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Notes on the Microcanonical Ensemble 

The object of this endeavor is to impose a simple probability density on the phase 
space, classical or quantum, of the many particle system and to use it to obtain both 
microscopic and macroscopic information about the system. The microscopic infor
mation includes the probability densities for individual microscopic coordinates or 
states. The macroscopic information will consist of a statistical mechanical definition 
of the temperature, the second law of thermodynamics and all the necessary equations 
of state. 

1. The System 

The system we will consider consists of N particles 
in a volume V subject to enough mechanical and 
electromagnetic constraints to specify the thermo
dynamic state of the system when combined with 
the additional constraint that the total energy of 
the system is restricted to a very narrow range Δ 
above a reference energy E. 

E < energy ≤ E + Δ 

The number of items in the list of fixed quantities, 
including E, is the number of independent macro
scopic variables. For simplicity we will carry along 
only 3 in most of these notes: E,N and V . 

2. The Probability Density 

Here we choose the simplest of all possible forms (at least conceptually) for the 
probability density: a constant for all of the accessible states of the system. The 
“accessible” states are those microscopic states of the system consistent with the 
constraints (E, V, N, ). This choice is known as the “postulate of equal a priori · · ·
probabilities”. It is in fact the fundamental basis of all of statistical mechanics. 
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Classical version: 

p({p, q}) = 1/Ω E < H({p, q}) ≤ E + Δ 

= 0 elsewhere 

Ω ≡ 
accessible

{dp, dq} = Ω(E, V, N) 

Quantum version: 

p(k) = 1/Ω E < �k|H|k� ≤ E + Δ 

= 0 elsewhere 

Ω 
� 

(1) = Ω(E, V, N)≡ 
k, accessible 

In the quantum case Ω is dimensionless. It is the total number of microscopic states 
accessible to the system. Classically Ω is the accessible volume of phase space. It 
can be made dimensionless by dividing by h̄m where m is the number of canonically 
conjugate momentum-coordinate pairs (p, q) in the phase space. In most of what 
follows the classical version will be employed. 

Microscopic information is obtained by integrating the unwanted variables out of the 
joint probability density p({p, q}). For example if one wants the probability density 
for a single coordinate qi 

p(qi) = p({p, q}) {dp, dq}
q=qi 

1 � 

= 
=qi 

{dp, dq}
Ω q

Ω�(all but qi axis) 
= 

Ω 
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For a more complex state of the system, X, involving specification of a subset {p��, q��}
of the microscopic variables 

p(X) = 
except {p��,q��} 

p({p, q}) {dp, dq} 

1 � 

= 
except {p��,q��} 

{dp, dq}
Ω


Ω�(consistent with X)

= 

Ω 

volume of accessible phase space consistent with X 
= 

total volume of accessible phase space 

We will see later that the thermodynamic information about the system is obtained 
from the dependence of Ω on the constraints, Ω(E, V, N). 

3. Quantities Related to Ω 

Φ(E, V, N) 
� 

H{p,q}<E 
{dp, dq}≡ 

= cumulative volume in phase space 

∂Φ(E, V,N)
ω(E, V, N) ≡ 

∂E 

= density of states as a function of energy 

Ω(E, V, N) = ω(E, V,N)Δ⇒ 
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4. Entropy 

In general Ω increases exponentially with the size of the system. It is convenient to 
work with an extensive measure of the phase space volume, one which is additive as 
two systems are brought together in mutual equilibrium. A logarithmic measure of 
Ω satisfies this criterion. 

S(E, V, N) k ln Ω(E, V, N)≡ 

≈ k ln Φ(E, V, N) 

≈ k ln ω(E, V, N) 

The two approximate expressions hold due to the fact that for large N the error can 
be shown to be of order ln N while the given term is proportional to N . 

S(E, V, N) is called the entropy. 

It is a state function. • 

It is extensive. • 

•	 It is a logarithmic measure of the microscopic degeneracy associated with a 
macroscopic (that is, thermodynamic) state of the system. 

k is Boltzmann’s constant with units of energy per 0K. • 

5. Statistical Mechanical Definition of Temperature 

Bring together two arbitrary systems 1 and 2, each represented by its own micro-
canonical ensemble and therefore having well defined phase space volumes Ω1 and 
Ω2. While isolated from the rest of the world they are allowed to interact thermally, 
d – Q1 = −d – Q2, but not mechanically, d – W1 = d – W2 = 0. The interaction is weak 
enough that the two systems maintain their identities, thus the individual phase 
space volumes (and the microscopic variables on which they are defined) still make 
sense. Since the sum of the two systems is isolated it also can be represented by its 
own microcanonical ensemble with phase space volume Ω. Since Ω must take into 
account all the possible ways the total energy E can be divided between the two 
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subsystems Ω(E) can be expressed in terms of their individual phase space volumes 
as follows: � E 

Ω(E) = Ω1(E
�) Ω2(E − E �) dE � 

0 

Consider the following reasonable question. What is the most probable value for E1 

when equilibrium has been reached? We can determine this from p(E1). 

p(E1) = 
Ω1(E1) Ω2(E − E1) 

Ω(E) 

Note that this expression is consistent with the normalization of p(E1). 

� E 
p(E1) dE1 = 

�
0 
E Ω1(E1) Ω2(E − E1) dE1 

= 
Ω(E)

= 1 
0 Ω(E) Ω(E) 

Now find where p(E1) has its maximum by finding where its derivative vanishes. 

d 
0 = 

dE1 
(Ω1(E1)Ω2(E − E1)) 

dΩ1(E1) dΩ2(E − E1) 
= 

dE1 
Ω2(E − E1) + Ω1(E1) 

dE1 

dΩ1(E1) dΩ2(E2) 
= 

dE1 
Ω2(E2) − Ω1(E1) 

dE2 

1 dΩ1(E1) 1 dΩ2(E2) 
= 

Ω1(E1) dE1 
− 

Ω2(E2) dE2 

d d 
= 

dE1 
ln Ω1(E1) − 

dE2 
ln Ω2(E2) 

Thus the maximum of p(E1) occurs when 
� 

∂S1 

� � 
∂S2 

� 

= 
∂E1 d–W1=0 ∂E2 d–W2=0 

Solving would give the most probable value of E1. More important is the fact that 
this expression specifies the equilibrium condition. Therefore 

� 
∂S 

� 
1 

= f(T ) ≡ (in equilibrium) 
∂E T

d – W =0 
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The specific choice of f(T ) 

• agrees with the T defined empirically by the ideal gas law, 

• agrees with the T defined thermodynamically by the efficiency of Carnot cycles. 

6. Two Fundamental Inequalities 

Consider the two systems in section 5. when they are not necessarily at the same 
temperature before contact. Let E1 be the energy of system 1 before the contact is 
made and E
∗ 

1 be its energy after the combined system has reached mutual equilibrium.


∗ 

When contact is first made the following relationship holds between the probabilities 
of finding system 1 at those energies; the equality only holds if the two systems were 

1 .in equilibrium before contact, which would require E1 = E

p(E1) p(E≤ ∗ 
1 )


Ω1(E1)Ω2(E − E1) ≤ Ω1(E
∗

∗ 

1 )Ω2(E − E

Ω1(E1 ) 
Ω1(E1) 

∗ 

∗ 
1 ) 

Ω2(E − E1 ) 
Ω2(E − E1) 

1 ≤ 

0 S1(E≤ ∗ 
1 ) − S1(E1) � 

Δ

��
S1 

� 
+ S2(E − E∗ 

1 ) − S2(E − E1) 

ΔS2 

But entropy is additive, so the entropy change for the entire system is ΔS = ΔS1 + 
ΔS2. Thus we have found the important result 

• ΔS ≥ 0 for spontaneous changes in an isolated system 

Now consider the special case where system 2 is so large compared to system 1 that 
the heat added to it, d – Q2, does not change its temperature. System 2 is then referred 
to as a temperature bath or thermal reservoir and T2 ≡ Tbath. This assumption 
allows us to find an explicit relation for small changes in the entropy of system 2: 

dE2
dS2 = 

T2 
statistical definition of temperature 

= 
d – Q2 since no work is done 
T2 

d – Q1 
= −

Tbath 
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We can now rewrite the inequality derived above as it applies to this special case. 

0 dS1 + dS2≤ 
d – Q1

0 dS1 −≤ 
Tbath 

From this we conclude that 

d – Q1 • dS1 ≥ 
Tbath 

when exchanging heat with a reservoir 

The two inequalities indicated by bullets, taken together, form the second law of 
thermodynamics. 

7. Entropy as a Thermodynamic Variable 

The work done on a system is given by the expression 
⎧
⎪⎨
⎪

⎫
⎪⎬
⎪

−PdV

d – W
 =
 SdA


FdL


Xi dxi 

+ HdM + EdP +
· · ·

⎩ ⎭ 

≡

i 

Here for convenience we have introduced the notation of a generalized “force” Xi 

conjugate to some generalized external parameter xi. 

In the microcanonical ensemble the energy is fixed at E. In general the internal 
energy of a system is the average of the energy over all the accessible microstates, so 
in this case U is identical to E and we can write the first law as 

dE = d – Q + d – W 

Now we examine the consequences of the statistical mechanical definition of entropy. 

S ≡ k ln Ω = S( E, V, M, �� · · · 
constraints when computing Ω, a 

)


complete set of independent ther

modynamic variables


where we have chosen to use the xi = S(E, {xi}) as the constraints 
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The statistical mechanical expression for the entropy can be inverted to give E as a 
function of S. 

S(E, V,M, ) E(S, V, M, )· · · ↔ · · ·

S(E, {xi}) E(S, {xi})↔ 

dE – = d – Q from the first law 
d W =0
|

dE – W =0 
≤ TdS utilizing the second law [the equality only holds for equilibrium 

d
|

(reversible) changes] 

Therefore 

dE = d – Q + d – W 

≤ TdS + d – W 

⎧
⎪⎨
⎪
−PdV 
SdA 
FdL 

⎫
⎪⎬
⎪≤
 TdS +
 + HdM + EdP +
· · ·


⎩ ⎭ 

The final line above is a fundamental result which expresses the combined first and 
second laws of thermodynamics. We continue our development by solving this ex
pression for the differential of the entropy. 

1 1 1 1 
dS ≥ 

T 
dE − 

T
d – W = 

T 
dE − Xi dxi

T i 

1 P H ≥ 
T 

dE + 
T 

dV − 
T 

dM − 
T

E
dP + · · · 

This expression leads to two fundamental results. The first is a restatement of the 
second law of thermodynamics. 

The only changes which can occur in an isolated system

(dE = dxi = 0) are those which increase the entropy or,

at best, leave it unchanged.
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The second result is that the connection between statistical mechanics and thermo
dynamics in the microcanonical ensemble is through the entropy. In particular, if one 
knows the entropy as a function of the constraints S(E, {xi}), or what is equivalent 
the phase space volume Ω(E, {xi}), then one can find expressions for the generalized 
forces in terms of those same variables by taking the appropriate derivative. The 
resulting expressions are the equations of state for the system. In particular 

� 
∂S 

� 
Xj 

∂xj E,xi=� xj 

= − 
T 

� 
∂S 

� 
P 

= 
∂V T

E,M,P 

� 
∂S 

� 
H 

= −
∂M T

E,V,P 

� 
∂S 

� 

= −E
∂P 

E,V,M T 
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