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Abstract

Cosmic inflation posits that the universe underwent a period of exponential expansion,
driven by one or several quantum fields, shortly after the Big Bang. Renormalization

requires the fields be non-minimally coupled to gravity. We examine such multi-

field models and find a rich geometric structure. After a conformal transformation

of spacetime, the target field-space acquires non-trivial curvature. We explore two

main consequences. First, we construct a field-space covariant framework to study

quantum perturbations, extending prior work beyond the slow-roll approximation by
working on the full phase space of the theory. Secondly, we show that a wide class

of inflationary models can be understood as a geodesic motion on a suitably related

manifold. Our geometric approach provides great insight into the (classical) field dy-

namics, and we have used them to compute non-gaussianities in the cosmic microwave

background radiation spectrum.
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Chapter 1

Introduction

Since its initial conception by Alan Guth in 1980, inflationary cosmology has received

spectacular experimental confirmation [1]. In a nutshell, inflation posits that shortly

after the Big Bang, the universe underwent a period of exponential expansion. One

might say it explains the "Bang" in Big Bang.

While the general mechanism is well understood, many different models remain

compatible with observation. One of the most important outstanding questions is

whether the exotic form of matter which drives the period of accelerated expansion

is described either by one or by several scalar quantum fields, commonly referred to

as the inflaton. The most promising route to answering this question is the study

of non-gaussianities in the cosmic microwave background (CMB) [8]. Indeed, the

tiny fluctuations detected in the otherwise extremely uniform CMB are thought to

originate from quantum fluctuations of the inflaton field, so that statistical analysis of

observable CMB radiation data shines light on the quantum field theory underlying

inflation.

Non-gaussianities are strongly correlated with diverging classical field trajectories

[6]. Hence, understanding the classical dynamics of the theory becomes crucial to

successful inflationary model building. In this thesis, we take a geometric approach,

borrowing techniques from differential geometry and advanced classical mechanics.

Concretely, we find we can reduce the study of both classical and quantum aspects of

multifield inflation to understanding geodesic motion on suitably defined manifolds.
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In Section 2, we briefly introduce the general inflationary mechanism, focusing on

those features most relevant to our subsequent discussion. Section 3 motivates the

study of multifield models non-minimally coupled to gravity. Most importantly, it

demonstrates i) that non-minimal couplings allow even simple polynomial potential

to support prolonged periods of inflation and ii) that non-canonical kinetic terms arise

naturally as a result of a conformal transformation between two spacetime frames.

These non-canonical kinetic terms induce a curvature in field-space. Field-space dif-

feomorphism invariance of the action requires the development of a covariant formal-

ism, which we discuss in Section 4.

We study the quantum mechanical aspects of inflation perturbatively, describing

the full field behavior as small quantum fluctuations around a classical background.

Section 5 outlines a geometric formulation for field-space covariant perturbations us-

ing a geodesic construction first introduced in [19, 15], while Section 6 generalizes

these results beyond the familiar slow-roll approximations using techniques familiar

from Hamiltonian mechanics. Finally, in Section 7, we completely reduce the clas-

sical dynamics of Ar non-minimally coupled inflaton fields in an FRW spacetime to

understanding geodesic motion of a suitably related K + 1 dimensional manifold.

14



Chapter 2

Inflationary Cosmology

In this section, we provide a succinct, and by no means comprehensive, overview of

inflationary cosmology [3, 1]. The goal is to introduce many of the salient features

of inflationary models, as well as some the terminology we will need in subsequent

sections.

2.1 The Friedmann Equations

On the largest scales, our universe appears isotropic and homogeneous. The most

general metric ansatz describing this space-time geometry in spherical coordinates is

given by

ds 2 = gydx1dx = -dt 2 + a(t)2  dr 2 2 + r 2 d02 ± r2sin2()d02 (2.1)
(I - r

We refer to this metric g,,, as the Friedmann-Robertson-Walker (often abbrevi-

ated as FRW) metric. Since it is always possible to rescale the radial coordinate r, r.

can always be chosen to be one of 0, +1 or -1. The different values of r, determine

the global geometry, such that the universe is flat for K = 0, closed for r, = +1 and

open for r, = -1. a(t) is called the scale factor, and parametrizes an overall expansion

of the spatial slices of spacetime. As inflation is at heart a theory of the expansion

1Note we use the (-, +, +, +) signature for the spacetime metric g,,.
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of the universe, a(t) will play a central role in all our subsequent discussions.

In an isotropic and homogeneous spacetime, the stress-energy tensor must take

the form of a perfect fluid such that

Typ = (p + p)uuV + pgLV (2.2)

where p is the energy density and p the pressure of the fluid and uv is the nor-

malized fluid four-velocity. Recall that the Einstein field equations relate the metric

to the stress-energy tensor by

GAV = RAV - Rgj, = 87rGT,, (2.3)

In the above equation, R, = R where ,, is the Riemann curvature tensor,

while R = g#"Ryv and G is Newton's gravitational constant. Looking at particular

components of this tensor equation, we can derive the so-called Friedmann equation:

H 2 &2 87rG r,
H2 a_ 3 _ 2 (2.4)

as well as

5i 4wrG
a = 3- (p + 3p) (2.5)a 3

H is commonly referred to as Hubble's constant, even though it is technically not

a constant. Note that r, vanishes when the energy density becomesp = 3 2 . We

call this particular value of the density the critical density pr. We also define the

dimensionless parameter Q = P; hence, the universe is flat (K = 0) for Q = 1.

2.2 The Flatness Problem

From the Friedmann equations, we find that (-1) = (g) 3 . In this section, we are

interested in how cosmological dynamics affect this ratio. Covariant conservation of

energy-momentum in the form of VLT" = 0 , where VA is the space-time covariant

16



derivative for an FRW metric, gives us

p+ 3H(p + p) =0 (2.6)

Note that p(x") = p(t) by the isotropy and homogeneity of the FRW spacetime.

Assuming an equation of state of the form

p = wp (2.7)

we can readily solve for the time-dependence of p and find

p(t) = poa(t)-3(1+w) (2.8)

For relativistic matter (such as a gas of photons), we have w = }, while "ordinary"

nonrelativistic matter (such as particle dust) obeys the equation of state with w = 0.

We thus find that

(p(t) - 1) 3r, a(t)(1+3w) a(t) f or nonrelativistic matter
Q (t) 8,G ) po a2(t) f or relativistic matter

If populated with the usual forms of matter such as photons and electrons, the uni-

verse will thus tend to become less and less flat over time. However, current cosmolog-

ical observations, such as from the Planck satellite, tell us that Q,, = 1.0005 + 0.0065

[34]. How can this be, unless the universe started with Qig-Bang exponentially close

to 1? This is the flatness problem.

2.3 Inflation and Matter Fields

If we could find some type of matter with w < -1/3, then Q(t)-1 oc a (t)(1+ 3w) would

decrease as a(t) grew over time, i.e. Q(t) -+ 1. The universe would dynamically

become flat, no matter how it started out after the big-bang. From the Friedmann

equations, one can show that w < -1/3 is equivalent to d > 0, which is nothing but

17



an accelerating expanding universe. Inflation accomplishes this, with the sought after

exotic form of matter described by a scalar matter field #(x").

The action for a spacetime with this matter field # is given by

S = Sgravity + Smatter (2.10)

= Jd4xr ( 6 rGR(x)) + (- 'g""a'v - V(q)) (2.11)

where g = det(g,,), R(x) is the Ricci scalar and V(4) is the potential energy

density function for the field #. Varying the action with respect to # gives

- =VaV'- = 0 (2.12)

where again, V, is the spacetime covariant derivative. In an FRW universe, this

equation simplifies to

+ 3H + V 4 = 0 (2.13)

with H E the Hubble constant and V4 - '.

If we instead vary the action with respect to the spacetime metric, we find the

Einstein field equations with the stress-energy tensor given by

TI,- = 2 matter = aq00&q - g,1 -("lafi k8& + V ( ) (2.14)
=l- Jg4 ±(2~ 2.4

Again by isotropy and homogeneity, we must have Oq4') = 0(t), so that aqo

JXo. Noting that Too = p and Tij = gijp (for i, j E {1, 2, 3} ), we find that

I
p = -52 + V(4) (2.15)

2

P = -52 - VMg (2.16)
2
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2.4 Solving the Flatness Problem

One might say that Eqs. (2.15-2.16) make inflation possible. Indeed, the main idea

behind inflation is to consider an epoch of the universe where the energy density

was dominated by the potential energy of the scalar fields: 102 < V(). We say

that the fields are slow-rolling if this is the case since we neglect the kinetic energy

contribution 12

Note that for }q52 < V(O), the pressure and density equations, Eq.(2.15) and

Eq.(2.16) respectively, become p ~ V(#) and p - -V(#), so that the equation of

state becomes

p ~ (-l)p (2.17)

We have thus achieved our goal of finding some form of matter for which w < - 3.

In a universe which we can describe by Eq.(2.11), cosmological dynamics will thus

drive Q towards 1. With inflation, we expect our universe to be flat, instead of

requiring extreme fine-tuning of initial conditions such that time-evolution does not

make Q to far from its observed value. As we see, the slow-roll approximation is

crucial to the inflationary mechanism, allowing it to solve the flatness problem.
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Chapter 3

Multifield Inflation & Non-minimal

Couplings

3.1 Multifield models & the Jordan Frame

Until July 4th, 2012, the existence of even a single scalar field within the Standard

Model of particle physics had never been confirmed. The discovery of the Higgs

particle on that day however provided the evidence that scalar fields do naturally

occur in nature[35, 36].

Realistic models of high-energy particle physics, from beyond the standard model

supersymmetric theories all the way to string theory, predict the existence of many

more scalar fields, beyond the now familiar Higgs boson. It is thus well worthwhile

to study multifield models in detail.

More concretely, we consider K scalar fields b' with I E {1, 2, ... , A} in a (3+1)

dimensional spacetime. As previously noted, we use the metric signature (-, ±, ±, ±).

We begin with the following action

SJordan d J X dVI/' T [f( W)? - Ig a'0,o - O, (3.1)

We call this the action in the Jordan frame, where space-time is parametrized in

terms of the metric jjv and the Ricci scalar . All quantities in the Jordan frame will

21



be denoted by a tilde. Note how the fields interact directly with gravity through the

coupling Rf(q(1) in the Jordan frame. We say the fields are non-minimally coupled

to the Ricci scalar and we refer to f(41) in Eq.(3.1) as the non-minimal coupling

function. Finally, V(41) is the field potential in the Jordan frame.

The term f (qI)R is in fact required by renormalization of quantum fields in curved

space-times. In other words, without this term, we would not be able to make sense

of the theory at the high energy scales of inflation[11]. Pioneering work in 1970 [91

showed that f(01) must take the form

f(4W) = I [M2 +z( ()2 , (3.2)

where MO is some mass-scale, and the non-minimal couplings j are dimensionless

constants. We will assume that the fields do not develop any non-zero expectation

values, i.e. < 0, >= 0, so that we take MO Mp1 , where Mp, = .

There are no clear restrictions on the range of values for the ,. In this thesis,

we will only consider positive non-minimal couplings: j > 0. The renormalization

group flow analysis of how the value of j depends on energy scale is sensitive to the

matter sector of the Lagrangian under study. Assuming matter content akin to the

Standard model, computation of the beta function for j shows that the j should

grow logarithmically with the energy scale. Furthermore, #( ,) does not have any

fixed point; hence, the j grow without bound[12]. Previous studies of Higgs inflation

showed in fact that [22]

( 1 (Infl.scale) 0(101 - 102) (3.3)
j(1(ElectroW.scale)

If we expect non-minimal couplings of 0(1) at low energies, it is thus completely

reasonable to consider inflationary models with j of 0(102).

Simple mass-dimension power-counting shows that renormalization equally re-

stricts the form of the Jordan frame potential V( ). Assuming a polynomial form1 ,

'Non-polynomial potentials remain an open problem in field theory[22].

22



only terms up to fourth powers in the fields may be included. We have thus moti-

vated the models we will be studying, and have shown how consistency considerations

clearly delimit what terms we may sensibly include in our theory.

3.2 Transforming to the Einstein Frame

Recall the action for a multifield model in the Jordan frame, assuming canonical

kinetic terms such that OIJ =Sli

SJordan -J dx/ [f - - VQ(') 7 (3.4)

While well motivated, this model is at first somewhat cumbersome to work with

in this form, because the gravitational sector differs from regular Einstein gravity. We

can side-step this difficulty by performing a conformal transformation of the metric

j,4. Note that such a transformation is essentially a locally defined stretching of the

metric ,I and is not a coordinate transformation.

We thus define the metric in this new frame, g9/,, 'as

gv(x) = p2 (X) jv(X), (3.5)

where

M2(x) = M2 -f (5'(X)). (3.6)

We call this new frame the Einstein frame, since the gravity sector now becomes

the standard Einstein-Hilbert action:

SEinstein = J dsx y- R - '9j "&eva,40 - V . (3.7)

However, note the kinetic term for the fields has acquired a non-canonical form,

akin to a non-linear sigma model familiar in particle physics. Under this transforma-
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tion, we have 6 ij -+ gj, where

__2_ -~ 3 1
2f(1- I V fi (3.8)
2f($') L (1

with f,r = We refer to 911 as the field-space metric. The potential in the

Einstein frame differs from the Jordan frame potential, and can be written as

V(b') = )V(X ) = f 2 (, 1). (3.9)

These two features deserve close attention, as they result in phenomenologically

important characteristics of our model.

First, we may view the K fields #'(x") as maps from the spacetime manifold M

(which we will assume to be described by an FRW metric) to a target field-manifold

F, i.e. 0(x") : M - F. More precisely, the fields are a composition of two maps:

Sx) : R3' 1 - M _> F, so that the #b are in fact coordinates on the K dimensional

field-manifold M. In this light, g 1 y(#K) is a (local) pseudo-Riemannian metric on

M. Computing curvature invariants such as the Ricci scalar show that M has non-

vanishing intrinsic curvature. We say that the conformal transformation between the

Jordan and Einstein frames has induced a curved field-manifold[13]. As we shall see in

subsequent sections, this curvature can substantially alter the inflationary dynamics.

One might ask whether it may be possible to define some sort of additional con-

formal transformation, this time on !9j, such that g=g(4) A A
2 ( K)6 1 j In a certain

sense, this would make things easier, just as we recovered Einstein gravity when pass-

ing from the Jordan to the Einstein frame. However, it is shown in [131 that such a

transformation cannot exist with A (OK) defined globally on F. In other words, we

must content ourselves with the action given by Eq.(3.7). Note this implies that fields

in the Jordan frame will necessarily have non-canonical kinetic terms in the Einstein

frame, even if, as we assumed, g1j = 6 ,j in the Jordan frame.

Secondly, recall that renormalizability of the field theory in the Jordan frame

stipulates that the potential V(#) contains terms at most quartic in the fields. For
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sake of concreteness, we will assume the following general form for V(O):

V(I)= (0)2g+ g(5)2 (0j)2 +ZAI (4 (3.10)
I<J

In the Einstein frame, the potential acquires the remarkable feature that it is

asymptotically flat in all field-space directions. This is crucial for inflationary models,

so that there will exist a non-negligible window where the slow-roll approximation

holds and p ~ -p in order to solve the flatness problem. Concretely, in the limit as

the jth component of the field grows arbitrarily large, we have:

1V( -) M- (3.11)
4 f 2 (1) 4 2

(no sum on J). The flatness of the potential in the Einstein frame thus arises

naturally, instead of being an additional requirement on V(q). It is equally notewor-

thy that all of inflation can occur with 143I < Mp, since renormalization group flow

analysis show that > 1 at the energy scales of inflation. This is unlike most models

of ordinary chaotic inflation with minimal couplings where our current understanding

of particle physics is relied upon at energy scales above Mpt, at which we no longer

expect results to remain valid.

3.3 Dynamics in the Einstein Frame

To find the relevant equations of motion for our system in the Einstein frame, we first

vary the action in Eq.(3.7) with respect to the metric and subsequently with respect

to the scalar fields 01.

Variation of Eq.(3.7) with respect to gv(x) gives the Einstein field equations

1 1
RyL - 2gR M2 TMV, (3.12)

P1
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with the stress-energy tensor T,, given by

Typ = g1'Op#184 - g'v [!Ijgco,#aIa,8OJ + . (3.13)

The equation of motion for the K fields in turn is given by

ib' + gI"0 '40JaK _ gIK K (3.14)

where the covariant D'Alembertian D is defined in terms of the spacetime co-

variant derivative V through El = g"'V VV. FJK() is the Levi-Civita connection

compatible with the field-space metric gij.

We can combine the 00 and i, j components of Eq.(3.12) with the equations of

motion for # to derive the Friedmann equations for our model. We find

H 2 = -1, I +VCWv) ,3M1 2H [±(3.15)

where as usual the Hubble parameter H is defined by H =

Later, we will consider the full quantum theory of the inflaton and decompose the

field as quantum fluctuations around the classical (background) value

#1 ")- I(t) + 60'(W) (3.16)

In Section4, we will elaborate on refinements of this decomposition which respect

field-space covariance. Fluctuations in the fields will necessary lead to fluctuations in

the stress-energy tensor, which in turn, through the Einstein field equations, result

in perturbations of the spacetime metric away from a perfect FRW universe. We

parametrize these spacetime fluctuations as

ds 2 = g,(x)dx dxv (3.17)

= - (1 + 2A) dt 2 + 2a (OiB) dx'dt + a2 [(1 - 2ik) 6 ; + 2& 3E] dx'dxj
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It is important to note that A, E, B and V/ are not all independent, and even

more importantly, are gauge dependent quantities (in the sense they depend on the

chosen coordinate chart of the spacetime manifoldM).

3.4 Our Concrete Model

For concreteness, we now specify the particular form of the potential and the number

of fields we will work with in our subsequent calculations. The simplest multi-field

model is of course a two-field model. Recalling the general renormalizability consid-

erations for the potential in the Jordan frame as outlined in Section3.2, we take

1 22 1 1 2 AO4 AX 4
V(, x) = 2m$ 2+ ±2 2+5 $2 x2 + -$+ x (3.18)

We also write the non-minimal coupling function as

f (#, x) = 2 [ 1 + 402 + 'xx 2] (3.19)

so that the potential in the Einstein frame becomes

'M (2mj 2 + 2m 2
2 + 2g# 2 , 2 + A40 + Axx 4)

4 [M2) = 2]. (3.20)

We would like to bring to the attention of the reader that the non-minimal cou-

pling constants j need not necessarily be equal, unless protected by some underlying

symmetry. One particular instance of such a restriction is illustrated in the case of

Higgs inflation, where the fields form part of a complex doublet, so that all component

fields interact with the Ricci scalar equally (modulo gauge choices)[23, 21]. Unequal

'i result in yet another interesting feature of our models, namely the existence of

bumps and ridges in the potential V(q). This can be seen most easily by noting that

the potential asymptotes roughly to 1 as we take the J"h field to take arbitrarily large

values. Hence, for unequal non-minimal coupling constants, the different asymptotic

plateaus lead to distinctive valley/mountain-like characteristics. The potential in the
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Figure 3-1: The Einstein-frame effective potential, Eq. (3.20), for a two-field model. The
potential shown here corresponds to the couplings (x/4 = 0.8, AX/A4 = 0.3, g/AO = 0.1,
and m2 = M2 = 10-2 AO 2

Jordan frame given in Eq.(3.20) is plotted in Figure 3-1.

Recent reviews have emphasized the correlation between divergent classical field-

space trajectories and sizable non-gaussianities (i.e. non-negligible three-point corre-

lation functions) in the cosmic microwave background. The bumpiness of the potential

in the Einstein frame is perfectly suited to give such dynamically rich behavior. How-

ever, we also see that including masses for the fields can tame these divergences in

the sense that small dents can develop at the top of the ridges (for example, along

the X - 0 axis in Figure 3-1). We can make these statements more quantitative by

looking at the second derivative of the potential in Eq.(3.20) along X = 0,

__1

(a2v) = 3 (g - A~x) (em - ±2M+ gM) q2 2 m M2
X- [M2 + 4&2

(3.21)

For subplanckian field masses, m., m. MI, yet at energy scales high enough

for inflation to occur where 44 2 > M, we find that the ridge along X = 0 remains

a local maximum as long as:

gF4 < . (3.22)
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00

2-

Figure 3-2: Parametric plot of the fields' evolution superimposed on the Einstein-frame
potential. Trajectories for the fields # and x that begin near the top of a ridge will diverge.
In this case, the couplings of the potential are (4 = 10, x = 10.02, AX/AO = 0.5, g/AO =
1, and m4 = m@ = 0. (We use a dimensionless time variable, r = V Mpit, so that
the Jordan-frame couplings are measured in units of A0.) The trajectories shown here
each have the initial condition #(ro) = 3.1 (in units of Mpi) and different values of x(ro):

x(ro) = 1.1 x 10-2 ("trajectory 1,"yellow dotted line); x(ro) = 1.1 x 10-3 ("trajectory 2,"
red solid line); and x(ro) = 1.1 x 10-4 ("trajectory 3," black dashed line).

In this scenario, we note that our potential reproduces many of the interesting

features of the well-studied product potential V = m2e-142X2 [18, 16] , yet arises

completely naturally in the Einstein frame, assuming nothing more than a simple,

renormalizable polynomial potential in the Jordan frame.

As long as the non-minimal coupling constants are not exactly equal, the potential

in Eq.(3.20) can easily lead to sharply diverging trajectories, as highlighted in Figure

3-2

The three trajectories plotted in Figure 3-2 are excellent representatives of the

three relevant types of field dynamics we wish to study. We showed in [13] how

trajectory 2 produces a sizable bispectrum.

We note two additional strengths of our model. Unlike for example the product

potential V = m2e-A2 X2, even once the fields fall off the ridge, sufficient inflation

can still occur thanks to the valleys which focus all trajectories towards the global

minimum at # = x = 0. In fact, the close-to-quadratic shape of the valley allows for

oscillatory motion, such that we might even detect observable "ringing" in the scale

factor a(t), which has been proposed as a novel observational indicator for multifield
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Figure 3-3: Parametric plot of the evolution of the fields # and x superimposed on the
Ricci curvature scalar for the field-space manifold, R, in the absence of a Jordan-frame
potential. The fields' geodesic motion is nontrivial because of the non-vanishing curvature.
Shown here is the case O = 10, x = 10.02, #(ro) = 0.75, X(ro) = 0.01, #'(ro) = -0.01, and

x'(ro) = 0.005.

inflation [24]. Secondly, the global minimum of the potential can just as well support

a prolonged period of dynamic reheating.

So far, we have only addressed the effects of the potential in the Einstein frame.

Recall that the conformal transformation between the Jordan and Einstein frames also

introduced non-canonical kinetic terms, which we interpreted as inducing curvature

in the target field-space. We may view the field evolutions as trajectories in this

curved field-space. Indeed, by homogeneity and isotropy, we have #(x") = #(t), so

that we can consider t as some affine parameter along the path traced out in field-

space. Akin to geodesics in general relativity, field trajectories in our model can

diverge in field space even in the absence a potential. Indeed, the curvature of the

field-manifold F alone, parametrized by the corresponding Ricci scalar 1?, can source

geodesic deviation. The Ricci scalar for the two field case is listed in Eq.(9). We

plot the field trajectories in the absence of a potential in the Jordan frame - and thus

also in the Einstein frame - superimposed upon the Ricci scalar 1Z. We see that the

curvature of F vanishes for larges field values but rises sharply as #, X -+ 0. 1? will

thus become particularly relevant in studies of preheating.

In Section 7, we find a formalism which reduces even those models which do include
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a potential to the problem of finding geodesics of a suitably related manifold. This

geometric picture of multifield inflation motivates us to push the analogy with general

relativity even further, and construct a manifestly field-space covariant framework.

This is the goal of the next section
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Chapter 4

Covariant Formalism

4.1 The Necessity of Field-Space Covariance

Relativity was born from the idea that physics cannot on our choice of coordinates.

We have again and again learned to "filter out" unphysical degrees of freedom in

our description of physical systems, from gauge artifacts in particle gauge theories

to apparent spacetime singularities which reflect nothing more than a poor choice of

spacetime coordinates.

The action in Eq.(3.7) is invariant under arbitrary field redefinitions. Indeed,

under a field-space coordinate transformation $K K(L), we have

M2 3
gj(05IK) = 1 2f J ['j + f ,1(q1I) (4.1)

M21 -K W 3 OK aoL

2f_($' [ (KL)) .01' aO'JKL ± I fK LfL] (4-2)

W#K (9L
- LKL (4.3)

Similarly,

gPV9/I5' - gZ o K _avoJ (4.4)

= gI.IVpq5Ka vL K L (4.5)9 a0K 0905L
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As the two terms transform with the inverse transformation, the combination

" is thus invariant, so that

SE['' = SE (4.6)

The physical content of our theory thus cannot depend on our choice of the fields

and explains the need for a field-space covariant formalism.

4.2 Field-space Covariant Derivatives & Equations

of Motion

Our geometrization of multifield inflation was heavily influenced by [18]. In their

work, the authors of [18] constructed what they called the kinematic basis. The

kinematic basis is essentially a tetrad basis, locally labeling the field-manifold along

any inflationary trajectory, akin to the Frenet-Serret frame familiar from classical

mechanics. While several kinematic quantities greatly simply in this framework, the

construction is inevitably local and dependent on the nature of the field trajectory.

Our formalism instead constructs a globally defined set of coordinates, which

covers the entire field manifold F. On one hand, this simplifies the study of F's

global geometry, which will determine the general nature of field-space trajectories as

we will see in Section 7. On the other hand, it also provides greater insight as to how

inflationary dynamics relate directly to the field-content specified in the Lagrangian.

We also leave all indices explicit.

As we have already pointed out, we view the M fields #' as coordinates for the

entire field-manifold, since they provide a map from R" to F. Note that 01 is not a

vector, the same way that x' is not a vector in general relativity.

The inner product defined on TpF, the tangent space of F at a point P labeled

by coordinates O,^', is computed using the metric gj(#'). In other words, for any
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two vectors A', Bi E TPF, their inner product is defined as

A -B = g1j($')AIBJ (4.7)

The metric, being a symmetric rank-two tensor, is invertible. We denote its inverse

by gIJ such that

g1gJK = 5K (4.8)

The metric also allows us to raise and lower field-space indices. More formally,

it provides a map from vectors to 1-forms and the inverse metric maps 1-forms to

vectors:

A, = 91jAj (4.9)

A' - g'= A (4.10)

To define the physical rate of change of a vector along some path, we define the

field-space covariant derivative V, by its action on a vector Aj and a 1-form Bj such

that

VA' = ,,Aj + L1/KAK (4.11)

VBj = ,Bj - FK AK (4.12)

where L'A is the field-space Levi-Civita connection, which is the unique metric-

compatible connection such that VIgJK = 0 [26]. The field-space connection can

perhaps best be understood in terms of its actions on the holonomic basis vectors

. Indeed, we can write any vector as a linear superposition of basis vectors:

V = V%1 (4.13)
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The covariant derivative then acts as

VJV = Vj(V'e6) = (V±VI)e +VIVJe1 (4.14)

= (V) jVI) +V'IF K (4.15)

(VJV)K6K = (JVK ± VIpK )6K (4.16)

The affine connection thus satisfies VAdB = Lc 6 1. Note how we replaced

(VjVI) by oDV' in going from the first to second line. This comes from the fact

that we mean the derivative is operating explicitly on the component VI. When we

defined the covariant derivative in Eq.(4.11), we technically really meant (VjV)'.

As we wish to study the dynamics of our field theory, we of course need to define

what is meant by the time-derivative. The "ordinary" definition from calculus holds

in the sense that we can write the covariant time-derivative as:

I O(t + e O p(t )
Dto'(t) = lim (4.17)c:-+O

Recall that 0'(t) is, from a geometric standpoint, a path traced out on F parametrized

by an affine parameter t. The subtlety in the definition of the time derivative comes

from the fact that the tangent spaces at t + c and t are not the same, which is why

we need to resort to the field-space covariant derivative we defined above. We thus

define

Dtq' (t) = doK(t)VKI(t) (4.18)
dt

Dt is therefore a directional derivative, obtained by taking the inner product of the

field-space covariant rate of change VKO'(t) with the field velocity vector d .K(t) From

here on, we will abbreviate the velocity vector as d.K(t)= K(t)dt-

Recall now the equations of motions for the fields we derived earlier in Section 3.3

Zhb' ± 911g]PV jjO~pqJ K _ I VK = 0, (4.19)

'This can in fact be used as definition of the Christoffel symbol.
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Again using the fact that 0, (x,4) - 9 5(t) by isotropy and homogeneity, along with

the identity that El = ( we can simplify this to

at8k') + FI KJ4K + 3H b' + gIK (4.20)

r + +3H$b + gIK (4.21)JLt )6 VK

Dtq$'+ 3H b' + gIKyV = 0 (4.22)

Since the action defined in Eq.(3.7) was a field-space invariant, the equations of

motion had to be field-space covariant; however, we have now put them in a manifestly

covariant form. In other words, if we redefined our fields to some new set 0'I, then

the equations would simply be given by Dthq' + 3He'" + g/IKVK = 0. Note how

V-E = jVA = 'V's is a field-space invariant, with all field-space indices contracted.

This makes sense as what we mean by a time derivative should not depend on our

choice of field-space coordinates.

The construction of the field-space invariant time-derivative is an excellent ex-

ample of what we referred to at the beginning of this section as counting only the

physical degrees of freedom. To calculate the rate of change of a field-space vector in

a covariant way, we saw that we needed to consider both the contributions from how

the vector changes with respect to fixed basis-vectors as well as how the basis-vectors

themselves change when we compare two tangent spaces. In the form of Eq.(4.22),

we see our equations of motion are simply K copies of the familiar single-field dy-

namical equation + 3H$+ Vo = 0, made suitably covariant to reflect the non-trivial

field-space metric g9j.
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Chapter 5

Density Perturbations

So far, we have only considered the classical field trajectories. However, inflation is a

quantum field theory, and some of its greatest successes, such as the prediction of the

statistical properties of temperature fluctuations in the cosmic microwave background

radiation, rely crucially on its inherent quantum nature. In this section, we provide

a geometric view of the so-called background-field method which decomposes the full

field dynamics into quantum perturbations upon a classical trajectory.

5.1 The Background-Field Method

A field which obeys the rules of quantum mechanics does not follow the classical

equations of motion derived from the action. The quantum theory is indeed not

defined simply through the action S but through the path integral'

Z[J] = JDoeif x(+JO) (5.1)

However, as hinted at earlier, we may decompose the full field behavior as follows:

O(x') = #'d(t) + 60(x A) (5.2)

'We consider here only the case of a single-field model for pedagogical purposes, but the analysis
holds over just as well for multifield theories.
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Note that the classical field evolution dominates the path integral, since setting

= 0 is nothing more than making a "steepest-descent" approximation. A good

way to approximate the full quantum theory is thus to Taylor expand the action in

the path integral around the classical background, keeping only a finite number of

terms containing the small quantum fluctuations 6#. We write

S[4] = S[bc + J0] (5.3)

= S[#a]+ d / J0 (5.4)

± fd g J j060 + 0(603) (5.5)

f dv g IL+= 6# vanishes since the classical equations of motion are

6O 60

leaving us only with the last term f d4  56# up to 0(603 ).

Ignoring the 0(j03) contributions, the path integral reduces to a functional Gaus-

sian integral, and can in fact be computed explicitly. The analysis above carries over

to the multifield case by essentially replacing 5 -4 6#'. The computation of the path

integral shall not concern us for the moment, as we instead turn our attention to the

non-covariant nature of 641. Our subsequent discussion is particularly indebted to

[19].

5.2 Geodesic Construction of Q'

Consider Figure 5-1 depicting the classical trajectory 0' (t) traced out in field-space.

At some time t, the full field configuration is given by q5(xlP) = OI(t, Y). The difference

#1(t, Y) - #5 (t) = 60#'(t, Y) represents a finite coordinate displacement, and as such

does not transform covariantly like a vector. This is akin to the situation in general

relativity where the quantity Ax' = xAl - XP, which represents the difference in
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spacetime coordinate of two events A and B, does not properly parametrize the

physical distance between them, and will be a frame-dependent quantity.

We assume the neighborhood containing #,(t) and 0I(t, Y) is geodesically com-

plete, which should be the case if the quantum fluctuations can be treated pertur-

batively. This is tantamount to considering small (yet not infinitesimal) neighbor-

hoods of #bd(t) and there is no reason to expect any topological obstructions. In this

case, we can connect the points #, (t) and #I(t, Y) by a geodesic parametrized by A,

which we denote by q1'(t, 7, A). We choose A such that #'(t, 7, A = 0) = 01(t) and

05(t, 7, A = e) = #I(t, 7). e will simply be a book-keeping tool, so that we can keep

track of the perturbative expansion at each order in e. At the end of our calculation,

we in fact set e = 1.

tangent space d
stemming from

$",(t) 01(A =0) = I

0'1 (t) 0'(t, x)

\background
trajectory field space

Figure 5-1: For any value of time t, the background field trajectory #, (t) can be connected

to the real field configuration #I(t, 7) by a geodesic parametrized by A. The vector tangent

to the path at A = 0, Q' A=o, serves as a suitably covariant replacement for 6#5.

(Graphic courtesy of [19], and edited to reflect differences in notation)

We define a covariantized version of 6OIq(t, 7) by

QI(t,7) do(t7A) = (5.6)

Note that Q' is the vector, at the point with coordinates #, (t), which is tangent
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to the geodesic curve connecting #1 (t) and #'(t, Y). We can construct a perturbative

expansion around Q' thanks to a tool perhaps most familiar from Lie Theory: the

exponential map.

The exponential map at a point P with coordinates of a manifold F is a map

from the tangent space of F at P to F : exp : TpF -+ F. Let A' be a vector in

the tangent space at P, A E TpF. Under the assumption of geodesic completeness,

there exists a unique geodesic through P with affine parameter A, denoted by-y'(A),

such that 7y(0) = and Iatp = A'. Then expp(EA) = 7(c).

Since yI(A) is simply a differentiable function, we can also resort to Taylor's

theorem and relate -y'(E) to -y'(0) through the following series expansion in E:

d1 d2 1 1 day'
'ly'E) = 7,'(0) + +I=O± 2 ?dt = . (5.7)

dA 2! dA2  - + dAn +...

In the case of multifield inflation, the geodesic curve in question is given by

#b(t, Y, A) while the point P is the field value along the classical trajectory at time t

with coordinates #I(t). We can thus similarly write

_ E d#,(t, , A) 1 d2 (t, , A) 2 1 d # -7 A).
#'(t, 5, A =c) = + dA 2O± dA2  -o + dA

(5.8)

It is important to emphasize that the derivatives in Eq. (5.8) are "ordinary" deriva-

tives, not covariant ones. However, we can trade higher-power derivatives for a prod-

uct of lower ones through the geodesic equation:

= do, (t, , )A) doJ(t , X, A) do, (t, 5, A)
0 = dA dA (5.9)

0 d k(t X, A) ± F'l dq$j(t X, A) dbK, 5, A) (5.10)
dA2 JKdA

Evaluating Eq.(5.10) at A = 0, and using the fact that Q = \o, we have

d2 01'(t7,)A) = -FIG (#)QQK (5.11)
dA2 = K(d
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We can thus exchange n'h order derivatives like do for products of

Q's. To O(Q 3 ), we have [19]

#'(t, , 1) - k' (t) = 645(tF) (5.12)

KQI - 1riQ QK + L M  K ) QJQKQL ± 0(Q 3) (5.13)

The vector Q, transforms, by definition, covariantly and provides the covariant

perturbative formalism we set out to construct, thus concluding this section.
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Chapter 6

Non-Gaussianities, the 6N

formalism and Hamiltonian

Mechanics

6.1 Beyond Slow-roll: The full Hamiltonian Phase

Space

We extend the covariant perturbative framework set out in Sec.5 by considering not

only perturbations of the fields but also of their momentum. We can thus no longer

work on the K dimensional configuration space (which we have called field-space so

far), but instead must consider the entire 2K-dimensional phase space. In geometric

terms, the phase space is the union of the field manifold F and its tangent bundle.

Note this is technically not equivalent to the Hamiltonian phase space which is the

union of F and its cotangent bundle. In other words, we are considering (0' # ii)
as our two sets of coordinates instead of (Oi g1 jq5 ). We will abuse notation and

continue to refer to our treatment as using the Hamiltonian formalism.

Prior work [17, 27, 20] which had considered variations of the momenta often

invoked the slow-roll approximation which relates the field velocity to the field con-

figuration by neglecting the acceleration term:
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DSI ~ 0 (6.1)

-+ 3H4I + gIKyV 0 (6.2)

#I ~ (6.3)
3H

This constraint halves the degrees of freedom and thus allowed them to again work

on the field configuration space.

In this section, we derive equations up to second order in the field and momentum

perturbations without invoking the slow roll approximation. The main idea behind

our formalism, inspired by [20, is that we can find the time-evolution of the pertur-

bations by Taylor expanding the classical equations of motion along some path.

First, we rewrite the equations of motion in terms of the number of e-folds N

(not to be confused with a field-space index), and treat the momentum p' DN

as independent from #'. The background equation of motion becomes

DNP I 3- ±~)p Vj =0 (6.4)

H 2(q, p)

where V'I = gI'VjV and the slow-roll parameter c is a function of the pi only

c(p) = 2M2 (6.5)
2M2

and the Hubble parameter is given by

H2 (p,O) = I ( ) (6.6)
M2 3 - c(p)

The advantage of a Hamiltonian formulation means that we trade M second order

equations of motion for 2K first order differential equations, which makes certain

calculations often easier to solve numerically. Indeed, we can write Eq.(6.4) as a

'When indicating the functional dependence of some quantity, we suppress the indices so that

we write f(#, p) instead of f(01 ,pI).
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system of first order equations:

DN - V JF 67)

Vwhere we have used the fact that 3 - E =W2vM 2

To avoid writing the field-momentum multiplet in Eq. (6.1), we introduce an

additional lowercase latin index ij... E {1, 2} such that #j = I ). In other

words, #$ = #5 and #, = pI, so that j refers to whether we are speaking of the field

configuration or the field momentum. At times, we adopt the even more compact

notation #' = #, with the greek indices now running from 1 to 2K.

We can then write Eq.(6.1) succintly as

DN Oa = Fa(#e) (6.8)

where F1(#, ) = p' and F2 (#A) = - p2
M

2  - 2'I. Before deriving the appropriate

perturbation equations, we briefly outline the 6N formalism which motivates these

results.

6.2 SN and diverging trajectories

The 6N formalism, introduced in [14, 33, 30, 28, 31], provides an elegant method to

compute non-gaussianities in the density perturbation spectrum produced by infla-

tion. 6N refers to the change in the number of e-folds relative to a change in the

field's positions and velocities at some fiduciary scale which we normally take to be

when momentum modes last crossed the Hubble scale, k, ~ aH. We write such ratios

as aN; however, it must be made clear that these are not ordinary derivatives, and

instead are non-local by construction. The 6N formalism is particularly useful since

the non-gaussianity parameter fNL, which provides a powerful observational discrim-

inator for multifield models, can be expressed entirely in terms of such derivatives of
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N. The construction below was heavily inspired by [20, 15].

Solving the 2K first-order equations of motion of Eq. (6.8) gives us the classical

background trajectories, which we can label with the 2K integration constants we

denote by Ac. For example, one of the integration constants is the number of e-folds

N. The A' should not be confused with the affine parameter A introduced in Section

5.

We are interested in the behavior of trajectories upon varying the integration

constants A' -+ A' + 6A' along N = constant slices of the phase space [33]2.

<p(N, A + MA)

<p'2 (N, A)

N = const.
surface

Figure 6-1: The classical field trajectories in phase space #0 (N, A) are parametrized by the

number of e-folds N and labeled by the constants of motion A. We consider how variations

of A along the N = const. surface alters the subsequent dynamics by finding the equations

of motion for~o(N) = #0 (N, A + JA) - #0 (N, A).

We thus define the perturbation as

q5(N, AP + 6A'6) - 00(N, A) = 5 0 (N) (6.9)

Note the perturbation 6q5(N) defined above is completely different from the J#'

we introduced in Sec.5 . Here, we are considering how the classical field theory behaves

under variation of the constants of motion A' instead of trying to incorporate quantum

effects.
2Since N is one of the 2A integration constants, we are varying only 2K - 1 of the A'.
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We can think of tracing out a path, which is not a geodesic, connecting the

two phase space points #c(N, A' + AP) and #'(N, A,6) by continuously varying A to

A + 6A. In fact, our analysis will not depend on the exact nature of the path: it is

there simply so that we can define the difference 6#'(N) perturbatively, by taking

directional derivatives along the path.

In the end, we only need consider the evolution of statistical distributions in phase

space, i.e. we care only about how the correlation between neighboring trajectories

evolves over time [27, 17]. This is the underlying reason we can neglect to specify the

exact path in phase space connecting the two points.

Finally, we Taylor expand 6#o(N) to second order as follows:

6#0 = ±o + I6 (2)q + O(6P3 #) (6.10)
2!

Note that the upper index in parentheses refers to the order of the expansion: the

fth -order contribution to 6#' would be written as 16(n)4.

Concretely, the field configuration and momentum perturbations are given by

-(1 = d#,6 A - Q'6A (6.11)
d A

6()1- A d.L (6A)2 (6.12)
dA

6Mp - Ap'6A (6.13)

6(2) - DAD (6A) 2  (6.14)

where EA = dOKVK is the phase-space covariant directional derivative along the

path parametrized by varying A (the labeling-indices on A are suppressed). The vector

Q1, though defined analogously to the geodesic construction of Section 5 should not be

confused with Q' which obeys the geodesic equation EA Q, = 0 - which Q' obviously

does not.

49



6.3 First Order Results

We Taylor expand the background field equations of motion along A to first order by

applying the operator DA to Eq.(6.4)

yI
+H2(0,p))

DNDAP' ± [DA, DN]P - (VA)p' ± (3 - c)Vp' +A (H2 p))

We now note two important facts. First, we remark that

= 0 (6.15)

= 0?(6.16)

d= '

d do, +I d j dK

= dA dN JK d5dN
_dq53 dq$

= dN di\

= DNQ'

(6.17)

(6.18)

(6.19)

(6.20)

where we used the fact that ordinary derivatives commute and we recall that

Qj = dI. Secondly, we use the following identity which holds for any vector V'

[DX, DN]VI = RJKLVJQKpL (6.21)

where RIgK is the Riemann tensor of the phase space.

We can now simplify our expression for the first order equation of motion. We

find that
1

D = M2 (Dx pI)pigJ
p1

(6.22)

= H H2 H 2 V

V

(v'v) (VJV)]
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DA DN P' + (3 - c(p))p

VAp'

and

V' ) (6.23)

(6.24)
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Putting everything together, we obtain our final result

o = DNDAP ± RIKLpQKp _ 2 (E, 'A)

± Qj VJVIV
+IQ H2 ~ H 2 V (Vjv)]

PBgABpI + (3 - E) Dxp' (6.25)

VIV
V

(VAP B JB (6.26)

We can recast our expression in the form

(6.27)

With all indices explicit, we write

DN K( j M (6.28)

Our Eq. (6.20) indicates that P J = 0 and P/2 = J'J. From Eq. (6.26), we find

that

P 11= -RIJpL K HK2

2 1 H

Pl M21P Pi -
P

V JV IV (V IV ) (VJV )
V V2

H2M2 J + -pJ
P 

V

Our results thus agree with [15] if we also adopt units such that Mp1 = 1.

6.4 Second Order Results

We can find the second order perturbation equations by applying E, to the first order

equation of motion

DA DA (VNP ± (3- H2 ,p))) = 0 (6.31)

The manipulations are tedious yet very similar those in the first-order calculation

51

(6.29)
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which is why we simply quote the end result

0 =D (D DNP + (3- ~(p))p H 2 p)

=DN (DAD xp') + RIKL (DXPJ) QKpL ARLJK) pLpKQJQA ± RiJK (DApL) pKQJ

+RiJKpL (DpK) QJ + RiKpLPK

M 2 (DP)
P

1
(DAPK) PI - M2  (E)A pj)

M 1

QJ) - I2 (DADA),pj) PJP'
M1

P 2 (p') + (3 - ') DD P'

+ (VAVJVIV) QJQA + I (Vjv'v) (DAQ )

1
H 2V

H 2V

(VJVIV) QJQA (VAV) - (VAVIV) QAQJ (VJV)

Vv) (VAVJV) QJQA - ) (V) (DQ

+2V (VIV)

- (VAVIV)

(VJV) (VAV) Q V )

pJQA (D.pj) ± I (V'V (VV)Q (P)

(VIV) (D\pJ) (D\pj)
V

-V P (DADAPj)

We recast this result in the form

E p(2) Irn I(2)OK ± Qlab (1)OK6(1)OL (6.32)

and compare our expression with those of [15]. Fortunately, we find perfect agree-

ment. We will not got into more detail as to how these evolution equations can be

used to numerically compute the non-gaussianity parameter fNL. Instead, we refer

the interested reader to [17, 15].
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Chapter 7

Diverging Trajectories in

Superspace

In this section, we find yet another way to understand when classical field trajectories

diverge in field-space based on a technique borrowed from classical mechanics.

7.1 The Mini-Superspace Approximation

We take the general action in the Einstein frame to be given by:

SE = Jd g M,2R + 013, ' - VE(O)) (7.1)

where M, = 1//87rG and R is the Ricci scalar of a flat FRW spacetime, given

by ds2 = -dt 2 + a2 (t)dx2 . We say the fields are maps from the FRW spacetime to a

target space F (the field manifold) with metric g1 j. In Section 3.2, we showed how

renormalization of quantum fields in curved spacetime necessarily lead to such non-

canonical field kinetic terms after performing the conformal transformation from the

Jordan to the Einstein frame. Note that, by assumption of isotropy and homogeneity,

we must have O(xA) = 0(t). We thus write 4 : R -4 F. The subscript E for the

Einstein frame will be omitted throughout the rest of this section.

Now, R is given by [38]
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R = 6 ( + a (7.2)
(a 2

Using the fact that = a3(t), we rewrite the gravity part of the action as

SE -(MPR) (7.3)

= d4xa3(t) M6 (+ 2(7.4)

= 3M J d4 X (( d&)a2 + &2a (7.5)

= d4x (-3M &2 a) (7.6)

= ]d 4 xv -3M ) (7.7)

where we integrated by parts in Eq.(7.6). The entire action is independent of

space and we can perform the space part of the integral, writing f d3x = V, i.e. V is

the spatial volume of the FRW universe. Our action thus becomes:

( &2 1I~K
S d4xa3 

--3Mp2 __ + - V(O) (7.8)

=V J dt (-3M2 &2 a + a3 1 .g>Jj' - a3V(q5) (7.9)

We will work entirely in terms of 2, neglecting the total spatial volume depen-

dence, which while infinite does not affect any of the subsequent calculations. We

will abuse notation and still just write S for this action-density.
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7.2 Augmenting the Dimensionality of the Target

Space F.

We now want to write this in the form which manifestly resembles L = Kinetic -

Potential. We thus define:

( -3M a 0 (7.10)

0 a 3gj

b' a(7.11)

as well as

V(a, 0) = a3V(#) (7.12)

The small Latin indices will denote the composite objects which incorporate a and

the K fields 01. In short, we have i, j = {0, 1, 2, ... , K}, while the capital Latin indices

denote only the &-field part, i.e. I, J = {1, 2, ... , N}. The action now becomes:

S = dt Mij i2 - V(a, #) (7.13)

This is just the action for a point particle moving on a Ar+ 1 dimensional manifold

with Lorentzian metric given by M 3 and coordinates 0'. a is now like a time-

component, since M 00 < 0. We will denote this augmented target space - of dimension

K + 1 - as A. These results generalize prior work which either did not consider non-

minimal couplings [40] or otherwise, did not perform the conformal transformation

from the Jordan to the Einstein frame [39].

7.3 The Jacobi Metric

We now employ a technique borrowed from classical mechanics called the Jacobi

metric. In essence, it recasts the problem of a particle moving on a manifold B
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under the influence of a potential V into a problem of finding geodesics on a suitably

related manifold B'. The metric on B is related to the metric on B' by a conformal

transformation [41].

In general, if a particle has a conserved energy E, and is moving in a potential V,

the metrics are related by:

Bo = 2(E - V)Bo (7.14)

We emphasize again that such a conformal transformation is not a diffeomorphism.

Instead, the term 2(E - V) essentially acts as a local stretching of the metric which

reproduces those effects we would otherwise assign to gradients of the potential. In

our case, we have an additional constraint concerning the total energy E. Indeed,

when we considered our action, we parametrized everything in terms of t, but we could

have re-parametrized it in terms of another parameter, say r. We can incorporate

this redundancy by writing the flat FRW metric as ds2 = -N 2 (t)dt2 +a2(t)dx . Since

N is not a dynamical variable, the variation of the action with respect to N must

vanish. As long as this constraint is taken into consideration, we can then set N = 1

for the rest of our calculations[42]. The resulting constraint equation is that the total

energy vanishes:

E = -Mt/ + V(a,q<) 0 (7.15)

where we have already set N = 1 in the constraint equation. This remarkable

equation tells us that the total energy of the universe vanishes at all times within the

mini-superpsace approximation. Interestingly, one can show that Eq.(7.15) is nothing

other than the Friedmann equation in Eq.(3.15), rewritten in a different form.

Recall from Section 2.3 that the energy density p remains constant during inflation

while the total spatial volume increases exponentially. How then can E = 0 at all

times? The answer comes from the fact that the gravitational potential energy is

negative and exactly cancels the increase in energy sourced by the inflaton field. 1

'Alan Guth, one of the founding fathers of inflation, has often to referred to the inflationary
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Rewriting Eq.(7.15) as

Mj = -2V(a, 0) (7.16)

we see that i is timelike for V(a, q) = a3 V(#) > 0 (since we assume V(k) > 0

for all q in our cases of interest). Note that a vector being timelike is a coordinate

independent statement. In particular we can change coordinates V' - N/(4) where

the metric is diagonal. In these coordinates, there are no cross terms, and we can

write

MooA 0 " + M1flfrj' < 0 (7.17)

which shows that

IM 0O4'0V0| > ||fij/1 ,'|| (7.18)

namely, the time-component part of the vector dominates the space part. This is

the true definition of a vector being "time-like".

Now consider any function f(7p) > 0 - it is important that f does not switch sign

on the entire interval under consideration. We now show that multiplying the metric

by -f or +f does not change the time-like nature of . Indeed, note that:

| - ff5oo 0i 0 I I = II + ff5oo 0 P0H I| = f I|| 00 *$L0 |1 (7.19)

Hence, using Eq.(7.18), we can always write:

| - fM 400|| = f || P00 0 0| > f| |I4H?1;# = 1 - f$4jj!#3|| (7.20)

and trivially:

||fMoo 00#0#| = f|| I oo#b 0 I > f|IM1N"k' I| = ||f MIj4"?P3I| (7.21)

mechanism as 'the ultimate free lunch' for precisely this reason.
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Again, this is a coordinate independent statement since Eq.(7.18) was also a co-

ordinate independent statement.

It is thus convenient to choose +f if the decision need be made, since it will then

not change the signature of the metric and a vector V' being timelike can still be

understood as MiV'V1 < 0.

This short digression was relevant since in the case where E = 0 we have 2(E -

V) = -2V. So that the Jacobi metric for our field theory would naively look like:

jfirst gues )Mj=-V i

= 2(E - = -2VMi 3  (7.22)

The problem is that we cannot write this as a conformal transformation because

-2V < 0 in our case. We can thus multiply the metric by +2V instead - by the

argument presented above - so that we can define the Jacobi metric as:

Jij = +2VMpi = eln(+2 )Mij (7.23)

Define now a new parameter with which we will parametrize our trajectories:

s(t) = 2 j V(a(t'), 1(t'))dt' (7.24)

While we will not go through the derivation here, it turns out that the equations

of motion for V$(s) can now be written as geodesic of Jij [41]:

_2__ d ki k
ds2  + j d = VI'()0'7(s) = 0 (7.25)ds2 j ds ds

where the covariant derivative is defined through the metric i.j ,V'" = i and

V.1= do' Vk.

We have thus completely recast a classical field theory with non-minimal couplings

in an expanding FRW metric to studying geodesics on Jij.
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Chapter 8

Conclusion

Narrowing in on the exact workings of the inflationary mechanism, one of the central

questions remains whether inflation is driven by one or several scalar fields. The

most promising indicator is given by the parametrization of non-gaussianities in the

density perturbation spectrum we observe in the cosmic microwave background. As

sizable non-gaussianities correlate to diverging inflationary trajectories in field-space,

tackling this important question requires understanding the underlying dynamics of

the theory. We believe this is best approached from a geometric standpoint.

First, we constructed a covariant formalism to accommodate the field-space dif-

feomorphism invariance of cosmologically relevant multifield actions in the Einstein

frame. Furthermore, borrowing techniques from differential geometry and advanced

classical mechanics, we recast both classical and quantum aspects of multifield infla-

tion, with complicated non-canonical kinetic terms and arbitrary interactions, into

the simpler problem of studying geodesic motion on a suitably related manifold.

In [37], we showed how our covariant formalism can be used to calculate the

non-gaussianity parameter fNL for the general class of multifield, non-minimally cou-

pled inflation models. It remains an exciting subject for research to now apply the

techniques of Sections 6 and 7 to the specific case of cosmological non-gaussianities.
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Chapter 9

Appendix A: Field-Space Metric

and Related Quantities

Given f(0') in Eq. (3.19) for a two-field model, the field-space metric in the Einstein

frame, Eq. (??), takes the form

[1 + f 1 75
2

= xxk = (Mi

~ MP2) E +

[I+ fx 2 ]

(9.1)

The components of the inverse metric are

( =_ 2f 2f +6 X2]

)
(9.2)

2f+6 2
- C 0
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f 4 ) ,[



where we have defined the convenient combination

C( M X) = ± + +(1 + 604)42 + ((1 + 6,x)X 2  (9)

= 2f + 6 2 + 6 2 2

The Christoffel symbols for our field space take the form

+ _(1 + 6 0)q 0 0
(PO C f'

r4 _O+(1+ 6 x)4
xx C (9-4

px _x(1 + 6'4)x
C '

(16(x rx GOx xO 2f'

fX Al+ %~) X _ 'xX
xx C f

For two-dimensional manifolds we may always write the Riemann tensor in the

form

RJABCD = (Ok) [AC9BD - gAD gBC], (9.5)

where K(4b) is the Gaussian curvature. In two dimensions, K(41) = -Z(OtI), where

R(4') is the Ricci scalar. Given the field-space metric of Eq. (9.1), we find

2
R(4O) = 21C(O5) = 3M2 C2 [(1 + 6 0)(1 + 6 x)(4f 2 ) - C2]. (9.6)
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