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Abstract

The Higgs decay into a photon and a Z boson, with the Z boson decaying into an
electron-positron pair (electron channel) or muon-antimuon pair (muon channel), al-
lows for accurate reconstructions of the Higgs boson mass and measurement of the
Higgs to Z-y coupling. We explore selection criteria for the photon and the two leptons
and provide preliminary observed and expected limits for the Higgs boson production
cross section in the mass range from 120 GeV to 150 GeV. The data used in this
analysis was collected with the CMS detector and corresponds to 5 fb- 1 and 19 fb-1
at center-of-mass energies of 7 TeV and 8 TeV, respectively.

Thesis Supervisor: Professor Christoph Paus
Title: Professor of Physics

3



4



Acknowledgments

I would like to thank CERN Scientists Fabian Stoeckli and Gerry Bauer, Northwestern

Professor Kristian Hahn and MIT Professors Christoph Paus, Markus Klute and Steve

Nahn for their guidance throughout the analysis. I would also like to thank Max

Goncharov for introducing me to the wonderful world of particle physics.

5



6



Contents

1 Introduction 9

2 Experimental Setup 11

2.1 The Large Hadron Collider (LHC) . . . . . . . . . . . . . . . . . . . . 11

2.2 The CMS Detector - . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Silicon Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Electromagnetic Calorimeter (ECAL) . . . . . . . . . . . . . . 14

2.2.3 Hadron Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.4 Muon Chambers . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Data and Monte Carlo Samples 19

4 Basic Object Selection 23

4.1 Vertex Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 T riggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Photon Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Electron Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5 M uon Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Higgs Reconstruction 31

5.1 Data and background Monte Carlo comparison after full event selection 32

6 Energy Corrections 33

6.1 Electron Energy Corrections . . . . . . . . . . . . . . . . . . . . . . . 33

7



6.2 Photon Energy Corrections . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Background and Signal Modeling 37

7.1 C ategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.2 Background Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.3 Signal Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8 Systematic Uncertainties 45

9 Results 47

9.1 Limit Setting Procedures . . . . . . . . . . . . . . . . . . . . . . . . . 47

9.2 Observed Limits. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 47

9.3 Comparison to the Approved Analysis . . . . . . . . . . . . . . . . . 48

10 Summary 53

A Signal Model Fits 55

B Isolation Computation 89

B.1 Photon Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

B.2 Electron Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B.3 Muon Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8



Chapter 1

Introduction

The standard model (SM) of particle physics has been extraordinarily successful in

modeling experimental data [1, 2]. Only one fundamental particle in the standard

model, the Higgs boson, remains to be experimentally confirmed. The Higgs boson is

postulated to be responsible for the electroweak symmetry breaking that gives mass

to the W and Z bosons [3].

Recent searches for a SM Higgs boson at the LHC have led to an observation of a

Higgs-like mass peak in the 125 to 126 GeV mass region [4]. This observation along

with data from previous accelerators suggest the existence of a low mass Higgs boson.

The next step in the analysis process is to measure the properties of the mass

resonance, like spin and parity, and to perform measurements that give insight into

the dynamics of the resonance. In the standard model, fermions and bosons acquire

their mass via interaction with the Higgs field. The strength of the coupling to the

Higgs field is determined by the mass of the particle. The dynamics of the Higgs-like

resonance is determined by measuring the branching ratios of the resonance to its

decay products. Furthermore, the spin [5] (expected to be zero for the SM Higgs

boson) and parity (expected to be even for the SM Higgs boson) of the Higgs-like

resonance is established from the angular correlations of the Higgs decay products,

notably the ZZ -+ 41, Z-y and -/ decay modes.

The H -+ Zy -± f+- channel is notable for several reasons. The HZy coupling

is induced by loops of heavy charged particles (like the top quark and W boson)
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[6]. Therefore, the channel is sensitive to heavy charged particles. It also provides

a clean final-state topology where the Higgs mass is accurately reconstructed from

the three body mass of the photon and the two leptons, allowing for measurement

of the branching ratio. In addition, the spin of a mass signal can be determined

by analyzing the angular correlations of the final state particles. Although the Higgs

standard model branching ratio into the Zy channel varies between 0.111% to 0.246%

in the range between 120 < mH < 140 GeV, the CMS experiment should be sensitive

to this channel in the coming years.

This paper describes a search for a Higgs boson decaying into a photon and a Z

boson, with the Z boson decaying into either an electron-positron pair or a muon-

antimuon pair. The search was conducted using data taken from the CMS detector

in 2011 and 2012. This analysis uses a cut-based selection [7], with the requirement

of a reconstructed Z boson and an isolated photon. Exclusion limits are set on the

cross section of a SM Higgs boson in the 120 < Mffy < 150 GeV mass window.

Additionally, the results of this analysis will be compared to the H -+ Zy analysis

approved by CMS. The official analysis. hereafter referred to as the approved analysis,

is found in Reference [8].
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Chapter 2

Experimental Setup

2.1 The Large Hadron Collider (LHC)

The Large Hadron Collider (LHC) is a proton-proton collider located at the European

Organization for Nuclear Research (CERN) in Geneva Switzerland. It was built

from 1998 to 2008 with the goal of testing different theories in high-energy physics

and proving or disproving the existence of the Higgs boson and many new theorized

particles. The LHC tunnel, located 45-170 m beneath the surface, measures 26.7

km in circumference and straddles the border between France and Switzerland. The

collider tunnel contains two adjacent beam pipes that each contain a proton beam

travelling in opposite directions. There are 1,232 dipole magnets used to keep the

proton beams on a circular path, while 392 quadrupole magnets are used to keep the

beams focused.

Protons are injected into the LHC beampipe after being accelerated through a

series of systems to increase their energy. Protons are first accelerated to 50 MeV

in the linear particle accelerator LINAC 2. The protons are then transferred to the

Proton Synchrotron Booster (PSB), where they are accelerated to 1.4 GeV. After-

wards, the protons are injected into the Proton Synchrotron (PS) and accelerated to

26 GeV. Finally, the protons then enter the Super Proton Synchrotron (SPS) and are

accelerated to 450 GeV prior to entering the main ring of the LHC.

There are four intersection points in the main ring of the LHC where four main
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experiments are located. There are two general purpose detectors: the A Toroidal

LHC Apparatus (ATLAS) experiment and the Compact Muon Solenoid (CMS) ex-

periment. These two experiments represent the energy frontier in the particle physics

field and among other goals are used to confirm or deny the existence of the Higgs

boson. The other two main detectors are The A Large Ion Collider Experiment

(ALICE), used to study heavy ion collisions, and the Large Hadron Collider beauty

(LHCb) experiment, used to study b physics with a focus on physics with b hadrons.

2.2 The CMS Detector

The CMS detector consists of a superconducting solenoid 13m in length and 6m in

diameter that produces an axial magnetic field of 3.8 T [9]. Figure 2-1 shows a sketch

of a transverse slice of the detector. A silicon tracker, electromagnetic calorimeter

(ECAL) and a hadron calorimeter (HCAL) are contained within the bore of the

solenoid. Outside of the solenoid are muon chambers and iron return yokes for the

magnetic field. The iron return yokes are used to collapse the fringe magnetic field

and to ensure a strong enough magnetic field outside of the solenoid to measure the

curvature of muons in the muon chambers. The barrel of the detector is closed off

with two endcaps.

In order to describe collisions, a coordinate system is defined with the origin

located at the interaction point along the beampipe. The z-axis points along the

beampipe direction. The x-axis is located in the horizontal plane and points radially

towards the center of the main ring. The y-axis points vertically upwards. Polar

coordinates are more often used in the analysis, where the angle # is the azimuthal

angle in the x-y plane measured counterclockwise from the from the positive z-axis

and the polar angle 6 is measure from the positive z-axis. However, the polar angle is

usually expressed in terms of the pseudorapidity, 1 = - ln tan 6/2, because differences

in q are invariant under boosts along the z-axis. Additionally, the analysis often uses

transverse momentum, which is the momentum measured in the x-y plane.

Electrons and photons are detected in the electromagnetic calorimeter (ECAL).
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Figure 2-1: Transverse slice through the Compact Muon Solenoid (CMS) detector

When electrons and photons enter the ECAL, their energy is deposited into a cluster of

crystals collectively called a supercluster. The electron will also leave charged particle

tracks in the silicon pixel and strip tracker. Muons are detected in the gas detectors

located in the iron return yoke placed outside of the superconducting solenoid. A

complete description of the CMS detector can be found in Reference [10].

2.2.1 Silicon Tracker

The silicon tracker [11] is used to measure the trajectories of charged particles. The

momentum of charged particles is determined by measuring the curvature of the

trajectory of charged particles in the magnetic field [12]. The tracker is composed of

silicon pixels and silicon microstrip detectors. As a charged particle travels through

the tracker, the silicon pixels and microstrips produce small electrical signals that are

amplified and detected.

The silicon pixel detector is the closest detector to the beampipe. It consists of

65 million pixels and is composed of cylindrical layers at 4, 7 and 11 cm with disks

at each end. Each cylindrical layer is composed of numerous tiles, 100 Jim by 150

pum. When a charge particle goes through a tile, it forces an electron to be released
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from the silicon atoms. Each pixel uses an electric current to collect these ejected

electrons on the surface. Each silicon tile is associated with an electronic silicon chip

that takes the small electronic signal as input and outputs an amplified signal.

There are ten layers of silicon strip detectors that surround the silicon pixel de-

tector. The tracker silicon strip detector consists of 10 million detector strips read

by 80,000 microelectronic chips. Just as with the silicon pixel detector, charged par-

ticles knock out electrons in the silicon sensors. An applied electric field moves these

knocked out electrons to create a small electrical pulse that enters the microelectronic

chips. The chips then send infrared pulses through fiber optic cables to record the

particle hit.

2.2.2 Electromagnetic Calorimeter (ECAL)

The purpose of the electromagnetic calorimeter (ECAL) [13] is to determine the

energies of electrons and photons. The ECAL is made up of a barrel section and two

endcaps and lies between the silicon tracker and the hadron calorimeter. The barrel

is composed of 61,200 lead tungstate crystals organized in 36 modules. The endcaps

consists of roughly 15,000 crystals. When electrons and photons enter the ECAL,

their energy is deposited into a cluster of crystals collectively called a supercluster.

The transition region between the barrel and the endcaps occurs between 1.444 <

rj| < 1.566.

When high-energy photons or electrons hit the heavy nuclei of the ECAL crystals,

a shower of electrons, positrons and photons is produced. As this shower proceeds

through the ECAL, the electrons in the lead tungstate crystals take energy away

from the shower of particles and become excited. The crystal electrons then release a

short burst of scintillation photons when they relax back to their former energy state.

Each crystal is associated with a photodetector. The burst of scintillation photons

hits the silicon of the photodetector and knocks off an electron. This electron is then

accelerated through the electric field of the photodetector, colliding with other nuclei

and forcing out a shower of electrons. The photodetector then reads this shower of

electrons as an electrical signal and amplifies it. The amplified signal is then digitized
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and sent away by fiber optic cables.

The ECAL also contains a preshower used to distinguish high-energy photons

from neutral pions. The preshower detector is located in the endcap regions of the

ECAL where the angle between two emerging photons from the decay of a neutral

pion is too small to distinguish the two decay photons from a high-energy photon.

The preshower detector is made of two planes of lead followed by silicon sensors. The

crystals in the preshower are much finer than those in the ECAL, making it possible

to resolve pion-produced photons as a photon pair. When a high-energy photon hits

the lead layer, it creates an electromagnetic shower which the silicon sensors detect

and measure. The two layers of silicon allow for measurement of the photon energy

and position. When high-energy photons in the ECAL, their paths can be retraced

to look for "hits" in the preshower, making it possible to deduce whether the high-

energy photon was indeed a high-energy photon or a photon pair. The total energy

of the photon is determined by summing the energy deposited in the preshower and

the ECAL.

2.2.3 Hadron Calorimeter

The purpose of the hadron calorimeter (HCAL) [9, 13] is to measure the energy of

hadrons, particles made of quarks and gluons. The HCAL is organized into barrel

(HB, HO), endcap (HE) and forward (HF) sections. The HE is the portion of the

barrel located inside the magnetic coils and the HB is the portion of the barrel located

outside of the magnetic coils to ensure that no particle ensures escape through the

ends of the solenoid magnet. The HF calorimeters are located at either end of the

detector close to the beampipe and are used to pick up energies of particles that

scatter with angles close to the beampipe.

The HB, HO and HE are made of several layers of dense absorber and tiles of

plastic scintillators. When a hadronic particle hits the dense absorber, either brass

or steel, numerous secondary particles are produced. These particles then shower

and avalanche through successive layers of absorbers. The tiles of plastic scintillators

count the light produced in order to measure the energy of the shower as it proceeds
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through the HCAL by sending blue-violet light through tiny optical fibers located in

each tile. The different layers of tiles are organized into geometrical arrangements

called towers. The energy of the shower is determined by summing the amount of

light in a tower.

2.2.4 Muon Chambers

The muon chambers, as one would guess, are used to detect muons [14]. Muons

are minimally ionizing particles and penetrate deep into the detector. They are not

stopped by the calorimeters. There are four muon stations that record "hits" of

muons as they travel through the muon chambers. The powerful CMS magnet bends

the trajectory of the muons as it travels through the trackers and the muon chambers,

allowing for measurement of the momenta.

The muon chambers are composed of 250 drift tubes (DTs), 540 cathode strip

chambers (CSCs) that track the muon positions and 610 resistive plate chambers

(RPCs) that measure timing and position.

The drift tubes are 4 cm wide tubes filled with gas and contain a positively charged

stretched wire. When a muon (or any charged particle) passes through the gas volume,

electrons are knocked off the atoms of the gas. An electric field forces these electrons

to drift towards the positively charged stretched wire. The position of the muon is

determined by the location of where the electrons hit the wire and the time taken for

the electrons to drift to the wire. Each DT consists of 12 aluminum layers in three

groups of four. The middle group measures the position coordinate parallel to the

beampipe and the two outside groups measure the perpendicular position coordinate.

The cathode strip chambers are used in the endcaps and consist of arrays of

positively-charged wires crossed with negatively-charged copper cathode strips in a

gas volume. As with the drift tubes, incoming muons force electrons off the atoms

in the gas volume. These electrons collect on the positively-charged wires. Positively

charged ions move away from the wire and towards the copper cathode which then

induces a charge on the copper cathode strips. The wires and strips are perpendicular,

thus allowing for measurement of two position coordinates.
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The RPCs consist of two parallel plates (an anode and a cathode) made of high

resistivity plastic material. The plates are separated by a gas volume. When a muon

strikes an electron off the atoms in the gas volume, the electron hits other atoms and

creates a shower of electrons. Metallic strips pick up the signal from the electron

shower. The trajectory of hits in the RPCs allows for fast measurement of the muon

momentum. This quick momentum measurement is used by the CMS trigger to

determine whether or not the data are worth storing.
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Chapter 3

Data and Monte Carlo Samples

Data for this analysis were collected during the 2011 and 2012 runs of the CMS

experiment. Yearly datasets are divided into sections. The 2011 data is divided into

sections A and B. The 2012 data is divided into sections A, B, C and D. Additionally,

2011 data were taken at a center-of-mass energy of 7 TeV and 2012 data were taken

at a center-of-mass energy of 8 TeV. The specific datasets are shown in Table 3.1

along with their corresponding official good run list files in JSON file format. Good

run list files are JSON files published by CMS and are used to specify which run

and luminosity periods during the data taking should be considered for analysis. The

total integrated luminosity for 2011 data is 5.05 fb-1. The total integrated luminosity

for 2012 data is 19.40 fb-1.

Dataset 2011 A and B dielectron datasets: r11a-del-j16-v1-bp, rllb-del-j16-v1-bp
JSON Cert-160404-180252_7TeVReRecoNov08_Collisions 11 _JSONv2.txt

Dataset 2011 A and B dimuon datasets: rlla-dmu-j16-vl-bp, rllb-dmu-j16-vl-bp
JSON Cert_160404-180252-7TeVReRecoNov08-Collisions 11 _JSONv2.txt

Dataset 2012 A and B dielectron datasets: r12a-del-j13-vI, rl2b-del-j13-vl
JSON Cert_190456-19653l8TeV_13Jul2Ol2ReRecoCollisionsl2_JSON-v2.txt

Dataset 2012 A and B dimuon datasets: rl2a-dmu-j13-vl, rl2b-dmu-j13-vl
JSON Cert_190456-196531_8TeV_13Jul2Ol2ReRecoCollisionsl2-JSON-v2.txt

Dataset 2012 C and D dielectron datasets: rl2c-del-pr-v2, rl2d-del-pr-vl
JSON Cert-190456-208686_8TeVPromptRecoCollisionsl2-JSON.txt

Dataset 2012 C and D dimuon datasets: rl2c-dmu-pr-v2, rl2d-dmu-pr-vl
JSON Cert_190456-208686_8TeV_PromptRecoCollisions 12_JSON.txt

Table 3.1: Table of dataset names and corresponding JSON good run list files
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The description of the Higgs boson signal used in this analysis is obtained using

Monte Carlo simulation. The SM Higgs boson is produced via four main mechanisms:

gluon fusion, vector boson fusion, associated production with a W or Z boson and

associated production with a top quark pair. Monte Carlo simulations of the gluon

fusion and vector boson fusion Higgs production mechanisms are used to produce

Higgs mass signals from 120 Gev to 150 Gev in 5 GeV intervals. These signal samples

are used to determine the signal efficiency and the acceptance. The signal samples are

fit to signal models. The shapes of these signal models are used to extract exclusion

limits on the cross section of a standard model Higgs boson. The signal samples are

generated with POWHEG [15] at next to leading order (NLO) for the gluon fusion

[16] and vector boson fusion [17] production processes and the associated production

process was simulated with PYTHIA [18] at leading order (LO). Table 3.2 shows

the expected cross-sections and branching ratios outlined by the LHC Cross-Section

Working Group [19] for all four production processes at 7 TeV.
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Higgs mass (GeV) Production Process Cross-Section (pb) Branching Ratio
ggH 16.65

120 VBF 1.27 0.00111WH/ZH 1.02
ttH 0.10
ggH 15.32

125 VBF 1.21 0.00154
WH/ZH 0.89

ttH 0.09
ggH 14.16

130 VBF 1.15 0.00195WH/ZH 0.78
ttH 0.07
ggH 13.11

135 VBF 1.10 0.00227WH/ZH 0.68
ttH 0.07
ggH 12.18

140 VBF 1.05 0.00246WH/ZH 0.60
ttH 0.06
ggH 11.33

145 VBF 1.02 0.00248
WH/ZH 0.53

ttH 0.05
ggH 10.58

150 VBF 0.98 0.00231WH/ZH 0.47
ttH 0.05

Table 3.2: SM
TeV

Higgs boson cross sections and branching ratios (for H -+ Zy) at 7
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Chapter 4

Basic Object Selection

The Higgs mass is reconstructed using the three body mass of the photon and two

leptons. The photons, electrons and muons first have to pass cut-based selection

requirements. A cut-based selection means the kinematic and topological variables

of the particles have to be higher or lower than certain thresholds (cut values). After

selection, the Z- three body mass is reconstructed with additional cuts placed on the

photons, electrons and muons. This section will explain the process to preselect the

photons, electrons and muons and then reconstruct the Z-y mass.

4.1 Vertex Selection

The primary vertex (PV) of the collision is reconstructed using the so called Deter-

ministic Annealing (DA) clustering algorithm [20]. This algorithm ensures that the

reconstructed primary vertex has a distance to the interaction point less than 24 cm

in z and less than 2 cm in the transverse plane. Of the selected vertices, the vertex

with the largest sum squared of the momentum tracks associated with the vertex is

chosen as the event vertex. This vertex has the highest probability of being the vertex

of the relevant interaction.
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4.2 Triggers

Events in the CMS detector are accepted and saved if they pass certain triggers. CMS

uses a tiered trigger system with two levels. The Level-i (LI) trigger is implemented

in hardware and firmware, and the High Level Trigger (HLT) is implemented in the

software. The Li triggers process detector information from every single LHC bunch

crossing at a rate of 40 MHz. It uses coarse granularity information from the ECAL,

HCAL and muon chambers to make a decision on whether to keep the data from the

event. Currently, the Li trigger does not use information from the tracking detectors

to make its decision.

If an event passes the Li trigger, it is then sent to the HLT. Full event information

is available to the HLT. When events fire a specific trigger in the HLT, they are sent

to storage and labeled with the corresponding HLT trigger name. Data is collected

for this analysis by collecting events with the HLT trigger names listed in Table

reftriggers. The dielectron triggers require two electrons with one electron having a

transverse momentum (pt) greater than 17 GeV and the other having a pt greater

than 8 GeV in addition to loose selection requirements on the isolation and track (in

the silicon tracker) of the two electrons. The dimuon triggers require varying cuts on

the transverse momenta of the muons and loose identifications on the isolation and

track of the muons.

H -± e+e-y Decay Mode Triggers
HLTEle17_CaloldT-TrkIdVLCaloIsoVLTrkIsoVLEle8_CaloIdT-TrkIdVL-CaloIsoVLTrklsoVL-v*

HLTEle17_CaloldT-CaloIsoVL-TrkldVLTrklsoVLEle8_CaloldT-CalolsoVLTrkIdVL-TrkIsoVL-v*

H -± [ptj--y Decay Mode Triggers

HLT-Mu17_Mu8-v*

HLTMu13_Mu8_v*

HLTDoubleMu7v*

Table 4.1: A list of the HLT trigger names used in the analysis
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4.3 Photon Selection

Photons are required to have a transverse momentum (pt) greater than 15 GeV and

have a supercluster pseudorapidity r,| less than 2.5. Additionally, photons in the

barrel-to-endcap transition region are rejected. Photons are considered to be in the

barrel if 1rj < 1.442 and in the endcap if 1.566 < 1rj < 2.5. Cuts are applied on the

following discriminating variables for candidate photons:

" SigmalEtalEta: The energy weighted (single crystal energy over the superclus-

ter energy) standard deviation of a single crystal q in an ECAL supercluster

within a 5 by 5 crystal block centered on the crystal with the highest energy.

SigmalEtalEta characterizes the shower shape of the photon. This variable is

required to be less than 0.011 if the photon is in the barrel and less than 0.033

if the photon is in the endcaps. SigmalEtalEta is required to be small in order

to distinguish photons from a jet showering into the ECAL.

" Single Tower H/E: Ratio of the energy in the HCAL tower behind the super-

cluster to the energy in the ECAL supercluster. This ratio is required to be less

than 0.05. This ratio is small because no to very little energy is deposited into

the HCAL for detected photons.

" Isolation: Sum of the transverse momentum of particles within a cone around

the photon direction. Isolation is computed separately for charged hadron, pho-

ton and neutral hadron candidate particles. The isolation values are corrected

using a pile up energy subtraction. Further explanation and cut values for

isolation are available in Appendix B.

Isolation for photons was summed over candidate particles within a AR cone of 0.3,

where AR is defined to be the angular displacement using the pseudorapidity, r;,

and the azimuthal angle, q>, as coordinates. Isolation is used to reject non-prompt

background resulting from jets.

Additionally, the photon is required to pass an electron veto. The electron veto

ensures that the photon supercluster did not match the supercluster for an electron
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that both returns zero hits in the inner silicon tracker and successfully passes a con-

version filter. The electron conversion filter is explained in the next section. The

selection criteria for the photon is summarized in Table 4.2

Variable Name Barrel Cut Endcap Cut

oq < 0.011 < 0.033
Single Tower H/E < 0.05 < 0.05

Charged Hadron Isolation < 1.5 < 1.2
Neutral Hadron Isolation < 1.0 + 0.04 x pt < 1.5 + 0.04 x pt

Photon Isolation < 0.7 + 0.005x pt < 1.0 + 0.005x pt

Table 4.2: Summary of the selection criteria for the photons

4.4 Electron Selection

Electrons are selected by applying a loose cut-based electron identification approved

by the E/Gamma Particle Object Group (POG) [21]. Preselection for electrons re-

quire the electron transverse momentum to be greater than 10 GeV and the electron

171 to be less than 2.5. Electrons with rj| < 1.566 are defined to be in the barrel and

electrons with 1.566 < iJ| < 2.5 are defined to be in the endcaps. Cuts are placed on

the following variables:

" sigmalEtalEta: This variable is required to be less than 0.01 for barrel electrons

and less than 0.03 for endcap electrons.

" H/E: The ratio of the energy in the HCAL behind the supercluster to the energy

of the supercluster. This ratio is required to be less than 0.12 for barrel electrons

and 0.10 for endcap electrons.

" dEtaln: The supercluster q minus the track 71 at the point of closest approach

to the supercluster. The difference is required to be less than 0.007 for barrel

electrons and less than 0.009 for endcap electrons.

" dPhiln: The supercluster # minus the track # at the point of closest approach

to the supercluster. The difference is required to be less than 0.15 for barrel

electrons and less than 0.10 for endcap electrons.
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" dO: Defined to be the displacement of the electron track from the primary event

vertex in terms of the x and y coordinates. This variable is required to be less

than 0.2 for both barrel and endcap electrons.

" dZ: Defined to be the displacement of the electron track from the primary event

vertex in terms of the longitudinal distance. This variable is required to be less

than 0.05 for both barrel and endcap electrons.

" 1/E - 1/p: One over the energy in the ECAL minus one over the momentum of

the track at the point of closest approach to the beam spot. 1/E characterizes

the energy measured in the ECAL and 1/p characterizes the energy measured

in the tracker. For electrons, the difference should ideally be zero. This variable

is required to be less than 0.05 for both barrel and endcap electrons.

Isolation for electrons is computed in a AR cone of 0.4 and required to be less than

0.4. Further explanation of the electron isolation and cut values are given in Appendix

B.

There is a significant probability that photons convert into e+e- pairs inside the

silicon pixel and strip tracker detectors. Therefore it is necessary to perform a con-

version filter to make sure that an electron did not originate from a photon. This is

done be performing a vertex fit on the common vertex of the e+e- pair. If the X2

probability of the fit was greater than 10-5, then the e+e- pair was considered to

Variable Name Barrel Cut Endcap Cut
oginq < 0.01 < 0.03
H/E < 0.12 < 0.10

dEtaIn < 0.007 < 0.009
dPhiln < 0.15 < 0.10

dO < 0.2 < 0.2
dZ < 0.05 < 0.05

1/E - 1/p < 0.05 < 0.05
Conversion Veto: Fit Probability < le-6 < le-6

Conversion Veto: Missed Hits < 1 < 1
Isolation/pt < 0.4 < 0.4

Table 4.3: Summary of the selection criteria for the electrons
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have originated from a photon and neither of the electrons passed the preselection.

The selection criteria for the electrons is summarized in Table 4.3. A more detailed

description of photon conversions and the conversion filter are given in Reference [22].

4.5 Muon Selection

A tight cut-based identification approved by the Muon POG [23] is used to select

muons. Preselection for muons requires the muon transverse momentum to be greater

than 10 GeV and the muon 1rj1 to be less than 2.4. Additionally, the muon must be

a global muon, meaning that the muon must return a track in the muon chambers

that also matches a track in the silicon tracker using a muon track fit. In order to

suppress particles punching through the HCAL into the muon chambers or detecting

muons resulting from particle decays in flight, the following cuts are placed on the

muons:

" The reduced chi-square of the global muon track fit is required to be less than

10.

" At least one muon chamber must return a valid hit in the global muon track fit.

* At least two muon stations in the muon chambers must return a muon track

segment.

" The track of the muon in the silicon tracker must have a transverse impact

parameter (d) less than 2 mm with respect to the primary vertex.

" The longitudinal distance (dZ) of the track of the muon in the silicon tracker

with respect to the primary vertex must be less than 5 mm (only for 2012 data).

" The number of pixel hits in the silicon detector assigned to the track must be

greater than 0.

" The number of tracker layers with hits must have be greater than eight for 2011

data and greater than nine for 2012 data. This ensures accurate measurement

of the muon transverse momentum.
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For 2012 data, the muon is also required to be a particle flow muon object. Particle

flow objects are a list of all particles in an event that have been reconstructed using

an optimized combination of subdetector information.

Isolation for muons is computed in a AR cone of 0.4 and required to be less than

0.12. A summary of the muon selection criteria is shown in Table 4.4. A description

of the isolation cut values and how the muon isolation is computed are given in

Appendix B.

Variable Name 2011 Cut 2012 Cut
GlobalMuon Yes Yes

PF Muon - Yes

x /ndof < 10 < 10
Number of Valid Hits > 0 > 0

Number of Matched Stations > 1 > 1
dO < 0.2 < 0.2
dZ - < 0.5

Number of Pixel Hits > 0 > 0
Number of Tracker Layers > 8 > 5

Isolation/pt < 0.12 < 0.12

Table 4.4: Summary of the selection criteria for the muons

29



30



Chapter 5

Higgs Reconstruction

The Z-y three body mass is reconstructed after the photons, electrons and muons are

selected. Each Zy event is required to have at least one good primary vertex. The Z

candidate is chosen by taking the two oppositely charged leptons closest to the Z mass.

The highest pt photon is chosen for the three body mass reconstruction. The photon

is rejected if it was within AR < 0.4 of a lepton. The transverse momenta of the

leading lepton is required to be greater than 20 GeV and the transverse momentum of

the trailing lepton is required to be greater than 10 GeV. The ratio of the transverse

momentum of the photon to the three body mass is required to be greater than

15/110. The mass window for the mass is chosen to be 115 < m < 180 GeV. This

window allows the final state radiation (FSR) events (located near the Z mass value)

to be cut away. FSR events are events where a Z boson decays into an electron or

muon pair, with one of the electrons or muons then radiating off a photon. In these

events, the Z-j three body mass sums to be the Z mass.

Additionally, the dilepton mass is required to be greater than 50 GeV. This cut

is placed in order to reject events from H - y-, where one of the photons converts

and produces a lepton pair.
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5.1 Data and background Monte Carlo compari-

son after full event selection

This section shows a comparison of data and background Monte Carlo simulation

after full event selection for 7 TeV data. The background simulations include both

the irreducible Z-y process and the Drell-Yan process. A comparison of the three

body mass to Monte Carlo for electrons using 2011 (7 TeV) data is shown in Figure

5-1. The data and the background Monte Carlo agree.

Three Body Mass (eey)

III
C

-4-- Data

DY Jets

SM Zy

kiII}EI II

I I 1 1, 1 1 a a I I 1 0 1 I a

130 140 150
Mass (GeV)

160

Figure 5-1: Data and MC comparison for the three body mass in the electron channel
is shown. The Drell Yan (DY Jets) Monte Carlo simulates the Drell Yan process.
The standard model Zy Monte Carlo simulates events where the Z boson decays into
two leptons (with one of the leptons possibly radiating a photon).
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Chapter 6

Energy Corrections

6.1 Electron Energy Corrections

The electron energy scale and resolution is corrected by examining the Z -* ee mass

peak because the Z boson peak is well-known and well-defined and comparing it

to background Monte Carlo. Plots of the uncorrected Z peak for both data and

Monte Carlo are shown in Figure 6-1. Both of the electrons are required to pass

the selection criteria as stated in the previous chapter. Additionally, corrections are

made separately for electrons entering either the barrel or the endcap.

Z Mass (ee)

40000

35000
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25000

W 20000

15000

10000
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82 84 86 88 90
Mass (GeV)

92 94 96 98

Figure 6-1: Uncorrected data and MC comparison for the Z-peak
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Figure 6-2: Corrected data and MC comparison for the Z-peak. There still remains
small disagreement between the data and Monte Carlo. This disagreement is taken
into account as an uncertainty.

The figure clearly shows differences between the data and Monte Carlo. In order to

correct the data, the official CERN EGamma electron scale and resolution corrections

are applied. These official corrections perform run dependent scale shifts on the data

and smear the Monte Carlo. Figure 6-2 shows the corrected Z peak for both data

and monte carlo. The errors from the scale and resolution corrections are propagated

and taken to be 1% for the electron energy scale correction and 2% for the energy

resolution correction.

6.2 Photon Energy Corrections

The photon energy scale and resolution are corrected using the VGamma Photon

Energy Scale and Photon Energy Resolution (PHOSPHOR) software package. The

width and position of the Z boson are used to measure the photon energy resolution

and energy scale. For the photon corrections, the Z -+ ppy process provides a clean

source of high energy photons. The photon energy is corrected by correcting the three

body mass to the Z boson mass. Additionally, the mass is required to be within 30
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GeV of the Z boson mass to reduce background from jets.

The PHOSPHOR program is used to fit the three body mass with the photon en-

ergy scale and resolution as parameters. These parameters provide the reconstructed

photon energy scale and resolution. The measured photon energy scale and resolution

percentage corrections in the barrel and the endcap for different ranges of the photon

transverse momentum are shown in Table 6.1.

Barrel Scale, R9 > 0.94 10 < PT< 12 12 < PT< 15 15 < PT< 20 20 < PT
MC 2011 0.8 ± 0.0 0.79 ± 0.10 0.45 ± 0.07 0.45 ± 0.04
MC 2012 0.46 ± 0.10 0.29 ± 0.08 0.28 ± 0.06 0.11 ± 0.04
Data 2011 -0.89 ± 0.45 -0.06 t 0.36 -0.06 ± 0.28 1.1 ± 0.12
Data 2012 2.18 0.46 0.64 ± 0.37 1.78 ± 0.22 1.15 ± 0.13

Barrel Scale, R 9 < 0.94 10 < PT< 12 12 < PT< 15 1 5 < PT< 20 2 0 < PT
MC 2011 2.15 ± 0.27 1.81 ± 0.21 1.48 ± 0.16 0.8 ± 0.09
MC 2012 1.32 t 0.21 0.81 ± 0.16 0.64 ± 0.12 0.62 ± 0.07
Data 2011 -0.25 ± 0.43 0.28 ± 0.33 0.24 ± 0.25 -0.36 t 0.16
Data 2012 0.95 0.42 1.15 ± 0.32 0.28 ± 0.25 0.39 t 0.15

Barrel Res., R9 > 0.94 10 < PT< 12 1 2 < PT< 15 15 < PT< 20 2 0 < PT
MC 2011 2.69 t 0.0 2.56 ± 0.03 2.1 ± 0.02 1.47 ± 0.01
MC 2012 1.93 0.03 1.8 ± 0.02 1.51 ± 0.01 1.12 ± 0.01
Data 2011 5.03 ± 0.61 3.75 ± 0.53 3.59 t 0.38 2.18 ± 0.16
Data 2012 3.01 ± 0.69 3.95 ± 0.61 1.91 ± 0.26 2.29 ± 0.22

Barrel Res., R 9 < 0.94 10 < PT< 12 12 < PT< 15 15 < PT< 20 20 < PT
MC 2011 8.2 t 0.08 7.31 ± 0.06 5.82 ± 0.05 3.94 ± 0.03
MC 2012 6.16 ± 0.07 5.92 ± 0.54 4.7 ± 0.05 2.77 ± 0.02
Data 2011 15.69 ± 0.29 11.13 ± 0.54 7.54 0.34 5.36 ± 0.23
Data 2012 9.24 ± 0.59 8.87 ± 0.5 7.58 ± 0.31 3.58 ± 0.24

Endcap Scale 10 < PT< 12 12 < PT< 15 15 < PT< 20 2 0 < PT
MC 2011 3.0 ± 0.32 2.33 ± 0.24 1.64 ± 0.18 0.96 ± 0.11
MC 2012 1.82 ± 0.36 1.3 t 0.25 1.14 ± 0.19 0.62 ± 0.12
Data 2011 1.41 0.58 0.07 ± 0.48 0.58 ± 0.37 0.45 ± 0.22
Data 2012 0.9 ± 0.73 -0.66 ± 0.51 1.14 ± 0.0 1.24 ± 0.24

Endcap Res. 10 < PT< 12  12 < PT< 15 15 < PT< 20 20 < PT

MC 2011 7.48 ± 0.1 6.05 ± 0.07 4.93 ± 0.06 3.39 ± 0.03
MC 2012 6.17 ± 0.1 5.2 0.08 4.28 ± 0.05 2.93 ± 0.03
Data 2011 15.16 ± 0.48 13.46 t 0.73 10.68 ± 0.5 6.21 ± 0.4
Data 2012 10.65 ± 0.93 8.86 ± 0.66 4.28 ± 0.0 5.62 ± 0.43

Table 6.1: Summary of the measured photon energy scale and resolution corrections
in percentages
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Chapter 7

Background and Signal Modeling

In order to statistically interpret the selected events, maximum likelihood fits for the

Zy three body mass distribution are needed. Results are extracted using unbinned

maximum likelihood fits of the data using different background only and signal plus

background hypotheses in order to set confidence limits on model parameters [24]

like the Higgs cross section. This is popularly referred to as the "CLs method". In

order to produce these confidence limits, probability density functions (PDFs) of the

background and the expected signal are needed. This section outlines the process

used to obtain these background and signal models.

7.1 Categories

The search is made more sensitive by dividing the selected events into categories based

on the expected mass resolution and signal-to-background ratio [25]. Probability

density functions for the background and the expected signal are determined for each

individual category and then combined together.

Higher energy events are more likely to spray into the barrel of the detector while

lower energy events (and events with more background) tend to shower in the forward

direction along the beampipe. Additionally, Irj squeezes due to the forward relativistic

boost as it approaches the beampipe, making lower energy events more difficult to

resolve. This means the most valuable signal events are expected to have both the
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leptons and the photon in the barrel. Moreover, events with unconverted photons have

higher energy resolution and less background. For these reasons, the selected events

are divided into event categories based on the pseudorapidities of the leptons and

photons and the R9 value of the photon. R 9 is a topological variable that corresponds

to the ratio of the energy in a 3 x 3 crystal matrix in the electromagnetic calorimeter

to the supercluster energy. The R9 variable is used to differentiate between converted

and unconverted photons

Four event classes are used in both the electron and muon analyses. The definitions

of the classes are slightly different for electrons and muons due to the geometry of

the detector. The definition of the classes are shown in Table 7.1. The best signal-

to-background ratio occurs for Event Class 1, where both leptons and the photon are

in the barrel of the detector.

In the transition from 7 TeV data to 8 TeV data, the acceptance for the high R9

class drops and the low R 9 class increases due to the increase in the number of pileup

collisions. This class migration is taken into account as a systematic uncertainty.

Event Class 1 Photon: 0 < Jr| < 1.442 Photon: 0 < 1,/ < 1.4442
(Category 0) Both leptons: 0 < i1 < 1.442 Both leptons: 0 < iq < 2.1

and one lepton: 0 < Iq| < 0.9

R9 > 0.94 R 9 > 0.94

Event Class 2 Photon: 0 < i) < 1.442 Photon: 0 < i1 < 1.4442

(Category 1) Both leptons: 0 < i1 < 1.442 Both leptons: 0 < 17| < 2.1

and one lepton: 0 < Iq| < 0.9
R9 < 0.94 R 9 < 0.94

Event Class 3 Photon: 0 < 177 < 1.442 Photon: 0 < lql < 1.4442
(Category 2) At least one lepton: 1.566 < IJq < 2.5 Both leptons: Ig| > 0.9

and none between 1.442 < iq < 1.566 or one lepton: 2.1 < Ig| < 2.4

No R9 requirement No R9 requirement

Event Class 4 Photon: 1.566 < Jil < 2.5 Photon: 1.566 < Inj < 2.5
(Category 3) Both leptons: 0 < JqJ < 2.5 Both leptons: 0 < 17| < 2.4

and none between 1.442 < 177 < 1.566
No R9 requirement No R 9 requirement

Table 7.1: Definition of the event categories for both the muon and electron analyses
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7.2 Background Modeling

The main backgrounds in the analysis come from initial state radiation (ISR) of a

photon, shown in Figure 7-1(a), and final state radiation (FSR) from Drell-Yan Z

boson production, shown in Figure 7-1(b) [26]. In FSR, the three body Zy mass is

close to the Z boson mass. Therefore, the FSR background is removed by looking in

a three body mass window above 100 GeV.

Zq

Z

(a) (b)

Figure 7-1: Feynman diagrams for ISR (a) and FSR (b)

This analysis did not use Monte Carlo simulation of background processes. In-

stead, a model for the background is obtained by fitting the three body mass dis-

tributions [27]. Bias studies by the approved analysis have shown that a 5th-order

Bernstein polynomial for event classes 2, 3 and 4 and a 4th-order Bernstein polyno-

mial for Event Class 1 provide an acceptably small bias with a reliable background

shape. These Bernstein polynomial fits are used for both 7 TeV and 8 TeV and are

discussed in the following pages.

7.3 Signal Modeling

The description of the Higgs boson signal used in this analysis is obtained using

Monte Carlo simulation. Monte Carlo simulations of the gluon fusion, the vector

boson fusion, the associated production with a W or Z boson and the associated

production with a top quark pair Higgs production mechanisms are used to produce
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Higgs samples at masses of 120, 125, 130, 135, 140, 145 and 150 GeV. The signal

models specify the efficiency times acceptance and the shape of the signal in each of

the event classes.

The signals are modeled using the addition of a Crystal Ball (CB) function and

a Gaussian function. The free parameters for the fit are the means of the CB and

Gaussian (1 parameter), the width of the CB and Gaussian (2 parameters), the

standard CB parameters a and n and the ratio between the CB and Gaussian (1

parameter) for a total of six parameters. Example signal model fits for the gluon

fusion (ggH) and vector boson fusion (VBF) Higgs production mechanisms are shown

in Appendix A. Once the full set of signal models at each Monte Carlo set are

determined, a continuous signal model as a function of the Higgs mass is obtained by

using a linear interpolation of the fit parameters. This interpolation is then used to

determine continuous exclusion limits on the Higgs production cross section.
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Chapter 8

Systematic Uncertainties

Table 8.1 lists the systematic uncertainties considered in the analysis. Systematic

uncertainties come from the uncertainties on the luminosity measurement, the trig-

ger efficiencies, the functions used to model the Higgs signal, the Higgs branching

fractions, the photon and lepton selections and the migration of events between the

different classes.

An overall 2.2% uncertainty is applied to the luminosity in 2011 and an over-

all 4.4% uncertainty for the 2012 luminosity. The background contribution to the

uncertainty is estimated from the three body fy mass.

The trigger uncertainties have been set by the CERN HZ-y Group. Additionally,

the uncertainties on the object selections have been established by the approved anal-

ysis using tag-and-probe methods to test for uncertainties in the object identification

and isolation procedures, as well as by using guidelines by the CERN Physics Object

Groups (POG).
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Systematic Variable 7 TeV (%)_8 Tev(%)

Integrated Luminosity 2.2 4.4
Theory

Gluon-gluon fusion cross section (scale) +12.5, -8.2 +7.6, -8.2
Gluon-gluon fusion cross section (PDF) +7.0, -7.7 +7.6, -7.0
Vector boson fusion cross section (scale) +0.5, -0.3 +0.3, -0.8
Vector boson fusion cross section (PDF) +2.7, -2.1 +2.8, -2.6

W associate production (scale) +0.7, -0.8 +0.2, -0.7
W associate production (PDF) +3.5, -3.5 +3.5, -3.5
Z associate production (scale) +1.7, -1.6 +1.9, -1.7
Z associate production (PDF) +3.7, -3.7 +3.9, -9.7

Top pair associate production (scale) +3.4, -9.4 +3.9, -9.3
Top pair associate production (PDF) +8.5, -8.5 +7.9, -7.9

Branching fraction 6.7, 9.4, -6.7, -9.3 6.7, 9.4, -6.7, -9.3
Trigger
Electron 0.5 0.5

Muon 0.5 1.5
Selection

Photon Barrel 0.5 0.5
Photon Endcap 1.0 1.1

Electron 0.8 0.8
Muon 0.7 1.4

Signal Model Parameters
Mean 1.0 1.0
Sigma 5.0 5.0

Event Migration 5.0 5.0

Table 8.1: The systematic uncertainties used in the analysis
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Chapter 9

Results

9.1 Limit Setting Procedures

The expected limits are calculated using the CLs modified frequentist method [28]

which uses the profile likelihood as a test statistic. The likelihood test statistic is

evaluated using the signal and background models described in Chapter 7. After

combining the electron and muon results, Figure 9-1 shows the 95% confidence level

observed limits for the exclusion of the Higgs production cross section (o-) separately

for 7 TeV and 8 TeV data. The expected limits are calculated by throwing 1000 toy

background events for each Higgs mass point.

9.2 Observed Limits

The observed combined exclusion limit on the cross section of a SM Higgs boson

decaying into a Z boson and a photon as a function of the Higgs boson mass is shown

in Figure 9-2. The observed limits are between 10 and 38 times the Higgs standard

model cross section. No excess of events is observed.
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9.3 Comparison to the Approved Analysis

Figure 9-3 shows the observed combined exclusion limit plot created by the approved

analysis on May 3rd, 2013. The observed limits are between 4 and 25 times the

Higgs standard model cross section. The search methods performed by the approved

analysis differ from the ones conducted in this thesis. The approved analysis uses

a Multivariate Analysis Tool [29] to optimize selection of the electrons, whereas a

cut-based approach is used in this thesis. Additionally, the approved analysis uses

an additional Event Class for VBF dijet tagged events, which increases the search

sensitivity.
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Chapter 10

Summary

A search for the SM Higgs boson decaying into a Z-boson and a photon has been

performed based on 5.05 fb- of data taken at 7 TeV and 19.4 fb- of data taken at

8 TeV. No excess of events has been observed for a Higgs boson decaying into a Z

boson and photon. Exclusion limits on the standard model Higgs cross section have

been set and are shown in Figure 10-1.
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Figure 10-1: Combined 7 TeV and 8 TeV observed limit plot
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Appendix

Signal Model Fits
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Figure A-13: Event Class 4 ggH signal model fits in the ee-y channel for 7 TeV data.
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Figure A-14: Event Class 4 VBF signal model fits in the ee-y channel for 7 TeV data.
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Figure A-15: Event Class 4 ggH signal model fits in the ppwy channel for 7 TeV data.
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Figure A-16: Event Class 4 VBF signal model fits in the ppy channel for 7 TeV data.

71

0

w

16

14

12

10

8

6

4

2

0 -

0 -

0-
0-
0

0-

0-

0-

0

0

0-

0-

0

0

0

0

i0o 110



180 -

160-

140-

120-

100-

80-

60-

40-

20-

00 110 120 130 144
mr (GeV)

(a) 120 GeV ggH signal model

> 200
4)

180

160

140

120

100

80

60

40

20

2

2

14

14

14

(0
LO
6

(0
9n
6

C)I

120 130 14
mr (GeV)

(c) 135 GeV ggH signal model

0-

Go -
80

60

40

20

00-

80-

60-

40

20

130 140 15o 1
rr (GeV)

(e) 145 GeV ggH signal model

Figure A-17: Event Class 1 example gg
TeV data.

0

U)

0
LO
U)

w

i signal model fits in the ee-y channel for 8

72

(0

w

220

200

180

160-

140

120

100

80

60-

40-

20-

?10 120 130 140 154
m4, (GeV)

(b) 130 GeV ggH signal model

200-

180-

160-

140

120-

100

80

60-

40-

20

20 130 140 150 16
rr,, (GeV)

(d) 140 GeV ggH signal model

250-

200-

150

100

50-

9:30 140 150 160 1 '
m, (GeV)

(f) 150 GeV ggH signal model

0



a)

CD0

C)

a)
CD
U,

a)

w

25

20

15

10

5

0-

0-

0

0

0-

240-

220-

200-

180-

160-

140-

120

1007

80-

60-

40-

20

0000 110 120 130 140
nr, (GeV)

(a) 120 GeV VBF signal model

250-

200-

150-

100-

50-

120 130 140 150
mr, (GeV)

(c) 135 GeV VBF signal model

250-

200-

150-

100-

50

0 130 140 150 160
rr (GeV)

w

250 -

0

10 1

0 -

20

15

10

10 130 140 150
m, (Ge

(d) 140 GeV VBF signal model

30

o
S25

w 20

15

10

5

0

0

0-

0 -

0-

0

10

160
V)

140 15h 100 1
M,, (GeV)

(e) 145 GeV ggH signal model (f) 150 GeV VBF signal model

Figure A-18: Event Class 1 example VBF signal model fits in the eey channel for 8
TeV data.

73

Tio 120 130 140 150
m,,, (GeV)

(b) 130 GeV VBF signal model

a)

0

a)

L0

uLJ



30

25

20

15

10

5

0-

0-

0

0

0

0

100 110 120 130

3

3

2

2

6 1

11

140
m (GeV)

(a) 120 GeV ggH signal model

350

300

250-

200

150-

100-

50

120 130 140
rr (GeV)

(c) 135 GeV ggH signal model

350

300

250

200

150

100

50

0 130 140 15 16
m (GeV)

(e) 145 GeV ggH signal model

0

CO
.4
c

T
LU

3

2

2

1I

1i

3

3

2
L2

21

11

0
CO
U,
0

0

LU

(f) 150 GeV ggH signal model

Figure A-19:
TeV data.

Event Class 1 example ggH signal model fits in the p-y channel for 8

74

50

00-

50-

)0-

L

50

00

?10 120 130 140 1Sf
mr (GeV)

(b) 130 GeV ggH signal model

00

50

0

50

00-

50

9:-0 130 140 1 if1
m~ (GeV)

(d) 140 GeV ggH signal model

50

0

50

00

50

00

50-

930 140 150 160 1
m,, (GeV)

0
LO
6,

0

Ui

0

0

0



0

U)

6

0
w

110 120 130 140
rmg (GeV)

(a) 120 GeV VBF signal model

0

0

0-

0-

0 -

)0-_

0-
0

12 30 10 5

120 130 14 1
m, (GeV)

(c) 135 GeV VBF signal model

0

io -

0-

0 -

0-

0-

0

130~ 140 150 160
q, (GeV)

0

U)

0
(±3
U)

0

w

(e) 145 GeV ggH signal model

0

w

Figure A-20: Event Class 1 example VBF signal model fits in the ppy channel for 8
TeV data.

75

30

25

20

15

10

5

0

0

0-

0

0-

0-

C,

4bU

400-

350-

300

250

200-

150

100-

1 120 130 140 150
m1, (GeV)

(b) 130 GeV VBF signal model

400-

350-

300-

250

200-

150-

100-

50-

20 130 140 150 160
m (GeV)

(d) 140 GeV VBF signal model

400-

350-

300

250

200

150

100-

50

?:0 140 150 160 1 0
mn (GeV)

(f) 150 GeV VBF signal model

100

0

U)

35

ic

25

20

15

10

5

w

40

3C

30

25

2C

15

1

5

40



0
U)

0)

0L

0
CD

0

0
w

160

140

120

100

80

60

40

20

130 140 15 (Ge)
rT)% (GeV)

15

140-

120

100

80

60

40

20

?00 110 120 130 14(
ng (GeV)

(a) 120 GeV ggH signal model

180-

160

140-

120

100-

80

60

40-

20 -L
20

120 130 140
n (GeV)

(c) 135 GeV ggH signal model

>1

1

1)

0

(e) 145 GeV ggH signal model

50-

4o -

20-

00-

80

60

40

20 -

910 120 130 140 150
mn (GeV)

(b) 130 GeV ggH signal model

40

20

0

40-

I0

40-

0 130 140 1 60
mr, (GeV)

(d) 140 GeV ggH signal model

40

20 -

00-

80

60

40

20

130 140 150 160 170
M,, (GeV)

(f) 150 GeV ggH signal model

Figure A-21: Event Class 2 example ggH signal model fits in the eey channel for 8
TeV data.

76

0

Z- i

> 1w

0

0
w

0
C;

U) I~2

. .
1



16

14

12

10

8

6

4

2

0

UO

C;

0-
0-

0 -
0
0

0-

0-

0 --

1

100 110 120 130 140
m (GeV)

(a) 120 GeV VBF signal model

18

16

14

12

10

8

6

4

2

0-
0

0-

0-

0-

0-

0-

0-

0
C

120 130 140 150
rm) (GeV)

(c) 135 GeV VBF signal model

200-

180-

160-

140-

120-

100-

80-

60-

40-

20-

0
130 140 150 160

m, (GeV)

(e) 145 GeV ggH signal model

Figure A-22: Event Class 2 example VB
TeV data.

0)

w

>0)

U)

0)

U)

6

0)

w

F signal model fits in the eey channel for 8

77

180

160

140

120

100-

80

60

40-

20

1 120 130 140 150
m,, (GeV)

(b) 130 GeV VBF signal model

180

160

140-

120-

100-

80

60

40-

20

20 130 140 1 0
m1, (GeV)

(d) 140 GeV VBF signal model

200-

180

160-

140

120

100

80

60-

40

20

30 140 150 160 10
mg,, (GeV)

(f) 150 GeV VBF signal model

0)
U)
6

0

U)

w



> 2
20

0

0

w
1s

Ic

o23

13

1

2A

2

2

13

13

13

0

CDJ

0

0-

0 -

)0 -

i'0 110 120 130 140
m (GeV)

(a) 120 GeV ggH signal model

50-

0-

50-

50-

sO -

12 130 140 1
mTg (GeV)

(c) 135 GeV ggH signal model

40

20

0

80

60-

40 -

20-

0

50
I0

40

o 130 140 150 1
m (GeV)

25

20

15

10

5

0-

0-

0

0-

0-

110 1

11 120 130 140 150m, (GeV)

(b) 130 GeV ggH signal model

0

w

2

2

1

1

0 2
0

2

w

13

(e) 145 GeV ggH signal model

50

00

50-

00

50-

M20 130 140 10 160
m,, (GeV)

(d) 140 GeV ggH signal model

50

50-

00-

50-

30 140 150 1 li
mo, (GeV)

(f) 150 GeV ggH signal model

Figure A-23: Event Class 2 example ggH signal model fits in the pp-y channel for 8
TeV data.

78

LO

Ui

5



G)

U)
3C

25

2C

15

10

5

0

0-

0

0

LO

C

w

25

20

15

10

5

10 110 120 I3 40
mn,, (GeV)

(a) 120 GeV VBF signal model

U)

w

2

2 10

io -

)0-

0-
10

64, ~ 120 ~ ~ 13-10 5

C.l120 130 140
m. (GeV)

(c) 135 GeV VBF signal model

30
0

o 25

20

W 2C
w

15

10

5

0-

0-

)0 -

0 -
0-

1 0 140 150 100
my (GeV)

(e) 145 GeV ggH signal model

Figure A-24: Event Class 2 example VB
TeV data.

LO
C;

0)

w

0

0-

0

0

0itiL

110 120 130 140 150
mr (GeV)

(b) 130 GeV VBF signal model

300-

250

200-

150-

100-

50-

?20 130 140 160
m,1 (GeV)

(d) 140 GeV VBF signal model

300-

250-

200

150

100-

50

1/

0
M,, (GeV)

(f) 150 GeV VBF signal model

F signal model fits in the pptjy channel for 8

79

3.0 140 150 0



In

w

CD

C
10

w

(e) 145 GeV ggH signal model

Figure A-25: Event Class 3 example gg
TeV data.

80-

70 -

60-

50-

10-

00 110 120 130 14
mrg (GeV)

(a) 120 GeV ggH signal model

30-

50

20-

40L

01 1 1 0 1 0 1

rr (GeV)

(c) 135 GeV ggH signal model

00-

80-

60

40-

20 -

0

1 ~Tr 10 140 (

m(GeV)

80

70-

60-

50

40

30

20-

10

1 0 120 130 140 150
m, (GeV)

(b) 130 GeV ggH signal model

70-

60

50-

40

30

20

10

20 130 140 150
m1 , (GeV)

(d) 140 GeV ggH signal model

90

80

70

60

50

40

30

20

10

130 140 150 160 -
m1, (GeV)

0

(f) 150 GeV ggH signal model

H signal model fits in the ee-y channel for 8

80

10

w

C
10J

>)

0

cL

4)

""

>)

CD10

Cq

4)



8

7

6

5

4

3

2

1

0-

0

0-

0

0

0-

0

100 110 120 130

0

Uf)
0;

9

8

7

6

5

4

3

2

1

140
ri, (GeV)

(a) 120 GeV VBF signal model

90

80

70

60

50

40

30

20

10

0-012T 130 140 15 W
m, (GeV)

,c) 135 GeV VBF signal model

80-

60

40-

20-

130 140 150 160
q,, (GeV)

(e) 145 GeV ggH signal model

Figure A-26: Event Class 3 example VBF
TeV data.

0

0-

0-

0 -

0

0 -

0-

0

0

0

110 120 130 140 150
m,, (GeV)

(b) 130 GeV VBF signal model

0
C,
U)
6

0

w

120

100

80

60

40

20

U)

0
wO

TO 13 140 1~~
m,, (GeV)

(d) 140 GeV VBF signal model

100-

80-

60

40

20 -

30 140 150 160 1 0
M,,, (GeV)

(f) 150 GeV VBF signal model

signal model fits in the ee-y channel for 8

81

0
0O
C0

14

I



CD

Qf)

w

a)
CD
Ii)
0

a)
w

14

12

10

8

6

4

2

0

0-

0-

0

0-

0
0-

120-

100-

80-

60-

40

20-

900 110 120 130 140
mg (GeV)

(a) 120 GeV ggH signal model

140-

120-

100-

80-

60-

40-

20-

1 130 14 150
mr (GeV)

(c) 135 GeV ggH signal model

140-

120

100

80

60

40

20-

1 140 150 160
M,, (GeV)

(e) 145 GeV ggH signal model

a)
CD
ID
6

a)
w

C

w

14

12

10

8

6

4

2

0 -
0-

0-

0

0

0-

00 -

120

100

80

60

40

20

Class 3 example ggH signal model fits in the ppy channel for 8

82

120 130 140 150
m, (GeV)

10

a)
CD
It)
0

a)
w

(b) 130 GeV ggH signal model

20 130 140 1 10
m,,, (GeV)

(d) 140 GeV ggH signal model

Figure A-27: Event
TeV data.

-3 4 5 6

3 14 5 A6 7
m,, (GeV)

(f) 150 GeV ggH signal model

0



0
0
U,
6

0
w

110 120 130 140
rr (GeV)

12

10

10 120 130 140 150
m, (GeV)

(b) 130 GeV VBF signal model

0q

0

6i

12

10

8

0

0-

0-
0-
0-

0-

m,1 (GeV)

(d) 140 GeV VBF signal model

0-

0-

0-

0-

0

0

0-

13 140 150 160
n (GeV)

(e) 145 GeV ggH signal model

0

w

16

14

12

10

0 -
0

0

0

0

0

0m-

1 0- -140 150 16 1%0
M,, (GeV)

(f) 150 GeV VBF signal model

Figure A-28: Event Class 3 example VBF signal model fits in the ppy channel for 8
TeV data.
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Figure A-29: Event Class 4 ggH signal model fits in the ee-y channel for 8 TeV data.
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Figure A-30: Event Class 4 VBF signal model fits in the eey channel for 8 TeV data.
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Figure A-32: Event Class 4 VBF signal model fits in the pp-y channel for 8 TeV data.
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Appendix B

Isolation Computation

Isolation is computed by summing the transverse momentum of all particle flow (PF)

candidate particles within a AR cone of 0.3 for photons and 0.4 for electrons and

muons. Particle flow particles are a list of all particles in an event that have been

reconstructed from the detector. Electron and muon type PF candidates are not

counted in the isolation cones. Additionally, charged hadrons that did not originate

from the primary vertex associated with the two leptons are not counted in the

isolation sums.

B.1 Photon Isolation

Isolation sums for photons are computed separately for charged hadron, neutral

hadron and photon type PF candidates. When calculating ArI and AR, the di-

rection of the photon is defined as the line connecting the vertex of the PF candidate

to the supercluster position of the photon. If the photon is detected in the barrel,

charged hadron PF candidates within a AR cone of 0.02 and photon PF candidates

within ATI of 0.015 are not included in the isolation sum. If the photon is detected

in the endcap, charged hadron PF candidates within a AR cone of 0.02 and photon

PF candidates within a AR cone of 0.00864 x Isinh(supercluster I) are not included

in the isolation sum. The photon PF candidate rejection in the endcaps utilizes the

crystal-size (determined from the supercluster 7j) in order to make the number of
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crystals in the veto cone the same in all y regions.

Pileup corrections are applied to the isolation sums by subtracting the product of

the pile-up energy density in the event and the corresponding effective area for either

charged hadron, neutral hadron or photon type PF candidates [?]. The effective areas

are listed in Table B.1 and depend on the q position of the photon. Cuts are then

placed on the corrected isolation sums. These cuts are shown in Table B.2. The cut

values depend on whether the photon is detected in the barrel or the endcap.

1771 Charged Neutral Photons
0.0 < ig < 1.0 0.012 0.030 0.148

1.0 < 17| < 1.479 0.010 0.057 0.130
1.479 < 'Jq < 2.0 0.014 0.039 0.112
2.0 < In| < 2.2 0.012 0.015 0.216
2.2 < Inj < 2.3 0.016 0.024 0.262
2.3 < i7 < 2.4 0.020 0.039 0.260

2.4 < I 0.012 0.072 0.266

Table B.1: Effective areas for charged hadron, neutral hadron and photon PF candi-
dates used to compute the pileup energy density corrections for the photon isolation

PF Type Barrel Endcaps
Charged Hadrons 1.5 1.2
Neutral Hadrons 1.0 + 0.04 x pt 1.5 + 0.04 x pt

Photons 0.7 + 0.005 x pt 1.0 + 0.005 x pt

Table B.2: The isolation sums for the photons are required to be less than the values
listed above. pt is the transverse momentum of the photon. In this analysis, no cut
is placed on the photon type PF candidates if the signal photon is in the endcap.

B.2 Electron Isolation

Charged hadron PF candidates are not counted in the electron isolation sum if they

are within a AR cone of 0.015 when the supercluster IqJ for the electron is greater

than 1.479. Photon PF candidates are not counted in the electron isolation sum if

their supercluster matches the supercluster of the electron. Photon PF candidates

are also rejected from the isolation sum if they are within a AR, cone of 0.08 when

the T of the supercluster for the electron is greater than 1.479.
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Electron 177 EA 2011 EA 2012
0.0 < 177 < 1.0 0.180 0.190

1.0 < lql < 1.479 0.200 0.250
1.479 < Jll < 2.0 0.150 0.120
2.0 < Jll < 2.2 0.190 0.210
2.2 J ill <2.3 0.210 0.270
2.3 < Inj < 2.4 0.220 0.440

2.4 < Jil 0.290 0.520

Table B.3: Effective areas used for the pileup energy density corrections for electrons

The final isolation sums for charged hadron, neutral hadron and photon type PF

candidates are combined together. This combined isolation sum is then corrected for

pileup by subtracting the product of the pile-up energy density in the event and the

corresponding effective area. The electron effective areas are the sums of the effective

areas for neutral hadron and photon type PF candidates. The effective area for the

charged hadron type PF candidates is not needed because charged hadron type PF

candidates that are not associated with the primary vertex of the electron are not

included in the isolation sum. The effectives areas for 2011 and 2012, shown in Table

B.3, depend on the electron q. The corrected combined isolation sum is divided by

the electron pt and required to be less than 0.4.

B.3 Muon Isolation

Charged hadron PF candidates are not counted in the muon isolation sum if their

track in the silicon tracker matched that of the muon. Photon PF candidates are not

counted in the muon isolation sum if the photon PF candidate had a pt less than 0.5

GeV and is within a AR cone of 0.01. Neutral hadron PF candidates are not counted

in the isolation sum if their pt is less than 0.5 GeV.

The final isolation sums for charged hadron, neutral hadron and photon type PF

candidates are combined together. This combined isolation sum is then corrected for

pileup by subtracting the product of the pile-up energy density in the event and the

corresponding effective area. The muon effective areas are the sums of the effective

areas for neutral hadron and photon type PF candidates. The effective area for
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the charged hadron type PF candidates is not needed because charged hadron type

PF candidates that are not associated with the primary vertex of the muon are not

included in the isolation sum. The effective areas for 2011 and 2012, shown in Table

B.4, depend on the muon ,i. The corrected combined isolation sum is divided by the

muon pt and required to be less than 0.12.

Muon 171 2011 EA 2012 EA
0.0 < jyj < 1.0 0.132 0.674

1.0 < 0IJ < 1.5(1.479) 0.120 0.565
1.5(1.479) < TIJ < 2.0 0.114 0.442

2.0 < 1rj < 2.2 0.139 0.515
2.2 < yj < 2.3 0.168 0.821

2.3 < 177 0.189 0.660

Table B.4: Effective areas used for the pile-up energy density corrections for muons.
The ji| in parenthesis indicates the values used for 2012 data.

92



Bibliography

[1] S. Weinberg. A Model of Leptons. Phys. Rev.Lett., 19:1264, 1967.

[2] F.Englert and R. Brout. Broken symmetries and the mass of gauge bosons. Phys.
Rev.Lett., 13:321, 1964.

[3] P.W. Higgs. Broken symmetry and the mass of gauge vector mesons. Phys.
Rev.Lett., 13:508, 1964.

[4] L. Taylor. Observation of a new boson at a mass of 125 GeV with the CMS
experiment at the LHC. 2012.

[5] S. Choi, M. Muhlleitner, and P. Zerwas. Theoretical Basis of Higgs-Spin Analysis
in H -4 yy and Zy Decays. arxiv:1209.5268.

[6] Z. Kunszt. Associated Production of Heavy Higgs Boson with Top Quarks. Nucl.
Phys, B247:330, 1984.

[7] Procedure for the LHC Higgs boson search combination in summer 2011. Tech-
nical 302 Report ATL-PHYS-PUB-2011-011,, 2011.

[8] CMS Collaboration. Search for the standard model Higgs boson in the Z boson
plus a photon channel in pp collisions at V7 = 7 and 8 TeV. CMS PAPER
HIG-13-006, 2013.

[9] A. Read. The CMS hadron calorimeter project: Technical Design Report.
oai:cds.cern.ch:357152, 1991.

[10] G. Aad et al. CMS Detector Description. Phys. Lett B, 705:452, 2011.

[11] V Karimki. The CMS Tracker System Project: Technical Design Report.
oai:cds.cern.ch:369412., 1997.

[12] W. Adam, B. Mangano, T. Speer, and T. Todorov. Track reconstruction in the
CMS tracker. 2005.

[13] The CMS Electromagnetic Calorimeter Project: Technical Design Report.
oai:cds.cern.ch:349375., 1997.

[14] The CMS muon project: Technical Design Report. oai:cds.cern.ch:343814., 1997.

93



[15] Paolo Nason, Carlo Oleari, Simone Alioli, and Emanuele Re. A general frame-
work for implementing NLO calculations in shower Monte Carlo programs: the
POWHEG BOX. JHEP, 1006:043, 2010.

[16] Paolo Nason, Carlo Oleari, Simone Alioli, and Emanuele Re. NLO Higgs boson
production via gluon fusion matched with shower in POWHEG. JHEP, 0904:002,
2009.

[17] Paolo Nason and Carlo Oleari. NLO Higgs boson production via vector-boson
fusion matched with shower in POWHEG. JHEP, 1002:037, 2010.

[18] Torbojorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. PYTHIA 6.4
Physics and Manual. JHEP, 0605.026, 2006.

[19] LHC Higgs Cross Section Working Group. https://twiki.cern.ch/twiki/
bin/view/LHCPhysics/CrossSections, May 2013.

[20] E. Chabanat and N. Estre. Deterministic Annealing for Vertex Finding at CMS.
2003.

[21] V. Beaudette et al. E/Gamma Physics Object Group. https: //twiki. cern.
ch/twiki/bin/viewauth/CMS/EgammaPOG, July 2012. Accessed: 23/08/2012.

[22] CMS Collaboration. Search for a Standard Model Higgs boson decaying into two
photons employing multivariate methods. CMS AN AN-12-048, 2012.

[23] I. Mikulec et al. Muon Physics Object Group. https: //twiki. cern. ch/twiki/
bin/viewauth/CMS/MuonPOG, July 2012. Accessed: 23/08/2012.

[24] F. James and M. Roos. Minuit. A system for Function Minimization and Analysis
of the Parameter Errors and Correlations. Comput.Phys. Commun, 10:343-367,
1975.

[25] Roger J. Barlow. EVENT CLASSIFICATION USING WEIGHTING METH-
ODS. J. Comput.Phys, 72:202, 1987.

[26] J. Gainer, Wai-Yee Keung, I. Low, and P. Schwaller. Looking for a light Higgs
boson in the overlooked channel. Phys.Rev, D86 033010, 2012.

[27] Paul Avery. Applied Fitting Theory VI: Formulas for Kinematic Fitting.
http://www.phys.ufl.edu/ avery/fitting/kinematic.pdf, 1999.

[28] A. Read. Modified frequentist analysis of search results (the CLs method). Tech-
nical Report CERN-OPEN-2000-005, CERN, 2000.

[29] Andreas Hoecker, Peter Speckmayer, Joerg Stelzer, Jan Therhaag, Eckhard von
Toerne, and Helge Voss. TMVA: Toolkit for Multivariate Data Analysis. PoS,
ACAT:040, 2007.

94


