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Problem Set #7 

Problem 1: Correct Boltzmann Counting 

The calculation we have done so far to obtain the allowed volume in phase space, Ω, 
for a classical system is in error. We will demonstrate the results of this error in two 
different cases and then propose a remedy. 

a) A state variable F is extensive if, after multiplying all the extensive variables in 
the expression for F by a scale factor λ and leaving all the intensive variables in 
F unchanged, the result is a λ fold increase in F , that is, λF . The expression 
we found for the cumulative volume in phase space for an ideal monatomic gas 
using the microcanonical ensemble was 

� �3N/24πemE 
Φ(E, V,N) = V N . 

3N 

Use S = k ln Φ and the derived result E = 3 NkT to write S as a function of 
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the thermodynamic variables N , V , and T . On physical grounds S should be 
extensive. Show that our expression for S(N, V, T ) fails the above test for an 
extensive variable. 

b) Consider a mixing experiment with two ideal gases, 1 and 2. A volume V is 
separated into two parts V1 = αV and V2 = (1 − α)V by a movable partition 
(0 ≤ α ≤ 1). Let N1 atoms of gas 1 be confined in V1 and N2 atoms of gas 2 
occupy V2. Show that if the temperature and pressure are the same on both 
sides of the partition, the ideal gas equation of state requires that N1 = αN 
and N2 = (1 − α)N where N = N1 + N2. Pulling the partition out allows the 
gases to mix irreversibly if the gases are different. 

The mixing is irreversible but entropy is a state function so ΔSi ≡ Si(final) −
Si(initial) can be computed for each gas from the expression in a). Show that 
ΔS1 = αNk ln(1/α) and 

ΔST ≡ ΔS1 + ΔS2 = Nk [α ln(1/α) + (1 − α) ln(1/(1 − α))] . 

1 



6

This expression for the entropy of mixing is always positive, which is the result 
we expect based upon the disorder interpretation of entropy. 

Should ST increase as we slide the partition out when the two gases are the 
same? This is difficult to answer from an intuitive point of view since the 
presence of the partition does restrict the atomic motion. 

Macroscopic thermodynamics, however, requires that ΔST = 0 in this case. 
Explain why the internal energy is unchanged in this process, ΔE = 0. Explain 
why no work is done, ΔW = 0. The first law of thermodynamics then requires 
that ΔQ = 0. But sliding the partition open and closed is certainly a reversible 
process (when both gases are the same) so ΔS = ΔQ/T = 0. This, together 
with our calculated result that ΔS = 0 is known as Gibbs’ paradox. 

c) One could argue that our expression for S is not correct since it is not a quantum 
mechanical result. However, in the classical limit of high T and low N/V the 
classical calculation should give the correct answer. Evidently, this one does 
not. 

There is a concept which plays a central role in quantum mechanical calcula­
tions, even though it is not itself a result of quantum mechanics. That concept 
is the indistinguishability of identical particles. One argon atom is the same 
as all other argon atoms (with the same isotope number). Which particle has 
momentum p~ at a location ~q does not matter in the overall specification of the 
N body system; what matters is that some particle has that particular p~ and 
~q. This implies that we have over-counted the number of meaningful states in 
phase space by a factor of N ! where N is the number of identical particles. To 
remedy this situation we should divide the expression we have obtained for Ω 
(and Φ and ω) by N !. This approach is known as “correct Boltzmann count­
ing”. Show by direct calculation that this solves the problems raised in parts 
a) and b). 

Problem 2: Paramagnet 

Consider a paramagnetic material where the equation of state relating the magneti­
zation, M , to the applied magnetic field, H , is M = AH/(T − T0). T0 and A are 
constants and the expression is valid only for T > T0. 
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a) Show that the heat capacity at constant magnetization, CM , is independent of 
M at constant T . 

b) Find an expression for the internal energy, E(T,M), in terms of A, T0 and 
CM (T ). 

c) Find the entropy, S(T,M). 

Problem 3: Sargent Cycle 

The diagram above is an approximation to a Sargent cycle run on an ideal gas. A 
constant pressure path and a constant volume path are connected by two adiabatic 
paths. Assume all processes are quasi-static and that the heat capacities, CP and 
CV , are constant. 

a) Which of the four states (1,2,3, and 4) has the highest temperature and which 
has the lowest? 

b) T2 could be either hotter of colder than T4 depending on the specific values of P 
and V at the four corners of the cycle. Demonstrate graphically one version of 
the cycle where T4 is clearly less than T2. Demonstrate another extreme where 
T4 would necessarily be greater than T2. 

c) Prove that the efficiency of this cycle running as an engine is

η = 1 − γ(T4 − T1)/(T3 − T2) where γ ≡ CP /CV .
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d) Find an expression for the total work done, W , in one cycle. Express your 
results in terms of N , k, γ, and the T ’s. 

e) Show that the first law, QH QC = W , applied to this cycle (together with | |− | | | |
the assumption that the heat capacities are constants) leads to the requirement 
that CP − CV = Nk. 

Problem 4: Entropy Change 

A mass M of liquid at a temperature T1 is mixed with an equal mass of the same 
liquid at a temperature T2. The system is thermally insulated but the liquids are 
maintained at some constant pressure. Show that the entropy change of the universe 
is 

(T1 + T2)
2MCP ln ,

2
√
T1T2 

and prove that it is necessarily positive. 

Problem 5: Defects in a Solid 

A crystalline solid contains N similar, immobile, statistically independent defects. 
Each defect has 5 possible states ψ1, ψ2, ψ3, ψ4, and ψ5 with energies ǫ1 = ǫ2 = 0, 
ǫ3 = ǫ4 = ǫ5 = Δ. 

a) Find the partition function for the defects. 

b) Find the defect contribution to the entropy of the crystal as a function of Δ 
and the temperature T . 

c) Without doing a detailed calculation state the contribution to the internal en­
ergy due to the defects in the limit kT >> Δ. Explain your reasoning. 
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