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8.044: Statistical Physics I Spring Term 2007


Final Exam 

Problem 1: (35 points) An engine using thermal radiation 

When discussing heat engines in class, we considered taking a “substance” around a 
cycle. In this problem, let’s use thermal radiation as the substance. For radiation 
in thermal equilibrium in a cavity, we found expressions for the internal energy U = 
AV T 4, pressure P = 1

3 AT 4, and entropy S = 4
3 AV T 3, where A is a constant. Let’s 

consider the following four-step cycle: 

1 2: Expansion from V1 to V2 at constant temperature TH . → 

2 3: Expansion from V2 to V3 adiabatically. → 

3 4: Compression from V3 to V4 at constant temperature TC . → 

4 1: Compression from V4 to V1 adiabatically. → 

a) Make a qualitatively correct sketch of this cycle on a P − V diagram (with V 
on the horizontal axis). 

b) For the isothermal expansion from V1 to V2, calculate the work done by the 
thermal radiation. 

c) For the isothermal expansion from V1 to V2, calculate QH , the heat transferred 
from the reservoir with temperature TH . 

d) For the adiabatic expansion from V2 to V3, calculate the work done by the 
thermal radiation. Find an expression for this work in terms of V2, TH , and TC 

only. 

e) What is the efficiency η ≡ Wout/QH of this engine? You need not perform a 
calculation for this part, just a one or two sentence explanation would suffice. 
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Problem 2: (35 points) One dimensional transmission line 

A coaxial transmission line of length L is terminated by a short circuit at each end. It 
supports standing electromagnetic waves with the dispersion relation ω = ck, where 
c is the speed of light and k is the wavevector. We can treat the transmission line as 
a one dimensional analog of thermal (black body) radiation. 

a) What are the allowed wave vectors kn on the transmission line described above? 

b) Assuming that n is a large number, find the density of modes in frequency, 
D(ω). Note that there is only one polarization direction in this case. 

c) Find u(ω, T ), the energy per unit length per unit frequency interval, when the 
line is in thermal equilibrium at temperature T . 
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Problem 3: (25 points) Heat Pump 

Recall that one may make an ideal refrigerator or heat pump by running a Carnot 
engine in reverse. A building at a temperature T is heated by an ideal heat pump 
which uses the outside atmosphere at T0 as a heat source (assume that T0 remains 
constant). The pump consumes power W (in units of energy per time) and the 
building loses heat at a rate α(T − T0) (also in units of energy per time). What is 
the equilibrium temperature Te of the building? 

(Hint: Recall, for a quadratic equation of the form ax2 + bx + c = 0, the roots are 
x = −b±√

2
b
a 
2−4ac .) 
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Problem 4: (35 points) Fermions in two-dimensions 

A collection of N non-interacting, spin-1/2 fermions are confined to move in two 
dimensions. They are confined within a rectangular area with dimensions Lx and Ly. 
Here, the wavevectors allowed by periodic boundary conditions are �k = (2π/Lx)nxx̂+ 
(2π/Ly)nyŷ where nx and ny can take on all positive and negative integer values. The 
energy for a single fermion is given by � = h̄2k2/2m. 

a) Calculate N(k), the number of single-particle states with wavevector magnitude 
smaller than k. 

b) Calculate D(�), the density of single-particle states as a function of their energy 
�. Make a carefully labeled sketch of your result. 

c) Find an expression for the total energy E of the collection of fermions at T = 0. 
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Problem 5: (35 points) An S=1/2 paramagnet 

Consider a system composed of N distinguishable, non-interacting spins in a magnetic 
field H applied along the z-direction. The system is in equilibrium at temperature 
T . For each spin, there are two allowed values for the z-component of the magnetic 
moment: µz = µ0 and − µ0. The energy for a spin is given by � = −µz H. 

a) Calculate the partition function for a single spin Z1(T, H). 

b) Calculate the net magnetic moment along the z-direction, M(T,H), for the 
collection of N spins. 

c) What are the limiting values of M in the high-T and low-T limits? 

d) Make a qualitatively correct sketch of M versus T . Place labels on the axes to 
indicate a scale. 

e) Make a qualitatively correct sketch of M versus H. Place labels on the axes to 
indicate a scale. 
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Problem 6: (35 points) Non-interacting Bosons 

Consider a collection of N non-interacting bosons. We’ll consider these bosons to 
have no spin degrees of freedom. They are distributed among 3 single particle states: 
ψ0 and ψ1 both with energy � = 0, and ψ2 with energy � = Δ. 

We can label the possible N -particle energy states in terms of the occupation numbers 
as |n0, n1, n2�, where n0 + n1 + n2 = N . 

a) Find an expression for the allowed energies of the N -particle states in terms of 
Δ and any relevant quantum numbers. (Hint: This part has a simple answer.) 

b) For n2 particles in ψ2, how many ways can you arrange the remaining particles 
among the two other states? 

c) Write down an expression for the partition function Z(T ) for the collection of 
N bosons. Find a closed form expression for Z(T ). The following formulae may 
be useful: 

N N+1� 
x n =

1 − x

n=0 1 − x 

N N+2�
(N − n + 1)x =

(N + 1) − (N + 2)x + xn 

(1 − x)2 
n=0 

d) Consider the case for large N at low temperatures (kT << NΔ). Calculate the 
internal energy E in this limit. 

e) Early in the course, we classified thermodynamic variables of macroscopic sys­
tems as being either extensive or intensive. There is something unusual about 
the expression for E. Comment briefly on what is unusual and the reasons for 
this (in one or two sentences). 
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