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Abstract

Electron-transfer reactions at nanometer-scale interfaces, such as those presented by
single-walled carbon nanotubes (SWCNTs), are important for emerging optoelectronic and
photovoltaic technologies. Electron transfer also governs a primary means by which these
interfaces are chemically functionalized and subsequently manipulated. This thesis explores
several chemical approaches to understanding and controlling charge transfer at nanocarbon
interfaces. In the first part of this thesis, we explore ground-state electron transfer via the
chemical reaction of SWCNTs with selected diazonium salts as a means of controlling the
number of moieties attached to a given nanotube. We initially explore this reaction theoretically
using a kinetic Monte Carlo simulation, with rate parameters evaluated using Gerischer-Marcus
theory, in order to examine the extent to which these reactions can be controlled
stoichiometrically. These modeling results indicate that heterogeneities in SWCNT chiral
population result in a large variance in the number of covalent defects, even at low conversions,
thereby limiting the ability to control these reactions through stoichiometry.

We then experimentally examine the ability to impart an additional degree of control over
these reactions through utilization of the adsorbed surfactant layer. Surfactants are commonly
employed in the processing of nanoparticles to impart colloidal stability to otherwise unstable
dispersions. We find that the chemical and physical properties of adsorbed surfactants influence
the diazonium reaction with SWCNT in several ways. Surfactants can impose electrostatic
attraction or repulsion, steric exclusion, and direct chemical modification of the reactant.
Electrostatic effects are most pronounced in the cases of anionic sodium dodecyl sulfate and
cationic cetyltrimethylammonium bromide, where differences in surfactant charge can
significantly affect the ability of the diazonium ion to access the SWCNT surface. For bile salt
surfactants, with the exception of sodium cholate, we find that the surfactant wraps tightly
enough that exclusion effects are dominant. Here, sodium taurocholate exhibits almost no
reactivity under the explored reaction conditions, while for sodium deoxycholate and sodium
taurodeoxycholate, we show that the greatest extent of reaction is observed among a small
population of nanotube species, with diameters between 0.88 and 0.92nm. The anomalous
reaction of nanotubes in this diameter range implies that the surfactant is less effective at coating
these species, resulting in a reduced surface coverage on the nanotube. Contrary to the other bile
salts studied, sodium cholate enables high selectivity toward metallic species and small band-gap
semiconductors, which is attributed to surfactant-diazonium coupling to form highly reactive
diazoesters.
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We subsequently move on to examine excited-state electron transfer events between
SWCNTs and fullerenes. This electron transfer system is distinct from the diazonium system
since it does not result in the formation of a covalent bond between the donor and acceptor
species. To study this interface, we synthesized a series of methanofullerene amphiphiles,
including derivatives of C60 , C70, and C84, and investigated their electron transfer with SWCNT
of specific chirality, generating a structure/reactivity relationship. In the cases of lipid-C61-PEG
and lipid-C 71-PEG, which are predicted to similar surfactant surface coverages, band-gap
dependent, incomplete quenching was observed across all semiconducting species, indicating
that the driving force for electron transfer from SWCNT is small. This is further supported by a
Marcus theory model, which predicts that the energy offsets between the SWCNT conduction
bands and the fullerene LUMO levels are less than the exciton binding energy of the SWCNT in
these two systems. In contrast, the lipid-C 85-PEG derivative shows complete quenching of all
SWCNT species utilized in this work. This enhancement in quenching efficiency is consistent
with the fact that the LUMO level of C85 methanofullerene is approximately 0.35eV lower than
that of the smaller fullerene adducts, resulting in energy offsets which exceed the exciton binding
energy. This result, combined with the fact that C8 5 has much higher photo-stability than C61 and
C71, makes this larger fullerene adduct a promising candidate for SWCNT-based sensors and
photovoltaics.

Finally, we design and synthesize fullerene derivatives that self-assemble into one-
dimensional arrays. We find that a dendritic fullerene, which possesses a Boc-L-Ser-L-Ala-OMe
dipeptide sequence at its apex, selectively forms S-oriented, helical, one-dimensional nanowires
upon cooling from an isotropic state in cyclohexane. These nanowires possess diameters of 3.76
± 0.52nm, and can be several microns in length. Control molecules, which do not possess the
dipeptide sequence, only produce poorly formed aggregates under identical conditions,
indicating that dipeptide-dipeptide interactions are integral to assembly. These nanorods open
new opportunities in the chiral assembly of novel electron acceptor materials for optoelectronic
and photovoltatic applications.

Thesis Supervisor: Michael S. Strano
Professor of Chemical Engineering
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List of Figures

Figure 1.1 Graphene lattice representation of a carbon nanotube. a, and a 2 form the two unit vectors
of the graphene lattice. By taking a linear combination of these two unit vectors, na 1+ma 2,
it is possible to generate any species of carbon nanotube. The (n,m) index referring to a
particular species of nanotube is termed its "chirality". Shown above is a (6,2) nanotube.
The translational vector, T, specifies the translational repeat unit along the axial direction,
or the period with which the nanotube maps back onto itself.

Figure 1.2 Schematic energy diagram of a generic semiconducting SWCNT depicting both the valence
and conduction bands, as well as the various optical transitions that can occur. The Ell
transition is also refered to as the band-gap of the nanotube.

Figure 1.3 Density of states representations for three chiralities of SWCNTs. The (6,5) and (10,8)
nanotubes are semiconducting, while the (11,5) SWCNT is metallic. For semiconducting
species, the chirality of the tube determines the energies of the Ell and E22 optical
transitions.

Figure 1.4 3D excitation-emission plot showing the distinct combination of Ell and E 2 2 transition
energies for various chiralities of semiconducting carbon nanotubes. The y-axis
corresponds to the wavelength of photoexcitation (E 22 energies), while the x-axis
corresponds to the wavelength of SWCNT photoemission (ElI energies).

Figure 1.5 Schematic depicting the principles behind using sparsely functionalized nanotubes for
directed sensing. Here, the wrapping ligand imparts selectivity for sensing a particular
analyte, while the covalently conjugated molecule directs the sensor to a desired location.

Figure 1.6 Reaction of SWCNTs with aryl diazonium salts are initiated by electron transfer from
SWCNT to the diazo moiety, and result in the introduction of a covalent defect to the 7t-
conjugated sidewall.

Figure 1.7 Densities of states for two semiconducting SWCNTs, evaluated using a tight-binding
model. The degree of overlap between the occupied SWCNT states and the vacant states of
the diazonium molecule (red), determine the rate of reactivity of the diazonium ion with the
SWCNT sidewall. Reprinted with permission from reference [1]. Copyright 2011 American
Institute of Chemical Engineers.

Figure 1.8 Solar irradiance spectrum depicting the wavelength range that could potentially be captured
using commercially available HiPCO SWCNTs.

Figure 1.9 Schematic of a label-free protein detection scheme which takes advantage of the distance-
dependence of excited-state electron transfer to a mediator species (red). Upon binding of
an analyte, the distance of the mediator from the SWCNT is altered, resulting in
fluorescence modulation.

Figure 1.10 Electronic properties of functionalized fullerenes. Reprinted with permission from
reference [53]. Copyright 1997 American Chemical Society

Figure 1.11 Schematic representation of electron transfer upon photoexcitation of fullerene (Scheme 1),
and SWCNT (Scheme 2).

Figure 1.12 Schematic energy diagram of the SWCNT-fullerene interface. On the left is the DOS of a
semiconducting SWCNTs, while the HOMO and LUMO levels of a fullerene electron
acceptor are shown on the right. kET is the rate constant associated with electron transfer
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from excited-state SWCNT to the fullerene molecule, while kcR is the rate constant
associated with relaxation of the SWCNT excited state to the valence band.

Figure 1.13 In organic photovoltaics, the development of donor or acceptor species which self-assemble
on nanoscale dimensions could allow for the design of heterojunctions with large interfacial
area, while maintaining contiguous pathways for charge carrier extraction.

Figure 2.1 Binomial probability distributions for the number of attached groups at six different
conversions, p, for n = 1000. The inset depicts the variance in the number of attached
groups as a function of the mean number of groups attached.

Figure 2.2 (a) Distribution of nanotubes for which density of states and relative rate constants were
evaluated. (b) Interpolated surface plot showing the SWCNT composition for a typical
HiPCO solution used during a simulated reaction.

Figure 2.3 Example of the transformation from nanoribbon representation to reactive-site-matrix for a
(n,m) = (6,4) nanotube. The number of rows in the site matrix is equal to n + m with the
edge connectivity being defined by m - n for alternating carbons along the nanoribbon
edge. The number of columns is determined by the tube length (see text).

Figure 2.4 Initial and modified densities of states for (10,0) and (8,8) nanotubes evaluated using the
results of DFT calculations[2]. Eredox and EFeri are depicted for each nanotube, and the
reorganization energy associated with electron transfer is shown in (a).

Figure 2.5 (a-e) Distributions in the number of functional groups attached for five selected
conversions. The mean number of groups attached and variance in the number of groups
attached are provided for each plot. (f) Depicts the relationship between the variance in
the number of attached functional groups and the mean number of attached groups.

Figure 2.6 (a) Total fractions of mono- and bifunctional tubes as a function of conversion. (b)
Monofunctional species fractions for eight selected chiralities as a function of conversion.

Figure 2.7 Effect of rate constant distribution on the variance in the number of attached groups, with
columns corresponding to FC-CVD, HiPCO and Co-MCM-41 SWCNT, respectively. (a-
c): Rate constant distributions of pristine SWCNTs. (d-f): Rate constant distributions in the
limit of complete reaction. (g-i): Variance in number of functional groups attached (as a
function of mean groups attached) for the cases of unmodified and modified site
reactivities.

Figure 2.8 Fraction of monofunctional tubes as a function of conversion for three different nanotube
solutions, along with the monofunctional fractions of both metallic and semiconducting
species.

Figure 2.9 Implications of chiral distribution for nanotube separation. Because electron transfer
chemistries are typically selective toward metallic species, the functionalized sample has
been denoted as the "metallic solution," while the unfunctionalized sample has been labeled
as the "semiconducting solution."

Figure 3.1 Structures of the diazonium ion and six surfactants utilized in this study. Diazonium salt:
(a) running reactions under slightly acidic conditions favors the cationic diazonium ion
over the base-mediated conversion to diazotates and diazoanhydrides. Surfactants: (b)
sodium dodecyl sulfate, (c) cetyltrimethylammonium bromide, (d) sodium cholate, (e)
sodium deoxycholate, (f) sodium taurocholate, and (g) sodium taurodeoxycholate. The bile
salts, (d)-(g), have rigid steroidal backbones, which impart them with hydrophobic and
hydrophilic "faces". The rigidity of these bile salts causes them to form close-packed
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structures on the nanotube surface. The linear chain surfactants, (b) sodium dodecylsulfate
and (c) cetyltrimethylammonium bromide possess less rigid, lipidic chains, which tend to
coat the nanotube in a more disordered manner.

Figure 3.2 Reaction data for SDS and CTAB-SWCNTS under various conditions. (a)-(c) Selective
reaction data for SDS-SWCNTs under dark conditions. (a) Absorbance data shows little
change under addition of small quantities of reagent. (b) Fluorescence spectra show an
enhanced reactivity of small band-gap semiconductors for all aliquot sizes. (c) Raman data
(normalized by the G-peak intensity) depicting slight increases in the D-to-G ratio with
additional reagent, which is characteristic of covalent derivatization. (d)-(e) In situ
snapshots of the transient fluorescence quenching response of carbon nanotubes suspended
in (d) SDS and (e) CTAB, upon addition of diazonium salt. Here the samples are
continuously illuminated at an excitation wavelength of 785 nm. (d) In the case of SDS, a
similar fluorescence response is observed across all species. (e) CTAB exhibits a
preferential reaction of small diameter species. Insets depict the relative reactivities of 8
nanotube species as a function of tube radius. (f)-(g) G-peak-normalized pre- and post-
reaction Raman spectra (633nm excitation) for (f) SDS and (g) CTAB-SWCNTs, which
demonstrate an enhanced D/G ratio (D peaks shown in insets).

Figure 3.3 (i) Absorbance (ii) fluorescence, and (iii) Raman data for reactions performed under
conditions similar to SDS-selective reactions (1.10 x 10-' moles diaz./mole carbon, pH 5.5,
T = 45'C, 24 hour reaction time). Rows correspond to the surfactants (a) CTAB, (b) SC,
(c) SDC, (d) STC, and (e) STDC. Because of the loose packing of SDS on the surface of
the nanotube, reaction occurs at diazonium concentrations that are several orders of
magnitude lower than those used for other surfactants. The absorbance, fluorescence, and
Raman spectra (above) show that, under similar conditions, the other surfactant-SWCNT
solutions undergo little to no reaction.

Figure 3.4 Absorbance spectra for four bile salts, (a) sodium cholate and (b) sodium deoxycholate, (c)
sodium taurocholate, and (d) sodium taurodeoxycholate, and Raman D/G ratios for (e)
sodium cholate, (f) sodium deoxycholate, and (g) sodium taurodeoxycholate. Spectra have
been normalized to match abs(632nm) of the control. (a) Sodium cholate provides the
clearest demonstration of selective reaction, with metallic and large diameter (small
bandgap) nanotubes reacting preferentially. The other three species also appear to
demonstrate an enhanced reactivity of small band-gap semiconductors, albeit to different
extents. The increase in baseline, toward the ultraviolet region, can be attributed to reaction
byproducts. Raman reaction trends for sodium deoxycholate (f) and sodium
taurodeoxycholate (g) appear similar, which is consistent with their absorbance spectra,
which also show similar results. (e) The D/G ratios for sodium cholate attain higher values
than those observed for the other bile salts, which is consistent with a greater decrease in
the absorbance associated with Van Hove singularities.

Figure 3.5 Fluorescence spectra and deconvoluted fractional quenching results for the four bile salts
used in this study: (a) sodium cholate, (b) sodium deoxycholate, (c) sodium taurocholate,
and (d) sodium taurodeoxycholate, at an excitation wavelength of 785nm. (a) As observed
in the absorbance spectra, sodium cholate demonstrates predominantly electron-transfer
selective reaction, with large diameter (small bandgap) nanotubes reacting preferentially.
For sodium cholate, the fractional quenching results are generally plotted from large to
small Ell gap. For species whose Ell emissions overlap to the extent that a single peak is
observed (i.e. (9,4)/(7,6) and (10,5)/(8,7)), the species with the larger E 22 gap has been
plotted first. In contract to sodium cholate, the other three bile salts display preferential
reactivity among a small population of nanotubes (see text).
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Figure 3.6 Excitation-emission spectra of unreacted (left), and reacted (right), SC-SWCNT (a)-(b) and

SDC-SWCNT (c)-(d). In agreement with electron-transfer limitation, the SC-SWCNT
reaction progresses from the top right to the bottom left of the plotted spectrum. SDC-
wrapped SWCNTs, however, undergo reaction among predominantly a small diameter
range of species, including (10,2), (9,4), (7,6), (10,3), (11,1), and to a lesser extent, (8,4).

Figure 3.7 Transient fluorescence response of 2% SDC-suspended SWCNTs under constant laser
illumination. Due to surfactant exclusion effects, the reaction of the bile salt suspended
SWCNT samples takes much longer than the reactions of SDS, and the reactivity remains
dominated by packing effects, as evidenced by the enhanced quenching response of (9,4),
(7,6), and (10,2).

Figure 3.8 Experimental results for an SDS-SWCNT reaction performed under conditions similar to
the lowest diazonium concentration bile salt reactions (0.033 moles diaz./mole carbon, pH
5.5, T = 45'C, 24 hour reaction time). Because of the loose packing of SDS on the surface
of the nanotube, as well as its negative charge, (a) absorbance, (b) fluorescence, and (c)
Raman measurements indicate that the nanotubes are highly functionalized under these
conditions.

Figure 3.9 Illustration of the cell model, which was utilized to study the relative reactivities of
SWCNTs in the diffusion limit. (a) Schematic of a surfactant encapsulated SWCNT. (b)
Looking down the SWCNT axis, the charged head groups of the surfactant are assumed to
reside on a cylindrical plane located a distance, 6, from the nanotube surface. The distance,
rb, is the radius at which the potential and the derivative of the potential go to zero. (c)
Schematic of how the cell may appear in the presence of counterions.

Figure 3.10 Schematic depiction of the effective volume of the ion, which assumes that the ion is
surrounded by a single hydration shell. The schematic on the left is that for the CTAB
bromide counterion, while the schematic on the right depicts the case of the SDS sodium
counterion.

Figure 3.11 Results of applying a diffusion-limited model to the reaction data for SDS and CTAB. For
CTAB, the fitting of the model to experimental data resulted in an estimated surface
coverage 4.3 molecules/nm2 . For SDS, near-identical trends in reactivity are predicted for a
wide range of surface coverages, making it difficult to fit the results to a single value. The
black, dotted line corresponds to an SDS surface coverage of 2.8 molecules/nm 2.

Figure 4.1 Surfactant systems utilized for analyzing interfacial effects on electron transfer.

Figure 4.2 UV-vis-nIR absorbance spectra of five of the surfactant systems analyzed in this study
(excluding methyl-C6 1-PEG). The retention of high peak-to-valley ratios is indicative of
high quality SWCNT dispersions, in agreement with AFM observations of individually
dispersed nanotubes.

Figure 4.3. Excitation-emission plots for SWCNTs suspended in (a) lipid-PEG, (b) lipid-C61-PEG, (c)
pyrene-PEG, and (d) pyrene-C61-PEG. All suspensions are plotted on the same scale.

Figure 4.4. Fluorescence results of the surfactant systems analyzed in this study. (a) Raw fluorescence
spectra, representing an average of four suspensions for each amphiphile. (b) Fractional
quenching results, relative to the intensity of SC-SWCNT, for the lipid-PEG and lipid-C6 1-
PEG systems. (c) Fractional quenching results, relative to SC-SWCNT, for the pyrene-
PEG and pyrene-C61-PEG systems.

Figure 4.5. Fullerene family analysis. Top to bottom - methanofullerenes based on C60, C70, and C84 .
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Figure 4.6 Excitation-emission plots for SWCNTs suspended in (a) lipid-C 71-PEG and (b) lipid-C8 5-
PEG. Plots are depicted on the same scale. In the case of Lipid-C8 5-PEG, no significant
fluorescence was observed above background.

Figure 4.7. Absorbance and fluorescence results from fullerene family analysis. (a) Absorbance spectra
of SWCNT suspensions in lipid-PEG, as well as the C61 , C71 , and C85 methanofullerenes.
(b) Averaged fluorescence spectra (3 samples) for these amphiphilic systems, acquired at
an excitation wavelength of 785nm. (c) Deconvoluted relative intensities, normalized to the
intensities of SC-SWCNT, for the three lipidic methanofullerenes.

Figure 4.8 Plots of (E1 )2AE 1i versus l/d 4, evaluated from deconvoluted absorbance spectra, for the
lipid-PEG, lipid-C6 1-PEG, pyrene-PEG, and pyrene-C61-PEG. The slopes of these curves
were used to predict the fractional coverage of methanofullerene on the SWCNT surface.

Figure 4.9 Plots of (El1) 2AEM versus l/d 4 for the lipid-C 71-PEG and lipid-Css-PEG, with lipid-PEG
shown for reference. The slopes of these curves were used to predict the fractional
coverage of methanofullerene on the SWCNT surface.

Figure 4.10 Predicted energy offsets between SWCNT conduction bands and the C61 LUMO level.
Offsets were evaluated using the C61 LUMO level determined from Marcus theory. The
data are compared with ab initio values reported in Ref [39] for PC6 1BM.

Figure 4.11 Parity plot showing the agreement between experimental and theoretical relative rate
constants for different values of the reorganization energy.

Figure 5.1 Molecular structures of the fullerodendrimers studied in this work.

Figure 5.2 Temperature-dependent absorbance data for fullerodendrimers 1 (left) and 2 (middle) in
cyclohexane at concentrations of 8OpM. The rightmost figure follows the absorbance at
259nm as a function of temperature. Upon cooling from an isotropic state, the fullerene
peak at 259nm decreases, with the evolution of a new peak near 267nm. The transition
temperature occurs approximately 20'C higher in the case of fullerodendrimer 2.

Figure 5.3 SEM (a),(d) and AFM (b),(c),(e),(f) images of self-assembled morphology. (d) SEM of a
drop-cast solution of 1 shows the formation of densely matted regions of aligned fibers,
while (a) SEM of a drop-cast solution of 2 shows randomly oriented domains. (e-f) AFM
on spin-cast assemblies of 2 show structurally homogeneous fibers with average diameters
of 3.76 ± 0.52nm, and lengths of a few hundred nanometers to > 10pim. (b-c) AFM on
spin-cast assemblies of 1 show the formation of aggregated fibrils, rather than well-formed
wires.

Figure 5.4 AFM (a) phase image, and (b) height profiles obtained from helical assemblies of
fullerodendrimer (2). The inset of (b) shows a height image of an isolated, helical fiber,
along with the positions at which height traces were evaluated.

Figure 5.5 AFM phase images of assembled fullerodendrimer (2) showing helical striations along the
length of the assembled nanorods. (b) Zoomed-in phase image of one of these assemblies.

Figure 5.6 Left: Room-temperature CD spectra of fullerodendrimers 1 and 2. Fullerodendrimer 1,
which lacks the dipeptide sequence, shows no significant CD features, whereas
fullerodendrimer 2 shows clear spectral features, indicating selectivity toward a particular
handedness during self-assembly. Middle: temperature-dependent CD spectra of
fullerodendrimer 2. CD features emerge upon cooling from an isotropic state, indicating
that these features emerge during the self-assembly of the nanorods, and are not intrinsic to
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the molecule, itself. Right: comparison between temperature dependent absorbance
(259nm) and the temperature dependent CD signal at 283nm.

Figure 7.1 Absorbance spectra of SWCNT suspensions in amphiphiles (4), (7), (10), (12), and (14) -
from Schemes 4-1 and 4-2 - before (black) and after (red) removal of free amphiphile. In
order to account for slight concentration differences, absorbance spectra have been adjusted
by a constant such that their absorbance values near 900nm are similar. Despite small
redistributions in chirality, most spectra taken before and after removal are fairly
consistent. However, the pyrene-PEG sample shows evident decrease in peak-to-valley
ratio, as well as slight peak shifting, indicating that aggregation is occurring. Visible
aggregates were also observable the pyrene-PEG system after the removal of excess
surfactant.

Figure 7.2 MALDI-TOF for the three methanofullerene intermediates, (3), (6), and (9) from Scheme
4-1.

Figure 7.3 MALDI-TOF on the PEGylated amphiphiles (4), (7), (10), (12) and (14) from Schemes 4-1
and 4-2.

Figure 7.4 Zoomed-in MALDI-TOF on the PEGylated amphiphiles (4), (7), (10), (12) and (14), from
Schemes 4-1 and 4-2, along with expected values.

Figure 7.5 MALDI-TOF comparing the three methanofullerenes intermediates used for the fullerene
family analysis.

Figure 7.6 MALDI-TOF comparing the three PEGylated methanofullerenes used for the fullerene
family analysis.

Figure 7.7 AFM images showing individually dispersed nanotubes in the cases of pyrene-PEG,
pyrene-C6 1-PEG, lipid-PEG, and lipid-C6 1-PEG. SWCNT suspensions using methyl-C61-
PEG displayed bundles of nanotubes.

Figure 8.1 MALDI-TOF data for the two fullerodendrimers used in the self-assembly study.

Figure 8.2 Variable temperature 1H-NMR data for the peptidic fullerodendrimer in C6D12.

Figure 8.3 Intensity of the aromatic NMR feature at ~6.74ppm as a function of temperature. The
magnitude of the feature shows a monotonic decrease as the sample is cooled. Due to the
higher concentration of the sample, the assembly transition is shifted to higher temperatures
in comparison with the variable-temperature absorbance and circular dichroism datasets.

12

Andrew J. Hilmer



1. Introduction
Single-walled carbon nanotubes (SWCNTs) are one-dimensional materials consisting of a

single cylinder of entirely sp 2 hybridized carbon atoms. Essentially, SWCNTs are grapheme

sheets which have been seamlessly rolled into cylinders that possess diameters on the order of

one nanometer. The structure of the resulting nanotube, and its corresponding electronic

properties, are determined by the way in which the graphene sheet is rolled. When looking at the

honeycomb lattice of a sheet of graphene (see Figure 1.1), two unit vectors can be defined, a,

and a2, each of which connects one lattice site to an adjacent neighbor. Using one site as the

origin, all other lattice points can be described by a vector, C, which consists of a linear

combination of these two unit vectors:

C= nal + ma 2

When the graphene sheet is rolled such that the tail and the head of the vector C are connected,

an (nm) carbon nanotube is formed, and the vector is called the chiral or rolling vector of the

nanotube[3]. The (n,m) indices of a carbon nanotube determine both the diameter of the

nanotube and its electronic properties, and the combination of these indices are termed the

"chirality" of the nanotube. Except for armchair (n,n) and zigzag (n,O) nanotubes, all other

species of nanotube will also possess a handedness (R or S) with which they are rolled.

Therefore, the chiral index is somewhat of a misnomer, since it solely refers to the rolling vector,

not the handedness of the resulting nanotube. If (n - m) =3d, in which d is an integer, the

(6,2)

Figure 1.1 Graphene lattice representation of a carbon nanotube. a1 and a2 form the two unit vectors
of the graphene lattice. By taking a linear combination of these two unit vectors, na1+ma 2, it is
possible to generate any species of carbon nanotube. The (n,m) index referring to a particular species
of nanotube is termed its "chirality". Shown above is a (6,2) nanotube. The translational vector, T,
specifies the translational repeat unit along the axial direction, or the period with which the nanotube
maps back onto itself.
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Figure 1.2 Schematic energy diagram of a
generic semiconducting SWCNT depicting
both the valence and conduction bands, as
well as the various optical transitions that
can occur. The Ell transition is also refered
to as the band-gap of the nanotube.

Conduction Band

El = Band Gap

band[6], and subsequent radiative (or non-radiative) decay to the valence band, which results in

the characteristic near-infrared fluorescence of single-walled carbon nanotubes. The manner in

which chirality can influence the electronic properties of SWCNTs is generally depicted in Fig

1.3 for three chiralities of carbon nanotube. By comparing the two semiconducting species (6,5),
and (10,8), it is apparent that the chirality influences the energy separation between both the El1
and E22 transitions. Thus, there is a unique combination of El1 and E22 transition energies for

each semiconducting species of carbon nanotube.

nanotubes is more
(b,b)apparent upon 0.8-

examination of 3-D 0.6

0.4
excitation-emission plots

502
of nanotube fluorescence, 0 . - ---- --0 E Fermi --- - - - -

such as that shown in Fig 2 -
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excitation, while the x-axis Density of States
Fi 13 D n it f t
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wavelength of

This property of semiconducting carbon
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to the The (6,5) and (10,8) nanotubes are semiconducting, while the (11,5) SWCNT

is metallic. For semiconducting species, the chirality of the tube determinesSWCNT the energies of the El1 and E22 optical transitions.
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resulting nanotube is metallic or semi-metallic; all

other nanotubes are semiconducting[3-5].

Additionally, for semiconducting carbon nanotubes, the

chirality determines the optical bandgap of that species.

A schematic depicting the electronic states of a

semiconducting nanotube is depicted in Fig. 1.2. Here,

the occupied valence band is shown in blue, while the

unoccupied conduction band is located at the top of the

energy axis. Optical excitation can occur between the

vi-c1 and v2-c 2 transitions, which are termed the ElI and

E 22 transitions, respectively. Excitation of the E22

transition is followed by ultrafast relaxation to the c1

0.8-
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(10m fluorescence emission. As can be seen

E 750 Cfrom the plot, in scanning through the

(1%2) >excitation wavelength range on the y-
S700 

( 4 axis, when the energy of the excitation

650 wavelength matches the E2 2 transition

energy of a particular nanotube, there is

0 600
,4 an enhancement in the fluorescence

7 #
&550 emission of that nanotube. Thus, each

x
peak in the excitation-emission plot

950 1000 1050 1100 1150 1200 1250 1300

Emission Wavelength (nm) corresponds to a particular chirality of

Figure 1.4 3D excitation-emission plot showing the distinct carbon nanotube, with a unique pairing
combination of Ell and E 22 transition energies for various
chiralities of semiconducting carbon nanotubes. The y-axis of Ell and E22 transitions. In addition

corresponds to the wavelength of photoexcitation (E22 to this property of semiconducting
energies), while the x-axis corresponds to the wavelength of
SWCNT photoemission (Ell energies). nanotubes, certain chiralities of

nanotubes are metallic, as mentioned above. These species, such as the (11,5) nanotube in Fig

1.3, do not have a band-gap, but instead possess a finite density of states near the Fermi level.

Because the chirality of a carbon nanotube influences both the nature of the nanotube electronic

properties (metal, semimetal, or semiconductor) as well as the optical transition energies of

semiconducting SWCNTs, electron transfer events which involve SWCNTs are highly

dependent upon the nanotube chirality.

1.1. Ground-State Electron Transfer: Toward Discretized

Functionalization of SWCNTs

In Chapters 2 and 3 of this thesis, we explore the ability to control the electron transfer

reactions of single-walled carbon nanotubes with aryl diazonium salts, with the goal of achieving

a minimal number of defect sites.

1.1.1. Motivation-Singularly-Tethered Nanotubes

Singularly tethered nanoparticles - nanoparticles chemically derivatized with a single

chemical chain or tether - are emerging as important from both a scientific and technological

standpoint. In the past several years, this has primarily been driven by interest in quantum dots

or plasmonic nanoparticles, which display interesting optical resonances when assembled into
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controlled dimers, trimers, or higher order assemblies[7]. In spherical nanoparticles, it has been

found that the introduction of stoichiometric[8] or substoichiometric[9] quantities of ligands has

allowed for the synthesis of well-defined nanoparticle assemblies, while excess ligation results in

the formation of cross-linked aggregates[9]. Advances in the separation of such ligand-

functionalized nanoparticles has led to the creation of hierarchical nanostructures containing a

specific number of one[10] or more types of nanoparticles[11]. Building on this progress,

Alivisatos and co-workers successfully utilized plasmonically coupled nanoparticles as

molecular rulers[12] for monitoring the in vitro cleavage of DNA by EcoR enzymes[13] and the

in vivo detection of caspase-3 activation[14]. In other applications, monovalent quantum dots

and monovalent streptavidin have been shown to be useful agents for site-selective biological

imaging in living cells[15, 16]. However, similar advances in the SWCNT field have lagged

behind.

Efforts toward controlling the extent of nanotube covalent reaction have primarily

focused on reaction stoichiometry[17], reaction time[18], and harshness of oxidative

treatment[19-21]. However, nanotube solutions may possess as many as 30 distinct species of

semiconducting nanotubes[22], alone, with each nanotube potentially exhibiting a significantly

different affinity toward a reagent molecule. In fact, the reactivity of a particular species is often

dependent upon the specific properties of the nanotube, including electronic structure[23-25],

diameter [21], and bond curvature radius[26]. Additionally, nanotube solutions contain a

distribution of tube lengths, which further complicates the ability to control the extent of

SWCNT covalent reaction. Therefore, it remains difficult to obtain similar degrees of

functionalization across all species.

To date, the most promising means of controllably functionalizing carbon nanotubes is

through regioselective modification of the SWCNT ends[27-29]. This has been elegantly

demonstrated by Weizmann et al, who utilized a mild oxidation procedure to introduce

carboxylic acid groups to the ends of the SWCNT, which were then addressable for further

chemistry[27, 28]. However, under these oxidative conditions, the extent to which the nanotube

sidewall is damaged remains unclear. More recently, it has been shown that the suspension of

SWCNT by sonication imparts the nanotube ends with carboxylic acid functionalities that can be

addressed using EDC/NHS coupling, without the need of acid-based oxidation[29]. However,

such methods are intrinsically limited to carboxylic acid functionality, and the yield of
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regioselectively modified Conjugated biomolecule
directs sensor to desired

SWCNTs remains unclear. If location

high yield, reliable techniques Wrapping imparts sensor selectivity

for sparsely functionalizing

SWCNTs become available,

they would enable such .

applications as the development Figure 1.5 Schematic depicting the principles behind using sparsely
functionalized nanotubes for directed sensing. Here, the wrapping

of site-directed sensors by ligand imparts selectivity for sensing a particular analyte, while the
u covalently conjugated molecule directs the sensor to a desired location.utilizing orthogonal chemistries

between the wrapping polymer (sensor component) and the covalent attached ligand (directing

component). This would allow for sensors to be directed to specific cellular locations while

simultaneously detecting a desired analyte. Such a construct is depicted in Figure 1.5.

In this thesis, we explore the ability to introduce a minimal number of covalent defect

sites by utilizing the electron transfer reactions of carbon nanotubes with diazonium salts.

1.1.2. Background and Theory

Nanotubes have been shown to participate in a variety of electron-transfer reactions[23-

25]. Here, we focus on the reaction of carbon nanotubes with aryl diazonium salts, in which the

rate-determining step involves ground-state electron transfer from the SWCNT valence band to

the unoccupied electronic states of the diazonium molecule. This reaction has been shown to

proceed through a two-step mechanism[30], in which the nanotube and diazonium molecule

form an intermediate charge transfer complex[30, 31]. The reaction network can be described

by:

k(n,mn)knr)

A+O n, k ̂  >ads (n,m) m

where A represents the aryl diazonium salt and 0(n,m), AadsO(n,m), and AO(n,m) represent vacant

nanotube sites, adsorbed sites, and covalently reacted sites, respectively. Former kinetic studies

by Nair et. al. [32] have shown that, under certain reaction conditions, the reaction rate of this

system can be described by second order kinetics:

dO(nm) - k(n'"A -0 
(1.2)

dt A O(n,m)
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R F4

Figure 1.6 Reaction of SWCNTs with aryl diazonium salts are initiated by electron
transfer from SWCNT to the diazo moiety, and result in the introduction of a
covalent defect to the i-conjugated sidewall.

with the relative rate constants of all nanotubes being evaluated using Gerischer-Marcus
theory[33]. This theory is applicable for kinetic networks in which the rate-limiting step
involves electron transfer between reacting species. Insights into the applicability of G-M theory
to these electron-transfer reactions have been recently provided through computational
studies[34]. In that work, it was shown that for diazonium reactions, the counterion (BF4 ) plays
an integral role by actively competing with SWCNT as a source of electron density for
stabilizing the diazonium cation. Because of this, the ability of the nanotube to donate electron
density, and therefore, the nanotube density of states, is highly important. Gerischer-Marcus
theory predicts that the rate of reaction between a carbon nanotube and an electron acceptor
molecule is proportional to the degree of overlap between the SWCNT density of
states, DOS(nm), and the distribution of vacant, oxidized states of the diazonium molecule in

solution, Wox[33]:

k' = F co, (E)DOS (E)W, (E)dE (1.3)

The densities of states for two semiconducting nanotubes, (6,5) and (10,8), are depicted in
Figure 1.7, along with the distribution of vacant states for a diazonium molecule in solution.
From this figure, it is evident that smaller band-gap species, such as (10,8), exhibit a greater
degree of overlap with the vacant states of the diazonium ion, and therefore react more readily
than larger band-gap species, such as (6,5). Further, metallic species, which have a continuum of
states near the Fermi level, will react preferentially to semiconducting SWCNTs.

1.1.3. Overview

In Chapter 2 of this thesis, we examine the limitations of reaction stoichiometry for
controlling the covalent functionalization of carbon nanotubes with diazonium salts. There, a
kinetic Monte Carlo simulation is employed to demonstrate that, due to the heterogeneous nature
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of SWCNT suspensions, which can

have as many as 30 different

semiconducting species, alone[22],

stoichiometry is insufficient for

controlling the extent of covalent

functionalization, and a large

variance in the number of attached

groups arises even at low

conversions.

Then, in Chapter 3, we

explore the ability to utilize the

adsorbed surfactant layer to modulate

nanotube reactivity in these reactions.

4)
C

wj
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-0.6.

DOS (a.u.)
Figure 1.7 Densities of states for two semiconducting SWCNTs,
evaluated using a tight-binding model. The degree of overlap
between the occupied SWCNT states and the vacant states of
the diazonium molecule (red), determine the rate of reactivity of
the diazonium ion with the SWCNT sidewall. Reprinted with
permission from reference [1]. Copyright 2011 American
Institute of Chemical Engineers.

There, it is shown that the adsorbed surfactant layer can influence the diazonium derivatization

of carbon nanotubes in several ways, including electrostatic attraction or repulsion, steric

exclusion, and direct chemical modification of the diazonium reactant.

1.2. Excited-State Electron Transfer: Developing Structure-Reactivity

Relationships for SWCNT-Fullerene Heterojunctions

In Chapter 4 of this thesis, we synthesize a series of amphiphilic fullerene derivatives that

are capable of dispersing carbon nanotubes in aqueous solution. Using these molecules, and

SWCNT fluorescence measurements, we are able to deduce information about the driving force

for electron-transfer from photo-excited SWCNTs to fullerenes as a function of both the

SWCNT chirality and the nature of the employed fullerene derivative.

1. 2.1 Motivation

Near-Infrared Light Harvesting Using SWCNT-Based Photovoltaics

Combining the entire spectral range of solar irradiance, in one hour, the earth receives

enough solar energy to supply the energy demands of the world for an entire year[35]. The near-

infrared region of the solar spectrum, which we define as occupying the range of 800 to 2500

nm, comprises 43% of the solar irradiance that hits the earth's surface. Therefore, if we can
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develop an efficient means of capturing this energy range, nIR light harvesting would present a

viable means of meeting the world's growing energy demands.

Commercially available, HiPCO single-walled carbon nanotubes possess Ell optical

transitions between 875-1350nm (fig 1.8), which could be utilized for harvesting 56% of the nIR

region of the solar spectrum, or 24% of the total solar irradiance. When combined with a

suitable fullerene as an electron acceptor, such as a C8 5 methanofullerene, whose absorbance is

depicted in Fig 1.8, a significant region of the visible spectrum can also be captured. In terms of

SWCNT-based energy harvesting capability, assuming a cutoff of 1350nm for HiPCO SWCNTs

is highly conservative, as other means of synthesizing carbon nanotubes, such as arc-discharge,

can produce larger diameter species, extending the optical range of these materials to

wavelengths of 1750nm or longer. Therefore, if we assume an effective optical collection range

of E = 875nm to E("=)-- 1750nm to approximate solar harvesting capability, single-walled

carbon nanotubes can potentially be utilized to harvest ~73% of the nIR spectral region. In

addition to their broad spectral range, the photostability[36] and high carrier mobilities[37] of

semiconducting SWCNTs make them promising materials for utilization in near-infrared

harvesting photovoltaic devices.

Several efforts have been expended toward developing "all-carbon" photovoltaics[38-

41], and it has recently been demonstrated that SWCNT-based photovoltaics outperform

polymeric analogues in device lifetime measurements[39]. However, while a large body of work

has been directed at fabricating SWCNT- 2.0 - Solar Irradiance

based devices, little work has been C85 Absorbance
E nlR SWCNT Absorbance

expended toward elucidating the kinetics C 1.5
E

of electron transfer at the SWCNT- .

fullerene interface, and these studies have C

focused on photo-excitation of fullerene, T
- .5

rather than SWCNT[42, 43]. Such a study .

is beneficial, as a combination of factors, 00
500 750 1000 1250 1500 1750

including morphology[39] and active- Wavelength (nm)
layer impurities[38], can limit the quantum Figure 1.8 Solar irradiance spectrum depicting the

efficiency of photovoltaic devices. This is wavelength range that could potentially be captured using
commercially available HiPCO SWCNTs.
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evidenced by the fact that the efficiencies of current, SWCNT-based active layer devices falls

much lower than the theoretical value of 13% [39]. In addition, PC 60BM, which has frequently

been used as an electron acceptor in polymer photovoltaics, is not an ideal electron acceptor for

SWCNT-based solar cells, since the LUMO level lies close to the SWCNT valence band, and

therefore, the SWCNT-fullerene heterojunction has been predicted to switch from type II to type

I in going from SWCNT diameters of 0.9-1.3nm[39]. The same is true of PC 7OBM, due to

similarity in electronic structure. However, C8 4 has a deeper LUMO level than C60 and C70[44],
as well as a higher photostability[45], making it a potential candidate for SWCNT-based

photovoltaics. Because of this, it is of interest to compare across different fullerenes and

interfaces in order to optimize photoinduced electron transfer in the absence of complicating

factors associated with device fabrication.

Label-Free Detection of Biological Macromolecules

In addition to photovoltaic devices, SWCNT-fullerene junctions hold potential for

utilization in SWCNT fluorescence-based sensors. Fluorescence-based carbon nanotube sensors

have demonstrated potential for utilization in the detection of a variety of small molecule

analytes, including direct detection of nitric oxide[46, 47] and hydrogen peroxide[48], as well as

indirect detection of sugars[49] and adenosine triphosphate [50]. However, in order to observe

molecular adsorption events, it is necessary that the adsorbing molecule possess redox properties

which are capable of modulating the nanotube fluorescence[5 1]. For the detection of proteins

and other biomacromolecules, which do not have redox properties, ions near the nanotube

surface have been utilized as an intermediate species in modulating nanotube fluorescence[52].

Figure 1.9 Schematic of a label-free protein detection scheme which takes advantage of the distance-
dependence of excited-state electron transfer to a mediator species (red). Upon binding of an analyte, the
distance of the mediator from the SWCNT is altered, resulting in fluorescence modulation.
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However, the mechanism for signal transduction is not fully understood. In contrast, fullerenes

are expected to interact with SWCNT by accepting excited-state electrons from the SWCNT
conduction band, thereby quenching the SWCNT fluorescence signal. Because this process is
distance dependent, it is possible that fullerenes could be employed as a proximity quencher for

transducing protein-SWCNT interactions in fluorescence-based SWCNT sensors. Such a
scheme is depicted schematically in Figure 1.9.

1.2.2 Background and Theory

A schematic of the photophysical properties of functionalized fullerenes is depicted in

Figure 1.10 [53]. Under ambient conditions, most fullerene molecules will be in the lowest

vibrational level of the ground state. Upon photoexcitation (processes 1 and 2), an electron can

be promoted to higher energy states. After excitation, electrons that are promoted to energy

levels greater than the lowest vibratational level of the first excited state will undergo a rapid,
cascaded energy relaxation back to the first excited state, as shown in process (3). This generally

occurs without emission of a photon. Once an electron has relaxed to the first excited state, the

fullerene molecule can either return to any one of the vibrational levels of the ground state by
fluorescent emission of a photon (process 4), or undergo intersystem crossing to the triplet state

(process 5), which is followed by phosphorescent relaxation to the ground state. In pristine and

monofunctional fullerenes, this

intersystem crossing occurs with

2nd Excited State an efficiency that approaches

unity[53].
0

cc

1st Excited State
(4) (1) (2)

Triplet state U

7. 0

< ...<

Ground state
C60

Figure 1.10 Electronic properties of functionalized fullerenes.
Reprinted with permission from reference [53]. Copyright 1997
American Chemical Society

To date, there has only

been a small body of work that

examines electron transfer from

SWCNTs to C60-derivatives in

non-covalent SWCNT-fullerene

constructs[42, 43]. However,

this work been directed at

analyzing electron transfer from
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ground-state SWCNT to photo- excited C6 1 (depicted in Scheme 1 of fig. 1.11). Therefore, while

these studies provide useful information for incorporating C60 or its derivatives into the active

layer of photovoltaic devices, they fail to address how to optimize photocurrent generation from

photo-excited SWCNT (Scheme 2). This is because the triplet-state lifetime of C6 1, in these

manuscripts, is greater than 1000ps, allowing sufficient time for ground state electron transfer

from SWCNT to fullerene, which occurs on the order of 150-250ps. In contrast, the excited-state

of semiconducting SWCNT is extremely short-lived, relaxing to the ground state in less than

100ps[54]. Therefore, it is of interest to study the SWCNT-fullerene interface in order to

optimize the electron transfer from photoexcited SWCNTs to C60 or its derivatives.

From an electron-transfer standpoint, while ground-state electron transfer from SWCNTs

to an electron acceptor has been shown to require a Gerischer-Marcus theory treatment[32],

Scheme 1

hv

> 1000 Ps ~250 PS

Scheme 2
hv

~100 Ps

*

Figure 1.11 Schematic representation of electron
and SWCNT (Scheme 2).

transfer upon photoexcitation of fullerene (Scheme 1),
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which accounts for the one-dimensional band
k

!NE - - AG(~ifl structure of carbon nanotubes by integrating

LUMO n over the occupied density of states, excited-state

electron transfer is expected to be described by
W Marcus theory. This is because the relaxation

of excited-state electrons to the edge of the

SWCNT Fullerene conduction band is expected to occur on
Figure 1.12 Schematic energy diagram of the
SWCNT-fullerene interface. On the left is the DOS ultrafast time scales[6]. Therefore, upon
of a semiconducting SWCNTs, while the HOMO
and LUMO levels of a fullerene electron acceptor excitation to higher states of the conduction
are shown on the right. kET is the rate constant band, the electron first relaxes to the Ell bandassociated with electron transfer from excited-state
SWCNT to the fullerene molecule, while kcR is the edge, and is subsequently transferred to the
rate constant associated with relaxation of the
SWCNT excited state to the valence band. fullerene acceptor. In such a case, only the

energy offset between the LUMO level of the fullerene and the edge of the SWCNT conduction

band is necessary for determining the driving force for electron transfer. A schematic for this

excited-state charge transfer event is shown in Fig. 1.12.

According to Marcus theory, the rate constant associated with electron transfer from

photo-excited SWCNTs to the LUMO level of fullerene can be represented as[55]:

2;r 2V2 k)= 1 V2 p (A + AGO ))2

exp (-AG. /T) exp (1.4)
kth 4 _Ak, T ' h4_Ak, T RP 4AkT

In which VJ is an electronic coupling term between the initial and final states, A is the

reorganization energy, and AG". is total change in Gibbs free energy for the electron transfer

event. The electronic coupling term, V , decays exponentially as a function of the distance

between the donor and acceptor species, and is often represented by: V' = V exp(-/Jr) [55],

where V0 is the coupling between the two molecules in direct contact, and fl is a constant that is

medium-dependent. The exponential decay of this term enables the potential application of

fullerene-SWCNT interfaces for label-free protein detection, as discussed in the previous section.

The change in Gibbs free energy, AG , is given by the energy difference between the

SWCNT conduction band and the LUMO level of the methanofullerene:
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AEngineerin E L UO ) (1.5)

If we assume that the electronic coupling term is invariant across nanotube species, relative rate

constants of electron transfer can be evaluated as follows:

exp, (AGI, )
k65) exp(-AG /kT) (1.6)

,/exp(-AG kT)

where -AG, is only dependent upon the reorganization energy of electron transfer and the

energy offsets between the fullerene LUMO and the SWCNT conduction bands. SWCNT

conduction band energies, referenced to the standard hydrogen electrode (SHE), have been

reported in the literature for several chiralities[56], allowing direct utilization of these values for

evaluating energetics of electron transfer. In addition, reorganization energies for fullerene-

based electron transfer systems have previously been reported[57-60]. Therefore, if relative rate

constants can be evaluated experimentally, the energetic driving force for electron transfer can be

deduced.

1.2.3 Overview

In Chapter 4, we use SWCNT relative fluorescence quenching as a proxy for relative rate

constants of electron transfer, and thereby deduce structure-reactivity relationships for electron

transfer between photo-excited SWCNTs and fullerene acceptors. This is possible because,

among competing excited-state decay pathways in SWCNT, the selectivity toward a particular

pathway - in this case electron transfer to fullerene - will be proportional to the rate constant

associated with that pathway, kET- Since energy transfer ultimately diverts an electron from the

radiative decay pathway, fractional quenching results can be utilized as an approximation for the

rate constant of electron transfer. If the fractional quenching is normalized to a particular

chirality, such as (6,5), it is possible to approximate relative rate constants for electron transfer

as:

kt , 1-6) )(n,) (1.7)

Using equations 1.6 and 1.7, it was possible to fit our Marcus theory model to experimental

results, thereby deducing an effective LUMO level, ELUMO for the fullerene derivatives employed
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in the study. Using calculated values of ELUMO , we were then able to assess the energetic driving

force for excited-state electron transfer from photo-excited SWCNTs to fullerenes, as a function

of the SWCNT chirality, using the equation: AG, = -(E - ELUMO

1.3. Formation of High-Aspect Ratio Nanorods via Peptide-Driven Helical

Self-Assembly of Fullerodendrimers

In Chapter 5 of this thesis, we examine the ability to design fullerene derivatives which

organize into 1-dimensional supramolecular assemblies.

1.3.1. Motivation

The ability to self-assemble fullerene molecules into well-defined nanostructures is

desirable for applications in polymer photovoltaics and organic electronics[61-64]. Fullerenes

are excellent electron acceptors for utilization in organic solar cells[65], and have remained the

electron-acceptor of choice since their usage in the first bulk-heteroj unction photovoltaic, 18

years ago[66]. However, the ability to obtain high efficiency devices is highly dependent upon

the morphology of the fullerenes molecules in the active layer[67, 68]. In particular, in order to

maximize efficiency of bulk-heterojunction photovoltaics, it is desirable to form a donor-

acceptor interface which possesses a large surface area while maintaining contiguous pathways

for charge carrier extraction. Such an objective could be enabled by the development of donor or

acceptor species which self-assemble into contiguous domains on the nanoscale.

In addition to photovoltaic applications, in organic electronics, confined arrays of C60

fullerenes have been shown to possess highly delocalized electronic states[69, 70], and

superconducting properties have been observed in intercalated C60 networks[71-73]. Therefore,

C60-based electronics and photovoltaics could greatly benefit from controllable assembly and

patterning of fullerenes.

1.3.2. Background

C60 fullerenes and their derivatives have been observed to assemble into a variety of

structures, and reviews of fullerene assembly have recently been published [61, 74]. To date, the

self-assembly of pristine C60 has been accomplished through a number of methods including

liquid-liquid interfacial precipitation (LLIP), template-assisted drying, and drop drying[61]. In
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addition to pristine C60, functionalized fullerenes have been shown to form a variety of bilayer

structures, the shape of which is dependent upon solvent conditions[74]. However, the

dimensions of these assemblies are on the order of several hundred nanometers to a few microns.

In contrast, only a few instances of nanometer-scale, high-aspect ratio fullerene assembles have

been reported, and these have relied on surface-based assembly methods[75-78], including

Langmuir-Blodgett techniques[75], or HOPG-driven self-assembly[76, 77], thereby limiting

their scalability.

In order to develop one-dimensional, nanoscale fullerene assemblies, we utilized

principles from the self-assembly of benzyl ether dendrons. The self-assembly behavior of these

molecules is well established[79] with libraries of molecular and supramolecular

architectures[80, 81]. A subset of these materials, which possess a dipeptide sequence at the

dendron apex, has been shown to self-assemble into porous cylinders (d=0.9-1.3nm) which pack

hexagonally in the solid state[82-86]. These pore diameters are ideally suited for interfacing

with SWCNTs (d ~ 0.8-1.2nm). Previous benzyl dendron fullerene derivatives have been

synthesized, but they have focused on either symmetric fullerene derivatives [87], which have

dendritic components on either side of the fullerene, or dendritic fullerenes with a large aliphatic

spacer between the fullerene and dendritic moiety[87-89]. These structures have been shown to

form liquid crystalline phases, but lack the degree of structural order that has been observed for

other benzyl dendrons and their derivatives[80-82]. Two potential reasons for this could be that:

(1) the long, flexible linkers between the fullerene and the dendron make the molecules too labile

for the formation of highly ordered domains, and (2) only dendrons with either very high, or very

low, degrees of branching have been utilized to date. Based on these prior studies, we

hypothesized that fullerodendrimers with a more compact, asymmetric, wedge-like configuration

may be capable of organizing into 1-dimensional fullerene assemblies.

Figure 1.13 In organic photovoltaics, the development of donor or acceptor species which self-assemble on

nanoscale dimensions could allow for the design of heterojunctions with large interfacial area, while

maintaining contiguous pathways for charge carrier extraction.
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1.3.3. Overview

In Chapter 5, we synthesize a novel pair of fullerodendrimers which self-assemble into

one-dimensional fibers in cyclohexane. We find that high-aspect ratio fullerene nanorods, with

diameters of 3.76 ± 0.52nm, can be formed by utilizing peptide-driven self-assembly. Atomic

Force Microscopy (AFM) and Circular Dichroism (CD) measurements appear to indicate that

these wires consist of interwoven, helical assemblies of peptidic methanofullerenes.
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2 A Kinetic Monte Carlo Analysis for the Low Conversion

Reactions of Single-Walled Carbon Nanotubes

Some of the text and figures presented in this chapter are reprinted or adapted from

reference [90] with the permission of IOP Publishing. Copyright C 2010, IOP Publishing. All

rights reserved.

2.2 Introduction

Singularly tethered nanoparticles - nanoparticles chemically derivatized with a single

chemical chain or tether - are emerging as important from both a scientific and technological

standpoint. In the past several years, this has primarily been driven by interest in quantum dots

or plasmonic nanoparticles, which display interesting optical resonances when assembled into

controlled dimers, trimers, or higher order assemblies[7]. Despite advances in spherical

nanoparticle chemistry, analogous studies aimed at forming these types of structures using

single-walled carbon nanotubes (SWCNTs) have not yet been demonstrated. This may partially

be due to the fact that nanotube solutions are comprised of a wide distribution of chiral

species[22], in some instances exhibiting substantially different affinities toward a reacting

molecule[24, 91]. However, when combined with an appropriate functional handle, the singular

tethering of carbon nanotubes may prove to be an effective means of separating them by

electronic type while preserving their electronic structure. Therefore, it is of interest to study the

conditions under which monofunctionalization of carbon nanotubes can be achieved.

In spherical nanoparticles, it has been found that the introduction of stoichiometric[8] or

substoichiometric[9] quantities of ligands has allowed for the synthesis of well-defined

nanoparticle assemblies, while excess ligation results in the formation of cross-linked

aggregates[9]. Advances in the separation of such ligand-functionalized nanoparticles has led to

the creation of hierarchical nanostructures containing a specific number of one[10] or more types

of nanoparticles[1 1]. Building on this progress, Alivisatos and co-workers successfully utilized

plasmonically coupled nanoparticles as molecular rulers[12] for monitoring the in vitro cleavage

of DNA by EcoR enzymes[13] and the in vivo detection of caspase-3 activation[14]. In addition

to spherical particle assembly, the directed end-to-end assembly of gold nanorods has been

achieved by utilizing the different surface energies of their end and side facets[92]. However,

similar advances have not been mirrored in the field of carbon nanotubes to date.
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While the work is comparatively undeveloped, some effort has been expended toward

controlling the density of functionalized sites on nanotube sidewalls. This has primarily been

done by varying the degree of oxidative treatment for multiwalled[19] and single-walled[20]

nanotubes. However, mild oxidative treatments typically involve the reflux of nanotubes in

dilute acid, resulting in an absence of stoichiometric control over the extent of reaction. In

addition, attached functionalities are primarily limited to carbonyl and carboxylic acid

groups[93]. Perhaps the closest that researchers have come to creating sparsely functionalized

SWCNT samples is through the monitoring of single fluorescence quenching events in single-

walled carbon nanotubes immobilized in agarose gels[94, 95]. However, thus far, a method for

the bulk production of singularly tethered nanotubes has not been developed.

When covalently functionalizing carbon nanotubes, there remains an incentive to keep

the number of attached groups small, since sidewall functionalization significantly alters the

electronic band structure of the nanotube. While thermal annealing has proven capable of

driving off covalently attached groups, it has been found that such homolytic cleavage results in

samples that are often difficult to re-disperse in solution. This may result from the cross-

recombination of radicals during the annealing process, producing covalently crosslinked

SWCNT samples[96]. With singular-tethering, this problem is avoided by minimizing the

number of covalent attachments.

The application of such a technique to nanotube separation is particularly relevant. In the

past, separation of carbon nanotubes has been demonstrated using a variety of methods[97],

including density gradient ultracentrifugation[98, 99], selective dispersion[ 100],

dielectrophoresis[ 101, 102], DNA-assisted ion-exhange chromatography[ 103, 104], and selective

chemistry[96, 105]. However, while some of these approaches have succeeded in enriching

certain SWCNT species[99, 103], or metallic and semiconducting fractions[96, 101, 102, 105],

many of them remain limited to lab-scale separation. Because species-selective chemistries are

most effective at low conversions, combining single-particle tethering with an appropriate

functional handle may hold particular promise for the scaled separation of carbon nanotubes by

electronic type.

In this work, we examine the reaction conditions required to maximize the number of

singularly tethered species for several cases of homogeneously dispersed nanoparticles. We start

by examining the case of a monodisperse sample of equally reactive particles of identical size.
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We then build complexity by allowing the solution to have a variety of particles possessing

different sizes and rate constants. In order to do so, we utilize the electron-transfer reactions of

single-walled carbon nanotubes as a model system. Finally, we look at how the initial

distribution of rate constants in solution, and changes in site reactivity due to covalent

functionalization, affect the maximum obtainable fraction of monofunctional particles. In each

case, we examine how changes in model complexity affect the variance in the number of

particles attached.

2.3 Results and Discussion

Case I: Equal Size and Site Reactivity

If each particle contains the same number of sites, and all sites are both independent and

equally reactive, the reacting sites will be indistinguishable, and the distribution in the number of

attached groups, as a function of conversion, can be predicted by a simple binomial

distribution[ 106]:

Pr(X = x) = K pK(1- p)"x = n! pX (1-- p)"-x (2.1)
x) x!I(n -x)!

Here, n represents the number of sites on the nanoparticle, p represents the constant probability

that each particular site is reacted, and Pr is the probability mass function associated with

observing x reacted sites. Because all reactive sites are independent and indistinguishable, p is

simply given by the conversion of the reacting system. Within the probability mass function, the

expectation value and variance are described by:

E(X) = np (2.2)

Var(X) = np(1 - p) (2.3)

Therefore, the binomial distribution, shown as a curve in Fig. 2.1, informs us that there is a clear

maximum in the number of x-functional particles that can be achieved, and that the variance in

the number of attached groups goes to a minimum as we approach the limit of sparse

functionalization. For the specific case of monofunctionalized nanoparticles, E(X) = 1 and

p = 1/n, with the maximum fraction of monofunctional particles given by:

Pr = 1- (2.4)
n
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Figure 2.1 Binomial probability distributions for the number of formalism is useful for
attached groups at six different conversions, p, for n = 1000. The
inset depicts the variance in the number of attached groups as a understanding simple kinetic
function of the mean number of groups attached.

systems, it loses validity as

variability is introduced in both particle size and reactivity. For these cases, a more complex

model becomes necessary.

Case I: Distinguishable Particles and Changes in Site Reactivity

Additional degrees of complexity are introduced as particles are allowed to possess both

different sizes and reactivities, as well as when the activity of reactive sites can change on the

basis of nearby functionalization. In these cases, it is impossible to predict the conditions under

which monofunctionalization is achieved by stoichiometry, alone. Because they can be

comprised of a variety of species with disparate electronic properties, nanotube solutions provide

a useful system with which to analyze this case, especially in the case of electron transfer

reactions.

(a) Model Construction

Carbon nanotubes have been shown to participate in electron transfer chemistries via a

two-step mechanism in which the nanotube and reacting molecule form an intermediate charge

transfer complex[30, 31]. The reaction network can be described by:

k'nm) k(n,m)
A +O,,, A d O , 0 ,A (2.5)
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where A represents a generic electron acceptor and 0(n,,), AadsO(n,m), and AO(n,m) represent vacant

nanotube sites, adsorbed sites, and covalently reacted sites, respectively. Former kinetic studies

by Nair et. al. [32] have shown that, under certain reaction conditions, the reaction rate of this

system can be described by second order kinetics:

dnm) - k (n m)A. 0 26=kk"'">A-0(2.6)
dt A (nm)

with the relative rate constants of all nanotubes being evaluated using Gerischer-Marcus

theory[33]. This theory is applicable for kinetic networks in which the rate-limiting step

involves electron transfer between reacting species. Insights into the applicability of G-M theory

to these electron-transfer reactions have been recently provided through computational

studies[34]. In that work, it was shown that for diazonium reactions, the counterion (BF 4 ) plays

an integral role by actively competing with SWCNT as a source of electron density for

stabilizing the diazo cation. Because of this, the ability of the nanotube to donate electron

density, and therefore, the nanotube density of states, is highly important. Gerischer-Marcus

theory predicts that the rate of reaction between a carbon nanotube and an electron acceptor

molecule is proportional to the degree of overlap between the SWCNT density of

states, DOS(n), and the distribution of oxidized states for the molecule in solution, Wo,[33]:

k~i") = co.,(E)DOS,m)(E)W(E)dE (2.7)

If the proportionality function, E, is assumed to be independent of energy, and both v, and E0,

are taken to be independent of nanotube chirality, it follows that the two terms can be cancelled

during the evaluation of relative rate constants. In this work, all rate constants were evaluated

relative to the (11,5) nanotube. The distribution of oxidized states for the solvated species is

given by[107]:

___(E___-(Ed + A))"
W, (E) exp (E - edox (2.8)

4 Ak T 4AkT

In this equation, A is the reorganization energy required for electron transfer to take place and

Eredox is the Fermi level of the redox molecule in solution. We assign a value of A= 0.71 eV for

our electron transfer chemistry, which has been formerly determined for the diazonium-

functionalization of carbon nanotubes using 4-hydroxybenzene diazonium salt[32]. Ensuring

consistency with our previous study, we have assigned a redox potential of 0.35 eV (SCE) to the
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Figure 2.2 (a) Distribution of nanotubes for which density of states and relative rate constants were
evaluated. (b) Interpolated surface plot showing the SWCNT composition for a typical HiPCO solution used
during a simulated reaction.

redox species and a constant nanotube work function of WSWNT = 4.45 eV. Defining the Fermi

level of SWCNT to be the zero energy in the DOS, the redox potential of reacting molecule,

relative to the SWCNT energy axis, becomes Eredox = -0.6. By adjusting the redox potential

of the reacting molecule, it is possible to apply this same model to a variety of redox-active

species.

In the limit of sparse functionalization, the reaction kinetics will be inherently stochastic.

Therefore, the kinetic Monte Carlo algorithm proposed by Gillespie was employed[108]. In this

algorithm, a random number is used to determine which site reacts, based on the assigned site

probabilities:

P kN - k (2.9)
sit 1 k,N N, N 1 ki ,

where ksie is the rate constant associated with the site under consideration, N is the number of

redox-active molecules, and the denominator sums over the kinetics associated with all sites in

solution (note that Nosie = 1, and is omitted from the numerator). In order to monitor the

reaction progress, a conversion was defined based upon the total initial number of carbon atoms:

NO, - (NO, - NAO N AO
- No )- NO (2.10)

N90  N9 0

In this equation, N0,0 is the initial number of carbon atoms in solution, and NAO is the number of

reacted sites. In the Gillespie algorithm, a second random number can also be used to evaluate
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the time evolution of the reacting system. However, this paper uses conversion exclusively, and

so a discussion on the time evolution of the system is omitted.

In order to simulate the reaction of a random solution of nanotubes, the density of states

for 170 species were evaluated using a 3rd nearest neighbor tight binding model[4, 109] and a

universal density of states for one-dimensional systems[110]. The distribution of evaluated

nanotubes is depicted in fig. 2.2(a) as a function of diameter and chiral angle. For each

simulation, a nanotube solution was randomly generated based upon a HiPCO suspension. To do

this, we assumed a linear dependence on chiral angle[Li] and a log-normal diameter

distribution with a mean, Yd = ln(0.906) and standard deviation (a) of 0.160[112]:

f(x)= exp ((nD-UD) 2  (2.11)
4I-d,D 0 

A typical solution composition, based upon these parameters, is depicted in fig 2.2(b). For each

nanotube, a tube length was chosen based upon a log-normal distribution with a mean (yd) of

6.24 (512.9 nm) and standard deviation (oad) of 1.0[113].

In order to track the reactivity of each site on the nanotube, a lattice model was developed

by utilizing the fact that any chirality of nanotube can be constructed by rolling a zigzag (or

armchair) graphene nanoribbon into a cylinder, and connecting the edge carbons with some axial

dislocation vector[1 11]. The formalism for constructing a nanotube in this manner is depicted in

fig. 2.3 for a zigzag nanoribbon. For constructing a matrix of reactive sites, each row of zigzag

carbons along the length of the nanoribbon translate to a row of the reaction site matrix and each

carbon along the uppermost row defines a column of the corresponding site matrix. Utilizing

this formalism, an X by Y site matrix belonging any (n, m) nanotube can be constructed with the

dimensions specified by:

X = n+ m (2.12)

Y = LSWNT c (2.13)
a (n+m)

and a carbon-carbon connectivity of m - n for alternating atoms along the zigzag edge (fig. 2.3).

In the equation for Y, LSWNT represents the length of the nanotube, a is the translational period of

the nanotube, and Nc is the number of carbons per unit cell.

When a site on a nanoparticle reacts, it is possible for there to be changes in nanoparticle

reactivity due to steric effects, electrostatic repulsion, or changes in electronic structure. For
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1 2 (6,4) Nanotube

Figure 2.3 Example of the transformation from nanoribbon representation to reactive-site-matrix for a
(n,m) = (6,4) nanotube. The number of rows in the site matrix is equal to n + m with the edge connectivity
being defined by m - n for alternating carbons along the nanoribbon edge. The number of columns is
determined by the tube length (see text).

electron transfer reactions involving carbon nanotubes, changes in site reactivity are likely to be

primarily due to modifications to the nanotube density of states, which will alter the overlap

integral in the Gerischer-Marcus formalism. In order to estimate the effects of functionalization

on the nanotube density of states, we utilized theoretical band structure data for carboxylated

(10,0) and (8,8) nanotubes[j2]. The evaluated band structures of the functionalized and

unfunctionalized tubes are depicted in fig. 2.4. As can be seen from the figure, covalent

functionalization introduces a half-occupied impurity state near the Fermi level of the pristine

nanotube[2]. Because band structure data is not available for all of the nanotubes utilized in this

study, the effects of functionalization on other species had to be inferred from the (10,0) and

(8,8) nanotubes. This was done by assuming that the characteristics of the impurity state

primarily result from the attached molecule and the nanotube electronic type (metallic or

semiconducting), rather than the specific chirality of the tube. Therefore, the impurity state of all

metallic species could be inferred from the (8,8) nanotube, and that of semiconductors from the

(10,0) species. To do this, the non-normalized DOS for the impurity states of the (10,0) and

(8,8) nanotubes were evaluated and then normalized, on a per atom basis, according to the unit

cell of each nanotube species used in this study. The impurity states were then inserted into the

DOS of the corresponding, pristine nanotubes. For all semiconducting species, the DOS of

functionalized nanotubes were predicted by introducing a normalized, half-occupied impurity
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Figure 2.4 Initial and modified densities of states for (10,0) and (8,8) nanotubes evaluated using the results of
DFT calculations[21. E,,,,x and EFermi are depicted for each nanotube, and the reorganization energy
associated with electron transfer is shown in (a).

state centered at -0.09 eV. For metallic species, an impurity state was introduced as well as a

gap in the DOS from -0.15 to -0.09 eV. While changes to the nanotube electronic structure occur

in addition to the induced impurity state, these changes account for less than 1% of the predicted

changes in nanotube reactivity for both the (10,0) and (8,8) nanotubes, and were neglected for all

species. For reacted nanotubes, it has been shown that the impurity state wavefunction is

relatively localized around the reaction site in semiconducting tubes, with a characteristic length

of approximately 1.5 nm, but delocalized along a distance of at least 4 nm in metallic species. In

this work, we assume that the semiconducting impurity wavefunction decays with distance

according to a gaussian distribution with a standard deviation of 0.7 nm. Due to lack of further

knowledge of the extent of delocalization in metallic species, we conservatively estimate that the

wavefunction extends along approximately 4.5 rn of the longitudinal axis in the nanoribbon

representation.

(b) Results

Using this formalism, we performed kinetic Monte Carlo simulations for solutions of

nanotubes synthesized using the HiPCO approach[l 14]. For these solutions, we analyzed two
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Figure 2.5 (a-e) Distributions in the number of functional groups attached for five selected conversions. The
mean number of groups attached and variance in the number of groups attached are provided for each plot.
(f) Depicts the relationship between the variance in the number of attached functional groups and the mean
number of attached groups.

cases in which: (1) no site reactivities were adjusted, and (2) adjacent site reactivities were

adjusted as described in the section on model construction. For unadjusted reactivities, the

averaged results of 10 simulations, each containing 5000 nanotubes, are depicted in figs. 2.5 and

2.6. As was shown for the binomial distribution, figures 2.5(a)-(e) depict the distributions in the

number of functional groups attached for five selected conversions. From the data, we also

calculated the variance in the number of attached groups as a function of the mean number of

groups attached (fig. 2.5(f)). Compared to the binomial distribution, the variance of the more

complex system increases much more rapidly, growing proportional to the square of the mean

number of groups attached, rather than linearly at low functionalization. Here, it should be noted

that the mean number of functional groups attached is linearly proportional to the conversion, so

that a plot of the variance versus the conversion results in a similar trend. In addition, the

maximum fraction of monofunctional tubes is not achieved at the same conversion that results in

an average number of functional groups equal to unity, convoluting stoichiometric

considerations. The fractions of mono- and bifunctional tubes are depicted in fig. 2.6(a) as a

function of conversion. For monofunctional tubes, a maximum fraction of 0.224 + 0.006 is

achieved at a conversion of 2.25 x 10-, while a maximum fraction of 0.128 ± 0.004 is obtained

for bifunctional tubes at a conversion of 5.50 x 10-. Conversely, considering a solution of (7,6)
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Figure 2.6 (a) Total fractions of mono- and bifunctional tubes as a function of conversion. (b)
Monofunctional species fractions for eight selected chiralities as a function of conversion.

nanotubes, 500 nm in length, the binomial distribution predicts a maximum obtainable

monofunctional fraction of 0.37. The deviation from this idealized value results from the

distribution of rate constants in solution, which leads to different species attaining their

maximum fraction of monofunctional tubes at different conversions. This effect is depicted in

fig. 2.6(b) for eight species of nanotubes arranged from high to low reactivity.

Because of this effect, it was of interest to examine how the distribution of rate constants

in solution affects the variance in the number of attached groups. In addition, we examined how

the variance is affected by changes in adjacent site reactivity. To do this, we performed KMC

simulations for SWCNT synthesized by three different approaches: HiPCO, Co-MCM-41[115,

116], and a scaled version of the floating-catalyst method (FC-CVD)[ 117, 118]. For each case,

the simulations were performed both with and without modifying adjacent site reactivity. As

was done for HiPCO, a linear dependence on chiral angle was assumed for both Co-MCM-41

and FC-CVD SWCNT. For Co-MCM-41, we assumed a log-normal distribution in diameter

with a mean, Yd = ln(O.834) and standard deviation (ad) of 0.052[112], while for FC-CVD

SWCNT, a Gaussian distribution was assumed with a mean diameter of 1.3 nm and a standard

deviation of 0.2 nm [118]. The simulation results are depicted in fig. 2.7. As expected, a

solution containing a more disparate rate constant distribution results in a higher variance in the

number of functional groups attached. In addition, there is little change in the variance when

modifications to site reactivity are accounted for.

The fact that adjustments in adjacent-site reactivity produce little effect on the variance in

the number of attached groups is consistent with expectations, since in the early stages of the
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Variance in number of functional groups attached (as a function of mean groups attached) for the cases of
unmodified and modified site reactivities.

reaction, the kinetics of reaction are predominantly determined by the vast majority of

unfunctionalized sites. In a kinetic system, the relative probability of a particular tube reacting

can be described by:

P kNoNA (2.14)
jZ1kNOINA j1 ( k,NU

where the numerator sums over all the sites of a single nanoparticle, and the denominator sums

over all nanoparticles in solution. If the effect of reacting a particular site is relatively small, the

values in the numerator and demominator will change little upon the addition of a small number

of functional groups, and the equation for P becomes:

40

C. 0

02

e0

01

0

00

02

0

0

0

d.
Mean= 11174M
St Dev = 021696 Mtl

0 0.2 0.4 06 08 1 12 14 16
Relatie Rate CottetaRt

Rate Contats i Limit ot Comnplete Reaction

0 02 04 06 08 1 12 14 16
Raeth~e Rate Constant

Mea w=e 1 2479 W etocondutons,
0 23768

5

2

5

0

C.

-No Reactivity Modification
1- Moddfyng Site Reaty -

Reatie Rate Constant

.-- NofReactivity Modificabonj
0 Modifyig Site Reactivity

-X t
Q 525 D 535atte vU

0

0

0

-- No Resictivwty Modification
SMod" n Site Reacetr



a. Floating Catalyst CVD b. HiPCO c. Co-MCM-41
03 0.30.

Metals Metals Metals

s s Semiconductors os bSemiconductors s o Semiconductors
-0025 __Total ~ 05Total -0025-__ Total

50.2. 02, 002

C C

~0.15 - :3 '
p k15 0(0215

or tht1epoablt fec tueratn il eanapoi0tl1 osatateryrato

C C C
0 2 0 .0 00 4 00 0 0 02 4 08 8 1

Co onesone Howee wile thenes e sion sttsial sinCoan nersionalzto

Figure 2.xationhre of ofuntiona tubes aiafnction ofxconvesihn forret difrents nantubeg

solutions, owt the masesofunctonaifrdains unofi etalien e dctii(eig. spc.7g)ise).I

01N 9  (2.15)

othat tase probaiitymofeac stue reacting illrmi aproxTimate costant fat ea teato

ctis Teor theee is sminimal deaionb from the uodifged reactiit csee ings.lii 2.(af)

rngenexamine heeed expectra tsh variane to exhbtergtly diferestnt tedsribtigh

hparticl, wl aesxdeeas the variance in the number of attached groups aemrelwle orh

unmodified case, and vice versa. An extreme of this is the case in which all rate constants

converge to zero upon the first chemical reaction, resulting in a sample that is almost entirely

monofunctionalized[ 119]. Because there is little change in the variance of the system, identical

maxima are attained for the total fraction of monofunctional HiPCO tubes both with and without

site reactivity modification (see Table 2-1). Therefore, we instead focused on how the

distribution of the initial rate constants affects the maximum fraction of monofunctional tubes

obtained.

In fig. 2.8, we depict the fraction of total monofunctional tubes as a function of

conversion for all three nanotube solutions. In addition, because the deviations in the initial rate

constants are primarily due to metallic and semiconducting species, we plot the monofunctional

fractions of both these electronic types. As can be seen from the plots, and the summarized data
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Table 2-1 Conversions at which maximum fractions of monofunctional nanotubes are obtained for four
cases analyzed.

No Site Adjustment Adjusting Site Reactivity

HiPCO FC-CVD HiPCO Co-MCM-41

Monofunctional Conversion 2.25 x 10-5 1.00 x 10-s 2.25 x 10-5 5.00 x 10-s
Tubes Maximum 0.224 ± 0.006 0.260 ± 0.004 0.224 ± 0.006 0.218 ± 0.005

in Table 2-1, the maximum fraction of monofunctional tubes decreases as the standard deviation

of the initial rate constant distribution increases. This should be expected for all reacting

solutions in which the particles possess a distribution of rate constants. In addition, as the rate

constants of semiconducting and metallic species become more disparate, the conversions at

which the maximum fractions of these species are reached begin to separate. This led us to look

at the implications of solution composition on the ability to use electron transfer chemistries to

separate nanotubes by electronic type.

(c) Applied Example: Using Singular Tethers to Separate SWCNTs by Electronic Type

For the purpose of using selective chemistry to separate single-walled carbon nanotubes

by electronic type, it is desirable to limit the number of functionalized sites in order to preserve

the nanotube electronic structure. Since electron transfer chemistries have been shown to be

selective to metallic nanotubes, we examined the ability to use these chemistries for

metal/semiconductor separation with the three solutions utilized in this study. For each of these

solutions, the typical nanotube composition with respect to electronic type is provided in Table

2-2. For this work, large band -gap semiconductors were defined as those having Ell greater

than 1 eV, while all others were considered small band-gap.

The averaged results of ten simulations, using the model which incorporates site-

reactivity modifications, are shown in fig. 2.9. In these plots, the "metallic solution" refers to a

solution of functionalized nanotubes, which are assumed to be separable from the

unfunctionalized "semiconducting solution." From fig. 2.9, our KMC simulations show that the

ability to use electron-transfer chemistry to separate nanotubes by electronic type is strongly

dependent on the distribution of nanotubes in solution, with the greatest degree of separation

being achieved using Co-MCM-41 SWCNT. This results from the presence of entirely large

band-gap semiconductors, which have low rate constants due to the small degree of overlap

between the SWCNT density of states and the oxidized states of the redox molecule. As more

small-band gap semiconductors are introduced in HiPCO and FC-CVD SWCNT, the ability to
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Figure 2.9 Implications of chiral distribution for nanotube separation. Because electron transfer chemistries
are typically selective toward metallic species, the functionalized sample has been denoted as the "metallic
solution," while the unfunctionalized sample has been labeled as the "semiconducting solution."

separate tubes by electronic type decreases due to the increased reactivity of the semiconducting

species. In the extreme of FC-CVD SWCNT, no degree of enrichment is obtained for

semiconducting or metallic nanotubes. For these tubes, the observed deviation in the purity of

the semiconducting solution, from initial composition, can be attributed to the fact that as the

number of unfunctionalized tubes decreases to zero, small variations the number of

semiconducting or metallic tubes will result in significant deviations in the fraction of

semiconductors present. Considering the conditions for optimizing the number of

monofunctional metallic tubes, it was determined that for HiPCO, metallic and semiconducting

purities of 61.5 ± 1.2% and 72.3 ± 1.0% can be obtained with losses of 46% and 23% of the

metallic and semiconducting tubes, respectively. For Co-MCM-41 SWCNT, purities of 75.9 ±

1.2% and 72.4 ± 0.7% can be obtained for metals and semiconductors with losses of 47.2% and

12.0%. By carrying the reactions out under these conditions, it may therefore be possible to

obtain enriched samples of semiconducting and metallic species with minimal damage to the

Table 2-2 Compositions of nanotube solutions used for KMC simulations.

Nanotube Type Metals Small Band-Gap Semiconductors Large Band-Gap Semiconductors

Floating Catalyst CVD 0.373 ± 0.007 0.611 ± 0.007 0.016 ± 0.002

HiPCO 0.384 ± 0.008 0.290 ± 0.006 0.325 ± 0.003

Co-MCM-41 0.414 ± 0.009 0.000 ± 0.000 0.586 ± 0.009
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nanotube electronic properties.

2.4 Conclusions

In this study, we analyzed the conditions under which singularly-tethered nanoparticles

can be achieved. For simple systems, such as the ligation of monodisperse, spherical

nanoparticles, the results of reaction can be predicted by a statistical binomial distribution. This

leads to the conclusion that a stoichiometric addition of ligand results in the greatest number of

singularly-tethered particles. However, for systems in which the solution contains a

heterogeneous dispersion of different types of nanoparticles, each possessing a different

reactivity, a simple statistical analysis no longer suffices. We examined this more complex

system using carbon nanotubes as a model system, and add a further degree of complexity by

incorporating the effects of covalent reaction on the reactivity of adjacent carbons. We found that

the variance in the number of attached groups increases much more rapidly in these complex

systems, making it more important to operate at low conversions in order to obtain samples with

monodisperse degrees of functionalization. In addition, the maximum attainable fraction of

monofunctional particles is strongly dependent upon the distribution of rate constants in the

initial solution, with the fraction increasing for samples in which the standard deviation of the

initial rate constant distribution decreases. We then examined the implications of the nanotube

distribution on the ability to use selective electron-transfer chemistries to separate nanotubes by

electronic type. Based on the kinetic parameters used in this study, there appear to be upper

limits on the purity of semiconducting and metallic fractions that can be obtained. This purity

was found to be highly dependent on the initial distribution of nanotubes in solution, with Co-

MCM-41 SWCNT appearing the most promising for separation of carbon nanotubes by

electronic type. Fundamentally, this study shows that, due to the heterogeneous population of

SWCNT rate constants in solution, simple stoichiometric considerations are not sufficient for

obtaining a large population of carbon nanotubes which possess a minimal number of covalent

tethers. Because of this, we explore the ability to utilize the surfactant adsorbed layer to impart

an additional degree of control over SWCNT covalent reactions in colloidal dispersions of

single-walled carbon nanotubes.
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3 The Role of Adsorbed Surfactant in the Reaction of Aryl

Diazonium Salts with Single-Walled Carbon Nanotubes

Some of the work, text and figures presented in this chapter are reprinted or adapted with

permission from reference [120]. Copyright 0 2012, American Chemical Society.

3.2 Introduction

Covalently modified carbon nanotubes have been utilized for a variety of

applications[ 121], ranging from drug-delivery vehicles[ 122-124], to molecular sensors[125, 126]

and are promising materials for the development of both optical[127] and mechanical[128]

switches. However, for such applications as electronic sensors and actuators, the introduction of

covalent defect sites to the highly conjugated nanotube sidewall significantly alters the electronic

properties of the nanotube, which in the case of single-walled carbon nanotubes (SWCNTs), can

substantially hinder tube conductance [129, 130]. Additionally, in the case of semiconducting

SWCNTs, such defect sites can quench nanotube fluorescence along a length of approximately

140-240 nm[94, 131], thereby inhibiting the use of covalently modified nanotubes for

fluorescence sensing applications. Thus, there is an interest in developing a means of controlling

the degree of covalent functionalization, such that the majority of the properties of pristine

nanotubes are preserved.

To date, efforts toward controlling the extent of nanotube reaction have primarily focused

on reaction stoichiometry[17], reaction time[18], and harshness of oxidative treatment[19-21].

However, nanotube solutions may possess as many as 30 distinct species of semiconducting

nanotubes[22], alone, with each nanotube potentially exhibiting a significantly different affinity

toward a reagent molecule. In fact, the reactivity of a particular species is often dependent upon

the specific properties of the nanotube[132], including electronic structure[23-25], diameter [21],

and bond curvature radius[26]. Therefore, it remains difficult to obtain similar degrees of

functionalization across all species. Here, we examine the promise of utilizing dispersing agents

to help control the extent of functionalization in the reactions of carbon nanotubes with

diazonium salts.

Diazonium salts are useful candidates for the covalent modification of carbon nanotubes

because they can be synthesized with a variety of different functional groups[133], which can
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then be utilized for additional chemistry[134, 135]. However, it is well-known that aryl

diazonium salts undergo a large number of reactions in solution[136]. Even in the limited case

of aryl diazonium reactions with carbon nanotubes, a variety of mechanisms have been

proposed[24, 30, 137, 138], sometimes displaying significantly different trends in reaction

selectivity. These trends range from enhanced reactivity of metallic, and large diameter

species[24, 32], to preferential reaction of small bandgap tubes[137]. In the case of metallic-

selective reaction, it has been determined that the rate-limiting step of the reaction involves

electron-transfer from the nanotube to the diazo moiety, and that selectivity is imparted during

the initial, adsorption step of the reaction[24, 32]. This has allowed for the use of chemical

derivatization as a means of separating carbon nanotubes by electronic type[96, 105] and for

increasing the on-off ratio of SWCNT network transistors[139-141]. In the small band-gap

selective case, the trend in reactivity has been attributed to the formation of an electron-rich,

diazoanhydride intermediate under basic conditions. However, despite these mechanistic

hypotheses, little work has been expended toward elucidating the role of the surfactant in these

reactions.

Because surfactants and polymers stabilize nanoparticles by a variety of mechanisms,

from coulombic forces, to steric exclusion, and thermal fluctuations[ 142], it should be expected

that these adsorbed layers will also influence the ability of a reagent molecule to access the

nanoparticle surface. It is useful to explore this effect for two reasons: (1) the reactions of

SWCNT-surfactant complexes can provide insight into the structure of the surfactant wrapping,

and (2) the surfactant wrapping, if understood, can help direct, and control, the chemical

functionalization of SWCNTs, as we show. Indeed, promise toward utilizing surfactants to

direct SWCNT modification has been demonstrated in the regioselective, end-modification of

oxidized carbon nanotubes[27, 28, 143]. Here, we investigate the influence of surfactant on the

diazonium reactions of carbon nanotubes. We particularly focus on the fluorescence quenching

response of SWCNT solutions, since this provides the most sensitive indicator of covalent

functionalization[137]. In doing so, we design the reaction conditions such that there is only a

partial quenching of the nanotube fluorescence, since these conditions are likely to correspond to

the conditions under which the nanotubes possess both pristine segments, and covalent

functional handles. Ultimately, it is found that the surfactant can affect the reactions of carbon
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nanotubes in a variety of ways, including electrostatics, steric exclusion, and direct chemical

modification of the reacting species.

3.3 Methods

Sample Preparation

HiPCO nanotubes (Unidym, Inc.) were suspended using methods similar to those

previously published[144], which have been shown to produce individually dispersed carbon

nanotubes, thereby minimizing aggregation effects. Briefly, for each sample, nanotubes were

dispersed at 1mg SWCNT/mL solution (~30mL total volume) via 30 minutes of homogenization

using a T-10 Ultra-Turrax (IKA Works, Inc.) dispersion element at approximately 11,400 min-.

Linear chain surfactants were utilized at lwt%, while bile salts were used at a concentration of

2wt%. The homogenized dispersions were sonicated at 10W, in an ice bath, for 1 hour using a

6mm probe tip (Cole-Parmer). Samples were then centrifuged at 30,000 rpm (153,720 rcf) and

22'C for 4 hours, and the supernatant collected. For CTAB, efforts were made to minimize the

precipitation of surfactant during ultracentrifugation by operating above the Krafft temperature

(~25 C). The aryl diazonium salt, 4-Propargyloxybenzenediazonium tetrafluoroborate, was

synthesized according to previous protocols[135, 145, 146] and stored at -20'C until use. Fresh

stock solutions of diazonium were prepared immediately prior to all experiments.

SDS and CTAB Transient Reactions

SWCNT solutions (pH = 5) were preheated to 45'C and the PL was allowed to stabilize

for 1 hour prior to initiating the reaction. Reactions were initiated by a single injection of

diazonium solution to the well-stirred vessel, such that the final molar ratios of diazonium to

carbon were 1.0Oxl4 and 3.25x10 2 for SDS and CTAB, respectively. Photoluminescence

spectra were obtained using a fiber optically coupled MKII Probe Head (Kaiser Optical

Systems), fitted with an immersion optic, which served as both the excitation and collection

device. The excitation element of the probe head was fiber optically coupled to a 785nm Kaiser

Invictus laser (~54 mW at sample). The collection port was coupled to a liquid nitrogen-cooled,

nIR InGaAs detector (Princeton Instruments) through a PI Acton SP2150 spectrometer, with

which transient photoluminescence spectra were acquired.

SDS Selective Reaction
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SDS selective reactions were carried out by pre-heating samples (pH = 5) to 45'C,

allowing them to stabilize at that temperature, and initiating the reaction by a single addition of

diazonium solution to the well-stirred vessel. Solutions were reacted 24 hours, and were carried

out at 3 different molar ratios of diazonium to carbon: 6.50x10-5, 1.30x10-4, and 1.95x10-4.

Bile-Salt SWCNT Reactions

Solutions were pre-heated to 45'C and allowed to stabilize for 1 hour prior to addition of

diazonium reagent. For all samples, the SWCNT solution was diluted to a total carbon

concentration of 15 mg/L. Reactions were initiated by a single addition of diazonium solution,

and were allowed to proceed for 24 hours at 45'C under constant stirring. Photoluminescence

(785nm excitation) and 2D excitation-emission data were acquired using a home-built near-

infrared fluorescence microscope which has been described previously[147]. Raman

spectroscopy was performed on dispersed nanotube samples using a LabRAM HR spectrometer

(Horiba) with a 633nm excitation source. A Shimadzu UV-31OPC spectrometer was utilized for

UV-vis-nIR absorbance measurements.

3.4 Results

In order to study the influence of surfactants on the diazonium derivatization of carbon

nanotubes, six surfactant molecules were utilized (fig 3.1). For examining the effects of

surfactant charge, two linear-chain surfactants were used, sodium dodecyl sulfate (SDS), and

cetyltrimethylammonium bromide (CTAB). These surfactants are expected to form loosely

packed, beaded structures on the nanotube surface[30, 148-150], which results from a tendency

of the flexible, aliphatic chains to orient themselves into hydrophobic regions. Further, because

the molecules are not rigid, they present little steric hindrance to diazonium derivatization,

thereby allowing for direct observation of coulombic effects. For examining the effects of

structural packing and surfactant rigidity, four bile salts, sodium cholate (SC), sodium

deoxycholate (SDC), sodium taurocholate (STC), and sodium taurodeoxycholate (STDC) were

used. In contrast to the linear-chain surfactants, these bile salts possess stiff, steroidal backbones

that impart them with their characteristic hydrophobic and hydrophilic "faces"[151].

Computational simulations have shown that this bifacial nature of sodium cholate causes the

surfactant to form a tightly packed monolayer on the SWCNT surface[30, 152]. Therefore, these

six surfactants allow the examination of how rigidity and charge influence the reactions of
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Figure 3.1 Structures of the diazonium ion and six surfactants utilized in this study. Diazonium salt: (a)
running reactions under slightly acidic conditions favors the cationic diazonium ion over the base-
mediated conversion to diazotates and diazoanhydrides. Surfactants: (b) sodium dodecyl sulfate, (c)
cetyltrimethylammonium bromide, (d) sodium cholate, (e) sodium deoxycholate, (f) sodium taurocholate,
and (g) sodium taurodeoxycholate. The bile salts, (d)-(g), have rigid steroidal backbones, which impart
them with hydrophobic and hydrophilic "faces". The rigidity of these bile salts causes them to form
close-packed structures on the nanotube surface. The linear chain surfactants, (b) sodium dodecylsulfate
and (c) cetyltrimethylammonium bromide possess less rigid, lipidic chains, which tend to coat the
nanotube in a more disordered manner.

diazonium salts with carbon nanotubes. It should be noted that for all reactions, the use of

slightly acidic conditions aids in preserving the cationic, aryldiazonium moiety by suppressing

the base-mediated conversion to the corresponding diazotate or diazoanhydride (fig.

3.1(a))[136].

Linear Chain Surfactants

Because the diazonium ion is cationic, it is of interest to see how the charge of the

surfactant-SWCNT complex affects the ability of the diazonium molecule to access the SWCNT

surface. Due to the relatively fast reaction kinetics of SDS-SWCNTs, and the desire to directly

observe how the charge of the SWCNT-surfactant complex actively attracts or repels diazonium

ions, we continuously probed the fluorescence quenching response of SDS- and CTAB-

suspended SWCNTs upon exposure to aryl diazonium salt. Under dark reaction conditions at pH

= 5 and T = 45'C, SDS-suspended carbon nanotubes have been shown to undergo an

electronically selective reaction which depends upon the nanotube density of states[24, 32]. Such

reactions are shown in figure fig. 3.2(a-c), for different molar ratios of diazonium to carbon.
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Figure 3.2 Reaction data for SDS and CTAB-SWCNTS under various conditions. (a)-(c) Selective reaction
data for SDS-SWCNTs under dark conditions. (a) Absorbance data shows little change under addition of
small quantities of reagent. (b) Fluorescence spectra show an enhanced reactivity of small band-gap
semiconductors for all aliquot sizes. (c) Raman data (normalized by the G-peak intensity) depicting slight
increases in the D-to-G ratio with additional reagent, which is characteristic of covalent derivatization. (d)-
(e) In situ snapshots of the transient fluorescence quenching response of carbon nanotubes suspended in (d)
SDS and (e) CTAB, upon addition of diazonium salt. Here the samples are continuously illuminated at an
excitation wavelength of 785 nm. (d) In the case of SDS, a similar fluorescence response is observed across all
species. (e) CTAB exhibits a preferential reaction of small diameter species. Insets depict the relative
reactivities of 8 nanotube species as a function of tube radius. (f)-(g) G-peak-normalized pre- and post-
reaction Raman spectra (633nm excitation) for (f) SDS and (g) CTAB-SWCNTs, which demonstrate an
enhanced D/G ratio (D peaks shown in insets).
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Here, the extent of reaction is small enough that there is a negligible effect on the absorbance

spectra of the solutions. In contrast, the nanotube fluorescence, which is more sensitive to

covalent functionalization than absorbance[137], depicts a preferential decrease in emission

features associated with small band gap semiconducting nanotubes, whose EII transition energies

appear furthest into the near-infrared (fig. 3.2(b)). It is worth noting that SDS-SWCNTs are

much more reactive than SWCNTs dispersed in other surfactants, such that a similar quantity

diazonium, when applied to the other SWCNT-surfactant systems studied here, results in little to

no degree of functionalization (fig. 3.3). This is likely attributable to both the charge and loose

structural packing of the SDS molecules.

When laser-illumination is used to analyze the transient quenching response, a

substantially different reaction trend is observed for both SDS and CTAB-SWCNT solutions.

For transient experiments, SWCNT suspensions (pH = 5) were preheated to 45'C and reactions

were initiated by a single injection of diazonium solution. During reaction, the transient

fluorescence behavior was monitored in situ by utilizing an immersion optic-fitted Kaiser Raman

MKII probe head, which was coupled to a nIR spectrometer. In order to collect

photoluminescence spectra in real-time, the reacting samples were continuously excited using

785nm laser illumination (~54 mW at sample) during the experiment. The fluorescence spectra

of the SDS- and CTAB-SWCNT solutions, at various time points after addition of diazonium

ions, are depicted in fig. 3.2(d) and fig. 3.2(e), respectively. For anionic SDS, the fluorescence

quenching response appears to be relatively independent of the nanotube species, with all

SWCNTs exhibiting similar degrees of quenching. Further, the quenching response occurs very

quickly, leveling off after approximately 25 minutes. On the other hand, CTAB-SWCNTs,

besides displaying a much slower quenching rate than that of SDS-suspended nanotubes, exhibit

an enhanced reactivity of large band-gap (small diameter) species. Spectral deconvolution

allows for more rigorous analysis of 8 nanotube species whose fluorescence is predominantly

observed at 785 un laser excitation. The relative reactivities of these 8 species are depicted as a

function of tube radius in the insets of fig 3.2(d)-3.2(e). In the case of both surfactant systems,

covalent derivatization was confirmed by Raman spectroscopy, which displayed an increase in

the D/G ratio(fig. 3.2(f)-3.2(g)).
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Figure 3.3 (i) Absorbance (ii) fluorescence, and (iii) Raman data for reactions performed under conditions
similar to SDS-selective reactions (1.10 x 10 4 moles diaz./mole carbon, pH 5.5, T = 45"C, 24 hour reaction
time). Rows correspond to the surfactants (a) CTAB, (b) SC, (c) SDC, (d) STC, and (e) STDC. Because of
the loose packing of SDS on the surface of the nanotube, reaction occurs at diazonium concentrations that are
several orders of magnitude lower than those used for other surfactants. The absorbance, fluorescence, and
Raman spectra (above) show that, under similar conditions, the other surfactant-SWCNT solutions undergo
little to no reaction.
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Bile Salt Derivatives

The effects of surfactant rigidity and structure were analyzed with a focus on bile salt

derivatives. Here, the rigidity of the surfactant layer resulted in much slower reaction kinetics,

which were dominated by the effects of structural packing, even under laser illumination.

Therefore, for analyzing the reactions of bile salt-suspended SWCNTs, reactions were performed

over a 24 hour time period in the absence of illumination. The absorbance spectra of nanotube

suspensions at varying conversions are depicted in fig. 3.4. As can be seen in fig. 3.4(a), sodium

cholate-SWCNTs appear to undergo electron-transfer-selective reaction, with peaks attributable

to the metallic Ell transitions disappearing first, followed by small band-gap and then larger

band-gap semiconductors. In contrast to sodium cholate, the structural homolog, sodium

taurocholate (fig. 3.4(c)), exhibits a minimal degree of reactivity with only a small decrease in

select absorbance peaks. The deoxycholate bile salts, sodium deoxycholate (fig. 3.4(b)) and

sodium taurodeoxycholate (fig. 3.4(d)) demonstrate similar reactivity trends. However, a strong

absorption peak at 309 nm, in the case of STDC-SWCNT, indicates that a significant amount of

residual diazonium ion remains in the STDC-SWCNT solution, which does not appear in the

case of SDC. A similar comparison between SC and STC was not possible due to saturation of

the STC absorbance spectrum in the ultraviolet region. After the allotted reaction time, Raman

spectra were taken in order to evaluate the D/G ratio of each sample (fig 3.4(e)-3.4(f)).

Consistent with absorbance results, sodium cholate-suspended nanotubes exhibit the largest D/G

ratios (fig 3.4(e)). The two deoxycholic species, SDC (fig. 3.4(f)) and STDC (fig (3.4(g)),

appear to attain comparable D/G ratios for similar quantities of added diazonium. Raman

analysis of the sodium taurocholate derivative was not possible due to a large background signal.

Judging from these data, it appears that all solutions have similar reactivity trends, with larger

band-gap species reacting preferentially to smaller band-gap tubes, albeit to different extents.

However, upon analyzing fluorescence data, a significantly different trend is observed.

The corresponding fluorescence spectra for the bile salt suspensions are shown in fig. 3.5.

Here, the data are presented as both the raw spectra and deconvoluted, fractional quenching

results for individual species. In agreement with the absorbance data of fig. 3.4, SC-SWCNTs

undergo a reaction that is predominantly determined by the electronic structure of the nanotube.

This is apparent from the fractional quenching results of the individual species, which have
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Figure 3.4 Absorbance spectra for four bile salts, (a) sodium cholate and (b) sodium deoxycholate, (c) sodium
taurocholate, and (d) sodium taurodeoxycholate, and Raman D/G ratios for (e) sodium cholate, (f) sodium
deoxycholate, and (g) sodium taurodeoxycholate. Spectra have been normalized to match abs(632nm) of the

control. (a) Sodium cholate provides the clearest demonstration of selective reaction, with metallic and large

diameter (small bandgap) nanotubes reacting preferentially. The other three species also appear to
demonstrate an enhanced reactivity of small band-gap semiconductors, albeit to different extents. The

increase in baseline, toward the ultraviolet region, can be attributed to reaction byproducts. Raman reaction

trends for sodium deoxycholate (f) and sodium taurodeoxycholate (g) appear similar, which is consistent with

their absorbance spectra, which also show similar results. (e) The D/G ratios for sodium cholate attain higher

values than those observed for the other bile salts, which is consistent with a greater decrease in the

absorbance associated with Van Hove singularities.
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Figure 3.5 Fluorescence spectra and deconvoluted fractional quenching results for the four bile salts used in
this study: (a) sodium cholate, (b) sodium deoxycholate, (c) sodium taurocholate, and (d) sodium
taurodeoxycholate, at an excitation wavelength of 785nm. (a) As observed in the absorbance spectra, sodium
cholate demonstrates predominantly electron-transfer selective reaction, with large diameter (small bandgap)
nanotubes reacting preferentially. For sodium cholate, the fractional quenching results are generally plotted
from large to small Ell gap. For species whose Ell emissions overlap to the extent that a single peak is
observed (i.e. (9,4)/(7,6) and (10,5)/(8,7)), the species with the larger E22 gap has been plotted first. In contract
to sodium cholate, the other three bile salts display preferential reactivity among a small population of
nanotubes (see text).
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generally been arranged according to the magnitude of their E1I band-gap. In going from right to

left, those species whose Ell gaps overlap, such that their combined emissions appear as a single

peak in the emission spectra (i.e. (9,4)/(7,6) and (10,5)/(8,7)), the species with the larger E22 gap

has been plotted first. Here, except in the case of the (11,3) and (9,7) species, a general increase

in reactivity is observed as the ElI band-gap decreases. However, as is especially evident in the

case of SDC, the other SWCNT-surfactant complexes appear to undergo reactions among only a

small subset of nanotube species. For SDC-SWCNT, the reacting population is comprised of:

(10,2), (9,4), (7,6), (10,3), (11,1), and to a lesser extent, (8,4). This result is more clearly

demonstrated in the excitation-emission spectra of reacted and unreacted samples (fig 3.6). Of

these affected species, fluorescence features associated with the (10,2), (9,4) and (7,6) nanotubes

are predominantly observed at an excitation wavelength of 785 nm, and their fractional
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Figure 3.6 Excitation-emission spectra of unreacted (left), and reacted (right), SC-SWCNT (a)-(b) and SDC-
SWCNT (c)-(d). In agreement with electron-transfer limitation, the SC-SWCNT reaction progresses from
the top right to the bottom left of the plotted spectrum. SDC-wrapped SWCNTs, however, undergo reaction
among predominantly a small diameter range of species, including (10,2), (9,4), (7,6), (10,3), (11,1), and to a
lesser extent, (8,4).
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quenching results are depicted in

fig 3.5(b). Here, it is evident

that these three species react to

the near exclusion of the other

semiconducting nanotubes which

are observable at 785nm

excitation. Similar trends are

seen for STDC (fig.3.5(d)) and

STC (fig 3.5(c)), though to

different extents of reaction. In

addition, a similar reactivity

trend is observed under laser

illumination, indicating that the

surfactant packing, rather than
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Figure 3.7 Transient fluorescence response of 2% SDC-suspended
SWCNTs under constant laser illumination. Due to surfactant
exclusion effects, the reaction of the bile salt suspended SWCNT

samples takes much longer than the reactions of SDS, and the

reactivity remains dominated by packing effects, as evidenced by the

enhanced quenching response of (9,4), (7,6), and (10,2).

electron transfer, is dominant in determining the SWCNT reactivity (Fig. 3.7). As is consistent

with the absorbance data in fig. 3.4(c), sodium taurodeoxycholate-suspended nanotubes exhibit

only a small degree of fluorescence quenching when compared to the other analyzed bile salts. It

is worth noting that at even the lowest diazonium concentrations used for the bile salt species,

SDS-suspended SWCNTs undergo significant extent of reaction, providing further evidence of

the loose, pliable packing of SDS on the nanotube surface (fig. 3.8).

3.5 Discussion

Linear Chain Surfactants - Diffusion-Limited Kinetics

Under dark conditions, SDS-SWCNTs show typical, electron-transfer-limited reaction

(fig 3.2(a)-(b), in which metallic and small band-gap species display a higher reactivity than

large band-gap semiconductors[24, 96]. This is consistent with reported studies in which other

surfactants were utilized, including Pluronic F127[138] and sodium cholate[105], and is in

agreement with the predictions of electron-transfer theories [32, 90]. Generally, this selectivity

results from an enhanced ability of these nanotube species to transfer an electron to the

electrophilic, diazo moiety, thereby facilitating decomposition of the aryl diazonium molecule.

However, under constant laser illumination, electron-transfer selectivity is not observed for
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Figure 3.8 Experimental results for an SDS-SWCNT reaction performed under conditions similar to the
lowest diazonium concentration bile salt reactions (0.033 moles diaz./mole carbon, pH 5.5, T = 45"C, 24 hour
reaction time). Because of the loose packing of SDS on the surface of the nanotube, as well as its negative
charge, (a) absorbance, (b) fluorescence, and (c) Raman measurements indicate that the nanotubes are highly
functionalized under these conditions.

either SDS or CTAB-SWCNTs. We particularly noticed that, in the case of CTAB-SWCNTs,

the reaction rate was very small due to coulombic repulsion between the diazonium ion and the

adsorbed, surfactant layer, giving the appearance of diffusion-limitation.

Here, a diffusion-limited model is proposed for the reaction of surfactant-coated

SWCNTs with aryl diazonium salts. Each nanotube is treated as residing within a cylindrical

cell of solution[153, 154], which contains only a single SWCNT-surfactant complex and its

corresponding counterions. This model hinges on the assumption that the SWCNT particles are

dispersed at large enough distances that, on average, their interactions are negligible. Thus, there

is a radius between SWCNTs at which the electrostatic potential goes to zero. Because nanotube

solutions are typically dilute (~20nM in this study), this approximation should be valid. A

a. b. ------- c ---

* 0

*. .*
* @0

*.0 q
0 00 0 0

0 ~

Figure 3.9 Illustration of the cell model, which was utilized to study the
relative reactivities of SWCNTs in the diffusion limit. (a) Schematic of a
surfactant encapsulated SWCNT. (b) Looking down the SWCNT axis, the
charged head groups of the surfactant are assumed to reside on a cylindrical
plane located a distance, 6, from the nanotube surface. The distance, rb, is
the radius at which the potential and the derivative of the potential go to
zero. (c) Schematic of how the cell may appear in the presence of
counterions.

schematic of the cell

model is depicted in fig

3.9. For the purpose of

this study, it was assumed

that the charged heads of

the surfactant layer reside

on a cylindrical plane

located at a distance, 1

from the nanotube surface.

This distance was chosen

to be 0.4 nm based on

58

(a) 1.2-

1.0-

-- Control
-- Reacted

a
aa
0

0.8-

0.6-

0.4-

0.2-

Andrew J. HilmerEngineering Nanocarbon Interfaces for Electron Transfer



molecular dynamics simulations of SDS-encapsulated SWCNTs[149]. The distance, r, ,

represents the radial distance from the SWCNT axis to the boundary of the cell, at which both

the potential and the derivative of the potential go to zero [155].

In diffusion limited reactions, as in the theory of slow coagulation[ 156], the rate of

reaction is determined by the flux of diazonium molecules to the nanotube surface. In the

presence of a potential, q/ , the flux of an ionic species is described by the Nernst-Planck

equation:

J= -DL VCA + zCF V ] (3.1)

Where F is Faraday's constant, and DA, ZA, and CA are the diffusion coefficient, charge, and

concentration of the diazonium ions, respectively. If the reaction is at steady-state, and edge

effects are neglected, then the number of molecules passing through a cylindrical shell of area,

A = 2,rrL , where L is the SWCNT length, is equal to the diazonium-SWCNT collision rate,

which is given by:

RC = 27rrLDA EdA + CA d(ZAF= /RT) constant (3.2)
1dr dr

Using the condition that imrr y = o, and assuming that the concentration of diazonium is

effectively zero at the nanotube surface, it is possible to derive an expression for the rate of

collision of aryl diazonium ions with a carbon nanotube in solution:

Rc(n,) = Q27rLDA (3.3)

S exp(F / RT)dr

where cc is the bulk concentration of the aryl diazonium molecule, and ZA has been defined as

+1. While this equation has been derived under the assumption of a constant collision rate, the

ratio of collision rates, Rf"'" / Ri?!, fundamentally represents the relative attraction of diazonium

ions to each SWCNT-surfactant complex, and is therefore more generally applicable. In order to

utilize this expression, it is necessary to first evaluate the potential distribution, q/i, around the

nanotube.
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Within the cell of our

model, the potential profile can be

obtained by solving a modified

Poisson-Boltzmann (MPB)

equation, which incorporates

excluded volume effects

associated with counterion

condensation[154, 157]. In a

micellar system in which only

r

rH-VdW 
--- "

Figure 3.10 Schematic depiction of the effective volume of the ion,
which assumes that the ion is surrounded by a single hydration
shell. The schematic on the left is that for the CTAB bromide
counterion, while the schematic on the right depicts the case of the
SDS sodium counterion.

surfactant counterions are present, the Poisson-Boltzmann equation can be represented as:

(3.4)
C'

Where z, and cc(r) are the charge and concentration of the counterion, respectively. In

evaluating the potential distribution, the population of diazonium ions is neglected due to its

extremely low concentration (< 325 pM) relative to the surfactant (> 27 mM). Accounting for

excluded volume effects of ions in solution, the surfactant counterion concentration, as a

function of the distance from the tube surface, can be represented by[157]:

c(r) = be

1+0(e- Fy/IIRT -1) (3.5)

Where c and b0 = c.JONA represent the concentration and volume fraction of counter-ions at

the cell boundary, respectively. Values for v, were approximated using: V = 47rr /3 , in

which the effective radius of the ion, reff, assumes a single hydration shell around the

counterions, and utilizing hydration shell distances from the literature[158-161]. Therefore, in

the case of CTAB, this effective radius was represented by: rff =r _ r _v , where rBr is the

center-to-center distance between the bromide ion and the outermost hydrogen of the hydration

shell, and rH-vdw is the Van der Waals radius of a hydrogen atom, as depicted in Fig. 3.10.

Inserting expression 3.5 into equation 3.4 yields the modified Poisson-Boltzmann

equation[157]:
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ZCF cbe-,FV1RT

2 1±+ (e c FyI/R
T  -1) (3.6)

The boundary condition at the edge of the cell is specified by requiring that V and qi'go to zero

at r = rb , and that at surfactant layer is determined by evaluating Gauss' law at r = rSWNT + 5, and

assuming that the gradient of the potential inside of the surfactant layer is zero:

- q- lim dV = 0 (3.7)
dr , - v dr

Here, qe is the charge density per unit area in the surfactant layer. In order to solve this problem

numerically, it is useful to introduce scaling parameters and perform a change of variables. By

introducing the scaled variables, q/ and r, and defining the Debye length, 2, according to the

following relations:

Fy ~ r F 2 c
y ; r-- (3.8)

RT A cRT)

the non-dimensionalized modified Poisson-Boltzmann equation is obtained:

I d ( dl) e(
~x ~- r ~ = (3.9)
r dr dr 1+ 0 (e'" -1)

By utilizing the following change of variables: 7 = in r , it is possible to simplify the differential

equation such that it can be solved using numerical methods:

d2V e1e (3.10)
dq 2 + $0 (e'' - 1)

The transformed boundary conditions are:

dqF e "*"'"" ; limr,.,yi, dV =0 (3.11)
dy eRT dd 7=1surfactat

The non-dimensionalized modified Poisson-Boltzmann equation can be solved using a numerical

ODE solver, and initializing the solver at r = r . At this boundary, 1// and V/' are specified as

zero, and a shooting method (varying the cell radius, rb ) is utilized to satisfy the boundary

condition at the surfactant layer.
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Figure 3.11 Results of applying a diffusion-limited The magnitude of this value is fairly
model to the reaction data for SDS and CTAB. For . .
CTAB, the fitting of the model to experimental data consistent with previously estimated values
resulted in an estimated surface coverage 4.3 of 2.2-3.0 molecules/nm 2 for SDS suspended
molecules/nm 2. For SDS, near-identical trends in
reactivity are predicted for a wide range of surface SWCNTs[162]. The decreasing reactivity
coverages, making it difficult to fit the results to a single
value. The black, dotted line corresponds to an SDS trend for CTAB-SWCNTs, as a function of
surface coverage of 2.8 molecules/nm2 tube radius, results from diameter-dependent

effects, and can be understood as follows. For very small nanotubes, a large cylindrical

curvature exists, which results in a radially diffuse distribution of the potential associated with

the surface charge density. As the radius of the tube increases, the overall charge on the tube

increases, and distribution of the potential becomes less diffuse. At large enough tube radii, the

potential will ultimately approach the flat plate limit, and the relative reactivity will reach a

constant value. The potential at the surface is enhanced by excluded volume effects in the

vicinity of the surfactant layer, which limit counterion condensation, and cause the potential to

reach higher values than it would in the absence of these effects. This allows the exponential

term to overcome the h1r dependence in the denominator of equation 3.3. Because the

diazonium interaction with CTAB is repulsive, the inherent reaction rate is slow, and small

increases in surface potential can result in noticeable changes in fluorescence quenching

response.

Interestingly, if the diffusion-limited model is applied to the case of SDS, the observed

experimental trend is also predicted. This result can likely be attributed to the continuous

excitation of SWCNT electrons during laser illumination, which serves to decrease the energy

barrier for electron transfer from SWCNT to the diazonium ion. From a kinetic standpoint, the
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behavior can be explained as follows. The reactions of diazonium salts with carbon nanotubes

proceed via a two-step mechanism in which the aryl diazonium molecule, A, first adsorbs to the

SWCNT-surfactant complex, and subsequently reacts with the nanotube sidewall to form a

covalent bond[30]:

(n + ) ( n ads (n,m) R n~)

Here, k(nm)and knm) are adsorption and desorption rate constants, respectively, and kn'") is the

rate of covalent reaction. Under electron-transfer limited conditions (kR« kD ), covalent bond

formation is the rate determining step, and the first step of the reaction can be assumed to be in

equilibrium. This gives rise to the following kinetic expression:

d[AO k] k(n'")k"(n'")
d(n,m) R n A] n n, )K "'" [A] [O( n )] (3.13)
di'D

where K"'m) is defined as ki"'"i / k"n'). For SDS-SWCNTs, if this ratio is presumed to be

independent of nanotube species, then the rate constant associated with SWCNT reaction is

directly proportional to k"n,m) which is associated with electron transfer from SWCNT to the

diazonium molecule. Alternatively, as is seen in this study, it is possible to decrease the

activation energy associated with electron transfer by supplying excited-state electrons to the

reaction. Here, this is done through constant laser excitation at 785 nm. If the rate of electron

transfer is significantly enhanced (kR becomes large), a pseudo-steady-state approximation can

be made on the concentration of the adsorbed intermediate. Such a treatment leads to the

following kinetic expression:

d[ AGl 2 ] kR kA
-[Onmkk [A] [O(l,fl)] (3.14)

dt kR+ kD

In the case that kR D , the reaction appears to be equivalent to the one shown below, and the

reaction is adsorption, or diffusion, limited:

A+ O(,) -* AO(nm) (3.15)

Because diazo groups are stable to irradiation at red wavelengths[136], the increased reactivity

most likely stems from excitation of electrons within the nanotube species, rather than irradiative

decomposition of the aryl diazonium moiety. It is interesting to note that in the cases of both
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CTAB and SDS, similar species tend to lie above or below the predicted, theoretical curves.

This may be due to species-dependent differences in surfactant adsorption, where slight

differences in surfactant surface coverage could alter the potential experienced by the diazonium

ion. However, if the variation were adsorption-dependent, we would expect to observe a

correlation with species diameter, since previous results have indicated that SDS binds more

strongly to small diameter species[163]. In the present case, the scattering in the data may more

likely be attributable to differences in exciton diffusion length[155], which would cause certain

species to experience a greater degree of quenching for a similar extent of functionalization.

However, due to the limited data that are currently available, it is difficult to correct for these

differences. In sodium deoxycholate, there appears to be a correlation between the apparent

exciton range and the diameter of the nanotube, with smaller diameter tubes displaying a shorter

exciton mobility[155]. However, it is unlikely that these species-dependent values can be

directly applied to the case of linear chain surfactants, since an alternative study has

demonstrated that the surfactant, alone, can induce variations in exciton diffusion length[ 131].

For SDS, the obtained results are in contrast with the previous observation that the

reaction proceeds via a two-step mechanism in which the first, adsorption step is selective[30].

Rather, we observe that the attraction of diazonium molecules to the SWCNT surface in the

initial, adsorption step, is not necessarily selective, but is largely influenced by the surfactant

which encapsulates the nanotube. Therefore, selectivity is necessarily imparted in the second

step, where electron transfer and covalent bond formation occurs.

Bile Salts - Effects of Surface Packing and Diazonium-Surfactant Interactions

In the case of bile salt-suspended nanotubes, both the structure of the hydrophilic face

and the anionic functional group have a significant influence on the reaction behavior of the

SWCNT-surfactant complex. These two characteristics alter the SWCNT reactivity by a

combination of reagent exclusion effects, which arise due to the dense packing of the adsorbed

layer, and diazonium-surfactant coupling, which alters the form of the reactive diazonium

species.

With the exception of SC-SWCNTs, the structural packing of the bile salt surfactants on

the nanotube surface results in a diameter-dependent reaction in which only a small subset of
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nanotube species are affected. Among three of the four bile salts that were examined (SDC,

STDC, and STC), a similar trend in reactivity is observed, which in all cases, results in some

degree of quenching of the (10,2), (9,4), and (7,6) fluorescence at 785nm excitation. This trend

is most pronounced in the cases of the deoxycholate bile salts, where a degree of quenching

occurs which exceeds 50%. Interestingly, these affected species occupy a narrow range of

diameters between d = 0.88 and 0.92 nm. The preferential reaction of these nanotubes likely

stems from an inability of the surfactant to effectively coat these species, allowing diazonium

molecules to access the SWCNT surface. Indeed, it has previously been observed that sodium

cholate tends to bind more weakly to the (10,2) nanotube than other chiralities[163, 164]. Here,

it is observed that, while the (10,2) chirality exhibits the highest extent of reaction, there is also a

significant quenching response among other species with similar diameters. Besides these

packing effects, the ionic group of the surfactant also significantly influences the observed

reaction trend.

Bile salts that contain carboxylate moieties, such as sodium cholate and sodium

deoxycholate, are likely to affect the diazonium-derivatization of carbon nanotubes by altering

the reactive diazonium intermediate. This can occur through diazonium-carboxylate coupling,

which results in the formation of highly reactive diazoesters[139]. The formation of such

species is supported by the observation of an enhanced decomposition of aryl diazonium in the

case of SDC when compared to a structurally similar bile salt analog, sodium taurodeoxycholate.

Since diazoesters have been shown to exhibit an enhanced selectivity toward metallic

nanotubes[139], the formation of these intermediates explains the high selectivity of the aryl

diazonium ion for metallic species in the case of SC-SWCNT. However, if the carboxylate

moiety facilitates diazoester formation, it would also be expected that nanotubes suspended in

sodium deoxycholate would demonstrate a similar, band-gap selective reaction trend, which is

not the case. This may be attributed to the formation of secondary micelles around the SWCNT

surface, which has been previously proposed for sodium deoxycholate[165]. In such a case, the

secondary layer would assist in maintaining the reactive diazoester at distances greater than those

required for electron transfer, and only those species which are poorly coated by the surfactant

would predominantly react, which is consistent with experimental results.
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3.6 Conclusions

The properties of the surfactant shell have a significant influence on the reactions of aryl

diazonium ions with single-walled carbon nanotubes. First, the adsorbed layer, being charged,

plays an integral role in defining how the diazonium ion approaches and interacts with the

SWCNT-surfactant complex. This is most apparent in the diffusion-limited reactions of linear-

chain surfactants, where the charge of the adsorbed layer results in substantially different

reaction behavior in the cases of CTAB and SDS-suspended nanotubes. Here, it was found that,

under laser illumination, all species react equivalently in the case of SDS, while small diameter

species react preferentially in the case of CTAB-SWCNT. The observed small-diameter

selectivity of aryl diazonium salts toward CTAB-SWCNTs arises due to diameter-dependent

electrostatic effects, which result in a decreased coulombic barrier to functionalization for

smaller nanotubes. Further, these data demonstrate that, contrary to previous findings, the

adsorption of diazonium ions onto the SWCNT surface is not necessarily selective, but is largely

influenced by the surfactant which encapsulates the nanotube. Therefore, selectivity must be

imparted in the second step, where electron transfer and covalent bond formation presumably

occurs.

Surfactants can also influence the reactions of carbon nanotubes by physically excluding

the diazonium ion from the SWCNT surface, or by chemically modifying the reactive diazo

species. This result was analyzed using four bile salts: sodium cholate, sodium taurocholate,

sodium deoxycholate, and sodium taurodeoxycholate. Here, surfactant packing effects result in

either very minimal reaction (STC), or reaction among a small population of carbon nanotubes

(SDC and STDC), including (10,2), (9,4), (7,6), (10,3), (11,1). Therefore, especially for the

deoxycholate species, it appears to be an inefficiency in surfactant packing, on a narrow range of

tube diameters (0.88-0.92 nm), which determines reaction selectivity. In addition, the presence

of carboxylate ions on the surfactant appears to facilitate diazoester formation and aryl

diazonium decomposition in solution. The formation of such species is likely to be responsible

for the highly selective reaction of metallic species in the case of SC-SWCNT.
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4 Charge-Transfer Structure-Reactivity Relationships for

Fullerene/Carbon Nanotube Heterojunctions

4.2 Introduction

Interfacing fullerenes with single-walled carbon nanotubes (SWCNTs) is desirable for a

variety of applications, including carbon-based photovoltaics[166] and near-infrared

fluorescence sensors[51]. Due to their resistance to photodamage[36] and high carrier

mobilities[37], semiconducting SWCNTs hold great potential for utilization in near-infrared

harvesting photovoltaic devices. This is evidenced by emerging efforts in developing "all-

carbon" photovoltaics[38-41], and it has recently been demonstrated that SWCNT-based

photovoltaics outperform polymeric analogues in device lifetime measurements[39]. However,

while a large body of work has been directed at fabricating SWCNT-based devices, little work

has been expended toward elucidating the kinetics of electron transfer at the SWCNT-fullerene

interface. Such a study is beneficial, as a combination of factors, including morphology[39] and

active-layer impurities[38], can limit the quantum efficiency of photovoltaic devices. This is

evidenced by the fact that the efficiencies of current, SWCNT-based active layer devices falls

much lower than the theoretical value of 13% [39]. In addition, PC 60BM is not an ideal electron

acceptor for SWCNT-based photovoltaics, since the LUMO level lies close to the SWCNT

valence band, and therefore, the SWCNT-fullerene heterojunction has been predicted to switch

from type II to type I in going from SWCNT diameters of 0.9-1.3nm[39]. The same is true of

PC 7OBM, due to similarity in electronic structure. However, C84 has a deeper LUMO level than

C60 and C70[44], as well as a higher photostability[45], making it a potential candidate for

SWCNT-based photovoltaics. Because of this, it is of interest to compare across different

fullerenes and interfaces in order to optimize photoinduced electron transfer in the absence of

complicating factors associated with device fabrication.

In addition to photovoltaic devices, SWCNT-fullerene junctions hold potential for

utilization in SWCNT fluorescence-based sensors. SWCNT sensors have demonstrated potential

for the detection of a variety of small molecule analytes, including direct detection of nitric

oxide[46, 47] and hydrogen peroxide[48], as well as indirect detection of sugars[49] and

adenotriphosphate [50]. However, in order to observe molecular adsorption events, it is
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necessary that the adsorbing molecule possess redox properties which are capable of modulating

the nanotube fluorescence[5 1]. For the detection of proteins and other biomacromolecules,

which do not have redox properties, divalent ions such as Ni2 + near the nanotube surface have

been utilized as an intermediate species in modulating nanotube fluorescence[52]. Fullerenes are

expected to interact with SWCNT by accepting excited-state electrons from the SWCNT

conduction band, thereby quenching the SWCNT fluorescence signal. Because this process is

distance dependent, it is possible that fullerenes could be employed as a distance-dependent

proximity quencher for transducing protein-SWCNT interactions in fluorescence-based SWCNT

sensors.

In this study, we examine the structure-reactivity relationships for electron transfer at the

interface between SWCNTs and fullerenes by synthesizing a series of fullerene amphiphiles.

These amphiphiles give stable suspensions of individual carbon nanotubes, thereby allowing for

direct observation of the electronic interactions between these two species. The nature of the

interface between the carbon nanotubes and fullerene molecules is probed by a solvatochromism

model, and electron transfer characteristic are monitored by relative fluorescence quantum

yields. We find that the extent of electronic interaction is dependent upon both the fullerene

species that is utilized and the nature of the interface between the SWCNT and the fullerene. We

are able to describe experimental observations using a Marcus theory model for electron transfer.

4.3 Methods

Nanotube Suspensions

For mixed chirality suspensions, HiPCO nanotubes (Unidym, Inc.) were initially

suspended in 2% sodium cholate (SC). Nanotubes were dispersed at 1mg SWCNT/mL of 2%

SC solution (~30mL total volume) via 30 minutes of homogenization using a T-10 Ultra-Turrax

(IKA Works, Inc.) dispersion element at approximately 11,400 min-. These dispersions were

then sonicated in an ice bath at 1 OW for 1 hour using a 6mm probe tip (Cole-Parmer). Samples

were subsequently centrifuged at 30,000 rpm (153,720 rcf) and 22'C for 4 hours, and the

supernatant collected. 2%SC solutions were exchanged to the desired amphiphile by dialysis

(3500 MWCO, Thermo Scientific). This pore size has previously been shown to remove sodium

cholate while retaining the PEGylated surfactants[167]. For dialysis, equal volumes of 2% SC

suspension (abs(625) ~ 1.08) and amphiphile (2mg/mL) were mixed, resulting in a final
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amphiphile concentration of lmg/mL. This suspension mixture was dialyzed against water for 4

days, with 2 water exchanges per day (VH20> 200 x VSWCNT), to ensure removal of sodium

cholate.

Spectral Characterization

Photoluminescence spectra were acquired using a Zeiss AxioVision inverted microscope

which was coupled to a Princton Instruments 1 -D array InGaAs detector, operating at -1 00 C,

through a PI-Acton SP150 spectrograph. A 785nm laser was used for photoexcitation. UV-vis-

nIR absorbance measurements were carried out on a Shimadzu UV-3I OPC spectrometer.

4.4 Results

Influence of SWCNT-Fullerene Interface

In order to study the influence of the fullerene-SWCNT interface on electron transfer,

five surfactants were synthesized (fig. 4.1). In particular, we wanted to study how the nature of

the interface influenced excited-state electron transfer from the nanotube to the fullerene

molecule. Therefore, we synthesized molecules that would facilitate interfaces containing

aliphatic (lipid-C61-PEG) and polyaromatic (pyrene-C61-PEG) domains, as well as a molecule

that would facilitate direct contact between SWCNT and fullerene (methyl-C61-PEG). As

control molecules, lipid and pyrene surfactants were synthesized which lacked the intermediate,

methanofullerene moiety. All nanotube suspensions were obtained by dialysis, starting from an

initial, 2% sodium cholate nanotube suspension. In the case of the methyl-C 61-PEG derivative,

visible aggregates were formed during the dialysis process, and bundles were observed by AFM

(Appendix A). Therefore, the methyl-C61 -PEG suspensions were omitted from analysis. All

other amphiphiles produced individually dispersed tubes, as evidenced by AFM (Appendix A),

0

N\ \ Na\

Fr 4H OH s

0 N

cKIZZ'O __P________________ K

Figure 4.1 Surfactant systems utilized for analyzing interfacial effects on electron transfer.
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Figure 4.2 UV-vis-nIR absorbance spectra of
five of the surfactant systems analyzed in this
study (excluding methyl-C6 1-PEG). The
retention of high peak-to-valley ratios is
indicative of high quality SWCNT dispersions,
in agreement with AFM observations of
individually dispersed nanotubes.

and the retention of large peak-to-valley ratios in the

photoabsorbance spectra (Fig. 4.2).

We attempted to remove excess, free

surfactant by centrifugal filtration. While 1OOkDa

MWCO centrifugal filters were unable to remove

excess surfactant molecule from the suspensions,

1 OOOkDa MWCO centrifugal filters proved

successful at retaining SWCNTs while having

enough porosity to pass the unbound amphiphiles

(Appendix A). However, the removal process

resulted in visible aggregation in the case of pyrene-

PEG, and very slight changes in chirality distribution

among the other solutions, which likely resulted from

small degrees of aggregation in the removal process.

Therefore, all data presented in this manuscript are

for SWCNT solutions which did not undergo

additional processing after surfactant exchange.

UV-vis-nIR absorbance spectra for the initial sodium cholate suspension, as well as the

four amphiphilic surfactant systems (without methyl-C61-PEG) are shown in Figure 4.2. All

suspensions have been diluted to similar concentrations, and are plotted on the same scale. From

visual inspection of these spectra, it is apparent that high peak-to-valley ratios are maintained

during the exchange process, in agreement with the observation of individually dispersed tubes

by AFM. In going from the lipid-PEG and pyrene-PEG control molecules to their

methanofullerene analogues, a red-shift in peak position is observed across all species. In the

case of pyrene-C61-PEG, the red-shift is greater than that observed in the case of the lipid-C61-

PEG derivative, indicating that there may be different degrees of interaction between the

SWCNT and fullerene molecules in the cases of these two amphiphiles. This will be discussed

in more detail later on.

Excitation-emission spectra for the lipid-PEG, lipid-C61-PEG, pyrene-PEG, and pyrene-C61 -

PEG suspensions are shown in Fig 4.3. As would be expected for a system in which electron
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Figure 4.3. Excitation-emission plots for SWCNTs suspended in (a)
lipid-PEG, (b) lipid-C61-PEG, (c) pyrene-PEG, and (d) pyrene-C61- In order to evaluate the
PEG. All suspensions are plotted on the same scale.

extent to which each nanotube species is quenched by C61, we sought to minimize the degree of

C61 excitation by utilizing 785nm excitation, where absorbance by the C61 moiety is minimal.

This maximizes the likelihood of observing electron transfer from photoexcited SWCNT to C61,

while minimizing ground-state transfer from SWCNT to the photoexcited fullerene. Near-

infrared fluorescence spectra, acquired with an excitation wavelength of 785nm, are shown in

Figure 4.4(a). Using peak locations from the excitation-emission spectra in Fig. 4.3, these

spectra were further deconvoluted into the emission contributions of 10 chiralities of carbon

nanotubes, and the relative intensities of these species, normalized to the fluorescence intensity

of the initial sodium cholate solution, are presented in figures 4.4(b)-4.4(c). For the pyrene-C61-

__2% SC 1.M Uid-PEG 1.-M Pyrene-PEG

Lipd-PEG 1.2 Lipd-C,-PEG 1.2 Pyrene-C,-PEG
Lipid-C6-PEG 1.0 1.0
Pyrene-PEG 1010

S Pyrene-C 
6
1-PEG

0.8 0.8-

P 0.6_J0.

C0.4- 0.4

, 0.2 0.2

0.0 0.L0
900 1000 1100 1200 1300 (8:3) (6,5) (7:5) (10,2) (9<4) (7.6) (12.1)(11,3)(10.5) (8,7) (8.3) (6,5) (7,5) (10,2) (9,4) (7,6) (12,1)(11,3)(10,5) (8,7)

Wavelength (nm) Chirality Chirality

Figure 4.4. Fluorescence results of the surfactant systems analyzed in this study. (a) Raw fluorescence
spectra, representing an average of four suspensions for each amphiphile. (b) Fractional quenching results,
relative to the intensity of SC-SWCNT, for the lipid-PEG and lipid-C61-PEG systems. (c) Fractional
quenching results, relative to SC-SWCNT, for the pyrene-PEG and pyrene-C6 1-PEG systems.
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PEG derivative, it was necessary to estimate peak

positions due to the absence of clear fluorescence features

in the excitation-emission spectra. In going from left to

right the nanotube chiralities are arranged from large to

small band-gap. From figure 4.4(b), it is apparent that the

lipid-PEG derivative produces solutions of similar

fluorescence intensity as the initial sodium cholate

solution, while in the case of lipid-C 61-PEG, a variable

degree of quenching is observed, which appears to be

greater for large band-gap semiconductors. For pyrene-

PEG, a fluorescence quenching pattern is observed which

N

Figure 4.5. Fullerene family analysis.
Top to bottom - methanofullerenes
based on C60, C70, and C84.

does not have an apparent band-gap dependence. This quenching is substantially enhanced on

the addition of the methanofullerene moiety, resulting in near-complete quenching of the

fluorescence across all species.

Fullerene Family Analysis

In addition to analyzing the influence of the fullerene-SWCNT interface on the relative

fluorescence quantum yield, two additional lipid-fullerene amphiphiles were synthesized based

on C71 and C85 methanofullerenes (figure 4.5). Using these species, we sought to investigate

how the SWCNT quantum yield is influenced by the energy states of the fullerene derivative.

Excitation-emission spectra for the C71 and C85 fullerene systems are shown in Fig. 4.6.

Here it is apparent that, like the C61 derivative, the C71 moiety produces incomplete fluorescence

(a) 800 Lipid-C-PEG (b) 8 Lipid-C-PEG

E 7501 E 750

650 650

00

L00 500
950 1000 1050 1100 1150 1200 1250 1300 950 1000 1050 1100 1150 1200 1250 1300

Emission Wavelength (nm) Emission Wavelength (nm)

Figure 4.6 Excitation-emission plots for SWCNTs suspended in (a) lipid-C71-PEG
and (b) lipid-C85-PEG. Plots are depicted on the same scale. In the case of Lipid-

C85-PEG, no significant fluorescence was observed above background.
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Figure 4.7. Absorbance and fluorescence results from fullerene family analysis. (a) Absorbance spectra of
SWCNT suspensions in lipid-PEG, as well as the C6 1, C7 1 , and C85 methanofullerenes. (b) Averaged
fluorescence spectra (3 samples) for these amphiphilic systems, acquired at an excitation wavelength of
785nm. (c) Deconvoluted relative intensities, normalized to the intensities of SC-SWCNT, for the three
lipidic methanofullerenes.

quenching across all species. In contrast, the introduction of C85 to the surfactant results in

complete fluorescence quenching across all species. Absorbance and fluorescence spectra for

the three lipidic methanofullerene derivatives are presented in Figure 4.7. While the C61 and C71

adducts display similar absorbance spectra, it is apparent that the absorbance of C8 5

methanofullerene extends into the nIR region, resulting in an increased sample baseline. In

addition, the C85 sample exhibits a higher degree of peak broadening compared to the other

methanofullerene species, which we attribute to inhomogeneous broadening that results from the

presence of multiple isomers of C85 monoadducts. The fluorescence spectra in figure 4.7(b),

acquired at an excitation wavelength of 785nm, show similar degrees of quenching for the C61

and C71 methanofullerenes, but a complete quenching of nanotube fluorescence across all species

in the case of the C85 adduct. These results are shown more quantitatively in the deconvoluted

relative intensities, which are presented in figure 4.7(c).

4.5 Discussion

Evaluating the SWCNT-Surfactant Interface

In an aqueous surfactant system, SWCNTs that are exposed to water can be quenched by

a variety mechanisms, including sidewall protonation[168], or interaction with oxygen[169] and

reactive oxygen species[48, 170]. Therefore, in order to better understand the observed

differences in fluorescence behavior for these amphiphilic systems, we sought to quantify the

percentage of the SWCNT surface that is exposed to the aqueous environment.
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It has previously been shown that the solvatochromic shifts of the SWCNT optical

transitions are dependent upon the local SWCNT dielectric environment by the following

relation[171]:

Aa, 2(c-1) 2(n 2 -1)
AE, = -L " 'I2+ n2+ (4.1)

" R3 L2g+1 2n2 ±]

in which L is a fluctuation factor, E is the local dielectric constant, n is the refractive index, R is

the nanotube radius, and Aap, is the change in polarizability of SWCNTs upon excitation from

the ground to excited state. This difference in polarizability is predominantly determined by the

longitudinal polarizability of the exciton, allowing for Aall to be approximated by alHj[171].

Using a longitudinal polarizability of the form a,, OC 1 / (RE,) , the following equation is

obtained[ 171]:

2 -)2(n2 -1) 1 c_
(E,) 2 AE, = -K L2 - -2n21 (4.2)

" 2c+1 2n 2+1 _ R4 R 4

In order to quantify surface coverages, it is necessary to utilize a single-component system, with

a known dielectric constant and refractive index, as a reference. We utilized n-methyl-2-

pyrrolidone (NMP) as a reference system, which has a dielectric constant of 32.2 and a refractive

index of 1.47. From Choi et. al.[171], we know that for NMP, the plot of (E1 )2 AE1 vs. I/d 4

gives a slope of c = 0.053 eV 3nm 4.

Using this reference system, we first analyzed the surface coverage in the lipid-PEG and

pyrene-PEG suspensions. From the excitation-emission map of the lipid-PEG SWCNT

dispersion, we plotted (E,, )2 AEI vs. IId4 to obtain a slope of 0.0517 eV 3nm 4 . Using this value,

along with the information from NMP, and assuming that the refractive index of surfactant-

dispersed SWCNTs is equal to that of water (1.333), it is possible to evaluate the local dielectric

constant of the lipid-PEG SWCNT system using the following relation:

2(c2 -1) 2(n 2  -1)
C2 2c2+ 1 2n2 + I

(n,2 
(4.3)

c, 2(_-1 -1) _ 2 -)
2c, +1 2n, +1I
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Figure 4.8 Plots of (E1 )2 AE1 versus 1/d , evaluated from deconvoluted absorbance spectra, for the lipid-
PEG, lipid-C61-PEG, pyrene-PEG, and pyrene-C61-PEG. The slopes of these curves were used to predict the
fractional coverage of methanofullerene on the SWCNT surface.

Here, subscripts 1 and 2 refer to properties associated with the NMP and lipid-PEG systems,

respectively. Solving this equation, we get a local dielectric constant of 6.56 for the lipid-PEG

suspension. Assuming that the local dielectric constant in this system is comprised of

contributions from the lipid segment and water:

= X1hd + x1 - s X1) (4.4)

we can evaluate the surface coverage of the lipid molecule on the SWCNT surface. For the

lipidic segment, we assumed a lipidic dielectric constant of 2.08, which corresponds to that of

hexadecane[172]. This value gives a 94.3% surface coverage of the lipidic moiety,

corresponding to a 5.7% surface coverage of water. These values are very close to the recently

estimated surfactant surface coverage for sodium cholate suspended SWCNTs of 93 ± 15%

[173], explaining the similarity in fluorescence intensity for these two systems. For the pyrene-

PEG system, &pyrene was taken to be 3.19, which is the average of the three primary tensor

components in pyrene crystals[ 174]. Using this value, the surface coverages of pyrene and water

were determined to be 89.2% and 10.8%, respectively. In this system, the similarity in water

surface coverage to that of sodium cholate indicates that the pyrene moiety appears to be

responsible for partial quenching of the SWCNT fluorescence.

Due to the fact that the lipid-C85-PEG and pyrene-C61-PEG systems have complete or

near-complete quenching of the SWCNT fluorescence, we then utilized the local dielectric

constant of the lipid-PEG system, along with solvatochromic shifts in the absorbance spectra (as

75

0.22-

0.18-

0.14-

010-

0.06-

L)

uJuJ

" Pyrene-PEG
" Pyrene-C61-PEG

eS

*S



0.22 0.22
* Lipid-PEG 9 Lipid-PEG
* Lipid-C71-PEG * Lipid-C85-PEG

0.18- 0.18

9 9

0.14 > 0.14 -

W 0.10 - Lu 0.10 -
< ~ <1 0 "

0.06W - 0.06 -

0.02 . .I 0.02
1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0

1/d4 (nm~4) 1/d 4 (nm-4)

Figure 4.9 Plots of (E1 )2AE11 versus 1/d 4 for the lipid-C71-PEG and lipid-C85-PEG, with lipid-PEG shown for
reference. The slopes of these curves were used to predict the fractional coverage of methanofullerene on the
SWCNT surface.

opposed to fluorescence spectra) to deduce information about the surface coverage of water in

each surfactant system. Plots of (E) 2AE 11 vs. W/d4, obtained by deconvoluting absorbance data,

are provided in Figures 4.8 and 4.9. In order to verify that the utilization of absorption spectra

produces similar results to those obtained via fluorescence, we also evaluated the pyrene surface

coverage using solvatochromic shifts from absorbance data. This analysis yielded a pyrene

surface coverage of 89.0%, which is in close agreement with the results from fluorescence

measurements. Because there are three components in all of the other surfactant systems: lipid-

C61-PEG, lipid-C 71-PEG, lipid-C85-PEG, and pyrene-C61-PEG, we were unable to solve for each

of the components, directly, but were able to bound the quantity of water on the surface, due to

its high static dielectric constant. For example, in order to do this for the lipid-C6i-PEG system,

in which the local dielectric constant is specified by:

SX1 -'lipid 2eC60  - x2)8H0 (4.5)

we sequentially set x, and x 2 to zero, and then solved for the coverage of the other two

components. In performing the analysis, the dielectric constants of C6 1 , C71 , and C85 were taken

to be 3.6 [175], 3.75 [176], and 5.5 [177], respectively.

The resulting bounds for the surface coverage of water, in each surfactant system, are

given in Table 4-1. These results indicate similar coverages of water in the cases of lipid-C61-

PEG, lipid-C 71-PEG, and lipid-C85-PEG, suggesting that water cannot be responsible for the

differences in fluorescence quenching observed among these surfactant systems. In the case of

the pyrene-PEG system, the similarity in water surface coverage to that of sodium cholate
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Table 4-1 Quantifying Exposed Surface Area indicates that the pyrene moiety partially

Surfactant System Estimated quenches the SWCNT fluorescence. In
Water Coverage comparing the lipid-C61-PEG and pyrene-

2%SC [3] 7%
Lipid-PEG 5.7% C6 1-PEG systems, the pyrene-C 6 1-PEG

Pyrene-PEG 10.8% system has a much higher surface coverage
Pyrene-C61-PEG 39.0-39.3%
Lipid-C61-PEG 7.3-9.1% of water. Therefore, it is likely a
Lipid-C71-PEG 8.8-10.8% combination of both the pyrene moiety and
Lipid-C85-PEG 9.8-13.7%

increased water coverage that results in

enhanced fluorescence quenching for the pyrene-C61-PEG derivative. In the cases of lipid-C 61-

PEG, pyrene-C6 i-PEG, and lipid-C 71-PEG, the observed band-gap dependent quenching

behavior, arises from the fact that, as the band-gap of the nanotube decreases, the energy offset

that drives electron transfer from SWCNT to the fullerene also decreases[39].

Quantifying Donor-Acceptor Energy Offsets

In order to verify that electron transfer is responsible for SWCNT fluorescence

quenching, we attempted to fit the lipid-C6 i-PEG and lipid-C71-PEG fluorescence data using a

Marcus theory model. Due to the incomplete fluorescence quenching in the cases of the lipid-

C61-PEG and lipid-C71-PEG derivatives, it was possible to utilize the relative degrees of

quenching to infer information about the relative rates of electron transfer between excited-state

SWCNTs and fullerenes. This is because, among competing excited-state decay pathways in

SWCNT, the selectivity toward a particular pathway - in this case electron transfer to fullerene -

will be proportional to the rate constant associated with that pathway. Since energy transfer

ultimately diverts an electron from the radiative decay pathway, fractional quenching results can

be utilized as an approximation for the rate constant of electron transfer. If the fractional

quenching is normalized to a particular chirality, such as (6,5), it is possible to approximate

relative rate constants for electron transfer as:

et _ (n (4.6)
el j expt(65 I 10 )(6,5 )

According to Marcus theory, the rate constant associated with electron transfer from

SWCNT to the LUMO level of fullerene can be represented as[55]:
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2

2x 2x(A+ AG0
ke= V2 exp-AG , /kT= V exp - ,) (4.7)

hq42rxkT ' hf4J-7Ak, T Rp 4AkT

In which VR is an electronic coupling term between the initial and final states, A is the

reorganization energy, and AG( is total change in Gibbs free energy for the electron transfer

event. The change in Gibbs free energy is related to the energy difference between the SWCNT

conduction band and the LUMO level of the methanofullerene by the following relation:

AG(,n) = -(Enm) - ELU"o) (4.8)

If we assume that the electronic coupling term is invariant across nanotube species, relative rate

constants of electron transfer can be evaluated, allowing for direct comparison with experimental

fractional quenching results:

k_"/") exp(-AGT, /kT)
k 6,) AG, U)(4.9)

k)theory p-G /kT) (4

The Marcus theory expression in this equation is only dependent upon the reorganization energy

of electron transfer and the energy offsets between the fullerene LUMO and the SWCNT

conduction bands. SWCNT conduction band energies, referenced to the standard hydrogen

electrode (SHE), have been reported in the literature for several chiralities[56]. These values

were converted to absolute potential using the relation: Eabs (V) = -(ESHE(V) + 4.44 V) [178], and

are reported in the second column of Table 4-2. Additionally, reorganization energies for

fullerene-based electron transfer systems have been reported to be between 0.23-0.77eV[57-60].

Here, we sought to bound the energy offset AG",fl) between SWCNTs and the fullerenes in this

Table 4-2 Predicted Donor-Acceptor Energy Offsets for Different Fullerenes and Reorganization Energies

Energy Offset, AG (eV)

Cal C71  C;5
Chirality E E"'" E0", Efmo = -3.95 EfYi = -4.05 E LUM = -4.00 Ef7" = -4.14 Eum3 = -4.30 Ef=5 , = -4.40

(8,3) -3.83 0.38 0.12 0.22 0.17 0.31 0.47 0.57

(6,5) -3.85 0.40 0.10 0.20 0.15 0.29 0.45 0.55

(7,5) -3.86 0.36 0.09 0.19 0.14 0.28 0.44 0.54
(10,2) -3.86 0.34 0.09 0.19 0.14 0.28 0,44 0.54

(9,4) -3.90 0.33 0.05 0.15 0.10 0.24 0.40 0.50

(7,6) -3.90 0.34 0.05 0.15 0.10 0.24 0.40 0.50

(12,1) -3.93 0.30 0.02 0.12 0.07 0.21 0.37 0.47

(11,3) -3.90 0.30 0.05 0.15 0.10 0.24 0.40 0.50

(10,5) -3.91 0.29 0.04 0.14 0.09 0.23 0.39 0.49

(8,7) -3.91 0.29 0.04 0.14 0.09 0.23 0.39 0.49

tE, values were utilized from Tanaka et. al.[56]. IThe exciton binding energy of SWCNTs was approximated byE 5 = 0.3/d,, where d, is the diameter of the nanotube [184]. *LUMO levels of
C8 were approximated by assuming a 0.35eV energy offset relative to C61 [44].
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study using the Marcus theory equation

above. To do so, we utilized a

reorganization energy of 0.23eV [60] as a

lower limit, with an upper limit of

0.51eV, which has specifically been

observed for fullerene-based dyads with

short donor-acceptor linkages[57]. Using

experimental fractional quenching results,

we then fit the effective fullerene LUMO

level, ELUMO, thereby allowing for

determination of AG(4, . The fitted

LUMO levels for C61 and C71 are

provided in Table 4-2 for assumed
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Figure 4.10 Predicted energy offsets between SWCNT
conduction bands and the C61 LUMO level. Offsets were
evaluated using the C6 1 LUMO level determined from
Marcus theory. The data are compared with ab initio
values reported in Ref [39] for PC61BM.

reorganization energies of both 0.23 and 0.51eV. The LUMO level of C85 was then deduced,

using the values from C61, by assuming that the LUMO level of C85 is 0.35eV lower than that of

C61[44].

The predicted LUMO levels for C61 (-3.95 to -4.05 eV) deviate slightly from the values

of -1.028 to -1.08 V vs. Fc/Fc+ or approximately -3.85 to -3.8 eV (using the conversion,

LUMO =-e(4.88 V + EF/Fc+) [179]) that have been previously reported for C60

monoadducts[44, 180, 181]. However, as shown in Figure 4.10, the fitted LUMO levels result in

Table 4-3. Comparison Between Experimental and Theoretical Relative Rate Constants of Electron Transfer
Summary of Relative Rate Constant Results, k,"4 /k

C61

Marcus Theory

Ef = -3.96

1.21

1.00
0.90
0.90
0.53
0.53
0.46
0.53
0.46
0.46

E = -4.06

1.25

1.00
0.89
0.89
0.53
0.53
0.47

0.53
0.47
0.47

Experimental
1.22 ± 0.01

1.00 ± 0.02

0.77± 0.14

0.76 ± 0.17

0.62 ± 0.14

0.62 ± 0.14

0.53 ± 0.08

0.74 ± 0.06
0.51 ± 0.07

0.51 ± 0.07

C71

Marcus Theory

E = -3.99

1.15
1.00
0.92
0.92
0.60
0.60
0.53

0.60
0.53
0.53
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C61: X = 0.23 0 x = 0.51
071: * ) x=0.23 0 X =0.51
085: 0 )L=O0.23 0o? x=0.51
- -- Exciton Binding Energy, Ref[184]

0 ab initio, PCuBM, Ref [39]

-

Chirality
(8,3)

(6,5)

(7,5)

(10,2)

(9,4)

(7,6)

(8,6)

(11,3)

(10,5)

(8,7)

Diameter
0.782

0.757

0.829

0.884

0.916

0.895

0.965

1.014

1.050

1.032

Experimental
1.25 ± 0.01

1.00 ± 0.05

0.76 ± 0.03

0.79 ± 0.03

0.53 ± 0.04

0.53 ± 0.04

0.45 ± 0.03

0.65 ± 0.02

0.46 ± 0.02

0.46 ± 0.02

EL = -4.12

1.19

1.00
0.91
0.91
0.60
0.60
0.54
0.60
0.54

0.54



Engineering Nanocarbon Interfaces for Electron Transfer Andrew J. Hilmer

SWCNT-fullerene energy offsets, AG( , that

are in good agreement with ab initio results

which incorporate polarization effects at the

SWCNT-fullerene interface[39]. Therefore, we

anticipate that electronic interactions are also

responsible for the deviation in the current case.

Experimentally, nearly identical LUMO levels to

C61 have been observed for C71[44, 181], due to

the similarity in electronic properties of these

two fullerenes[182], and this is consistent with

the overlap in the offsets which results from our

model.

E
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Figure 4.11. Parity plot showing the agreement
between experimental and theoretical relative rate
constants for different values of the reorganization
energy.

In organic photovoltaics, it is generally accepted that LUMO-LUMO offsets greater than

the exciton binding energy are necessary in order to enable efficient interfacial energy

transfer[183]. As shown in Fig 4.10, in the case of C61 and C71 derivatives, both systems possess

energy offsets that fall below the exciton binding energy of SWCNTs, which was approximated

by Eb = 0.3/dt[ 184]. This is likely the reason for inefficient fluorescence quenching of nanotubes

in these two systems. In contrast, the deeper LUMO level of C85 results in energy offsets greater

than the exciton binding energy, resulting in energetically favorable electron transfer, and

complete fluorescence quenching across all nanotube species. However, the results for the C85

derivative are complicated by the fact that this fullerene adduct has an absorbance component

that extends beyond 785nm, which is the excitation wavelength utilized in this study. Therefore,

follow-up work on the dynamics of this interface will provide greater insight into the electronic

coupling between these species.

In order to assess the validity of applying a Marcus theory model to this system, we

plotted the experimentally determined relative rate constants of electron transfer versus those

predicted by theory. The resulting parity plot is presented in Fig. 4.11, and a direct comparison

of experimental and theoretical values is provided in Table 4-3. As can be seen from the plot,

good agreement is observed between experimental and theoretical results.
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4.6 Conclusions

In order to examine electron transfer at the interface between SWCNTs and fullerenes,

we synthesized a series of methanofullerene surfactants. For all amphiphiles studied here, with

the exception of the methyl-C61-PEG derivative, high quality dispersions of individual nanotubes

were obtained upon surfactant exchange from 2% sodium cholate. In the cases of lipid-C6 i-PEG

and lipid-C 71-PEG, which are predicted to similar surfactant surface coverages, band-gap

dependent, incomplete quenching was observed across all semiconducting species. In the case of

pyrene-C 61-PEG, near-complete quenching was observed, which could be attributed to partial

quenching by the pyrene moiety, as well as significant exposure of the SWCNT surface to the

aqueous environment. The incomplete quenching in the cases of lipid-C 61-PEG and lipid-C 71-

PEG indicate that the driving force for excited-state electron transfer is small in these systems.

This is further supported by a Marcus theory model, which predicts that the energy offsets

between the SWCNT conduction bands and the fullerene LUMO levels are less than the SWCNT

exciton binding energy. In contrast, the lipid-C85-PEG derivative shows complete quenching of

all SWCNT species utilized in this work. This enhancement in quenching efficiency is

consistent with the fact that the LUMO level of C8 5 methanofullerene is approximately 0.35eV

lower than that of the smaller fullerene adducts, resulting in energy offsets which exceed the

exciton binding energy. This result, combined with the fact that C85 has much higher photo-

stability than C6 1 and C71, makes this larger fullerene adduct a promising candidate for SWCNT-

based sensors and photovoltaics.
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4.7 Synthesis

Synthesis of 3-oxo-3-(pent-4-yn-1-yloxy)propanoic acid (1)

To a thoroughly dried reaction vessel, equipped with a reflux condenser, was added 4.65g (0.032

moles) of Meldrum's acid. The ambient atmosphere was replaced with nitrogen before adding 3

mL of 4-pentyn-1-ol (0.032 moles), followed by 120 mL of anhydrous toluene. The solution was

refluxed for 2 hours, or until TLC indicated completion of the reaction. Toluene was then

removed under reduced pressure, and the resulting residue was purified by column

chromatography (DCM:MeOH), eluting on a gradient from 40:1 to 20:1. Removal of solvent

yielded a clear liquid which solidified upon standing. Yield: 4.25g (77%).

Synthesis of (R)-2,3-bis(hexadecyloxy)propylpent-4-yn-1-yl malonate (2)

0.315 g (1.849mmol) of compound (1), 1.0 g (2.218mmol) of 1,2-0-dihexadecyl-sn-glycerol,

and 47 mg (0.388mmol) of DMAP were dissolved in anhydrous dichloromethane (8mL) and

cooled in an ice bath. The ambient atmosphere was replaced with N 2, and a solution of N,N'-

dicyclohexylcarbodiimide (0.381g, 1.849mmol) in 4mL anhydrous DCM was added dropwise.

The solution was reacted at 00 C for 2 hours, allowed to warm to room temperature, and reacted
0

H

1
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3

'-N 4
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00
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Scheme 4-1 Synthetic scheme for PEGylated methanofullerenes 4, 7, and 10.
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overnight. The insoluble urea was filtered off, solvent removed, and the crude product purified

by column chromatography, eluting with dichloromethane, to give the product as a white solid.

Yield: 1.02g (80%).

Synthesis of (3)

Anhydrous toluene (75mL) was added to 0.39g (541 pmol) of C60-fullerene and 0.25g (361

tmol) of compound (2), and the resulting suspension was bubbled with nitrogen. The reaction

vessel was surrounded with foil, and iodine (0.101g, 398ptmol) was added. Under a nitrogen

atmosphere, a solution of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) - 70uL DBU (466pmol) in

50mL anhydrous toluene - was added dropwise over 1-2 hours. After complete addition, the

solution was allowed to stir 24 hours. Solvent was removed in the presence of silica gel and the

product purified by column chromatography, eluting on a gradient from 3:1 to 1:1

Hexanes:Toluene. Removal of solvent gave the product as a brown solid (211mg, 41%). The

C71 and C85 analogues were synthesized in a similar manner.

Synthesis of methanofullerene (4) - Lipid-C61 -PEG

Compound (3) (25mg, 17.7pimol) and mPEG-N3-5kDa (177mg, 35.4 jmol) were dissolved in

1mL of dichloromethane, and 1mL of water was subsequently added. Then Cu(0) - 1-2 pieces -

was added, followed by CuSO 4 (1.1mg, 4.4pmol) and sodium ascorbate (1.75mg, 8.83pmol).

The resulting mixture was allowed to react at room temperature overnight under vigorous

stirring. The reaction mixture was diluted with dichloromethane and washed with water. The

organic layer was then dried and filtered through a short plug of regular-phase silica gel (DCM).

Eluting with DCM, the PEGylated product remains immobilized, while unreacted (3) is eluted.

The crude PEGylated product can then be eluted using 4:1 DCM:MeOH. After removal of

unreacted (3), the PEGylated product was purified by reversed-phase chromatography, eluting on

a gradient from 4:1 to 3:2 MeOH:DCM. Removal of solvent gave the product as a brown solid

(73mg, 64%). The C71 and C85 analogues were synthesized in a similar manner.

Synthesis ofpent-4-yn-1-yl (4-(pyren-1-yl)butyl) malonate (5)

0.372 g (2.187mmol) of compound (1), 0.6 g (2.624mmol) of 1-Pyrenebutanol, and 56 mg

(0.459mmol) of DMAP were dissolved in anhydrous dichloromethane (10mL) and cooled in an
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ice bath. The ambient atmosphere was replaced with N2, and a solution of NN'-

dicyclohexylcarbodiimide (0.451g, 2.187mmol) in 5mL anhydrous DCM was added dropwise.

The solution was reacted at 00 C for 2 hours, allowed to warm to room temperature, and reacted

overnight. The insoluble urea was filtered off, and the solvent removed in the presence of silica

gel. The product-containing silica gel was carefully added to the top of a pre-packed column,

and purified by eluting with 6:1 Hexanes:Ethyl Acetate to give the product as a white to off-

white solid (0.8 1g, 87%).

Synthesis of (6)

Anhydrous toluene (75mL) was added to 0.38g (0.527 mmol) of C60-fullerene and 0.15g (0.352

mmol) of compound (5), and the resulting suspension was bubbled with nitrogen. The reaction

vessel was surrounded with foil, and iodine (0.098g, 0.386mmol) was added. Under a nitrogen

atmosphere, a solution of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) - 68uL DBU (0.460mmol)

in 50mL anhydrous toluene - was added dropwise over 1-2 hours. After complete addition, the

solution was allowed to stir 24 hours. Solvent was removed in the presence of silica gel and the

product purified by column chromatography, eluting on a gradient from 3:1 to 1:1

Hexanes:Toluene. Removal of solvent gave the product as a brown solid (181mg, 45%).

Synthesis of (7) - Pyrene-C6]-PEG

Compound (6) (20mg, 17.5pimol) and mPEG-N3-5kDa (175mg, 35pmol) were dissolved in lmL

of dichloromethane, and lmL of water was subsequently added. Then Cu(0) - 1-2 pieces - was

added, followed by CuSO4 (1.1mg, 4.4ptmol) and sodium ascorbate (1.73mg, 8.73ptmol). The

resulting mixture was allowed to react at room temperature overnight under vigorous stirring.

The reaction mixture was diluted with dichloromethane and washed with water. The organic

layer was then dried and filtered through a short plug of regular-phase silica gel (DCM). Eluting

with DCM, the PEGylated product remains immobilized, while unreacted (6) is eluted. The

crude PEGylated product can then be eluted using 4:1 DCM:MeOH. After removal of unreacted

(6), the PEGylated product was purified by reversed-phase chromatography, eluting on a

gradient from 8:1 to 4:1 MeOH:DCM. Iodine vapor was used as a TLC developing agent.

Removal of solvent gave the product as a brown solid (63mg, 59%).

Synthesis of methylpent-4-yn-1-yl malonate (8)
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4-pentyn-1-ol (0.607mL, 6.5mmol) and triethylamine (1.09mL, 7.83mmol) were added to l5mL

of anhydrous dichloromethane. The ambient atmosphere was replaced with N2 and the solution

was cooled in an ice bath. Methyl-3-chloro-3-oxopropionate (0.70mL, 6.52mmol) was added

dropwise, and the reaction solution was stirred at 00C for 30 minutes, then warmed to room

temperature and stirred an additional 24 hours. Water was added, the organic layer collected,

and the aqueous layer extracted with 3 volumes of ethyl acetate. The combined organic fractions

were washed with sodium bicarbonate and brine, dried over MgSO 4, and the solvent removed

under vacuum. The crude product was purified by column chromatography (DCM) to give the

product as a colorless to light yellow oil (0.972g, 81%).

Synthesis of (9)

Anhydrous toluene (120mL) was added to 0.646g (0.896 mmol) of C60-fullerene and 0.1ig

(0.597 mmol) of compound (8), and the resulting suspension was bubbled with nitrogen. The

reaction vessel was surrounded with foil, and iodine (0.167g, 0.776mmol) was added. Under a

nitrogen atmosphere, a solution of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) - 116uL DBU

(0.775mmol) in 90mL anhydrous toluene - was added dropwise over 1-2 hours. After complete

addition, the solution was allowed to stir 24 hours. Solvent was removed in the presence of

silica gel and the product purified by column chromatography, eluting on a gradient from 3:1 to

1:1 Hexanes:Toluene. Removal of solvent gave the product as a brown solid (189mg, 3 5%).

Synthesis of methanofullerene (10) - Methyl-C61 -PEG

Compound (9) (15mg, 16.6ptmol) and mPEG-N 3-5kDa (166mg, 33.2[tmol) were dissolved in

lmL of dichloromethane, and lmL of water was subsequently added. Then Cu(0) - 1-2 pieces -

was added, followed by CuSO 4 (1.04mg, 4.2pmol) and sodium ascorbate (1.65mg, 8.33pmol).

The resulting mixture was allowed to react at room temperature overnight under vigorous

stirring. The reaction mixture was diluted with dichloromethane and washed with water. The

organic layer was then dried and filtered through a short plug of regular-phase silica gel (DCM).

Eluting with DCM, the PEGylated product remains immobilized, while unreacted (9) is eluted.

The crude PEGylated product can then be eluted using 4:1 DCM:MeOH. After removal of

unreacted (9), the PEGylated product was purified by reversed-phase chromatography, eluting on
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Scheme 4-2 Synthetic scheme for control molecules 12 and 14.

a gradient from 8:1 to 5:1 MeOH:DCM. Iodine vapor was used as a TLC developing agent.

Removal of solvent gave the product as a brown solid (5 0mg, 51%).

Synthesis of (R)-1-((1-(hexadecyloxy)-3-(pent-4-yn-1-yloxy)propan-2-yl)oxy)hexadecane (11)

Sodium hydride (44.4mg, 1.85mmol) was placed in a reaction flask, and the ambient atmosphere

replaced with nitrogen. A solution of 1,2-0-dihexadecyl-sn-glycerol (0.50g, 0.924mmol) in

anhydrous THF (5mL) was then added. After 30 minutes, a solution of 1-Iodo-4-pentyne

(0.210mL, 1.85mmol) in anhydrous THF (5mL) was added. The solution was heated to reflux,

and allowed to react for 2 hours. The reaction was quenched with water (IOmL), and the crude

product extracted with DCM (3x). The combined organic layers were dried, and the solvent

removed under reduced pressure. The residue was purified by column chromatography (20:1

Hexanes:Ethyl Acetate) to give the product as a colorless, viscous oil (65mg, 12%).

Synthesis of (12) - Lipid-PEG

Compound (11) (21.2mg, 0.035mmol) and mPEG-N 3-5kDa (262mg, 0.052mmol) were dissolved

in 1 mL of dichloromethane, and 1 mL of water was subsequently added. Then Cu(0) - 1-2 pieces

- was added, followed by CuSO 4 (2.18mg, 8.7pmol) and sodium ascorbate (3.46mg, 17.4pmol).

The resulting mixture was allowed to react at room temperature overnight under vigorous
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stirring. The reaction mixture was diluted with dichloromethane and washed with water. The

organic layer was then dried, and the solvent removed under reduced pressure. The crude

product was purified by reversed phase chromatography, eluting with 9:1 MeOH:DCM. Iodine

vapor was used as a TLC developing agent. Removal of the solvent gave the product as a white

solid (96mg, 49%).

Synthesis of 1-(4-(pent-4-yn-1-yloxy)butyl)pyrene (13)

Sodium hydride (70mg, 2.92mmol) was placed in a reaction flask, and the ambient atmosphere

replaced with nitrogen. A solution of 1-pyrenebutanol (0.40g, 1.46mmol) in anhydrous DMF

(4mL) was then added. After 30 minutes, a solution of 1 -Chloro-4-pentyne (0.463mL, 4.4mmol)

in anhydrous DMF (4mL) was added. The solution was heated to 80'C, and allowed to react for

2 hours. The reaction was quenched with water (lOmL), and the crude product extracted with

DCM (3x). The combined organic layers were dried, and the solvent removed under reduced

pressure. The residue was purified by column chromatography (20:1 Hexanes:Ethyl Acetate) to

give the product as a white solid (176mg, 35%).

Synthesis of (14) - Pyrene-PEG

Compound (13) (12mg, 0.035mmol) and mPEG-N 3-5kDa (264mg, 0.053mmol) were dissolved

in 1 mL of dichloromethane, and 1 mL of water was subsequently added. Then Cu(0) - 1-2 pieces

- was added, followed by CuSO4 (2.2mg, 8.8tmol) and sodium ascorbate (3.49mg, 17.6tmol).

The resulting mixture was allowed to react at room temperature overnight under vigorous

stirring. The reaction mixture was diluted with dichloromethane and washed with water. The

organic layer was then dried, and the solvent removed under reduced pressure. The crude

product was purified by reversed phase chromatography, eluting with MeOH:DCM. Iodine

vapor was used as a TLC developing agent. Removal of the solvent gave the product as a white

solid (150mg, 80%).
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5 Formation of High-Aspect Ratio Nanorods via Peptide-

Driven Helical Self-Assembly of Fullerodendrimers

5.2 Introduction

The ability to self-assemble fullerene molecules into well-defined nanostructures is

desirable for applications in polymer photovoltaics and organic electronics[61-64]. Fullerenes

are excellent electron acceptors for utilization in organic photovoltaics[65], and have remained

the electron-acceptor of choice since their usage in the first bulk-heteroj unction photovoltaic, 18

years ago[66]. However, the ability to obtain high efficiency devices is highly dependent upon

the morphology of the fullerenes molecules in the active layer[67, 68]. In the area of organic

electronics, confined arrays of C60 fullerenes have been shown to possess highly delocalized

electronic states[69, 70], and superconducting properties have been observed in intercalated C60

networks[71-73]. Therefore, C60-based electronics and photovoltaics could greatly benefit from

controllable assembly and patterning of fullerenes.

The self-assembly of pristine C60 has been accomplished through a number of

methods[61] including liquid-liquid interfacial precipitation (LLIP), template-assisted drying,

and drop drying. In addition to pristine C60, functionalized fullerenes have been shown to form a

variety of bilayer structures, depending upon solvent conditions[74]. However, the dimensions

of these assemblies are on the order of several hundred nanometers to a few microns. In

contrast, only a few instances of nanometer-scale,
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Figure 5.1 Molecular structures of the fullerodendrimers
studied in this work.

high-aspect ratio fullerene assembles have

been reported, and these have relied on

surface-based assembly methods[75-78],

including Langmuir-Blodgett

techniques[75], or HOPG-driven self-

assembly[76, 77], thereby limiting their

scalability.

Here, we report the synthesis of a novel

pair of fullerodendrimers (Fig. 5.1) which

self-assemble into one-dimensional fibers
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in cyclohexane. We find that high-aspect ratio fullerene nanowires, with diameters of 3.76 ±

0.52nm, can be formed by utilizing peptide-driven self-assembly. These wires appear to consist

of interwoven, helical assemblies of peptidic methanofullerenes.

5.3 Results and Discussion

In order to construct these molecules, second generation, benzyl dendrons of the form,

[4-3,4-3,5]l2G 2CH 2CN, were generally synthesized according to the scheme of Percec et.

al.[82], with the only exception being the usage of 3,5-dihydroxybenzonitrile in the formation of

the second apex, allowing for the introduction of an amine functionality at this terminus.

Treatment of the cyano adduct with LiAlH4 gave the aminated dendron [4-3,4-3,5]l2G2CH2NH2.

Reaction of the aminated second generation dendron with mono-tert-butyl malonate via

DCC/DMAP coupling yielded the dendritic precursor to 1, which was then conjugated to C60

fullerene by Bingel addition[185]. For the formation of 2, the aminated second generation

dendron was coupled to methyl 3-chloro-3-oxopropionate, after which the methyl ester was

cleaved under basic conditions[80], thereby allowing for the conjugation of the dipeptide

sequence, Boc-L-Ser-L-Ala-OMe. This intermediate was coupled to C60 using Bingel conditions

to yield fullerodendrimer 2.

Fullerodendrimer 1
2.5 g 750C

70*C
65*C

2.0 60'C
55*C
50*C

1.5. 45*C
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--- 30"C
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Figure 5.2 Temperature-dependent absorbance data for
fullerodendrimers 1 (left) and 2 (middle) in cyclohexane at
concentrations of 80pM. The rightmost figure follows the absorbance at
259nm as a function of temperature. Upon cooling from an isotropic
state, the fullerene peak at 259nm decreases, with the evolution of a new
peak near 267nm. The transition temperature occurs approximately
201C higher in the case of fullerodendrimer 2.

While fullerodendrimers 1

and 2 are structurally similar,

they display substantially

different assembly behavior in

the solution phase. This was

first evidenced by their

disparate behavior in variable-

temperature absorbance

measurements. Upon heating,

both molecules could be

dissolved in cyclohexane to

yield homogeneous light-

yellow to light-red solutions at

75-80'C. Figure 5.2 shows
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temperature-dependent absorbance results for the two fullerodendrimers. Upon cooling, the

fullerene absorbance feature at 259nm undergoes a decrease, while there is an increase in a red-

shifted absorbance feature at approximately 267nm. The emergent feature is broader in the case

of fullerodendrimer 1, likely indicating a greater degree of inhomogeneity in the structure of the

formed assemblies, which is in agreement with morphological results. In addition, the assembly

transition of the two molecules occurs at different temperatures for the two species. As shown in

Fig 5.2(c), assembly of the dipeptide derivative begins to occur near 50'C, while the onset of

assembly for t-Butyl derivative does not occur until the sample has been cooled another 20'C. In

addition, upon sitting for 24 hours, the resulting aggregates sediment out in the case of the t-

Butyl derivative, while the dipeptide species remains dispersed (Figure 5.2). Together, these

results indicate that there are differences in the assembled structures, formed by these two

molecules, and that the dipeptide moiety plays an integral role in the assembly of

fullerodendrimer 2.

We hypothesize that the first step in the assembly process involves a wrapping of the

fullerene moiety by the benzyl ether dendron, resulting in an initial, gradual increase in the

absorbance feature at 259nm. In the absence of the dipeptide, these complexes are stable to

30 0C, at which point non-specific aggregation occurs. In the presence of the dipeptide, the onset

of intermolecular hydrogen bonding drives the assembly of the fullerodendrimer at a much

higher temperature. Solution-phase assembly is further supported by variable temperature NMR

experiments (Appendix B), which show a broadening and decrease in proton signal intensities,

upon cooling, until the only observable signal is that attributable to the terminal, aliphatic chains

of the dendron.

Differences in assembly behavior were further observed through morphological analysis

of the suspensions. Figure 5.3(a) and 5.3(d) show SEM images of drop-dried solutions of the t-

butyl and dipeptide derivatives, respectively. Here, it is evident that the dipeptide derivative

forms high aspect ratio fibers, which pack into densely matted regions in the solid state. In

contrast, the t-butyl derivative shows a less ordered assembly behavior, which prohibits the

formation of dense regions. These results are confirmed by AFM (Fig. 5.3). Here, it is observed

that the dipeptide derivative forms self-assembled wires with diameters of 3.76 ± 0.52nm, with

lengths that can exceed 1 pm. In contrast, the t-butyl derivative forms poorly-assembled fibers,
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Figure 5.3 SEM (a),(d) and AFM (b),(c),(e),(f) images of self-assembled morphology. (d) SEM of a drop-
cast solution of 1 shows the formation of densely matted regions of aligned fibers, while (a) SEM of a drop-
cast solution of 2 shows randomly oriented domains. (e-f) AFM on spin-cast assemblies of 2 show
structurally homogeneous fibers with average diameters of 3.76 ± 0.52nm, and lengths of a few hundred
nanometers to > 10ptm. (b-c) AFM on spin-cast assemblies of 1 show the formation of aggregated fibrils,
rather than well-formed wires.

91

Andrew J. HilmerEngineering Nanocarbon Interfaces for Electron Transfer



Engineering Nanocarbon Interfaces for Electron Transfer Andrew J. Hilmer

E

3.5

3.0-

2.5-

2.0-

15-

1t0-

0.5-

-1.8nm

-3.4nm

o.o 0.01 0.02 0.03 0.04 0O 0.06

Distance (pm)

Figure 5.4 AFM (a) phase image, and (b) height profiles ob
from helical assemblies of fullerodendrimer (2). The inset
shows a height image of an isolated, helical fiber, along wi
positions at which height traces were evaluated.

E
0

the height traces in Figure 5.4(b), the peaks of these helices occur at heights close to 3.5nm,

which is consistent with the diameter distribution of the initial fullerene wires. In contrast, the

valleys along the helix possess heights of approximately half of this value. These results seem to

indicate that the initially formed fullerene wires consist of multiple, interwoven strands of

fullerodendrimer 1, which unravel over time. This hypothesis is further supported by phase

images of in-tact fullerene nanorods, which

show helical striations along the length of the

fiber (Fig. 5.5). From AFM images, the helical

pitch of these fibers appears to be

approximately 40 ± 4nm.

The direct observation of helicity in

these structures led us to question whether a

racemic mixture of left and right-handed

assemblies are formed, or if the chirality of the

peptide drives the selective formation of a

particular supramolecular structure. To

Figure 5.5 AFM phase images of assembled
fullerodendrimer (2) showing helical striations along
the length of the assembled nanorods. (b) Zoomed-in
phase image of one of these assemblies.
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which further aggregate into

larger fibrils. Interestingly, the

morphology of these nanowires

changes over time. Upon

standing for several weeks, AFM
3.76nm

reveals that the initial, straight

fullerene wires transform into a

combination of straight wires and

helical assemblies, with clear

junctions between the two types

of structures. AFM phase and

height images of these helical
tained
of (b) assemblies are presented in
th the Figure 5.4. As can be seen from
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Figure 5.6 Left: Room-temperature CD spectra of fullerodendrimers 1 and 2.
Fullerodendrimer 1, which lacks the dipeptide sequence, shows no significant CD features,
whereas fullerodendrimer 2 shows clear spectral features, indicating selectivity toward a
particular handedness during self-assembly. Middle: temperature-dependent CD spectra of
fullerodendrimer 2. CD features emerge upon cooling from an isotropic state, indicating that
these features emerge during the self-assembly of the nanorods, and are not intrinsic to the
molecule, itself. Right: comparison between temperature dependent absorbance (259nm)
and the temperature dependent CD signal at 283nm.

examine this, we conducted circular dichroism (CD) measurements on the two fullerodendrimers.

The results of CD measurements are shown in Figure 5.6. The figure on the left shows

room-temperature CD spectra for both fullerodendrimers 1 and 2. From these spectra, two

properties of the assembly can be deduced. The first is that the self-assembly of

fullerodendrimer 2 favors a particular handedness of helical arrangement. In combination with

AFM results, it appears that left-handed helices are selectively formed in this system. In

addition, the lack of CD features in the case of fullerodendrimer 1 indicates that the dipeptide

molecule plays an integral role in the handedness of the resulting nanorod. In addition to room

temperature measurements, variable temperature CD spectra were acquired for fullerodendrimer

2 (fig. 5.6-middle). From variable-temperature measurements, it is clear that, upon heating the

assembled molecules to an isotropic state, no significant CD features are observed. However,

these features reappear upon cooling of the sample to room temperature. These results indicate

that it is not the chirality of the molecule, itself, that imparts the CD signal, but the handedness of

the supramolecular assembly. On the right of Figure 5.6, we plot the change in CD signal at

289nm as a function of temperature, and overlay the response with that observed during variable-
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temperature absorbance measurements. From the plot, it is evident that there is very good

agreement between these two experimental measurements. This result indicates that the onset of

self-assembly, near 50'C, is driven by the dipeptide sequence, which simultaneously imparts

chirality to the resulting supramolecular assembly.

5.4 Conclusions

In conclusion, we have synthesized two novel, asymmetric fullerodendrimers, and have

analyzed their self-assembly behavior. Through the introduction of a dipeptide sequence to one

terminus of the dendritic methanofullerene, we show that it is possible to change the self-

assembly behavior from the formation of poorly-ordered aggregates to high aspect ratio

nanorods. The formation of these nanorods is driven by interactions between the dipeptide

moieties, and this interaction simultaneously imparts helicity to the resulting supramolecular

structure. The resulting nanorods appear to be comprised of interwoven helices of dendritic

methanofullerenes.
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5.5 Synthesis

The synthesis of the fullerodendrimers employed in this work was generally carried out

according to Scheme 5-1. Specific synthetic details are provide, below.

[4-3,4-3,5]12G 2CN (2): [4-3,4]12GCH 2Cl (1) was synthesized according to the method of

Percec et al[82]. To a degassed suspension of K2 CO 3 (5.02g, 36mmol) in anhydrous DMF

(35mL) was added 3,5-dihydroxybenzonitrile (1.23g, 9mmol). The mixture was heated to 70'C,

and [4-3,4]12G1CH 2Cl (13.48g, 19mmol) was added while stirring. The atmosphere was

replaced with nitrogen, and the reaction was allowed to react at 70'C for 8 hours. Completion of

the reaction was monitored by TLC (7:1 Hexanes:EtOAc). The reaction mixture was cooled to

r.t. and precipitated into cold water. The resulting solid was collected by suction filtration and
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Scheme 5-1 Synthesis of fullerodendrimers.
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purified by column chromatography (silica gel/CH 2Cl2) followed by recrystallization from

acetone to yield the product (12.9g, 96%) as a white solid.

[4-3,4-3,5]12G 2CH2NH 2 (3): To a cooled (00 C), stirred slurry of LiAlH 4 (0.15g, 4mmol) in

anhydrous THF (5mL) was slowly added a solution of [4-3,4-3,5]12G 2CN (2g, 1.3mmol) in

anhydrous THF (4mL). After complete addition, the mixture was allowed to warm to r.t. and

stirred an additional hour. Reaction progress was monitored by TLC (CH 2Cl 2). After

completion, the mixture was again cooled to 00C, and the reaction was carefully quenched by

sequential additions of water (0.15mL), 15% NaOH (0.15mL), and water (0.46mL). This

mixture was allowed to stir until H2 evolution ceased, and then filtered to remove lithium salts,

which were extensively rinsed with CH 2 Cl 2 . The filtrate was dried, and the solvent removed to

give the crude product, which was purified by column chromatography (silica gel, 20:1

CH 2Cl2:MeOH) to give the product as a white solid (1.76g, 87.6%).

[4-3,4-3,5]12G 2CH2NH-COCH 2CO-OC(CH 3)3 (4): [4-3,4-3,5]12G 2CH2NH2 (5g, 3.38mmol)

and mono-tert-butyl malonate (0.433mL, 2.82mmol) were dissolved in deoxygenated, anhydrous

DCM (120mL). Triethylamine (0.588mL, 4.22mmol) and HATU (1.28g, 3.38mmol) were then

added, and the reaction was allowed to proceed overnight under a nitrogen atmosphere. The

resulting solution was transferred to a separatory funnel, washed with 10% citric acid and

saturated sodium bicarbonate, and then dried, and concentrated under reduced pressure.

Purification by silica gel chromatography (4:1 Hexanes:EtOAc) gave the product as a white solid

(1.58g, 29%).

Methanofullerene (5): Dendritic malonate 4 (0.50g, 0.308mmol) and C60 (0.44g, 0.616mmol)

were dissolved in anhydrous toluene (150mL), and the solution bubbled with nitrogen. After

surrounding the reaction vessel with foil to exclude ambient light, iodine (86mg, 0.339mmol)

was added. Under N 2, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (60IL, 0.401mmol) in

anhydrous toluene (100mL) was then added dropwise over 1 hour. The resulting solution was

allowed to react for 24 hours at r.t., after which the reaction solution was concentrated under

reduced pressure, and purified by silica gel chromatography, first eluting unreacted C60 with

toluene, and subsequently eluting the mono-adduct with DCM. The resulting solid was

redissolved in a minimal amount of DCM, precipitated into MeOH, and collected by suction
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filtration using a 0.45 ptm Teflon membrane to yield the product as a brown solid (177mg, 25%).

MALDI-TOF for C164H149NO 13 m/z cald: 2364.8 [M+Na] +; found: 2364.1.

[4-3,4-3,5]12G 2CH 2NH-COCH 2CO-OCH 3 (6): [4-3,4-3,5]12G 2CH2NH2 (276mg, 0.186mmol)

was dissolved in anhydrous dichloromethane, and triethylamine (31.2uL, 0.224mmol) was

added. The atmosphere was replaced with nitrogen, and the solution was cooled in an ice bath.

Methyl 3-chloro-3-oxopropionate (20uL, 0.186mmol) was added at 00C. The solution as stirred

at 00C for 30 minutes, warmed to r.t., and allowed to react an additional 24 hours. The reaction

solution was diluted with DCM and transferred to a separatory funnel. The organic phase was

washed with saturated sodium bicarbonate solution, brine, dried and the solvent removed by

rotovap. The resulting solid was purified by column chromatography (~0.5% MeOH in DCM) to

give the product as a white to off-white solid (184mg, 63.4%).

[4-3,4-3,5]12G 2CH 2NH-COCH 2COOH (7): Cleavage of the methoxy group was procedure

adapted from reference [80]. To a round-bottom flask was added malonate derivative 6 (0.4g,

0.246mmol), potassium hydroxide (97mg, 1.73mmol), THF (8.lmL), and 95% ethanol (3.5mL).

The ixre was heLdtorefiux, and monitored for completion by TLC (3-4 hours). The

mixture was cooled to r.t., neutralized with 50% aqueous acetic acid, and the precipitate

collected using a 0.45tm PVDF membrane to yield the product as a white solid (337mg, 87.3%

yield).

[4-3,4-3,5]12G 2CH 2NH-COCH 2CO-Boc-L-Ser-L-Ala-OMe (8): Boc-L-Ser-L-Ala-OMe was

synthesized using the protocol of Alam et al.[186]. For the synthesis of 8, malonic acid

derivative 7 (337mg, 0.215mmol), Boc-L-Ser-L-Ala-OMe (125mg, 0.43mmol), and DMAP

(5.5mg, 0.045mmol) were dissolved in a minimal amount of anhydrous DCM, and the resulting

solution cooled in an ice bath. The ambient atmosphere was replaced with N 2, and a solution of

DCC (53mg, 0.258mmol) in DCM was added dropwise. The solution was allowed to react at

00 C for 2 hours, allowed to warm to r.t., and reacted overnight. Insoluble dicyclohexylurea was

removed by filtration. The solution was concentrated under reduced pressure and then purified

by silica gel chromatography eluting on a gradient from 0.5-1.0% MeOH in DCM, giving the

product as a white solid (214mg, 54%). Dicyclohexylurea was difficult to completely remove by

chromatography, and DIC was a better coupling reagent for this reaction. However, residual

dicyclohexylurea did not interfere with the subsequent coupling to C60.
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Peptidic Methanofullerene (9): Dendritic dipeptide 8 (0.21g, 0.1 14mmol) and C60 (0.126g,

0.175mmol) were dissolved in anhydrous toluene (42mL), and the solution bubbled with

nitrogen. After surrounding the reaction vessel with foil to exclude ambient light, iodine (32mg,

0.126mmol) was added. Under N2, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (23 IL,

0.151 mmol) in anhydrous toluene (10.5mL) was then added dropwise over 1 hour. The resulting

solution was allowed to react for 24 hours at r.t., after which the reaction solution was

concentrated under reduced pressure, and purified by silica gel chromatography, first eluting

unreacted C60 with toluene, and subsequently eluting the mono-adduct with 100:3

toluene:acetone. The resulting solid was redissolved in a minimal amount of DCM, precipitated

into MeOH, and collected by suction filtration using a 0.45pm Teflon membrane to yield the

product as a brown solid (127mg, 43%). MALDI-TOF for C17 2H163N30 18 m/z cald: 2581.0

[M+Na] +; found: 2580.4.
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6 Conclusions and Outlook

The central objective of my thesis was to engineer and analyze interfaces for electron

transfer in nanocarbon systems. In Chapters 2 and 3 of this thesis, I examined ground-state

electron transfer, from SWCNTs to aryl diazonium salts, in the diazonium derivatization of

carbon nanotubes. There, it was found that, due to heterogeneous chiral populations of SWCNT

in solution, it not feasible to stoichiometrically control the extent of covalent functionalization in

the low conversion limit.

I then sought to examine whether adsorbed surfactants could be utilized to impart an

additional degree of control over SWCNT reactivity. There, it was shown that the surfactant can

influence the reactions of carbon nanotubes in a variety of ways, including electrostatics, steric

exclusion, and direct chemical modification of the reacting species. Therefore, surfactants

represent promising candidates for modulating the reactivity of carbon nanotubes. However,

thus far, only ensemble measurements have been performed, and there is little information on the

number and spatial distribution of defect sites. Therefore, future directions for this work should

focus on tagging and quantifying covalent defect sites. Such a study could potentially lead to the

demonstration of surfactant-induced, site-directed functionalization of carbon nanotubes. For

example, in the case of gold nanorods, electrostatic effects, driven by cationic surfactants, have

been proposed to be responsible for preferential end growth[187]. In those systems, curvature

effects at the nanorod ends decrease the electrostatic barrier for ion penetration, resulting in

preferential axial growth. Analogously, in the case of carbon nanotubes, it may be possible to

utilize cationic surfactants to direct diazonium functionalization to the termini of the carbon

nanotube. In Chapter 3, it was already demonstrated that the barrier to reactivity in cationic

systems is high, and especially in the case of large diameter nanotubes, the reaction kinetics

associated with derivatization of the nanotube sidewall are very slow. This may provide a

window of opportunity for selective end functionalization to occur. However, better labeling and

characterization techniques are required in order to evaluate statistical distributions of diazonium

induced defects along the SWCNT length.

Additionally, in the case of the bile salt surfactants, reactivity is controlled by the steric

exclusion of the diazonium ion from the SWCNT surface. In these systems, it is possible that

existing defect sites along the SWCNT length could disrupt the surfactant packing near that
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location, resulting in preferential functionalization in the vicinity of existing defects.

Experimentally, in the case of completely random functionalization of the nanotube sidewall, one

would expect that it would be possible to obtain high degrees of fluorescence quenching (due to

the delocalization of the exciton) without significantly changing the absorbance spectrum. This

type of behavior is observed in figs 3.2(a) and 3.2(b) for the SDS surfactant. In contrast, if

functionalization propagates from existing defects sites, one would expect to see concurrent

modulation of both absorbance and fluorescence. Indeed, this type of behavior appears to be

observed for the sodium cholate system in figs 3.4(a) and 3.5(a). In addition, the Raman spectra

for this system shows an initial, sharp increase in D/G ratio, followed by a slower increase with

added diazonium thereafter. Such behavior is consistent with previous observations of defect-

site propagation along carbon nanotubes[188]. However, further characterization needs to be

performed in order to validate such a mechanism.

In Chapter 4, we developed Marcus theory-based structure-reactivity relationships for

excited-state electron transfer from semiconducting SWCNTs to a series of methanofullerenes.

There, it was shown that, due to the small energetic driving force for electron transfer in the

cases of C61 and C71, only partial fluorescence quenching is observed across all species. In

contrast, even at low surface coverages of C85 , SWCNT fluorescence is quenched across all

species that were analyzed in this work. This is likely due to the deeper LUMO level of the C85

methanofullerene, which results in energy offsets that exceed the exciton binding energy in

SWCNT. This result, combined with the fact that C85 has much higher photo-stability than C61

and C71, makes this larger fullerene adduct a promising candidate for SWCNT-based sensors and

photovoltaics.

For SWCNT fluorescence-based sensor applications, the ability to describe the these

systems using Marcus theory informs us that the rate constant associated with electron transfer

should decay exponentially with the distance from the SWCNT surface. Therefore, a small

displacement of the fullerene, such as that which could result from a protein binding event, could

cause a substantial modulation of SWCNT fluorescence. This characteristic could make these

SWCNT-C85 heterojunctions useful candidates for applications in label-free protein detection.

For photovoltaic devices, experimental results appear to indicate that the energetics for

electron transfer from photo-excited SWCNTs to C85 is highly favorable. However, the direct
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usage of this fullerene derivative in SWCNT-based photovoltaics is hindered by the fact that C84

exists as multiple isomers, the presence of which could reduce device performance. Therefore,

the utilization of this fullerene in SWCNT-based photovoltaics will benefit from advances in

isomer separation of fullerenes.

Finally, in Chapter 5, we demonstrated that, through the introduction of a dipeptide

sequence to one terminus of a C61 fullerodendrimer, it is possible to change the self-assembly

behavior from the formation of poorly-ordered aggregates to high aspect ratio nanorods. The

formation of these nanorods is driven by interactions between the dipeptide moieties, and this

interaction simultaneously imparts helicity to the resulting supramolecular structure.

If there is substantial inter-fullerene interaction in these systems, it is possible that these

self-assembled fibers could find use in molecular electronics and organic photovoltaics. In

particular, the large band-gap of fullerenes could enable applications in molecular field-effect

transistors. In addition, fullerenes are excellent electron acceptors for use in organic

photovoltaics, and the ability to self-assemble fullerenes in a controlled manner could improve

device efficiencies by aiding in thc control of active ae m1 orphology.
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7 Appendix A: Molecular Characterization of Water-

Soluble Fullerene Derivatives

7.2 Excess Surfactant Removal by Centrifugal Filtration
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Figure 7.1 Absorbance spectra of SWCNT suspensions in amphiphiles (4), (7), (10), (12), and (14) - from
Schemes 4-1 and 4-2 - before (black) and after (red) removal of free amphiphile. In order to account for
slight concentration differences, absorbance spectra have been adjusted by a constant such that their
absorbance values near 900nm are similar. Despite small redistributions in chirality, most spectra taken
before and after removal are fairly consistent. However, the pyrene-PEG sample shows evident decrease in
peak-to-valley ratio, as well as slight peak shifting, indicating that aggregation is occurring. Visible
aggregates were also observable the pyrene-PEG system after the removal of excess surfactant.
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7.3 MALDI-TOF
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Figure 7.2 MALDI-TOF for the three methanofullerene
intermediates, (3), (6), and (9) from Scheme 4-1.
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Figure 7.3 MALDI-TOF on the PEGylated amphiphiles
(4), (7), (10), (12) and (14) from Schemes 4-1 and 4-2.
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Figure 7.4 Zoomed-in MALDI-TOF on the PEGylated amphiphiles (4), (7), (10), (12) and (14), from
Schemes 4-1 and 4-2, along with expected values.
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methanofullerenes used for the fullerene family analysis.

105

Lipid-C61-Alkyne

S . I I i I

Lipid-C71-Alkyne

-- Lipid-C85-Alkyne

=3

Cn

Andrew J. HilmerEngineering Nanocarbon Interfaces for Electron Transfer



Engineering Nanocarbon Interfaces for Electron Transfer Andrew J. Hilmer
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Figure 7.7 AFM images showing individually dispersed nanotubes in the cases of pyrene-PEG, pyrene-C61-
PEG, lipid-PEG, and lipid-C61-PEG. SWCNT suspensions using methyl-C61-PEG displayed bundles of
nanotubes.
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8 Appendix B: Molecular Characterization

Fullerodendrimers

8.2 MALDI-TOF
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Figure 8.1 MALDI-TOF data for the two fullerodendrimers used in the self-assembly study.
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8.3 Variable-Temperature NMR (VT-NMR)
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Figure 8.2 Variable temperature 'H-NMR data for the peptidic fullerodendrimer in C6 D12-
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Figure 8.3 Intensity of the aromatic NMR feature at -6.74ppm as a function of temperature. The magnitude of
the feature shows a monotonic decrease as the sample is cooled. Due to the higher concentration of the sample,
the assembly transition is shifted to higher temperatures in comparison with the variable-temperature
absorbance and circular dichroism datasets.
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