MIT OpenCourseWare http://ocw.mit.edu

8.044 Statistical Physics I Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Physics Department

8.044: Statistical Physics I

Spring Term 2007

Final Exam

Problem 1: (35 points) An engine using thermal radiation

When discussing heat engines in class, we considered taking a "substance" around a cycle. In this problem, let's use thermal radiation as the substance. For radiation in thermal equilibrium in a cavity, we found expressions for the internal energy $U = AVT^4$, pressure $P = \frac{1}{3}AT^4$, and entropy $S = \frac{4}{3}AVT^3$, where A is a constant. Let's consider the following four-step cycle:

- $1 \rightarrow 2$: Expansion from V_1 to V_2 at constant temperature T_H .
- $2 \rightarrow 3$: Expansion from V_2 to V_3 adiabatically.
- $3 \rightarrow 4$: Compression from V_3 to V_4 at constant temperature T_C .
- $4 \rightarrow 1$: Compression from V_4 to V_1 adiabatically.
 - a) Make a qualitatively correct sketch of this cycle on a P V diagram (with V on the horizontal axis).
 - b) For the isothermal expansion from V_1 to V_2 , calculate the work done by the thermal radiation.
 - c) For the isothermal expansion from V_1 to V_2 , calculate Q_H , the heat transferred from the reservoir with temperature T_H .
 - d) For the adiabatic expansion from V_2 to V_3 , calculate the work done by the thermal radiation. Find an expression for this work in terms of V_2 , T_H , and T_C only.
 - e) What is the efficiency $\eta \equiv W_{out}/Q_H$ of this engine? You need *not* perform a calculation for this part, just a one or two sentence explanation would suffice.

Problem 2: (35 points) One dimensional transmission line

A coaxial transmission line of length L is terminated by a short circuit at each end. It supports standing electromagnetic waves with the dispersion relation $\omega = ck$, where c is the speed of light and k is the wavevector. We can treat the transmission line as a one dimensional analog of thermal (black body) radiation.

- a) What are the allowed wave vectors k_n on the transmission line described above?
- b) Assuming that n is a large number, find the density of modes in frequency, $D(\omega)$. Note that there is only one polarization direction in this case.
- c) Find $u(\omega, T)$, the energy per unit length per unit frequency interval, when the line is in thermal equilibrium at temperature T.

Problem 3: (25 points) Heat Pump

Recall that one may make an ideal refrigerator or heat pump by running a Carnot engine in reverse. A building at a temperature T is heated by an ideal heat pump which uses the outside atmosphere at T_0 as a heat source (assume that T_0 remains constant). The pump consumes power W (in units of energy per time) and the building loses heat at a rate $\alpha(T - T_0)$ (also in units of energy per time). What is the equilibrium temperature T_e of the building?

(Hint: Recall, for a quadratic equation of the form $ax^2 + bx + c = 0$, the roots are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.)

Problem 4: (35 points) Fermions in two-dimensions

A collection of N non-interacting, spin-1/2 fermions are confined to move in two dimensions. They are confined within a rectangular area with dimensions L_x and L_y . Here, the wavevectors allowed by periodic boundary conditions are $\vec{k} = (2\pi/L_x)n_x\hat{x} + (2\pi/L_y)n_y\hat{y}$ where n_x and n_y can take on all positive and negative integer values. The energy for a single fermion is given by $\epsilon = \hbar^2 k^2/2m$.

- a) Calculate N(k), the number of single-particle states with wavevector magnitude smaller than k.
- b) Calculate $D(\epsilon)$, the density of single-particle states as a function of their energy ϵ . Make a carefully labeled sketch of your result.
- c) Find an expression for the total energy E of the collection of fermions at T = 0.

Problem 5: (35 points) An S=1/2 paramagnet

Consider a system composed of N distinguishable, non-interacting spins in a magnetic field H applied along the z-direction. The system is in equilibrium at temperature T. For each spin, there are two allowed values for the z-component of the magnetic moment: $\mu_z = \mu_0$ and $-\mu_0$. The energy for a spin is given by $\epsilon = -\mu_z H$.

- a) Calculate the partition function for a single spin $Z_1(T, H)$.
- b) Calculate the net magnetic moment along the z-direction, M(T, H), for the collection of N spins.
- c) What are the limiting values of M in the high-T and low-T limits?
- d) Make a qualitatively correct sketch of M versus T. Place labels on the axes to indicate a scale.
- e) Make a qualitatively correct sketch of M versus H. Place labels on the axes to indicate a scale.

Problem 6: (35 points) Non-interacting Bosons

Consider a collection of N non-interacting bosons. We'll consider these bosons to have no spin degrees of freedom. They are distributed among 3 single particle states: ψ_0 and ψ_1 both with energy $\epsilon = 0$, and ψ_2 with energy $\epsilon = \Delta$.

We can label the possible N-particle energy states in terms of the occupation numbers as $|n_0, n_1, n_2\rangle$, where $n_0 + n_1 + n_2 = N$.

- a) Find an expression for the allowed energies of the N-particle states in terms of Δ and any relevant quantum numbers. (Hint: This part has a simple answer.)
- b) For n_2 particles in ψ_2 , how many ways can you arrange the remaining particles among the two other states?
- c) Write down an expression for the partition function Z(T) for the collection of N bosons. Find a closed form expression for Z(T). The following formulae may be useful:

$$\sum_{n=0}^{N} x^n = \frac{1 - x^{N+1}}{1 - x}$$
$$\sum_{n=0}^{N} (N - n + 1)x^n = \frac{(N+1) - (N+2)x + x^{N+2}}{(1 - x)^2}$$

- d) Consider the case for large N at low temperatures $(kT \ll N\Delta)$. Calculate the internal energy E in this limit.
- e) Early in the course, we classified thermodynamic variables of macroscopic systems as being either extensive or intensive. There is something unusual about the expression for *E*. Comment briefly on what is unusual and the reasons for this (in one or two sentences).