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Problem Set #10 

Problem 1: Lattice Heat Capacity of Solids 

This problem examines the lattice contribution to the heat capacity of solids. Other 
contributions may be present such as terms due to mobile electrons in metals or 
magnetic moments in magnetic materials. 

A crystalline solid is composed of N primitive unit cells, each containing J atoms. 
A primitive unit cell is the smallest part of the solid which, through translational 
motions alone, could reproduce the entire crystal. The atoms in the unit cell could be 
the same or they could differ: diamond has two carbon atoms per primitive unit cell, 
sodium chloride has one Na and one Cl. J could be as small as one, as in a crystal 
of aluminum, or it could be tens of thousands as in the crystal of a large biological 
molecule. 

a) The Classical Model Assume each atom in the crystal is statistically independent 
of all the others, and that it can vibrate about its equilibrium position as a 
harmonic oscillator in each of 3 orthogonal directions. In principle there could 
be 3J different frequencies of vibration in such a model; in fact, symmetry 
conditions usually introduce degeneracies, reducing the number of frequencies 
(but not the number of modes). On the basis of classical mechanics, find the 
heat capacity at constant volume (i.e. constant lattice spacing) for this model. 

b) The Einstein Model The result of the classical model does not agree with ob­
servation. The heat capacity of the lattice varies with temperature and goes 
to zero at T = 0. Again assume that the atoms are statistically independent 
and execute harmonic motion about their mean positions. This time find the 
heat capacity using quantum mechanics. For simplicity, assume that the 3J 

frequencies are identical and equal to ν. What is the limiting behavior of CV 

for kT << hν and for kT >> hν? 

c) Phonons The result of the Einstein model is in better agreement with measured 
heat capacities, but it is still not completely correct. In particular, the lattice 
contribution to CV approaches T = 0 as T 3, a more gradual temperature de­
pendence than found in the Einstein model (using 3J different frequencies does 
not help). The remaining flaw in the model is that the atomic motions are 
not independent. Pluck one atom and the energy introduced will soon spread 
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throughout the crystal. Rather, the crystal has 3JN normal modes of vibra­
tion, called phonons, each of which involves all of the atoms in the solid. The 
amplitude of each normal mode behaves as a harmonic oscillator, but the fre­
quencies of the the normal modes span a wide range from almost zero up to 
the frequency one might expect when one atom vibrates with respect to fixed 
neighbors. A phonon of radian frequency ω is represented by a quantum me­
chanical harmonic oscillator of the same frequency. The density of frequencies 
D(ω) is defined such that D(ω0) dω is the number of phonons in the crystal 
with frequencies between ω0 and ω0 + dω. Normalization requires that 

∞

D(ω) dω = 3JN. 

0 

The thermodynamic internal energy of the lattice is 
∞


E(T ) = < ǫ(ω, T ) > D(ω) dω 
0 

where < ǫ(ω, T ) > is the mean energy of a quantum oscillator with radian 
frequency ω at a temperature T . 

i) Write down the full integral expression for E(T ). Evaluate the expression 
in the limit kT >> h̄ωmax where ωmax is the highest phonon frequency 
in the solid. What is the heat capacity in this limit? You should get the 
classical result. 

ii) It can be shown that near ω = 0, 

3V 
D(ω) ω2 ,→ 

2π2 < v >3 

where V is the volume of the crystal and < v > is an average sound velocity 
in the solid. Find the heat capacity of the lattice for temperatures so low 
that only those phonons in the quadratic region of D(ω) are excited. Use 
the fact that � 

∞ 3 π4x
dx = . 

0 ex − 1 15 

Problem 2: Thermal Noise in Circuits I, Mean-Square Voltages and Currents 

An arbitrary network of passive electronic components is in thermal equilibrium with 
a reservoir at temperature T . It contains no sources. 

a) Find the probability density p(v) that a voltage v will exist on a capacitor of 
capacitance C. [Hint: consider the capacitor alone as a subsystem.] Find an ex­
pression for the root-mean-square voltage 

√
< v2 >. What is this in microvolts 

when T = 300K and C = 100pF? 
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b) Find p(i) and 
√

< i2 > for the current i through an inductor of inductance 
L. What is the root-mean-square current in nanoamps when T = 300K and 
L = 1mH? 

c) Why does this method not work for the voltage on a resistor? 

Problem 3: Thermal Noise in Circuits II, Johnson Noise of a Resistor 

When we discussed jointly Gaussian random variables in the first part of this course, 
we learned that the noise voltage in a circuit is a random process, a signal which 
evolves in time. It will be composed of a variety of different frequency components. 
The noise power in a unit frequency interval centered at radian frequency ω, Sv(ω), is 
referred to as the power spectrum, or simply the spectrum, of the voltage fluctuations. 
The mean square fluctuation on the voltage < v2 > is obtained by integrating Sv(ω) 
over all ω. 

The advantage of the approach to circuit noise introduced in Problem 2 is that mean 
square voltages and currents in individual lossless components can be found imme­
diately, with out reference to the remainder of the circuit. The disadvantage is that 
it does not allow one to find the spectrum of the voltage or current fluctuations in 
those components. 

There is another approach to determining the noise in circuits which we will introduce 
here. It has the advantage of allowing the spectrum of the fluctuations to be found 
anywhere in a circuit. The disadvantage is that one must be able to find the AC 
transmission function from one part of the circuit to another. This method assumes 
that the noise power entering the circuit emanates from each of the dissipative com­
ponents (resistors). Thus, one must replace each real resistor with an ideal resistor 
plus a noise source. We will determine in this problem what the characteristics of 
that noise source must be. 

We will find the noise power emanating from a resistor by connecting it to a lossless 
transmission line, assuming thermal equilibrium, and using the principle of detailed 
balance. A coaxial transmission line which is excited only in the TEM modes behaves 
like a one dimensional system. A vacuum filled line of length L, terminated by a short 
circuit at each end, supports standing waves of voltage with the dispersion relation 
ω = ck, where c is the speed of light and k is the wavevector. We can treat the 
transmission line as a one dimensional analog of thermal (black body) radiation. 

a) What are the allowed wave vectors kn on the transmission line described above? 
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b) Assuming that n is a large number, find the density of modes on the line D(ω). 
As in 3 dimensions, one need only consider positive ω and notice that there is 
only one “polarization” direction for the voltage in this case. 

c) Find u1(ω, T ), the energy per unit length per unit frequency interval, when the 
line is in thermal equilibrium at temperature T. 

d) Usually transmission lines operate under conditions where kBT >> ¯ Find hω. 
the limiting form of u1(ω, T ) under these conditions. 

The energy density on the line in part d) was calculated for standing waves, but it 
can be regarded as composed of running waves traveling in two directions. If the 
line is cut at some point and terminated with a resistor having the characteristic 
impedance of the line, waves traveling toward the resistor behave as if the line were 
still infinitely long in that direction and they will never return; that is, they are 
completely absorbed. If the resistor is at the same temperature as the line, it must 
send power to the line equal to the power which flows to it. 

e) Find the thermal energy per unit frequency interval flowing out of the resistor, 
P (ω). Thus P (ω) dω is the thermal power in the bandwidth dω. Note that it is 
“white” noise in that it is independent of frequency (a flat frequency spectrum) 
and that it does not depend on the value of the resistance. This power is referred 
to as the “Johnson noise” associated with the resistor. 

f) What is the noise power from a resistor at room temperature in a 10MHz 
bandwidth (real frequency as opposed to radian frequency)? 

Problem 4: Isothermal Atmosphere 

Consider a tall column filled with nitrogen gas standing in the Earth’s gravitational 
field (assume its height is, say, several kilometers). The gas is in thermal equilib­
rium at a uniform temperature T , but the local number density n(z), the number of 
molecules per cubic meter at height z, will be greater near the bottom. 

a) Let P (z) be the pressure at height z. Explain why the equation 

P (z) = P (z + Δz) + mg n(z)Δz 

should hold. Start with Newton’s second law applied to the gas in the height 
interval bewteen z and z + Δz. 
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b) Convert the equation to a differential equation and solve it for P (z), given that 
the pressure is P (0) at the base. Recall that the ideal gas law may be used to 
re-express n(z) in terms of more convenient quantities. Take g to be a constant. 

c) Describe the behavior with height of the local number density. At what height 
has the number density dropped to one-half of its value at the surface? Provide 
both algebraic and numerical answers. 

d) Now let’s examine this problem using the chemical potential. Write down an 
expression for the chemical potential µ(z). How does the chemical potential 
vary with concentration n(z)? 

e) At equilibrium, how must n(z) vary with z? Explain your reasoning. 
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