Genotype Df Tested Total Syppressed Suppression

grauRM6 1/QQ3 6 Df/+ Df (3L)XG5 130 20 15.4

grauRM61/QQ36; Df/+ Df(3L)XG4 175 1 0.6

grauRM6 1/QQ36; Df/+ Df(3L)XG8 35 0 0.0

grauRM61/QQ36; Df/+ Df(3L)BSC575 303 151 49.8

grauRM61/QQ36; Df/+ Df(3L)BSC845 361 15 4.2

grauRM61/QQ36; Df/+ Df(3R)Exe16144 132 30 22.7

grauRM61/QQ36; Df/+ Df(3R)BSC179 100 3 3.0

grauRM61/QQ36; Df/+ Df(3R)ED10257 40 0 0.0

grauRM61/QQ3 6 Df/+ Df(3R)ED5177 253 95 37.5

grauRM61/QQ36; Df/+ Df(3R)Exe19012 241 58 24.1

grauRM61/QQ36; Df/+ Df(3R)Exe16280 90 1 1.1

grauRM6 1
/QQ

3 6 Df/+ Df(3R)ED6105 100 5 5.0

grauRM6 1/QQ3 6 ; Df/+ Df(3R)BSC619 23 14 60.9

grauRM61/QQ36; Df/+ Df(3R)p-XTI03 89 25 28.1
Df(3R)p-XT104

grauRM6 1/QQ36; +/+* Sibling Control 39 3 7.7
Df(3L)BSC575

grauRM61/QQ36; +/+* Sibling Control 212 0 0.0
Df(3R)ED5177

grauRM611QQ36; +/+* Sibling Control 52 0 0.0

Table 2-1. Summary of Deficiency Screen Results

'Total' indicates total number of embryos scored, while 'Suppressed' indicates the

number that exhibited development (normal or abnormal) past metaphase 11. Cells

highlighted in yellow indicate the positive control (p-XT103) and selected negative

(sibling) controls.

* +/+ indicates either TM6,Hu/+ or Ki/+.
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Percent
Genotype Allele Tested Total Suppresed Suppression

grauRM6 1/QQ3 6; Gene/+ el I 330 10 3.0
elgi Sibling

RM61/QQ36; +/+ Control 239 1 0.4

grauRM6 1/QQ 3 6; Gene/+ elgi2 211 37 17.5
elgi Sibling

grauRM6 /QQ36; +/+ Control 229 0 0.0
grauRM6 1/QQ 3 6; Gene/+ ASIMecD 382 1 0.3

ASIMecD Sibling
grauRM6 /QQ36; +/+ Control 154 0 0.0

grauRM6 1/QQ 36; Gene/+ Kra1  52 2 3.8
RM61QQ36 Kra' Sibling

g RM61/QQ36; +/+ Control 94 2 2.1

grauRM6 1/QQ36 Gene/+ pnt' 88  137 2 1.5

grauRM6 1/QQ36; Gene/+ Rga 03834  56 0 0.0

Table 2-2. Summary of Single Mutant Screen Results

'Total' indicates total number of embryos scored, while 'Suppressed' indicates the

number that exhibited development (normal or abnormal) past metaphase 11. grau

mutant siblings without the indicated mutation served as negative controls.

* +/+ indicates either TM6,Hu/+ or Ki/+.
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Alleles of pnt, as, kra, Rga, and elgi were tested, but did not consistently

suppress the grau metaphase 11 arrest. Most of these alleles are characterized as nulls,

and so should have sufficed in acting as a 'deficiency' for its respective gene. One

explanation for the lack of suppression by all of these genes is simply they are not the

genes responsible for suppression in the narrowed down deficiencies. It is not always

possible to test all individual genes in a given region due to lack of available mutant

alleles. In these cases, it might be beneficial to make use of the Transgenic RNAi

Project (TRiP) (http://www.flyrnai.org/TRiP-HOME.html) lines now widely available to

the Drosophila community. With efficient germline expression now possible, genes

without appropriate alleles could be knocked down and tested for their ability to

suppress grau. This comes with its own caveats however, as complete knockdown

(compared to heterozygous mutation) of a gene could adversely affect oogenesis in

numerous ways.

It is also possible, that in some cases, the deficiencies affect the regulatory

region of a nearby gene (that is itself outside the deficiency). Genes such as Abd-B are

known to be controlled by distant regulatory regions (Sipos and Gyurkovics, 2005), and

so this is not out of the realm of possibility. If a deficiency removes the regulatory

region of a gene outside of the deficiency, it would prove difficult to identify, because it

could be 50Kb or more away. However, it might still be found if a deficiency uncovering

the gene itself also exhibited suppression.

In this screen, suppression was scored as any development (normal or

otherwise) past the metaphase II arrest, as judged by DAPI staining. Suppression

ranged from embryos with large, abnormal masses of DNA to those that completed
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meiosis and developed normally (Figure 2-5). This range of phenotypes was observed

for any single deficiency. We propose that a given embryo's chance to develop directly

correlates to APCcort's ability to degrade its substrates. A grau embryo that developed

normally likely degraded most Cort substrates. On the other hand, an embryo showing

suppression with large DNA masses likely degraded enough APCcOII substrates to

complete meiosis, but 'residual' substrates then interfered with proper embryogenesis. If

this hypothesis is correct, a more quantitative look at the distribution of phenotypes for a

given deficiency would prove useful. Deficiencies that show a large number of normally

developing embryos must be better at promoting degradation of many APCcot

substrates. Deficiencies that suppress, but then lead to abnormal development, may be

better at promoting degradation of only a few key substrates (whose degradation is

required for meiotic progression).

One way to more easily identify candidate APC/C substrates is by searching for

the presence of known APC/C destruction motifs. Most canonical are the destruction

box and KEN box (RxxLxxxxN and KEN respectively). Together with the Bioinformatics

and Research Computing (BaRC) group at the Whitehead, the presence of these motifs

was searched for in the Drosophila proteome. In addition to the above motifs, we also

searched for KxxLxxxxN (a modified D-box) (Pines, 2006), or proteins that contained

both a shorter D-box motif as well as a KEN box (KxxL/KEN or RxxL/KEN). In total,

3,653 genes were identified that contained one or more of the above motifs in at least

one protein isoform. This represents about 25% of the Drosophila genome, and

because it is unlikely that this number of proteins is controlled by the APC/C, additional

regulation besides simply the presence of a destruction motif must dictate APC/C
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grauQ 36  + vs.

grauRM61 Ki

grauIQ36  ExeI9012

grauRM6l +

Figure 2-5. Representative Image of Suppression by a Deficiency

DAPI stained embryos of the indicated genotype. While the grau mutant alone remains

arrested in meiosis, presence of the ExeI9012 deficiency allows normal development in

a subset of embryos.

82



targets. It is also possible that a novel or less well characterized motif will be recognized

by APCcO", given our hypothesis that some substrates will be uniquely ubiquitylated by

APCcor.

In summary, a screen to find dominant suppressing deficiencies of the grau

phenotype was carried out. Five deficiencies in total were found, and this work

describes the classification of three of them. The three suppressing deficiencies were

narrowed down to a single suppressing region, but attempts at finding a single gene

responsible for suppression was unsuccessful.

We decided that a more biochemical approach to identifying substrates of

APCcort might prove useful, as detailed in the next chapter.

Materials and Methods

Fly Stocks

The graUM61 grau QQ3 6 (Page and Orr-Weaver, 1996; Schupbach and Wieschaus,

1989), asMecD (Blachon et al., 2008), kral (Lee et al., 2007), pnt688(Scholz et al., 1993),

elgil, and elgi2 (Von Stetina et al., 2008) have been described previously. The following

deficiency stocks were used in this study: BL 6551 (Df (3L)XG5), BL 6550(Df(3L)XG4),

BL 6554 (Df(3L)XG8), BL 27587 (Df(3L)BSC575), BL 27888 (Df(3L)BSC845), BL 7623

(Df(3R)ExeI6144), BL 9159 (Df(3R)BSC179), BL 23146 (Df(3R)ED10257), BL 8103

(Df(3R)ED5177), BL 7990 (Df(3R)ExeI9012), BL 7746 (Df(3R)Exe16280), Kyoto 150336

(Df(3R)ED6105), BL 25694 (Df(3R)BSC619), BL 1962 (Df(3R)p-XT103), BL 4962

(Df(3R)H-B79), and BL 3124 Df(3L)fz-GF3b.

Embryo Collection and Immunofluorescence
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Females were collected for 1-2hrs and aged 2-3hrs. Eggs were then dechorionated in

50% bleach, fixed in methanol, and prepared for immunofluorescence as described

(Pesin and Orr-Weaver, 2007). DAPI (1 ug/ml) was used to visualize DNA.

Western blotting

Whole ovaries were hand dissected from fattened females and homogenized in NP-40

lysis buffer (150mM NaCl, 50mM Tris, pH 8.0, 2.5mM EDTA, 2.5mM EGTA, 1%NP-40,

1mM PMSF, complete mini EDTA-free protease inhibitors, 1 tablet/10 ml [Roche]).

Protein lysates were spun at 14,000 RPMs for 15 minutes at 4C, and supernatant was

used as protein sample. Equal protein amount was loaded on 10% SDS-PAGE gels as

determined with Bradford reagent [BioRad]. Protein was transferred to Immobilon-P

membranes (Millipore).

Antibodies used were guinea pig anit-Cortex (1:2000)(Pesin and Orr-Weaver, 2007) and

rat anti-tubulin (yoll/34 and yll/2) (1:400-1:1000)(Novus Biologicals). Secondary

antibodies used were Peroxidase-conjugated anti-guinea pig and Alkaline Phosphatase-

conjugated anti-rat (1:5,000; Jackson ImmunoResearch).
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Abstract

Oocytes are stockpiled with proteins and mRNA that are required to drive the

initial mitotic divisions of embryogenesis. But are there proteins specific to meiosis

whose levels must be decreased to begin embryogenesis properly? The Drosophila

protein Cortex (Cort) is a female, meiosis-specific activator of the Anaphase Promoting

Complex/Cyclosome (APC/C), an E3 ubiquitin ligase. We performed

immunoprecipitation of Cortex followed by mass spectrometry, and identified the Polo

kinase inhibitor Matrimony (Mtrm) as a potential interactor with Cort. In vitro binding

assays showed Mtrm and Cort can bind directly. We found Mtrm protein levels are

reduced dramatically during the oocyte-to-embryo transition, and that this

downregulation did not take place in cort mutant eggs, consistent with Mtrm being a

substrate of APCcort. We showed that Mtrm is subject to APCCort mediated

proteasomal degradation and have identified a putative APC/C recognition motif in Mtrm

that when mutated partially stabilized the protein in the embryo. Furthermore,

overexpression of Mtrm in the early embryo caused aberrant nuclear divisions and

developmental defects, and these were enhanced by decreasing levels of active Polo.

These data indicate APCcOr ubiquitylates Mtrm at the oocyte-to-embryo transition, thus

preventing excessive inhibition of Polo kinase activity due to Mtrm's presence.
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Introduction

The oocyte-to-embryo transition is the developmental course by which an oocyte

not only switches from a meiotic to a mitotic program, but becomes fully competent to

support early embryogenesis. Initially, fertilization introduces the haploid genomic

content of the sperm into the egg. Egg activation, triggered by fertilization in vertebrates

and independent of fertilization in insects, signals the resumption and completion of

meiosis in the egg (Horner and Wolfner, 2008; Von Stetina and Orr-Weaver, 2011).

Following successful completion of meiosis, pronuclear fusion creates a single diploid

nucleus from the individual haploid sperm and egg nuclei. The single diploid nucleus

must then transition to a mitotic cell cycle within the same cytoplasm in which the

meiotic divisions took place.

The oocyte-to-embryo transition can proceed normally only if the preceding

events of meiosis are completed successfully. During Drosophila melanogaster

oogenesis, an oocyte enters prophase I following completion of pre-meiotic S-phase.

After homologous chromosome pairs synapse and recombine, the oocyte enters a

prolonged prophase I arrest. Oocyte maturation then releases this primary arrest,

allowing the oocyte to continue meiosis until its secondary arrest at metaphase 1, in

what is known as a stage 14 oocyte. Lastly, egg activation triggers resumption and

completion of meiosis concordantly with the oocyte-to-embryo transition itself (Horner

and Wolfner, 2008; Von Stetina and Orr-Weaver, 2011).

The switch from meiosis to mitosis is controlled by cellular proteins and

structures produced during gametogenesis, with both the sperm and egg making unique

contributions. The centrosome, necessary for proper spindle formation during mitotic

95



divisions, is brought into the acentrosomal egg by the sperm (Schatten, 1994). The

initial rapid divisions of a developing embryo are driven by the maternal stockpile of

nutrients, mRNA, and translational machinery that are 'packed' into the egg during

oocyte differentiation (Von Stetina and Orr-Weaver, 2011). Additionally, the egg also

contains numerous meiosis-specific proteins. These meiosis-specific proteins are

crucial for proper meiotic progression, but are not necessarily needed after the switch to

mitosis.

There are known examples of proteins uniquely employed in meiosis that need to

be removed prior to mitosis (DeRenzo and Seydoux, 2004). In C. elegans, the MBK-2

kinase promotes the oocyte-to-embryo transition. One target is the katanin subunit

MEl-1 (Quintin et al., 2003), and phosphorylation of MEl-1 by MBK-2 marks it for

degradation before the completion of meiosis (Stitzel et al., 2006). A gain-of-function

MEl-1 protein that persists into embryogenesis often leads to a short, mispositioned

mitotic spindle (Dow and Mains, 1998). The Saccharomyces cerevisiae meiosis-specific

protein Spo13 prevents the biorientation of sister chromatids at meiosis I, ensuring

homologs segregate together (Katis et al., 2004; Lee et al., 2004). Spol3 is actively

targeted for degradation during anaphase I by the Cdc20 form of the Anaphase

Promoting Complex/Cyclosome (APC/C) (Sullivan and Morgan, 2007). Interestingly, a

non-degradable form of Spol13 does not result in a significant meiotic phenotype;

however, overexpression of Spol3 leads to mitotic cell cycle defects (Lee et al., 2002;

Shonn et al., 2002; Sullivan and Morgan, 2007). This demonstrates the necessity of

degrading a meiosis-specific protein not for proper meiotic progression, but subsequent

mitotic progression.
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The unique mechanisms of meiosis such as segregation of homologs in meiosis

I, absence of DNA replication between divisions, and the meiotic arrests during

oogenesis require either unique regulators or altered control of factors that also are

used in mitosis. For example, during mitosis the mitotic cyclins are completely degraded

as the cell progresses through the metaphase to anaphase transition and exits from

mitosis. In contrast, the mitotic cyclins are left at an intermediate level after the

metaphase to anaphase transition of meiosis I; low enough to exit from meiosis I, but

high enough to prevent re-replication (Furuno et al., 1994; lwabuchi et al., 2000). This

altered control of mitotic regulators may need to be removed upon the start of

embryogenesis. The APC/C inhibitor Emi2 is responsible for maintaining Cyclin B1

levels after meiosis I in mouse oocytes, but it is quickly degraded to allow for meiotic

exit (though it has been shown to reestablish its levels in early embryogenesis in

Xenopus) (Inoue et al., 2007; Madgwick et al., 2006; Nishiyama et al., 2007; Tischer et

al., 2012). This illustrates how normal mitotic cell cycle regulation can be altered

through the use of unique meiotic proteins.

Regulated degradation of proteins, particularly by the APC/C, plays an

indispensable role in progression through the mitotic and meiotic divisions (Pesin and

Orr-Weaver, 2008; Pines, 2011). The APC/C ubiquitylates numerous proteins during

mitosis, targeting them for degradation and promoting mitotic progression and exit.

Similarly, during oogenesis proper cell cycle regulation by the APC/C is crucial in

maintaining coordination between meiosis and development. The APC/C must use

activator proteins (Cdc20/Fizzy and Cdhi/Fizzy-related in mitosis) to recognize its

substrates. Interestingly, meiosis-specific activators of the APC/C are known to exist in
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both budding (Cooper et al., 2000) and fission yeast (Blanco et al., 2001) in addition to

sex and meiosis-specific APC/C activators in Drosophila (Chu et al., 2001; Pesin and

Orr-Weaver, 2007, 2008). Elucidating the function and targets of these meiosis-specific

APC/C activators will give valuable insights into meiotic regulation and the transition

from meiosis into mitosis.

The Drosophila protein Cort is a female, meiosis-specific activator of the APC/C

(Chu et al., 2001; Pesin and Orr-Weaver, 2007; Swan and Schupbach, 2007). It is

expressed exclusively during oogenesis, and is itself targeted for degradation by the

APC/C soon after meiotic completion (Pesin and Orr-Weaver, 2007). Cort is

dispensable for viability, but absolutely essential for fertility. Eggs laid by cort mutant

mothers arrest in metaphase II (Page and Orr-Weaver, 1996). During Drosophila

female meiosis, Cort and Fzy/Cdc20 both contribute to meiotic progression, whereas

Fizzy-related/Cdhl is not believed to play a role. Cort cooperates with Fizzy/Cdc20

during meiosis to degrade the Cyclins (Pesin and Orr-Weaver, 2007; Swan and

Schopbach, 2007), but whether it also has other substrates is unknown. Identifying

additional substrates of APCcor will give further insight into the differential regulation of

meiosis and mitosis, as well as the necessary steps to transition from oocyte to embryo.

Here we show that degradation of the female, meiosis-specific protein Mtrm

during meiotic completion is dependent on the activity of Cort. Furthermore, we show

that this downregulation of Mtrm is crucial to the proper onset of embryogenesis.
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Results

Identification of Mtrm as a candidate APCcort Substrate

To identify substrates and regulators of APCcor, a dual mass spectrometry

approach was taken. First, functional myc-tagged Cort (Pesin and Orr-Weaver, 2007)

was immunoprecipitated from whole ovaries, and co-immunoprecipitated proteins were

identified by mass spectrometry. In addition to isolating multiple components of the

APC/C as expected (Pesin and Orr-Weaver, 2007), the Polo inhibitor Mtrm was

recovered as a potential substrate or interacting protein (Table 1). Mtrm also was

identified in our second set of mass spectrometry experiments, using quantitative mass

spectrometry to identify proteins whose levels are increased in cort eggs vs. unfertilized

controls. Unfertilized eggs have completed meiosis, but have not initiated

embryogenesis, and therefore provide the best control for cort mutant eggs. Multiplex,

dimethyl labeling was used to label protein extracts from eggs laid by cort and wild-type

females. Given the difference in mass of the two dimethyl labels used, quantitative

mass spectrometry could identify proteins enriched in cort eggs compared to wild-type.

One of the top hits in both replicates was Mtrm (Table 2). Together, these data indicate

Mtrm can physically associate with Cortex, and that its levels are increased when Cort

function is absent.

Mtrm was identified initially in a genetic screen for dominant effects on

achiasmate chromosome segregation in Drosophila oocytes (Harris et al., 2003), and it

was later shown to function as a direct inhibitor of Polo kinase during meiosis I (Xiang et

al., 2007). Given Mtrm's essential role during female meiosis, we sought to explore
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further its relationship to Cort.

Cort binds to the Polo inhibitor Mtrm in vitro

To confirm the physical interaction between Cort and Mtrm identified by IP-mass

spec, in vitro binding assays were performed. GST tagged Mtrm and GST alone were

expressed and purified from bacteria (Figure 3-1 B), and then incubated with in vitro

translated 6xMyc-Cort produced in rabbit reticulocyte lysate. Cort strongly bound to

GST-Mtrm beads, but not to GST-only beads or beads alone, consistent with the

physical interaction between these two proteins being direct (Figure 3-1A). Moreover, in

vitro translated Cortex lacking its C-terminus binds GST-Mtrm much less efficiently

(Figure 3-2). The C-terminus of Cortex is made up mainly of its WD40 repeats (Chu et

al., 2001), which are known to mediate substrate binding in other APC/C activators(Kraft

et al., 2005). These data are consistent with Cortex binding Matrimony directly through

its WD40 propeller.

Cort and Fzy/Cdc20 are both required for degradation of the mitotic cyclins

during female meiosis (Pesin and Orr-Weaver, 2007; Swan and Schupbach, 2007), and

therefore share at least a subset of their substrates. We also tested whether the

interaction between Cort and Mtrm was specific, or whether Mtrm might be a target of

all forms of the APC/C (or an APC/C regulator). In contrast to 6xMycCort, little to no in

vitro translated 6xMycFzy/Cdc2O bound to GST-Mtrm (Figure 3-1A). Importantly, in vitro

translated Fzy/Cdc20 could bind Cyclin A, a known substrate (Di Fiore and Pines, 2010;

Wolthuis et al., 2008). Full length Cortex also bound Cyclin A, albeit to a lesser extent

than it binds Matrimony (Figure 3-2). Thus, the interaction between Cort and Mtrm is

specific, suggesting regulation between these two female, meiosis-specific proteins.
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Experiment 1* Experiment 2* Experiment 3*

Cortex 98(0) 118(2) 102(0)

Cdc16 9(0) 8(0) 4(0)

Cdc27 0(0) 4(0) 5(0)
Cdc23 3(0) 4(0) 5(0)
Shattered/Apcl 10(0) 7(0) 5(0)
Matrimony 2 (0) 2(0) 0 (0)

Table 1. Immunoprecipitation of Cortex identifies APC/C components and

Matrimony.

Data summarizing three independent IP/mass spec experiments are shown. The

number of total spectra identified that immunoprecipitated/Co-IP'd with Cortex is

indicated. The number of peptides identified in the negative control is shown in

parentheses. In experiments 1 and 2, random mouse IgG was used as a negative

control. Experiment 3 used anti-myc antibody in a strain not expressing 6xMyc-Cortex

(OrR) as a control. * Number of spectra indicated were searched for in MASCOT

and analyzed by Scaffold (see Materials and Methods for more details).

H/L HIL Peptides Intensity H Intensity L
Normalized

Biological 3.658 4.516 5 25.241 21.145
Replicate 1

Biological -4.985 -4.286 5 20.076 25.270
Replicate 2

Table 2. Identification of Mtrm by quantitative mass spectrometry.

Only data pertaining to Mtrm peptides is shown. In replicate 1, cortRH65 eggs were

labeled with heavy (H) dimethyl isotope, while wild-type (OrR), unfertilized eggs were

labeled with the light (L) dimethyl isotope. In replicate 2, the labeling was switched

(hence the difference in signs). Both experiments show enrichment for Mtrm protein (at

significance level B, as determined by MaxQuant and Perseus (Cox and Mann, 2008))

when Cort is mutant compared to the wild-type control.
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Figure 3-1. Cort physically interacts with Mtrm in vitro.

A) Western blot showing in vitro translated Myc-tagged Cort stably binds to GST-Mtrm,

but not to GST only or beads only. In vitro translated Myc-tagged Fzy/Cdc20 is unable

to bind GST-Mtrm. About 60% of each pellet sample was subjected SDS-PAGE

followed by Western blotting (remaining pellet sample was used for B). Lower panel

shows 1 % of total input of in vitro translated 6xMycCort and 6xMycFzy/Cdc2Q. Panels

were probed with anti-Myc (9E10) antibody. Molecular weight markers are indicated to

the side of the blot. B) Coomassie stain of purified proteins used in binding assay. 25%

of the final washed pellet was subjected to SDS-PAGE followed by coomassie staining.

Molecular weight markers are indicated to the side of the gel.
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Decreased Mtrm protein levels after meiosis are Cort dependent

Mtrm protein levels increase throughout meiosis I (Von Stetina et al., 2011).

Interestingly, its levels are drastically reduced by the time meiosis is completed (Figure

3-3A; compare heterozygous stg. 14 oocyte to heterozygous activated egg). This

pattern of expression mimics that of Cort, which itself is a substrate of the APC/C (Pesin

and Orr-Weaver, 2007). As with Cort, such a sharp transition in Matrimony protein

levels suggests active degradation, potentially through the action of APCcoI.

Our quantitative mass spectrometry experiments (see above), indicated Mtrm is

enriched in cort mutant eggs. To confirm this, western blots were performed to

compare Mtrm protein levels in cort mutant eggs to heterozygous control unfertilized

eggs. In contrast to heterozygous unfertilized eggs, activated eggs laid by homozygous

cort females retained high levels of Mtrm protein, consistent with it being a substrate of

APCcor (Figure 3-3A,B). Moreover, unfertilized eggs laid by females mutant for

morula/APC2, a component of the APC/C itself, also showed elevated levels of Mtrm.

This shows APC/C function is necessary to trigger the decrease in Mtrm protein (Figure

3-31B). Importantly, fzy/cdc20 mutant unfertilized eggs did not show elevated Mtrm

levels, again illustrating Mtrm is not a general APC/C substrate (Figure 3-3B). Together

these data demonstrate the decrease in Mtrm protein upon meiotic completion (or

during meiosis 11) is dependent specifically on APCcort function. We hypothesized the

relatively large pool of Mtrm present in the ovary is necessary for proper progression

through meiosis, but such high levels may be detrimental in early embryogenesis.
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Figure 3-2. in vitro binding assays with cyclin A and CortAWD40.

A) Western blot showing in vitro translated Myc-tagged Fzy/Cdc20 stably binds to GST-

CycA. Myc-Cortex also binds, but somewhat less efficiently. Myc-CortexAWD40 (AA 1-

148 of Cortex) is impaired in its ability to bind Gst-Mtrm. Glutathione beads alone serve

as a negative control. Quantification indicates Myc-Fzy binds to GST-CycA 155x better

than to GST-Mtrm. 6xMyc-Cortex (full length) binds GST-Mtrm 5.8x better than 6xMyc-

CorttAWD40. About 60% of each pellet sample was subjected SDS-PAGE followed by

Western blotting (remaining pellet sample was used for B). Right side of panel shows

1 % of total input of in vitro translated 6xMycCort, 6xMycFzy/Cdc2O, and 6xMyc-

CortAWD40. Blot was probed with anti-Myc (9E10) antibody. Molecular weight markers

are indicated to the side of the blot. B) Coomassie stain of purified proteins used in

binding assay. 20% of the final washed pellet was subjected to SDS-PAGE followed by

coomassie staining. Molecular weight markers are indicated to the side of the gel.
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Figure 3-3. Cort activity is required for Mtrm destabilization.

A) Western blots showing cort homozygous and heterozygous mutant female oocytes

have equal amounts of Mtrm protein at metaphase I (stage 14 oocytes). Activated

(fertilized) eggs from cort mutant females have increased Mtrm levels compared to

control heterozygous unfertilized, activated eggs (cort/+). Molecular weight markers are

indicated to the side of the blot. B) Mtrm protein levels also are increased in unfertilized

eggs from morula transheterozygous females (mr1/mr) compared to unfertilized

controls (mr/+). However, fzy/cdc20 transheterozygous unfertilized eggs (fzy//fzy7 ) do

not show elevated Mtrm levels compared to control heterozygous unfertilized eggs

(fzy/+). All panels show western blots probed with the indicated antibody. Alpha-tubulin

was used to confirm equal loading. '+' indicates the presence of the CyO balancer

chromosome.. Molecular weight markers are indicated to the side of the blot.
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Requirement for APC motif in Mtrm for APCcort dependent destabilization

We exploited Drosophila cell culture to study the effects of Cort on Mtrm stability,

as it permits the expression of proteins in an easily manipulated system. Neither Cort

nor Mtrm is expressed endogenously in Drosophila Kc167 cell culture cells, but both

can be expressed transiently through transfection (Figure 3-4A). In a stable cell line

expressing Cort, Cyclin A protein levels were decreased markedly and Cyclin B levels

marginally (Figure 3-5A), indicating functional APCco". The changes in mitotic Cyclin

protein levels did not detectably affect cell cycle progression, however, as measured by

the mitotic index (Table 3) and FACS analysis (Table 4).

If Mtrm is targeted for degradation by APCcor, levels of Mtrm protein should be

reduced in the presence of Cort. Indeed, levels of a Myc-tagged Mtrm were reduced

when functional Cort was expressed (Figure 3-4A). Moreover, expression of functionally

null alleles of Cort, CortQW55 (a missense mutation) or CortRH6 5 (a nonsense mutation)

(Chu et al., 2001; Page and Orr-Weaver, 1996; Schupbach and Wieschaus, 1989),

failed to decrease Mtrm protein levels. Therefore, wild-type Cort function is required to

bring about the observed decrease in Mtrm protein. Consistent with APCcofI affecting

Mtrm levels through degradation, these cells contained similar amounts of mtrm

transcript, illustrating the effect is post-transcriptional (Figure 3-4B and C). Additionally,

reduction of Mtrm levels was not observed when a 6xMyc-tagged Fzy/Cdc20 was

expressed, again showing the selectivity of APCcort for Mtrm (Figure 3-5B).
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Figure 3-4. Cort expression leads to proteasome-mediated degradation of Mtrm in

cell culture.

A) Western blots showing levels of Mtrm and Cort in transfected Kc167 cells. pMT-cort

and pMT-6xmyc-mtrm were transfected into Kc167 cells. The form of transfected Cort is

indicated above each lane. Only wild-type Cort leads to decreased levels of tagged

Mtrm protein. The RH65 mutation results in a premature stop codon in Cort. Myc-Mtrm

band intensity (and SEM from two experiments) is quantified below the Myc-Mtrm panel.

Band intensity is normalized to tubulin and is expressed relative to empty vector. B/C)

Cells transfected with pMT-mtrm (lanes 1-3; lane 4 transfected with pMT-empty) and the

indicated form of Cort were split and subjected to both western blot (B) and quantitative

PCR (C). Myc-Mtrm band intensity is quantified as in A). For qPCR, mtrm transcript

levels are normalized to Actin5c and shown relative to empty vector. D) Western blot

showing Mtrm protein levels over time. Time indicates hours post MG132 washout. Rate

of Matrimony degradation is faster in the presence of Cortex versus empty vector. The

rate of degradation is slowed in continued presence of MG132. E) Quantification of -

MG132 blot in D) The 1, 2, and 4 hour time-points are averages of two experiments.

Mtrm amount is normalized to tubulin and shown relative to amount at 0 hr time point. F)

Illustration of candidate APC/C recognition motifs. G) The L21A mutation stabilizes

mCherry-Mtrm in embryos. Western blots of stage 14 oocytes and fertilized eggs (1hr

collection) are shown. The 4A mutant consists of L21A, R95A, R193A, and H94A (a

mutation in a possible APC/C initiation motif (Williamson et al., 2011)). Percentage

below mCherry egg lanes indicates remaining protein left, normalized to tubulin and

relative to amount at stage 14. * denotes cleavage product due to hydrolysis of

acylimine linkage in the mCherry tag (Gross et al., 2000). Myc-Mtrm was detected using

anti-Myc antibody (A,B,D) and mCherry-Mtrm was detected using anti-RFP (G).
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Total # Cells # Cells PH3 + % PH3 +
Cortex Stable Line 811 24 2.96
(Induced)
Cortex Stable Line 1452 45 3.10
(Uninduced)

Table 3. Quantification of mitotic index in the Cortex stable line.

Cells were induced (or not) with 0.5mM CuSO4. Total cells were counted using DAPI

and mitotic cells were counted using anti-phospho histone H3.

Cell Type CuSO4? %G1 %S %G2
Cortex Stable Line 0.5 mM CuSO4 (1 day) 13.3 6.15 67.4
Kc167 0.5 mM CuSO4 (1 day) 11 7.18 67.7
Cortex Stable Line No CuSO4 (1 day) 15.7 11.9 56.4
Kc167 No CuSO4 (1 day) 17.8 13.7 51.7
Cortex Stable Line 0.5 mM CuSO4 (2 day) 16.6 9.12 61.7
Kc167 0.5 mM CuSO4 (2 day) 14.1 9.7 62.7

0.5 mM CuSO4 (1 day) +
Kc167 MG132 (25uM; 8hrs) 3.78 0 88.7

Table 4 Analysis of Cortex stable line by FACS.

The stable Cortex cell line or Kcl 67 cells were incubated with or without CuSO 4 and cell

cycle progression was analyzed by FACs (after 1 or 2 days of treatment). Cells are

predominantly in G2, as is typical of Kc cells (Joyce et al., 2012). No significant cell

cycle arrest is induced by ectopic expression of Cortex. A significant arrest in G2 was

detected when MG1 32 was added to the medium for 8hrs.
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We next used this cell culture-based system to determine whether APCcort's

effect on Mtrm was truly the result of degradation. Mtrm protein was accumulated

during arrest with the proteasome inhibitor MG1 32, upon release of the arrest

translation was inhibited with cycloheximide and Mtrm protein levels examined over

time in the presence or absence of Cortex (Figure 3-4D,E). Mtrm protein levels

decreased rapidly,by 30 minutes, in the presence of Cort. Importantly, this decrease

was abolished in the continued presence of MG132 to inactivate the proteosome. Mtrm

levels remained higher when an empty vector was transfected in place of Cort. These

data establish that APCcOr affects Mtrm levels through proteasome-mediated

degradation. Given the decrease in Mtrm is mediated through degradation, we

searched Mtrm's primary amino acid sequence for APC/C recognition motifs that could

influence its stability during the oocyte-to-embryo transition. Four motifs previously

implicated in APC/C mediated degradation (Pines, 2011) are present within Mtrm's 217

amino acid sequence (Figure 3-4F). To examine the role these motifs play in Mtrm

protein stability at the oocyte-to-embryo transition, transgenic flies expressing mCherry-

Mtrm under the control of mtrm's endogenous promoter were created. mCherry-Mtrm

protein levels decreased at the oocyte-to-embryo transition as expected (Figure 3-4G,

lanes 1 and 7). Point mutants in the four candidate APC motifs were also examined for

their effect on (mCherry-) Mtrm protein stability. Whereas the G170A mutation and the

double R95A/R1 93A mutations did not stabilize mCherry-Mtrm in activated eggs (Figure

3-4G, compare lanes 2 and 8; 4 and 10 respectively), mutation of leucine 21 exhibited

partial stabilization (Figure 3-4G, lanes 3 and 9). A quadruple mutant of mCherry-Mtrm

that also contains the L21A mutation is partially stabilized as well (Figure 3-4G; lanes 5
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Figure 3-5. Levels of cell cycle proteins in cell culture system.

A) A cell line with a stable cort gene shows decreased Cyclin protein levels. Western

blots comparing levels of indicated proteins in a cort stable line and cells transfected

with pMT-eGFP instead. Both populations were also transfected with pMT-6xmyc-mtrm.

Molecular weight markers are indicated to the side of the blot. B) Expression of myc-

tagged Fizzy/Cdc20 does not decrease myc-tagged Mtrm levels. Amount of plasmid

used to transfect cells is indicated above each lane. Cells were also transfected with

equal amounts of pMT-6xmyc-mtrm (except last lane). The *s indicate non-specific

bands. Both Myc-Fzy and Myc-Mtrm were detected using anti-myc antibodies.

Molecular weight markers are indicated to the side of the blot.
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and 11). Importantly, both Mtrm-L21A and Mtrm-4A are functional, as judged by their

ability to rescue mtrm"- induced nondisjunction (Table 5). Given mCherry-Mtrm-L21A is

still partially degraded at the oocyte-to-embryo transition, L21 is not likely to be the only

residue responsible for Matrimony degradation. It is intriguing to note, however, that L21

is part of the related LxExxxN APC/C destruction motif found in Spo13, another meiosis-

specific substrate of the APC/C (Sullivan and Morgan, 2007).

Genetic interactions reveal an antagonistic relationship between Cort and Mtrm

We next investigated the genetic relationship between Cort and Mtrm, specifically

in the background of a mutant with low APCcor activity. Mutants with low APCcort activity

arrest without completing meiosis, presumably due to a failure to degrade key

substrates. If Mtrm were such a substrate, we hypothesized that decreasing its levels

could lead to suppression of the reduced APCcor phenotype. All alleles of cort are null

(Page and Orr-Weaver, 1996), however mutation of Cort's dedicated transcription factor

grauzone results in decreased levels of cort transcript (Harms et al., 2000) and protein

(Pesin and Orr-Weaver, 2007). Activated eggs laid by grauzone mutant females also

arrest in meiosis II (just as cort eggs do) (Page and Orr-Weaver, 1996), thus illustrating

that such low levels of APCcor cannot efficiently cause degradation of key substrates.

Decreasing levels of the Mtrm substrate may be sufficient to permit progression past the

meiotic arrest. Alternatively, the reduced levels of one key substrate may afford low

APCcor enough opportunity to target its remaining substrates for degradation. Thus we

used this sensitized background to test whether decreased mtrm permitted progression

past the grauzone metaphase 11 arrest.

112



Genotype Adjusted Total** %X NDJ % 4th NDJ
FM7w/yw; spanol 1117 2.1 0.6
No rescue construct* 1572 35.8 20.2
mtrmWT 1574 1.4 2.6
mtrmL 2 1A* 2193 1.1 2.6
mtrm4A* 1540 1 3.9

Table 5. Mtrm-4A and L21A are competent to rescue chromosome non-

disjunction in mtrm/+ heterozygotes.

Both mCherry-Mtrm-L21A and 4A can rescue non-disjunction caused by heterozygous

deletion of mtrm.

* Full genetic background is FM7w/yw; nanos-GAL4:VP16/mtrDf(3L)6 6C-T2-10; spaol

**Adjusted totals were calculated as in Hawley et al (Hawley et al., 1992).
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Strikingly, when one copy of the mtrm gene was removed, we observed partial

suppression of the grau phenotype. grau eggs typically arrest with two spindles at

metaphase 11, but grau eggs also mutant for one copy of mtrm contained, on average,

an increased number of spindles (Figure 3-6). The increase in spindle number indicates

some form of progression past the typical metaphase 11 arrest of grau eggs. These

spindles appear acentriolar, and thus are likely not mitotic. Supporting this, no gamma-

tubulin (a common component of centrosomes) is present at the spindle poles (Figure

3-7). These likely arise from completion of meiosis followed by all meiotic products

(including polar bodies) forming bipolar spindles and possibly dividing, reminiscent of

the effect of polo mutation on meiosis II (Riparbelli et al., 2000) Importantly, the

observed increase in spindle number is not due to a restoration of Cort protein levels

(Figure 3-8). Thus the mtrm mutation partially suppresses the grau phenotype, allowing

further progression through the oocyte-to-embryo transition.

Increased Mtrm levels in the embryo lead to developmental defects

Proteins and mRNA deposited into the oocyte during oogenesis control the early

embryonic divisions, but it is possible some of these proteins function in meiosis and

then need to be removed. We hypothesized degradation of Mtrm at the oocyte-to-

embryo transition by APCcOr is a crucial step necessary to ensure proper development

of the syncytial embryo. To test this hypothesis, we overexpressed a transgenic mtrm

using the UAS-GAL4 system. 3xFLAG-Mtrm was overexpressed in the ovary using the

maternal alpha tubulin driver, resulting in excess Mtrm being present in the early

embryo (Figure 3-9A/B).
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This surplus of Mtrm caused a variety of defects in early embryogenesis, which

we categorized into three phenotypes (Figure 3-10A-C). We observed some embryos

undergoing nuclear fallout (Figure 3-1OA). During nuclear fallout, nuclei at the surface of

an embryo that have detached from their centrosomes fall back into the middle of the

embryo (Takada et al., 2003). We also found embryos that exhibited complete mitotic

catastrophe (Figure 3-1 OB), showing only scattered DNA with no real spindle

organization. DNA masses seemed to contain varying chromosomal content, and were

usually associated with tubulin. These embryos were found with variable amounts of

total DNA, some containing DNA over the entire expanse of the embryo (late arrest),

while others only contained DNA in a particular section of the embryo (early arrest).

Lastly, some embryos showed scattered DNA/tubulin over a portion of the embryo,

whereas the rest of the embryo appeared to reach the blastoderm stage (Figure 3-1 OC).

These embryos seemingly underwent an abortive/abnormal development up to the

blastoderm stage. Given the centrosome's crucial role in spindle organization and the

requirement for Polo kinase for proper centrosome attachment in the early embryo

(Archambault et al., 2007), there are many ways these phenotypes could be obtained.

In summary, these data illustrate that the downregulation of Mtrm protein following

meiosis is biologically significant to early embryonic development.

The defects observed from mtrm overexpression likely result from low Polo

kinase activity, given Mtrm's known function as its inhibitor. If true, mutating polo should

further exacerbate the mtrm overexpression phenotype. Indeed, overexpression of Mtrm

in conjunction with heterozygous polo" results in a substantially higher proportion of

defective embryos (Figure 3-10H). Additionally, the observed defects are often more
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Figure 3-8. Cort is not restored in grauQQ36/RMI; Mtrm126/+ mutants

The partial suppression of the grau phenotype in grauQQ36/RM 61; mtrm 126/+ activated

eggs is not due to restoration of Cort protein. Western blot showing presence of Cort in

grau/CyO ovaries but not grau or grau; mtrm126/+ ovaries. Cortex levels are also not

restored in grauQQ3 6/RM61; mtr 126/+ fertilized eggs. * indicates a non-specific band.

Ovary and fertilized eggs panel are from two separate blots. Molecular weight markers

are indicated to the side of the blot.
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Figure 3-6. cort and mtrm show an antagonistic relationship in vivo.

A/B) Fertilized eggs from females of the indicated genotypes are shown. When mtrm is

mutated in conjunction with grauzone, an increased number of spindles is observed.

Even mutation of a single copy of the mtrm gene dominantly suppresses the grauzone

phenotype. Tubulin is shown in green and DNA in blue. Scale bar indicates 50um.

C) Quantification of eggs from A and B. The TM6 balancer siblings served as the wild-

type control for mtrm. n=167 for grauQQ36 ,M6 ,;mtrm 1261+ and n=67 for

grauQQ36fM61; TM6/+.
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Figure 3-7. grau;mtrm/+ spindles are meiotic in structure

A) An egg laid by a grauQQ36/RM61;mtrm 126/+ female is shown. A free centrosome

(presumably deposited by the sperm) is indicated by the arrow. Although the free

centrosome shows the presence of both alpha-and gamma-tubulin, the spindles

contained in the egg are not enriched for gamma-tubulin at their poles. Scale bars

represent 50um.

B) Mitotically dividing embryo from an OrR female. Centrosomes are readily detected by

the presence of gamma-tubulin at the spindle poles. Scale bars represent 50um.
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severe, with DNA completely fragmented and tubulin in almost random configurations

(Figure 3-1OG). In our hands the heterozygous polo1 mutation alone also exhibited

defects similar to mtrm overexpression alone, but these fell primarily into one

phenotypic category (Figure 3-1OH). These data are consistent with increased Mtrm in

the early embryo causing developmental defects due to excessive inhibition of Polo

kinase activity (and potentially other, unknown targets).

To address the possibility that Matrimony affects proteins other than Polo, we

expressed a mutant form of Matrimony deficient in Polo binding. Mtrm-T40A is unable to

bind Polo, and cannot rescue chromosome non-disjunction in mtrm/+ heterozygotes

(Bonner et al., 2013; Xiang et al., 2007). In contrast to wild-type Matrimony, expression

of Mtrm-T40A did not cause any developmental defects (Figure 3-10H). Importantly,

expression of both the WT and T40A transgenes is similar using the maternal alpha

tubulin driver (Figure 3-9C). Thus, high levels of Matrimony in the early embryo cause

developmental defects due to inhibition of Polo kinase activity.

Discussion

Despite its pivotal role in development, regulation of the oocyte-to-embryo

transition is poorly understood. Given the maternal stockpiles in the oocyte, mechanistic

differences between meiosis and mitosis, and meiosis-specific forms of the APC/C, it is

crucial to determine which proteins need to be degraded to switch correctly from

meiosis to mitosis. The meiosis-specific activator Cort is essential for the transition from

oocyte to embryo despite Fzy/Cdc20's presence. Cortex's existence raised the

possibility that degradation of particular meiosis-specific proteins may be necessary for

the onset of embryogenesis. Here we show this to be the case: the Cort form of the
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Figure 3-9. Comparison of Mtrm protein levels from various transgenic lines.

A) Western blot showing protein amounts from the indicated genotypes. (UAS) 3xFLAG-

Mtrm is seen at higher levels than stabilized mCherry-Mtrm (expressed from the

endogenous mtrm promoter) in both stage 14 oocytes and activated, fertilized eggs

(collected for 1 hour and left to develop for 1 hour in A. Molecular weight markers are

indicated to the side of the blot.

B) Activated eggs were collected for 30 minutes and left to develop for 2 or 3 hrs.

Molecular weight markers are indicated to the side of the blot.

C) Activated eggs were collected/aged as indicated. Molecular weight markers are

indicated at the side of the blot. Stg. 14s and activated eggs are from two different blots.
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APC/C is required for Mtrm's destruction at the oocyte-to-embryo transition.

Furthermore, reduced levels of Mtrm heading into embryogenesis are necessary for

proper development, indicative of requirements for differential levels of the protein in

meiosis and mitosis.

A requirement for reduction in levels of Mtrm is illustrated by the deleterious

effects of overexpression of the protein in the embryo. A crucial role for Mtrm

degradation in the transition from oocyte to embryo is supported by the observation that

reduction in levels of the protein can suppress the developmental block caused by low

activity of Cort. In the grau mutants, levels of Cort are reduced, and the mutant oocytes

arrest in meiosis. By mutating a single copy of the mtrm gene this arrest was

overcome, the eggs progressed and several nuclear divisions occurred.

Mtrm provides key insights into how protein degradation can be regulated at the

oocyte-to-embryo transition. Mtrm is not completely removed from the embryo,

illustrating that its protein levels are important and degradation does not have to be an

all-or-none process. In this case, APCcOrI acts as a rheostat, allowing for high levels of

Mtrm in meiosis and low levels in mitosis. Consistent with this, it is interesting that

stabilized forms of Mtrm (Figure 3-4G) present at lower levels than the overexpressed

wild-type form (Figure 3-9A/B) did not exhibit an embryonic phenotype (only 2/69

mCherry-L21A-mtrm embryos exhibited abnormal development). mCherry-Mtrm also is

present at levels lower than endogenous Mtrm in stage 14 oocytes, and therefore may

never reach high enough levels to be able to cause the more substantial developmental

defects seen with the overexpressed form of Mtrm. This offers evidence for a specific

threshold of Mtrm that can be tolerated in the early embryo.
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Polo kinase is a critical regulator of both mitosis and meiosis, and is conserved

from yeast to humans. polo (and its orthologs) help regulate mitotic/meiotic entry,

chromosome segregation, centrosome dynamics, and cytokinesis (Archambault and

Glover, 2009). With such diverse roles during mitosis and meiosis, Polo function must

be carefully regulated. Upregulation of human Polo-like kinase (PlkI) is prevalent in

many human cancers, and identifying potent inhibitors of PIk1 is the focus of much

research (Strebhardt and Ullrich, 2006). In Drosophila, without inhibition by Mtrm during

prophase of meiosis I, Polo prematurely triggers nuclear envelope breakdown (through

activation of the Cdc25 phosphatase) and eventually leads to chromosome

nondisjunction (Xiang et al., 2007). Mutation of polo has direct consequences on female

meiotic progression as well. During Drosophila embryogenesis, expression of Scant, a

hyperactive form of the Polo antagonist Greatwall kinase, leads to dissociated

centrosomes from prophase nuclei (Archambault et al., 2007). Embryos homozygous

for polo' show a wide array of defects, including irregular DNA masses with

disorganized spindles (Riparbelli et al., 2000), reminiscent of our mtrm overexpression

phenotype (Figure 3-10). These data illustrate the importance of Polo kinase in both

mitosis and meiosis, and that improper regulation of its activity can have disastrous

consequences on cell division.

Current evidence suggests that Mtrm regulates Polo activity during both meiosis

and mitosis (Archambault et al., 2007; Von Stetina et al., 2011; Xiang et al., 2007). Our

results shed light on how the oocyte/embryo might use the same protein to regulate

Polo during such drastically different cell divisions. Our data indicate meiosis requires

high levels of Mtrm protein/Polo inhibition, while low levels of Mtrm are needed for early
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Figure 3-10. Developmental defects result from increased Mtrm expression.

A,B,C) Representative images of fertilized eggs laid by females overexpressing

3xFLAG-Mtrm using the MATalpha4-GAL-VP16 driver. A) Embryo undergoing 'nuclear

fallout.' Nuclei can be seen having fallen below the surface of the embryo (white

arrows). B) An embryo showing scattered DNA with disorganized tubulin. C) An embryo

that underwent uneven development across its length, showing abnormal development

up to the blastoderm stage.

D,E,F) Control fertilized eggs showing proper development at comparable stages to

those in A-C). Scale bar indicates 100um in A, C, D, and F. It indicates 20um in B, E,

and G. G) A fertilized egg laid by females overexpressing 3xFLAG-Mtrm and

heterozygous for polo". These embryos predominantly had scattered DNA and

disorganized tubulin. H) Quantification of embryos shown in A-G. The genotype for

overexpression Mtrm is UAS3xFLAGmtrm/+; P(mata4-GAL-VP16)V37/+ (n=93), the

genotype for polo'1/+ is polo 1/ P{mata4-GAL-VPI6}V37 (n=137), +/+ is the control for

driver alone and is TM6,Sb/P{mata4-GAL-VP16}V37 (n=109), the genotype for

overexpression Mtrm;polo"/+ is UAS3xFLAGmtrm/+; polo11/P(mata4-GAL-VP16)V37

(n=86), and the genotype for Overexpression Mtrm-T40A is UAS3xFLAGmtrm-T40A/+;

P{mata4-GAL-VP16}V37/+ (n=45).
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embryogenesis. This is likely a mechanism to allow for fine tuning of Polo activity during

the rapid divisions of the syncytial embryo.

The results here provide an interesting biological counterpoint to a recent study

on the S. cerevisiae meiosis-specific APC/C activator Ama1. Previously, Amal had

been known to act later in meiosis, regulating spore formation and Cdc20 degradation

at meiosis II (Cooper et al., 2000; Tan et al., 2011). Okaz et al. showed APCAmal also

acts earlier in meiosis to clear out mitotic regulators (including Polo/Cdc5) during the

extended meiotic prophase 1. Consequently, cells lacking Amal exit prematurely from

prophase I (Okaz et al., 2012). It is interesting that two meiosis-specific APC/C

activators have now been tied to regulation of Polo kinase. Amal has a direct, inhibitory

effect early in meiosis, whereas Cort seemingly activates Polo indirectly through

degradation of Mtrm late in meiosis.

Mtrm is not likely to be the only specific substrate of Cort, and it will be exciting to

search for more APCcor substrates in the future. It will also be interesting to examine

whether Cort targets continue to follow a graded versus all-or-none pattern of

degradation during the oocyte-to-embryo transition. Further study of meiosis-specific

APC/C activators will give valuable insight into the distinctions between meiotic and

mitotic regulation and the control of the onset of embryogenesis.

Materials and Methods

Fly stocks

The grauRM6 1, grauQQ36 CortRH65 CortQW55 (Chu et al., 2001; Page and Orr-Weaver,

1996; Schupbach and Wieschaus, 1989), mtrm126 (Xiang et al., 2007), mr1 ,mr2
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(Kashevsky et al., 2002; Reed and Orr-Weaver, 1997) twineHB5 (Courtt et al., 1992;

Schupbach and Wieschaus, 1989), polo 1 (Archambault et al., 2007), polo9 (Donaldson et al.,

2001), and fzy, fzy7 (Dawson et al., 1993) alleles have all been described. The UASp

myc-cort transgenic and lines were generated previously (Pesin and Orr-Weaver, 2007)

and was driven by w-;nanos-GAL4:VP16 (Van Doren et al., 1998). The UASp-3xFLAG-

mtrmwT, UASp-3xFLAG-mtrmT 40A , and mCherry-mtrmwT (driven by its genomic

promoter) were generated previously (Bonner et al., 2013; Xiang et al., 2007). mCherry-

mtrm4A, mCherry-mtrmL21A, mCherrymtrG170A, and mCherry-mtrMR95R193Awere

generated for this study (see below). w*; P{mata4-GAL-VP16}V37 was obtained from

Bloomington Stock Center (BL 7063). Oregon R was used as a wild-type control. Flies

were maintained at 22 or 25 *C (Greenspan, 2004).

Transgenic Lines

To construct the mtrm constructs driven by the genomic mtrm promoter, the following

fragments were generated by PCR from a wild-type mtrm construct and pFPV-mCherry

(a gift from the Susan Abmayr lab) and ligated into pBluescriptSKl+: BamHl-mtrm

5'UTR-Avril, Avril-mCherry-Pacl, Pacl-mtrm + 3'UTR-Xhol. The Stowers Molecular

Biology facility deleted the Avril and Pacl sites using the Stratagene QuikChange II XL

Site-Directed Mutagenesis Kit. The Stowers Molecular Biology facility made the point

mutations using the Stratagene QuikChange I XL Site-Directed Mutagenesis Kit.

The insert was digested and ligated into pCasPeR4-attB, and the sequence verified.

The pCasPeR4-attB-mtrm constructs were injected into y,w; attP40 embryos and

integrations into the attP40 site were recovered.

IP-Mass Spec
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Whole ovaries were dissected from 100 to 200 fattened females containing the UASp-

myc-cort transgene being driven by nanos-GAL4. Ovary protein extracts were made by

homogenizing in homogenization buffer (25 mM HEPES [pH 7.5], 0.4 M NaCl, 0.1 mM

EDTA, 0.1 mM EGTA, 1 mM PMSF, 10% glycerol, complete mini EDTA-free protease

inhibitors, 1 tablet/10 ml [Roche]). 110 pl Protein G magnetic bead slurry was coupled

(and/or crosslinked using dimethylpimelimidate [Sigma]) to 27.5 pi anti-Myc [9e10]

antibody or mouse random IgG. Whole ovary extract was split evenly and incubated

with the anti-Myc or random IgG beads for 3hrs at 4 *C. Beads were then washed in IP

buffer (25 mM HEPES [pH 7.5], 100 mM NaCl, 1 mM EGTA, 0.1% Triton X-100, 10%

glycerol, complete mini EDTA-free protease inhibitors, 1 tablet/10 ml [Roche]) once, IP

buffer + 0.5M NaCl once, then washed in IP buffer four more times. Bound proteins

were eluted in sample buffer. Immunoprecipitated proteins were resolved by SDS-

PAGE and silver stained. Bands were cut from the silver stained gel and reduced,

alkylated and digested with trypsin. The resulting peptides were extracted and the

volume reduced to 15 pl. The digestion extracts were analyzed by HPLC/ tandem mass

spectrometry using a Waters NanoAcquity UPLC system and a ThermoFisher LTQ

linear ion trap mass spectrometer operated in a data dependent manner. Tandem

mass spectra were extracted by ExtractMSn. Charge state deconvolution and

deisotoping were not performed. All MS/MS samples were analyzed using Mascot

(Matrix Science, London, UK; version 2.4.0). Mascot was set up to search the

refseqfly_lc2_042413 database (27878 entries) assuming the digestion enzyme

trypsin. Mascot was searched with a fragment ion mass tolerance of 1.00 Da and a

parent ion tolerance of 3.0 Da. lodoacetamide derivative of cysteine was specified in
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Mascot as a fixed modification. Oxidation of methionine was specified in Mascot as a

variable modification. Scaffold (version Scaffold_4.0.5, Proteome Software Inc.,

Portland, OR) was used to validate MS/MS based peptide and protein identifications.

Peptide identifications were accepted if they could be established at greater than 95.0%

probability by the Peptide Prophet algorithm (Keller et al., 2002). Protein identifications

were accepted if they could be established at greater than 95.0% probability and

contained at least 2 identified peptides. Protein probabilities were assigned by the

Protein Prophet algorithm (Nesvizhskii et al., 2003). Proteins that contained similar

peptides and could not be differentiated based on MS/MS analysis alone were grouped

to satisfy the principles of parsimony.

Quantitative Mass Spectrometry

Eggs were collected from cortRH65 females (kept with OrR males) and OrR virgins

(mated to twineHB5 males). Collections lasted for two hours, after which eggs were

placed at 40C until sample processing could take place. Eggs of each genotype were

pooled together and homogenized in 10 volumes of SDT buffer (4% w/v SDS, 100mM

Tris-HCI pH 7.6 and 0.1M DTT), boiled at 950C for 5 minutes, sonicated, spun at 13,000

RPMs for 5 minutes at 4*C, and the supernatant was frozen in liquid nitrogen and kept

at

-80*C. Protein concentration was determined by comparison to egg lysates of known

concentrations on a Gel Code Blue (Pierce) stained SDS-PAGE gel followed by

quantification using ImageJ.

Samples were submitted to the proteomics core facility at EMBL (Heidelberg, Germany)

for quantitative mass spectrometry analysis. In brief, protein digestion was done as
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previously described (Wisniewski et al., 2009), as was dimethyl labeling (Boersema et

al., 2009) and LC-MS/MS (Hansson et al., 2012). Analysis was performed using

MaxQuant software. Statistical significance was determined as in Cox and Mann

(2008).

Westerns/lImmunoblots

Whole ovaries and staged egg chambers were hand dissected from fattened females

and homogenized in NP-40 lysis buffer (150mM NaCl, 50mM Tris, pH 8.0, 2.5mM

EDTA, 2.5mM EGTA, 1%NP-40, 1mM PMSF, complete mini EDTA-free protease

inhibitors, 1 tablet/10 ml [Roche]). Unfertilized eggs were obtained by mating virgin

females of the indicated genotype to sterile twineHB5 males and collecting for 2hrs (or

O/N in the case of mr females). The eggs were then dechorionated in 50% bleach, and

homogenized in NP-40 lysis buffer. Protein lysates were spun at 14,000 RPMs for 15

minutes at 40C, and supernatant was used as protein sample. Equal protein amount

was loaded on 10% SDS-PAGE gels as determined with Bradford reagent [BioRad].

Protein was transferred to Immobilon-P membranes (Millipore).

Antibodies used in this study were guinea pig anti-Mtrm (1:1000) (Xiang et al., 2007),

mouse anti-CycA (1:50) [Developmental Studies Hybridoma Bank], mouse anti-CycB

(1:50) [Developmental Studies Hybridoma Bank], rat anti-tubulin (yoll/34 and yll/2)

(1:400-1:1000) [Novus Biologicals], guinea pig anti-Cort (1:2000) (Pesin and Orr-

Weaver, 2007), mouse anti-Myc 9E1 0 (1:400-1:1000) [Covance]. Mouse anti-RFP 3F5

(Chromotek) (1:500) was used to detect mCherry. Secondary antibodies used were

Peroxidase-conjugated anti-mouse, Peroxidase-conjugated anti-guinea pig, and

Alkaline Phosphatase-conjugated anti-rat (1:10,000; Jackson ImmunoResearch).
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In vitro binding assays

In vitro binding assays using purified GST-Mtrm were done essentially as described

(Gutierrez et al., 2010), with some adjustments. mtrm cDNA (LD47919) was cloned into

pGEX6p-1 (GE Healthcare) for expression of GST-Mtrm. 6xmyc-cort, 6xmyc-cort

AWD40 and 6xmyc-fzy/cdc20 cDNAs were cloned into pOT2. cortAWD40 encodes the

first 444 nucleotides of the cort ORF, followed by a stop codon (TGA). In vitro

transcription/translation was done using the TnT T7 Coupled Reticulocyte Lysate

System (Promega) according to manufacturer's instructions. 5 pl of the in vitro

translation reaction was added to beads in 500 pl IP buffer and rotated for 2hrs at 4 0C.

Beads were washed 3x in IP buffer and bound proteins were eluted with 40 pl 2x

sample buffer. 10 pi was analyzed by Coomassie to check levels of GST tagged

proteins, and 25 pl was analyzed by SDS-PAGE/ western blotting.

Cell culture, Transfection, qPCR, and FACS analysis

Kcl 67 Drosophila cell culture cells were maintained at 25 *C in Schneider's serum

media (Invitrogen) supplemented with 10% FBS (Sigma) and 50ug/ml Pen/Strep.

pMT-6xmyc-mtrm and pMT-cort were generated by cloning the respective constructs

into pMT-puro under control of the metallothionein promoter. Kc167 cells were

transfected with the indicated constructs using Cellfectin II (Invitrogen) according to

manufacturer's instructions. 48hrs after transfection, protein expression was induced

with 0.5mM CuSO 4 for 1-3 days. After induction, protein lysate was prepared by

homogenizing cells in NP-40 lysis buffer for SDS-PAGE/Western as described.
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The Cort stable line was generated by transfecting Kc167 cells with pMT-Cort as above,

and selecting for stable transfectants with puromycin (5ug/ml) over multiple passages

for -3 weeks.

For quantitative PCR, transfected Kc cells from a T25 (5ml) flask were resuspended in

2mls of 1xPBS. 1.2 mls was used to make protein extract as described and subjected to

immuno blotting. 800 pl was used to isolate total RNA for absolute qPCR. Primers

against mtrm were used to measure transgene expression, and primers against act5C

were used for normalization. Quantitative PCR was performed using PerfeCTa SYBR

Green FastMix (Quanta BioSciences) and analyzed on 7300 qPCR system software

(Applied Biosystems).

For FACS analysis, the Cortex stable line or Kc cells alone were grown with or without

CuSO 4 for one or two days. For proteasome inhibition, MG132 was added to 25uM 8hrs

before cells were to be fixed. Kc cells were first washed in 5mls 1xPBS, and

resuspended in 500ul PBS. Cells were then transferred into 4.5mls ice cold 70%

ethanol and rotated for 2hrs at 40C. Fixed cells were kept at -20*C until used for cell

cycle analysis. Cells were pelleted at 2000 RPMs for 5 minutes and washed 2x in 5mls

PBS (once in PBS, spun 2000 RPMs for 10 minutes). Cells were resuspended in 500ul

PBS containing 50ug/ml propidium iodide, 0.15% Trition X-100, and 100ug/ml RNAse A,

and rotated O/N at 40C. Cells were then filtered and run on cell analyzer for cell cycle

analysis.

Mtrm in vivo Degradation Timecourse

Kc167 cells in T75 flasks were transfected as above with pMT6xmyc-mtrm and either

pMT-cort or pMT-empty vector. 48hrs after transfection, CuSO 4 was added to the

132



medium at a final concentration of 0.5mM. At the same time, MG1 32 (EMD Chemicals)

was added to the media to 25uM. After eight hours of induction/treatment, cells were

washed twice with serum media to remove MG132 and CuSO 4 and then resuspended

in 7mls serum media. 700ul of resuspended cells were added to 5mls fresh media in

T25 flasks containing 100 uM cycloheximide (Sigma-Aldrich) with or without MG132

(25uM). Cells were allowed to grow for the indicated amounts of time, and then were

harvested for protein extraction/western blotting as above.

Non-disjunction Assays

Non-disjunction assays were carried out as in Bonner et al (Bonner et al., 2013).

Embryo Collection and Immunofluorescence

Females were allowed to lay eggs for 2hrs (Figure 3-6) or 1-2hrs with 3hr aging (Figure

3-10). Eggs were prepared for immunofluorescence as described (Pesin and Orr-

Weaver, 2007). Propidium iodide (Figure 3-10) or DAPI (Figure 3-6) was used to stain

DNA and anti-alpha tubulin [DM1A]-FITC (1:250) or anti-alpha tubulin (yol 1/34) 1:500

was used to visualize microtubules. Anti-gamma-tubulin (GTU-88; Sigma-Aldrich) was

used at 1:500 to visualize gamma-tubulin on centrosomes. Anti-phospho-H3 (Rabbit

polyclonal; Upstate/Millipore) was used at 1:300. When appropriate, secondary

antibodies used were Alexa-488 anti-rat and Alexa-568 anti-mouse (1:1000; Life

Technologies).
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Chapter Four

Discussion and Future Perspectives
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I. Introduction

Mitosis and meiosis exist to complete two very different tasks. Whereas mitotic

divisions maintain diploid DNA content from mother to daughter cells, meiosis halves

the genomic content of a germ cell. This reduction ensures restoration of the diploid

state at fertilization and pronuclear fusion. To reduce the genomic content successfully,

a number of meiosis-specific processes must occur. Meiotic recombination, segregation

of homologs at meiosis I, and segregation of sister chromatids at meiosis 11 all require

distinct meiotic regulation. The discovery and characterization of meiosis-specific

APC/C activators have shed light on the differential regulation surrounding meiosis.

Both of the meiotic APC/C activators in yeast are required for proper meiotic

progression. Amal (S. cerevisiae) and Mfr1 (S. pombe) play roles late in meiosis and

are necessary for proper spore formation (Blanco et al., 2001; Cooper et al., 2000).

Additionally, Amal regulates the lengthened prophase of meiosis I, ensuring proper

timing of metaphase onset (Okaz et al., 2012). In Drosophila, sex-specific meiotic

activators exist, and an exciting area of research is to find out why these sex-specific

activators evolved and what function they serve in meiotic progression. In all cases, a

mitotic APC/C activator is expressed alongside the meiosis-specific one (Pesin and Orr-

Weaver, 2008), indicating specific roles for both types of activator in meiosis.

During oogenesis, both cort and fzy/cdc20 are expressed and necessary for

meiotic completion (Page and Orr-Weaver, 1996; Swan and Schopbach, 2007). Some

evidence indicates they may regulate substrate degradation at the spatial level. During

mitosis of syncytial embryos, Cyclin B associated with the mitotic spindle is degraded at
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anaphase onset (Raff et al., 2002). The same holds true for the meiotic spindles of

meiosis II (though with slightly different timing). cort and cdc20/fzy mutants both show

elevated levels of Cyclin B on metaphase I spindles, but in different patterns (Swan and

Schupbach, 2007). Whereas spindles in cort eggs accumulate Cyclin B at the spindle

midzone, fzy/cdc20 mutants accumulate Cyclin B along the length of the entire spindle.

These data suggest Cort and Fzy/Cdc20 play unique roles in degradation of substrates

at distinct spatial locations.

Might these activators also target a unique set of substrates distinct from the

mitotic APC/C activators also present during meiosis? The current study supports this

hypothesis, showing the female, meiosis specific APC/C activator Cortex specifically

targeting the female-specific protein Matrimony (Mtrm) for degradation at the oocyte-to-

embryo transition (Whitfield et al, submitted, Chapter 3).

II. A Search for Meiosis-Specific Substrates of APCcor (Genetic

Approach)

A deficiency screen to identify substrates of Cortex was undertaken and

identified numerous hits (at the deficiency level). The screen was designed to require

dominant suppression by any interacting deficiencies and should therefore identify only

the strongest genetic interactors of cort (by proxy of grauzone). Although the screen

identified numerous suppressing regions, isolation of single genes within them proved

unsuccessful. Given that suppressing regions could be narrowed down with smaller

deficiencies (typically from different deficiency collections), secondary background

mutations on the deficiency chromosomes are an unlikely cause of genetic suppression.

In the cases described in this study, it is likely that the actual genes responsible for
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suppression were simply not tested. This bottleneck stems from a lack of available

alleles to properly test all genes within a suppressing region. In the case of Exe19012,

where only one annotated gene is found within the suppressing region, it is possible the

deficiency uncovers the regulatory region of a nearby gene, thus lowering its

expression. This possibility is bolstered by the ability of a nearby deficiency to also

suppress (BSC137; data not shown). It is also possible that a protein coding gene

within the region has not been annotated or that a noncoding RNA is responsible.

l1l. A Search for Meiosis-Specific Substrates of APCcor (Biochemical

Approach)

This study identified Matrimony as a substrate of APCcoft. In vivo, Mtrm protein

levels were found to decrease rapidly upon the oocyte-to-embryo transition, and this

decrease relied on cort and morula/apc2 activity (Chapter 3). Moreover, this

degradation is dependent on the leucine 21 of Mtrm's primary amino acid sequence.

Mutation of this motif to alanine resulted in partially stabilized protein after the oocyte-to-

embryo transition. Strikingly, L21 is found within the sequence LxExxxN, a motif found

to be necessary for APC/C mediated degradation of the meiosis-specific yeast protein

Spol3 (Sullivan and Morgan, 2007). While not targeted for degradation by the meiosis-

specific APC/C activator Amal, Spol3 is one of the only known meiosis-specific

substrates of the APC/C.

We wondered whether the LxExxxN motif might be common among meiotic

proteins. With the help of the BaRC bioinformatics group, a search for Drosophila

proteins harboring the LxExxxN motif was performed. 1,882 genes unique genes were

found to contain this motif. A careful evaluation of the proteins identified still needs to
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be performed, but it is interesting to note that the genes identified were enriched for GO

categories such as cell cycle, cell cycle regulation, and meiosis 1.

Cortex also was shown to mediate Mtrm degradation in a secondary biological

context. Although not endogenously expressed in Kc167 Drosophila cultured cells,

plasmids encoding both Cortex and Mtrm were transiently transfected. It was found that

expression of a wild-type form of Cortex specifically decreased Mtrm protein levels.

This decrease in protein levels was found to be post-transcriptional and dependent on

proteasome activity. In the absence of a functional in vitro ubiquitination assay, this

system can still illustrate the effect Cort exerts on its substrates.

Given that Matrimony protein levels are severely down regulated at the oocyte-

to-embryo transition, we hypothesized that excess Mtrm protein would be detrimental to

embryonic development. Overexpression of Mtrm does lead to severe developmental

defects, but only in a small fraction of embryos. The overexpressed Mtrm is still subject

to proteolysis, and so only a small fraction of what is initially overexpressed makes it

into the early embryo. It would be useful to create transgenic flies capable of

overexpressing the stabilized L21A mutant form of Matrimony. In addition to being

initially overexpressed, Mtrm-L21A would persist at higher levels longer into

embryogenesis, thus likely affecting a larger number of embryos.

IV. Implications for Human Meiosis

Faithful meiotic chromosome segregation seems to be a specific problem for

humans. The risk of mis-segregating a chromosome during meiosis in S. cerevisiae is

estimated to be 1 in 10,000 and about 1 in 2,000-6,000 in Drosophila. Rates are

considerably higher in mammals. Mice are estimated to experience non-disjunction at a
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rate of around 1% (Hassold and Hunt, 2001; Hunt et al., 2003; Koehler et al., 1996;

Sears et al., 1992). The error rate in humans however, is even higher. 1-2% of sperm

are estimated to be aneuploid, while a striking 20% of eggs are thought to contain

incorrect chromosomal content (Delhanty, 1997; Hassold and Hunt, 2001; Volarcik et

al., 1998). In Drosophila, oocytes lacking Cortex exhibit signs of chromosome mis-

segregation during meiosis I (Page and Orr-Weaver, 1996). The exact cause of this

mis-segregation is unknown, but identifying the reason(s) should shed light on the

general processes that can go wrong during meiosis. This high rate of error in the

human egg is partially attributed to the long prophase I arrest an egg must tolerate

during a female's reproductive lifetime. It is thought that abnormal spindle morphology

and loss of proper chromosome cohesion over time contributes to increased incidence

of aneuploidy in older females (Kurahashi et al., 2012; Revenkova et al., 2010; Volarcik

et al., 1998). These data illustrate the importance of understanding the prophase I

arrest and how it is properly regulated for such a long period of time in humans. Study

of factors directly involved in maintenance and regulation of the prophase I arrest will

aid in this endeavor. Mtrm is absolutely essential for maintenance of the prophase I

arrest during Drosophila oogenesis and its heterozygous mutation can lead to

chromosome non-disjunction (Xiang et al., 2007). It is exciting to speculate the

existence of a Mtrm-like protein in humans, particularly given the attention paid to

regulation of the prophase I arrest. Conversely, there may have been an evolutionary

loss of Mtrm-like proteins in mammals, resulting in a less well-regulated prophase I and

a higher rate of meiotic non-disjunction.

147



In addition to proper regulation of the prophase I arrest, recombination between

homologous chromosome pairs must be carefully controlled to ensure accurate

chromosome segregation at meiosis I (Champion and Hawley, 2002; Hassold et al.,

2007). As discussed above, mutants of the meiosis-specific APC/C activator Amal do

not properly form cross overs between homologs and exhibit meiotic non-disjunction,

illustrating a direct role for meiosis-specific APC/C activators in regulation of another

meiosis-specific process (Okaz et al., 2012).

While meiosis specific activators have yet to be identified in higher eukaryotes, at

least some of their functions are likely to be conserved evolutionarily. As discussed

above, both Amal and Cortex regulate meiosis-specific processes that are conserved

throughout evolution (meiotic recombination and meiotic chromosome segregation).

These processes are at the heart of what makes meiosis unique, and their regulation is

likely conserved (to some degree). For example, Polo kinase plays a key role in

prophase I regulation from yeast to mouse (Jordan et al., 2012; Okaz et al., 2012; Xiang

et al., 2007). Interestingly, meiosis-specific APC/C activators in yeast and fly have been

directly or indirectly tied to regulation of Polo activity (This thesis, Ch. 3, Okaz et al.,

2012). Examples such as these illustrate meiosis-specific APC/C activators and their

substrates are involved in some of the unique aspects of meiotic regulation. It is

enticing to hypothesize that the mechanism by which meiosis-specific activators

regulate meiosis also is conserved evolutionarily. However, despite the pivotal role they

play in yeast and fly meiosis, meiosis-specific APC/C activators have yet to be found in

other species. If APC activators truly do not exist in higher eukaryotes, their function

may be mediated by other proteins.
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The clearest choice for proteins that could have adapted to serve the role of

meiotic APC activators would be the mitotic APC activators themselves, Cdc20 and

Cdh1. Given a typical APC recognition motif consists of only three amino acids, it is

conceivable that a substrate of Cortex, for example, could evolve a D-box or a KEN box

(converting it to a substrate of Cdc20 or Cdh1in higher eukaryotes). This would allow

for the substrate to still be efficiently degraded in an APC/C dependent manner, but

without the need for an actual meiosis-specific APC activator. While simply evolving a

D-box or KEN box would not convert most proteins into substrates of the APC/C, a

protein that was already a target of APCcOn or APCAmal would be much more readily

adapted to ubiquitylation by APCCdc 20 or APCCdh1. So while meiosis-specific APC/C

activators have yet to be found outside of yeast and flies, it is very possible their

functions are conserved. Further study of meiosis-specific APC/C activators,

particularly the sex-specific activators found in Drosophila, will shed light on the unique

features of meiotic regulation.
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