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ABSTRACT

Metabolic engineering refers to the directed improvement of product formation or

. cellular properties through the modification of specific biochemical reactions or introduction of
new ones with the use of recombinant DNA technology. It has been used to investigate and
modify intermediary metabolism in a variety of microbial organisms of biotechnological interest.
An emerging area of application for metabolic engineering is medicine, in particular the study of
metabelic disorders, where analysis and manipulation of metabolic pathways have obvious
relevance.

Central to metabolic engineering is the notion that metabolism results from the concerted
and coordinated activities of biochemical pathways connected through shared intermediates in
the form of common reactants, products, and catalysts. According to this “metabolic network”
concept, an enhanced understanding of metabolism and cellular function is obtained by
considering the component biochemical reactions together, rather than individually. In this light,
this thesis work was motivated by the idea that the application of metabolic engineering analysis
to biological systems relevant to human disease has the potential to provide valuable insight into
the biochemical underpinnings behind metabolic disorders. In the present dissertation, this idea
was explored by investigating a metabolic disorder known clinically as hypermetabolism that is
associated with the systemic inflammatory response to severe injury.

At the whole body level, hypermetabolism is characterized by elevated resting energy
expenditure and increased turnover of proteins, fatty acids, and carbohydrates. If this state
persists over a period of days to weeks, the patient is predisposed to muscle wasting, progressive
organ dysfunction, multiple organ failure, and ultimately death. Unfortunately, existing
nutritienal therapies are inadequate for preventing the onset of persistent hypermetabolism,
because many of the mechanistic details of this process are poorly understood. An important
player in the hypermetabolic response to injury is the liver, which responsible for synthesizing
healing factors from muscle protein derived amino acids, converting carbohydrate and lipid fuel
resources to useful energy substrates, and eliminating waste products generated by these
processes. In order to better understand the biochemical underpinnings behind injury derived
hypermetabolism in the liver, the following specific aims were addressed: 1) to develop and
validate tissue and organ models of injury for the liver; 2) to delineate activity changes in the
major metabolic pathways in the liver during the developmental period of hypermetabolism; and

3) to build diagnostic tools for detecting and grading the injury derived metabolic abnormalities
in the liver.




A particularly useful metabolic engineering tool is metabolic flux analysis (MFA), which
refers to a methodology whereby intracellular reaction fluxes are estimated using a
stoichiometric model for the major intracellular reactions and applying mass balances around
intracellular metabolites. A powerful feature of this methodology is its ability to consider cellular
biochemistry in terms of a network of reactions. Stoichiometric and mass balance considerations
quantify the degree of engagement of each metabolic pathway participating in overall cellular
activity, which paints a comprehensive picture of cellular metabolism.

MFA was used in conjunction with a burned rat perfused liver model to estimate injury
induced changes in liver central carbon flux distribution. By developing a perfused liver model,
liver intrinsic changes induced by burn injury could be studied in isolation from systemic

~ influences. In order to employ MFA, a network model of liver central carbon metabolism was

formulated based on published knowledge. In an exploratory study, the network and perfused
liver models were used to compare intracellular fluxes in livers isolated from burn and sham-
burn animals at the onset of whole body hypermetabolism. The model predictions resulting from
this study regarding burn induced activation of several intracellular pathways were validated by

~ isotopic tracer experiments and enzymatic assays.

The next step in the thesis work expanded on the above study to perform comprehensive
metabolite measurements on livers perfused at various times during the first week of burn injury.
MFA on these data identified reaction groups which were significantly activated by burn injury:
fatty acid oxidation, gluconeogenesis, pentose phosphate pathway (PPP), tricarboxylic acid
(TCA) cycle, and urea cycle. An important discovery was that these reaction groups were
activated or repressed differentially with respect to time after injury. Gluconeogenesis remained
unchanged except a slight increase on day 4 post-bum, fatty acid oxidation peaked on day 3, PPP
and urea cycle fluxes were significantly elevated by day 2 post-burn, and TCA cycle fluxes
continued to rise throughout the week-long study period. Energy balances based on the flux
estimates revealed a significant gap between predicted adenosine triphosphate (ATP) production
and demand. In light of the activation of the PPP and its intimate involvement in oxygen free
radical metabolism, the ATP gap pointed to the induction of an oxidative stress sensitive
mitochondrial respiratory uncoupler UCP2, which was subsequently confirmed by Western blot
analysis.

The role of endogenous oxidative stress agents in mediating hepatic hypermetabolism
was examined in more detail using a stable hepatocyte culture system. In combination with
glucagon, which is known to increase substrate loading into hepatocytes, reactive oxygen species
(ROS) significantly elevated oxygen uptake and induced UCP2 expression. This effect was '
dampened by the addition of antioxidants or an inhibitor of a PPP enzyme. ROS also adversely
affected cell viability, which was attenuated by glucagon. These results supported a role for ROS
in mediating inflammation derived hepatic hypermetabolism, and the potential for therapeutic
benefits of antioxidants. , :

The final chapter of this thesis proposed a general strategy for building robust diagnostic
tools. The strategy, termed metabolic profiling, was formulated based on the notion that
composite analysis of multidimensional metabolite data yields superior classification of
metabolic states over the single marker approach. The success of the proposed classification
technique, Fisher’s Discriminant Analysis (FDA), as applied to the perfused liver data presented
in this thesis, strongly correlated with the number of metabolite measurements. This result
reinforced the notion that cellular metabolism is best described by many, rather than a few,
measured parameters. Furthermore, combining the measured metabolite exchange rates with flux



estimates enhanced FDA performance, which underscored the idea that the calculated fluxes

contain additional, valuable information pertinent to delineating metabolic states in complex
biological systems.
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CHAPTER l.lME‘TABOLIC ENGINEERING IN BIOMEDICINE

1.1 Overview

The manipulation of metabolic pathways for improved production of biochemical ,
' compounds using microorganisms,vdespite many success, remained essentially a random process, |
relying on chemical mutagenesis, until the introduction of recombinant DNA technology

- (popularly called genetic engineering) in the late 1970’s. This significant development in
molecular biology presented the opportunity to introduce heterologous genes and regulatory
elements [1], and made possible the targeted modification of specific enzymes in metabolic
pathways [2]. The integration of genetic engineering into bioprocess technology has been
described by a variety of terms in the literature, including molecularv breeding, pathway
engineering, cell engineering, and metabolic engineering [2]. In this dissertation, the term
metabolic engineering is used, because it best describes the integrative nature of the field and
encompasses the diverse array of tools developed in the field for analysis and manipulation of
cellular metabolism.

Metabolic engiheeﬁng has been defined as the directed improvement of product
formation or cellular pfoperties through the modification of specific biochemical reactions or
introduction of new ones with the use of recombinant DNA technology [2]. It is an
interdisciplinary field, which builds on the concepts and techniques developed in many areas of
science and en gineering, including biochemistry, analytical chemistry, cell biology, genetic
engineéring, chemical engineering, and systems analysis. The areas of application have been
equally diverse [3, 4]. Biotechnological applications have included: improved productioh of
chemicals already produced by the host organism [5], extended sﬁbstrate range for growth and
product formation [6], addition of new catabolic activities for degradation of toxic chemicals [7-
91, synthesis of biopolymers [10], production of chemicals new to the host organism {11, 12], or
entirely novel, as is the case with polyketides [13, 14], and modification of general cell
properties, such as the ability to withstand hypoxic fermentatioh conditions [15] and prevention -
of overflow metabolism [16]. Other recent applications include synthesis of chiral intermediates
for pharmaceutical production [17, 18] and variable composition copolymers in plants [19-21].

The wide range of applicability of metabolic engineering extends also to the types of cells, and
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have included prokaryotes such as E. coli, eukaryotic microorganisms such as yeast, transformed

mammalian cell lines such as Chinese Hamster Ovary (CHO) cells, and numerous plant systems.

1.2 Motivation and Objective

Central to-metabolic engineering is the notion that metabolism results from the concerted
and coordinated activities of biochemical pathways connected through shared intermediates in
the form of common substrates, cofactors and allosteric regulators. According to this “metabolic
network” éoncept, an enhanced understanding of metabolism and cellular function is obtained by
considering the component biochemical reactions together, rather than individually [22]. As
such, metabolic engineering encompasses diverse issues, including pathway modification,
analysis of network control, evaluation of data quality, and quantification of metabolic flux. In
order to address these issues, metabolic engineers have developed various fra_gnewbrks and tools
that allow quantitative and systematic investigation of cellular metabolism. These analytical
components of metabolic engineering are general in nature, and in principle applicable to not
only microorganisms, but also more complex systems such as primary cells of higher organisms,
tissues, and organs.

In this regard, medicine, where the analysis of metabolic pathways has obvious
relevance, presents a novel area of opportunity for metabolic engineering. Potential areas of
application include optirnization of engineered tissue function, rational design of nutritional
therapies, diagnosis of metabolic disorders, monitoring disease progression, and investigation of
‘metabolic disease mechanisms. As an illustration of the potential for metabolic engineering in
biomedicine, consider tissue engineering, which uses cells or tissues together with natural or
synthetic extracellular components to develop implantable parts or extracorporeal devices for
restoring or replacing function [23]. Investigators in this discipline have traditio'nal'ly relied on
measuring one or a few markers for assessing cell or tissue performance and viability. Usually,
performance markers have been one or two enzymes or protein products unique to the cell or
tissue of interest, such as acetylcholine receptor level for neurons, creatine kinase and lactate
dehydrogenase activities for cardiomyocytes [24], cytochrome P450 activity for hepatocytes
[25], or insulin secretion rate for pancreatic islet cells t26]. Viability has typically been

measured by such generic gross indices as total ATP [27] and protein content [25]. However,
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complex biological functioﬂs involve muitiple gene products, either because this affords greater
éfﬁcacy and higher quality control, or a single protein cannot provide the required function [28].
This is espécially true for metabolic activity, which results from the concerted action of a host of
biochemical reactions. As cell or tissue functions such as synthesis, secretion, and drug clearance
intimately depend on metabolic parameters such as reduction potential, energy level, and
substrate supply, methods for studying and modifying cell or tissue metabolic behavior could be
very useful for optimizing performance. Boyce et al. [29] reported that irrigation of cultured skin
grafts with topical nutrients promoted engraftment as well as epithelial and connective tissue
regeneratidn,l suggesting presence of proper metabolic substrates may be critical for in vivo
performance of engineered skin. Naughton et al. [30] showed that implanting dermal tissue with
a defined range of metabolic activity dramatically improved healing of diabetic foot ulcers.
Recent isolation of neural stem cells and advances in genetfc manipulation have also increased
prospects for engineering neural tissue that either express heterologous or oYe,rexpi'ess
endogenous enzymes, which could compensate for either genetic or trauma-related metabolic
deficiencies [31]. In some applications, such as hepatic tissue engineering, assessing metabolic .
activity is especially crucial, as the primary function of artificial liver support is preservation of
whole body metabolic homeostasis [32]. In addition to improving in vivo performance, rational
manipulation of cellular metabolism helps optimize in vitro culture conditions. It has been long
recognized that the effective removal of harmful metabolites accumulating in culture is critical
for maintaining long-term tissue viability [33]. In the bioprocess literature, the application of
metabolic engineering to rational medium design for increasing productivity of animal cell
cultures has already been well documented [34]. '

In light of the aforementioned concepts and examples, this thesis is motivated by the idea
that the application of metabolic engineering analysis to medicine has the potential to provide
valuable insights into the biochemical underpinnings behind human disease processes.
Specifically, this idea is explored by performing an integrated metabolic analysis of post-burn
hypermetabolism, which is a metabolic disorder associated with the whole body inflammatory
response to severe Bum injury. To the best knowledge of the author, this thesis work represents

the first such undertaking. In this respect, the thesis has dual objectives: -
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1. to elucidate the- biochemical underpinni_ngs behind injury derived metabolic
alterations by performing an integrated metabolic analysis as afforded by the
application of metabolic engineering frameworks and tools;

2. to demonstrate the utility of the “metabolic network” concept and the systems |
analysis approach in studying cellular metabolism in tissues relevant to

understanding and treating human disease.

In achieving these objectives, one metabolic engineering analysis tool, called metabolic flux
analysis (MFA), figures prominently. MFA refers to a methodology whereby intracellular fluxes
are calculated from metabolite and isotopic tracer measurements based on a stoichiometric model
for the major intracellular reactions using balance equations around intracellular metabolites and

their isotopic isomers [35].

1.3 Metabolic Flux Analysis

Among the tools available to the metabolic engineer, presumably the most useful one for
biomedicél applicationé is metabolic flux analysis (MFA). MFA has also been referred to as
stoichiometric balancing [36], metabolite balancing, and metabolic flux balancing [37],
especially in the earlier bioprocess engineering literature, where metabolite measurements
provided the dominant experimental input. In recent years, it has become widely accepted that
usiﬁg isotopic tracers is advantageous in, even necessary for, obtaining robust estimates of
intracellular fluxes and resolving complex metabolic systems. Thus, MFA applications which
involve the analysis of both metabolites and isotopic tracers have been featured more and more
. prominently in the published literature.

One of the earliest applications of MFA was to the derivation of fermentation equations
used to predict product yield and selectivity in'cultures of butyric acid bacteria by Papoutsakis
-[36]. In another important early work, Holms [38] examined the relationship between the fluxes
fhrough the pathways of central carbon metabolism and the conversion efficiency of acetate to

biomass in E. coli. In both of these works, of central importance was the concept of a
biochemical network, or the interrelations between metaboli;es, which the authors argueq cepld

be studied by formulating balance equétions around the metabolites that are derived from known
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stoichiometric relationshipé. Since these early works, MFA has been used to study pathway
interactions in a variety of biological systems. Vallino and Stephanopoulos [39, 40] applied
MFA to estimate flux distributions in the primary metabolic network of Corynebactérium
glutamicum under various perturbed states. Based on the flux distribution data, they were able to
attribute the limitations in lysine yield to network rigidity [41] at either the phosphoenolpyruvate
(PEP) or pyruvate (PYR) branch point. Jgrgensen et al. [42] showed that penicilin formation in
Penicilium chrysogenum is accompanied by a large flux through the pentose phosphate pathway
due to a large requirement for nicotinamide-adenine dinucleotide phosphate (NADPH) used in
the biosyﬁthesis of cysteine. Pons et al. [43] found that choice of carbon source significantly
influenced growth of Corynebacterium melassecola. By calculating flux distributions in a
recombinant, riboﬂavin—producirig Bacillus subtilis strain, Sauer et al. determined that riboflavin
formation is limited by the fluxes through the biosynthetic rather than the central carbon
pathways. .

In principle, the application MFA to medically relevant systems is straightforward, as the
basic biochemistry of mammalian tissue bears close resemblance to those found in
microorganisms and, as it will be seen, the modeling framework is essentially system
independent. However, in practice, the extension of MFA to tissues presents a number of
challenges. While the central carbon biochemistry is similar between biotechnologically relevant
systems such as bacteria, yeast, and transformed cell lines, and the medically relevant systems
such as primary cultures, isolated organs, extracorporeal devices, and in vivo models, there are a
number of important differences in experimental condition and cellular organization, as well as
subtle biochemical differences, which impact the implementation of MFA. Microorganisms and
transformed cells can be cultured in media with one or a few substrates, which greatly simplifies
model formulation and reduces the number of measurements. Tissue systems, particularly those
in vivo, cannot be subjected to the same treatment. Even those systems in more experimentally
controllable settings such as extracorporeal, engineered tissues or perfused organs, cannot be
maintained in minimal media without quickly losing viability or sacrificing physiological
relevance. Prokaryotic organisms like bacteria lack subcellular organelles. In contrast, eukaryotic
systems are highly compartmentalized. Mh]tiple pools of the same metabolite may exist within a
eukaryotic cell, along with intracellular transport systems not found in most microbes. For

example, cells in the mammalian heart and liver transfer electrons from cytoplasmic NADH onto
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mitochondrial NADH by an enzymatic shuttle system involving malate and aspartate
dehydrogenases [44]. The parenchymcal cells of the liver also possess specialized metabolic
pathways such as the urea cycle, which are not present in most microorganisms. Tissues,
especially those in the intact body, have only limited observability compared to microorganism
cultures. Bacterié, yeast, and‘ cell lines are grown fed-batch reactors, chemostats, or hollow fiber
reactors, where obtaining medium samples and metabolite measurements without disruption of
culture is straightforward. Most in vivo systems are inaccessible to such direct measurements.

The effect of the above mentioned complexities is to increase the number of unknown
fluxes and reduce the number of possible measurements, adding to the total degrees of freedom.
While it is still possible to resolve tissue metabolic networks with conventional MFA tools
relying on metabolite measurements, the results from such studies are subject to uncertainties,
because of the many assumptions and few, if any, redundant constraints. It has been suggested
that additional constraints may be introduced based on biochemical theory, such as co-factor
balances and irreversibility of certain reactions {45], but these ideas have yet to be validated
eXpeﬁmentally. The preferable alternative to using more assumptions is to increase the number
of measurements and measurement derived constraints. In the experimental approach, the
method of choice has been use of isotopic tracers, in particular metabolite analogs labeled with
1c or PC. Isotopic tracers have been used for tissue metabolism studies for several decades.
Biochemists and physiologists have used isotopically labeled substrates in a variety of
applications, including estimation of in vivo metabolite production rates {46], quantification of
fluxes through the TCA cycle and gluconeogenesis in perfused organs [47], and invcstigation of
changes to substrate turnover during inflammation [48]. While these works have focused on
specific pathways, and performed without reference to MFA per se, their significance in
calculation of intracellular fluxes through large scale metabolic networks in tissue is obvious.
Thus, the integration of biochemical tracer techniques tailored for physiology into the MFA
framework presents a challenging but promising opportunity to develop a powerful set of tools
for investigating the metabolism systems relevant to the medical field.

In light of the above motivation, the remainder of this chapter examines basic concepts
and equations used in MFA as well as popular strategies currently used for estimaﬁng metabolic
flurzes with isotopic tracers. The chapter also surrimarizes notable applications of MFA aﬁd

isotopic tracer analysis to medically relevant systems. Finally, the chapter concludes with a few
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examples illustrating the role metabolic engineering, in particular MFA, may play in studying,
diagnosing, and developing therapies for metabolic disorders. Before proceeding with these
discussions, the overall strategy followed by more or less all MFA applications is briefly
sﬁmmarized at this point (Figure 1-1).

MFA begiﬁs with the formulation of a mode! network that consists of reactions selected
from the published literature, which are thought to collectively represent the major biochemical
processes in the system of interest. Except in a few very recent cases involving optlrmzatlon
studies, most published model networks have included on the order of 100 reactions, even
though a typxcal cell carries out thousands of biochemical reactions, mainly because of practical

limitations regarding measurement availability.

16




Formulate reaction
network model

Design experiment e————No

Measure Is data quality
_metabolltes, satisfactory?
isotopomers

Calculate flux
distribution

Consistent with
biochemistry?

«——Yes

Yes

Interpret results

Figure 1-1. Schematic overview of metabolic flux analysis.

The first step is to formulate the model network by deciding which reactions should be
included. The second step determines the necessary number and type of measurements.
‘The number depends on the number of unknown fluxes to be calculated. The types of
possible measurements include metabolite concentrations, isotopic enrichment in .
extracellular metabolites, and intracellular isotopic isomer distribution. After conducting
the measurements, data quality is checked against statistical distributions using mass
balance derived constraints. Experimental design is revised and measurements performed
until data is reasonably free of gross or systematic errors. Fluxes are calculated from
equations which relate the unknown fluxes to the metabolite or isotopomer
measurements. These equations are derived from reaction and/or carbon atom transfer
stoichiometry. Finally, the results are checked and validate against published values and
known biochemistry. If the results are inconsistent, the model network may need to be
modified, and the entire process repeated.
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Fortunately, not all reactioﬂs have the same quantitative significance. According to the notion of
biochemical time hierarchy proposed by Reich [49], biochemical reactions can be classified into
one of three groups [50]: (a) rapid reactions whose time scale for reaching a state
indistinguishable from the steady state is very much shorter than the time scale of observation,
(b) reactions whose time scale for approaching a steady state is close to the time scale of
obscrvation; and (c) reactions that cause significant changes in concentrations on time scales
longer than that of the observation. Processes in the first group include ionic equilibrium and
binding of substrates and effectors by enzymes. The third group includes depletion of a pool of
metabolité, synthesis or degradation of the common part of a coenzyme group, or the synthesis
or degradation of an enzyme. Intermediary metabolism, which provides fuel, energy equivalents
(e.g. ATP, GTP), reducing equivalents (e.g. NADH, NADPH), and basic building blocks (amino
acids) for growth and maintenance, belongs to the second group. Therefore, for practical |
purposes, the quantitatively important aspects of a metabolic system can be regson'ably modeled
by includin.g only these reactions, which number on order of 100 [49]. Once the reactions have
been chosen, usually a schematic of the model network is drawn as a directed graph in order to
facilitate visualization and subsequent modification.

The choice of the model also determines the necessary number and type of
measurements. Smaller networks, where the aim is to estimate only net fluxes, can usually be
resolved using metabolite concentration measurement data. Complex networks that include
numerous branch points, cyclic pathways, and reversible steps require additional information
supplied by isotopic tracer experiments.

Finally, constraint equations are written and solved, which relate the measured data to the
unknown fluxes based on reaction stoichiometry and biochemistry. Here, the biochemistry of a
reaction refers to the correspondence of carbon atom positions between substrate and product
molecules. As it will be evident, the conservation of this correspondence in biochemical
reactions is crucial in labeling experiments. It should be noted that the three step procedure
outlined here is in many instances iterative. For exa.tﬁple, during the process of fitting the
experimental data to the model equations, irreconcilable inconsistencies may arise that reflect

measurement errors, false judgment regarding choice of reactions, or incorrect stoichiometry and

* biochemistry. In this case, the experiments may need to be repeated, or, if it has been ascertained

that the source of error lies elsewhere, the structure of the model network could be modified,
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until a consistent set of model equations and experimental data is obtained. In this light, it is
always beneficial to have as many constraint equations and measurements as possible, which

allows rigorous statistical treatment of both model and data.

1.3.1 Metabolite b;zlancing

The most basic flux estimation technique is the metabolite or material balance method
[37]. In this approach, the constraint equations are derived directly from reaction stoichiometry.
The stoichiometric relationships between the participating reactions is typically summarized in a
stoichiometric matrix S, where the element s;; in the ith row and jth column refers to the
stoichiometric coefficient of the ith metabolite in the jth reaction. For example, consider the
reaction network described by Table 1-1A and Figure 1-2. The corresponding stoichiometric
matrix is shown in Table 1-1B. Since there are four intracellular metabolites involved in eight
reactions, the stoichiometric matrix has dimensions 4 x 8. '

Once the stoichiometric matrix has been formulated, the metabolite balances are easily
written using matrix notation. Let v and x be vectors whose elements v; and x; refer to the flux
through the jth reaction and the intracellular concentration of the ith metabolite, respectively. For
a stoichiometric matrix which has dimensions M x N, the corresponding vectors v and x have
dimensions N x 1 and M x 1. In the case of the example network shown in Figure 1-2A, v and x
have dimensions 8 x 1 and 4 x 1, respectively. Using the stochiometric matrix and these vectors,
the metabolite balance equations are written as follows:

dx

—=3S8y 1-2
dt - , (1-2)

In the case of the current example, Equation 1-2 summarizes the following system of equations:
ﬂ=F1—F3—F’4 (1-3a)
dt :
£=F2+F3—F5 (1-3b)
dt
X Fs_F6-F8 (1-3c)
dt -

%=F4+F6—F7 (1-3d)

19




- Table 1-1A. Reaction Stoicﬁiometry for Example Network

Reaction No. _Stoichiometry

Fl A uptake
F2 B uptake

F3 A-B

F4 A->D

F5 B->C

. F6 C-D
i F7 C output
F8 D output

Table 1-1B. Stoichiometric Matrix for Example Network

Fl F2 F3 F4 F5 F6 F7
A 1 0 -1 -1 0 0
B 0 1 1 0 -1 0 0
C 0 0 0 0 -1 -1
D 0 0 0 1

20



. F4

F7 F8

Figure 1-2. Directed graph representation of example network.
A, B, C, and D are intracellular metabolites. F1, F2, F7, and F8 are rates of uptake or
output of metabolites A, B, C, and D, respectively. F3 through F6 denote intracellular
reactions. If all of the metabolite uptake and output rates measurable, the system is
exactly determined, as there are four unknowns and four linearly independent equations.
If an additional flux through one of the intracellular reactions is measurable, then the
system is overdetermined, giving rise to redundant constraints useful for consistency
checks. If one of the metabolite uptake and output rates are not measurable, then the
system is underdetermined, and there is an infinite number of solutions.
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It is generally accepted that there is a very high turnover of the intracellular pools of most
metabolic intermediates, especially those participating in central carbon metabolism. The
pathways of central carbon metabolism in most prokaryotic and mammalian cells include
glycolysis, glycogen synthesis, pentose phosphate pathway (PPP), tricarboxylic acid (TCA)
cycle, fatty acid S}}nthesis and oxidation, amino acid synthesis and degradation, etc. A few -
specialized cells, such hepatocytes in the mammalian liver also include urea cycle and
gluconeogenesis. As a result of the high turnover, the concentrations of the metabolites in these
bathways rapidly adjust to new levels even after large perturbations in the cellular environment is
B experiencéd by the cells. Therefore, the (pseudo) steady-state assumption applies to the balancés
in Equation 1-2:

& . .
—=0=8v 1-4

7 (1-4)
In the case of the current example, the steady-state assumption linearizes the system of equations
in 1-3a through 1-3d. Using the above defined stoichometric matrix (Figure 1-2B) and 'vcctors,

these linear equations are succinctly expressed as follows:

[ F1]
) F2
da/ ] ]
it 10-1-10 0 0 0)F3
/. 01 1 0 -1 0 0 0fF4
ac/ 1% loo 0 0o 1 -1 -1 ofrs| ¢
/it
db/ 000 1 0 1 0 -1]Fs6
- /At F7
| F8 |

In order to solve the system of linear equations represented by Equation 1-4 it is customary to
first partition the stochiometric matrix S and the metabolic flux vector v into known and
unknown components [35]: | .
Sv=0=S8_v,+S.. , (1-6)
where v,, and v, are the vectors of measured and unknown reaction fluxes, respectively, and S,,
and S. contain the stoichiometric coefficients of the corresponding reactions. Rearranging,
Sy, =-8S.v, (1-7)
Equation 1-8 can be solved for v, explicitly in terms of the elements of v,, by simple matrix

inversion if S¢ is a square matrix.
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v,==S.'S.v, o (1-8)
Equation 1-9 represents the exactly determined case where the number reaction fluxes in the
mode] metabolic network equals the number of linearly independent balance equations plus the
number of measurements. In the current example, this would be the case if two of the five
reaction fluxes, e.g. F1 and F2, are experimentally determined. In this case, S, has full rank,
which is also equal to the number of elements in v..

If the number of fluxes in the model is less than the number of linearly independent
balance equétions plus the number of measurements, the system is overdetermined, and there
exist extra constraints that can be used for testing the consistency of the overall balances, the
accuracy of the flux measurements, the validity of the pseudo steady- state assumption, and
ul\timately, the calculation of more accurate values for the unknown intracellular fluxes. In the
current example, this would be the case if in addition to the two reaction fluxes Fl_ and F2,a
third flux, e.g. F3, could be experimentally determined. A brief description of the systematic
procedure for using redundant constraints for error checking and measurement correction as
proposed by Wang and Stephanopoulos [51] is given in the subsequent chapter. If it is
detémlined that no gross' measurement errors are present, then the overdetermined system is may

be solved by a least-squares approach:

v.=—(S.S)"'S'S,v, (1-9)
If the number of fluxes in the model is greater than the number of linearly independent balance
equations plus the number of measurements, the system is underdetermined, and an infinite
number of so]utiovnsbexist. In the current example, this would be the case if none or only one of
the.reaction'ﬂuxes were experimentally determined. In this case, an optimization approach may
be taken, where objectives functions are formulated, which are linear combinations of all or

some of the unknown variables. Mathematically, this is expressed as follows:

maxc’v, (1-10a)
subject to Sv.=-S,v, (1-10b)
v, 2b (1-10c)
v, 2—-d (1-10d)
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where the vector ¢ speciﬁeé which unknown flux vector elements are to be maximized (or
minimized) and the vectors b and d provide the lower and upper bounds for the unknown fluxes.
Solutions to linear optimization problems such as that described by Equation 1-11 are easily
obtained by published methods, such as the simplex algorithm, which can be found in standard
optimization textbooks [52].

It should be note that solutions to metabolic flux problems based on optimization
strategies are strongly depend on the assumed nature of the cellular metabolic activity and the
formulation of the objective function. Provided such a function can be specified, it is possible to
obtain avu‘nique solution for the intracellular fluxes that optimizes the objective function subject
to the constraints of the metabolite balances. In the case of microorganisms or cell line cultures, a
commonly chosen objective function is maximal growth. For éxample, Savinell and Palsson {53,
54] use the linear optimization approach in conjunction with experimental measurements to
study the interacﬁons of nutrients and the demand for intermediates for growth in h_ybridoma
cells. However, for individual cells in a multicellular organism, the choice of objective function
is not as clear, which is the case in medically relevant systems. A mammalian cell may need to
secrete a particular protein, store substrates for energy production, metabolize chemicals toxic to
the rest of the body, in addition to growing efficiently in a controlled manner, as part of its role
in the larger body. A realistic objective function requires these myriad of objectives to be
weighted properly, which introduces additional parameters that are difficult obtain ‘
experimentally. Thus, the optimization approach is more suited to exploring the capacities of
metaboiic networks to get a qué.litative understanding of how metabolic systems respond to
hypothetical scenarios rather than determining actual flux distributions.

Unfortunately, the case of the underdetermined network is a common occurrence,
especially in the metabolism of medically relevant systems, which are in general more complex
due to cellular compartmentalization and added branch points. In order to fully resolve such
metabolic networks, additional measurements are needed. The most prominent method involves

using isotopically labeled metabolite analogs as tracers.
1.3.2 Overview bf isotopic tracer methods

Isotopic tracer methods are based on the notion that the activities of metabolic pathways

can be determined by providing substrates enriched in a carbon isotope (typically BCor 1C) and
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analyzing tl'le distribution of the isotopes in metabolic intermediates. Isotopically labeled
substrates are chemically indistinguishable from normal substrates, and they are metabolized by
the same sequence of reactions as their unlabeled analogs. Substrate cycling, asymmetrical splits
in pathways, and reversibility of reactions produce metabolic intermediates that differ in the
number of labeled ;:arbons or the position of the label. Isotopic isomers which differ by the
number of labeled carbons are called mass isotopomers while isotopic isomers which differ by
the position of the label are called positional isotopomers. Given a particular input tracer or set of
input tracers, the steady-state distribution of the isotopomers is a function of the relative fluxes
through the reactions which produce thé isotopomers. Therefore, using an appropriately
formulated metabolic network model, equations can be written that relate isotopic enrichment in
metabolic intermediates to metabolic fluxes.

One of the earliest efforts to obtain metabolic fluxes using isotopic tracers was performed
by Weinman et al. [55], whose equations describing the production of CO, or [”’C] glucose '
were derived from convergent geometric series. Rognstad and Katz [56] avoided using these
often unwieldy geometric series equations by invoking an isotopic steady-states assumption in
calculating the rate of pyruvate entry into the TCA cycle relative to its flux through
gluconeogenesis. Under the isotopic steady-state assumption, the inflow of isotopic material into
a metabolite pool equals the outflow of isotopic material from that pool. Kelleher [57, 58]
expanded on the works by Rognstad and Katz to include multiple tracer inputs and outputs into
and out of the TCA cycle, expressing the steady-state relationships between metabolic fluxes and

isotopic enrichment in terms of specific activity (SA) equations:

i(SA-FP,.)
SA, = H (1-11)

2 Fpi

i=l
In Equation 1-12, representative of the balances appearing in [57, 58], the enrichment of
metabolite p (SA,) at isotopic steady-state equals the ratio of the total isotopic flux to the total
carbon (labeled and unlabeled) flux into pool p. The total fluxes are found by summation across
all metabolites i (1 throﬁgh m) from which reaction fluxes enter the pool p.
Since the early works of Weinman et al. [55] and Rognstad and Katz [56], numerous
analytical and numerical modeling approaches have been proposed for the estimation of

intracellular metabolic fluxes using isotopic enrichment data. Broadly, these approaches fall into
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the following two categories based on the nature of the experimental data to be modeled. One
approach models the dynamics of isotopic enrichment observed over a period of time while the
other describes the isotopomer distribution at isotopic steady-state. In both approaches,
differential equations are written that describe the production of (mass or positional) isotopomers
of metabolites included in the model metabolic network subsequent to the introduction of the
input tracer(s). In the steady-state models, the time derivative are set to zero, and the differential
equations become algebraic equations. One notable alternative to these two strategies is the
syntactic method proposed by Cohen and Bergman [59, 60]. In this approach, which combines a
rule-based description of biochemical reactions with a stochastic model of chemical kinetics, the
parameter of interest is the mean residence time of a particular carbon atom of a reactant
molecule within the model metabolic network. Here, the residence time refers to the time it takes
for the carbon atom of interest to traverse the entire network. This parameter, obtained by fitting
exponential functions to time-dependent isotopic enrichment data, gives an estimate for the
dominant rate constant for the metabolic process under investigation. This elegant approach
 greatly simplifies the formulaﬁon of model equations while describing an important
characteristic of a metabolic network. However, it is only applicable to cyclical pathways, where
a carbon atom can return to its pool of origin. Nevertheless, the syntactic method has many
attractive features, such as the ability to estimate absolute fluxes and to infer information about

metabolite pool sizes [61].

1.3.3 Kinetic models

To date, nuclear magnetic resonance (NMR) spectroscopy remains the most widely used
method for measuring the kinetics of isotopic enrichment in the intact tissue despite the
drawback of low sensitivity, chiefly because of its nondestructive nature. The most commonly
used label in NMR spectroscopy applications to metabolic flux analysis is the stable isotope *C,
which is safe for even clinical applications and has a low natural abundance (1.1 %).
Unfortunately, due to the low sensitivity of NMR spectroscopy, B¢ isotopomers are only
discernible in NMR spectra if their tissue concentrations exceed 0.5 mM. Most metabolic
in.t_ennédiates are normally present below this level, and hence irresolvable by NMR
spectroscopy even when the >C enrichment is unity, unless the signals are acquired over an

excessively long period of time [49]. The major exceptions are t_he.ﬁve amino acids alanine,
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aspartate, glycine, glutamate and glutamine, which add up to about 80 % of the free cytosolic
amino acid pool [49]. In addition to being present in relatively high concentrations, glutamate
and aspartate are in exchange with o-ketoglutarate and oxaloacetate, respectively, which are key
intermediates of th; TCA cycle and gluconeogenesis. Consequently, many kinetic flux
eétimation models use the isotopic enrichment data'ofAthese two amino acid pools as the major
measured inputs.

In an important early work, Chance et al. [62] used 176 differential equations to describe
the production of positional isotopomers of TCA cycle intermediates following the introduction
of [2-"*CJacetate or [3-">C]pyruvate in the perfused rat heart. The experimental input used for
flux estimation was ">C spectra of glutamate isotopomers in tissue extracts obtained at various
times after tracer injection. This work was later extended to include glycolysis and the malate-
aspartate shuttle, which led to a model with 340 differential equations [63]. The models
presented in these works contained large numbers of equations, because a separateiequation
described each reaction between two particular isotopomers. The number of possible °C
isotopomers for a given metabolite is given by 2", where » is the number of carbon atoms in the
metabolite. For example, the above approach required a total of 32 differential equations to
describe the interconversion between o.-ketoglutarate and glutamate via one arhinotransferase
reaction. A compartmental modeling approach was proposed by Yu et al. [64, 65], who estimated
TCA cycle flux parameters in the perfused rabbit heart by analyzing the isotopic enrichment

kinetics for carbon atoms in selected, rate-limiting metabolite pools of the TCA cycle. This

treatment resulted in a more compact model involving only nine equations, and yielded TCA

cycle flux estimates similar to those by [62] and [63].

Aside from the above mentioned experimental limitation associated with '*C NMR
spectroscopy, the major drawback of the kinetic modeling approach is that it requires knowledge
of metabolite pool sizes. As >C NMR spectra only contain information regarding relative |
enrichments of carbon atoms within a given molecule, the fractional enrichment of each
isotopomer has to be multiplied by the respective metabolite pool size in order to trace the flow
of label. While it is possible to obtain tissue concentrations for many metabolites from the
published literature, there are uncertainties associated with flux estimates Based on these values, '
since sample variations can be significant in biological systems, and as averages, the literature

values may not reflect the concentrations in the particular sample being analyzed [62]. A more
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reliable approach is to perform enzymatic assays parallel to the BC NMR experiments [62].
However, this process is time—consuming'and requires extraction of tissue samples, which
undermines the noninvasive feature of *C NMR spectroscopy. Furthermore, the experimentally
found concentrations are still subject to errors inherent to enzymatic assays. Based on sensitivity
analyses using simulated results, Yu et al. [66] concluded that the estimated fluxes were
relatively insensitive to variations in pool sizes of most metabolites, except those metabolites
whose isotopic enrichment kinetics are directly measured by NMR spectroscopy. For example, in
determining TCA cycle fluxes, even small variations in the assumed glutamate pool size strongly
influenced the predicted labeling patterns, and in turn the calculated flux values. In order to
reduce the uncertainties associated with pool size measurement errors, Chatham et al. [63] and
Yu et al. [66] proposed including a “metabolic cost” term in the objective function of the non-
linear regression that fits the predicted enrichment curves to the measured spectra. For example,
in [66], the cost function was the difference between the measured and predicted oxygen uptake

~ rates, with the predicted value expressed as function of the estimated flux parameters.

Despite the drawbacks mentioned above, kinetic isotopomer modeling, coupled with
dynamic '*C NMR spectroscopy, remains an attractive approach for flux estimaﬁon, because the
~ method does not require steady-state metabolic or isotopic conditions, and allows for the
dynamic study of metabolic systems, which is particularly useful for investigating metabolic
stresses in intact tissues [67]. For example, Cohen et al. [68] used nondestructive 3C NMR
methodology to monitor metabolic fluxes in the perfused liver of obese mice treated with leptin.
Recent advances in NMR technology has also enabled the in vivo observation of large, polymeric
metabolites in selected tissues, such as glycogen in the liver or skeletal muscle, at resolutions
comparable to those obtained in vitro or in extracts [69]. However, for applications where
detailed analysis of intermediary metabolism is desired, isotopomer measuremems are still
conducted in extracts [70], which negates the noninvasiveness advantage of the kinetic modeling
approach. Therefore, in applications where extracts are available (via biopsies), or cells are
exposed, such as ex vivo engineered tissues, an alternative approach based on steady-state
models has been used more frequently, because of the superior resolution of the associated
experimental method and the flexibility of these mature models that can accommodate large, -

complex metabolic networks.
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1.3.4 Steady-state models

Steady-state isotopomer analysis is analogous to metabolite balancing in that intracellular
fluxes are estimated using steady-state mass balances, except that by using isotopic tracers, many
more additional constraints can be generated to improve the resolvability of the model metabolic
network. As alluded to earlier, the metabolite balancing approach sometimes leads to -
underdetermined algebraic systems, especially when there are large numbers of branch pomts
and cyclic pathways [71]. Furthermore, reversible reactions are entirely irresolvable by
metabolite balancing alone, as this method estimates only net fluxes. Introducing isotopic tracers
expands the number of available measurements, and hence constraints, which can be used to
resolve more complex networks as well as quantify exchange fluxes between metabolites
participating in reversible reactions. On the other hand, introducing isotopic tracers also adds
complexity to the model formulation, as the numbers of equations required to relate the steady-
state distribution of isotopomers to metabolic fluxes is very large. The model constructiq_n is
further complicated by the dependence of the isotopomer distribution on reversible reactions.
The distribution of isotopomers is also influenced by the choice of the tracer, both in terms of the
position(s) of the label and the metabolite, and therefore, depending on the chemical redctions
occurring in the metabolic network, differently labeled substrates are required to obtain

informative measurements from a tracer experiment. In order to optimize the type and degree of
tracer labeling and thereby maximize the information yield, it is often useful to perform a priori

“sensitivity analyses which test the stability of estimated flux parameters with respect to various
tracers using simulated data [72].

These considerations regarding the formulation of complex model equations and the
choice of appropriate tracer labeling have been facilitated by recent introductions of :
complitational tools and formalisms. Zupke et al. [73, 74] proposed a method involving atom
mapping matrices (AMMs), which effectively sepai'ated the chemical reaction details of
isotopomer formation from composing the structure of the metabolic network model. Using
binary indexing to enumerate isotopomers, an AMM specifies the transfer of carbon atoms from
reactant to product in a corresponding biochemical reaction. Thus, AMMs allow st.raightforwérd
derivation of isbtopomer balances from metabolite balances. Similar approaches have been

suggested by several other authors [75-77]. '
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Flux estimation by iéotopomer analysis proceeds iteratively, which, combined with the
complexity of the model equations, prohibits analytical solutions. In general, simulation models
are used to predict isotopomer distributions as a function of a given set of intracellular fluxes,
which are then compared with the experimental data. The best estimate for the fluxes are
obtained by mininiizing the deviation between the calculated and measured isotopomer
distributions [78]. This strategy, shown schematically in Figure 1-6, is usually applied iteratively,
and has been used with minor modifications by a number of researchers in a variety of systems.
The implemehtation, while in principle straightforward, requires rigorous statistical treatment of
both expefimental data and the algorithm, because of the large number of variables involved,
which are often nonlinearly dependent on the measured data [79]. To this end, Wiechert and de
Graaf [80, 81] proposed an elegant, generally applicable formalism for sensitivity analysis,
computation of confidence regions, and parameter identifiability analysis. Central to this
formalism was the notion that both structural network properties [82] as well as q\jantitative
assumptions regarding measured data and fluxes could be expressed as linear eq\;ality or
inequality constraints using matrix algebra and a formal language developed specifically for
metabolic network modeling. By defining accessible labeling states with equality and inequality
constraints, theoretical boundaries can be established around possible isotopomer distributions,
aﬁd hence flux solutions, aiding in the experimental design and reducing computation time.

In addition to computational strategies, several recent advances have also been made in
isotopomer measurement 'techniques. Unlike kinetic models, which require knowledge of
metabolite pool sizes, the only experimenfal input to steady-state isotopomer models is fractional
enrichment or isotopomer distribution data. As the steady-state approach has been applied to

_systems where tissues are exposed or extracts are available, these measurements have been
performed using both gas chromatography-mass spectrometry (GC-MS) as well as NMR
spectroscopy. Traditionally, MS has been perceived to be a more sensitive method than NMR

" spectroscopy, able to detect '>C labeling patterns of metabolites present at low cellular levels (<
0.5 mM ) [47]. On the other hand, '>C NMR spectroscopy presents a simpler measurement tool

¢thaanS-MS, which requires multiple chemical derivation steps prior to the analysis. Fortunatély,
recent progress in two-dimensional (2D) NMR spectroscbpy has led to the development of an
analytical technique, termed 2D heteronuclear correlation spectroscopy (COSY), which can

- efficiently determine the labeling patterns of amino acids from a single measurement on crude
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biomass (protein) hydrolisates [83]. Amino acids in biomass hydrolisates are abundantly present,
and the ability to use the isotopomer distribution patterns of these compounds avoids the need to
measure the isotopomer distribution patterns of central carbon metabolism intermediates, which
are present at low cellular levels and therefore more difficult to obtain. Moreover, unlike GC-
MS, which distingﬁishes ‘only mass isotopomers, 2D BC-NMR spectra also contains information
regarding the relative amounts of positional isotopomers, and in principle can be used to acquire
constraints on all of the 2" isotopomers of a n carbon molecule [78]. One remaining limitation of
2D "*C-NMR is that for larger, nearly symmetrical metabolites, it can only quantify subsets of
isotopomefs, because certain nuclear spin couplings, parameters essential to the isotopomer
analysis from 2D '*C-NMR spectra, appear identical or are irresolvable. For example, GC-MS,
while somewhat tedious in its applicatibn, has no such limitations regarding the size and

symmetry of the metabolite. To date, the most complete approach to determining the isotopic

- labeling state of a metabolite is to use both GC-MS and 2D BC-NMR, as they yield

complefnentary experimental data from which robust, tracer independent flux estimates may be

obtained [84].

1.3.5 Extension to tissue systems »

‘Significant advances in computational methods and analytical techniques have led to the
maturation of steady-state isotopomer analysis as a robust tool for intracellular flux estimation
applicable to even large complex metabolic networks. However, there remain a number of

obstacles to extending this method to systems relevant to the study of human disease, such as

‘whole body animal models or perfused organs. The ultimate output of the afore mentioned

analysis is not a set of absolute fluxes, but a flux distribution, because the experimental input, an
i1sotopomer distribution, is only a function of the relative activities of metabolic pathways. In
order to infer absolute values, which is crucial for sample and treatment comparisons in
physiological studies, the absolute value of at least one flux in the metabolic network must be
experimentally 6btajned. This is a straightforward matter for a bioreactor culture, where the
absolute rate of uptake or release of a metabolite can easily be found by multiplying the
concentration gradient across the reactor inlet and outlet by the dilution rate. Even for a perfused
organ, the exchange rate of a metabolite may be determined from a measured concentration time

profile. However, in vivo tissue systems are not amenable to these approaches, because they are
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physically inaccessible and -directly or indirectly interact with various other tissues and organs in
the body. |

In order to address these obstacles, biochemists, organ chemists, and physiologists have
developed several tracer methods for metabolic flux estimation that are specifically tailored fdr
in vivo application‘s. An excellent review of techniques for measuring the turnover rate, or rate of
de novo synthesis, of a single metabolite in a particular tissue or organ is provided by Wolfe [85,
86]. In this application, the stable or radioactive tracer analog of the metabolite of interest is
infused at a constant rate into the body following a priming dose injected as bolus. The
corresponding metabolic flux, or to use the terminology in this literature, the rate of appearance
(Ra); is found from the tracer dilution data using mass balances drawn around the plasma
compartment. For example, Hellerstein et al. [87] estimated the rate of glucose production in the
liver by measuring the steady-state plasma dilution of the tracer [l-H3 ]glucose. Once the in vivo
turnover rate of a metabolite is known, absolute values for tissue or organ specific intracellular
fluxes associated with the production or consumption of the metabolite may be calculated using
the isotopomer models described above, provided the tissue or organ isotopomer distribution can
be measured.

In situations where the desired intracellular fluxes involve physiological polyermerization
reactions, several techniques specifically developed for this application may be used in
conjunction with the steady-state isotopomer modeling method. In general, these techniques
proceed by introducing a monomer substrate enriched with a stable isotope (usually 13C) into the
cell, tissue or organ and then analyzing the relative abundance of the polymerization product
isotopomers. From this data, estimates may be obtained for the relative contributions of the
pathways that led to the formation of the polymer using algebraic equations. One of the earliest
versions of this technique was employed by Kalderon et al. [46, 88-90] in order to probe
glycogen formation from gluconeogenesis derived glucose precursors in patients with glycogen
stordge disease. Since then, several researchers have developed useful extensions which
incorporate probabilistic models into the data analysis. Currently, the two most popular versions
are mass isotopomer distribution analysis (MIDA) and isotopomer spectral analysis (ISA).

' MIDA, which was originally conceived by Strong et al. [91] and subsequently expanded
| by Hellerstein et a].. [92-95] and Lee et al. [96, 971, estimates biosynthetic rates by fitting mass

isotopomer distribution frequency data to a probabilistic model. It has long been established that
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the inference of biosynthesié using tracers requires accurate experimental determination of the
isotopic enrichment of the “true” precursor pool, denoted “p” in the literature. The “true”
precursor is the actual monomer substrate which enters the product at the site of synthesis. In
practice, isolating the putative precursor and determining its enrichment is very challenging,
because of intracellular inhomogeneities such as subcellular compartmentation, formation of
enzyme-substrate complexes, etc. MIDA calculates the precursor enrichment p by comparing the
measured product isotopomer distribution with a calculated binomial probability expressed as a
function of p [93]. It has been shown that the mathematical estimate of p by MIDA remains valid
even if there are multiple anatomical or functional pools of precursors. Once p is known, both '
fractional synthesis, or de novo synthesis of labeled polymer during a tracer experiment, and the
absolute rate of total endogenous polymer production can be calculated from tracer dilution
kinetics.

In principle, MIDA is applicable to the study of both very long polymers such as proteins
as well as simple dimers such as glucose. Glucose can be considered a dimer formed from the |
condensation of two triose phosphate (TP) subunits, dihydroxyacetone phosphate (DHAP)-and
glyceraldehyde 3-phosphate (GAP). MIDA has been suggested as an attractive alternative for
investigating hepatic gluconeogenesis, because it can avoid certain artifacts associated with the
other methods, such as isotope exchange, which leads to undcrestirriation of glucose production
rates [98]. In practice, the validity of MIDA as a tool for studying gllicose metabolism is still
subject to debate. In a study involving intravenous infusion of two different tracers, Neese et al.
reported that both tracer experiments yielded identical values for hepatic gluconeogenesis in the
fasted rat [99]. However, in a similar experiment, Previs et al. [100] found significant variations
depending on whether labeled lactate or glycerol was infused. This result was ascribed to
heterogeneous zonation of glycerol metabolism across the liver lobule. Further more, it was
concluded while labeled lactate was a suitable substrate for MIDA of GNG in vivo, this was not

‘the case in a perfused liver, presumably because labeled lactate and pyruvate are not fully
equilibrated. It is clear that although MIDA is conceptually sound, care must be taken in
interpreting its results, because of system speéiﬁc nuances such as heterogeneous zonatioﬁ across
an,cirgan.

A method conceptually similar to MIDA is isotopomer spectral analysis (ISA), which is a
method developed by Karroubi et al. [101] in order to measure lipid biosynthesis in cells. Many
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biosynthesis reactions occuf by condensations of the type n4 — 1B, where n is the number of A
molecules needed to synthesize one molecule of B. ISA utilizes the discrete spectrum of
isotopomer abundance and the multinomial probability distribution to estimate two key
pai-ameters associated with the biosynthesis. These parameters are dilutions of the immediate
precursor and the hcwly synthesized product in the sampled compartment. Since its first
application to palmitate synthesis in 3T3-L1 cells [101], ISA has been employed in a variety of
situations, including cholesterol synthesis in HepG2 human hepatoma cell line [102],
acetoacetate metabolism in AS-30D hepatoma [103], and acetyl-L-carnitine flux to lipids in 3T3-
L1 and HépGZ cells [104]. The advantage of ISA is that it is applicable to all condensation type
reactions, including polymerization, and to situations where multiple fluxes need to be estimated
from a single experiment [102]. '

Thus far, this section has summarized the basic ideas behind popular MFA methods used
in both the bioprocess and physiology literature (Table 1-2). The methods covered here have ‘
been developed either for microorganisms or specific tissue or organ pathways, and therefore, in
their present form, are not wholly adequate for biomedical applications, where the aim is to
quantify intracellular fluxes through tissue metabolic networks. On the other hand, the
mathematical forrnalisnis developed by bioprocess engineers and in vivo tracer techniques used
by biochemists and physiologists are complementary, and carefully integrated, could resolve
even large, complex metabolic systems pertinent to medicine. The remainder of this chapter

highlights representative examples from published MFA applications to tissue, organ, and in vivo

systems.
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Table 1-2. Methods for Metabolic Flux Analysis

Method

Measurement / Analytical
Technique

Typical Application

"~ Comments

Metabolite
balancing

Linear
optimization

Enrichment

dynamics

Isotopomer
distribution
analysis

MIDA

ISA

Tracer dilution

EXxtracellular metabolite
concentration by HPLC,
enzymatic assays, or GC-MS

None required, extracellular
metabolite concentration by
HPLC, enzymatic assays, or GC-
MS useful

Enrichment kinetics of
intracellular metabolites by **C-
NMR

Fractional enrichment or relative
isotopomer concentrations of
intracellular metabolites by *C
NMR, 2D PC-NMR, or GC-MS

Relative abundance of mass
isotopomers of biopolymers by
GC-MS

Relative abundance of mass
isotopomers of biopolymers by
GC-MS

Extracetlular concentration of
labeled tracer by GC-MS or
radiometric assay

Microbial central
carbon metabolism

Nutrient requirement
under assumed
objective, such as
maximal growth

TCA cycle fluxes in
perfused organ

Complex networks
containing cyclical
pathway and multiple
branch points

Synthesis of
carbohydrate
biopolymers
Synthesis of lipid
biopolymers

Whole body
metabolite turnover

Simple to apply, very few
assumptions required; limited
resolution

Explores metabolic capacity;
difficult to find realistic objectives
for higher organisms

Estimates absolute fluxes in intact
tissue; need to know metabolite
pool sizes

Only input is isotopomer
distribution data; large
computational cost, obtaining
complete isotopomer distribution
experimentally challenging

Tracer independent results; limited
to polymerization form identical
subunits

Applicable to all condensation
reactions; validated solely in vitro,
estimate only relative fluxes

Clinical relevance; unsuitable for
network analysis
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1.4 Metabolic Flux Analysis in Biomedicine

1.4.1 Cell and organ physiology
| An important aspect of tumor biology has been understanding the ability of tumors to

adapt to adverse gfowth environments such as hypoxia or hypoglycemia. It has been suggested
that the energy metabolism of tumors is altered in such a way as to accommodate high levels of
anaerobic metabolism and alternate substrate utilization. Using ISA and a model of metabolism
around the TCA cycle, Holleran et al. [103] investigated the quantitative importance of
acetoacetate and glucose in energy production in AS-30D hepatoma cells. The study showed that
addition of acetoacetate diverted pyruvate from pyruvate dehydrogenase (PDH) to pyruvate
carboxylation while addition of a nonmetabolized analog of acetoacetate incfeased the oxidation
of glucose via PDH. Without added acetoacetate, glucose supplied 65% of the acetyl-CoA used
for de novo lipogenesis, but in the presence of high levels of acetoacetate, glucose ‘was replaced
by acetoacetate as the dominant lipogenic precursor. These findings suggested that AS-30D cells
have a large capacity for acetoacetate utilization for de novo lipogenesis, enabling increased fat
storage combared to nontransformed cells, which could aid survival under cachexic conditions.
In a study involving rat brain tumor (C6 glioma) cells by Portai et al. {105}, flux distributions
calculated using "H-">C-NMR data showed low pyruvate carboxylase (PK) activity and efflux of
carbon moieties from the TCA cycle, suggesting suppressed glutamine synthesis. In the follow-
up publication, Portai et al. [106], reported that glutamine and glucose are metabolized
complementarily in C6 glioma cells, where glutamine is utilized for anaplerosxs but not as fuel
whereas the majority of glucose is oxidized, with only tiny amounts entermg anaplerouc
pathways. In a similar set of experiments, Bouzier et al. [107] showed that unlike normal
astrocytes, C6 glioma cells preferentially use lactate as a substrate for aerobic metabolism. These
examples illustrate the usefulness of MFA in characterizing important physiological differences
between tumors and their normal counterparts in intact cells, which could form a basis for better
understanding tumor metabolism and controlling tumor growth in the human bod)-r.

MFA has also been used to characterize the effects of acute metabolic stresses. Malloy et
al. [108] used a TCA cycle isotopomer model in conjunction with a perfused heart to show a
protective role f(-)r aspartate and glutamate during ischemia-reperfusion, as these two metabolites

can help prevent a dramatic reduction in TCA cycle intermediate levels. In a similar perfused
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heart model, Laplante et al. [109] established that the mechanism of cardiomydcyte viability
protection by fumarate during ischemia or hypoxia involves its conversion to succinate via the
reversible enzyme succinate dehydrogenése. In another similar study, Sumegi et al. [110] |
showed that lipoamide, a chemical thought to enhance recovery after myocardial infarction,
almost entirely prévents the switch from lactate to acetate oxidation observed in ischemic heart

tissue, pointing to a potential biochemical mechanism for the physiologic activity of this agent.

1.4.2 Metabolic disorders

Oﬁe of the earliest direct applications of isotopomer analysis to studying metabolic
disorders concerned glycogen storage disease (GSD). In a series of tracer experiments involving
3¢ labeled glucose, Kalderon et al. [46, 88-90] studied the effect of GSD types I and Il (GSD-I
and ~II) on hepatic glucose storage and utilization. In children with GSD-I, the glucose
isotopomer distributions in the plasma mirrored that of the infused tracer, indicating that glucose
recyclirig was absent. In contrast, the plasma glucose isotopomer distribution was significantly
altered in control and GSD-III subjects. The absence of recycled glucose in plasma eliminated
gluconeogenesis as a mechanism for glucose production in GSD-I patients, and pointed instead
at a functional deficiency in a gluconeogenic enzyme. In GSD-III patients, the opposite was true,
as gluconeogenesis was found to be the dominant route for glucose production. A promising
extension to these findings is the minimally invasive detection of metabolic disorders using
isotopomer analysis. As the differences in glucose recycling between GSD-I, GSD-II, and
normal subjects were deduced from differences in plasma glucose isotopomer distributions,
conversely, defects in glucose metabolism may be detected simply by performing NMR
spectroscopy or GC-MS on drawn blood samples.

Another metabolic disorder studied frequently with isotopic tracer Analysis is diﬁbetes. In
a series of extensive studies in perfused livers, Cohen et al. [111-113] found that concomitant
activation and repression pyruvate carboxylase and pyruvate kinase, respectively, prevent back
conversion of phosphoenolpyruvate to pyruvate, leading to the enhanced gluconeogenesis found
in some diabetic patients. More recently, Peroni et al. [114] demonstrated that the increased
gluconeogenic contribution to hepatic glucose production in streptozotocin-diabetic rats
depended on the whole body nutritional state, as isotopic tracer experiments showed that

gluconeogenic flux increased relative to control in the post-absorptive state but not in the fasted
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state. In a clinical study, Tayek and Katz [115] compared the relative contributions of
gluconeogenesis and glycogenolysis to post-absorptive hepatic glucose production in normal
volunteers and non-insulin-dependent diabetes mellitus (NIDDM) patients. They found that
while total glucose production was elevated in NIDDM patients compared to control subjects,
fractional contribution of gluconeogenesis was comparable, raising doubts about the widely-held
notion that synthesis of hepatic glycogen is seriously impaired in NIDDM. This was not the case
for insulin-dependent-diabetes mellitus, as Landau et al. [116] showed using a similar approach
that the contribution of gluconeogenesis to glucose production is significantly less in [DDM
patients than in normal subjects.

Finally, the above results, coupled with the minimally invasive nature of performing
NMR spectroscopy or GC-MS on drawn blood samples, hint at possible diagnostic tests based on
isotopomer distribution analysis of one or more plasma metabolites. In an early utilization of this
notion, Gopher etal. [117] proposed a isotopomer analysis based procedure for detecting
hereditary fructose intolerance (HFI), which has traditionally been diagnosed by liver biopsy.
HFI subjects, who lack the ability to degrade fructose-1 phosphate by aldolase B action, if
continuously exposed to fructose during infancy, may develop liver cirrhosis and mental
retardation, and risk high chance of mortality. In the isotopomer analysis approach, the hepatic

fructose metabolizing pathways in potential HFI children are probed using 13C labeled fructose,

- and checked for any defects by analyzing plasma glucose isotopomer distributions. This

procedure was validated by an experiment where nasogastric infusion of D-[U-"*C]fructose into
healthy and HFI children and subsequent analysis of plasma glucose isotopic enrichment
confirmed that conversion of fructose to glucose was significantly lower in HFI children.
Interestingly, it was also found that the generally accepted pathway of fructose conversion to
glucose via fructose-1 phosphate aldolase accounted for only Y2 of the total even in normal
subjects. Thus, the sfudy concluded that a direct pathway must exist which converts fructose to
fructose-1,6 bisphosphate, for exampie via a particular isoform of phosphofructokinase.

In addition to plasma samples, metabolites excreted in bodily fluids may also be used as
input to isotopomer analysis models to quantify organ specific metabolic fluxes. For example,
one technique termed “‘chemical biopsy” [118] takes advantage of the known biochemistry of
xenobiotic conjugation the liver and the subsequent excretion of the conjugation product in urine.

This method was first validated by Magnusson et al. [119], who obtained detailed estimates for
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TCA cycle fluxes by analyzing the "C distribution of xenobiotic conjugate phenylacetate-
glutamine in urine samples of human volunteers orally administered phenylacetate and infused

with [3;'4C]lactate. The glutamine component of the conjugate is synthesized from the TCA

‘cycle intermediate a-ketoglutarate via glutamate without rearrangement of carbons, thus

providing a direct look at the labeling state of a-ketoglutarate in the liver. Recently, Jones et al.
[120] improved on the method by substituting [3-'4C]lactate with a stable tracer, [U-'C]

propionate, which is quantitatively extracted into the liver from portal circulation.

1.5 Concluding Remarks

This introductory chapter began with a motivation for metabolic engineering'analyse's in
medicine, with particular emphasis on MFA as a promising tool for studying, diagnosing, and
ideﬁtifying therapeutic targets for metabolic disorders. It then gave a survey of basic concepts
and techhiques commonly used in MFA, followed by examples from the literature highlighting
the use of isotopic tracers in studies involving medically relevant systems. In this concluding
section, the discussion focuses on defining crucial areas in need of further research. Specifically,
MFA in biomedicine could significantly benefit from progress in the following three areas:
implementation and integration of MFA models into computer software; development of
physiologically relevant tissue and organ experimental systems; and improving sensitivify and
throughput of ahalytical techniques.

In the past, MFA models have been relatively small, including on the order of 10 to 100
equations, either because of limited availability of metabolite measurements or because they
focused on specific pathways such as TCA cycle and gluconeogenesis. With the recent progress
in analytical techniques and development of mathematical formalism, it has become possible to
build larger, more comprehensive models encompassing most of the known reactions in central
carbon metabolism as well as reversible reaction steps. As model networks and correspohding
equations expand further in size and complexity, the need is growing for software
impleméntations. Ideally, MFA software integrates the various steps, such as model construction
tracer selection, equation formulation, flux calculation, comsistency check, and sensitivity
analysis into one easy-to-use package with a graphical interface. In this way, network models are

built and modified rapidly, and data presentation and analysis is simplified. Furthermore, the
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investigator can take better ‘advantage of the rapidly growing number of available on-line
biochemical databases in searching for novel pathways and validating reaction stoichiometry.
Finally, software implementation also affords better experimental design, particularly in
choosing tracers and type of measurements. As alluded to earlier, the amount of information that
can be obtained from a labeling experiment depends strongly on the input tracer as well as the
isotopomer measurements. For example, simulating various scenarios of flux distributions
through the pentose phosphate pathway, Follstad and Stephanopoulos [121] found that
measuring the isotopic enrichment of the hexose pool (glucose 6-phosphate and fructose 6-
phosphate') and erythrose 4-phosphate is more useful than measurin g the enrichment of the _
pentose pool (ribulose 5-phosphate, ribose S-phosphate, and xylulose 5-phosphate). The authors
ascribed this results to the sensitivity of the hexose pool isotopomer distribution pattern to
variations in the rates of reversible reactions. Simulations such as these are very valuable in
maximizing the informational content of each experiment, and could easily be performed by
software implementations of metabolic network models.

Extension of MFA to medically relevant systems could also benefit from development of
new or refinement of existing experimental models. These models need to combine
controllability and observability with physiological relevance. While fed-batch or chemostat
reactors adéquately address these needs for suspended microorganism cultures, they are not
suitable for anchorage dependent tissue cultures. For some tissue types, such as those in the liver,
heart, kidney, and pancreas, there are existing options such as perfused organs and bioreactors,
which offer the advantage of flow over traditional dish and plate cultures. However, the
physiological relevance of these systems still need to be fully validated. One way to improve
relevance is by designing better media, which more closely mimic in vivo substrate composition,
hormone levels and soluble messenger milieu. _

Finally, in order to fully realize the potential of MFA in medicine, techniques are need
for sensitive and rapid detection of both metabolites and isotopomers. While traditional
enzymatic assays for metabolites are sensitive and specific, they are tedious and time-consuming.
Recently, researchers in plant physiology have published several novel chromatographic
methods for rapid screening of metabolites in leaf extracts, which could readily be adopted for
applications in culture media, bodily ﬂuids, and tissue homogenates. A number of advances have

also been made in improving isotopomer detection in vivo and in vitro. One hindrance to
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dynamic ®C NMR for in vivo applications has been the poor resolution of multilinear
resonances, which are critical sources of information for isotopomer distribution analysis. This
problem was at least partially addressed in a series of publications by Sherry et al.[122], who
showed that °C homonuclear decoupling of a five carbon metabolite C3 resonance collapses
nine-line C4 and C2 resonances into well-resolved three-line multiplets. The difficulty in
obtaining clear in vivo NMR spectra can be avoided in certain situations by utilizing methods for
noninvasive sampling of tissue metabolites. One such method involving xenobiotic chemicals
samples the glutamate pool in the liver, and has already mentioned [119]. Another, involving
plasma fraétion of very low density lipoprotein (VLDL) has been suggested by Wykes et al.
[123]. VLDL is rapidly processed to particles of higher density, apolipoprotein B (apoB) within
the liver. VLDL has a very fast turnover rate, so that during the course of a tracer experiment
lasting less than 12 hrs, full isotopic equilibrium is reached between the tracer and the hepatic
apoB pool. At this point, the isotopic enrichment of amino acids in VLDL direct]y_;deﬁnes the
isotopic enrichment of corresponding metabolites in the liver from which they are derived. Thus,
pyruvate, o-ketoglutarate, and oxaloacetate enrichments may be assayed by analyzing apoB
bound alanine, glutamate, and aspartate, respectively. A serious limitation to isotopomer
detection in vitro as well as in vivo has been the low abundance of labeled primary metabolites
in sample extracts. As mentioned briefly in a previous section, one promising approach to
overcoming this obstacle has been to recover labeled amino acids by hydrolyzing protein, which
is abundantly present in most cells [83]. The notion of utilizing products of anabolic pathways

can be extended to other central carbon metabolites, as most are stored in polymeric compounds

~ such as glycogen, membrane lipids, and nucleic acids. Techniques to isolate and hydrolyze these

molecules have been available for some time [83, 124, 125]. For instance, glycerol has been
extracted from lipids [126] and ribonucleotides from RNA and DNA [127]. These and
aforementioned advances have made possible tﬁe collection of a formerly unattainable amount of
high-precision isotopomer distribution data.

If continued progress is made in the above defined computational, experimental, and
analytical areas, MFA could a powerful tool for noninvasively obtaining quantitative,
comprehensive information regarding cell and tissue metabolism. As hinted at throughout this
chaptet, potential areas of application include: investigation of basic cell and organ physiology,

optimization of engineered tissue function, detection and diagnosis of metabolic disorders, »
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identification of therapeutic targets, evaluation of drug effects on metabolism, finer stratification
of disease states, and design of novel treatment strategies for metabolic disorders, including
rational nutritional support for critically ill patients and tailored diet regimen for patients
suffering from chronic diseases such as diabetes, obesity, and cancer. It is the hope of the author
to illustrate the aforementioned ideas with the experiments and analyses presented in the

remainder of this dissertation, which deal with the study of injury induced hypermetabolic

response in the liver.

1.6 Specific Aims

.The overall objective of this thesis was to integrate metabolic engineering principles and
tools with cell biology, biochemistry, and physiology concepts and techniques in order to
achieve an improved understanding of the mechanisms underlying injury derived metabolic
perturbdtions in an organ central to whole-body regulation of metabolic homeostasis. To this
end, the following specific aims were addressed:

1. to develop and validate an experimental model of injury for the liver

2. to delineate the metabolic flux distribution in the liver during the onset of the
inflammatory response to injury

3. to build diagnostic tools for detecting and grading injury derived metabolié

abnormalities

4. to identify potential target pathways for therapeutic intervention
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CHAPTER 2. POST-BURN HYPERMETABOLISM IN THE PERFUSED LIVER

2.1 Introduction

Injury elicits dramatic acute and chronic changes in whole body metabolism, which are
general with respect to type of insult and correlate with the severity of the injury. As originally
described by [128], the metabolic response to injury is biphasic. The early or ebb phase lasts
about 24 hours and is characterized by decreased intravascular volume, poor tissue perfusion,
‘low cardiac output and relative hypometabolism where total oxygen consumption is below
normal levels [129]. It is followed by a flow phase, where patients exhibit increased resting
energy éxpenditure, hyperglycemia, and net proteolysis of myofibrillar protein in muscle. This
hypermetabolic and hypercatabolic state can persist for several weeks and even months [130].
While hypermetabolism is thought to be beneficial for the short term in that it mobilizes host
resources in order to aid in wound healing, if persistent, it is associated with the development of
cell and organ injury, progressive multiple organ dysfunction syndrome and, eventually, death
[131, 132].

In recent years, the liver has been recognized to play an active role in the pathogenesis of
hypermetabolism. In addition to generating acute phase proteins early after injury [133], the
liver is the major and only site of increased de novo glucose and urea synthesis, respectively,
during the flow phase [134, 135]. Sustained elevation of liver amino acid transporter activity has
been also reported [136], which supports the notion that hypermetabolism associét,ed muscle

‘wasting fcflec;ts an increased amino acid demand in the liver. Furthermore, the liver itself
undergoes dramatic changes during’prolonged hypermetabolism, as there is a decline in ATP and
glutathione content [137], accompaniéd by worsening liver dysfunction which culminates in a
fall in glucose synthesis and amino acid oxidation [138]. Unfortunately, the biochemical
mechanisms behind the hypermetabolic response to injury remain unclear, and thus far, attempts
at modulating this response have been largely unsuccessful. N

As a preliminary step toward understanding hypermetabolism in the liver, we previouslyv
used an established model of rodent thermal injury [139] in conjunction with an isolated perfused
liver model to assess the metabolic adaptations occurring in the liver during hypermetabolism
[140]. We found that bum injury increased hcpatic urea production, oxygen consumption, and

net uptake of gluconeogenic amino acids, but did not significantly affect net glucose output.
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That hepatic glucosé output was unaltered despite increased uptake of gluconeogenicl amino
acids seemed incongruous, especially since subsequent Bc isotopomer studies [74, 141] revealed
that burn injury increased carboxylation of pyruvate, which is the first step of gluconeogenesis.
One explanation for this discrepancy could be substrate cycling between the pathways of
gluconeogenesis and glycolysis and a cycle involving breakdown and synthesis of stored
triglycerides (TGL), as previously proposed by Wolfe et. al. [48]. On the other hand, the
presence of futile substrate cycles in non-thermogenic tissue such as the liver is still subject to
debate, given the reciprocalnreg‘ulation of gluconeogenesis and glycolysis [142] and B-oxidation
and fatty écid synthesis [143]. Altemnatively, the increased amino acid influx could be used for
the synthesis of acute phase proteins such as plasma C-reactive protein [144] and fibrinogen
[i45]. However, other proteins (negative acute-phase proteins) such as albumin [145] and
transferrin [144] are produced at depressed rates during the hypermetabolic state. Furthermore, a
significant fraction of the amino acids taken up by the liver in the burn condition is deaminated
and oxidized rather than incorporated into protein, as evidenced by the large increase in urea -
production.

In order to elucidate the fate of glucose and amino acids in liver, we used metabolic flux
analysis to determine the effect of burn injury on the flux distribution through the major -
pathways in the liver associated with carbohydrate, fatty acid, and amino acid metabolism.
Metabolic flux analysis [146] refers to a methodology whereby intracellular fluxes are calculated
using a stoichiometric model for the major intracellular reactions and applying mass balances
around intracellular metabolites. This approach allows a large number of metabolite
measureménts to be used simultaneously in formulating a comprehensive model of metabolism.
To date, metabolic flux analysis has been primarily used to study systems relevant to |
biotechnology and bioprocess engineering [147]. In this study, we formulated a stoichiometric
balance model of hepatic intermediary metabolism involving the pathways of gluconeogenesis,
pentose phosphate shunt (PPP), amino acid degradation, oxygen consumption, ketone bddy

_production, and fatty-acid oxidation. These balance equations were applied to metabolite data
obtained from perfused rat livers 3 days post bumn and previously published by Yamaguchi et

al.[140] in combination with new data.
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2.2 Materials and Methods

2.2.1 Chemicals
Unless otherwise noted, all chemicals were purchased from Sigma Chemical Co. (St.
Louis, MO). [1-'4C]g]ucose (54.5 Ci/mmol) was purchased from New England Nuclear Life

Science Products (Boston, MA). [6-'*Clglucose (56 mCi/mmol) and NaH"*CQ; (54 mCi/mmol)
were purchased from ICN Biomedicals (Irvine, CA).

2.2.2 Burn injury model

Male Sprague-Dawley rats (Charles River Laboratories, Boston, MA) weighing 150 ~
200 g were housed in a temperature (25 °C) and light-controlled room (12-hour light-dark cycle).
The animals were cared for in accordance with the National Research Council guidelines.
Experimental protocols were approved by the Subcommittee on Research Animal Care,
Committee on Research, Massachusetts General Hospital. Water and rat chow were provided ad
libitum. Animals were individually housed and allowed to adjust to their new surroundings for at
least 2 days before receiving treatment. On the day of treatment, animals were randomly divided
into two groups, burned and sham-burned. Burn and sham-burn procedures were carried out as
described previously [140]. Briefly, the burn injury consisted of a full-skin thickness scald-burn
of the dorsum, calculated to be ~ 20 % of the rat’s total body surface area (TBSA), induced by
immersing the designated area in boiling water for 10 seconds. Rats were resuscitated with two
intraperitoneal injections of sterile saline solution (1.5 mL/kg/% TBSA), one immediately after
burn and one within 8 hours of burn. The mortality rate of this treatment was negligible. Sham-

burn animals were treated identically except that they were immersed into a 37 °C water bath.

2.2.3 Liver perfusion

Perfusions for metabolite data collection were performed in a recirculating system as
described previously [140] (Figure 2-1). Minor modifications were made for the radioactive
tracer experiments. As suggested by Kuehn and Scholz [148], livers were perfused in single-pass

mode in order to present a constant fraction of labeled glucose to the liver and prevent

reincorporation of labeled bicarbonate.
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Figure 2-1. Recirculating liver perfusion system
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membrane
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The experimental system described in [140] and used for metabolite data collection in
work presented in this chapter and throughout the dissertation is shown for reference.
Medium reservoir holds perfusate composed of minimal essential medium (MEM)
supplemented with bovine serum albumin (BSA), lactate, pyruvate, and amino acids. The
medium substrate concentrations were designed to resemble those in the rat portal vein
during the post-absorptive period (see Table 3-1). Perfusion medium was delivered by a
peristaltic pump at 4 mL/min/g fresh liver. Medium was warmed to 37°C by a heat
exchanger, gassed with artificial atmosphere (95 % 02 /5 % CO2), and vented, before
entering the liver via a catheter cannulated into the portal vein. After emerging from the
liver via a catheter placed into the vena cava, medium reentered the reservoir. Samples (1
mL) were drawn from the reservoir at timed intervals during the perfusion and later

assayed for metabolites.

46




Clark-type oxygen sensing élcctrodes in flow-through modules were connected to the perfusion
circuit (Lazar Inc., Brea, CA) at the inlet and outlet of the liver for continuous monitoring of
oxygen consumption. Perfusion flow rates were maintained at 20 mL/min (2.72 £ 0.07
mL/min/g liver) by a peristaltic pump. The perfusion lasted 60 minutes and was divided into
three phases, wheré time zero is taken to be the moment the portal vein was connected to the
perfusion circuit. The first phase (I) lasted 30 minutes during which time the liver was washed
of residual blood and allowed to reach a metabolic steady state as determined by monitoring
oxygen consumption. During this phase, effluent perfusate was collected at 15, 20, 25,.and 30
minutes aﬁer the start of perfusion. At the end of phase I, the liver was perfused for 15 minutes
with medium containing 0.05 pCi/mL of either labeled D-[1-'*Clglucose or D-[6-'“C]glucose.
During this second phase (II), effluent was collected every 60 seconds. The third phase (III)
lasted another 15 minutes during which time the liver was again perfused with unlabeled
medium. During phase III, samples were collected at 2 minute intervals. At the c_ﬂd of the
perfusion, the whole liver was quickly excised, blotted, weighed, and frozen in liquid nitrogen.

Livers were stored at -80 °C and the effluent perfusate samples were refrigerated.

2.2.4""C0O, measurement
'4CO, was trapped and measured using a modified version of the technique of Gaines et

al. [149]. 200 pL of sample was added to a 1.5 mL Eppendorf microcentrifuge tube, which was
then placed in a 20 mL glass scintillation vial containing 1 mL of 1 N NaOHq). The vial was
then closed with a self-sealing septum. 400 pL of 6 N HCl (.q) was injected by syringe through
the septum into the Eppendorf tube. After 6 hours of incubation at room temperature, the septum
was removed, the Eppendorf tube discarded, and 2Q mL of scintillation fluid (Ultima Gold,
Packard Instrument Co., Meriden, CT) added. The vials were recapped and radioactivity was

| counted in a Beckman LS 6000 IC scintillation counter (Beckman Instruments, Palo Alto, CA).

2.2.5 Metabolite assays

Amino acids were fluorescently labeled (AccQ-Tag, Waters Corporation., Milford, MA),
separated by HPLC (Model 2690, Waters), and quantitated by fluorescence measurement (Model
474, Waters). Glucose, lactate, and urea were measured by commercially available colorimetric

enzymatic assay kits (Sigma Diagnostics, Sigma Chemical Co.). Ketone bodies were measured
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by a modified version of thé Wilson assay [140]. Dissolved oxygen and carbon dioxide were
measured with an automated blood gas analyzer (Model 238, Bayer Corporation, Norwood,
MA).
2.2.6 Enzyme activity measurements

_ All enzymé activities were measured in liver crude extracts prepared in the following
manner. From each frozen liver, an entire lobe (ca. 1.0 g) was broken off and minced in 10 mL
of icev-cold buffer (50 mM poitassium phosphate, pH 7.5, containing 1 mM EDTA) using a
Potter-Elevehjem tissue grinder (Wheaton, Millville, NJ). This homogenate was dilﬁted 10-fold
in the samé buffer. The diluted homogenate was centrifuged at 8,500 X g and 4 °C for 10
minutes. The supernatant was collected and kept on ice. Samples not assayed immediately were
stored at —80 °C. Glucose-6—phosphate dehydrogenase (GGPDH) and glutathione reductase (GR)
activities were measured using commercial kits (Sigma Diagnostics 345-A, Sigma Chemical Co.,

St. Louis, MO and OXIS International Inc., Portland, OR, respectively).

2.2.7 Calculation of intracellular fluxes
A network model of liver metabolism was constructed based on known stoichiometric
relationships between the reactions of intermediary metabolism. The pathways included in the
model are: (a) TCA cycle, (b) urea cycle, (c) pentose phosphate pathway (PPP), (d) ‘
gluconeogenesis, (e) B-oxidation, (f) amino acid oxidation, and (g) ketone body synthesis.
Pathways (a), (b), and (c) are always active, while (d) ~ (g) are active in the fasted state. The
following pathways are inhibited by fasting and therefore were not included in the model: (h)
glycogen synthesis, (i) fatty acid synthesis, and (j) irreversible, energy requiring steps in de novo
amino acid biosynthesis. An example of pathway (j) is synthesis of proline from glutamate via
glutamate kinase and pyrroline carboxylate reductase. The strictly glycolytic enzymes,
hexokinase, phosphofructokinase, and pyruvate kinase, are also assumed to be inhibited. While
these enzymes are likely to be expressed to some degree at all times, this éSsumptibh was
_ necessary in order to avoid including cycles irresolvable by metabolite balancing. Finally, flux
through pyruvate dehydrogenase (PDH) was assumed to be negligible based on the results of a
previous study using 13C isotopomer analysis of TCA cycle intermediates showing that flux
through PDH accounts for less than 10 % of the net total flux into thé acetyl-CoA pool [141].

Table 2-1 lists the stoichiometry and the relevant enzymes of the reactions included in the model.
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The calculation of iniracellular fluxes follows the procedure described in the prévious
chapter and by Zupke et al. [150], with minor modifications. Briefly, the stoichiometric
coefficients of the reactions in Table 2-1 were collected into a matrix S, where element s;; holds
the coefficient of metabolite i in reaction j. Table 2-2 lists the metabolites around which

balances were written. The balance equations are succinctly written in matrix form:

dx '
= =8 2-1
- =S @

where each element x; of x is the intracellular concentration of metabolite i and element v; of v is
the net flux through reaction j. Assuming the liver was in a metabolic steady state during the
perfusion, .
_ Sv=0 (2-2)
Equation 2 was rearranged by separating v into measured and unknown components v,, and v,
respectively, and partitioning S into corresponding parts S, and S,, respectively:
| Sv=S,v, +8S,v, (2-3)
Combining Equations 2-2 and 2-3, we obtained the following: '
Sy, =-S,v, (2-4)
In the present model, there are 35 linear constraints which could be used to calculate 32
unknown reaction fluxes. Thus, the measurements could be tested for presence of any gross
errors by the mass balance method of Wang and Stephanopoulos [51]. The method uses the
redundant constraints in conjunction with an error variance-covariance matrix F to calculate a
test function (%), which represents the weighted square of the residuals of the constraints. In the -
present study,‘ measurement errors were assumed to be uncorrelated and F was estimated by a
diagbna] matrix whose diagonal entries are the aﬁimal-to-animal variances associated with each
measurement. For normally and randomly distributed errors, 4 follows the chi-square (3?)
distribution. The null hypothesis is that the amount of errors present in the measurements is
significant with a conﬂdcncc'level of 1 - 6, where 6 is a parameter which expresses the tail area
proBabilit.y of a? distribution. The hypothesis is rejected if h < x°1.6(m), where m represents the
number of redundant constraints. If 2 > le_e(m), it is concluded with (1 - 6) x 100 % level
- confidence that either gross or systematic error is present in the data. In this case, a systematic
approach also outlined in Wang and Stephanopoulos [S1] may identify the source(s) of the

error(s) and find better estimates for the measurements. The h values computed for the
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metabolite measurement sets collected in these studies are shown in the last row of Table 2-3,
Comparing the test function (k) values with standard chi-square ()) distribution values at
various confidence levels for 3 degrees of freedom, it could not be concluded at 95 % confidence
level that any gross errors were present in the measurements. Thus, the quality of this data were
deemed to be satisfactory, and the measurements were used without any subsequent adjustmcnts
for the calculation of unknown fluxes v..

In order to evaluate the uncertainty in the flux estimates, Equation 2-4 was scaled by the

variances of the measurements [150]:

Ca

Dy=ghb = =S, (2-5)

r
g,

Q

where 0',-2 is the variance of r;. This transformation takes into account differences in the
uncertainties of the various measurements and is equivalent to solving Equation (2-4) by
weighted least squares: |

v, =(D"D)"'D"b (2-6)
The matrix (DTD)'l is the variance-covariance matrix of the flux vector v, and its ith diagonal
element holds the variance of v;. The elements of v,, are measured rates of metabolite uptake or
release by the liver (Table 2-3), obtained from previously published data [140] and additional
experiments performed in this study. Two measurement vectors .v,, were constructed,
- corresponding to one v,, each for burn and sham-burn conditions. Tests of statistical significance
between fluxes were performed by the z-test based on either measured or estimated variances. All

other tests of statistical significance were performed using the Excel 97 ANOVA data analysis
tool (Microsoft Corp., Redmond, WA).

2.3 Results

In order to determine the effect of burn injury on intracellular fluxes in the perfused hver
rates of change of extracellular metabolites were obtained from Yamaguchi et al. [140] and
additional measurements performed in this study. These data are shown in Table 2-3. The _
calculated intracellular fluxes are listed according to their reaction numbers in Table 2-4, where

the numbering scheme refers to that in Table 2-1.
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Table 2-1. Reaction Stoichiometry of Hepatic Central Carbon Metabolism

Reaction Enzyme(s) Stoighiotn?itty
1 glucose-6-Pase glucose-6-P — glucose + Pi
2 phosphohexose isomerase fructose-6-P «> glucose-6-P
3 fructose-1;6-p,ase fructose-1,6-P; — fructose-6-P + Pi
4 2 steps 2 glyceraldehyde-3-P & fructose-1,6-P;
S 4 steps PEP + NADH + ATP © glyceraldehyde-3-P + Pi + NAD" +
ADP
6 PEPCK oxaloacetate + GTP « PEP + GDP + CO,
7 PC pyruvate + CO, + ATP — oxaloacetate + ADP + Pi
8 LDH lactate + NAD" > pyruvate + NADH
9 citrate synthase oxaloacetate + acetyl-CoA — citrate
10 several, including ICDH citrate + NAD* «> o-ketoglutarate + CO, + NADH
11 o-ketoglutarate dehydrogenase a-ketoglutarate + NAD* — succinyl-CoA + CO; + NADH
12 succinyl-CoA synthetase & SCCDH succinyl-CoA + Pi + GDP + FAD « fumarate + GTP +
FADH, '
13 fumarase fumarate «> malate
14 malate dehydrogenase malate + NAD" & oxaloacetat; + NADH
15 arginase ARG — urea + ornithine
16 cabamoyl-P synthetase I & ornithine ornithine + (CO, + NH;* + 2 ATP) © citrulline + 2 ADP + 2
transcabamylase Pi .
17 argininosuccinate synthetase & citrulline + ASP + ATP — ARG + fumarate + AMP + Ppi
argininosuccinase
18 ARG uptake
19 NH," output
20 ornithine output
21 citrulline output
22 ALA aminotransferase ALA + NAD* — pyruvate + NH;" + NADH
& GLU dehydrogenase
23 . ALA output
24 SER dehydratase SER — NH," + pyruvate
25 : SER uptake :
26 transaminase, 3-mercaptopyruvate CYS + NAD" + SOs> — pyruvate + thiosulfate + NH," +
sulfurtransferase, GLU dehydrogenase = NADH '
27 CYS output
28 SER hydroxymethyl transferase THR + NAD" — GLY + acetyl-CoA + NADH
29 GLY synthase GLY + NAD" + H,folate «> N°,N'°-CH,-H,folate + NADH
+ COz + NH;
30 GLY uptake
31 7 steps VAL + a-ketoglutarate + 3 NAD" + FAD — GLU +3
NADH + FADH; + 2 CO; + propionyl-CoA
32 6 steps ILE + a-ketoglutarate + 2 NAD" + FAD — GLU + 2 NADH
+ FADH, + CO, + propionyl-CoA + acetyl-CoA
33 6 steps

LEU + av-ketoglutarate + NAD* + FAD + ATP — GLU +
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34
35

36
37

38
39
40
41
42

43
44

45

46.

47
48

49
50
51
52
53
54
55
56
57
58
59
60

61

3 steps
8 steps

phenylALA hydroxylase

5 steps

GLU dehydrogenase

glutdminase
3 steps

4 steps
5 steps

ASP aminotransferase

asparaginase
7 % 4 steps

thiolase
2 steps

B-hydroxybutyrate dehydrogenase

GG6PDH + 3 steps

phosphopentose isomerase

epimerase

- transketolase & transaldolase

transketolase -

NADH + FADH, + ADP + Pi + acetoacetate + acetyl-CoA
propionyl-CoA + ATP + CO; — succinyl-CoA + AMP +Ppi

LYS + 2 a-ketoglutarate + NADPH + 4 NAD* + FAD — 2
GLU + NADP" + 4 NADH + 2 CO; + FADH, + acetoacetyl-
CoA

PHE + Hybiopterin + O, — Hjbiopterin + TYR

TYR + NAD"' + 2 O, = NH,* + CO, + fumarate +
acetoacetate + NADH

TYR output

GLU + NAD* & a-ketoglutarate + NH," + NADH
GLU output :

GLN —» GLU + NH,*

PRO + 0.5 O, + 0.5 NAD* + 0.5 NADP* — GLU + 0.5
NADH + 0.5 NADPH

HIS + H,folate — NH,* + Ns-formiminoH4folate + GLU

MET + ATP + SER + NAD* — PPi + Pi + adenosine + CYS
+ NADH + CO, + propionyl-CoA

ASP + NAD" & oxaloacetate + NH," + NADH
ASP uptake
ASN — ASP + NH,* .

palmitate + 7 ATP + 7 FAD + 7 NAD"* - 8 acetyl-CoA + 7
FADH, + 7 NADH + 7 AMP + 7 PPi

2 acetyl-CoA © acetoacetyl-CoA
acetoacetyl-CoA — acetoacetate

acetoacetate production

acetoacetate + NADH <> §-OH-butyrate + NAD*
NADH + 0.5 O, —» NAD*

FADH; + 0.5 O, » FAD

O, uptake »
glucose-6-P + 2 NADP* — ribulose-5-P + CO, + 2 NADPH
ribulose-5-P ¢ ribose-5-P

ribulose-5-P < xylulose-5-P

ribose-5-P + xylulose-5-P > erythrose-4-P + fructose-6-P

erythrose-4-P + xylulose-5-P «> fructose-6-P +
glyceraldehyde-3-P
CO; output
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Table 2-2. Key Intenncdiatés in Hepatic Central Carbon Metabolism

No.

Metabolite

Voo-dJAWn s WwnN —

glucose-6-P
fructose-6-P
fructose-1,6-P;
glyceraldehyde-3-P
PEP

pyruvate
oxaloacetate
NADH
acetyl-CoA
citrate
o-ketoglutarate
succinyl-CoA
fumarate
FADH,

malate
arginine
omnithine

NH,"

citrulline
aspartate
alanine
glutamate
serine

cysteine
glycine
propionyl-CoA
acetoacetate
acetoacetyl-CoA
0O,

tyrosine
ribulose-5-P
ribose-5-P
xylulose-5-P
erythrose-4-P
CO,
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Table 2-3. Measured Mctal:;ol_i,te Exchange Rates

Rxn. No. Metabolite Net Uptake Rate, umﬂg liver/hr
- Burn "Sham-burn
1 Glucose 84 + 12 7.8 + 12
8 Lactate 185 + 28 211 + 32
15 Urea -185 + 0.4 -122 + 06
18 Arginine 23 + 06 23 + 04
19 NH," 05 + 0.1* 03 + 0.06
20 ornithine 09 + 0.2* 26 + 0.7
21 citrulline 00 + 0.0* 02 + 0.1
23  Alanine 03 + 06* 42 + 24
25 Serine 25 + 07 36 + 1.1
27 Cysteine 0.1 + 001* -02 + 003
28 threonine 0.2 + 004 0.1 + 04
30 Glycine 1.2 + 0.2% -03 + 02
31 Valine -03 + 004 03 + 01
32 isoleucine -02 £+ 0.03* -0.1 + 0.03
33 Leucine 04 + 0.1%* -02 + 0.04
35 Lysine -0.05 + 0.01* 04 + 0.09
36 phenylalanine 05 + 0.1* 03 + 0.02
" 38 tryrosine 0.1 + 0.04 0.1 + 002
40 glutamate -28 + 0.3% -48 + 1.3*
41 glutamine 213 + 4.2* 140 + 2.8
42  Proline 09 + 02 13 + 03
43 histidine 07 + 0.a* 12 + 02
44  methionine 0.2 + 0.03* 01 + 002
46 aspartate 02 x+ 0.1 002 + 0.1
47 asparagine 84 £ 1.1* 44 + 03
51 acetoacetate 6.8 + 21 35 + 04
52 3-OH-butyrate 62 + 19 25 %+ 03
55 O, 193.8 + 10.2* 726 + 1.8%
61 CO, 112.9 + 309+ 231 + 11.9*

Metabolite measurements corresponding to reactions 8, 19, 35, 40,41, 43, 44, 48, and 61 were
performed in this study. All other measurements were obtained from Yamaguchi et al. [140].
Values are reported as mean + SE. Number of livers per group were 3 in this study and 7 in
Yamaguchi et al [140]. *Significantly different from sham burn group (p < 0.05) as analyzed by

I-test.
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In Table 2-4, a negative value indicates that the calculated flux is opposite to the assumed
direction. In general, the calculated fluxes were consistent with the assumed directions, with the
exception of reactions 22,> 26, 29, and 45 for the sham burn group and reaction 45 for the burn
group. These reactions are reversible and are catalyzed by aminotransferases; the negative flux
values indicate thai the reactions proceed in the direction of amino acid formation from the
correspondmg ketoacids.

In our model, the number of unknown fluxes to be estimated was 32 and the number of
linearly independent stoichiometric constraint equations was 35. Therefore, there were three
redundant équations with which we could test the statistical consistency of each measurement
vector v, The value of the chi-square (x?) distribution function with three degrees of freedom
and 95 % tail area probability, or x20_05(3), is 7.82. The test function (h) values were 6.03 and
5.20, respectively, for the burn and sham-burn v, Since i < %%0.0s(3) in both cases, the
measurements were considered consistent with the assumed biochemistry. Consecjuently, all of
the measurements shown in Table 2-3 were included in our flux estimation. In both groups, the
relative errors estimated for the calculated fluxes were generally similar to the relative errors
associated with the measurements. Comparing mean flux values, statistically significant
differences were found for gluconeogenesis (reactions 2 ~ 6), the TCA cycle (9 ~ 14), urea cycle
(16 and 17), transamination of alanine, cysteine, glycine, tyrosine, and aspartate (22, 26, 29, 37,
and 45), B-oxidation (48), electron transport (53 and 54), and the PPP (56 ~ 60).

| These and other key fluxes are shown on a simplified graph in Figure 2-2, where amino
acid degradation pathways have been grouped according to their points of entry into the TCA
cycle and gluﬁoneogenesis. The important metabolites around which there is a significant
change in flux distribution are discussed below. The flux of amino acids away from pyruvate in
the Sham-bum condition was reversed by burn injury, resulting in a net influx of amino acid
derived 3-carbon moieties into the byruvate pool. The oxidation of lactate to pyruvate was not
significantly altered by burn injury while the net carboxylation of pyruvate to oxaloacetate was
increased signiﬁcantly from 10.1 to 23.1 umol/hr/g liver. Aspartate transamination, the other
major route of amino acid entry into the oxaloacetate pool, proceed in the direction of aspartate
formation in both burn and sham-bumn conditions, with burn injury increasing this flux from 5.3 V

to 9.4 umoVl/hr/g liver.
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Table 2-4. Calculated Intracellular Fluxes

Rxn. No. Net Flux, umthr/g liver
Burn Sham-burmn

2 573 + 128* 126 + 83
3 250 + 41 103 + 27
4 250 + 4.1* 103 £ 27
5 339 + 40* 195 + 29
6 339 + 40* 195 + 29
7 192 4+ 2.8* 87 + 32
9 546 + 46* 171 £ 1.6
10 546 + 46* 171 + 16
- 11 606 + 42* 230 + 14
12 613 + 42% 235 + 14
13 786 + 42 333 + 14
14 78,6 + 42* 333 + 14
16 169 + 0.1* 9.7 + 0.1
17 169 + 0.1* 9.6 + 0.1
22 0.1 + 06* 93 + 2.1
24 20 £ 07 24 = 10
26 01 + 00* -01 =+ 00
29 14 + 02 06 =+ 06
34 07 %+ 0.1 05 + 0.1
37 04 + 0.1* 02 + 00
39 68 + 32 74 + 20
45 94 + 12 53 + 04
48 100 + 0.8* 34 £+ 02
49 132 + 39 53 £ 07
50 132 + 39 57 £ 07
53 2443 + 135* 934 + 28
54 1324 + 69* 486 + 20
56 485 =+ 133* 35 + 86
57 162 + 4.4% 12 + 29
58 323 + 89* 23 + 58
59 162 + 44* 12 £ 29
60 162 + 4.4* 12 + 29

Data shown are ﬂuxes calculated by Equation 2-6 + SE. Errors were estimated as described in
Materials and Methods. *Significantly different from sham burn group (p < 0.05) as analyzed
by t-test using the estimated deviations.
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Figure 2-2. Effect of burn injury on hepatic fluxes. :
Selected fluxes calculated from averaged measurements of 7 independent perfusions are
shown on a simplified network graph. '
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Figure 2-2. legend contmucd

For clarity, some non- branchmg pathways are combined. Arrows indicate assumed
direction of reaction. Some metabolite names have been abbreviated: G3P,
glyceraldehyde-3-phosphate, OAA, oxaloacetate; 2-KGA, a-ketoglutarate; SCC-CoA,
succinyl-Coenzyme A; H4F, N° N'O-methylene -tetrahydrofolate; Ac-CoA, acetyl-CoA;
AcAc-CoA. acetoacetyl-CoA; ACAC, acetoacetate; KB, ketone bodies (acetoacetate + [3-
hydroxybutyrate); PROP-CoA, propinoyl-CoA, ORN, ornithine. Amino acids have been
abbreviated using the standard three letter convention. Extracellular metabolites which
are transported across the cell membrane and feed into branch points in the network are
denoted by the subscript ex. Amino acid degradation pathways are grouped according to
the points of entry into the TCA cycle, gluconeogenesis, or ketone body synthesis.
Reaction numbers refer to those listed in Table 1. Flux values for the burn condition are
shown in bold, SE in parentheses. *Significantly different from sham burn group (p <
0.05) as analyzed by ¢-test.
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Aspartate, also formed by transamination of asparagine, is an intermediate of the urea cycle
which reacts with citrulline to form arginine and fumarate via two successive steps catalyzed by
argininosuccinate synthetase and argininosuccinase (reaction 17). Fumarate, an intermediate of
the TCA cycle, is converted to oxaloacetate by fumarase and malate dehydrogenase (reactions 13
and 14). These ufea and TCA cycle fluxes were increased significantly by burn injury from 9.6
and 33.3 to 16.9 and 78.6 pmol/hr/g liver, respectively. Consequently, thére was a net ihbrease
in total flux into oxaloacetate in the burn condition, which is reflected in an elevated PEPCK flux
(reaction 6). | ,

Contributions to TCA cycle intermediates from other gluconeogenic amino acids were
essentially unaffected by injury, despite the significantly higher uptake of glutamine, histidine,
and methionine. There was, however, a 1.9-fold increase in fatty acid oxidation to acetyl-CoA in
the burn condition, which paralleled the increase in the TCA cycle fluxes by burn injury.

Finally, the largest fractional changes were estimated for the PPP fluxes (reactions 56 ~ 60).
Interestingly, the increase in the PPP flux in the burn condition was such that glucose output
remains nearly constant despite the increased flux to G6P. Thus, a greater fraction of flux from
gluconeogenic substrates to the hexose-6-phosphate pool (F6P and G6P) was diverted into the
PPP in the burn condition. The data show that 85 % of the phosphohexose isomerase flux
(reaction 2) entered the PPP in the burn compared to 28 % in the sham-burn condition.
Moreover, the incremental uptake in gluconeogenic amino acids (8.9 pmol/hr/g liver) induced by |
burn injury accounted for 80 % of the incremental carbon flux delivered to the triose phosphate
pool (14.4 pmol/hr/g liver).

In order to confirm that the PPP is differentially activated by bumn injury, we
independently estimated the flux through this pathway by measuring the conversion rate of
exogenously added [1-'*C]glucose into '*CO,. In the liver, glucose is taken up and rapidly
phosphorylated to G6P by glucokinase. As an initial step of the PPP, G6P is converted to 6-P-
gluconate, which is then irreversibly decarboxylated by 6-P-gluconate dehydrogenase at the C-1
position to produce CO,. Therefore, at steady state, the rate of [1-'*C]glucose conversion into
“Co, is proportional to the PPP flux. We detected significantly highér amounts of '*CO; in the
effluent of the burn compared to the sham-burn livers (p < 0.05, ANOVA) (Figure 2-3).
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Figure 2- 3.! COz evolution from ['*C] glucose in perfusion effluent.
Schematic of the experiment (A): 0 - 30 minutes: initial equilibration period; 30 — 45
minutes: labeled glucose infusion period; 45 - 50 rnmutes chase period. After 50
COz actwnty in the effluent began to decrease. COz collected in the effluent.
C-1 refers to [1-"*C]glucose and C-6 to [6-'*C)glucose. Each data point in (B) represents
the average of three liver perfusion experiments + SE. NS: not significant.
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In the control experiment, when [6-'*C]glucose was used, radioactivity measurements of evolved
CO, did not produce readings above background in neither the burn nor the sham-burn condition.
Unlike [1-'*C]glucose, [6-'*C]glucose generates '*CO, mainly via glycolysis to [1-’4C]pyruvate,
followed by decarboxylation by PDH, processes which are presumably inhibited in the fasted
state. |

- Since GGPDH catalyzes the rate-controlling step in the PPP, we measured GGPDH
activities in homogénized liver samples. G6PDH activity increased by 45 % in response to burn
injury (Figure 2-4). G6PDH activity is also regulated by the ratio of free cytosolic [NADPH] to
[NADP'], NADPH being a potent inhibitor of G6PDH [151]. We measured the activity of the
GR, the most significant consumer of cytosolic NADPH [152]. Burn injury increased hepatic GR
by 29 % (ANOVA, p < 0.05) (Figure 2-4).
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Figure 2-4. Liver glucose-6-phosphate dehydrogenase and glutathione reductase activities. -
G6PDH and GR activities were measured in crude extracts prepared from livers perfused
3 days after sham-burn or burn treatment. Data shown are the average of 3 livers + SE.

Tests of statistical significance were performed by ANOVA, with p < 0.05 considered
significantly different.
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2.4 Discussion

In this chapter, we investigated the metabolic adaptations of liver as part of the

:hypermetabolic response to injury. Major hurdles in understanding the role of the liver in the

onset and maintenance of hypermetabolism include (1) the difficulty in isolating changes
intrinsic to the liver from confounding systemic changes and (2) the complexity of metabolic
changes associated with hypermetabolism. We addressed these shortcomings through the use of |
an isolated perfused liver model and a stoichiometric balance model which takes into account the
interdepenidence between pathways through common intermediates and co-factors. The latter,

which included all of the major pathways for carbohydrate, amino acid, and fatty acid

catabolism, was used in conjunction with previously published data [140] and metabolite

measurements obtained in this study to estimate intracellular fluxes. We found that several
pathways were significantly activated by burn injury, including mitochondrial electron transport,
the TCA and urea cycles, transamination of gluconeogenic amino acids to pyruvate, and the PPP.
The increase in flux through the PPP was confirmed by '*C tracer experiments and was
correlated with increases in the activities of GGPDH and GR, both of which may contribute to
increasing flux through PPP.

Our model system exhibited many of the clinical features associated with
hypermetabolism, including elevated urea production, uptake of amino acids, and consumption
of oxygen, although increased output of glucose was not observed. The latter finding contrasts
with thé results of in vivo isotopic tracer studies, where endogenous glucose production was
found to be significantly elevated in hypermetabolic burn patients [48]. This discrepancy
suggests that the observed elevation in gluconeogenesis in human studies is probably regulated
by factors outside the liver. These factors may include the increased delivery of gluconeogenesis
precursors from other tissues/organs, particularly skeletal muscle [153, 154], or the immediate
effect of various stress hormones and cytokines in circulation [129]. These circulating factors
were not added to our perfusate, as we were interested in the adaptations intrinsic to the liver.
The plasma concentrations of glucagon and corticosterone, known stimulators of
gluconeogenesis in vivo, are significantly elevated during systemic inflammation [155], and it is

likely that these soluble mediators play a significant role in determining glucose output from the

perfused liver as well. On the other hand, the uptake of gluconeogenic amino acids was
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increased by burn injury evén in the absence of these hormones, suggesting that not all of the
enhanced amino acid uptake is to increase glucose output. |

Metabolic flux analysis, which balances the major input and output metabolites according
to well-known stoichiometric constraints, was able to systematically identify pathway fluxes
which were activated by burn injury. While the biochemistry of hepatic central carbon
metabolism is well characterized, due to the complexity and the large number of reactions
present in the liver, some judgment was involved in choosing which pathways to include in the
stoichiometric model. Most of the assumptions regarding the choice of reactions relied on
accepted knowledge of liver biochemistry. De novo protein synthesis in the perfused liver was
neglected due to the difficulty in quantitatively measuring this parameter. The validity of this |
assumption was tested by drawing a nitrogen (N) balance around the liver, which accounted for
N in amino acids, urea, and ammonia (Table 2-5).

In both burn and sham-burn conditions, the majority of N taken up by the liver was
released into the medium in the form of urea, amino acids, and ammonia. The remainder is likely
to be primarily incorporated into proteins, as nucleotide synthesis is not expected to contribute
significantly to the nitrogen balance since the livers were not regenerating. The total amount of N
not accounted for by small metabolites included in the model was ~ 15 pmol/hr/g liver (29% of
total N uptake) in the sham-burned rat liver. In normal rat liver, albumin and ﬁbrinogen secretion
together account for 43 % of the total hepatic protein production [156, 157] with rates of 0.74
mg/hr/g liver and 0.06 mg/hr/g liver, respectivély [158-160]. Assuming a N content of 16 % by
weight, this corresponds to 9 - 10 umol N/hr/g liver, or about 2/3 of the predicted N for protein
synthesis. Based on the N balance, N flow into protein synthesis is doubled in the burn case,
corresponding to 45 % of the total N uptake. Thus protein synthesis is a significant nitrogen sink,
which may impact on the calculated fluxes. In order to estimate the effect of protein synthesis on
the calculated fluxes, the metabolite balance model was recast by including an equation fof
amino acid incorporation into protein, where the stoichiometry was determined by using
albumin as a “model” protein (see Table 6A for amino acid composition of albumin). Based on
the N content of albumin and the N balance, protein output rates were set to 0.02 and 0.04

umol/hr/g liver for the sham-burn and burn livers, respectively.
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Table 2-5. Nitrogen Balance in the Perfused Liver

Metabolite - . N /Metabolite N Uptake, pmol/hr/g liver
Burn | ~ Sham-burn
Urea 2 -37.0 £ 0.8 244 + 12
Arginine 3 69 + 1.8 69 + 12
NH," 1 05 £ 0.1 -03 £ 0.1
Ornithine 1 -09 £ 02 2.6 + 0.7
Citrulline 2 00+ 0.0 -04 + 0.2
Alanine 1 03 + 0.6 42+ 24
Serine 1 25+07 3.6 + 1.1
cysteine 1 -0.1 £ 00 02 +£ 0.0
threonine 1 0.2 + 0.0 -0.1 £ 04
glycine 1 1.2 + 02 -03 + 02
valine 1 -03 + 00 -0.3 + 0.1
isoleucine 1 -02 £ 0.0 -0.1 £ 0.0
leucine 1 -04 + 0.1 02 + 00
lysine 2 -0.1 £ 0.0 08 + 02
phenylalanine 1 0.5 £ 0.1 03 + 0.0
tryrosine 1 0.1 £ 0.0 0.1 + 0.0
glutamate 1 28 +£03 48 + 1.3
glutamine 2 426 + 84 280 + 5.6
proline 1 09 + 0.2 13 +£03
histidine 3 2.1 £03 36 + 0.6
methionine 1 0.2 + 0.0 0.1 £ 0.0
aspartate 1 02 % 0.1 0.0 + 0.1
asparagine 2 16.8 + 2.2 8.8 + 0.6
Total 32.0 + 4.3 154 + 4.1

Data shown are measured rates of uptake of nitrogen (N) containing metabolites

multiplied by corresponding numbers of N. *Significantly different from sham burn group (p <
0.05) as analyzed by t-test.
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As shown in Table 6B, the adjustment resulting from the inclusion of protein synthesis mainly
attenuated the estimated differences in flux through gluconeogenesis and the PPP between the
bum and sham-burn livers. For example, the adjusted fractional increase in the PPP flux in the
burn was 6.6, down from 13.0 in the original calculation, presumably because peptide synthesis
demanded amino acid carbon moieties away from gluconeogenesis at greater rates in the burn
than in the sham-burn livers. On the other hand, albumin has a relatively high frequency of
alanine residues, which also was found to be a major gluconeogenic substrate in this study, and
thus the degree of attenuation in PPP activation predicted by the protein synthesis adjustment is
likely to be less with a more realistic protein amino acid composition. Thus, while adding a
reaction for protein synthesis could improve the material balance model, this would require that
the residue compositions of the various proteins secreted by the liver be known.

It is a well-established limitation of metabolite balancing that when the number of
branching points in the metabolic network becomes large, as is the case in the present model,
redundant or cxcéss constraints are needed to establish reliability [45]. This is especially
important when choices have to be made regarding the reactions to be included in the model,
either because the biological system has not yet been fully characterized or the stoichiometry is
to complex and simplifying assumptions are necessary in order to avoid singularities such as
futile cycles. Thus, while application of metabolite balancing to simpler systems such as E. coli
is straightforward given a sufficient number of measurements, more complex eukaryotic systems

' require additional assumptions regarding the structure of the metabolic network. For example,
the liver expresses enzymes for both gluconeogenesis and glycolysis, and selection of
gluconeogenesis over glycolysis was based on physiological considerations. Typically,
additional constraints arise from cofactor (e.g. NADH, CoA-SH) and energy balances or
experimental data obtained by isotopic tracer studies [124], where tracer experiments are most
useful when assumptions regarding the biochemistry need to be checked, since cofactor and

“energy balances still rely on the validity of the assumed- structure of the metabolic network
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Table 2-6A. Rat Albumin Amino Acid Composition

Amino acid Frequency Numl_iel" of N / residue

Ala 61 61
Arg 24 72
Asn 20 40
Asp 32 32
Cys 35 35
Gin 25 50
Glu 57 57
Gly 17 17
His 25 75
Ile 13 13
Leu 56 56
Lys : 53 106
Met 6 6
Phe 26 26
Pro 30 30
Ser 24 24
Thr 33 33
Trp 1 2
Tyr 21 21
Val 35 35
Total 584 791

Source: GenBank accession number ABRTS; PID g72101
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Table 2-6B. Protein Output Adjusted Fluxes

Rxn. No. Net Flux, pmol/hr/g liver

Bumn Sham-burn
2 526 % 938 151 = 8.1
3 234 £ 29 112 + 26
4 234 + 29 11.2 = 26
5 323 £ 27 205 £ 27
6 323 + 27 205 + 27
7 150 £ 28 107 £ 33
9 541 + 42 181 + 1.3
10 541 + 42 18.1 + 13
11 688 + 42 267 + 12
12 664 *+ 42 253 + 12
13 823 + 42 343 + 12
14 823 + 42 343 + 12
16 174 % 0.1 98 + 0.1
17 174 + 0.1 9.7 + 0.
22 22 + 06 64 + 22
24 1.5 £ 07 29 £ 11
26 -1.5 £ 00 09 + 0.0
29 06 + 02 -14 + 04
34 25 = 00 -1.4 £ 0.1
37 -1.5 £ 0.1 0.7 = 0.0
39 53 £ 12 46 £+ 15
45 -109 £+ 1.1 64 £ 03
48 124 * 0.8 48 + 02
49 204 x 40 88 + 0.7
50 18.1 x 40 82 + 07
53 2414 % 137 918 + 28
54 1460 £ 70 554 + 1.8
56 437 * 105 58 + 85
57 146 *+ 35 19 + 238
58 292 + 170 39 £ 57
59 146 %= 35 19 + 28
60 146 + 35 19 + 28

Fluxes were calculated as described in Table 2-4 legend, with an additional equation
describing the incorporation of amino acids into protein.
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. In the present study, there were three equality constraints in excess of the number

required to uniquely determine the system, two of which stemmed from co-factor balances

“around NADH and FADH,. Thus, we attempted to validate our flux es_timates using

experimental means, at least for the PPP. While the results of the radioactive tracer experiments
qualitatively corroBorated the findings of metabolite balancing, the degree of activation
estimated by the latter was ~ 6.5 times greater than the former. In light of the previous discussion
regarding the N balance, it is possible that this discrepancy is due to over-estimation by
metabolite balancing, although it is difficult to determine for certain, as the tracer method
estimated 6nly relative changes in the PPP flux. In order to obtain absolute fluxes from the "co,
data, the fractional enrichment of the intracellular G6P pool has to be known, which we were not
able to measure at the time of this study.

There was good quantitative agreement between the sham-burn PPP flux (3.5 pmol/hr/g
liver) and values reported in the literature for similar conditions. In perfused livers from 24-hr
fasted rats, Brigelius [161] estimated substrate flux through the PPP to be 2.16 pmoV/hr/g liver,
which increased to 3.36 umol/br/g liver upon addition of the oxidant z-butyl-hydroperoxide. In a
similar system, Kuehn and Scholz [148] found the PPP flux to increase with perfusate glucose
concentration from 1.68 to 7.26 umol/hr/g liver, with a value of 2.94 pmol/hr/g liver at the
physiological fasting blood glucose concentration of 5 mM. On the other hand, our calculated
values for the TCA cycle fluxes were higher than those reported in the literature. Combining
metabolite measurements and analysis of 1>C labeling pattern of glutamate, Large et. al. [162]
estimated the flux through citrate synthase (reaction 9 in our model) in perfused livers from 48-
hour starved fats to be 4.2 ~ 5.4 pmol/hr/g liver, which is roughly one third of our estimate (17.1
pmol/hr/g liver); however, addition of glucagon (107 M) increased citrate synthase flux to 13.7 ~
16.5 }.lmol/hf/g liver, closer to our value. The sensitivity of the TCA cycle to variations in
perfusate composition (both hormones and substrates) may explain some of the discrepancies
betWeen these studies. Implicit in our calculation was the assumption that all of the oxygen
consumed is used as electron acceptor in the mitochondrial electron transport chain. Non-
mitochondrial respiration accounts for 22 % of total oxygeﬁ consumption by resting hepatocytes
[163] and 20 % in the perfused liver [164]. Consequently, the current calculations, where TCA
cycle reacvtions are stoichiom¢nically related to oxygen uptake, may overestimate these fluxes.

On the other hand, this would not affect the relative TCA cycle flux increase predicted in
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response to burn, as TCA cycle fluxes are linearly related to measured oxygen consumption rates
in the stoichiometric balance model.

Two important findings of this study are that (1) amino acids provide the main source of
carbon for the incremental portion of the gluconeogenic flux in the burn condition, and (2) that
the glucose produéed is diverted into the PPP, so that the same net glucose output is observed in
the burn and sham-burn conditions. This is consistent with the increase in glucose substrate
cycling in burn patients reported by Wolfe ez al. [48), which is based on the differential loss of
deuterated label from infused [6,6-2Hz]gllmose and [2-2H;]glucose as their carbon moieties
undergo giycolysis or gluconeogenesis. In particular, a glucose molecule that cycles through the
glucose (glucose to G6P and back to glucose) or fructose cycle (fructose 1-phosphate to fructose
1,6-bisphosphate and back to fructose 1-phosphate) in the liver loses the deuterium at position 2
but retains the label at position 6, whereas *H in the 6 position of glucose can be lost at two
possible sites in the process of gluconeogenesis. However, as Wolfe [165] points out, any [2- ‘
?H,]G6P that enters the PPP also loses its label. Thus, the difference in glucose Ra determined
with [6,6-°H;]glucose and [2-*H,]glucose could reflect not only rates of glucose and fructose
cycling, but also cycling of glucose moieties through the PPP. _

In the liver, the PPP is the main source of cytosolic NADPH [166], a cofactor for fatty
acid synthesis, mixed function oxidation, and recycling of endogenous anti-oxidants. Among the
latter, the recycling of the ROS scavenger glutathione (GSH) by 'glutathion‘e reductase is
quantitatively the most significant reaction, as the maximal rate of NADPH consumption by GR
is 5 to 8 fold that of other NADPH dependent reactions [152]. The [NADPH)/[NADPH + |
NADP"] ratio and PPP activity are sensitive to inducers of oxidative stress in isolated rat
hepatocytes [167, 168] and in perfused rat livers [169]. Furthermore, it has been reported that
increased flux through the PPP is an important adaptlve response to oxidative stress in various
hver-derlved cell types [170, 171]. Thus, PPP stlmulauon by burn injury may reflect an
increased NADPH demand by ROS scavengmg pathways. Lending support to this hypothesis
are findings of increased lipid peroxidation in liver after burn injury [172, 173]. The increase in
both G6PDH and GR activities by burn injury may also indicate a metabolic adaptation similar
to those described above. Moreover, the increase in GR activity found here (29 %) agrees with
that reported by Sabeh ez al. [173] for a comparable model of burn injury. Our measurements

also showed a greater uptake of glycine in the burn condition (Table 2-3), which is noteworthy
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considering that glutathione is a tri-peptide composed of glutamate, cysteine, and glycine.
Glutathione is synthesized from its constituent amino acids in two steps, where glycine is added
to y-glutamylcysteine in the second step by glutathione synthetase. It is possible that the
increased net influx of glycine into the liver contributed to additional synthesis of GSH in
response to oxidative stress. In an animal model similar to ours, Lalonde et al. [137] found total
liver glutathione to be significantly increased by burn injury. »

A potential source of ROS is the increase in flux through the electron transport chain
(reactions 53 and 54) and the TCA cycle. It has been shoWn that the leakage of ROS from
various pathways is a normal occurrence of oxidative metabolism [174, 175], particularly in the
mitochondria [176, 177], especially when the respiratory chain is highly reduced and its activity |
is dependent on ADP availability [178, 179]. Consistent with this notion is our finding that the

~ ratio of excreted acetoacetate to B-hydroxybutyrate is lowered from 1.4 to 1.1 by burn injury

(Table 3), which indicates an accumulation of NADH relative to NAD" in the mitochondria. The
ratio of acetoacetate to B-hydroxybutyrate, which are formed in tﬁe mitochondria and freely .
cross both the mitochondrial and cytoplasmic membranes, is directly proportional to the
mitochondrial [NAD*)/[NADH] ratio [180].

In conclusion, we found metabolic flux analysis to be useful in studying metabolic
adaptations to stress in intact organs such as the isolated perfused liver. Our results suggest that
amino acids are used as substrates for gluconeogenesis to provide glucose to the PPP in the
hypermetabolic liver. The parallel induction of GO6PDH and GR also supports the notion that
increased glutathione turnover, for example because of oxidative stress, is a major factor
governing the increased demand for NADPH derived from the PPP. We also observed an
increase turnover of reducing equivalents (e.g. NADH and FADH,) which reflects an increased
demand for mitochondrial energy production. Given that mitochondrial energy metabolism
generates significant amounts of ROS, it is plausible that the induction of gluconeogenesis and
the PPP is an endogenous protective mechanism which helps maintain cellular integrity during
hypermetabolism. At which point in the time course of host response to injury this occurs and

whether this is reversible by infusion of exogenous anti-oxidants or anti-oxidant precursors

warrants further investi gation.
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CHAPTER 3. DYNAMICS OF THE HEPATIC METABOLIC RESPONSE TO BURN
INJURY: AN INTEGRATED ANALYSIS

3.1 Introduction

Severe injﬁry leads to a hypermetabolic state, which features increased turnover of
protein, fatty acid, and carbohydrates at the whole body level [48, 181, 182]. Concomitant with
these changes are also an increased resting energy expenditure and a negative nitrogen balance
[183]. The hypermetabolic state may persist from days to weeks or even months, in which case
patients often exhibit complications such as infections and multiple organ dysfunction syndrome
(MODS), which could threaten recovery and survival [131, 132]. It has been thought that the
hypermetabolic response aids the wound healing process by supplying energy, substrates, and
healing factors to the wound site. Over the last 5 ~ 10 years, this traditional view has been
challenged and modified by observations that hypermetabolism persists even in the face of
aggressive nutritional support and long after wound closure [184, 185]. Furthermore, the notion
that increased amino acid turnover is indicative of increased protein synthesis is inconsistent _
with the associated urea nitrogen loss, as the latter is a measure of amino acid catabolism rather
than protein synthesis. |

An important player in systemic hypermetabolism is the liver, where many of the acute
phase reactants, most of the de novo glucose, and all of the urea is synthesized. Thus,
understanding the biochemical underpinnings of the hypermetabolic response in the liver may
lead to a better understanding at the systemic level and ultimately provide clues for limiting its
deleterious consequences. As a first step toward identifying the driving forces of hepatic
hypermetabolism, we had previously developed a perfused liver model of burn-injury associated
hepatic hypermetabolism [186]. In conjunction with a stoichiometric network model, we used the
perfused liver model to characterize the effects of bum injury on liver metabolism on day 4 after
burn injury, which corresponded to the peak activity level of the host metabolic responsé during
the first week after the injury. Comparing livers from burn and sham-burn treated animals, we
found that burn injury significantly increased the uptake of amino acids and the fluxes through

several intracellular pathways, ihcluding the TCA cycle, urea cycle, and PPP. The aim of the

present study was to expand upon these earlier findings, and to probe, in greater detail, the
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biochemical mechanisms underlying the progression of hepatic hypermetabolism during the first

week of burn injury.

3.2 Materials and Methods
3.2.1 Chemicals.

Unless otherwise noted, all chemicals were purchased from Sigma-Aldrich Chemical Co.
(St. Louis, MO). [U-"*C]leucine (300 mCi/mmol) and [U-"*C]glutamine (300 mCi/mmol) were
purchased 'from New England Nuclear Life Science Products (Boston, MA).

3.2.2 Animals.

Male Sprague-Dawley rats (Charles River Laboratories, Boston, MA) weighing 150 ~
200 g were housed in a temperature (25 °C) and light-controlled room (12-hour light-dark cycle).
The animals were cared for in accordance with the National Research Council guicie]ines.
Experimental protoéols were approved by the Subcommittee on Research Animal Care,
Committee on Research, Massachusetts General Hospital. Water and rat chow were provided ad
libitum. Animals were individually housed and allowed to adjust to their new surroundings for at
least 2 days before receiving treatment. On the day of treatment, animals were randomly divided
into two groups, burned and sham-burned. Burn and sham-burn procedures were carried out as

described by Yamaguchi et al. [140] and in Chapter 2.

3.2.2 Liver perfusion

' Liver perfusions were performed 1, 2, 3, 4, and 7 days after bumn or sham-burn treatment.
- Rats were fasted 24 hours prior to the pérfusions in order to deplete liver glycogen stores. The
perfusion method has been described previously [140] and diagrammed in Chapter 2. A detailed
description of the basal perfusion medium is given in Table 3-1. For determination of secreted |
protein flux, livers were perfused with medium containing [U-"*C]leucine. In order to allow
sufficient uptake of leucine by the liver, additional unlabeled leucine was added to the basal
medium so that the final leucine concentration was 0.71 mM, which is approximately five times
the plasma concentration [187]. Livers were washed with ca. 300 mL of the leucine enriched
medium in single-pass mode béfore the perfusion circuit was closed. At time zero, which was |

taken to be the moment recirculation was started, 40 pCi of [U-'*C]leucine was mixed into the
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medium reservoir, which contained ca. 200 mL of the leucine enriched medium. The perfusion
lasted 2 hours, during which time 2 mL samples were taken at £ = 0, 30, 60, 90, and 120 min. At
the end of all perfusions, livers were quickly excised, blotted, weighed, and frozen in liquid
nitrogen. Livers were stored at -80 °C and the medium samples were refrigerated until assays

could be performed Metabolite assays on the medium samples were performed as described in
Chapter 2.

3.2.3 Western blot analysis

leers previously frozen were ground in liquid nitrogen and lysed for the detection of
UCP2 by sonication on ice in a lysis buffer containing Triton X-100. Proteins were separated on
12 % Tris-HC] polyacrylamide gels (Bio-Rad, Hercules, CA) and transferred to polyvinylidine
difluoride membranes (Bio-Rad). Membranes were blocked for 45 min. at room temperature in |
buffer containing Tris-buffered saline (TBS), 0.2 % Tween-20, and 5 % powdered milk (w/v).
Membranes were then incubated with rabbit anti-mouse antibody to UCP2 (Chemlcon CA)in
blocking buffer overnight at 4 °C. After 3 washes with TBS-Tween-20 (TBS-T), the membranes
were incubated with goat anti-rabbit IgG conjugated with horseradish peroxidase (Santa Cruz
Biotechnology, Santa Cruz, CA) for 1 hr. at room temperature. After washing again in TBS-T,
the membranes were developed with a chemiluminescence enhancer (Pierce, Rockford, IL) and
exposed on an imaging screen (Bio-Rad). Protein bands were quantified by image analysis and

expressed in arbitrary units relative to background.

3.2.4 Deterniination of specific activities in secreted liver proteins

Proteins in rnedlum samples were concentrated for spec1ﬁc activity measurement using
¢ centnfugal filter devices with a nominal MW cut-off of 3 kD (Millipore, Bedford, MA). Filter
assemblies containing 500 pL samnple were centrifuged at 10,000 x g for 30 minutes at room
temperature. The filters were then removed from the vials containing the permeates, inverted,
placed in fresh vials and centrifuged at 1,000 x g for 5 minutes to collect the retentates. Permeate
and retentate volumes were measured and their radioactivity counted in a Beckman LS 6000 IC |
scintillation counter (Beckman Instruments, Palo Alto, CA). The concentrations of labeled

proteins in the samples were determined from the volume and radioactivity measurements using

mass balances.
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Table 3-1. Perfusion Medium Composition

Metabolite Concentration
Amino Acids MM
Alanine 0.48
Arginine 0.72
Asparagine 0.78
Aspartic Acid 0.06
Cystine 0.13
Gutamic Acid 0.33
Glutamine 2.00
Glycine 0.38
Histidine 0.27
Isoleucine 0.40
Leucine 0.40
Lysine 0.50
Methionine 0.10
Phenylalanine 0.19
Proline 0.42
Serine 0.63
Threonine 0.40
Tryptophan 0.05
Tyrosine 0.29
Valine 0.39
Carbohydrates mM
Glucose 5.6
Lactate 5.0
Pyruvate 0.5
Protein g/L
Bovine Serum Albumin 30
Salts and Vitamins g/L
Calcium Chloride 2 H,0 0. 265
Choline Chloride 0. 001
Folic acid 0. 001
Magnesium Sulfate 0.09767
myo-Inositol 0. 002
Niacinamide 0. 001
Pantothenic acid (hemicalcium) 0. 001
Phenol Red 0.011
Potassium Sulfate 0.4
Pyridoxal HCl 0. 001
Rriboflavin 0. 0001
Sodium Bicarbonate 2.2
Sodium Chloride 6.8
Sodium Phosphate monobasic 0. 122
Thiamine HCI ©.0.001
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Assuming that the léw-molecular metabolites are free to cross the filter membrane,
L,=L; (3-D
where Lp and L are concentrations of labeled low-molecular metabolites in the permeate and
retentate fractions, respectively. The radioactivity count (C), volume (V), and labeled
.macromolecule concentration (M) are related by the following equations:
C,=Vi(M,+L;) (3-2)
Cp=Vp(Mp+Lyg ) (3-3)
where the subscript p or r denotes permeate or retentate. Since macromolecules cannot pass
through the filter membrane,
M, =0 | (3-4)

and the labeled macromolecule concentration is related to radioactivity and volume as follows:

VP =_j_LP = LR ‘ (3'5)
o _C ,

%R =Crf) +M, (3-6)
MV, =VM o +V,M, =V M, (3-7)
v VefC G | 5

VT VR VP

where My and Vi refer to the concentration of labeled proteins in the original sample and the total
(permeate + retentate) sample volume, respectively. Total protein output was calculated by
normalizing My with respect to leucine enrichment in the medium (E):

[Leu*]

- [Leu + Leu*] G

whcre Leu and Leu* refer to unlabeled and labeled leucine, respectively.

3.2.5 Discriminant analysis
In order to determine whether the livers perfused on different days after the burn or
sham-burn treatment exhibited distinct metabolic phenotypes, as judged by a composite measure

based on many measured metabolic parameters, a multivariate statistical analysis technique
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called Fisher’s Discriminant Analysis (FDA) was applied to the measurements. For samples
divided a priori into different groups and described by a multi-dimensional set of variables, FDA
derives linear combinations of the variables that define a new set of coordinate axes so that
sample projection onto the new coordinate space maximizes the ratio of between-group to
within-group varizinces. In the present study, time concentration proﬁle- measurements were
performed for 25 metabolites in 42 perfusion experiments. The concentration profiles were
linearly regressed to ontain rates of metabolite uptake or output by the liver, and arranged into a
M x N data matrix with the variables (exchanged rates) in columns (N = 25) and samples (livers)
in rows (M = 42). Assuming that time between sham-burn treatment and perfusion did not have
significant effects, all livers isolated from sham-burned animals were considered together as a
single sham-burn control group. Thus, there was a total of 6 treatment groups: sham-burn
control, post-burn day 1, post-burn day 2, post-burh day 3, post-burn day 4, and post-burn day 7.
Liver samples were projected onto a three-dimensional (3D) FDA space by a matﬁematical
procedure as spectral decomposition, which is described in detail elsewhere [188]. From Figure

3-1, it can be seen that our initial assumption regarding treatment groups was statistically valid,

" as the liver sample projections formed clearly discernable clusters that corresponded to their

respective treatment groups. In particular, all sham-burn livers projected closely to each other.
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Figure 3-1. FDA projection of measured metabolite exchange rates.
Projection of measured metabolite exchange rates into a three-dimensional discriminant
score space (y/-y2-y3). Each data point in the plot corresponds to one liver sample.
Symbols denote liver sample treatment group membership: O, sham-burn control; 3,
day 1 post-burn; [>, day 2 post-burn; %, day 3 post-burn; 0, day 4 post-burn; and <, day
7 post-burn.
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3.2.6 Calculation of intracellular fluxes

A network model of liver metabolism was formulated as described in Chapter 2, with
minor modifications. Table 3-2 lists the stoichiometry and the relevant eniymes of the reactions
included in the model, which is shown graphically in Figure 3-2. As before, the stoichiometric
coefficients were collected into a matrix § whose ith row, jth column element is the coefficient
of metabolite i (Table 3-3) in reaction j. Once again, the steady state metabolite balance was
written in matrix form:

‘ Sv=0 . (3-10)
where v is a vector whose jth element holds the net flux through reaction j. The left hand side of
Equation 10 was rearranged by separating v into measured and unknown components, v,, and v,,
respectively, and partitioning matrix S into S, and S., where S,, and S. contain the stoichiometric
coefficients of measured and unknown reactions, respectively.

Sv=0=S_v_ +S.v, | St

SV, ==S,.V - (3-12)

In this model version, the number of linearly independent balance equations (38)

exceeded the number of unknown fluxes (35). Thus, there were redundant equations, and the
macroscopic balance method of Wang and Stephanopoulos [51] was used again in order to test
for the presence of any systematic or ‘gross errors. The h values computed for the metabolite
measurement sets collected in these studies are shown in the last row of Table 3-4. Comparing
the test function () values with standard chi-square (xz) distribution values at various
confidence levels for 3 degrees of freedom, it could not be concluded even at 75 % confidence
level that any gross errors w'ereipresent in the measurements. Thus, the quality 6f this daté were

- deemed to be satisfactory, and the measurements were used without any subsequent adjustments

for the calculation of unknown fluxes (vo).
v, =—(8."5)"S8.S,v, (3-13)

Variances for v, were computed from variances associated with v,, [189]:

K
VAR(v,)=) B,’VAR(,, ), i=1..L (3-14)

Jj=l
where B=—(S,”S,)”S,”S,, , K is the number of measured rates, and L the number of

unknown reaction fluxes.
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Figure 3-2. Hepatic metabolic network.
Stoichiometric model used to formulate metabolite balances. Some non-branching
metabolite nodes have been omitted for clarity. Arrows indicate assumed direction of

" reaction. Numbers on arrows refer to reactions numbers in Table 2. Abbreviations: GA 3-

P, glyceraldehyde- 3-phosphate, PEP, phosphoenol pyruvatc, o-KGA, a-ketoglutaratc,
and CoA, coenzyme A.
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Table 3-2. Reaction Stoichiometry

No. Enzymes Stoichiometry
1 glucose 6-P DH, 6-P glucose 6-P + 2 NADP" - ribulose 5-P + CO, + 2 NADPH
gluconolactonase, and P-
gluconate DH
2 ribose 5-P pentose isomerase ribulose 5-P < ribose 5-P
3 ribulose-P 3-epimerase ribulose 5-P ¢ xylulose 5-P
4 transketolase ribose 5-P + xylulose 5-P & sedoheptulose 7-P + glyceraldehyde 3-P
5 transaldolase “ sedoheptulose 7-P + glyceraldehyde 3-P «» fructose 6-P + erythrose 4-P
6 transketolase erythrose-4-P + xylulose-5-P & fructose-6-P + glyceraldehyde-3-P
7  glucose-6-phosphatase glucose 6-P — glucose + Pj :
8 phosphohexose isomerase fructose 6-P > glucose 6-P
9 fructose bisphosphatase fructose 1,6-P, — fructose 6-P + Pi
10 triose-P isomerase, fructose 2 glyceraldehyde-3-P > fructose-1,6-P,
bisphosphatase aldolase
11 lipase, glycerol kinase, palmitoylglycerol + ATP + NAD* — 3 palmitate + glyceraldehyde-3-P +
glycerol-P DH, triose-P ADP + Pi + NADH
isomerase - i
12 enolase, phosphoglycero- PEP + NADH + ATP ¢ glyceraldehyde-3-P + Pi + NAD* + ADP
mutase, 3-phosphoglycerate :
kinase, glyceraldehyde DH -
13 phosphoenolpyruvate oxaloacetate + GTP > PEP+ GDP + CO,
carboxykinase
14 pyruvate carboxylase pyruvate + CO; + ATP — oxaloacetate + ADP + Pi
15 lactate DH lactate + NAD"* > pyruvate + NADH
16 citrate synthase oxaloacetate + acetyl-CoA — citrate + CoA-SH
17 aconitase, isocitrate DH, citrate + NAD" &> a-ketoglutarate + CO, + NADH
18  a-ketoglutarate DH system a-ketoglutarate + NAD* — succinyl-CoA + CO, + NADH
"~ 19 succinyl-CoA synthetase, succinyl-CoA + Pi + GDP + FAD < fumarate + GTP + FADH,
succinate DH
20 fumarase fumarate <> malate
21 malate DH malate + NAD* ¢ oxaloacetate + NADH
22  arginase arginine — urea + ornithine :
23  carbonate dehydratase, omithine + CO; + NH,* + 2 ATP > citrulline + 2 ADP + 2 Pi
carbamoyl-P synthetase,
ornithine carbamoyl
transferase
24  argininosuccinate synthase, ~ citrulline + aspartate + ATP — arginine + fumarate + AMP + 2 Pi
argininosuccinate lyase
25 arginine uptake
26 NH," output
27 ornithine output
28 alanine aminotransferase, alanine + NAD" & pyruvate + NH,;* + NADH
glutamate DH o
29 alanine uptake
30 serine dehydratase serine — NH," + pyruvate
31 serine uptake
32 cysteine transaminase, cysteine + NAD" + H,S0; < pyruvate + H,S,05 + NH,* + NADH
glutamate DH, 3-
mercaptopyruvate
sulfurtransferase
33 cysteine uptake
:34  threonine 3-DH

threonine + NAD* — glycine + acetyl-CoA + NADH
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glycine DH,

35 2 glycine + NAD" & serine + NADH + CO, + NH,*
aminomethyltransferase,
dihydrolipoyl DH)

36 glycine uptake

37 methylmalonyl-CoA-

38

39

40

41
42

43
44

45
46

47

48
49
50
51
52

53

54
55

epimerase and methylmalonyl-
CoA-mutase

saccharopine DH,
aminoadipate semialdehyde
DH, 2-aminoadipate
transaminase, glutamate DH,
o-ketoglutarate DH, glutaryl-
CoA-DH, enoyl-CoA
hydratase, 3-hydroxy-acyl-
CoA DH

phenylalanine 4-mono-
oxygenase

tyrosine transaminase,
glutamate DH, 4-
hydroxyphenylpyruvate
dioxygenase, homogenisate 1,2
dioxygenase, maloyl
acetoacetate isomerase,
fumaryl acetoacetase

glutamate DH

glutaminase

proline oxidase, 1-pyrroline-5-
carboxylate DH

histidine ammonia lyase,

_urocanate hydratase, imidazole

propionase, glutamate
formimino-transferase
methionine adenosyl-
transferase, DNA
methyltransferase, adenosyl
homocysteinase, cystathione
lyase, pyruvate DH ‘
propinoyl-CoA carboxylase
aspartate aminotransferase,
glutamate DH

asparaginase
B-oxidation

thiolase,
hydroxymethylglutaryl-CoA-
synthetase, 4
hydroxymethylglutaryl-CoA-
cleavage enzyme ’
acetoacetyl-CoA hydrolase

(S)methylmalonyl-CoA ¢ succinyl-CoA

lysine + 5 NAD* + CoA-SH + FAD — 5 NADH + 2 NH,* +2CO, +
FADH, + acetoacetyl-CoA

phenylalanine + tetrahydrobiopterin + O, — dihydrobiopterin + tyrosine

tyrosine + NAD* + 2 O, — NH,* + NADH + CO, + fumarate +
acetoacetate

tyrosine uptake

glutamate + NAD* > o-ketoglutarate + NADH + NH,* :
(When the direction of catalysis is biosynthesis of glutamate, NADPH is
the reductant. )

glutamate output

glutamine — glutamate + NH,*

proline + 0. 5 O; + NAD* — glutamate + NADH

histidine + THF — NH,* + 2-formimino-THF + glutamate

methionine + 2 ATP + serine + NAD" + CoA-SH — PPi + Pi + adenosine
+ cysteine + NADH + CO; + propionyl-CoA

propinoyl-CoA + ATP + CO, — (S)methylmalonyl-CoA + ADP + Pi
aspartate + NAD* «» oxaloacetate + NADH + NH,"

aspartate output

asparagine — aspartate + NH,*

palmitate + ATP + 7 FAD +7 NAD" + 8 CoA-SH — 8 acetyl-CoA +
AMP + 2 Pi + 7 FADH, + 7 NADH

2 acetyl-CoA — acetoacetate + 2 CoA-SH

acetoacetyl-CoA — acetoacetate + CoA-SH
acetoacetate output
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56

B-hydroxybutyrate DH

acetoacetate + NADH ¢ B-OH-butyrate + NAD*

57 complexes I, I1, 111, and IV NADH + H" + %2 0, - NAD" + H,0
58 complexes II, III, and IV FADH, + 20, —» FAD + H,0

59 O, uptake

60 CO, output
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Table 3-3. Reaction Network Metabolites

Row Number in Metabolite
Stoichiometric Matrix

1 Glucose 6-P

2 Ribulose 5-P

3 Ribose 5-P

4 Xylulose 5-P

5 Sedoheptulose 7-P
6 Glyceraldehyde 3-P
7 Fructose 6-P

8 Erythrose 4-P

9 Fructose bisphosphate
10 PEP '
11 NADH

12 Oxaloacetate

14 Pyruvate

15 Acetyl-CoA

16 Citrate

17 2-Oxoglutarate

18 FADH,

19 Succinyl-CoA

20 Fumarate

21 Malate

22 Arginine

23 Orinithine

24 NH,"

25 Citrulline

26 Aspartate

27 Alanine

28 Glutamate

29 Serine

30 Cysteine

31 Glycine

32 Methylmalonyl-CoA
33 Acetoacetate

34 Acetoacetyl-CoA
35 0,

36 Tyrosine

37 Propinoyl-CoA

38 Palmitate
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3.2.7 Statistical analysis.

Tests of statistical significance between calculated fluxes was performed using the -test
based on variances estimated by Equation 3-14. All other tests of statistical significance were
performed using the MS Excel ANOVA data analysis tool (Microsoft Corp., Redmond, WA).
The sensitivity of the calculated fluxes to measurement error and noise was gauged by

calculatmg the condition number of the stoichiometric matrix S.

328 Hlerarchzcal clustermg

The pooled (measured and calculated) reaction fluxes were clustered using an
agglomerative technique that forms average linkages between clusters. This technique starts with
- each cluster comprising of exactly one object and then progressively combines the two nearest
| clusters until there is just one cluster left consisting of all the objects. In the present case, an
object refers to a vector of reaction fluxes of a perfused liver, and the metric for Qétermining the
degree of nearness (or similarity) was a modified correlation coefficient between the objects or
clusters. Correlation coefficients between clusters of objects were computed by first averaging
the fluxes of the objects comprising each cluster and then treating the cluster as an object. The
clustering procedure was implemented using a publicly available software developed and
distributed by Eisen et al. [190]. Before applying the software, all burn condition fluxes were
normalized with respect to the sham-burn control fluxes, which were taken to be the zero time
points. The normalized flux values were then log (base 2) transformed, except when the results
of normalization were negative. In these cases, the object or vector containing these elements
was dropped from the analysis. The log transformation allowed the visualization of activation
and repression in a symmetrical fashion about the zero axis, e.g. two-fold activation is equal tol,

no change 0, and two-fold reduction -1.

3.3 Results

In prior work, we had developed a perfused liver model of burn-injury associated hepatic
hypermetabolism [186], and also formulated and validated a metabolite balance mathematical
model of hepatic central carbon metabolism. Using these tools, we characterized the effect of
burn injury on liver metabolism on day 4 after burn injury, w.hich corresponded to the peak

activity level of the host metabolic response during the first week after the injury. Comparing -
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livers from bum and sh-am-Bum treated animals, we found that burn injury significantly
increased the uptake of amino acids and the fluxes through several intracellular pathways,
including the TCA cycle, urea cycle, and PPP.

In order to better identify the progression of hepatic hypermetabolism, in the present
study, we examined the first week of hypermetabolism in more detail. For each time point,
concentration time profiles of all medium metabolite components were determined by periodic
sampling of the perfusate reservoir, and through linear regression analysis we obtained rates of
metabolite exchange. Figure 3-3 shows several representative metabolite concentration profiles.

. In this casé, glucose, lactate, urea, and 3-OH-butyrate curves for a burn and a sham-burn liver on
days 1 and 4 are shown, representing key metabolites in hexose, triose, amino acid, and. fatty acid
metabolism, respectively. The concentration profiles of all of the metabolites followed a linear
time course as judged by their R? values (0. 9 or greater), indicating that within the prescribed
time we were operating at steady state. A ‘

Given that the metabolite exchange rates for sham-burn livers varied insignificantly with
respect to time after treatment (see Materials and Methods, Figure 3-1), the sham-burn
metabolite exchange rates were averaged across the entire sham-burn treatment group
irrespective of the time between treatment and perfusion. The sham-burn control group, thus,
refers to a single treatment group that includes all sham-burn livers examined in these
experiments. All changes in metabolism for the burn livers are noted with respect to this treated,
but unburned, “day 0 gfter burn” reference group. Accordingly, the metabolite exchange rates for
the sham-burn control group are listed in a single column in Table 3-4, which summarizes the
metabolite exchange rates measured in these experiments. )

With respect to glucose and lactate, burn injury produced insignificant fluctuations in
their exchange. In contrast, burn injury significantly increased the rate of exchange of nitrogen
containing compounds by the liver. Urea output increased to 1.4 times above the sham-burn
control one day after burn and remained elevated for the duration of the study period. The uptake
of glucogenic amino acids followed a time course similar to that of urea output. Glutamine,
arginine, and asparagine, which together comprised more than 77 % of the total net amino acid
uptake (based on moles of carbon atom) for all of the livers, rose to 2.3, 1.6, and 2.6 times,
respectively, abbve sham-burn control one day after burn and remained significantly higher

throughout the first week after the injury. Interestingly, this trend was not observed for the
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Figure 3-3. Metabolite concentration profiles in perfusion medium reservoir.
~ Representative profiles of glucose (A,B), lactate (C,D), urea (E,F), and 3-OH-butyrate
(G,H) concentration changes in the perfusion medium reservoir are shown. Data in panels
A, G, E, and G are taken from livers perfused 1 day after treatment. Data in panels B, D,
F, and H are taken from livers perfused 4 days after treatment. Each data series refers to
one perfused liver from either burn (@,H) or sham-burn (O,0) group.
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Table 3-4. Metabolite Exchange Rates

Metabolite Exchange Rate, Day(s) Aft'el"’Ttéatmejnt,‘ pumol/g liver/hr

Metabolite No. 0 1 2 3 4 7
(Sham-burn)
n=12 n=9 n=4 n=4 n=35 n=38

Gluconeogenesis

Glucose 7 234 £ 25 248 £31 200 =26 263 67 301 x 3.0 23.1 = 3.1
Lactate 15 -300 = 24 -257 £ 29 -193 +55 -299 + 85 -249 £ 38 -18.0 + 2.9*
Urea Cycle .

Urea 22 233 x 2.1 318 £ 26 431 = 46* 349 + 54 382 + 8.1* 465 + 2.6%
NH," 26 26 £47 66 +58 81 +47 -07 06 138 + 34* 3.1 + 58*
Orn 27 24 +05 33 x 06 69 = 1.5* 12 £ 0.6 42 £ 07 54 = 0.6*%
Glucogenic AA

Arg 25 -45 07 -70 £ 09 -118 = 33* 6.1 16 -100 + 0.8 -9.1 + 0.9*
Ala 29 01 +06 04 =07 19 £ 0.6* -28 = 20 00 + 05 06 = 0.7
Ser 31 23 £07 -34+£08 -35=+03 43 +21 -40=+08 45 + 0.8
Cys 33 04 £01 0101 -01 x03 06 £ 06 36 %30 -0.1 + 0.1
Thr 34 02 +04 0705 -06=+03 -15=x14 -06=0S5 -08 = 05
Gly 36 04 +04 0905 -13+01 -22=x14 -11 %03 -09 = 05
Glu 43 24 £ 09 33 =11 36 £ 03 02 = 1.7 20 + 14 49 + 1.1*
Ghn . 44 76 £ 1.7 -17.1 £ 2.1* -13.0 = 0.3 -21.7 £ 95* -17.6 + 2.7* -184 = 2.1*
Pro 45 01 x04 -10=+05 -11 04 -20=x15 -16 =038 -05 = 05
His 46 -02 + 03 -08 £03 - -06 £ 03 -12=x07 -06 =04 -0.5 + 0.3
Met 47 03 01 -03x02 0401 -06=x03 -04=01 -03 £ 0.2
Asp 50 01 x01 03 =02 1.0 =+ 0.3* -05 + 03* 02 x 0.1 04 + 02%
Asn 51 26 £+ 09 -67 = 1.1* -74 + 14* 62 x25 79 +£19 -62 =+ 1.1*
Ketogenic AA )

Lys 33 0506 0407 -04=zx10 -37=x23 -15=09 -0.5 = 0.7
Phe 39 06 +02 -14 +02 -14 04 -16=06 -16 03 -09 = 0.2
Tyr 41 -01 +x03 -07=+04 -03+03 -10+£07 -04=07 03 + 04
Ketone Bodies

ACAC 55 90+ 12 83 %16 83 + 20 7.1 £ 26 122 + 26 67 = 1.5

~ 3-OH-Bt 56 25.1 = 17 182 £ 21 186 =+ 58 308 +29 194 +59 221 + 2.1
~ Respiration

0, 59 598 = 4,1 624 + 3.1 581 = 19 925 £ 50* 983 + 04* 929 + 5.1*
CO, . 60 526 + 55 765 + 1.8 813 + 13* 995 + 6.1* 121.2 + 15.8* 879 + 6.8*
~ Consistency Index 0.75 1.36 3.70 3.23 4.04 1.96

~ Metabolite exchanges rates were derived by linear regression of concentration profiles in
the perfusion medium reservoir. Values are reported as mean + SE. *Significantly different from

the sham-bum control group (p < 0.05) as analyzed by #-test. Consistency indices were calculated
for treatment group averages as described in Materials and Methods.
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uptake of ketogenic amino acids, as the exchange rates of these metabolites remained statistically
unchanged. Adcordingly, acetoacetate and 3-OH-butyrate, the major end products of ketogenic
amino acid catabolism, were also released by the liver at unchanged rates. Finally, bum injury
heightened respiratory activity, albeit more slowly than the exchange of nitrogen containing
metabolites. Oxygén uptake and net CO, output remained statistically unchanged until three days
after burn, when they rose significantly to 1.5 times above sham-burn control. Taken together,
these observations provide the following qualitative sequence of metabolic changes during the
first week after burn injury (Figure 3-4). Shortly after the injury (1 ~ 2 days), both the uptake of
glucogenié amino acids and output of urea were significantly increased and remained elevated.
By the third day, the rate of liver respiration was significantly increased, which also remained
elevated. On the other hand, the exchange of carbohydrate substrates, including glucose, lactate,
and ketone bodies, remained virtually unaffected. In summary, data from the perfused liver
experiments showed that the exchange rates of the various types of metabolic substrates are
differentially affected by burn injury. We also noted that while the time course of metabolic
changes in the perfused liver is similar to that observed in animal models and patient studies,
there were important differences, especially with respect to glucose metabolism, as our results in
the perfused liver are inconsistent with the notion that systemic hyperglycemia should be simply
ascribed to increased gluconeogenesis in the liver.

The results presented above describe metabolic adaptations that occurred at the level of

substrate exchange with the surrounding medium. In order to examine the time course of burn

' injury induced metabolic changes in the liver at the level of intracellular pathways, we applied

our metabolic network model to the experimental data obtained in these studies. The qualities of
both the model and the estimated fluxes were tested using sensitivity analysis and statistical _
hypothésis testing, respectively (see Materials and Methods), and were found to be satisfactory.
The calculated fluxes are show in Table 3-5, which lists the reactions according to their number

assignments in Table 3-2.
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Figure 3-4. Two phases of metabolite exchange during the first week of hypermetabolism.
The substrate exchange changes noted in Table 1 is summarized qualitatively as a
schematic. Bold arrows indicate increased flux. During the first two days after burn
injury, only glucogenic amino acid uptake and urea output are increased (A). Past the

 third day after burn injury, respiration (O, and CO; exchange) is also significantly
increased. :
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Table 3-5. Calculated Intracellular Fluxes

Rxn. Intracellular Flux, Day(s) After Treatment, pmol/g liver/hr

No.

0 1 2 3 4 7
(Sham-burn)
n=12 n=9 n=4 n=4 n=5 n=38

1 522 £ 67 656 50 811 + 138 789 + 106 857 + 17.1* 687 + 4.8
2 164 + 22 204 £ 17 256 +45 244 37 26.7 £ 5.6 214 £ 1.6
3 371 £ 45 472 £ 33 575 +94* 569 + 6.7 616 £ 11.7%* 494 + 3.1
4 178 £ 22 224 £ 16 276 £46 270 = 35 292 + 58 235 + 16
5 197 £ 23 252 £ 17 304 = 48% 305 + 33* 329 + 6.0 263 =+ 1.6%
6 208 = 24 268 x 17 320 + 50*% 325 % 33* 349 + 62* 279 x 1.6%
8. 739 £ 64 879 46 98.6 + 135 102.2 £ 99* 1126 = 16.8* 894 + 43
9 319 £+ 21 335 +£21 339 +41 362 =438 418 + 47 327 = 19
10 302 +£20 311 +£21 315 +40 331 x 49 387 + 45 30.2 £ 1.8
11 30 £ 02 25 + 02 24 + 04 34 £ 03 31 + 04 32 £ 0.2
12 378 £ 28 346 =42 302 =51 323 + 85 413 * 44 310 = 34
13 369 £ 27 332 +42 289 =52 306 = 85 396 = 44 297 + 34
14 255 + 3.1 113 x42* 82 + 58* 68 = 11.7¢ 95 + 52% 8.1 = 3.6*
16 1.3 = 24 1.3 221 1.3 £ 3.1 23 =50 86 = 35 12.1 = 1.6*
17 27 + 24 33 £ 2.1 32 £ 30 48 + 48 11.1 + 34 140 = 1.6*
18 73 =24 155 + 2.0*% 122 + 3.0 227 = 50* 262 = 33* 260 + 1.6*%
19 102 + 24 198 £ 22* 165 + 3.0 283 x 54* 318 + 34* 304 + 1.8*
20 305 = 4.1 467 + 3.5* 508 + 62* 58.1 + 7.5% 635 + 92* 690 + 30%
21 315 £ 41 483 + 3.6* 524 + 62* 60.1 = 7.7 656 = 93* 70.6 + 4.0*
23 189 = 32 248 + 26 325 + 48* 281 * 55 29.5 = 8.1 377 £ 3.2%
24 205 £ 32 282 x£27 347 x 51* 339 * 56 323 + 8.1 404 + 33*
28 25 06 -59 £ 1.1* -6.1 = 09* .6.6 = 3.0 5.2 £ 1.1* -5.2 = 0.8*
30 13+ 1.1 44 15 25 = 1.1 -87 £40%* -35=x 1.6 -19 £ 1.2
32 -1.7 + 0.6 54 + 09* 38 £ 07 95 + 25 -84 + 28* .42 + 0.8*
35 -1.1 03 2206 -14 +04 3115 2.1 = 0.6 -1.6 + 04
37 20 =03 28 + 04 29 = 04 3.8 + 0.8* 3.7 = 0.5% 29 + 04
40 -13£07 -29 09 -20=+08 -62 25 26+ 1.1 -35 + 0.7
42 34 £ 15 105 £21* 72 +£09 158 = 7.7% 129 + 27 102 + 1.9*
48 1.0 = 0.2 1.3 £ 0.2 15 = 02 2.0 £ 0.5% 1.8 + 0.2% 14 + 0.2 .
49 -20.0 £ 33 -269 £ 3.0 -322 + 52 -36.1 £ 65* -292 + 8.3 -38.7 + 3.5*
52 . 87 =07 7.1 = 0.6 70 £ 1.2 99 + 1.0 89 = 1.3 9.1 £ 05
53 344 +31 282 +28 277 62 393 = 4.9 316 = 6.5 309 + 2.7
54 0.8 = 05 08 + 0.7 08 = 1.0 43 + 2.3* 2.1-+ 09 09 + 0.1
57 523 £76 633 £54 552 67 1040 = 10.1* 107.7 + 6.5* 1034 + 2.8*
58 716 £45 697 + 38 658 + 6.1 101.2 £ 7.5% 951 + 63* 945 + 29*

Data shown are fluxes calculated by Equation 3-13 + SE. Errors were estimated by
Equation 3-14 as described in Materials and Methods. *Significantly different from sham-bumn
control group (p < 0.05) as analyzed by z-test using the estimated errors.
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Like the measured metabolite exchanges rates, the intracellular fluxes were differentially
affected by burn injury. Flux through the glucose 6-phosphate dehydrogenase reaction (reaction
no. 1) rose to 1.4 times above the sham-burn control two days after burn, remained elevated until
day four, and decreased to 1.2 times above the sham-bum control by day seven. Flux through
pyruvate carboxylz-lse (reaction no. 14) decreased to 50 % of the sham-burn control one day after
burn, and continued to decline for the duration of the study period. Flux through malate
dehydrogenase (reaction no. 21) rose to 1.4 times above the sham-burn control, and continued to
increase stgadily to 2.1 times above the sham-burn control by the end of the study period. As the
afore illustrated diversity of the flux response profiles combined With the large number (60 x 6)
of fluxes under consideration (Tables 3-4 and 3-5) prohibited a comprehensive analysis by visual
inspection, the fluxes (measured and calculated) were subjected to a data dimensionality
reduction analysis.

Hierarchical clustering identifies groups of reactions with similar activation or repression
time profiles based on similarity measures between vectorized foﬁns of reactions. The fluxes
shown in Tables 3-4 and 3-5 were normalized with respect to sham-burn control levels, log (base
2) transformed, and clustered hierarchically by average linkage. The result, shown in Figure 3-4,
includes 52 out of the 60 total reactions present in the metabolic network. The excluded reactions

differed in their directions from the corresponding control reactions at some or all times after

bumn.injury, and thus their normalized fluxes could not be log transformed. Interestjngly,vthcse

reactions were all associated with the transport of amine cbmpounds: ammonia output (reaction
no. 26), alanine uptake (no. 29), cysteine uptake (no. 33), tyrosine uptake (no. 41), glutamate
output (no. 43), and aspartate output (no. 50). From the dendogram, six physiologically
recognizable, distinct reaction clusters were identified, denoted A ~ F. The choice regarding the
number clusters was guided by statistics (see Materials and Methods) and decided by
physiological intuition, an accepted procedure [191]. Referring to the reaction numbers in Table
3-2, the clusters were interpreted to correspond to the following reaction groups or pathways: A,
TGL breakdown and ketone body formation; B, TCA cycle and respiration; C, amino acid
uptake; D, urea cycle; E, PPP; and F, gluconeogenesis. In this context, the time profiles of the
urea éycle and PPP most closely resembled each other, while that of gluconeogenesis was most
distinct from the other pathways, which is reflected in the relative distances between the

corresponding cluster nodes in the dendogram tree.

93




In order to better viéua.lize the trends suggested by these groupings, the normalized, log |
transformed fluxes were plotted as a function of time in Figure 3-6. Once again referring to
Table 3-2, fluxes through pathways associated with fatty acid oxidation (Figure 3-6A) showed a
sharp, temporary increasé on day 3 post-burn, which dissipated by day 7 post-burn. The reactions
with the largest préportionate increase in flux were lysine oxidation and acetoacetate synthesis,
rising to 7.4 and 2.4 times over sham-burn control. However, the absolute values of these fluxes
were small compared to those through other reactions in this group, such as ketone body release
and fatty acid breakdown, which remained relatively unchanged. In contrast, panels 5D and 'SE
show that burn injury increased fluxes through the urea cycle and PPP relatively rapidly to near
maximal valués by 2 days post-burn. However, while the urea cycle fluxes remained elevated
throughout the first week after burn injury, the'PPP fluxes declined after day 4. Fluxes through
- the TCA cycle and respiratory chain (Figure 3-6B) changed more slowly, increésing to near
maximal values by day 4 post-burn. Reactions associated with amino acid uptake and catabolism
(Figure 3-6C) responded to burn injury with mixed behavior, as these fluxes increased to
maximal or near maximal values by day 3 post-burmn, and declined by day 4 posi-bum, but still
- remained elevated by day 7 post-burn compared to sham-burn control. Finally, consistent with
the observations regarding glucose and lactate exchange by the liver, gluconeogenic reaction
fluxes remained largely unaltered by burn injury, with the exception .of day 4 post-burn, when
fluxes through the reactions producing glucose 6-phosphate rose slightly to 1.25 times above

sham-burn control.
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Figure 3-5. Hierarchical clustering of intracellular fluxes.

Calculated and measured fluxes were averaged for each group and normalized with
respect to the sham-burn control flux averages. The normalized fluxes were log;
transformed and clustered using an agglomerative, average linkage technique using
correlation as the similarity metric. Each colored square in the dendogram represents the
logs transform value for one averaged, normalized reaction flux for a given treatment
group. Repression is denoted by green, no change by black, activation by red, and
missing value by gray, where the intensity of green or red corresponds to the degree of
repression or activation. Numbers at the end of each reaction row refer to reaction
numbers in Table 3-2. The dendogram tree shows the hierarchical relationships between
reaction clusters, where the proximity of the branches corresponds to the similarity
between objects. The colored letter blocks identify reaction group at the level of 6
clusters: A, TGL breakdown and ketone body formation; B, TCA cycle and respiration;
C, amino acid uptake; D, urea cycle; E, PPP; and F, gluconeogenesis.
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_Figure 3-6. Time course of flux activation by burn injury.
Fluxes are plotted as against time after burn injury grouped according to the clusters in
Figure 3-4: (A) TGL breakdown and ketone body formation; (B) TCA cycle and
respiration; (C) amino acid uptake; (D) urea cycle; (E) PPP; and (F) gluconeogenesis.
Each data point represents the normalized, log, transformed average flux value for one
reaction for a given treatment group. Error bars are omitted for clarity.
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Taken together withlthe metabolite exchange data, the above observations pointed to a
differential time teésponse of metabolic pathways to burn injury. In order to see this more clearly,
representative reaction time profiles for each of the pathway clusters were normalized to their
respective internal maximum and plotted in Figure 3-7. Comparing panels A ~ F, it can be seen
that the various paihways responded to burn injury in an asynchronous fashion. In particular, the
time lag between the maximai induction of the TCA cycle (Figure 3-7B) (thought to be the major
pathway in the liver (via electron transport) for producing ATP), and the major energy requiring
pathways, (urea cycle and PPP) (panels D and E, Figure 3-7), suggested the présence of an
energy gap, as the continuous increase in TCA cycle fluxes and oxygen'uptake past 2 days post-
burn was hot matched by the ATP demand from urea, glucose, and ketone body synthesis (Table
3-6).

The gap between predicted ATP production and demand persisted even after accounting
for ATP demand from increased secreted protein synthesis. Using [U:”C]leucine as a tracer, the
total rate of accumulation of secreted proteins in the perfusion medium was measured for livers
perfused four days after burn or sham-burn treatment, which corresponded to the maximum of
the predicted ATP gap. From Figure 3-8, it can be seen that burn injury increased the rate of
leucine incorporation into protein 2.7 fold over the sham-burn control. However, the absolute
values of these synthesis fluxes were small compared to the metabolic demands. Assuming that
the‘average protein is 500 residues long, 4 high energy phosphate bonds are broken per one
peptide bond formed [192], and leucine accounts for ca. 10 % of the residues, the ATP
requirements for secreted protein synthesis for the sham-burn control and Burn Day 4 livers are 7
and 18 umol/g liver/hr, respectively. As shown in Table 3-6, these values constituted less than 1

% of the predicted ATP gap between the bum (day 4) and the sham-bum confrol. |
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Figure 3-7. Representative time courses.

Representative reaction time courses from Figure 3-6 were normalized to their respective
maxima and compared in corresponding panels (A) ~ (F). Error bars are omitted for

clarity
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Figure 3-8. Secreted protein synthesis by the perfused liver.
Concentration profiles of labeled protein accumulation in the perfusion medium
reservoir. Data shown are averages for 5 burn (day 4) () and 6 sham-burn control (m))
livers + SE. Slopes were obtained from linear regression statistics generated on the
averaged data using MS Excel.
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‘Table 3-6. ATP Balance

ATP Flux, Day(s) After Tr_éatm'ént‘, umol/g liver/hr

Reaction 0 ! 2 3 4 7
No ’ (Sham-burn)
. ) n=12 n=9 n=4 n=4 n=35 n=28
Predicted Demand 390+ 30 412 + 29 422 + 52 504 + 70 467 + 58 474 + 24
Gluconeogenesis 173+ 9 146 = 12 125 = 10* 131 = 17 170 = 10 128 + 9%
Urea Synthesis 58+ 7 78 £ 5* 100 £ 6% 90 % 7* 91 = 12* 116 = 6*
KB Synthesis 75+ 8 55 6 56 + 10 92 x5 58 = 11 66 + 6
Predicted Production 534 + 35 599 + 35 566 + 61 870 + 81* 830 + 70* 815 + 31*
Mitoch. Production 305 + 34 336 + 29 306 + 34 514 + 44* 528 = 43* 510 = 23*
Predicted Gap 144 + 18 188 = 19 144 = 31 366 = 41* 363 + 40* 34] + 19%
Measured OUR 598+ 4.1 624 = 52 581 + 1.9 925 + 50% 983 + 0.4% 9290 + 5.1*
Apparent P/O 3.26 3.30 3.63 2.72 2.38 2.55

ATP synthesis and consumptions rates were calculated from the fluxes shown in Tables
3-4 and 3-5. Values are reported as mean + SE. Errors were estimated by Equation 3-14 as

described in Materials and Methods. *Significantly different from sham-burn control group (p

< 0.05) as analyzed by ¢-test using the estimated errors.
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The observations :egarding an apparent ATP gap, taken together with the activation of
the PPP, which in the non-regenerating liver can indicate presence of oxidative stress, suggested
that burn injury may induce the expression of redox sensitive uncoupling proteins, which then
could lead to a lowered efficiency in the synthesis of ATP from substrate oxidation. One class of
uncoupling proteins termed UCPs are found in a wide array of mammalian tissues é.nd have
recently been implicated in the metabolic adaptation to oxidative stress [193-196]. An initial
screen by RT-PCR revealed that only one member of this family, UCP2, was present in
detectable quantities in the liver, consistent with reports in the literature [197]. Subsequent
Western blot analysis for UCP2 in liver tissue extracts showed that the respiratory uncoupler was
présent in burn livers on days 2, 3, 4, and 7, but neither in sham-bum control livers nor burn
livers on day one (Figure 3-9). The largest amount of UCP2 protein was present in the liver on
day 3 post-burn, which also coincides with the onset of the apparent ATP gap. Similar to the PPP
proﬁle: UCP2 expression gradually decreased over days 4 ~ 7 to the level found on day 2 post-

burn.

3.4 Discussion

In these studies, we examined the progression of burn injury associated hepatic
hypermetabolism during the first of week. Using previously developed experimental and
mathematical models, we characterized the time course of changes to liver metabolite exchange

and intracellular fluxes in isolation from systemic effects. Hierarchical clustering of the

. measured and calculated metabolic fluxes identified physiologically recognizable groups of

reactions that showed correlated activation or repression profiles: fatty acid oxidation, TCA
cycle, amino acid catabolism, urea cycle, PPP, and gluconeogenesis. These pathways were
affected differentially by burn injury, which pointed to an apparent mismatch between predicted
ATP production and demand, which was reflected in the rates of ATP synthesis and consumption
calculated from the metabolic fluxes. The final set of experiments presented in this chapter
explored the péssibility that this mismatch was caused by activation of mitochondrial respiratory

uncouplers.
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Flgure 3-9. Induction of UCP2 expression by burn injury.
Volume analysis of UCP2 chemiluminescence captured from Western blots (A). Western
blot of UCP2 in liver crude extracts (B). Data shown in (A) are averages for two Western
blots + SE, where each blot contained replicate lanes corresponding to two livers for each
treatment group.
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In deriving our flux éstimatcs, we have assumed that the liver was in a metabolic steady
state for the duration of the perfusion and that our model approximated the stoichiometric
relatiohship's of all major metabolic pathways in the fasted liver. The first assumption was
justified by the observation that the metabolites accumulated in, or disappeared from, the
medium in a lineaf fashion. With the second assumption, we recognize that the number of
reactions included in our model was probably far less than the actual number of reactions
participating in liver metabolism. However, metabolic reactions are known to vary in their
quantitative contributions to metabolite turnover [49]. The present model was comprised of the
major pathways of central carbon metabolism, which to the best of our knowledge were‘ active in
the fasted liver and accounted for most of the metabolite turnover examined in this study.
Statistically, this approximation seemed valid, as application of the macroscopic balance test
showed good consistency between the measurements and the assumed biochemistry. Thus the
approximation represented an acceptable sacrifice of detail, which kept the number of required
measurements within experimentally reasonable bounds, i.e. on the order of 10 to 100. )

Further validation of the model flux estimates was obtained by experimentally measuring
fluxes for selected pathways. In prior work, we have checked the calculated PPP fluxes against
measurements obtained by radioisotope labeled tracer experiments and found good agreement
[186]. In the present work, we tested the assumption that the amino acid flux into protein
Synthesis was negligible compared to the flux into pathways of central carbon metabolism. Using
radio-labeléd leucin'e,‘ which is consistently preéent in most liver synthesized proteins, we.
measured the rate of amino acid incorporation into secreted protein synthesis in the perfused.
liver (Figure 3-8). Assuming, as in Results, that leucine accounts for roughly 10 % of the
residues in secreted proteins, and an average nitrogen per residue score of 1.5, the expected
nitrogen efflux from the liver via protein was 3 or 7 pmol/g liver/hr for the sham-burn or post-
burn day 4 condition, respectively (Table 3-7). Compared to the corresponding nitrogen efflux
via urea, 47 or 76 umol/g liver/hr, respectively, this was smaller by one order of magnitude.
Thus, we concluded that the omission of an equation for protein synthesis only negligibly
impacted the calculation of the metabolic fluxes. This conclusion was also supported by drawing |
a nitrogen balance around the liver (Table 3-7), where the differences between nitrogen input and
output varied from 1 to 34 % of the corresponding input fluxes, none of which were statistically

significantly different from zero.
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Table 3-7. Nitrogen Balance

Nitrogen Flux, Day(s) After Treatment, pmol/g liver/hr

0 1 2 3 4 i
(Sham-burn) .
n=12 n=9 n=4 n=4 n=5 - n=8§
Uptake 502 + 88 927 =+ 107 100.1 == 12,5 109.3 = 278 1064 == 114 963 =+ 8.6
Output 67.1 =+ 88 861 == 90 1155 = 19 737 = 77 1053 x= 193 1233 + 94
Net 169 + 124 66 =+ 153 154 == 76 -356 == 259 =-1.1 == 291 270 =+ 438
Net, % of 34 -7 15 -33 -1 29
uptake
Protein 3 7

Nitrogen and consumptions rates were calculated from the amino acid and urea exchange rate
measurements shown in Table 1. Values are reported as mean + SE. A negative net flux indicates
that amino acids were taken up by the liver. In all cases, nitrogen uptake and output were not
statistically significantly different (p > 0.05) as determined by ANOVA.
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One series of obseﬁatioﬂs made in these studies potentially ihconsistent with published
reports was that the glucose output by the perfused liver remained basically unchanged
throughout the first week after the burn injury. Several investigators have observed that blood ‘
glucose levels are significantly elevated after burn injury [198-200]. Moreover, this elevation has
been attributed to increased glucdneogenic activity by the liver [48, 201]. In order to verify that
our observations regarding liver glucose production were not artifacts of the perfused liver, we
compared the hepatic glucose gradient and blood flow between day 4 burn and sham-burned
animals. The time of comparison after injury was chosen based on the observation that livers
perfused day 4 post-burn showed the largest (albeit statistically insignificant) difference in
glucose output compared to sham-burn control livers. The in vivo glucose gradient across the
liver was determined by sampling the blood in the portal and hepatic veins and the blood flow
rate into the liver was measured by an ultrasound method. The results of this validation
experiment were éonsistent with the perfused liver findings, as neither hepatic blood flow nor
glucose gradient was significantly altered by burn injury (Figure 3-10). There are several
possible explanations that could reconcile our observations with the literature findings regarding

glucose metabolism. One obvious candidate is that the source of the increased blood glucose

concentration is not increased hepatic production, but instead the reduction in glucose uptake by

the periphery, e.g. skeletal muscle, caused by insulin resistance, which has been extensively
documented [202-205]. Another possible explanation is that the increased gluconeogenic activity
measured by Wolfe et al. [48] in tracer experiments reflected increased futile cyclihg of
substrates within the liver. Alternatively, the hyperglycemic response to burn injury could be
species dependent. The studies in [198] were performed in guinea pigs, whereas these studies
were conducted in rats. Other studiés, including those performed by Jahoor et al. [206] and those
referred by Wilmore [200], Waymack et al. [207], and Tredget et al. [129] were conducted in
hﬁman patents. Lastly, the degree of hyperglycemia and the increase in hepatic glucose

production could be proportionate to the burn size. In rats with 50 % total body surface area

burns, a size significantly larger than the burns administered here, Yu et al. [199] observed

increased blood glucose levels and hepatic glucose production rats.
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Figure 3-10. In vivo liver glucose gradient.
Glucose concentrations were measured in serum samples obtained from the hepatic and
portal veins in anesthetized animals. Blood flow measurements were taken around both
the portal vein and the hepatic artery and refer to the total volumetric rate of blood flow
into the liver. Data shown are averages for 5 burn (day 4) and 6 sham-burn control
animals + SE.
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A major finding frofn the analysis of this data was that metabolic pathways in the liver
are activated or repressed differentially with respect to time after injury. The fatty acid oxidation,
amino acid catabolism, and PPP fluxes reached maximal values between days 3 and 4 post-burn
and declined thereafter. The urea cycle fluxes reached near maximal values by day 2 post-burn
and remained elevated for the entire time. The TCA cycle reached maximal values by day 4 post-
burn and remained elevated for the entire time. Finally, the gluconeogenic fluxes refnaincd
unaltered for the entire time.

An interesting corollary to the above finding was that a gap between the predicted ATP
productioh and demand occurred 3 days after the initial insult. The cellular ATP level is known
to remain relatively insensitive to environmental changes and the rate of ATP synthesis is V
typically regulated by demand [192]. Thus, it seemed unlikely that the predicted ATP over-
production reflected actual conditions in the liver. One possible explanation for the predicted gap
was that the calcﬁlated ATP demands, particularly for livers perfused 3, 4, and 7 days post-burn,
were underestimates, and energetic requirements were indeed higher in these livers, perhaps due
to the induction of futile cycles, whose presence after burn injury has been suggested by others
[48]. Alternatively, the predicted rates for ATP production in Burn Day 3, 4, and 7 livers could
be overestimates, which would be the case if there were a drop in the efficiency of ATP synthesis
past 2 days post-burn. When calculating ATP synthesis rates, it was assumed that electron

transfer from NADH to O, contributed to the electrochemical gfadient across the inner

“mitochondrial membrane without any slippage or leakage. However, in recent years, endogenous

respiratory uncouplers, whose expression effectively lowers the P/O ratio, have been found in a
wide fange of tissues including the liver, particularly during inflammatory states [197]. Thus, we
hypothesized that the apparent over-production of ATP was an overestimate resulting from the
partial uncoupling of oxidative phosphorylation and substrate oxidation. This hypothesis was at
least partially confirmed by Western blot analysis of a liver specific uncoupler (UCP2), which
showed that the induction of UCP2 strongly correlated with the onset of the predicted ATP gap
(Figure 3-9).

It is thought that at least for the short term, hepatic hypermetabolism benefits the host by
supporting the wound healing process via the synthesis of acute phase proteins and energy
substrates, but in the long term, the persistence of this response harms the host by eroding the

body lean mass and taxing the visceral organs {208, 209]. The findings reported here are
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consistent with this etiology and may yield a biochemical explanation for the harmful
consequences of prolonged hypermetabolism. Our results suggest that the liver is directeci to
increase amino acid uptake shortly (1 ~ 2 days) after the burn injury. This response is
presumably hormone mediated and involves the induction of transporters, as a simple mass
action effect or sh(')rt term activation via chemical modifiers could not explain the differences
observed between sham-burn and burn livers perfused with identical media. Experiments with
membrane vesicles isolated from burned rat hepatocytes have shown that increased influx of
amino acids into the liver one to 3 days after the injury is mediated by expression of additional
transporter proteins [136]. Interestingly, the amino acid loading supported not only increased
protein produiction (Figure 3-8), but also gluconeogenesis, as the-increase in amino acid-uptake
was accompanied by a rise in the urea cycle fluxes.

As alluded to earlier, the increased flux through gluconeogenesis was diverted away from
glucose output into the PPP, which suggested that the liver experienced a downward shift in the
cellular NADPH to NADP" ratio. The lowered cellular reduction potential could have been
caused by the oxidative burst of neutrophils, which have been shown to temporarily sequester in
the liver ~ 3 hrs after burn injury for a period of 24 to 48 hrs. [210]. Increasing flux through the
PPP allows increased turnover of NADPH, which in the non-regenerating, fasted liver is
primarily used by the glutathione peroxidase-reductase system to maintain intracellular pools of
reduced glutathione (GSH). GSH are important scavengers of reactive oxygen species (ROS) in
the liver.

With the progression of the hypermetabolic response (3 ~ 4 days after the injury),
substrate oxidation via the TCA cycle in the burn livers rose to significantly higher levels than
sham-bumn control livers, possibly contributing to conditions that lead to the mitochondrial
generation of super oxide anions [178, 179]. Cells can limit this process by expressing
uncoupling proteins, which increases respiratory chain activity and limits electron interaction
with oxygen [211, 212]. The consequence of this partial uncoupling of ATP synthesis from
electron transport is that the feedback regulation of substrate oxidation via the TCA cycle by
ATP is also loosened. In the present case, one such uncoupler, UCP2, was found to be expressed
in livers harvested on days 2 ~ 7 after the burn injury. Thus, the continued increase in liver
oxygen consumption past day 2, beyond a level that can be accounted for by incremental

metabolic demand, could be due to the action of the uncoupler. This could also explain the
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decline in the flux through tﬁe redox sensing pathway PPP past day 4, when the fluxes in and
around the TCA cycle reached near maximal values. The ROS limiting action of UCP2 could
have improved the overall cellular redox balance, diminishing the demand for NADPH by the
glutathione reductase-peroxidase system. On the other hand, the expression of UCP2 peaked on
day 3, and declined gradually, but not completely, on days 4 and 7, while the increase in oxygen
consumption by the liver was sustained over this period. It remains to be seen whether there was
a threshold level of UCP2 that led to the increase in oxygen consumption, which could reconcile
the UCP2 expression and the oxygen consumption profiles.

With a comprehensive set of metabolic measurements and an integrated analysis of the
metabolite data, we have demonstrated that metabolic pathways in the liver are differentially
activated or repressed during the first week of the injury. These results are consistent with the
known etiology for the hypermetabolic response in the liver, and suggest a redox perturbation
mechanism for the harmful consequences of sustained hypermetabolism, which in turn supported
the multiple insult theory for organ dysfunction. Under this hypothesis, the first insult, in this .
case a severe burn, lowers or even deplétes the cellular defenses against ROS, and a second
insult, such as infection, causes irreversible damage to the weakened organ. One short-coming of
the pi'esent study was that the size of the burn was too small to cause significant mortality, which
prevented testing the efficacy of antioxidants in preventing organ dysfunction and mortality.
However, studies by Lalonde et al. [137, 213] in burn and endotoxin treated rats showed that
bolstering the liver antioxidant resources prevented mortality. Whether the hypermetabolic
response caused the oxidative stress related liver dysfunction or merely represented the

metabolic aspect of this stress remains to be elucidated in further studies.
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CHAPTER 4. DIFFERENTIAL ACTIVATION OF METABOLIC PATHWAYS IN
CULTURED HEPATOCYTES BY H,0, AND GLUCAGON

4.1 Introduction

Inflammation is a coordinated systemic response involving a number of mediators that
trigger metabolic as well as immune responses in the host. In addition to classical stress
hormones and inflammatory cytokines, reactive oxygen species (ROS) are increasingly
récognized to play an important role in mediating both types of responses. ROS include oxygen
free radicals, which are oxygen containing chemicals that contain one or more unpaired |
electrons, and small molecular weight peroxides, which easily give rise to oxygen free radicals.
Biologically relevant ROS include superoxide anion (O;™"), hydroxyl radical (HO"), nitric oxide
(NO®) and hydrogen peroxide (H,0,). They may be generated by a variety of endogenous
rnechanisms or by external stresses, such as tox;c chemical challenge or UV irradiation.
Endogenous mechanisms include autoxidation of flavins and quinones, enzyme catalysis,
microsomal activity, and leakage from mitochondrial electron transport chain. ROS are also
natural byproducts of aerobic metabolism, and relatively harmless in small amounts due to
cellular defenses, which include both small molecules scavengers and enzymatic reduction
systems [214]. In larger amounts, ROS overwhelm cellular defenses and, under certain
conditions, cause irreversible damage to membrane lipids, nucleic acids, and other
macromolecules [215]. It has been known for some time that phagocytic cells utilize this
cytotoxic aspect of ROS to destroy engulfed foreign particles during inflammation {216].

More recently, ROS have also been implicated in cellular stress signaling with direct
metabolic consequences. Mitochondrial ROS produced during hypoxia has been suggested to act
as second messengers in oxygen sensing by cytochrome oxidase in cardiomyocytes [217].
Oxidatively modified low density lipoproteins (LDL) have be shown to modulate the DNA
binding affinity of transcription factors that mediate cytokine and growth factor activity [218].
Exogenously added hydrogen peroxide has been observed to induce apoptosis by caspase action
in a rat hepatocyte cell line RALLA255-10G [219]. In Hep3B cells, another hepatocyte cell line,
hypoxia triggered mitochondrial ROS production activated transcription of several gene ’

products, including glycolytic enzymes aldolase and phosphoglycerate kinase. Other stress
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pathways targeted by ROS include mitogen activated protein (MAP) kinase cascade [220] and
nuclear factor kappaB (NFkB) activation [221].

ROS also directly affect intermediary metabolism by inducing defense pathways that
synthesize and recycle antioxidant molecules, which require amino acid substrates and reducing
equivalent NADPi-I. Prominent among cellular antioxidant defenses are the free radical
scavenger glutathione (GSH) and its associated enzymes GSH peroxidase (GSHP) and reductase
(GSHR). GSHP reduces potentially harmful H,O, and other peroxides to water and alcohol. In
the process, GSH is converted to the oxidized dimer GSSG. In order to continue peroxide
reduction; GSSG has to be reducéd to GSH by GSHR, which requires the cofactor NADPH. By
way of this chain of reactions, ROS draw flux through the PPP, which is the main source of
cytosolic NADPH. Another, recently discovered, metabolic pathway purported tb be directly
affected by ROS is mitochondrial respiration. Various analogs of mitochondrial uncoupling
proteins, which partially detach ATP production from oxygen consumption and curtail release of
unpaired electrons from the respiratory chain, have been reported in a variety of tissues under
oxidative stress conditions, including UCP2 in the liver [194].

Results from studies detailed in the two previous chapters have shown that burn injury
unregulated fluxes through pathways in the liver that indicate activation of the above mentioned
two types of antioxidant defense mechanisms. Specifically, data in Chapters 2 and 3 showed
increased flux through the PPP without obvious synthetic demand for NADPH as well as time
dependent induction of UCP2 in livers isolated from burned animals. With this motivation, the
studies in this chapter explore a possible role for ROS in mediating injury induced hepatic -
hypermetabolism. In order to precisely control the dose and timing of ROS stress, we used a
well-defined cell culture system developed previously in our laboratory, which has been shown
to exhibit long-term stable function [222]. Measured metabolic parameters were chosen to

represent benchmark indices of hepatic hypermetabolism as determined in the perfused liver

studies.
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4.2 Materials and Methods

4.2.1 Reagents and culture media

The seeding medium (C+H) consisted of Dulbecco’s modified Eagle medium (DMEM)
supplemented with 10 % fetal bovine serum (FBS) by volume, 20 ng/mL EGF, 0.5 U/mL insulin,
2.0 nM glucagon, and 7.5 pg/mL hydrocortisone. The low hormone medium (LH) consisted of
DMEM supplemented with 10 % FBS by volume, 100 pU/mL insulin, 0.1 nM glucagon, and 75
ng/mL hydrocortisone.

4.2.2 Cell culture
Hepatocytes were isolated from adult female Lewis rats weighing 150 — 200 g according

to the two-step collagenase perfusion technique described by Seglen [223] as modified by Dunn
et al. [222]. Prior to seeding, 0.5 or 1 mL of a collagen mixture consisting of 1 part concentrated
(10x) DMEM and 9 part collagen solution (1 mg protein/mL) was distributed evenly over the .
culture plate or dish, respectively, which was then allowed to gel at 37° for 60 min. One or 2
million cells were seeded per well of a 6-well culture plate or 60 mm culture dish (P60) and
incubated in one or 2 mL seeding (C-FH) medium, respectively, in a humidified atmosphere of 90
% air and 10 % CO; at 37°. After 24 hrs, the medium was aspirated and the cells were overlaid
with a second layer of the collagen mixture. After allowing the collagen mixture to gel for 60
min at incubator conditions, fresh C+H medium was added to the cultures. After an additional 24
hrs, the C+H medium was aspirated and one or 2 mL low hormone (LH) medium was added to

~ the cultures. Cells were kept in LH medium for the next 3 days, during which time medium was
‘replaced daily. Five days after seeding, cultures were randomly divided and treated with various
media for 1 — 7 days, during which time medium was sample and replace daily. The various
culture media used in these experiments are described in Table 4-1. At the términation of each
culture, cells were detached from the collagen matrix by incubating in Krebs-Ringer bicarbonate
buffer containing 0.1 % collagenase and 0.2 mg/mL CaCl,. The detached cells were pelleted by
centrifugation and stored at —20 °C until they were assayed for intracellular proteins. Figure 4-1

shows a schematic describing the cell seeding and culture schedule for these studies.
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Table 4-1. Culture Media Contents

Medium

Contents Significance
C+H DMEM with 10 % by volume FBS, 20 ng/mL EGF, 0.5 | Cell seeding
U/mL insulin, 2.0 nM glucagon, and 7.5 pg/mL
| hydrocortisone
LH DMEM with 10 % by volume FBS, 100 pU/mL insulin, | Physiological levels of
0.1 nM glucagon, and 75 ng/mL hydrocortisone hormones
G LH with 1.0 nM glucagon ' Increased substrate
loading
P LH with 1.0 mM H,0, Oxidative stress
GP LH with 1.0 nM glucagon and 1.0 mM H,0, Increased substrate
loading and oxidative
stress
GP+NAC | G with 5 mM N-acetylcysteine GSH synthesis
GP+DHEA | G with 200 pM dehydroepianderosterone PPP inhibition
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4.2.3 Oxygen uptake measurement

Cells cultured in P60 dishes were used to measure the rate of oxygen uptake (OUR) by
matrix attached hepatocytes at various time after treatment with various media. OUR was
determined using a technique originally described by Foy et al. [224] and recently modified by
Balis et al. [225]. At the time of measurement, the culture dish containing collagen-sandwiched
hepatocytes was completely filled with medium and covered by a polycarbonate device that
makes a seal with the top edge of the culture dishes The medium used to fill the culture dish was
equilibrated with a 90 % air and 10 % CO, gas mixture prior to the addition. Care was taken so
that the médium filled fhé chamber entirely and no air bubbles were present. A magnetic stir bar
attached to the device kept the medium well mixed during the measuremént period. The rate of
decline of oxygen partial pressure in the chamber was measured with a polarographic oxygen
electrode (Diamond-General, #731 MiniClark PO2, Ann Arbor, MI). The electrode was |
calibrated off-line using a 10% w/v sodium sulfite solution for the 0 mm Hg calibration point and
culture medium equilibrated with 10% CO; and 90% air for the 143 mmHg calibration point.
The rate of oxygen uptake by the hepatocytes was taken to be the slope of the linear portion of
the oxygen paﬁial pressure curve, which corresponds to saturating oxygen conditions. Oxygen

uptake rates were normalized with respect to the number of cells seeded per dish.

4.2.4 Flux through PPP

Flux through the PPP in cultured hepatocytes was measured by a radioactive tracer
method described for the perfused liver by Kuehn and Scholz [226] and adapted for the 6-well
culture plate. At the time of measurement, 1 pPCi of p-[1-"*C)glucose dissolved in 100 pL of 1x
PBS was added to each well of the culture plate. After gently shaking, the culture plate was
Quickly covered with an adhesive plate sealer. Labeled carbon dioxide evolved from the
decarboxylation of D-[1-*C]glucose by glucose-6-phosphate dehydrogenase (G6PD) was -
trapped with potassium hydroxide solution (40 % w/v) soaked filter papers attached to the plate
sealer. After incubating cells in the radioactive tracer medium for 2 hrs at 37 C, the filters were

removed and placed in scintillation vials. The vials were completely filled with scintillation fluid
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4.2.5 Western blot analysis

Cells previously frozen and stored at —20 °C were lysed by suspending in buffer for
determination of intracellular proteins. After breaking up plasma and organelle membranes by
sonication, centrifugation was used to pellet and remove the membrane debris from the cell
lysate. The mernbr.ane free lysate was assayed for total protein concentration by a commercially
ﬁvailable kit (BCA, Pierce). Proteins were separated on a 12 % Tris-HCl polyacrylamide gel
(Bio-Rad, Hercules, CA) and transferred to polyvinylidine difluoride membranes (Bio-Rad).
Membranes were blocked for 45 min. at room temperature in buffer containing Tris-buffered
saline (TB-S), 0.2 % Tween-20, and 5 % powdered milk (w/v). Membranes were then incubated
with rabbit anti-mouse antibody to UCP2 (Chemicon, CA) in blocking buffer overnight at 4 °C.
After 3 washes with TBS-Tween-20 (TBS-T), the membranes were incubated with goat anti-
rabbit IgG conjugated vwith horseradish peroxidase (Santa Cruz Biotechnology, Santa Cruz, CA)
for 1 hr. at room temperature. After washing again in TBS-T, the membranes were developed
with a chemiluminescence enhancer (Pierce, Rockford, IL) and exposed on an imaging screen
(Bio-Rad). Protein bands were quantified by image analysis and expressed in arbitrary units

relative to background. -

4.3 Results

In prior work, we had investigated the hepatic hypermetabolic response to burn injury
using a perfused liver experimental model and a metabolite balance mathematical m_odél. Using
these tools, we characterized the effect of burn injury on liver metabolism on day 4 after burn
injury, which corresponded to the peak activity level of the host metabolic response during the
first week after the injury. Comparing livers from burn and sham-burn treated animals, we found
that burn injury significantly increased the uptake of amino acids and the fluxes through several
intracellular pathways, including the TCA cycle, ﬁrea cycle, and PPP. Given the sensitivity of the
- PPP to cellular antioxidant concentrations, these results hinted at a connection between oxidative
stress and the increased uptake and oxidation of amino acids.

In this chapter, we examined the metabolic effects of oxidative stress during high
substrate loading conditions using a sandwich configuration hepatocyte culture system developed

previously in our laboratory [222]. Compared to the perfused liver, this stable cell culture system
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6ffered the advantage of sirﬁplicity and greater experimental control, where it was possible to
precisely regulate the addition and removal of stress hormones and oxidants over time. In all
experiments, cells were seeded in DMEM supplemented with FBS and a milieu of hormones
which previously had been shown to improve cell attachment and spreading over
unsupplemented DMEM [222]. However, the metabolic hormones (insulin, glucagon, and
hydrocortisone) in the seeding medium were present at pharmacological levels, making the
seeding medium unfit for metabolic studies. Therefore, after the initial seeding period, cells were
equilibrated for 72 hrs in a low hormone medium (LH) containing physiological levels of the
metabolic hormones before exposure to the various treatment media (Figure 4-1).

Substrate loading into the cultured hepatocytes was increased by the addition of glucagon
to the medium. Glucagon is a pancreatic hormone known to increase gluconeogenesis and amino
acid uptake by the liver in vivo. Taking urea output as a marker for amino acid oxidation, the
cultured hepatocytes responded to glucagon in a dose dependent manner within physiological
ranges of the hormone (Figure 4-2). Increasing the hormone concentration beyond physiological
(> 1 nM) doses did not appreciably increase urea production by hepatocytes. Results from
previous work [186] suggested that in addition to catabolic hormones, oxidative stress played a
significant role in up-regulating hepatic metabolism, especially amino acid oxidation. In order to
determine whether oxidant molecules directly affected amino acid metabolism in hepatocytes, |
hydrogen peroxide (Hz(jz) was added to the medium in various amounts. Hydrogen peroxide is
an endogenous oxidant formed from the byproducts of aerobic metabolism or released by’
activated immune cells and has been implicated in a range of oxidative stress related metabolic
adaptations, including activation of redox sensitive transcription factors [227]. Unlike glucagon,
H,0; did not alter urea output by hepatocytes (Figure 4-2). When added together, glucagon
affected urea output by hepatocytes in a dominant fashion, as the addition and removal of the

hormone raised and lowered urea production rate, respectively, regardless of the presence of
H,0, (Figure 4-3).
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Céll seedingin .

C+H LH culture Treatment with G, P, NAC, and DHEA
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+ 24, 48, 72, and 96 hrs:
Urea, PPP fiux, OUR,
and viability

Figure 4-1. Cell culture schedule.

Cells were seeded in a serum containing medium supplemented with pharmacological
levels of hormones and growth factors (C+H medium) previously shown to aid in cell
attachment and spreading. Two days after seeding, cells were exposed to a serum
containing medium containing physiological levels of hormones and substrates (LH
medium). After equilibrating for 3 additional days, cells were divided into treatment
groups, which were exposed to various media as defined in Table 4-1. Media were
sampled daily at noon (+ 2 hrs) and exchanged with fresh media.
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Figure 4-2. Hepatocyte dose respose to glucagon and hydrogen peroxide. '
Hepatocytes cultured in the double-gel configuration for three days in basal physiological
medium (see Figure 4-1 and Table 4-1) were exposed to varying doses of glucagon (0.1
to 10 nM) or hydrogen peroxide (0 to 1 mM). Dose ranges were guided by published
literature values.
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Figure 4-3. Combined effects of glucagon and hydrogen peroxide on urea production.

Urea concentration was measured in medium supernatants collected at 0, 24, 48, 72, 96,
120, and 144 hrs after hepatocytes were expose to hydrogen peroxide and glucagon. -
Hydrogen peroxide was present (see figure legend) in the medium at varying doses
throughout the experimental period. Glucagon (1.0 nM) was added to the cultures at 48
hrs and removed at 96 hrs. The basal level of glucagon in the medium was 0.1 nM.
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In hepatocytes, one of the most sensitive pathways to oxidative stress is the pentose
phosphate pathway (PPP), which in non-dividing cells is primarily responsible for maintaining
cytosolic NADPH balance for lipid synthesis and glutathione turnover. The reduced form of
glutathione (GSH) is the primary cytosolic defense molecule against reactive oxygen species
(ROS), especially beroxides, and is regenerated from the oxidized dimer (GSSG) by glutathione
reductase which requires NADPH as a co-factor. From Figure 4-4, it can be seen that the
addition of H,0O; to the culture medium stimulated flux through the PPP as measured by the
evolution of carbon dioxide (CO,) via glucose 6-phophate dehydrogenase. The increase in PPP
flux took ﬁlace regardless of whether glucagon (1.0 nM) was present in the medium. Conversely,
glucagon by itself failed to stimulate flux through the PPP. Interestingly, the increase in PPP flux
by the extraneously added H,O, was transient, lasting from 24 to 72 hrs after HyO, was initially
| added, even though the oxidant was present continuously throughout the study period.

After observing that glucagon and H,0,, respectively, up-regulated amino acid oxidation
and the PPP flux, their effects on the aerobic metabolism of cultured hepatocytes was assessed
by oxygen uptake rate (OUR) measurements. The oxygen uptake experiments were conducted in
cells cultured identically to those used for urea and PPP flux assays except that the culture
vessels were P60 dishes instead of 6-well plates, as the OUR measurement device was designed
~ to fit the P60 culture dish (see Materials and Methods). As shown in Figure 4-5, the addition of
glucagon to the medium by itself failed to significantly affect the rate of oxygen uptake (OUR)
by the hepatocytes. The addition of H,O, alone decreased the OUR steadily over time, as the
OUR of the peroxide treated cells were 42 % less than those maintained in the basal (LH)
condition 96 hrs after continuous exposure. When the two stimulants were added together, the
OUR increased by 25 % compared to the basal (LH) condition. Interestingly, this increase
occurred 72 hrs after the initial exposure of the cells to H,O; and glucagon, mirroring the time -
course of OUR increase observed in the perfused liver of burned animals (Chapter 3). The drop
in OUR by the cells treated with H,0, seemed to be due. to the loss in cellular viability, in
particular membrane integrity, as revealed by a fluorescence assay for cell death. In order to
check the integrity of the cellular and nuclear membranes, cells were treated with EthD-1, which
binds to the DNA and fluoresces in nuclei of cells with non-viable membranes. Figure 4-6 shows

that H,0, alone adversely affected cell viability, whereas glucagon had no appreciable effect.

121




2000
—e— LH
——G
—a—P
%
o 1500 [
o
=
<
£
o
°
@
< 1000 -
o
[
.0
=
S
Ll
o 500 [
O
bl
0 | 1 | | | | | 1
0 » 24 48 72 96
Time, hrs

Figure 4-4. PPP activation by hydrogen peroxide.
After three days in basal physiological medium, cells were exposed to media containing
1.0 nM glucagon, 1.0 mM hydrogen peroxide, both, or kept in the basal medium. PPP
flux was measured at 24, 48, 72, and 96 hrs using a radiometric assay method as
described in Materials and Methods.
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Figure 4-5. Effects of glucagon and hydrogen peroxide on oxygen uptake.
After three days in basal physiological medium, cells were exposed to media containing
1.0 oM glucagon, 1.0 mM hydrogen peroxide, both, or kept in the basal medium. Oxygen
uptake was measured at 24, 48, 72, and 96 hrs using Clark-type electrodes as described in
Materials and Methods.
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Figure 4-6. Hydrogen peroxide and cell death.
Cells cultured in parallel to those described by Figures 4-4 and 4-5 were checked for
viability by fluorescence spectroscopy using EthD-1 as stain. Percent death was
calculated by subtracting the live control from sample fluorescence intensities and
normalizing the differences by the dead control fluorescence intensity. Live and dead
control refer to cultures where most cells were determined to be either viable or dead, as

- determined by fluorescent microscopy. Live cells were kept in the seeding medium

(C+H) until time of measurement. Cell death was induced by 24 hr exposure to 70 % v/v
ethanol (aq).
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On the other hand, when present alongside H,0,, glucagon seemed protect against the peroxide
induced damage to the cellular membranes, as cells treated with both H,O; or glucagon were
able to maintain their membrane viability throughout the study period.

The above observations, in particular with respect to the sequential activation of the PPP
and OUR, hinted at a possible connection between these two metabolic pathways. In order to
explore this notion, we studied the effects of the general anti-oxidant N-acetyl cysteine (NAC)
and the PPP inhibitor dehydroepianderosterone (DHEA) on urea production and OUR in cultures
treated Wit_h glucagon and H,0,. In these experiments, the working concentrations of NAC and
DHEA were determined from the published literature and by a dose response curve (Figure 4-7),
respectively. In Figure 4-8, the urea production profiles of NAC and DHEA treated cultures
(GP+NAC and GP+DHEA, respectively) are plotted alongside the profiles of glucagon (G) and
glucagon and H,O, (GP) cultures. All of the profiles were virtually identical for the entire study
period, except for the last time point (96 hrs after the initial exposure) taken from the GP+DHEA
culture, which-showed a significant decrease in urea production. This decrease was not related to
a loss in cellular viability, as the fraction of dead cells remained between 0 to 5 % for all
conditions throughout the study period (Figure 4-10). |

The OUR for GP+NAC and GP+DHEA cultures were measured only at the 72 and 96 hr
time points, which corresponded to the period during which the GP culture showed significant
OUR increase compared to the basal condition. Both NAC and DHEA decreased OUR in GP
cultures, with DHEA having the greater effect. Seventy-two hrs after the initial exposure, the
general antioxidant NAC was unable to significantly reduce OUR, whereas the PPP inhibitor
DHEA decreased OUR ‘to a level comparable to the basal (LH) condition. Both NAC and DHEA

further decreased OUR by 96 hrs, to 16 and 37 %, respectively, below the GP condition.

In the final set of experiments of this study, we explored the possibility of induction of
respiratory uncouplers as a potential molecular level mechanism underlying the increase in OUR
by glucagon and H;0;. A likely candidates was UCP2, which belongs to a class of ﬁlitochondrial
uncoupling pfoteins found in the liver [193] and in cultured hepatocytes [194], which have been
found to increase state 4 relative to state 3 respiration. UCP2 is normally dormant in adult rodent

liver, but has been found to be expressed under oxidative stress conditions [228].
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Figure 4-7. Hepatocyte dose respose to dehydroxyepianderosterone (DHEA).
Hepatocytes cultured in the double-gel configuration for three days in basal physiological
medium (for culture protocol and medium definition, see Figure 4-1 and Table 4-1) were
exposed to varying doses of DHEA and assayed for PPP activity using a radiometric
method. Dose ranges were guided by published literature values.
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Figure 4-8. PPP flux and hepatocyte urea production.
After three days in basal physiological medium, cells were exposed to media containing
1.0 nM glucagon (G), 1.0 nM glucagon and 1.0 mM hydrogen peroxide (GP), GP and 5
mM N-acetylcysteine (GP+NAC), or GP and 200 uM DHEA (GP+DHEA). NAC
stimulates glutathione synthesis, thereby reducing the need for glutathione recycling via
the NADPH dependent reductase-peroxidase system. DHEA is a specific inhibitor of
glucose-6 phosphate dehydrogenase, which is the first step of the PPP. Medium samples
were taken at 24, 48, 72, and 96 hrs and assayed for urea.
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Figure 4-9. Oxidative stress, PPP flux, and hepatocyte oxygen consumption.
After three days in basal physiological medium, cells were exposed to media containing
1.0 nM glucagon (G), 1.0 nM glucagon and 1.0 mM hydrogen peroxide (GP), GP and 5
mM N-acetylcysteine (GP+NAC), or GP and 200 pM DHEA (GP+DHEA). Oxygen
uptake was measured at 24, 48, 72, and 96 hrs using Clark-type electrodes as described in
Materials and Methods. :
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Cells cultured in parallel to those described by Figures 4-8 and 4-9 were checked for
viability by fluorescence spectroscopy using EthD-1 as stain. Percent death was
* calculated as described in the Figure 4-6 legend.
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We used Western blots to a;c.say for UCP2 in cellular extracts collected at the 96 hr time period
from G, GP, GP+NAC, and GP+DHEA cultures. Cells not subjected to extraneously introduced
oxidative stress (G culture) expressed the least amount of UCP2. Cells fed media containing the
peroxide (GP) expressed the uncoupler most strongly (data not shown). Interestingly, cells fed
the GP medium but also treated with either NAC or DHEA expressed a greater amount of the
uncoupler than those fed the G medium, but to a lesser degree than those fed only the GP

medium (data not shown).

4.4 Discussion

The experiments in this chapter built on previous work (Chapters 2 and 3) to examine the
role of ROS in mediating hepatic hypermetabolism after burn injury. In Chapter 2, MFA of
fasted rat livers perfused 4 days after burn or sham-burn treatment revealed that flux through the
PPP was significantly increased in the burn condition. Moreover, the uptake of most amino acids
| was also substantially increased. As the PPP is responsible for NADPH production, and lipid
synthesis in the fasted liver is repressed, these results hinted at activation of the NADPH
consuming antioxidant defense system GSHP-GSHR cycle, which in turn indicated that the liver
was oxidatively stressed. In Chapter 3, these findings were corroborated by an expanded study
involving liver perfusions at various times during the first week of injury. Flux through the PPP
~ was significantly elevated by day 2 post-burn and remained above the sham-burn control level
throughout the study period, although declining slightly by day 7 post-burn. It was also shown
that metabolic pathways in the liver were differentially activated or repressed with respect to
extent and time after injury. In particular, the TCA cycle fluxes were increased
disproportionately with respect to the major energy requiring processes, suggesting either ATP
overproduction or lowered oxidative phosphorylation efficiency. The latter possibility was at
least partially substantiated by detecting uncoupling pro}ein 2 (UCP2) induction in livers isolated
from burned rats, where UCP2 is a mitochondrial respiratory uncoupler with putative antioxidant
properties. |
These above mentioned findings suggested that ROS may mediate some of the

hypemetabolic features observed in the liver after burn injury. Therefore, we investigated the

effects of a model ROS compound, H,O, on urea production, oxygen consumption, PPP flux,
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and cell viability in a previously developed stable hepatocyte culture system. In hepatocytes,
H,0; is produced endogenously by superoxide dismutase from byproduct of aerobic metabolism.
- Hydrogen peroxide is also released by activated immune cells, which have been shown to
sequester in the liver shortly after injury [210]. In the present study, H;O, was added
exogenously at a dose low enough not to cause immediate cell death, but high enough to elicit
biological activity. In order to simulate high substrate loading conditions found during
hypermetabolism, glucagon was added to the culture medium at a physiological dose that elicited
near maximal urea production by the cultured hepatocytes. Urea production was measured as a
marker fof amino acid conversion to glucogenic precursors. PPP flux was measured to assess
degree of cytoplasmic oxidative stress. Oxygen uptake was measured to assess overall metabolic
activity and evaluated with respect to induction of the respiratory uncoupler UCP2. General
antioxidant NAC and specific PPP inhibitor DHEA were used to probe the relationship between
cytoplasmic redox potential, oxidative stress, and respiration. »

One significant result of the current chapter is that the two aforementioned types of
stressors, oxidative and hormonal, differentially affected amino acid processing and aerobic
metabolism in hepatocytes. Glucagon potently increased urea synthesis, more than doubling urea
output in less than 48 hrs. This phenomenon was also fully reversible, as removal of glucagon
from the medium returned the urea output to the basal level. In contrast, H,O, had almost no
effect on urea production. Conversely, PPP flux was virtually unaffected by glucagon while
strongly activated by.HzOz. Interestingly, oxygen uptake was only significantly increased when
both H,0, and glucagon were added to the medium. Moreover, this change took place several
days (72 hrs) after the initial stress, suggesting an inductive mechanism involving de novo
protein synthesis. Taking urea output as a marker for substrate uptake and processing, PPP for
oxidative stress, and oxygen uptake for global activity index of central carbon metabolism, and
in the context of the discussions presented in Chapters 2 and 3, the above observations point to a
potential push-pull mechanism for hepatic hypermetabolism, where substrate loading by
glucagon is the push and oxidative stress by H,0O, is the pull. The potential molecular link
between these stresses is provided by mitochondrial respiratory uncouplers.

Albeit faint signals due to the low affinity of the mouse antibody for the rat protein and
small absoulte amounts expressed in hepatocytes, it could be seen that there was clear correlation

between oxidative stress and UCP2 induction. UCP2 was not detected in cells treated with only
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glucagon, consistent with lit;erature reports that transcription of the protein is dormant in normal
adult hepatocytes [228]. However, UCP2 was visible in Western blots of cell crude extracts
formed from cultures treated with both glucagon and H,O,. Moreover, the uncoupler expression
was partially inhibited by addition of the general antioxidant NAC. Partial downward modulation .
was also acco_rnpliéhed by addition of DHEA, a specific PPP inhibitor, suggesting a induction
mechanism involving ROS sensing via PPP flux.

The effects of NAC and DHEA on UCP2 expression were mirrored by their effects on
oxygen consumption. When added to cultures exposed to glucagon and H;O,, both agents
reduced thé oxygen uptake rate (OUR), with DHEA having the larger effect. After a 96 hr
exposure to DHEA, hepatocyte OUR remained at levels comparable to those seen for the basal
LH medium cultures. The reduction in OUR, or inhibition of pathways leading to the
upregulation of OUR, was not a result of decreased viability, as the fraction of dead cells
remained low (less than 8 %) regardless of the presence of NAC or DHEA. On the other hand,
glucagon had a protective effect on cell viability, as there was a significantly higher fraction of

nonviable cells in cultures exposed to H,O, without a high dose of glucagon. In this regard, the

high substrate loading may prevent ROS mediated cell death by contributing to gluconeogenesis,

which in turn supplies phosphorylated hexose units (glucose 6-P and fructose 6-P) for the PPP.
The protective role of PPP against ROS mediated cell injury has already been described in the
introduction of this chapter. Along the same vein, increased UCP2 expression and concomitant
OUR upregulation could constitute another defense mechanism whereby cells limit endogenous
production of ROS during high substrate loading conditions.

In conclusion, the studies in this chapter show that while glucagon and H,O;
differentially affect intracellular pathways in hepatocytes, both stressors are needed to globally
influence central carbon metabolism. A noteworthy and useful aspect of this feature is that this
experimental system repfesents an in vitro model of hepatic hypermetabolism exhibiting both
increased oxygen consumption as well as urea production, which, to the best of the author’s
knowledge, is reported here for the first time. Moreover, the time course of the metabolic
changes observed in these studies mirrors that found in perfused livers of burned animals
(Chapter 3), corroborating a ROS mediated mechanism for the hepatic metabolic responsé to
injury. Finally, the results from this chapter support a push and pull notion for upregulating

cellular aerobic metabolism, where the push and pull stresses are potentially linked by a
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mitochondrial respiratory uncoupler. Further studies are warranted in order to validate this

hypothesis by elucidating the molecular underpinnings, which is beyond the scope of this thesis.
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CHAPTER 5. METABOLIC PROFIIING: DEFINITION AND USE IN
PHYSIOLOGICAL STATE CLASSIFICATION

‘5.1 Introduction

With the recent progress in high-throughput methods for detecting gene and protein
expression levels, these two types of molecules have received much attention as important
determinants in characterizing and understén_ding cellular physiology. Gene expression profiling,
or simultaneous analysis of large-scale gene expression data, has been applied to classifying

normal and cancer cells based on their molecular characteristics, discovering novel subtypes of

- tumors, identifying potential biomarkers for cancer prognosis, testing tissue drug response,

delineating gene families by function, and improving general understanding of genetic
regulation. Nevertheless, recent experiments in yeast [229] and human liver cells [230] and have
shown that there is no obvious correlation between mRNA and protein expression levels in these
systems, suggésting that mRNA abundance is not always a good indicator of the corresponding
protein levels. Expression levels of a protein depend not only on transcription rates of the
corresponding gene, but also on nuclear export and mRNA localization, transcript stability,
translational regulation, and protein degradation [231]. It follows that complementing genomic
with proteomic analysis will lead to even better description of cellular physiology, allowing
finely stratified classification of normal and diseased cells based on functional characteristics as
well as ta:geted develo‘pmént of patient-specific therapeutics. Moreover, protein expression data
'obtaincd directly by two-dimensional (2D) gel electrophoresis or mass spectrometry (MS) |

contain biochemical information not available from mRNA measurements alone, especially with

_ régards to phenotypical changes resulting from multigenic phenomena such as aging, stress, and

disease.

In this regard, a third class of biological molecules, small molecule metabolites, can be
thought of as constituting another useful dimension for describing cell physiology [232].
Metabolites refer to the intermediates of biochemical reaction pathways which convert nutrient

fuel to energy, maintain cellular homeostasis, eliminate harmful chemicals, and provide building

blocks for biosynthesis. Therefore, metabolites partake in some of the most essential cellular

activities. Furthermore, many metabolic intermediates are in constant exchange with the
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~ extracellular medium, and eﬁaploying appropriate models, changes in pathway activity may be
correlated with extracellular metabolite concentrations. In contrast, the multiple layers of
regulatory interactions as well as transport limitation across the cellular membrane prohibit direct
niapping of changes at the mRNA or protein expression levels to observable biochemical |
function [233]. Fof these reasons, metabolites can be thought as the most immediate descriptors
of the biochemical state in a cell, which is the basic notion behind metabolic profiling. Here, in
analogy to gene and protein expression profiling, metabolic profiling is defined as a ,
methodology whereby biochemical function or metabolic phenotype is assigned to cells, tissues,
organs, and organisms based on simultaneous measurement of concentrations of many
metabolites, fractional enrichments of isotopic tracers, and derived quantities, such as metabolic
fluxes. In recent applications, metabolic profiling has been used to study shifts in fnetabolism
resulting from overexpression of a yeast enzyme in transgenic potato [234], describe
phenotypical differences between Arabidopsis mutants [233], and discover novel biomarkers for
a specific type of muscular dystrophy [232]. A role for metabolic profiling in the discovery of
novel genes and their annotation in the context of the source organism has also been suggested
[235].

Metabolite profiling also has obvious applications to the medical field, especially with
respect to the investigation of metabolic disorders. The potential for developing clinical
diagnostic protocols based' on metabolite profiling has been recognized for some time, especially
in the context of tissue biopsy characterization [236]. However, the early efforts concentrated on
analyzing just few markers [237] while neglecting information contained in the correlations
. among metabolites that would result from a comprehensive analysis of small molecules in tissue
and bodily fluids. In recent years, increasingly sensitive methods for rapid detection of
metabolites have become available, particularly in the form of GC-MS [238]. In order to extract
useful biological information from the growing volume of data, models and methodblogies will
be needed to systematically evaluate the correlations between large numbers of metabolites and
pathways. Like genetic circuits and signal cascades, cellular metabolism has a built-in network
structure that arises from shared intermediates in the form of common reactants and products,
allosteric effectors, reducing equivalents, and other cofactors. Fortunately, the stoichiometry of

“most major metabolic reactions has been thoroughly elucidated, and well-established
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methodologies are available for quantifying the relationships between metabolites using
conservation equations and network models of metabolism [2, 35, 239].

In this paper, the above concepts are applied to two sets of metabolite data obtained in
liver models of injury. The first set, previously published by Arai et al. [240] describes the
metabolic differences between livers isolated from normal and hepatotoxin D-galactosamine
challenged rats. The second set, described in detail in Chapter 3, was obtained in perfused rat
liver experiments performed at various times during the first week after sham-burn or burn
treatment. Drawing upon statistical formalism, recasting the original data to an array form
convenient for manipulation and analysis, and implementing a well-established discrimination
algorithm, metabolic profiles were constructed for each liver sample obtained from the
aforementioned studies. Using these profiles, we set out to 1) assess the observability of distinct
physiological states by modeling metabolite data, 2) demonstrate the utility of statistical
projection methog__is in discriminating between different physiological states, and, most ,
importantly, 3) identify key metabolites in the development of liver failure (in the case of thé D-

galactosamine study) or hypermetabolism (burn study).
5.2 Materials and Methods

5.2.1 Animals

Male Sprague-Dawley rats (Charles River Laboratories, Boston, MA) weighing 150 ~
200 g were hoﬁsed in a temperature (25 °C) and light-controlled room (12-hour light-dark cycle).
The animals were cared for in accordance with the National Research Council guidelines.
Experimental protocols were approved by the Subcommittee on Research Animal Care,
Committee on Research, Massachusctts General Hospital. Water and rat chow were prdvided ad
libitum. Animals were individually housed and allowed to adjust to their new surroundings for at
least 2 days before receiving treatment.

The initiation of fulminant hepatic failure (FHF) by D-galactosamine injection and the
induction of hepatic hypermetabolism by burn injury have been described in detail in previous

publications. Briefly, FHF was caused by intraperitonealy administering D-galactosanline

dissolved in normal saline at a dose of 1.4 g /kg to fasted rats 12 and 24 hrs after beginning the

fast. The monality rate of the D-galactosamine treatment was 25 % at 48 hrs and 83 % at 168 hrs
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after the initial injection. Control rats were fasted, but did not receive D-galactosamine injections.
The FHF study rats were fasted for a total of 36 hrs prior to the perfusion (12 hrs before and 24
hrs after first D-galactosamine injection). The burn injury and perfusion protocols have already

been described in Chapter 2.

5.2.2 Metabolites and fluxes

Metabolite rneas’urement methods have been described in Chapter 2. For each perfusion
study, metabolite exchange rates were calculated by linear regression of the perfusate reservoir
metabolité concentration data. The derived exchange rates were arranged into N x P data
matrices M, where the element m;; holds the flux of metabolite j into or out of liver sample i. In
" the FHF study, P = 27 metabolite exchange rates were determined for a total of N = 12 livers (6
failure and 6 control). In the burn experiments, P = 25 metabolite exchange rates were observed
for N = 42 livers, which were perfused 1, 2, 3, 4, or 7 days after the burn or sham-burn treatment.
All sham-burn livers, regardless of the time elapsed between the perfusion and the treatment, .
were classified into a single “control” group, resulting in a total of K = 6 treatment groups:
control (group sample size n = 13), day 1 post-burn (r = 9), day 2 post-burn (n = 4), day 3 post-
burn (n = 4), day 4 post-burn (n = 5), and day 7 post-burn (n = 8). Using these data, intracellular
fluxes were calculated by metabolite balancing. A network model of hepatic central carbon
metabolism was constructed from known reaction stoichiometry and used with minor
modification in both the FHF study and the burn study. For reference, a graph of this model is
shown in Figure 3-2. Derivation of the stoichiometric balance equations, solution by least-
squares, and error analysis have been described in Chapters 2 and 3. The calculated and
measured fluxes (metabolite exchange rates) were pooled and arranged in N x Q flux matrices F
analogous to the metabolite data matrices, where Q = 58 for the FHF siudy, and Q = 60 for the

bum experiments.

5.2.3 Discriminant analysis

* The data and flux matrices were subjected to discriminant analysis based on Fisher’s
technique as outlined by Dillon and Johnson [191, 241]. For a data set comprised of X samples
divided into K groups observed over Y variables, Fisher’s discriminant analysis (FDA) seeks

linear combinations of the variables that define a new set of coordinate axes so that the
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separation between groups ére maximized when the samples are projected into the new
coordinate space. The linear combinations are obtained by multiplying (i.e. projecting) the
original data matrix by a projection matrix V, which is obtained by solving the following
optimization problem:

| VBV
Viwv

In the above defined objective function, W and B denote the matrices of within-group and

m‘z}x A= - (5-1)

between-group variances, respectively. The within-group variance W; for the ith group is found
as follows:
W, = ﬁ (x,-%)x,-%) (5-2)
=1
where N; denotes the number of member objects (livers samples) in the ith group, Xj; the jth
object (liver sample) in group 7, and X, the vector mean of the variables (metabolite fluxes)

observed for the objects (liver samples) X; averaged across the ith group. After calculating W;,
W is found by the summation of W; over all K groups:
| W=W, + W+ ... W (5-3)
The between-group variance matrix B is found by subtracting W from the total variance matrix
T:
B=T-W (5-4)
K N
T= Z,Z.(X’ -%fx, - %] (5-5)
i1 j=

where X, is the vector mean of the variables (metabolite fluxes) averaged acros the entire range

of objects (liver samples). The solution to the maxin)jzaiion prdblem in Equation 5-1 is obtained
by the eigenvalue decomposition (ED) of W'B. Alternatively, the solution to the maximization
problem can be obtained by the singular value decomposition (SVD) of the matrix (W'B)T w'B.
Here, SVD was used instead of ED, because it resulted in a better overall separation, as
determined by the Wilks-Lamda likelihood-ratio criterion, defined as:

LW

W +B

(5-6) .
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If the eigenvalues of W!B are distinct, there are K-/ or P (whichever is smaller) possible
linear composites (i.e. projection axes), because B has rank equal to the minimum of P and K-1.
The relative magnitudes of the eigenvalues 4; (=1, 2, ..., K-1 or P) give a descriptive index of |
the importance of the discriminant axes defined by the corresponding eigenvectors V;. The
number of statistiéally significant linear composites (i.e. discriminant axes) is determined by

using Bartlet’ V statistic, given by:
Vv, =—{(n—1)—%(P+K)}ln(l+A.j) ‘ (5-7)

where V; measures the significance of the jth eigenvalue A; of W'B. The statistic V; is distributed
approximately as a chi-square (x°) random variable. As expected for a two group problem (K =
2), discriminant analysis of the FHF study data yielded one significant axis. The burn study data,

which included six treatment groups, yielded five significant discriminant axes, three of which

accounted for 99 % of the variance in the data.

5.3 Results

In prior work [240], we had characterized in detail the metabolic alterations occurring in
the liver during the onset of fulminant hepatic failure (FHF) using D-galactosamine challenge in
conjunction with a perfused rat liver model. As described in detail in Chapter 3, we also studied
the metabolic response of the liver to severe burn during the first week of injury. In both studies,
measurements were obtained for an array of metabolic intermediates of hepatic central carbon
pathways. From these data, we calculated the effects of the aforementioned insults on hepatic
central carbon fluxes using metabolite balancing. Key findings of the FHF and burn studies were,
respectively, that D-galactosamine strongly inhibited starvation induced gluconeogenesis by
lowering ATP production and that burn injury differentially activated or repressed the pathways
of central carbon metabolism. These results demonstrated the utility of metabolite measurements
in understanding physiological changes in terms of changes in biochemical pathway fluxes. In
this final chapter, we examined the converse situation, where the biochemical data was used to

define changes to physiological states.
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5.3.1 Class separation by FDA

As a first step toward constructing metabolic profiles, the aforesaid metabolites
measurements were arranged into multidimensional data arrays. A common approach to
identifying subgroups within multivariate data is dimensionality reduction. By forming weighted
linear combinations of the data array elements, in this case metabolite measurements, the original
higher-dimensional data may be presented in a lower-dimensional space while retaining the
essential features of the original data. This procedure not only facilitates visualization, but also
provides a means for systematically ordering variables according to their importance in
discriminéting, or assigning classes to, the source objects, in this case liver samples. One
frequently used technique for data dimensionality reduction and classification is principal
component analysis (PCA) [242], which finds new axes directions, or principal components, so
that projection of the data along these axes maximizes the covariance among the variables. PCA
is especially useful when the objective is to describe most of the variance in the data with a
minimal number dimensions. In other words, PCA efficiently visualizes subset shapes without
any prior knowledge regarding the number or membership of the subsets. However, when a
priory information regarding subsets is available, another technique, called Fisher’s discriminant
analysis (FDA), yields better discrimination between the subsets. In FDA, a priori knowledge
regarding group assignments is used to define linear combinations, or classification functions,
which maximize the between-group variances with respect to the within-group variances in the
projected sample space. These ideas are illustrated in Figure 5-1, which compares two-
dimensional projections formed by PCA (panel A) and FDA (panel B) using the same set of
metabolite data taken from the FHF study. By inspection, it is clear that both PCA and FDA
separated the projected samples into two groups, corresponding to normal and D-galactosamine
challenged livers. Presumably, this reflects the metabolically distinct nature of the two groups. It
is also obvious that separation by FDA was superior, as the projected samples clustered more

tightly around each other in the FDA space than the PCA space.
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Figure 5-1. Comparison between PCA and FDA projections of FHF study data.
Twenty—eight metabolites observed across 6 normal and D-galactosamine treated livers
were projected into two dimensions using principal component analysis (PCA) and
Fisher’s discriminant analysis (FDA). Both projections correctly separated liver samples
into normal (upper right corner) and D-galactosamine (lower left corner) treated groups.
However, separation by FDA was superior, as the samples projected into more tightly
clustered groups.
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An important additibnal utility of FDA is that the projection vector (V) elements often
have physiological meaning. These elements, called “discriminant loadings (DL),” are |
coefficient multipliers of variables in the linear combinations which define the FDA axes
directions. For example, in Figure 5-1 the yI FDA space coordinate for sample i was formed as

follows:

Yy =a,m, ta,m, +a;m;, + ...dipmip (5-8)
where aj; ... ajp and m;; ... my, refer to discriminant loadings and metabolite measurements,
respectively. The loadings measure the contribution of the corresponding variables, in this case
metabolites, to discriminating the source objects, in this case livers. They can be interpreted by
simply considering V, or a modified version V*, which is computed by rotating V about the
corresponding correlation (R) and variance (D) matrices: |

V*=RD'?V . (5-9)
It has been shown that V* is less subject to instability caused by intercorrelations 6f the variables
and tend to be more useful for interpretation than the standard discriminant loadings [191]. In the
present analysis, the modified discriminant loadings identified two groups of metabolites useful
for characterizing the distinct aspects of the normal and D-galactosamine challenged livers.
Comparing Figures 5-1B and 5-2, it is easy to note the correspondence between sample and
discriminant loading projections. Referring to Table 5-1, it can bee seen that larger (more
positive or less negative) values of oxygen uptake (symbol number 27 in Figure 4), lactate
consumption (number 2), and glucose production (number 1) were characteristic of the normal
fasted liver, while smaller (more negative or less positive) values of alanine (number 7), valine
(humber 12),' and tyrosine (number 17) uptake were characteristic of the D-galactosamine
challenged liver. As alluded to earlier, gluconeogenesis and ATP synthesis were suppressed by
D-galactosamine treatment, and thus these biochemical changes were correctly reflected by the
discriminant loadings. Furthermore, our previous work showed that D-galactosamine strongly
inhibited uptake of gluconeogenic and branched chain amino acids, also correctly reflected in the

discriminant loading analysis.
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Figure 5-2. FDA projection of discriminant loadings for FHF study data.
Rotated discriminant loadings were calculated for the FHF study data as described by
Equation 5-9. The loadings were projected into two-dimensional FDA space analogous to
the samples. Metabolites were indexed by the numbering schedule shown in Table 5-1.
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Table 5-1. FHF Study Metabolite Data

Metabolite  No. Exchange Rate, umol/g dry liver/hr

Normal FHF
- Glucose 1 554 + 228 -332 + 254
Lactate 2 162 + 33 -66.0 £ 259
Urea 3 201.2 + 234 1305 *+ 206
Arg 4 588 + 147 483 + 17.3
Ammonia 5 3.1 £ 167 -104 £+ 6.3
Ornithine 6 49.7 + 135 359 + 126
Ala 7 7.5 £ 32 1.6 + 3.1
Ser 8 55 £ 22 -13 = 27
Cys 9 00 + 03 04 + 07
Thr 10 05 £ 25 45 £ 19
Gly 11 1.2 £ 438 -59 + 2.1
Val 12 21 = 23 36 + 27
Ile 13 25 £ 16 02 = 16
Leu 14 05 + 22 31 = 13
Lys 15 15 £+ 29 21 + 45
Phe 16 55 £ 13 53 +* 09
Tyr 17 05 £ 1.1 29 + 21
Glu 18 1.7 £ 25 57 £ 25
Gln 19 188 + 84 23 + 126
Pro 20 29 + 13 02 = 15
His 21 21 + 12 -14 + 13
Met 22 1.0 + 05 04 £ 03
Asp 23 -16. + 1.8 25 + 07
Asn 24 134 + 338 68 + 5.8
Acac 25 63.7 + 120 422 + 102
3-OH-Bt 26 1105 + 120 59.8 + 13.7
Oxygen 27 3178 + 174 1893 + 13.4
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It was interesting to note that the exchange rates of some compounds used as clinical

markers for FHF, such as ammonia [243], glutamate [244], leucine and phenylalanine [245],

‘ranked low in terms of their contribution to discriminating between normal and D-galactosamine

treated livers (Table 5-2). In order to visualize the spread in the data, probability density
functions (PDFs) were computed using mean and standard deviations obtained in the FHE study
(Figure 5-3). By inspection, it is clear that the PDFs of ammonia, glutamate, and phenylalanine
exchange rates overlap for normal and D- galactosamine conditions. In contrast, the PDFs of the
metabolites determined by FDA to rank 1 ~ 3 in terms of their discriminatory contribution did
not show éigniﬁcant overlap even between 99 ’% confidence regions (Figure 5-3, Table 5-2).
These results suggested that metabolite selection was important in ensuring reliable
discrimination between physiological states by metabolic profiling. Therefore, we next turned
our attention to the effect of variable composition, in this case number and type of metabolites,

on FDA performance.
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Table 5—2.’ Contribution of Metabolites to Discrimination between Normal and FHF Livers

Rank TypeIError Metabolite
Probability
Individual Composite
1 1% 27 27
2 2 2
3 26 22
4 22 1
5 1 26
6 3 3
7 7 7
8 8 21
9 21 8
10 10 10
11 12 12
12 : 17 17
13 19 11
14 11 25
15 25 20
16 20 19
17 5% 13 13
18 : 18 18
19 14 14
20 Overlap 24
21 6
22 15
23 ' 23
24 4
25 9
26 5
27 16

Type I error refers to the probability that the null hypothesis is rejected when it is true, i.e. means
for normal and D-galactosamine conditions are deemed different when they are equal. Individual
discriminatory power ranking was determined by mean hypothesis test p value. Composite
contribution to discrimination was determined by the percent of the total variance accounted by a
particular metabolite as calculated by FDA.
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Figure 5-3. Metabolite PDF.
PDFs were computed for selected metabolites using means and standard deviations
obtained in the FHF study assuming a Gaussian distribution. Clinically relevant markers
ammonia (A), glutamate (C), and phenylalanine (E) all show signficant overlap between
normal and D-glactosamine PDFs. PDFs of oxygen (B), lactate (D), and methionine (F)
ranked 1 ~ 3 as composite discriminators by FDA, show far less overlap.
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5.3.2 Successive addition of metabolites

In order to assess the effect of metabolite selection on class discrimination, FDA
projections were formed using the following four sets of metabolites from the burn study: (A) 7
clinically relevant markers (B) 10 randomly chosen metabolites, (C) the clinical markers of (A)
plus 6 metabolites.with the highest discriminatory power, and (D) all 28 measured metabolites
(Figure 5-4). The worst separation between classes resulted when the fewest number (seven) of
metabolites were employed (panel A), even though these metabolites represented the clinically
most relevant markers [129, 184, 246]. All of the projected samples gathered into one region of
the FDA sbace, and clear boundaries between sample groups could not be established. Using 10
randomly chosen metabolites (panel B) as the basis for the FDA projections resulted in a slight
improvement over the case presented in panel A. In particular, projections of the day 7 post-burn
samples clustered into a clearly discriminated group without any visible overlap with the other
treatment groups. Further improvement was achieved when projections were formed using a
slightly larger subset comprised of the six individually most discriminating metabolites and the
set of seven clinical markers. In addition to the day 7 post-burn samples, the déy 4 post—burn
samples also clustered into a clearly discriminated group (panel C). The best discrimination
between samples belonging to different treatment groups was achieved when all 28 measured
metabolites were employed in forming the projections (panel D). In this projection, samples from
post-burn days 2, 3, 4, and 7 were clearly separated, with no overlap between the treatment
groups. The improvements from panel A to D can also be noted by examining the Wilks-Lamda
criterion (A), which decreased dramatically. The only groups which could not be satisfactorily
discriminated from each other were control and day 1 post-bum, which showed overlap both in

the yI-y2 as well as y/-y3 coordinate planes of the FDA space (Figure 5-5A).
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Figure 5-4. Metabolite selection and class discrimination by FDA.
In order to assess the effect of the number and type of metabolite measurements used on
FDA performance, projections were formed employing the following sets of metabolite
measurements taken from the bumn study data: seven commonly used clinical markers
(8lucose, urea, lactate, 3-hydroxybutrate, acetoacetate, O, and CO,) (A), ten randomly
chosen metabolites (CYS, PRO, ACAC, AMM, ASP, MET, ALA, ASN, urea, THR) (B),
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Figure 5-4. continued. .
thirteen metabolites comprised of the clinical markers and six individually most
discriminating metabolites (C), all twenty-eight measured metabolites (D).
Classification performance improved as more metabolites were added, even if the added
metabolite had low individual discriminatory power. Symbols denote liver sample
treatment group membership: O, sham-burn control; %, day 1 post-burn; I>, day 2 post-
-burn; *, day 3 post-burn; [J, day 4 post-burn; and <, day 7 post-burn.
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5.3.3 Introduction of intracellular fluxes

The improvement in FDA performance by successive addition of metabolites hinted at
the possibility that significant discriminatory information was contained not only in the actual
metabolite exchange rates, but also in the correlations between these variables. It followed that
by explicitly modeiing these correlations, even more discriminatory information may be |
extracted from the data. One way to assign structure to the correlations is to take advantage of
the well-established stoichiometric relationships between the reactions and intermediates of
central carbon mebtabolism. Rates of change of extracellular metabolite concentration can be used
to calculaté intracellular fluxes based on a network model intermediary metabolism using mass
balance constraints derived from the stoichiometry of reactions included in the model. The |
calculated fluxes have been presented elsewhere (Arai et al. [240] and Chapter 3, corresponding
to FHF and burn studies, respectively). The effect of including the derived fluxes on FDA
performance was evaluated visually (Figure 5-5). Comparing Figures 5-5A with 5-5B and
Figures 5-5C with 5-4D, it is apparent that the extra variables generated by metabolite balancing
altered the resulting projection in FDA space and improved the separation between classes. In
particular, the separation between centroids of “control” and “day 1 post-burn” treatment groups
improved significantly, as judged by the increased distance between the centroids and reduced

scatter within the group cluster.
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Figure 5-5. Comparison of flux and metabolite based FDA projections using burn study data.

Intracellular fluxes calculated by Equation 3-12 were combined with the metabolite data

and projected into three-dimensional FDA space (C). For comparison’s sake, two-

dimensional sections are shown for both the flux plus metabolite (B) and metabolite only

(A) projections. Note the improved discrimination between sham-burn control and day 1
post-burn samples in both the y1-y2 and y1-y3 planes. Symbols denote liver sample

treatment group membership: O, sham-burn control; %, day 1 post-burn; [>, day 2 post-

burn; *, day 3 post-burn; [, day 4 post-burn; and <, day 7 post-burn.

153




Figure 5-5. continued.
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In order to explore an algebraic explanation for the additional discriminatory information,
a singular value decomposition (SVD) analysis was performed on the matrix multipliers in the
burn study which related the calculated fluxes to the measured metabolite exchange rates. First,
the matrix multipliers were combined into a single matrix, yielding the following simplified

version of Equation 3-12: ‘

v, =Av,, (5-10)
where A replaced - (S‘TSC ) S,,TS,,l - SVD of A and substitution into Equation 13 yields:

v, =(ULV ), (5-11)
where U and V are unitary matrices and L a diagonal matrix with nonnegative diagonal elements.
A unitary matrix performs an orthonormal change of basis by taking a vector space and rigidly
rotating and reflecting its basis vectors. Therefore, a unitary matrix does not distort the lengths or
relative angles between the basis vectors. In Equation 5-10, the operation Av,, first rotates and
then reﬂects Vm t0 a new basis. In this basis, the nonunitary elements of L stretch v,, along the
corresponding axes. foen U takes this result and rotates/reflects it again to give the final answer.
The SVD of A produced 18 non-zero diagonal elements in L, or singular values. Of these, 9
singular values were larger than one, leading to elongation of the rotated basis vectors, and 9

- singular values less than one, leading to their contraction (Table 5-3). In this regard, the
additional discrimination afforded by the calculated fluxes could be due to the elongations and

contractions of the data set resulting from the linear combinations as prescribed by the assumed

structure of the model metabolic network.
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Table 5-3. Singular Value Decomposition of the Flux Transformation Matrix

Statistic ' ~ Significance

‘Rank of A (number of non-zero 18 Number of independent linear relationships among
singular values) the measured metabolites :

Number of non-zero singular values 9  Elongation along the corresponding eigenvector
larger than one ~ directions

Number of non-zero singular values 9  Contraction along the corresponding eigenvector
less than one directions

Matrix A transforms metabolite exchange rates into intracellular fluxes. The SVD of A provides
insight into the transformation of the data structure underlying this operation. Eighteen
independent linear transformations, defined by a corresponding number eigenvectors,
characterize the operation of matrix A. Nine linear combinations elongate the data structure in
the measured rate space along the corresponding nine eigenvectors in mapping into the flux
space, while the remaining nine linear combinations contract the data structure.
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5.3.4 Discriminant loadings and metabolite clusters

As alluded to earlier, FDA systematically assesses the contribution to overall
discrimination by each variable, in this case metabolite or intracellular flux. Unlike in the FHF
study, projection of V* for the burn study did not yield cleanly distinguishable metabolite
clusters which coﬁesponded to the six sample clusters, presumably due to the added complexity
introduced by the time dimension (Figure 5-6). Thus, only a subset of the projected DL could be
uniquely assigned to corresponding samples groups. Referring to Table 5-4A and sample group
boundaries drawn on Figure 5-6B, the unique correspondences were: asparagine and arginine to
sham—burﬁ control; glycine, isoleucine, lysine, proline, and valine to day 1 post-burn; glutamine
and acetoacetate to day 2 post-burn; carbon dioxide to day 4 post-burn; and glutamate to day 7
post-burn. The remaining metabolites were common discriminators for two or more sample
groups, depending on their location in the DL plane. For example, oxygen (number 27), located
in the upper right quadrant (DL1 > 0, DL2 > 0) roughly equidistant from sample clusters 3, 4,
and 7, is a common discriminator for these three groups (Figure 5-7A). Elevated output of
glutamate (number 8), located in the upper left quadrant between sample clusters 1 and 7, but
closer to 7, is characteristic of all group 7 livers and one group 1 liver (Figure 5-7B). In contrast,
increased output of carbon dioxide (number 28) was distinctively characteristic of sample group

4 (Figure 5-7C).

The above observations and the proximity of some sample clusters in the y/-y2 FDA
plane suggested that a natural grouping of the metabolite clusters may be afforded by considering
the DL plane in terms of quadrants. Table 4B summarizes the quadrant associations between
sample clusters and metabolites. Quadrants III and IV contain metabolites whose altered
exchange rates characterize the transition from the basal to initial injury response state in the
liver. This group of metabolites included all of the amino acids except ornithine, a urea cycle
intermediate, and cysteine, a thiol residue carrier. Quadrant II is composed of acetoacetate,
cysteine, and carbon dioxide, and delineates further changes in metabolite exchange
characteristic of days 3 and 4 post-burn; Quadrant I metabolites, together with Quadrant II

‘components, delineate altered exchange of reactants and products of major central carbon

pathways in the liver, such as urea cycle and respiration.
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Figure 5-6. Discriminant loadings for the burn study metabolite data.
Rotated discriminant loadings calculated by Equation 16 for the burn study metabolite
data is plotted in two dimensions (B) and compared to sample projections in the yI-y2
plane (A). Corresponding sample boundary locations are sketched in (B) as dotted black
circles. Each metabolite with a unique sample group correspondence is circumscribed
with a dotted red circle.
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Table 5-4A. Burn Study Metabolite Clusters

No. Metabolite Corresponding Sample (Time) Cluster(s)
1 Ala 0,1 -
2 Ammonia 3,4,7

3 Arg 0

4 Asn 0

5 Asp 0,2

6 Cys 3,4

7 Gln 2

8 Glu 7

9 Gly 1

10 His 0,1

11 Ile 1

12 Leu 1

13 Lys 1

14 Met 0,1

15  Ornithine 3,4,7

16 Phe 1

17 Pro 1

18  Ser 0,2

19 Thr 0,2

20 Tyr 0,1,7

21 Val 1

22 Glucose 0,1,3,4

23 Lactate 3,4,7

24  Urea 3,4,7

25 Acetoacetate 2

26 3-OH-Bt. 0,1,2,3,4,7
27  Oxygen 3,4,7

28 Carbon dioxide 4

Table 5-4B. Burn Study Metabolite and Sample Quadrants

Quadrant]  Quadrant IT " QuadrantIIl  QuadrantIV
DL1>0,DL2>0 DL1>0,DL2<0 DL1<0,DL2<0 DL1<0,DL2>0
Sample Groups 3,4,7 3,4 0,1,2 ' 0,1
Metabolites Ammonia Cys Asp Ala
Ornithine Acetoacetate Gln Arg
Lactate Carbon dioxide Ser Asn
Urea Thr Glu
Oxygen Gly
His
Ile
Leu
Lys
Met
Phe
Pro
Tyr
Val
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Figure 5-7. Selected metabolite exchange profiles.

These profiles illustrate the correspondences between metabolites in the DL plot and the
sample group clusters in the y/-y2 plane (Figure 5-6). The numbers inside plot symbols
indicate source sample group assignment. Output of carbon dioxide (metabolite 28 in
Table 5-4A), located in the DL plot within sample group 4 boundary, is consistently more
elevated in this group (A) than in all others. Uptake of oxygen (metabolite 27), located
halfway between sample group 3, 4, and 7 boundaries, is more elevated in these groups

~ than the others (B). Output of glutamate (metabolite 8), located between group 1 and 7

boundaries, but closer to the group 7 boundary, is higher in one group 1 member and
most of group 7 members (C). , )
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Interestingly, the sequence of changes in metabolite exchange approximated the pathway
activation sequence determined by hierarchical clustering of the pooled metabolite exchange
rates and intracellular fluxes in Chapter 3. Referring to Table 3-2, the reaction time profiles in
Figure 3-6 showed that after burn injury, liver amino acid uptake was increased first (panel C),
followed by transiént increases in fluxes through urea cycle, pentose phosphate pathway, fatty
acid oxidation, which peaked between days 2 and 3 post-burn (panels D, E, and A, respectively).
TCA cycle fluxes continued to increase past day 3, and remained elevated for the duration of the

study (panel B).
5.4 Discussion

In this work, an emerging framework for multi-dimensional biological data analysis,
namely metabolic profiling, was applied to metabolite measurement and flux data obtained using
models of liver injury. We began by illustrating the utility of a multivariate statistical analysis
tool, called FDA, in building and interpreting metabolic profiles with a discussion on the simpler
FHF study data set. FDA efficiently discriminated normal and D-galactosamine treated livers
into two clearly visible clusters in the projection space, performing superior to PCA in this
respect. Furthermore, projection of rotated discriminant loadings reveaie_d two well-
discriminated metabolite clusters, corresponding to the liver sample clusters. Thus, FDA also
grouped metabolites according to their contributions to discriminating either the normal or D-
galactosamine treated livers. Moving on to a more complex scenario involving time series data
from the burn study, we demonstrated the advantage of employing many metabolites over a few
in improving the quality of discrimination between liver samples, and consequently, reliability of
class discrimination. Discriminatory information resided not only in actual metabolite exchange
values, but also in the correlations between these values. This was clearly shown by explicitly
modeling the relationship between metabolites by MFA. Incorporating the calculated
intracellular fluxes into the metabolite data further improved class separation by FDA, especially
in the burn study case. Finally, comparing the rotated DLs with sample projections, we arrived at
a sequence of changes in metabolite exchange patterns that potentially delineates hepatic

interaction with whole-body circulation at the substrate level during the first week of burn injury.
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The linear combinations defining the sample projections in FDA space essentially
constitute a classification function which separates samples (in this case livers) based on a
composite criterion involving multiple variables (in this case metabolites and fluxes). The
classification functions, i.e. sample projections, presented thus far were derived using all of the
available data, and their success in discriminating the source livers was assessed by visual
inspection of the resulting projections. We also performed a more rigorous validation trial, where
classification functions were calculated by from a partial data set consisting of the full set minus
arandomly selected sample. After building the classification functions, pércent errors were
calculated by counting the number of times the random sample was misclassified during a set of
100 trials. In order to render a scenario with potential clinical relevance, a two-step classification
strategy was devised, where the first (gating) step discriminated between sham-burn and burn
samples, and the second step discriminated between samples isolated at different times post-
burn. The small size of the resulting errors (Table 5-5) show that this strategy was successful
_ with respect to distingufshing sham-burn from burn liver samples, but less so with respect to
identifying the post-burn isolation time. Nevertheless, these validation trials further underlined
the advantage of incorporating the calculated fluxes into the variable space, as this reduced the
classification errors for both steps.

One significant result of the present chapter is that classification of physiological states
by metabolic profiling gains in quality when larger numbers of metabolite measurements are
used. Conversely, attempting to discriminate between physiological states using a small number
of measurements leads to poor outcomes. In a clinical context, this result implies that diég'nosing
or monitoring progression of metabolic disorders should be best conducted using as many
measurements as possible. As, there is significant information contained in the correlations
between measurements, the probability of correctly discriminating between normal and disease
states or various stages of disease progression imprbves with the number of measurements used.
Furthermore, employing a basket of metabolites, rather than one or a few markers, lowers the
chance for misdiagnosis or misclassification. These ideas were illustrated by the case study
involving liver samples isolated at various times after burn injury, where samples closely related

with respect to time were inseparable when only a few markers were employed.
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Table 5-5. Model Classification Errors, Burn Study Data

Trial % Error, Metabolite Data % Error, Metabolite and Flux Data

Burn vs. Sham-burn Treatment Time Bum vs. Sham-burn Treatment Time
1 8 32 28 0.005
2 6 28 255 0
3 7.5 : 34 30 0.01
4 2.5 33.5 _ 23 0.005
5 4.5 28.5 24 0
Mean 5.7 31.2 26.1 0.004
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A corollary to the above observation is that physiologically useful conclusions may be
drawn from the projected sample distances in FDA space. Intuitively, physiologically distinct
states are easier to discriminate than those similar to each other. This was seen in Figures 6 and
7, where day 7 post-burn liver samples could be separated from sham-burn control samples by
using only 7 markers, whereas day ! post-burn samples could be separated from sham-burn
control samples only after incorporating calculated intracellular fluxes. Thus, the distance
between sample clusters correlated with degree of distinction between physiological state in the
context of metabolite measurement descriptors. Presumably, the physiological state at day 7
post-burn, when hepatic hypermetabolism is fully established, is very different from the sham-
burn state, whereas the state at day 1 post-burn, when hypermetabolism has just begun to
develop, is not so different, as judged by aggregate differences in metabolite exchange rates and
their correlations.

Physiological interpretations existed also for the projection loadings. The initial stage of
hepatic hypermetabolic response during the first week of burn injury was best characterized by
changes in amino acid exchange. Similarly, the second, intermediate stage was defined by
alterations to the inputs and outputs for intracellular pathways whose regulation was presumably'
more complex and therefore slower to be affected by the systemic injury. The third and final
~ stage was delineated by changes to inputs and outputs for respifation whose regulation was even
more convoluted and required more involved coordinate modifications to all central carbon .
pathways.

In conclusion, this chapter has shown that metabolic profiling as outlined here, is a
promising methodology for clinical diagnosis as well as a useful research tool for investigating
disease progression. Applying a projection based classification method, we reaffirmed the
beneﬁt of the comprehensive, integrative approach to investigating cellular metabolism, in this
case defining physiological states. It was also shown that the information content of metabolite
measurements is significantly upgraded by explicitly modeling naturally existing correlations
between the metabolites. One way to accomplish this was by using MFA, which takes advantage
of the well-established stoichiometric relationships between metabolic intermediates. Thus,
considering many mefabolitcs, rather than a few, and examining correlations between
metabolites heightens the sensitivity and adds robustness to physiological state classification by

metabolite profiling. These results, and others presented in this dissertation, call for continued
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work in developing tools for formulating, validating, and analyzing larger, more complex
metabolic network models, as well as robust techniques for high-throughput detection of large

arrays of metabolites and their isotopomers.
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APPENDIX. SUPPLEMENTARY MATERIAL FOR CHAPTERS 2 AND 3

A.1 Matlab Implementation of the Metabolite Balance Model

A.1.1 Main function

function mfa(S,M)

% MFA '

%

% Last modified 3/20/2001

% Variable definitions

% S: stoichiometric matrix

% M: measurement matrix

% M has the following format:

% Column 1: index vector specifying measured reactions.
% Columns 2 to k: measurements

% Column k + 1: measurement mean

% Column k + 2: measurement errors (SD)

% [filename,path] = uigetfile("*.txt','Select Stoichiometric Matrix");
% cd(path);

%] oad(filename);

% disp('Loaded file:");

% filename

% S = input('Type filename without file extension.\n>");

% [filename,path] = uigetfile("*.txt','Select Measurement Matrix');
% cd(path); '

%] oad(filename);

% disp('Loaded file:");

% filename

% M = input(‘'Type filename without file extension.\n>');

% Get data size
[data_rows,data_columns] = size(M);
num_groups = data_columns-3;

% Partition S (or G) matrix
list = M(:,1);

Ge=S;

Ge(:,list) = [];

Gm = S(:,list);

% Here allow choice between 1) Moore-Penrose pseudo-inverse and 2) Tsai and Lee, etc.
user = input('1: Moore-Penrose?\n2: Tsai and Lee?\n3: both?\n4: Zupke\n5: CI?\n>");
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switch user

case 1,
output = [];
for i = 1:(num_groups+1)
v = M(:,i+1);

temp = mppi(Gc,Gm,vm,S,M);
output = [output,temp(:,2)];
end;
sd = M(:,data_columns);
var_vm = power(sd,2);
Ge_pi = inv(Gce.*Gce)*Ge.';
B = -Gc_pi*Gm;
[B_row,B_col] = size(B);
fori=1:B_row
coeff = B(i,:);
coeff_2 = power(coeff,2);
var_vc(i) = coeff 2*var_vm;
end;
var_vc = var_vc.'
var_top = [compldx(S MG, D), var, vc]
var_bottom = [list,var_vm];
var = [var_top;var_bottom];
var = sortrows(var,1);
sd = power(var(:,2),0.5);
output = [output,sd];
figure(1);
plot(output), hold on, plot(output( num_groups+1),'’ko"), title('Moore-Penrose"), hold off;
case 2,
output =[];
% F is the variance-covariance matrix for the residuals of both the
% measured fluxes and the pseudo-steady state assumptions.
noise = input('Use SD info for variance-covariance marix?\n>','s’);
for i = 1:(num_groups+1)
vm = M(:,i+1);
temp = €q820(Gc,Gm,vm, S ,M,noise);
output = [output,temp(:,2)];
end;
figure(2), :
plot(output), hold on, plot(output(:,num_groups+1),'0"), title('Tsai-Lee"), hold off;
case 3,
output = [J;
outputl = output;
output2 = output;
noise = input('Use SD mfo for variance-covariance marix?\n>','s");
for i = 1:(num_groups+1)
- vm = M(,i+1);
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templ = mppi(Gc,Gm,vm,S,M);

temp2 = eq820(Gc,Gm,vm,S,M, noise);
outputl = [outputl,temp 1,21

output2 = [output2,temp 1¢.22)%

end;

output = [output] ,output2];

for i = 1:length(output)

ratio(i) = output2(i,num _groups+1)/output1(i,num _groups+1);

end;
figure(3);

subplot(2,2,1), plot(outputl), title('Moore-Penrose');

subplot(2,2,2), plot(output2), title(‘Tsai-Lee');

subplot(2,2,3), plot(outputl ,output2), title('Tsai-Lee vs. Moore-Penrose');
subplot(2,2,4), plot(ratio), title(‘Tsai-Lee over Moore-Penrose");

case 4,
output = [];

fori= 1:(num_groups+l)

vm = M(,i+1);

temp = zupke(Gc,Gm,vm,S,M);
output = [output,temp(: 2:3));

end;
figure(4);

plot(output), hold on, plot(output(:,?.*num _groups+1),'ko'), title('Zupke et al."), hold ‘off )

case 5,
h_vect =[};
Rr = reduced(S,M(:,1));
D= M(:,data_columns);

D = num_groups*power(D,2);

F = diag(D);

for i = 1:(num_groups+1)

vm = M(:,i+1);

temp = CI_value(Rr,vm,F);
h_vect = [h_vect,temp];

end;
h_vect(1,:).’

choice = input('Apply deletion algorithm? yes or no\n>','s";

if strcmp(choice,no’) ==
output = [1;

0

for i = 1:(num_groups+1)

vm = M(,i+1);

temp = best_CI(h_vect(l 1),8,vm,M(:,1).D);
output = [output,temp];

end;
output
else

disp(‘Deletion not applied.’);
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output = h_vect(l,:).'
end;
otherwise,
disp('Choice not recognized.");
end;

% Save?
save = input('Save? yes or no.\n>','s");
while (strcmp(save,'yes") | strcmp(save,'no")) == 0
save = input('Invalid response. Enter yes or no.\n>','s");
end;
if strcmp(save,'no’) ==
[fname, pathname] = uiputfile('*.txt','Save Fit Results As");
cd(pathname);
mwrite(output,fname);
disp('Fit results saved.)
else
disp('Fit results not saved.")
end;

A.1.2. Moore-Penrose pseudo inverse

function solution = mppi(Gec,Gm,vm,S,M)
% MPPI(Gc,Gm,vm,S,M)

% Created 3/6/01

% Modified 3/25/01

Gce_pi = inv(Ge."*Ge)*Ge.'
vc = -Ge_pi*Gm*vm;

% Reconstructing the flux vector
solution_top = compidx(S,M(:,1));

~ solution_top = [solution_top,vc];
solution_bottom = M(;,1);
solution_bottom = [solution_bottom,vm];
solution = [solution_top;solution_bottom];
solution = sortrows(solution, 1);

function list = compidx(S,meas_index)

% COMPIDX

% Given a matrix and an index, calculates the complementray index.

% That is, if the matrix has columns 1 through n and the index has

% 1,2,9, and 10, the new index will have all the numbers from 1 thorugh n
% except 1, 2,9, and 10.

total_var = max(size(S));

remove_list = meas_index;

temp = ones(total_var, 1);
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temp(remove_list) = 0;
list = find(temp == 1);

A.1.3. Tsai-Lee method

function solution = eq820(Gc,Gm,vm,S,M,noise);
% EQ820(Gc,Gm,vm,S,M,noise)
% Created 3/6/01

% Reformulate into the form T*v = (vin/0) = (v1/ v2),
% where v and v1 are NOT necessarily equal

% First, calculate the dimensions of T:

[G_row,G_col] = size(S);

T_row = length(vm)+G_row;

T_col = G_col;

% Second, pad T with zeros

T = zeros(T_row,T_col);

% Now construct T from I, O, and S

% Upper left

T(1:length(vm),1:length(vm)) = eye(length(vm));

% Upper right

T(1:length(vm),(length(vm)+1):T_col) = zeros(length(vm),T_col-length(vm));
% Lower left

T(length(vm)+1:T_row,1:length(vm)) = Gm;

% Lower right
T(length(vm)+1:T_row,(length(vim)+1):T_col) = Gc;

% F is the variance-covariance matrix for the residuals of both the measured fluxes and the
% pseudo-steady state assumptions.

% F is by definition a square matrix, therefore m = n

% The number of columns in F has to equal the number of rows in T

if strcmp(noise,'yes’) == 1
[M_row,M_col] = size(M);
f1 = M(:,M_col);
fl = power(f1,2);
- f2 = ones(G_row,1);
else
f1 = ones(length(vm),1);
f2 = ones(G_row,1);
2 =0.1*2;
end;
d = [f1;£2];
F = diag(d);
ths = [vm;zeros(G_row,1)]; o
v = inv(T.*inv(F)*T)*T."*inv(F)*rhs;
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% Now reconstruct the solution vector
solution = zeros(length(v),2);
solution(1:length(vm),1) = M(;,1);

unknown = compidx(S,M(:,1));
solution(length(vm)+1:length(v),1)=unknown;
solution(:,2) =v; .

solution = sortrows(solution,1);

A.1.4. Weighted least-squares method

function solution = zupke(Gec,Gm,vm,S,M)
% ZUPKE(Gc,Gm,vm,S,M)
% Created 3/23/01

unk_list = compidx(S,M(:,1));
[Ge_row,Ge_col] = size(Gc);
[M_row,M_col] = size(M);

sd = abs(vin*0.15);

% var = power(sd,2);

r=-1*Gm*vm;

% var_r = abs(-1*Gm*var);

% sd_r = sqrt(var_r); .

sd_r = sqrt(M_col-2)*abs(-1*Gm*sd);
b = zeros(length(r),1);

% Now the equation is Ge*x =1

% calculating re-scaled Gc and r veactor
fori=1:Gc_row -

ifsd_r(i)==0
b(i) = r(1)/0.001;
else
b(i) = r(i)/sd_r();
end;
for j = 1:Gc_col
ifsd_r(i)==0
D(1,j) = Gc(i,))/0.001;
else
D(i,j) = Ge(i,j)/sd_r(i);
end;
end;
end;

ve = inv(D.*D)*D.*b;
vc_var = diag(inv(D."*D));

- vc_sd = sqrt(vc_var);

solution_top = [compidx(S,M(:,1)),vc];
solution_top = [solution_top,vc_sd];
solution_bottom = [M(:,1),vm];
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solution_bottom = [solution_bottom,sd];
solution = [solution_top;solution_bottom];
solution = sortrows(solution, 1);

A.1.5. Consistency index

function Rr = reduced(S,meas_index)
% REDUCED(Stoichiometric_matrix,meas_index)
% The output is the reduced redundancy matrix.

[S_row, S_col] = size(S);
index = compidx(S,meas_index);
dimension = length(index);

Rr = arrange(S,index);

[Rr_row,Rr_col] = size(Rr);

elcol = S_col-dimension+1;

while Rr_col > (S_col-dimension)

- [pivot, pivotrow] = findpiv(Rr,elcol);
Rr = pivop(Rr,pivotrow,elcol,pivot);
[Rr_row,Rr_col] = size(Rr);

end;

function R = arrange(X, IND)

% ARRANGE

% Cuts index columns of X and pastes them to the end of the matrix.

% The rearranged matrix is returned in R. INDEX is a horizontal vector
% with integer elements.

indexlength = length(IND);

[row, col] = size(X);

for i = l:indexlength

T(:,i) = X(:,IND());

end '
X(:,IND) = [J;

R=X;
R(:,(col-indexlength+1):col) = T;

function [y,z] = findpiv(M, column)
% FINDPIV
% Finds pivot in column, given matrix M.
% Pivot is defined as the first non-zero element.
[row, col] = size(M); '
fori=l:row .

p = M(i,column);

ifp~=0

r=i,;

- break;
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end;

end;
Y=p;
Z=T,

function Y = pivop(matrix, row_num, col_num, pivot)
% PIVOP
% Used in eliminating variables from a matrix. The calling function is present in the file
% “reduce.m”
[row, col] = size(maltrix);
Y = matrix;
forr = 1:row
factor = matrix(r,col_num)/pivot;
add = matrix(row_num,:);
if r == row_num

Y(,:))=0;
else
Y(r,:) = (matrix(r,:)-factor*add);
end;
end;

Y(row_num,:) = [];
Y(:,col_num) =[};

function h_and_delta = CI_value(Rr,vm,F);
% CI_VALUE(reduced_matrix,measurement_vector,variance_matrix)

P = Rr*F*Rr.;

delta = F*Rr."*inv(P)*Rr*vm;
epsilon = Rr*delta;

h = epsilon.*inv(P)*epsilon;

“delta = vm+delta;

h_and_delta = [h;delta];

function output = best_CIhO0,S,vm0,index0,SD0);
% BEST_CI(S,vm,index0,SD)

h_current = hO;
delta_current = [];
deleted = 0;
for i = 1:length(vmO)
index = index0;
index(i) = [;
vm = vmQ;
vm(i) = ];
SD = SD0;
SD() = ];-
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SD = power(SD,2); ‘

F = diag(SD);
Rr = reduced(S,index);
P =Rr*F*Rr.";

delta = F*Rr.*inv(P)*Rr*vm;
epsilon = Rr*delta;
h = epsilon."*inv(P)*epsilon;
if h < h_current

h_current = h;

deleted = i;
delta_current = delta;
end;
end;

vm_adj = vim0;

vim_adj(deleted) = [];

vm_adj = vm_adj-delta_current;
output = [h_current;index0O(deleted)];
output = [output;vm_adj];

AL Iriput and output functions

function mwrite(X,fname)
% MWRITE(X,fname)
% Opens a file called “fname” and writes X.
fid = fopen(fname,'w");
[X_row,X_col] = size(X);
fori=1:X_row
forj=1:X_col
fprintf(fid, '%f\t', X(,j));
end;
fprintf(fid, "n");
end;
fclose(fid); -
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