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Preface 

Probability is the language of statistical mechanics.  It is also fundamental to the 
understanding of quantum mechanics.  Fortunately, mastery of only a few basic concepts 
and techniques in probability is sufficient for most of the applications that are 
encountered in undergraduate physics.  These notes will introduce the important elements 
of probability theory; the rest of the course will provide numerous examples of their 
application. A simultaneous course in quantum mechanics will supply examples of a 
slightly different nature. 



Preface

Probability is the language of statistical mechanics. It is also fundamental
to the understanding of quantum mechanics. Fortunately, mastery of only a
few basic concepts and techniques in probability is sufficient for most of the
applications that are encountered in undergraduate physics. These notes will
introduce the important elements of probability theory; the rest of the course
will provide numerous examples of their application. A simultaneous course
in quantum mechanics will supply examples of a slightly different nature.
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1 One Random Variable

A random variable is a quantity whose numerical value can not be predicted in
advance from the information at hand. However, the processes governing the
quantity are sufficiently well behaved that a certain set of rules, probability
theory, can be used to obtain a limited knowledge about the possible values
the quantity may take.

In general, there are two causes of the uncertainty associated with a ran-
dom variable. The first is insufficient information about the system governing
the random variable. The velocity of an atom selected at random from a clas-
sical gas in thermal equilibrium at a known temperature is a random variable.
So is the number of atoms in a specific cubic millimeter of such a gas at known
average density. If, on the other hand, the positions and velocities of all the
atoms in that gas were known at some earlier instant (along with expressions
for their differential scattering cross-sections) the variables in question would
be deterministic. They could be calculated, in principal at least, from the
information at hand. The amplitude of a given radio frequency pulse from a
pulsar (rotating neutron star) at an antenna on earth is a random variable,
unless the signal was monitored as it passed some intermediate location in
space. The angle of a pendulum of known total energy would be a random
variable, unless the angle at some previous time was known.

The second source of uncertainty giving rise to random variables is quan-
tum mechanics. A system is completely specified when one knows all that
it is physically possible to know about it. A primary feature of quantum
mechanics is that even for systems that are completely specified, the results
of measurements of some (but not all) quantities can not be predicted in
advance. An electron may be known to be in its ground state in a hydrogen
atom, but its radial distance from the proton is a random variable. The
momentum of a particle specified to be in a particular energy eigenstate of
a harmonic oscillator is a random variable.

Random variables can be divided into three classes according to the spec-
trum of values that they may take on. The velocity of an atom or the pulsar
pulse amplitude mentioned above are examples of continuous random vari-
ables. The number of gas atoms in a specified region of space is a discrete
random variable. It is also possible to have mixed random variables when the
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allowed values have both discrete and continuous contributions. For exam-
ple, the energies available to the electron in a hydrogen atom are discrete for
the bound states (energies less than zero) and continuous for the unbound
states (energies greater than zero). In a steady state electrical discharge in
hydrogen gas the electron energy can be treated as a random variable with
a mixed spectrum of values.

Probability theory is based on the idealization of an ensemble of simi-
larly prepared systems, each of which produces a single value for the random
variable. The key word is “similarly”. It means that all those variables or
boundary conditions that are determined (fixed, known, specified, or what-
ever) for the system in question have been set to the same values for each
member of the ensemble. For classical systems, similarly prepared does not
mean identically prepared since there must be some degrees of freedom left
to “chance”. An example of a classical system where the members of the
ensemble are not identical could be quartz crystals, each containing a sin-
gle impurity with a classical magnetic moment. Similar preparation could
involve specifying the temperature and pressure of the crystal, the applied
magnetic field, and the specific lattice site at which the impurity resides.
The unspecified degrees of freedom would be the instantaneous velocity and
displacements of all the atoms in the crystal. The random variable could be
the angle the magnetic moment makes with the applied field.

An example of a quantum ensemble where the members are truly identical
is a collection of nuclear isotopes such as 92U237, each prepared in the same
quantum state. No degree of freedom is left unspecified. The random variable
could be the time until the isotope decays by beta emission.

Of course, quantum mechanics and ignorance could both contribute to
the randomness. For example, the quantum state of the isotopes discussed
above, rather than being deterministic, could be distributed at random in a
manner consistent with thermal equilibrium at some very high temperature.
Each possible quantum state would then have its own decay mode and mean
lifetime. Both quantum uncertainty and thermal weighting would contribute
to the distribution of emission times.

Assume that an ensemble contains a very large number M of similarly
prepared systems. Let the random variable in question be x. The nth member
of the ensemble produces the variable xn.
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Imagine compiling a histogram indicating the number of systems for which
x falls within certain intervals. The probability density function px(ζ) is
defined in terms of such a histogram:

px(ζ) ≡ lim
M → ∞
dζ → 0

number of systems with ζ ≤ x < ζ + dζ

M dζ

As a consequence, if one were to examine a single system prepared in the
same manner as the hypothetical ensemble, the probability that its output
variable x would fall between ζ and ζ + dζ would be px(ζ)dζ. [Note: Often
px(ζ) is simply written as p(x). When there is a chance of ambiguity or
confusion, the longer form with the physical quantity as a subscript and a
dummy variable as an argument will be used. In other cases, as in examples
when the meaning is clear, the shorter form with the physical quantity as
the argument may be used.]

Several properties of px(ζ) follow immediately from its definition as the
limiting form of a histogram.

px(ζ) ≥ 0 for all ζ

probabililty(a < x ≤ b) =
∫ b

a
px(ζ) dζ

∫ ∞

−∞
px(ζ) dζ = 1

A related quantity which will be found to be very useful is the probability dis-
tribution function, Px(ζ); it is sometimes referred to by the more descriptive
phrase cumulative probability.

Px(ζ) ≡ probability(x ≤ ζ)

=
∫ ζ

−∞
px(ζ

′) dζ ′
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⇒ px(ζ) =
d

dζ
Px(ζ)

Px(ζ) contains no new information; it can be found directly from px(ζ) by
integration. Similarly px(ζ) can be found from Px(ζ) by differentiation.

A random variable is completely specified by giving its probability density
(or, what is equivalent, its distribution function). px(ζ) contains all that
it is possible to know about the random variable x for a given system. Of
course if the specification of the system is changed by changing the boundary
conditions or by constraining some degrees of freedom that were previously
left unconstrained, one is dealing with a different problem, one with a new
px(ζ). The practical study of random variables reduces to two questions:
“How can px(ζ) be found?” and “What information can be extracted from
px(ζ) once it is known?”. These notes focus on the latter question. The
former is the subject of the remainder of this course and a companion course
in quantum mechanics.

Example: Radioactive Decay

Given [Note: There will be many examples in this course. Such examples
are much more satisfying when based on a physical phenomenon rather than
a dimensionless mathematical expression. The danger is that the student
may feel obligated to understand the physics of the specific system intro-
duced, a pulsar for example. Although some background information may
be presented, it is to be taken as “given”. The student will be responsible
only for the physics and techniques applied to the given situation.]

A radioactive source containing millions of excited nuclei is separated
from a detector by a shutter. When the shutter is open, decays are detected
at a mean rate of τ−1 events per second. If the shutter is opened at a time
t = 0, the probability density for the waiting time t to the first detected
event is

p(t) =

{
τ−1e−t/τ t ≥ 0
0 t < 0.

Problem Examine and discuss p(t) and P (t).

Solution The probability density is presented in its abbreviated form,
rather than the more complete form pt(ζ). The random variable is continuous
and is defined for all times greater than or equal to zero.
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The density is normalized.
∫ ∞

−∞
p(t) dt =

∫ ∞

0
e−t/τ dt

τ
=
∫ ∞

0
e−y dy

= 1

The cumulative function is found by integration.

P (t) =
∫ t

−∞
pt(ζ) dζ =

∫ t

0
e−ζ/τ dζ

τ
=
∫ t/τ

0
e−y dy

= 1 − e−t/τ t ≥ 0

0 2 3 4

P(t)

t
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The density can be recovered from the cumulative by differentiation.

p(t) =
d

dt
P (t) = −(

−1

τ
) e−t/τ

= τ−1e−t/τ t ≥ 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The next example concerns a discrete random variable. It could be dealt

with by presenting a table of probabilities, one for each allowed value of the
variable. However, it is easier to visualize pictures than tables. Also, it
is convenient to deal with continuous, discrete, and mixed variables with a
single formalism. Therefore, the concept of a δ function is employed.

Mathematics: The δ Function

The δ function has the following properties.

δ(x) = 0 if x (= 0

δ(x) → ∞ (it is undefined) if x = 0

∫ ε

−ε
δ(x) dx = 1 for all ε > 0

Its graphical representation is a vertical arrow.

(x)

0 x

(x-a)

0 xa

The δ function can be thought of as the limit of a narrow, normalized
function as the width goes to zero.
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Rectangular Model

δ(x) = limw→0






1
w |x| ≤ w

2

0 |x| > w
2

Gaussian Model

δ(x) = limσ→0
1√

2πσ2
exp[− x2

2σ2
]

2

(2 2)-1/2

If a well behaved function f(x) is multiplied by a δ function and that
product is integrated over all space, the result is the value of f(x) at the
location of the δ function.

0 x

b ∫ ∞

−∞
f(x)(b δ(x)) dx = bf(0)

0 x

b

a

∫ ∞

−∞
f(x)(b δ(x−a)) dx = bf(a)

Note that it is customary to indicate the coefficient of the δ function by
a number (or expression) next to its symbol on a graph. The integral of a δ
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function is a unit step.

∫ x

−∞
δ(ζ − a) dζ =

{
0 x < a
1 x ≥ a

(x-a)

0 xa 0 xa

1
(x-a) dx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example: Closely Bound Stars

Given Many “stars” are in fact closely bound groups (not to be confused
with more widely spaced aggregations such as globular and open clusters).
For illustrative purposes one might use the following probabilities for the
number n of stars in a closely bound group.

pn(0) = 0 by definition
pn(1) = 1/3 a single star, such as the Sun (unless you believe in Nemisis)
pn(2) = 1/2 a binary, as in Sirius
pn(3) = 1/6 a trinary, as in α Centari

pn(> 3) = negligible

Problem Examine and discuss the probabilities.

Solution The probabilities can be displayed on a graph using δ functions.
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Here x is used as the variable to emphasize the continuous nature of the
horizontal axis.

p(x) =
1

3
δ(x − 1) +

1

2
δ(x − 2) +

1

6
δ(x − 3)

∫ ∞

−∞
p(x) dx =

1

3
+

1

2
+

1

6
= 1

P (x) =
∫ x

−∞
px(ζ) dζ = 0 x < 1

= 1/3 1 ≤ x < 2
= 5/6 2 ≤ x < 3
= 1 3 ≤ x

P(x) 1

Differentiation of P (x) produces δ functions at each step discontinuity with
coefficients equal to the height of the step. Thus p(x) is recovered.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example: A Logged Forest

Given Loggers enter a mature forest and cut down one sixth of the trees,
leaving stumps exactly 4 feet high.

Problem Sketch p(h) and P (h) for the subsequent tree trunk height h.

Solution This is an example of a random variable having a spectrum of
possible values containing both a discrete and a continuous part.
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p(h)

h4 40

1/6
P(h)

4 40 h

1

1/6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The above example is admittedly fatuous, but it does provide a simple

illustration of a mixed random variable and the associated probability func-
tions. The next example has more physical content.

Example: Xenon Ultraviolet Light Source

Given An electric discharge is maintained in xenon gas. The intensity of
the emitted light as a function of wavelength is shown in the figure.

Problem Discuss the nature of the spectrum and cast the measurements
in the form of a probability density.

Solution It was mentioned earlier that the bound electron states of atoms
have discrete energies and the unbound (ionized) states have a continuum
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of energies. Transitions between bound states will give rise to photons with
sharply defined energies. Transitions from bound to unbound states, or be-
tween unbound ones, give rise to a continuous distribution of photon energies.
This explains the presence of both sharp lines and a continuous portion in
the xenon data. Note that the discrete and continuous parts of the electron
energy spectrum in the atom do not overlap; however, the discrete and con-
tinuous parts of the photon energy spectrum, arising from differences of elec-
tronic energies, do overlap.

A careful study of the figure reveals some interesting features. The ver-
tical axis displays the current obtained at the output of photo-multiplier
tube. This current is directly proportional to the number of photons from
the incident light beam which fall on the photocathode. If one assumes that
the sensitivity of the photocathode is independent of the wavelength of the
photons in the region of interest, then the amplitude of the displayed curve
can be taken to be proportional to the number of detected photons. (In
modern experiments, in particular when the incoming light is very weak, one
often counts and records the number of photoelectron events directly.) The
sharp lines in the figure are not delta functions; rather, they have a finite
width. This width could be intrinsic, due to the finite lifetime of the excited
electronic states of the atom, or it could be instrumental, due to the finite
resolving power of the spectrometer. The small scale fluctuations in the trace
(the “grass” whose height increases with increasing continuum intensity) is
not an intrinsic feature of the continuum emission. It is an artifact of the
detection process known as shot noise. Shot noise will be discussed later in
the course.

The horizontal axis displays the wavelength λ of the light. The wavelength
of the photons emitted by the source can be considered a random variable.
The trace in the figure would then be proportional to pλ(ζ) where pλ(ζ) dζ
is the probability that a given detected photon would have a wavelength
between ζ and ζ + dζ.
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1600 1800 2000

p ( )

Often it is more physical to think about the energy of a photon rather
than its wavelength. The energy is inversely proportional to the wavelength,
E = 2πh̄c/λ, so a simple linear scaling of the horizontal axis will not give the
probability of finding a photon of energy E. A technique will be introduced
later, functions of a random variable, that can be used to find the probability
density for a variable y ≡ a/x if the probability density for x is known.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The probability density contains complete information about a random

variable. Many times, however, less information is needed for a particular
application. The desired information often takes the form of an ensemble
average of a function f(x) of the random variable x. Such an average can be
computed as an integral over the probability density.

< f(x) >≡
∫ ∞

−∞
f(ζ)px(ζ) dζ

Some averages occur frequently enough to deserve separate names. The
mean, < x >, is the average value of the random variable itself. It is a
measure of the location of p(x) along the x axis.

< x >=
∫ ∞

−∞
xp(x) dx

The mean square, < x2 >, is often associated with the energy in a field or
power in a signal.

< x2 >=
∫ ∞

−∞
x2p(x) dx
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The variance, Var(x), is a quadratic measure of the fluctuations of x about
its mean.

Var(x) ≡ < (x− < x >)2 >

=
∫ ∞

−∞
(x− < x >)2p(x) dx

=
∫ ∞

−∞
x2p(x) dx − 2 < x >

∫ ∞

−∞
xp(x) dx+ < x >2

∫ ∞

−∞
p(x) dx

= < x2 > −2 < x >< x > + < x >2

= < x2 > − < x >2

The standard deviation is defined as the square root of the variance. It is a
measure of the width of the probability density.

Example: The Gaussian Density

Given Probability densities of the Gaussian form

p(x) =
1√

2πσ2
exp[−(x − a)2

2σ2
]

a a+a- x

p(x)

are frequently encountered in science and engineering. They occur in thermal
equilibrium when the variable makes a quadratic contribution to the energy
of the system (the x component of the velocity of an atom in a gas for
example). They also occur when the variable is the sum of a large number
of small, independent contributions (such as the final displacement after a
random walk along a line).

Problem Find the mean, variance, and standard deviation for a random
variable with a Gaussian probability density. Sketch P (x).
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Solution

< x > =
∫ ∞

−∞
xp(x) dx

=
1√

2πσ2

∫ ∞

−∞
x exp[−(x − a)2

2σ2
] dx

Let η = x − a; then dη = dx

= a
1√

2πσ2

∫ ∞

−∞
exp[− η2

2σ2
] dη

︸ ︷︷ ︸
1

+
1√

2πσ2

∫ ∞

−∞
η exp[− η2

2σ2
] dη

︸ ︷︷ ︸
0

= a

< x2 > =
∫ ∞

−∞
x2p(x) dx

=
1√

2πσ2

∫ ∞

−∞
(η2 + 2ηa + a2) exp[− η2

2σ2
] dη

=
1√

2πσ2

∫ ∞

−∞
η2 exp[− η2

2σ2
] dη

︸ ︷︷ ︸√
2πσ3

+0 + a2

= σ2 + a2

Var(x) =< x2 > − < x >2= σ2

Standard Deviation = σ

Note that the Gaussian density is completely specified by two parameters,
its mean and its variance. In the case where a = 0 the cumulative function
is
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P (x) =
1√

2πσ2

∫ x

−∞
exp[− ζ2

2σ2
] dζ

0- x

P(x) 1

The integral can not be expressed as a closed form expression using simple
functions. It can be found tabulated as the “error function”.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example: The Poisson Density

Given Imagine a situation in which events occur at random along a line
X and are governed by the two conditions

• In the limit∆X → 0 the probability that one and only one event occurs
between X and X +∆X is given by r∆X, where r is a given constant
independent of X.

• The probability of an event occurring in some interval ∆X is statisti-
cally independent of events in all other portions of the line.

X
L

Under these circumstances the probability that exactly n events will occur
in an interval of length L is given by the Poisson probability:

p(n) =
1

n!
(rL)ne−rL n = 0, 1, 2, · · ·

Although this result is to be taken as a given now, it will be derived in the
next section. The Poisson probability can be cast in terms of a continuous
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random variable y as follows:

p(y) =
∞∑

n=0

p(n) δ(y − n)

This is shown below for the case were rL = 3.5.

p(y)

0.2

0.1

0 2 4 6 8 y

The number of decays detected in a lump of radioactive material in a
time T will be Poisson. Of course T would have to be short compared to
the mean lifetime of a single nucleus, or the mean decay rate would change
during the interval T (as the lump is depleted of excited nuclei) and the first
condition would be violated.

When the Poisson density is derived later it will become clear that it is
not restricted to a one-dimensional geometry. As long as events in different
“regions” are statistically independent the results will be Poisson even if the
regions are arrayed in a two or three dimensional pattern. The number of 3He
atoms in one square millimeter of a liquid monolayer of naturally occurring
helium (0.013% 3He) would be Poisson. [Note that since two atoms can not
occupy the same spot, the second condition above will be violated if the mean
distance between 3He atoms becomes comparable to atomic dimensions.] The
number of atoms closer than 100 angstroms to a given atom in a dilute non-
interacting 3-dimensional gas similarly would be Poisson.

Problem Check the normalization, find the mean and variance, and show
that the density is specified by a single parameter, its mean.
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Solution
Normalization

∫ ∞

−∞
p(y) dy =

∫ ∞

−∞

∞∑

n=0

p(n)δ(y − n) dy

=
∞∑

n=0

p(n)
∫ ∞

−∞
δ(y − n) dy

︸ ︷︷ ︸
1

=
∞∑

n=0

p(n)

= e−rL
∞∑

n=0

1

n!
(rL)n = e−rLerL

= 1

Mean

< n > =
∫ ∞

−∞
yp(y) dy =

∞∑

n=0

p(n)
∫ ∞

−∞
yδ(y − n) dy

︸ ︷︷ ︸
n

=
∞∑

n=0

np(n) = e−rL
∞∑

n=0

n

n!
(rL)n

This sum can be done by differentiating the previous sum used to check the
normalization.

d

dr
[
∞∑

n=0

1

n!
(rL)n] =

∞∑

n=0

n

n!
rn−1Ln =

1

r

∞∑

n=0

n

n!
(rL)n

Alternatively
d

dr
[
∞∑

n=0

1

n!
(rL)n] =

d

dr
[erL] = LerL

Equating the two results gives the required sum.

∞∑

n=0

n

n!
(rL)n = rLerL
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Finally

< n > = e−rLrLerL

= rL

= (rate) × (interval)

Mean Square

< n2 >=
∞∑

n=0

n2p(n) = e−rL
∞∑

n=0

n2

n!
(rL)n

Again, proceed by differentiating the previous sum, the one worked out for
the mean.

d

dr
[
∞∑

n=0

n

n!
(rL)n] =

∞∑

n=0

n2

n!
rn−1Ln =

1

r

∞∑

n=0

n2

n!
(rL)n

Alternatively

d

dr
[
∞∑

n=0

n

n!
(rL)n] =

d

dr
[rLerL] = LerL + rL2erL

Again, equating the two results gives the required sum.
∞∑

n=0

n2

n!
(rL)n = rLerL + (rL)2erL

Concluding the calculation

< n2 > = e−rL(rL + (rL)2)erL

= rL + (rL)2

= < n > + < n >2

Variance

Var(n) = < n2 > − < n >2

= < n >

The Poisson probability is most conveniently expressed in terms of its mean:

p(n) =
1

n!
< n >n e−<n> where < n >= rL.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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2 Two Random Variables

A number of features of the two-variable problem follow by direct analogy
with the one-variable case: the joint probability density, the joint probability
distribution function, and the method of obtaining averages.

px,y(ζ, η)dζdη ≡ prob.(ζ < x ≤ ζ + dζ and η < y ≤ η + dη)

Px,y(ζ, η) ≡ prob.(x ≤ ζ and y ≤ η)

=
∫ ζ

−∞

∫ η

−∞
px,y(ζ

′, η′)dζ ′dη′

px,y(ζ, η) =
∂

∂ζ

∂

∂η
Px,y(ζ, η)

< f(x, y) >=
∫ ∞

−∞

∫ ∞

−∞
f(ζ, η)px,y(ζ, η)dζdη

The discussion of two random variables does involve some new concepts:
reduction to a single variable, conditional probability, and statistical indepen-
dence. The probability density for a single variable is obtained by integrating
over all possible values of the other variable.

px(ζ) =
∫ ∞

−∞
px,y(ζ, η)dη

py(η) =
∫ ∞

−∞
px,y(ζ, η)dζ

These expressions arise because px refers to the probability density for x
regardless of the value of y.

At the other extreme of knowledge (or lack of it) is the conditional prob-
ability density px(ζ|y), defined to be the probability density for x given that
y is known to have the indicated value.

px(ζ|y)dζ ≡ prob.(ζ < x ≤ ζ + dζ given that η = y)
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Note that in the expression px(ζ|y), ζ is a variable but y is simply a pa-
rameter. px(ζ|y) has all the properties of a probability density function of
a single random variable, ζ. The following picture may be helpful in under-
standing the connection between the joint probability density px,y(ζ, η) and
the conditional probability density px(ζ|y).

( )

( ) = (

The specification that y is known restricts the possibilities to those lying on
the line η = y in the ζ – η plane. Therefore, px(ζ|y) must be proportional to
px,y(ζ, y):

px,y(ζ, y) = c px(ζ|y).

The constant of proportionality, c, can be found by integrating both sides of
the above equality over all ζ.

∫ ∞

−∞
px,y(ζ, y) dζ = py(η = y) {reduction to a single variable }

c
∫ ∞

−∞
px(ζ|y) dζ

︸ ︷︷ ︸
1

= c {normalization of px(ζ|y) }

⇒ c = py(η = y)

This result is known as Bayes’ Theorem or the fundamental law of conditional
probability:

px,y(ζ, y) = px(ζ|y)py(η = y)
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The result can be viewed in two ways. It can be interpreted as a way of
finding the conditional density from the joint density (and the density of the
conditioning event which can be recovered from the joint density):

p(x|y) =
p(x, y)

p(y)
.

This view is illustrated in the previous figure where p(x|y) is exposed by
‘slicing through’ p(x, y). Alternatively Bayes’ theorem can be interpreted as
a way of constructing the joint density from a conditional density and the
probability of the conditioning variable:

p(x, y) = p(x|y)p(y).

This is illustrated below for the two possible choices of conditioning variable.
Here, as with store-bought bread, one can reassemble the loaf by stacking
the individual slices side by side.
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The two random variables are said to be statistically independent (S.I.)
when their joint probability density factors into a product of the densities of
the two individual variables:

px,y(ζ, η) = px(ζ)py(η) if x and y are S.I.

Physically, two variables are S.I. if knowledge of one gives no additional
information about the other beyond that contained in its own unconditioned
probability density:

p(x|y) =
p(x, y)

p(y)
= p(x) if x and y are S.I.

Example: Uniform Circular Disk

Given The probability of finding an event in a two dimensional space is
uniform inside a circle of radius 1 and zero outside of the circle.

p(x, y) = 1/π x2 + y2 ≤ 1
= 0 x2 + y2 > 1

Problem Find p(x), p(y), and p(x|y). Are x and y S.I.?

Solution

p(x) =
∫ ∞

−∞
p(x, y) dy =

∫ √
1−x2

−
√

1−x2

1

π
dy =

2

π

√
1 − x2 |x| ≤ 1

= 0 |x| > 1
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By symmetry, the functional form for p(y) will be identical.

p(y) =
2

π

√
1 − y2 |y| ≤ 1

= 0 |y| > 1

It is apparent that the product of p(x) and p(y) does not equal p(x, y), so the
random variables x and y are not S.I. The conditional probability is found
from Bayes’ theorem.

p(x|y) =
p(x, y)

p(y)
=

(1/π) {when x2 ≤ 1 − y2}
(2/π)

√
1 − y2 {when y2 ≤ 1}

=
1

2
√

1 − y2
|x| ≤

√
1 − y2

= 0 elsewhere

It is not surprising that p(x|y) is a constant when one considers the following
interpretation.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example: Derivation of the Poisson Density

Given Events occurring at random alone a line X are governed by the
following two conditions:

• In the limit∆X → 0 the probability that one and only one event occurs
between X and X +∆X is given by r∆X, where r is a given constant
independent of X.

• The probability of an event occurring in some interval ∆X is statisti-
cally independent of events in all other portions of the line.

Problem

a) Find the probability p(n = 0; L) that no events occur in a region of
length L. Proceed by dividing L into an infinite number of S.I. intervals
and calculate the joint probability that none of the intervals contains
an event.

b) Obtain the differential equation

d

dL
p(n; L) + rp(n; L) = rp(n − 1; L)

as a recursion relation governing the p(n;L).
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c) Show that the Poisson density

p(n; L) =
1

n!
(rL)ne−rL

is a solution of the equation. Is it unique?

Solution

a) To find p(n = 0; L) divide L into intervals each of length dL:

Consider dL so short that p(0) >> p(1) >> p(n > 1) in dL. But the
probabilities must sum to unity, p(0) + p(1) + p(2) + · · · = 1, so one can find
an approximation to p(0) which will be valid in the limit of small dL.

p(0) ≈ 1 − p(1) = 1 − r(dL)

The probability of an event in any sub-interval is S.I. of the events in
every other sub-interval, so

p(n = 0; L) =
m=L/dL∏

m=1

(1 − r(dL))

ln p(n = 0; L) =
∑

m

ln(1 − r(dL))

ln p(n = 0; L) ≈
m=L/dL∑

m=1

−r(dL)

= −
(

L

dL

)
r(dL) = −rL

p(n = 0; L) = e−rL
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Note that
∫∞
0 p(n = 0; L) dL (= 1 since p(n = 0; L) is not a probability density

for L, rather it is one element of a discrete probability density for n which
depends on L as a parameter.

b) Now consider the span X = 0 to X = L+∆L to be composed of the finite
length L and an infinitesimal increment ∆L.

The two intervals are S.I. so one may decompose p(n; L + ∆L) in terms of
two mutually exclusive events.

p(n; L +∆L) = p(n; L)p(0;∆L) + p(n − 1; L)p(1;∆L)

= p(n; L)(1 − r∆L) + p(n − 1; L)(r∆L)

Rearranging

p(n; L +∆L) − p(n; L)

∆L
= rp(n − 1; L) − rp(n; L)

Passing to the limit ∆L → 0 gives

d p(n; L)

dL
= rp(n − 1; L) − rp(n; L)
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c) To show that the Poisson density satisfies this equation, take its derivative
with respect to L and compare the result with the above expression.

p(n; L) =
1

n!
(rL)ne−rL

d

dL
p(n; L) = r

n

n!
(rL)n−1e−rL − r

1

n!
(rL)ne−rL

= r
1

(n − 1)!
(rL)n−1e−rL − r

1

n!
(rL)ne−rL

= rp(n − 1; L) − rp(n; L)

This solution is unique when the differential recursion relation is supple-
mented by the boundary conditions

p(0; L) = e−rL

p(n; 0) = 0 n (= 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Extended Example: Jointly Gaussian Random Variables

Introduction The purpose of this example is to examine a particular joint
probability density and the information that can be extracted from it. We
will focus our attention on a physical example that might be encountered
in the laboratory. However, the origin of the effect is not of concern to us
now. We are interested instead in understanding and manipulating a given
probability density.

The System Consider an electronic circuit with all sources (power supplies
and signal inputs) turned off. If one looks at a given pair of terminals with
an oscilloscope, the voltage appears to be zero at low gain, but at high gain
there will be a fluctuating random voltage that might look as follows:
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The origin of this “noise” voltage is the random thermal motion of electrons
in the components. It is referred to as “thermal noise” or “Johnson noise”
and is different from the “shot noise” associated with the quantization of
charge. This noise is still present when the sources are turned on and may
complicate the detection of a weak signal. Later in the course quantitative
expressions will be derived for the amplitude of this type of noise. For the
present, observe the following features of the voltage:

1) It has zero mean.

2) Its average magnitude |v| seems relatively well defined and excursions
too far above this magnitude are unlikely.

3) The “statistics” do not seem to change with time.

4) There is a “correlation time” τc such that over time intervals much less
than τc the signal does not change appreciably.

5) The voltages at times separated by much more than τc seem to be
statistically independent.

The noise voltage described above evolves in time and is an example of
a random process. The study of random processes is a separate field of its
own and we will not get involved with it here. Rather, we will simply note
that by evaluating the random process at two separate times we can define a
pair of random variables. For an important and frequently occurring class of
random processes the two variables thus defined will be described by a jointly
Gaussian (or bivariate Gaussian) probability density. It is this probability
density that we will examine here.
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The Joint Probability Density

p(v1, v2) =
1

2πσ2
√

1 − ρ2
exp[−v2

1 − 2ρv1v2 + v2
2

2σ2(1 − ρ2)
]

In the above joint probability density σ and ρ are parameters. σ is a con-
stant, independent of time, which governs the amplitude of the variables.
ρ is a function of the time interval between the measurements, |t2 − t1|; it
determines how strongly the two variables are correlated and is referred to
as the correlation coefficient. The magnitude of ρ is less than or equal to
one: |ρ| ≤ 1. Physically one expects that ρ will be close to one for very small
values of |t2 − t1| and will decrease to zero for large time separations. We
will take this joint probability density as given and examine its properties.

The variables v1 and v2 appear as a quadratic form in the exponent. Thus
lines of constant probability are ellipses in the v1, v2 plane; when ρ > 0 the
major axis will be along v1 = v2 and the minor axis will be along v1 = −v2;
for ρ < 0 the location of the major and minor axes is reversed. The ellipses
are long and narrow for |ρ| ∼= 1; they become circles when ρ = 0.
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Reduction to a Single Variable

p(v1) =
∫ ∞

−∞
p(v1, v2) dv2

=
1

2πσ2
√

1 − ρ2

∫ ∞

−∞
exp[−(v2

2 − 2ρv1v2 + ρ2v2
1) + (v2

1 − ρ2v2
1)

2σ2(1 − ρ2)
] dv2

=
1

2πσ2
√

1 − ρ2
exp[− v2

1

2σ2
]
∫ ∞

−∞
exp[− (v2 − ρv1)2

2σ2(1 − ρ2)
] dv2

︸ ︷︷ ︸√
2πσ2(1−ρ2)

=
1√

2πσ2
exp[− v2

1

2σ2
] {a zero mean gaussian with variance σ2 }

A similar result is found for p(v2).

p(v2) =
1√

2πσ2
exp[− v2

2

2σ2
]

The probability densities for v1 and v2 are identical in form, so one concludes
that the single time probability densities are independent of time.

Statistical Independence

p(v1, v2) = p(v1)p(v2) only when ρ = 0

This implies that v1 and v2 are not statistically independent unless ρ = 0,
that is, at large time separations between t1 and t2.

Conditional Probability

p(v2|v1) =
p(v1, v2)

p(v1)

=
1

√
2πσ2(1 − ρ2)

exp[−
(

(v2
2 − 2ρv1v2 + v2

1)

2σ2(1 − ρ2)
− v2

1(1 − ρ2)

2σ2(1 − ρ2)

)

]

=
1

√
2πσ2(1 − ρ2)

exp[− (v2 − ρv1)2

2σ2(1 − ρ2)
]

This is a Gaussian with mean ρv1 and variance σ2(1 − ρ2).
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Compare these plots of p(v2|v1) with an imaginary cut of one of the plots of
p(v1, v2) by a vertical plane at constant v1. This will allow you to picture the
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relation

p(v2|v1) ∝ p(v1, v2).

The exact dependence of ρ on |t2 − t1| depends on the details of the circuit
in which the voltage is measured.

The Correlation Function The correlation function for a random process
such as the noise voltage we are discussing is defined as

R(τ) ≡< v(t)v(t + τ) > .

Here we have assumed that the statistics of the process do not change with
time so that the correlation function depends only on the time difference,
not the actual times themselves. In our notation then τ = t2 − t1 and
R(τ) = R(t2 − t1). We can now find the correlation function in terms of the
parameters appearing in the joint probability density.

< v1v2 > =
∫ ∞

−∞

∫ ∞

−∞
v1v2p(v1, v2) dv1 dv2

=
∫ ∞

−∞

∫ ∞

−∞
v1v2p(v2|v1)p(v1) dv1 dv2

=
∫ ∞

−∞
v1p(v1)

∫ ∞

−∞
v2p(v2|v1) dv2

︸ ︷︷ ︸
conditional mean = ρ(τ)v1

dv1

= ρ(τ)
∫ ∞

−∞
v2

1p(v1) dv1

︸ ︷︷ ︸
<v2>=σ2

Thus the correlation function for the random process can be written in the
simple form R(τ) = σ2ρ(τ) and the correlation coefficient ρ can be interpreted
as the normalized correlation function for the process.

In the figures presented above ρ has been displayed, for simplicity, as
positive. However for some random processes ρ may become negative, or
even oscillate, as it decays toward zero. Consider the random process that
generates the following output.
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The frequencies which contribute to the process seem to be peaked around
500 Hz. Thus if the signal were positive at a given time one might expect
that it would be negative half a “period” later (1 ms) and, more likely than
not, positive again after a delay of 2 ms. This physically expected behavior
is reflected in the τ dependence of the correlation coefficient shown below.

One possible random process with these characteristics is the noise voltage
of an electronic circuit that is resonant near a single frequency. If the circuit
had a very high Q, the correlation function might oscillate many times before
falling away to zero.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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3 Functions of a Random Variable

Consider a gas in thermal equilibrium and imagine that the probability den-
sity for the speed of an atom pv(ζ) is known. The variable of interest, for
a particular application, is an atom’s kinetic energy, T ≡ 1

2mv2. It would
be a simple matter to compute the mean value of T , a single number, by
using pv(ζ) to find < v2 >. But perhaps more information about the random
variable T is needed. To completely specify T as a random variable, one
needs to know its own probability density pT (η). Finding pT (η) given pv(ζ)
is a branch of probability known as functions of a random variable.

Let f(x) be some known, deterministic function of the random variable
x (as T (v) is a function of v above). There are several ways of obtaining the
probability density for f , pf (η), from the probability density for x, px(ζ).
They are covered in textbooks on random variables. Only one of these meth-
ods will be introduced here, one which always works and one which proves to
be the most useful in situations encountered in physics. The method consists
of a three step process:

A. Sketch f(x) verses x and determine that region of x in which f(x) < η.

B. Integrate px over the indicated region in order to find the cumulative
distribution function for f , that is Pf (η).

C. Differentiate Pf (η) to obtain the density function pf (η).

At first sight it may appear that the integration in step B could lead to
computational difficulties. This turns out not to be the case since in most
instances one can avoid actually computing the integral by using the following
mathematical result.

Mathematics: Derivative of an Integral Expression

If

G(y) ≡
∫ b(y)

a(y)
g(y, x) dx,

then

dG(y)

dy
= g(y, x = b(y))

db(y)

dy
− g(y, x = a(y))

da(y)

dy
+
∫ b(y)

a(y)

∂g(y, x)

∂y
dx.
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This result follows from examining how the value of the integral changes as
the upper limit b(y), the lower limit a(y), and the kernel g(y, x) are separately
varied as indicated in the following figure.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example: Classical Intensity of Polarized Thermal Light

Given The classical instantaneous intensity of a linearly polarized elec-
tromagnetic wave is proportional to the square of the electric field amplitude
E .

I = aE2

The fact that the power or intensity in some process is proportional to the
square of an amplitude is a common occurrence in nature. For example, it is
also found in electrical and acoustic systems. When the radiation field is in
thermal equilibrium with matter at a given temperature it is called thermal
radiation and the electric field amplitude has a Gaussian density.

p(E) =
1√

2πσ2
e−E2/2σ2

Problem Find the probability density for the instantaneous intensity p(I).

Solution Note that finding the mean intensity is straight forward.

< I >= a < E2 >= aσ2
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To find p(I) use the procedure outlined above.

[Step A]

I

The shaded region of the E axis shows those values of E which result in
intensities less than η.

[Step B]

PI(η) =
∫ √

η/a

−
√

η/a
pE(ζ) dζ

It is not necessary to evaluate this integral! Setting it up with the proper (η
dependent) limits of integration is sufficient.

[Step C]

pI(η) =
d

dη
PI(η)

=
d

dη

∫ √
η/a

−
√

η/a
pE(ζ) dζ

=
1

2

1
√

ηa
pE(

√
η/a) +

1

2

1
√

ηa
pE(−

√
η/a)
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=
1

2

1
√

ηa
[pE(

√
η/a) + pE(−

√
η/a)]

This general result applies to any probability density for the electric field,
p(E). For the specific case under consideration, where p(E) is Gaussian, one
can proceed to an analytic result.

p(I) =
1√
aI

pE(
√

I/a) since pE(ζ) is even

=
1√

2πaσ2I
exp[− I

2aσ2
] I > 0

= 0 I < 0

0 1 2 3 4

1

2

3

4

5

I

I

The integrable singularity at I = 0 is a consequence of two features of the
problem. The parabolic nature of I(E) emphasizes the low E part of p(E).
Imagine a series of equally spaced values of E . The corresponding values of
I would be densest at small I.
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I

This type of mapping will be treated quantitatively later in the course when
the concept of “density of states” is introduced. The Gaussian nature of p(E)
gives a finite weight to the values of E close to zero. The result of the two
effects is a divergence in p(I) at I = 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example: Harmonic Motion

Given

p(θ) =
1

2π
0 ≤ θ < 2π

= 0 elsewhere

x(θ) = x0 sin(θ)

One physical possibility is that x represents the displacement of a harmonic
oscillator of fixed total energy but unknown phase or starting time:

x = x0 sin(ωt + φ︸ ︷︷ ︸
θ

).

Another possibility is a binary star system observed from a distant location
in the plane of motion. Then x could represent the apparent separation at
an arbitrary time.
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Problem Find p(x).

Solution Consider separately the two regions x > 0 and x < 0.
For x > 0

[Step A]

[Step B]

Px(η) =
∫

shaded
pθ(ζ) dζ = 1 −

∫

unshaded
pθ(ζ) dζ

= 1 −
∫ π−arcsin(η/x0)

arcsin(η/x0)
(

1

2π
) dζ

=
1

2
+

1

π
arcsin(η/x0)
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[Step C]

px(η) =
d

dη
Px(η)

=
1

π

1
√

1 − (η/x0)2

1

x0

=
1

π

1
√

x2
0 − η2

0 ≤ η < x0

For x < 0

[Step A]

[Step B]

Px(η) =
∫ 3π−arcsin(η/x0)

arcsin(η/x0)
(

1

2π
) dζ

=
3

2
− 1

π
arcsin(η/x0)

[Step C]

px(η) =
d

dη
Px(η)
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= − 1

π

−1
√

1 − (η/x0)2

1

x0

=
1

π

1
√

x2
0 − η2

− x0 < η ≤ 0

Note: the extra -1 in the second line comes about since the derivative of
arcsin(ζ) is negative in the region π/2 < arcsin(ζ) < 3π/2. One could also
have obtained the result for x < 0 from that for x > 0 by symmetry.

The divergence of p(x) at the “turning points” x = ±x0 can be demonstrated
visually by a simple experiment with a pencil as explained in a homework
problem.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The method of functions of a random variable can can also be applied

in cases where the function in question depends on two or more random
variables with known probabilities, that is one might want to find p(f) for a
given f(x, y) and p(x, y).

Example: Product of Two Random Variables

Given x and y are defined over all space and px,y(ζ, η) is known.

Problem Find p(z) where z ≡ xy.
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Solution Consider the regions z > 0 and z < 0 separately.
For z > 0

[Step A]

z is less than the specific positive value γ in the shaded regions of the x, y
plane.

[Step B]

Pz(γ) =
∫ 0

−∞
dζ

∫ ∞

γ/ζ
dη px,y(ζ, η) +

∫ ∞

0
dζ

∫ γ/ζ

−∞
dη px,y(ζ, η)

[Step C]

pz(γ) =
d

dγ
Pz(γ)

= −
∫ 0

−∞

dζ

ζ
px,y(ζ,

γ

ζ
) +

∫ ∞

0

dζ

ζ
px,y(ζ,

γ

ζ
)

=
∫ ∞

−∞

dζ

|ζ| px,y(ζ,
γ

ζ
) z > 0
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For z < 0

[Step A]

Now z is less than a specific negative value γ in the shaded regions of the
x, y plane.

[Step B]

Pz(γ) =
∫ 0

−∞
dζ

∫ ∞

γ/ζ
dη px,y(ζ, η) +

∫ ∞

0
dζ

∫ γ/ζ

−∞
dη px,y(ζ, η)

[Step C]

pz(γ) =
d

dγ
Pz(γ)

= −
∫ 0

−∞

dζ

ζ
px,y(ζ,

γ

ζ
) +

∫ ∞

0

dζ

ζ
px,y(ζ,

γ

ζ
)

=
∫ ∞

−∞

dζ

|ζ| px,y(ζ,
γ

ζ
) z < 0

This is the same expression which applies for positive z, so in general one
has

pz(γ) =
∫ ∞

−∞

dζ

|ζ| px,y(ζ,
γ

ζ
) for all z < 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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A common use of functions of a random variable is to carry out a change
in variables.

Example: Uniform Circular Disk Revisited

Given The probability of finding an event in a two dimensional space is
uniform inside a circle of radius 1 and zero outside of the circle.

p(x, y) = 1/π x2 + y2 ≤ 1
= 0 x2 + y2 > 1

Problem Find the joint probability density for the radial distance r and
the polar angle θ.

Solution

[Step A]

The shaded area indicates the region in which the radius is less than r and
the angle is less than θ.



46 Probability

[Step B]

P (r, θ) =
∫

shaded area
p(x, y) dx dy

=
1

π︸︷︷︸
p(x,y)

πr2
︸︷︷︸

area of disk

θ

2π︸︷︷︸
fraction shaded

=
θr2

2π

[Step C]

p(r, θ) =
∂

∂r

∂

∂θ
P (r, θ) =

r

π

p(r) =
∫ 2π

0
p(r, θ) dθ =

∫ 2π

0

r

π
dθ = 2r r < 1

= 0 r > 1

p(θ) =
∫ 1

0
p(r, θ) dr =

∫ 1

0

r

π
dr =

1

2π
0 ≤ θ < 2π

= 0 elsewhere

Note that r and θ are statistically independent (which is not the case for x
and y) since

p(r)p(θ) = (2r)(
1

2π
) =

r

π
= p(r, θ).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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4 Sums of Random Variables

Many of the variables dealt with in physics can be expressed as a sum of
other variables; often the components of the sum are statistically indepen-
dent. This section deals with determining the behavior of the sum from the
properties of the individual components. First, simple averages are used to
find the mean and variance of the sum of statistically independent elements.
Next, functions of a random variable are used to examine the probability
density of the sum of dependent as well as independent elements. Finally,
the Central Limit Theorem is introduced and discussed.

Consider a sum Sn of n statistically independent random variables xi.
The probability densities for the n individual variables need not be identical.

Sn ≡
n∑

i=1

xi

pxi(ζ) does not necessarily = pxj(ζ) for i (= j

< xi >≡ Ei < (xi − Ei)
2 >≡ σ2

i

The mean value of the sum is the sum of the individual means:

< Sn > =
∫

(x1 + x2 + · · · + xn) p(x1, x2, . . . , xn)
︸ ︷︷ ︸
p1(x1)p2(x2)···pn(xn)

dx1 dx2 · · · dxn

=
n∑

i=1

[
∫

xipi(xi) dxi
︸ ︷︷ ︸

Ei

][
∏

i&=j

∫
pj(xj) dxj

︸ ︷︷ ︸
1

]

=
n∑

i=1

Ei

The variance of the sum is the sum of the individual variances:

V ar(Sn) = < (Sn− < Sn >)2 >

= < (x1 − E1 + x2 − E2 + · · · + xn − En)2 >
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The right hand side of the above expression is a sum of terms, each quadratic
in x, having the following form:

< (xi − Ei)(xj − Ej) > = < xixj > − < xi > Ej− < xj > Ei + EiEj

= < xixj > −EiEj

=

{
< x2

i > −E2
i = σ2

i if i = j
0 if i (= j

Therefore,

V ar(Sn) =
n∑

i=1

σ2
i .

In the special case where all the individual xi’s have the same probability
density the above results reduce to

< Sn >= nEi , V ar(Sn) = nσ2
i .

Physically, the width of p(Sn) grows as
√

n while the mean of Sn grows as
n. The probability density becomes more concentrated about the mean as n
increases. If n is very large, the distribution develops a sharp narrow peak
at the location of the mean.

Now turn to the problem of finding the entire probability density, pS(α),
for the sum of two arbitrary random variables x and y represented by the
joint density px,y(ζ, η). This is a straight forward application of functions of
a random variable.
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PS(α) =
∫ ∞

−∞
dζ
∫ α−ζ

−∞
dη px,y(ζ, η)

ps(α) =
d

dα
PS(α)

=
∫ ∞

−∞
dζ px,y(ζ,α − ζ)

In this expression p(S) is given as a single integral over the joint density
p(x, y). The result is valid even when x and y are statistically dependent.
The result simplifies somewhat when x and y are statistically independent,
allowing the joint density to be factored into the product of two individual
densities.

pS(α) =
∫ ∞

−∞
dζ px(ζ)py(α − ζ) if x and y are S.I.

The integral operation involved in the last expression is known as convolu-
tion. The probability density for the sum of two S.I. random variables is
the convolution of the densities of the two individual variables. Convolu-
tion appears in other disciplines as well. The transient output of a linear
system (such as an electronic circuit) is the convolution of the impulse re-
sponse of the system and the input pulse shape. The recorded output of a
linear spectrometer (such as a grating spectrograph) is the convolution of the
instrumental profile and the intrinsic spectrum being measured.

The convolution of two functions p(x) and q(x) is designated by ⊗ and
is defined as

p ⊗ q ≡
∫ ∞

−∞
p(z)q(x − z)dz.

It is easy to show from this expression that convolution is commutative, that
is, the result does not depend on which function is taken first:

a ⊗ b = b ⊗ a.

Convolution is also distributive,

a ⊗ (b + c) = a ⊗ b + a ⊗ c,



50 Probability

and associative,
a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c.

Perhaps the best way to visualize the convolution integral is in terms of
a series of successive steps.

1. FLIP q(z) ABOUT THE ORIGIN OF ITS ARGUMENT TO FORM
THE MIRROR IMAGE q(−z).

2. SHIFT q(−z) TO THE RIGHT BY AN AMOUNT x TO FORM
q(−z + x).

3. MULTIPLY q(x − z) BY p(z).

4. INTEGRATE THE PRODUCT AND PLOT THE RESULT.
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5. REPEAT 2 THROUGH 4 FOR DIFFERENT VALUES OF x.

If p(z) and q(z) are each represented by a single analytic function for all z
one can work out the convolution integral mathematically with little thought
given to the above graphic procedure. On the other hand, when the input
functions are zero in some regions or are only piecewise continuous, then the
graphic procedure is useful in setting the proper limits of integration.

Example: Sum of Two Uniformly Distributed Variables

Given x and y are two statistically independent random variables, uni-
formly distributed in the regions |x| ≤ a and |y| ≤ b.

Problem Find the probability density p(S) for the sum S = x + y.

Solution The form of the integral will depend on the value of S. Three
separate regions need to be considered. Assume as indicated above that
b < a.

0 < S < a − b
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p(S) =
∫ S+b

S−b
(

1

2a
)(

1

2b
) dx =

1

2a

a − b < S < a + b

p(S) =
∫ a

S−b
(

1

2a
)(

1

2b
) dx =

a + b − S

(2a)(2b)

a + b < S

p(S) = 0 since there is no overlap

The symmetry of the problem demands that the result be even in S. The

final result is plotted below.
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When the widths of the two probability densities are the same, the density
for the sum becomes triangular.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example: Classical Intensity of Unpolarized Light

Given An unpolarized beam of thermal light can be viewed as two sta-
tistically independent beams of equal average intensity, polarized at right
angles to each other. The total intensity IT is the sum of the intensities of
each of the two polarized components, I1 and I2.

Problem Find the probability density for IT using the result from a pre-
vious example that

p(I1) =
1√

2παI1
exp[−I1/2α] I1 > 0

= 0 I1 < 0

where α =< I1 >.

Solution Since the light is thermal and unpolarized, the intensity in each
of the two polarization directions has the same density: pI1(ζ) = pI2(ζ).
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I I

I I

II

I
I

I I
I

p(IT ) =
∫ ∞

−∞
pI1(I1)pI2(IT − I1) dI1

=
∫ IT

0

(
exp[−I1/2α]√

2παI1

)

exp[−(IT − I1)/2α]
√

2πα(IT − I1)



 dI1

=
1

2πα
exp[−IT /2α]

∫ IT

0
[I1(IT − I1)]

−1/2 dI1

=
1

2πα
exp[−IT /2α]

∫ IT /2

−IT /2
(
1

4
I2
T − x2)−1/2 dx

︸ ︷︷ ︸
π

using x ≡ I1 −
1

2
IT

=
1

2α
exp[−IT /2α] IT ≥ 0

= 0 IT < 0
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I

I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In the two examples just considered the variables being summed had

probability densities of the same functional form, rectangles for instance.
Certainly this will not always be the case; for example one might be interested
in the sum of two variables, one having a uniform density and the other having
a Gaussian density. Yet even when the input variables do have probability
densities of identical form, the density of the sum will in general have a
different functional form than that of the input variables. The two previous
examples illustrate this point.

There are three special cases, however, where the functional form of the
density is preserved during the addition of statistically independent, similarly
distributed variables. The sum of two Gaussian variables is Gaussian. This
is shown in an example below. Simply knowing that the result is Gaussian,
though, is enough to allow one to predict the parameters of the density.
Recall that a Gaussian is completely specified by its mean and variance. The
fact that the means and variances add when summing S.I. random variables
means that the mean of the resultant Gaussian will be the sum of the input
means and the variance of the sum will be the sum of the input variances.

The sum of two S.I. Poisson random variables is also Poisson. Here again,
knowing that the result is Poisson allows one to determine the parameters
in the sum density. Recall that a Poisson density is completely specified by
one number, the mean, and the mean of the sum is the sum of the means.
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A Lorentzian (or Cauchy) density depends on two parameters and is given
by

p(x) =
Γ

π

1

(x − m)2 + Γ2

m =< x >

Γ = half width at half height

The sum of two S.I. Lorentzian random variables is Lorentzian with mS =
m1+m2 and ΓS = Γ1+Γ2. Note that the widths add! Doesn’t this contradict
the rule about the variances adding, which implies that the widths should
grow as the square root of the sum of the squared widths? This apparent
contradiction can be resolved by trying to calculate the variance for the
Lorentzian density.

Example: Sum of Two S.I. Gaussian Random Variables

Given

p(x) =
1

√
2πσ2

x

exp[−(x − Ex)
2/2σ2

x]

p(y) =
1

√
2πσ2

y

exp[−(y − Ey)
2/2σ2

y ]

Problem Find p(S) where S ≡ x + y.

Solution

p(S) =
∫ ∞

−∞
px(x)py(S − x) dx

= (2πσxσy)
−1

∫ ∞

−∞
exp[−(x − Ex)

2/2σ2
x − (S − x − Ey)

2/2σ2
y ] dx

The argument of the exponent in the integral is quadratic in the integration
variable x. It can be simplified by changing variables, ζ ≡ x − Ex, and
defining a temporary quantity a ≡ S − (Ex + Ey), a constant as far as the
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integration is concerned. The argument of the exponent can then be written
and processed as follows.

−1

2

[
ζ2

σ2
x

+
(a − ζ)2

σ2
y

]

=

−1

2

[
σ2

x + σ2
y

σ2
xσ

2
y

ζ2 − 2a

σ2
y

ζ +
a2

σ2
y

]

=

−1

2

[{
σ2

x + σ2
y

σ2
xσ

2
y

ζ2 − 2a

σ2
y

ζ +
σ2

xa
2

σ2
y(σ

2
x + σ2

y)

}

+

{
a2

σ2
y

− σ2
xa

2

σ2
y(σ

2
x + σ2

y)

}]

=

−1

2










(
σ2

xσ
2
y

σ2
x + σ2

y

)−1 (

ζ − σ2
xa

σ2
x + σ2

y

)2



+

{
a2

σ2
x + σ2

y

}



The second of the two terms in { } brackets in the last line produces a
constant which factors out of the integral. The integral over ζ coming about
from the first term in { } brackets is just the normalization integral for a
Gaussian and has the value

(

2π
σ2

xσ
2
y

σ2
x + σ2

y

)1/2

.

Bringing all of these terms together gives the probability density for the sum.

p(S) = (2πσxσy)
−1 exp[− a2

2(σ2
x + σ2

y)
]

(

2π
σ2

xσ
2
y

σ2
x + σ2

y

)1/2

=
1

√
2π(σ2

x + σ2
y)

exp[−(S − (Ex + Ey))2

2(σ2
x + σ2

y)
]

The result is a Gaussian with mean Ex + Ey and variance σ2
x + σ2

y .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The result above applies to the sum of two statistically independent Gaus-

sian variables. It is a remarkable and important fact that the sum of two
statistically dependent Gaussian variables is also a Gaussian if the two input
variables have a bivariate joint probability density (the special joint density
introduced in an earlier example). Those with a masochistic streak and a
flair for integration can prove this by applying the expression for the density
of the sum of two dependent variables to the bivariate Gaussian joint density.



58 Probability

Mathematical Digression: Convolution and Fourier Transforms

After the algebra of the last example it is reasonable to ask if there is some
easier way to compute convolutions. There is, and it involves Fourier trans-
forms. This digression is intended for interested students who are familiar
with Fourier techniques.

Let the Fourier transform of f(x) be F (k) and use the notation f ↔ F
to indicate a transform pair.

F (k) ≡
∫ ∞

−∞
eikxf(x) dx

f(x) =
1

2π

∫ ∞

−∞
e−ikxF (k) dk

(The Fourier transform of a probability density is called the characteristic
function or moment generating function and is quite useful for more advanced
topics in probability theory.)

One can show that the Fourier transform of the convolution of two func-
tions is the product of the individual Fourier transforms.

If a ↔ A

and b ↔ B

then a ⊗ b ↔ AB

To find the probability density for the sum of two statistically independent
random variables one can multiply the Fourier transforms of the individual
probability densities and take the inverse transform of the product. As a
practical application and example one can show that the sums of Gaussians
are Gaussian, sums of Poisson variables are Poisson, and sums of Lorentzians
are Lorentzian.
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Gaussian

1√
2πσ2

exp[−(x − E)2

2σ2
] ↔ exp[ikE − σ2k2

2
]

Poisson
∞∑

n=0

1

n!
λne−λδ(x − n) ↔ exp[λ(eik − 1)]

Lorentzian
Γ

π

1

(x − m)2 + Γ2
↔ exp[imk − |kΓ|]

Each of these three transforms F (k) has the property that a product of
similar functions preserves the functional form; only the parameters change.
For example if pG(S) represents the sum of two Gaussians, then

pG(S) ↔ exp[ikE1 −
σ2

1k
2

2
] exp[ikE2 −

σ2
2k

2

2
]

↔ exp[ik(E1 + E2) −
(σ2

1 + σ2
2)k

2

2
]

The last expression is the Fourier transform of a Gaussian of mean E1 + E2

and variance σ2
1 + σ2

2. Check to see that the transforms for the Poisson and
Lorentzian behave in a similar manner.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Simple averaging revealed that for statistically independent random vari-
ables the mean of the sum is the sum of the means and the variance is the
sum of the variances. The Central Limit Theorem gives information about
the functional form of the resulting probability density.

Central Limit Theorem (non-mathematical form)
Let Sn be the sum of n statistically independent, identically dis-
tributed random variables of mean Ex and variance σ2

x (which
must be finite). For large n, p(Sn) can often be well represented
by a Gaussian with mean nEx and variance nσ2

x.

p(Sn) ≈ 1
√

2πnσ2
x

exp[−−(Sn − nEx)2

2nσ2
x

]

The vague wording of the theorem as presented here shows immediately why
it is qualified by the adjective “non-mathematical”. Yet this is perhaps the
most useful form of the theorem for our purposes. Consider the specific
wording used here.

• σx (which must be finite)
This excludes cases such as Lorentzian random variables where the den-
sity falls off so slowly with x that the variance is infinite. Of course, for
Lorentzians one does not need a Central Limit Theorem for it should
be clear from earlier discussion in this section that the sum of n statis-
tically independent Lorentzian random variables will be Lorentzian for
any value of n.

• For large n
How large? Mathematicians would be more specific. It will be shown
below that for practical purposes convergence with increasing n is often
quite rapid.
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• can often be well represented by
Certainly not the words of a mathematician! However, the vagueness
is deliberate. The Gaussian result presented is a continuous function
of the sum variable Sn. But a sum of n discrete random variables
will always be discrete, no matter how large n might be. A sum of
δ functions cannot converge to a continuous distribution unless it is
averaged appropriately. What actually happens in such cases is that
the envelope of the comb of δ functions approaches a Gaussian shape.
A course grained average of p(Sn) (averaging over a number of discrete
values at a time) would approach the continuous density presented in
the theorem.

So much for the limitations of the Central Limit Theorem; now consider
some extensions.

• The Gaussian can be a good practical approximation for modest values
of n. The examples which follow illustrate this point.

• The Central Limit Theorem may work even if the individual members
of the sum are not identically distributed. A prerequisite is that no
individual member should dominate the sum. The necessity for this
restriction can be visualized easily. Consider adding 6 variables, each
uniformly distributed between -1 and 1, and a 7th variable, uniform
between -100 and 100. The density for the sum will look rectangular
with rounded edges near ±100.

• The requirement that the variables be statistically independent may
even be waived in some cases, particularly when n is very large.

The Central Limit Theorem plays a very important role in science and
engineering. Knowingly or unknowingly, it is often the basis for the assump-
tion that some particular physical random variable has a Gaussian probability
density.
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Example: Sum of Four Uniformly Distributed Variables

Consider a random variable x which is uniformly distributed between −a
and a.

The sum of only four such variables has a density which is reasonably close to
the CLT approximation. An earlier example found the density for a sum of
two of these variables to be triangular. Since convolution is associative, the
density of the sum of four can be found by convolving the triangular density
with itself. The result is as follows.

p(S) = 1
96a4 (32a3 − 12aS2 + 3|S|3) 0 ≤ |S| ≤ 2a

= 1
96a4 (4a − |S|)3 2a ≤ |S| ≤ 4a

= 0 4a ≤ |S|

The probability density for the sum is plotted below for a = 1. In this
case the mean of the single random variable is zero and its variance is 1/3.
The CLT approximation has also been plotted, a Gaussian with zero mean
and variance equal to 4/3. Even though the density for a single variable is
discontinuous, the density for the sum is quite smooth. The good match to
the Gaussian in this example when the number of variables in the sum, n,
is as small as 4 is due to the fact that the single density is symmetric and
falls off rapidly with increasing argument. But note that the true density
for the sum is zero beyond |S| = 4 while the Gaussian is finite. One could
say that the percentage error is infinite beyond |S| = 4. Well, you can’t
have everything. This does illustrate, however, the problems encountered
in formulating a mathematical statement of the convergence of the Central
Limit Theorem.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example: Sums of Exponentially Distributed Variables

A single sided exponential is an example of a density that is both discon-
tinuous and asymmetric. It falls off more gradually with increasing argument
than does a rectangular or Gaussian density. In this case convergence to the
CLT approximation requires a larger number of elements, n, in the sum.

p(x) =
1

a
e−x/a x > 0

= 0 x < 0

Here the mean is a and the variance is a2. This density is sufficiently simple
that the repeated convolution necessary to find the density for the sum of n
identical statistically independent variables can be carried out analytically.

p(S) =

[
Sn−1

(n − 1)!an

]

e−S/a S ≥ 0

= 0 S < 0

This result is shown below for a = 1 and several values of n. The Gaussian
approximation is also shown for comparison.
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Example: Poisson Density for Large < n >

The Central Limit Theorem applied to sums of discrete random variables
states that the envelope of the train of δ functions representing p(S) should
approach a Gaussian. Here the Poisson density is used to illustrate this
behavior. The graphs on the following page show the Poisson density for
several values of the mean number of events < n >. (Recall that for a Poisson
density, the variance is equal to the mean.) The dots indicate the coefficients
of the delta functions that would be located at each positive integer value of
S. The dashed lines show the CLT approximation

p(s) =
1√

2π < n >
exp[−(S− < n >)2

2 < n >
].

Since the sum of Poisson random variables also has a Poisson density, the
case for which < n >= 20 could be the result of adding 10 variables of mean
2 or of adding 5 variables of mean 4. For the Poisson, one can see that it
is the mean of the final density, not the number of statistically independent
elements in the sum, which determines the convergence to the CLT result.
The envelope of the density of a single Poisson random variable will approach
a Gaussian if the mean is large enough!

The fact that a single Poisson density approaches a Gaussian envelope for
large mean is not typical of discrete densities. Consider the Bose-Einstein (or
geometric) density that was treated in a homework problem. For that density
the probability of obtaining a given integer decreases monotonically with
increasing value, no matter how large the mean of the density. In contrast,
the density for the sum of 10 identical Bose-Einstein random variables, each
with mean 2, would not be of the Bose-Einstein form and, following the CLT,
would exhibit a peak in its envelope near S = 20.
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