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Abstract

This thesis is a study of dynamics and learning in recurrent neural networks. Many
computations of neural systems are carried out through a network of a large number
of neurons. With massive feedback connections among these neurons, a study of its
dynamics is necessary in order to understand the network’s function. In this thesis, I
aim at studying several recurrent network models and relating the dynamics with the
networks’ computation. For this purpose, three systems are studied and analyzed in
detail: The first one is a network model for direction selectivity; the second one is a
generalized network of Winner-Take-All; the third one is a model for integration in
head-direction systems.

One distinctive feature of neural systems is the ability of learning. The other part
of my thesis is on learning in biologically motivated neural networks. Specifically, I
study how the spike-time-dependent synaptic plasticity helps to stabilize persistent
neural activities in the ocular motor integrator. I study the connections between back-
propagation and contrastive-Hebbian learning, and show how backpropagation could
be equivalently implemented by contrastive-Hebbian learning in a layered network.
- T also propose a learning rule governing synaptic plasticity in a network of spiking
neurons and compare it with recent experimental results on spike-time-dependent
plasticity.

Thesis Supervisor: H. Sebastian Seung
Title: Assistant Professor of Computational Neuroscience




Acknowledgments

This thesis would not have been possible without help and support from many people.

First of all, I thank my thesis advisor, Professor Sebastian Seung, for his constant
guidance and support. He has beeﬁ intensively involved in almost all work presented
in this thesis, and constantly reminds me on how to do good science. His insight has
binspired me in the past and will be with me in the future. He is not only a wonderful
mentor in academics, but also a great friend in life. He has made a potentially painful
process into an enjoyable experience of learning and exploratibn. I am indebted to
him in many ways.

Thanks to my two wonderful collaborators, Richard Hahnloser and Martin Giese.
Richard has been with me, sharing the same office, in all these years of graduate
studies. Not only has he been very helpful in many aspects of researches, but also
~ been a dear friend. Martin has collaborated with me on the recurrent network models
of motion detection. I am impressed by his keen insight into problems. I also enjoyed
a great deal of his friendship.

The members of the Seung Lab have also been very helpful. It is a great atmo-
sphere for discussing scientific issues with such a diverse background of its members
ranging from theoretical physicists and biologists to computer scientists. To Mark
for helping with presentations and editing many of my papers. To Ila, Dezhe, Justin,
Russ and Brett for many interesting discussions. To our new comers, Jen and Neville,
for a lot of fun in the lab. To Ben for keeping our local network out of troﬂbie. Mary
has been extremely helpful in many aspects of'the lab’s daily life. I thank her and
wish her and her baby the best luck.

I thank my thesis committee members, Professor Tommy Poggio, Professor Pawan
Sinha and Professor Whitman Richards for their interest and encouragement.

Many thanks to my friends for their help and support. To Charles and Philip
for making my life much easier and playing badminton with me. To Qusheng for his
long-time friendship.

I reserve my final and greatest thanks to my parents. Without their support and




endless love, this would not have been possible. I dedicate this thesis to them.




Contents

1 Preface 16

1.1

1.2

Dynamics . . . . . . . . . . . .. e 18

1.1.1 Nonlinear dynamics of direction-selective recurrent neural media 18

1.1.2 A double-ring network model of the head-direction system . . 18

1.1.3  Selectively Grouping Neurons in Recurrent Networks of Lateral
Inhibition . . . ... .. ... .. ... 19

Learning . . . . . . . . . . e 20

1.2.1 Spike-based learning rules and stabilization of persistent neural
activity...........; .................. 20
1.2.2 Equivalence of backpropagation and contrastive Hebbian learn-
ing in a layered network . . . ... .. o 20

1.2.3 A synaptic learning rules in networks of spiking neurons . . . 21

2 Nonlinear dynamics of direction-selective recurrent neural media 22

2.1
2.2
2.3

24

Introduction . . . . . .. ... .. 22
Basicmodel . . . . . . ... ... 24
Step activation function . . . .. ... ... .. ... ... ... ... 25
2.3.1 Stability of the traveling pulse solution . . . . ... .. co.. 26
2.3.2 Simulation results of step activation function model . . . . L.o1
Linear threshold model . . . . . S 31
2.4.1 General solutions and stability analysis . . . . .. ... .... 32
2.4.2 Linear threshold network with simple kernels . . . . . . .. .. 33
2.4.3 Traveling pulse solutions . . . . ... ... .. e 37




2.5

2.4.4 Existence of traveling pulse solutions . . . .. ... ... ... 38
245 Optimal velocity . . ... .. ... ... ... ... ...... 39
2.4.6 Stability analysis of the traveling pulse . . . . . ... .. ... 40
2.4.7 - Simulation results for the linear threshold model . . . . . . . . 40
Conclusion . . . . . . .. ... ... 45
2.5.1 Stability of the traveling pulse solution in the step threshold

+ 2.5.2

model . . . . ... 47
Stability of the traveling pulse solution in the linear threshold
model . . .. ... 49

Selectively Grouping Neurons in Recurrent Networks of Lateral In-

hibition 50
3.1 Introduction . . . . ... ... ... ... ... ... .. ..., o A. 50
3.2 Basicdefinitions . . . . ... ... 52
3.3 Network performance . . . . ... ... ... ... ... .... ... 54
3.4 Analysis of the network dynamics . . . . .. ... ... ... . ... . 55
3.4.1 Convergence to a steady state . . . . ... .. ... .. .... 55
3.4.2 Permitted and forbiddensets . ... ... ..... ... ... 56
3.4.3 Relationship between groups and permitted sets . . . . . . . . 57
3.5 The potential winners . . . . . . ... ... ... ... .. ... ... 59
3.6 An example - the ring network . . .. ... ... ... ... .. ... 60
3.7 Storage capacity for random sparse groups . . . ... ... ... ... 62
3.71 Capacity . . . . .. ... 65
3.7.2 Optimal sparsity . .. ... ................... 66
3.8 Discussion . . . ... ... .. ... 69
3.1.1 Denseinputs,¢g=1 .. ... ... ... ... ... ... 71
3.1.2 Sparseinputs,gq=p ... ... ... ... ... ... ... . 72
A double-ring network model of the head-direction system 74
41 Introduction . . .. ........ ... ... 74
42 Definition of the model . . . . . ... ............ .. .. . . 76




4.3

4.4

4.5

4.6
4.7
4.8

Integration. . . . . .. ... ... 77
4.3.1 Stationary solution . . . .. .. .. ... ... ... ... ... 79
4.3.2  Small head-velocity approximation . . ............. 80
4.3.3  Saturating velocity . . ... ... .. ... ... ... . ... . 83
Analysis in terms of Fourier modes . . . . ... ... ......... 84
4.4.1 Linearity when J1=K; ... ... ... ... ... ... . .. 87
4.4.2 Solution of the network when J1 = K; . . ... .. ... ... 89
Stability . . . . . ... 92
ADN and POsneurons . . . .. ... ... .. ... .......... 94
Discussion on synaptic parameters. . . . . . . .. .. ... .. .... 94
Conclusion and remarks . . . . ... ... ... ... .. ... ..., 97

Spike-based learning rules and stabilization of persistent neural ac-

tivity 98
5.1 Introduction . . . . . ... ... ... 99
5.2 Spike-based learning rule . . . . . . .. ... ... ... .. ... .. 100
5.3 Relation to rate-based learning rules . . . . .. ... ... ... ... 101
5.4 Effects in recurrent network dynamics . . . . . . . .. ... ... ... 103
5.5 Persistent activity in a spiking autapse model . . . . . ... ... .. 104
5.6 Discussion . . . . . . ... ... 108

Equivalence of backpropagation and contrastive Hebbian learning in

a layered network 109
6.1 Introduction . . . ... ... .. ... . ... . ... ... 109
6.2 The learning algorithms . . . . .. ... ... .. .. ... . ... .. 110
6.2.1 Backpropagation . . ... ... ... .. ... ... ...... 110
6.2.2 Contrastive Hebbian learning . ... . .. e e 112
6.3 Equivalence in the limit of weak feedback . . . . ... ... ... L. 114
6.3.1 Proof. . ... ... ... ... 115
6.4 Contrastive Function . . . . ... ... ... ... ..., . ..., . 117
6.5 Equivalence of cost functions . . . . . .. ... ... ... .. ... .. 119




6.6 Generalization . . . . . . R 121
6.6.1 The learning algorithm in the generalized network . . . . . . . 121

6.6.2 CHL step does not always decrease the square error: an example123

6.6.3 - Cost function for the generalized CHL . . ... ... ... .. 124

6.7 Discussion . . . . . . . ... .. e .. 126
6.7.1 Lyapunov function and CHL in the generalizéd network . . . . 127

6.7.2 Matrix @ is positive definite . . . . . ... ... 129

" 6.7.3 Backpropagation algorithm in the generalized network . . . . 129

7 A Synaptic Learning Rule in Networks of Spiking Neurons 131
7.1 Introduction . . . . . . . . . .. ... 131
7.2 Poisson Neurons . . . . . . . . . . ... ... 132
7.2.1 Basicdefinition . . . .. ... ... ... ... oL V. 132

7.2.2 Episodic learning . . . . . .. ... ..o 132

7.2.3 Onlinelearning . . . . . .. . . . ... ... ... 135

7.24 Simulationresults . . . . .. ... ... oL 136

7.3 Integrate-and-Fire Neurons . . . . . . . . .. ... P 137
74 Discussion . . . . . . . ... 140

8 Conclusion ' 142




List of Figures

21
2.2

2-3
24

2-5
2-6
2-7
2-8

3-1

3-3
3-4

4-3
4-4

Stimulus and activity profile in the step activation function model. . .
Traveling pulse solution and its stability in the step activation function
model. . .. ... R
Traveling pulse and lurching wave in step activation function model.

Traveling pulse for the linear threshold model with a simple periodic

kernel. . . . . . .

Traveling pulse solution and its stability in the linear threshold model.

Traveling pulse and lurching wave in the linear threshold model.
Stable regime of traveling pulse solutions. . . . . ... ........

Traveling pulse solution and its stability with a sigmoidal shaped ac-

tivatien function. . . . . . . . .. ... ... . o

Permitted sets of the ring network. . . . . .. .. ... ... .....

Lateral inhibition strength (3 determines the behavior of the network.

Diagram of m random groups. Filled circles represent active neurons.
The error probability Pg is plotted as a function of the number of

GIOUDPS 7. . . . . . e e e e e

Neural activity and synaptic activation profiles of two rings in the

. stationary and the moving states. . . . ... ... ... ... ....

Moving bump velocity v as a function of the input Ab for different
synaptic parameters. . . . . . ... ... ... ...,

A snapshot of the traveling bumps in two rings. . . . . ... ... ..

Results from the theoretical calculations when J; = K;. . . . .. ..

28

29
30

36
42
43
43

44

61
62
64

67

78



4-5

7-2
7-3
7-4

Phase diagram when Ab = 0. K; = Ji, and other parameters Ky = —5,
¢=80°and Y =50 . ... ...
Snapshots of the activities on the two rings for counter-clock-wise head
rotation and clock-wise rotation respectively. Reading out the activi-

ties by averaging and by a maximum operation. . . .. ... ... ..

Differential Hebbian learning and differential anti-Hebbian learning.

Circuit diagram for autapse model . . . ... ... ... ... ....

Untuned and tuned autapse activity. . . ... ... ... ... . ...

Tuning the autapse. . ... ... e e e e e e e e e e e

Diagram on the network structures of the multilayer perceptron and

the layered network with feedback connections. . . ... ... ... -

Firing rates of the output neuron plotted as a function of epochs during
training. . . . . ...
Learning curve for XOR learning. . .. ... ... .. ... .....
Synaptic weights before and after learning. . . . . ... ... .. | C

Learning XOR in a network of integrate-and-fire neurons. . . . . . .

10

111

137
138
139
141



Chapter 1
Preface

This thesis focuses on theoretical studies of neuroscience. The goal is to develop
theoretical frameworks and computational models that elucidate principles gbverning
the behavior of neural systems. This thesis is a study of dynamics and learning in
biologically motivated recurrent neural networks.

Neural systems are extremely cémplex and possess a remarkable ability to learn
from a constantly changing environment. Studies of neural systems have been further
hampered by limited experimental data available. To deal with such situation, two
principled approaches have been intensely used in the past. One is a constructionist
approach: Given experimental facts aboﬁt a particular neural system, construct a
network that reproduces these properties and yields nontrivial and experimentally
testable predictions. The other approach is to identify biologically plausible learning
algorithms underlying the neural systems. Revealing these léarning rules may be key
to understanding the neural systems themselves.

These two approaches are very different from each other. In the constructionist
approach, the network models constructed are usually much simplified for the purpose
of analyzing and understanding the system. In contrast, the learning approach does
not hand-wire the network structure, but rather learn it by implementing learning
algorithms for a specific computational task. The advantage of the learning approach

is that the synaptic connections are automatically learned and we do not need to’

. concern about details of network connections. However, a disadvantage of learning
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method is that the learned network may be too complicated to help understand basic
mechanisms regarding how the computation is accomplished. A combination of both
" methods seems necessary to theoretical studies of neuroscience.

This thesis includes projects based on each of the two approaches outliﬁed above.
Unifying these projects is the attempt to understand how the brain computes and
how the brain learns.

The layout of this thesis is as follows: In Chapter 2-4, we study three network mod-
els constructed for three different computational functions. Chapter 2 is a study of
recurrent network models for direction selectivity. We suggest a type of neural activity
patterns specific to the recurrent network models, which could be used to differentiate
the recurrent network mechanism for accounting direction selectivity from others. In
‘Chapter 3, we study a generalized Winner-Take-All network, and demonstrate how to
wire network connections to mediate cofhpetitions between groups of neurons, rather
than single neurons as in the traditional Winner-Take-All network. In Chapter 4, we
propose a network model for integration in head-direction systems.

The next three chapters (5-7) investigate learning rules used for training biolog-
ically motivated neural networks. In Chapter 5, we study the spike-time-dependent
synaptic plasticity and show that how it could be used to stabilize persistent neural
~ activities in ocular motor integrator. In Chapter 6, we investigate the connections
between backpropagation and contrastive Hebbian learning algorithms, and demon-
strate how backpropagation could be equivalently implemented by contrastive Heb-
bian learriing algorithm in a layered network. In Chapter 7, we introduce a synaptic
learning rule by taking advantage of randomness on the spike trains of neurons.

In this thesis, each chapter is self-contained with introduction, main results and
discussion included. Reading of each chapter does not need references from other
chapters. To facilitate reading, I include a summary for each chapter in the following

sections. -
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1.1 Dynamics

1.1.1 Nonlinear dynamics of direction-selective recurrent neu-

ral media

The direction selectivity of cortical neurons can be accounted for by asymmetric
lateral connections. Such lateral connectivity leads to a network dynamics with char-
acteristic properties which can be exploited for distinguishing in neurophysiological
experiments this mechanism for direction selectivity from other possible mechanisms
(1,2, 3, 4, 5]. We present a mathematical analysis for a class of direction-selective neu-
ral models with asymmetric lateral connectioné. Contrasting with earlier theoretical
studies which have analyzed approximations of the network dynamics by neglect-
ing nonlinearities using methods from linear systems theory, we study the network
dynamics with nonlinearity taken into consideration. We show that asymmetrically
coupled networks can stabilize stimulus-locked traveling pulse solutions that are ap-
propriate for the modeling of the responses of direction-selective neurons. In addition,
our analysis shows that outside a certain regime of stimulus speeds the stability of
these solutions breaks down, giving rise to lurching activity waves with specific spatio-
temporal periodicity. These solutions, and the bifurcation by which they arise, can

not be easily accounted for by classical models for direction selectivity.

1.1.2 A double-ring network model of the head-direction sys-

tem

In the head-direction system, head direction of an animal is encoded internally by
persistent activities of a pool of cells whose firing rates are tuned to the animal’s di-
rectional heading [6, 7, 8, 9]. To maintain an accurate representation of the heading
information when the animal moves, the system integrates horizontal angular head-
velocity signals from the vestibular nuclei and yields an updated representation of the
directional heading. Integration is a difficult computation, given that head-velocities

can vary over a large range and the neural system is highly nonlinear. Previous
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models of integration have relied oh biologically unrealistic mechanisms, such as in-
stantaneous change of synaptic strength, or very fast synaptic dynamics [10, 11, 12].
In this paper, we propose a new integration model with two populations of neurons,
which performs integration based on the differential input of the vestibular nuclei
to these two populations. We mathematically analyze dynamics of the model and
demonstrate that with carefully tuned synaptic connections it can accurately inte-

grate a large range of the vestibular input, with potentially slow synapses.

1.1.3 Selectively Grouping Neurons in Recurrent Networks

of Lateral Inhibition

Winner-take-all networks have been proposed to underlie many of the brain’s funda-
mental computational abilities [13, 14]. However, not much is known about how to
extend the grouping of potential winners in these networks beyond single neuron or
uniformly arranged groups of neurons. We show that competition between arbitrary
groups of neurons can be realized by organizing lateral inhibition in linear threshold
networks. Given a collection of potentially overlapping groups (with the exception of
some degenerate cases), the lateral inhibition results in network dynamics such that
any permitted set of neurons that can be coactivated by some input at a stable steady
state are contained in one of the groups. The information about the input is preserved
in this operation: The activity level of a neuron in a permitted set corresponds to its
stimulus étrength, amplified by some constant [15]. Sets of neurons that are not part
of a group cannot be coactivated by any input at a stable steady state. We analyze
the storage capacity of such a network for random groups, i.e., the number of random
groups the network can store as permitted sets without creating too many spurious
ones. In this framework we calculate the optimal sparsity of the groups (maximizing
group entropy). We find that for dense inputs the optimal sparsity is unphysiologi-
cally small. However, when the inputs and the groups are equally sparse, we derive
a more plausible optimal sparsity. We believe our results are the first steps toward

attractor theories in hy‘brid analog-digital networks.
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1.2 Learning

1.2.1 Spike-based learning rules and stabilization of persis-

tent neural activity

We analyze the conditions under which synaptic learning rules based on action po-
tential timing can be approximated by learning rules based on firing rates [16, 17].
In particular, we consider a form of plasticity in which synapses depress when a
presynaptic spike is followed by a postsynaptic spike, and potentiate with the oppo-
site temporal ordering. Such differential anti- Hebbian plasticity can be approximated
under certain conditions by a learning rule that depends on the time derivative of
the postsynaptic firing rate. Such a learning rule acts to stabilize persistent neural

activity patterns in recurrent neural networks.

1.2.2 Equivalence of backpropagation and contrastive Heb-

bian learning in a layered network

Backpropagation (18, 19] and contrastive Hebbian learning [20, 21] are two methods
of training networks with hidden neurons. Backpropagation computes an error signal
for the output neurons and spreads it over the hidden neurons. Contrastive Heb-
bian learning involves clamping the output neurons at desired values, and letting the
effect spread through feedback connections over the entire network. To investigate
the relationship between these two forms of learning, we consider a special case in
which they are identical, a multilayer perceptron with linear output units, to which
weak feedback connections have been added. In this case, the change in network
state caused by clamping the output neurons turns out to be the same as the error
signal spread by backpropagation, except for a scalar prefactor. This suggests that
the functionality of backpropagation can be realized alternatively by a Hebbian-type

learning algorithm, which is suitable for implementation in biological networks.
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1.2.3 A synaptic learning rules in networks of spiking neu-

romns

In the past, many impreésive learning algorithms have been proposed and shown great
success in engineering problem solving. However, which learning scheme is used by
our own brain is still largely unknown. In this project, we derive a synaptic plasticity
rule based on reinforcement learning idea [25, 26]. Cortical neurons are known to
fire highly irregular, roughly Poisson, spike trains. The fluctuation in firing rates of
neurons correlated with a global reward signal could produce a learning rule that
is easy to implement in neural systems and leads to spike-time-dependent plasticity,
recently found in several neural domains [16, 17]. We show how this learning rule

could be used for learning XOR computation in a network of spiking neurons.
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Chapter 2

Nonlinear dynamics of
direction-selective recurrent neural

media

2.1 Introduction

Most classical models for the direction selectivity of cortical neurons have assumed
feedforward mechanisms, such as multiplication or gating of afferent thalamo-cortical
inputs (e.g. [1, 2, 27]), or linear spatio-temporal filtering followed by a nonlinear
operation, like squaring (e.g. [3, 28]). More recently, the existence of strong lateral
connectiwA/ity has motivated modeling studies that show that the properties of direction
selective cortical neurons can also be reproduced by recurrent neural network models
~ with asymmetric lateral excitatory or inhibitory connections [4, 5.

The relative contribution of feedforward and recurrent connectivity to the direc-
tion selectivity of cortical neurons remains an unresolved issue. In this paper we
provide a different perspective by presenting a mathematical analysis of the non-
linear dynamics that arises in simple nonlinear neural networks with asymmetric

recurrent connections that are driven by moving input stimuli. We show that such

OThis chapter is based on the article with the same title published in Physical Review E by Xie
and Giese, 051904 May 2002. (©2002 the American Physical Society.
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networks have a class of form—stabie solutions, in the following signified as stimulus-
locked traveling pulses. The amplitude of these traveling pulse solutions depends on
the stimulus velocities because of the asymmetric recurrent interactions in the net-
work, and therefore they are suitable for modeling the activity of direction selective
neurons, as demonstrated by previous studies [29, 4, 5].

In contrast with these earlier studies, we are able to give an exact solution for the
nonlinear network dynamics and to characterize the Sta.bility of the traveling pulse
solutions. We find that the stability of such solutions depends on the stimulus speed,
and can break down outside a certain regime of stimulus speeds. Outside fhis regime
another class of solutions with characteristic spatio-temporal symmetry arises. Such
solutions have been reported before in spiking networks [30, 31, 32, 33| and in brain
slices [34, 35], and have been termed lurching activity pulses.

We find solutions with a similar spatio-temporal characteristics in the absence of
any épiking mechanism, self-organized by the interplay between the network dynamics
and the incoming time-dependent stimulus. This solution type was observed in our
simulations for different types of threshold nonlinea,;ities and over a regime of different
parameters. |

The bifurcation that underlies the transition between form-stable and lurching
wave solutions results from the essentially nonlinear properties of the network dy-
namics. For this reason, it is crucial that in our mathematical analysis we té.ke the
threshold nonlinearity of the neurons into account. This contrasts our work with pre-
vious studies that have presented approximate analyses of similar recurrent network
models by applying methods from linear systems theory [4, 29, 36].

Our mathematical analysis extends and combines methods that have been pre-
sented in the literature before [37, 38, 39, 40, 41], and applies them to a new solution
class. The characteristic instability and lurching sblutions seem to be difficult to ac-
count for on the basis of the classical models for direction selectivity. This leads us
to conclude that the existence of lurching activity pulses provides an experimentally
testable prediction that is very specific for the explanation of direction selectivity by

asymmetric lateral connections.
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2.2 Basic model

Dynamic neural fields have been repeatedly proposed as models for the average behav-
ior of a large ensembles of neurons [42, 38, 43, 44, 39, 45]. The scalar neural activity
distribution u(z,t) characterizes the average activity at time ¢ of an ensemble of
functionally similar neurons that code for stimulus feature z. Using a continuous ap-
proximation of biophysically spatially discrete neuronal dynamics, it is in some cases
possible to treat the ndnlinear neural dynamics analytically.

The field dynamics of the neural activation variable u(z,t) of our model is de-

scribed by:

The left side of this equation models a leaky integrator with a total input that is given
by the right hand side of the equation. This input sighal includes a feedforward input
term b(z,t) and a feedback term that integrates the recurrent contributions from
other laterally connected neurons. The interaction kernel w(z — z’) characterizes the
average synaptic connection strength between the neurons coding position z’ and the
neurons coding position z. f is the activation function of the neurons. This function
is nonlinear and monotonically increasing. It introduces the nonlinearity that makes
it difficult to analyze the network dyﬁamics.

In the following we consider stimuli with a constant activity profile that move at
a constant velocity v. We study how the solutions of the network dynamics, and in
particular how their stability changes when the stimulus speed v is varied.

In the presence of a stimulus that moves with a constant velocity v, the math-
ematical description of the dynamics can be simplified by using a moving frame of
coordinates by changing the spatial variable to £ = z —vt. In this new frame the stim-
ulus is stationary: B(€) = b(z,t). With the activity in the new frame U(¢,t) = u(z, t)
thé dynamics is

aU(Evt)_T,UaU(grt) ' _ wl(e — €& / ’
= Se2+UED = [we-fUE e +BE).  @2)
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A stationary solution in the moving frame has to satisfy

du-(&)
d¢

—Tv

LU = [wle-nUENag +BE. @3

U*(&) corresponds to a traveling pulse solution with velocity v in the original static
coordinates. Therefore, the traveling pulse solution driven by the moving stimulus
can be found by solving Eq. (2.3). The stability of the traveling pulse can be studied
by perturbing the stationary solution in Eq. (2.2).

The neural field dynamics Eq. (2.2) is a nonlinear integro-differential equation. In
most cases an analytic treatment of such equations is impossible. In this paper, we
consider two biologically -inspired special cases for which an analytical solution can be
found. For this purpose we consider only one-dimensional neural fields and assume
that the nonlinear activation function f is either a step function, or a linear threshold

function.

2.3 Step activation function

We first consider the step activation function f(z) = ©(z) where ©(z) =1 when z > 0
and zero otherwise. This form of activation function approximates the activities of
neurons which, by saturation, are either active or inactive. For the one-dimensional
case, we assume that only a single stationary excited regime with (U*(£) > 0) exists
and is located between the points (£, £5). The validity of this assumption depends on
the shape of the input B(¢) and the interaction kernel w ®. Only neurons inside this
regime contribute to the integral. Moreover, because f is constant in this regime this
contribution only depends on the boundary values £} and £5. Accordingly, the spatial

shape U*(€) of the stationary solution obeys the ordinary differential equation:

—w%f) FUNE) = W(E— &) - W(E - &) + B(E), (2.4)

1Qur analysis can be generalized to the case with multiple excited regimes resulting in more
complex equations. Only neurons inside the excited regime contribute to the integral.
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where the function W(-) satisfies W'(z) = w(z). The solution of the last equation
can be found by treating the boundaries ¢} and & as fixed parameters and solving
Eq. (2.4). To facilitate notation we define the following integral operator O with

parameter a # 0:

Olg(2); o] = / " g(m) expl(z — m)/aldm, (2.5)

20

where 29 = —oo for & < 0 and zp = +oo for @ > 0. Using this operator we define two
functions F(z) = O[W(z); mv]/(~7v) and G(z) = O[B(z);v]/(—7v). The solution

of Eq. (2.4) can be written with these functions in the form:

U(§) = F(§ - &) — F(§ - &) + G(6). - (26)

For the boundary points, U*(£;) = U*(€3) = 0 must be satisfied, leading to the

transcendental equation system:

—FO)+F(§ -&) = G(&) (2.7)
FO)-F(&-&) = G(&), (2-8)

from which £} and 5 can be determined. To be consistent with our initial assumption,

it has to be verified that the solution U*(¢) indeed has only one excited regime between

& and &;.

- 2.3.1 ' Stability of the traveling pulse solution

The stability of the traveling pulse solution can be anailyzed by perturbing the dynam-
ics around the stationary solution in the moving frame. To consider the step threshold
nonlinearity in the dynamics, we perturb both the waveform and the boundary points.
In addition, the perturbation of the boundary points can be related to the pertur-

bation of the waveform at the boundary points. Based on this, we determine the
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eigenvalue equation for the linearized perturbation dynamics,
[K(0) = i1+ rAIK(0) + (1 +7A)] = K(&G - &)K(& - &), (29)
where ¢} = dU ;‘(éi) /d€ for i = 1,2, and the function K(-) is defined as
K(z) = Ofw(z);7v/(1+ 7A)](1 + 7A)/(—Tv).

From this equation eigenvalues A can be found numerically. The traveling pulse solu-
tion is asymptotically stable only if the real parts of all eigenvalues A are nonpositive.

The detailed derivation of the eigenvalue equation is shown in Appendix 2.5.1.

2.3.2 Simulation results of step activation function model

In the previous analysis the only restriction for the interaction kernel was that it
should allow solutions with a single excited regime. To test our mathematical results
we simulated the model using an interaction function that was given by a difference of
two exponential functions, simulating a receptive field with asymmetric local excita-
tion and center-surround inhibition. Lateral connectivity of similar type, but typically
symmetric with respect to the receptive field center, has been used in many models
for short range interactions in the visual cortex. The advantage of using exponentials
is that one can carry out the integration in Eq. (2.5) explicitly, which simplifies thé
subsequeﬁt calculations considerably.

We simulated the dynamics numerically and 'compared the results with the results

from the mathematical analysis. The kernel had the following form
w(z) = acexp(—kelz — zo|) — a; exp(—ki|z — zo|),

where a, and a; are the amplitudes of excitation and inhibition. z, is an offset that
causes the network to be asymmetric and induces the direction sensitivity.
As stimulus b(z,t) we used a moving “bar” with constant width and amplitude.

'Fig. (2-1) plots a snapshot of the activity profile of u(z,t) and stimulus b(z,t) at
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Figure 2-1: Stimulus and activity profile in the step activation function model. Panel
(a) shows the stimulus, and Panel (b) the activity m(z,t) at the time ¢ for the
traveling pulse solution. The solid line in (b) shows the result from the calculation,
while the circles indicate the numerical simulation results. The interaction kernel
used in this simulation was w(z) = a.exp(—ke|z — zo|) — a; exp(—k;|z — zo|) with
ae =1,a; = 5,k = 0.42,k; = 0.1 and zo = 3. The stimulus was a moving bar with
width d = 10 and amplitude h = 2. Notice that the activity profile u(z,t) has only a
single excited regime.

a time ¢ in the regime where the traveling pulse solution is stable. On top of the
analytically calculated profile u(z,t), we also plotted simulation results, which show
good consistency with the theory.

We also determined the peak activities of u(z,t) as function of the stimulus speed.
The peak amplitude as a function of the speed is shown in Fig. (2-2). Panel (a) shows
the speed tuning curve plotted as the dependence of the peak activity of the traveling
pulse as a function of the stimulus velocity v. The solid line indicates the results
from the theoretical solution and the dots indicate the simulation results. Panel (b)
shows the maximum of the real parts of the eigenvalues obtained from Eq. (2.9). For

stimulus veloc1t1es outside a certain range this maximum becomes positive indicating
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Figure 2-2: Traveling pulse solution and its stability in the step activation function
model. Panel (a) shows the velocity tuning curves and the peak amplitude of the
traveling pulse. The solid lines indicate the theoretical results, while the dots signify
the numerical simulation results. The velocity v is normalized by the time constant
of the dynamics in the unit of rad/7. Panel (b) shows the largest real parts of the
eigenvalue A obtained by solving Eq. (2.9) numerically. Only solutions corresponding
to the negative values of this function are form-stable. Panel (c) plots the variations of
the peak amplitude of the pulse. A variance that deviates significantly from zero sig-
nifies a loss of stability of the traveling pulse solutions. the results are consistent with
analysis of the eigenvalues in Panel (b). Also notice that in Panel (a) the theoretical
peak amplitude fits well the simulation results only inside the stable regime.

a loss of stability of the form-stable solution. To verify this result we calculated also
the variability of the peak activity over time after excluding the initial transients from
the simulations. Panel (c) shows the variations as function of the stimulus velocity.
At the velocities for which the eigenvalues indicate a loss of stability the variability of
the amplitudes suddenly increases. This indicates that the stationary solution is not
time-independent any more, consistent with our interpretation that the form-stable
solution loses stability.

An interesting observation is illustrated in Fig. (2-3) that shows the space-time

“evolution of the activity. The left panel shows the propagation of the form-stable
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Figure 2-3: Traveling pulse and lurching wave in step activation function model. The
color-coded plots show the spatial-temporal evolution of the activity u(z,t). The left
panel shows the propagation of the form-stable peak over time. The right panel shows
the lurching activity wave that arises when stability is lost.

traveling pulse for medium stimulus speeds. The right panel shows the solution that
arises when stability is lost. This solution is characterized by a characteristic spatio-
temporal periodicity that is defined in the moving coordinate system by U(y+mLo, t+
nTy) = U(y,t), where Ly and T are constants that depend on the network dynamics.
Solutions of similar type have been described before in different contexts, such as in
brain slice experiments [34, 35] and in studies with spiking networks without time-
dependent input signals. These solutions have been termed “lurching waves” because
of the periodic discontinuity of the spatio-temporal evolution of the neural activity
(46, 32, 31]

We have shown here only the comparison between theory and simulation for expo-
nential interaction kernels and localized bar stimuli. However, we found in additional
simulation studies that lurching activity waves arise very robustly for this type of
networks also for other forms of interaction kernels or input signals. Further evidence
for the robustness of the phenomenon of lurching waves is provided in the following by
a demonstration that the same phenomenon arises also for another type of threshold

function.
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2.4 Linear threshold model

We also considered a model with an activation function f that had the form of a
linear threshold, i.e. f(z) = [z]* = max{z,0}. Linear threshold models of similar
type have been used before in a variety of neural modeling studies [43, 39, 47]. It has
been argued that firing rates of neurons above threshold typical vary linearly with
the stimulus strength. Moreover, neurons normally operate far below their saturation
levels. _Therefoye, a linear threshold characteristic might approximate the activation
function relatively well (cf. e.g. [48]). To further simplify the model, we consider a
ring network with periodic boundary condition on the interval = [—m, 7).

The ring network dynamics can be written as

Uy

_T—g—tm(ﬂ,‘t) + m(.G, t) = [/ w(f — 8" )m(@',t) (2m)~*dg’ + b(h, t)] +, - (2.10)

-

where b(0,t) is the time-dependent feedforward input.

The network in this form can be transformed to the network in the standard form
that is given by Eq. (2.1) by a change of variables and by transforming the stimulus
distribution. Defining the total network input u(6,t) by

u(8,t) = /_ " (o - oym(e', ) (2r)~'d0’ + b(6, t), (2.11)

we obtain the following dynamics for u

™

0 .

rsu(8,1) + u(0,1) = / w(® — ) (@, )] 2m)de +5(6,8),  (2.12)

where the transformed stimulus (6, t) obeys the partial differential equation: b(8,t) = 79b(0,t)/dt + b(6
For convenience, in the following discussions we use Eq. (2.10) for the analysis of

the system dynamics. As in the previous model, the stimulus moves with a constant

velocity b(0,t) = B(6 — vt). Again, we analyze traveling pulse solutions that are

driven by the stimulus, and their stability.
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2.4.1 General solutions and stability analysis

Because the activation function has linear threshold characteristics, inside the excited
regime for which the total input (u(6,t) > 0) is positive the system is linear. One
approach to solve this dynamics is therefore to find the solutions to the differential
equation assuming the boundaries of the excited regime are given. The conditions at
the boundaries lead to a set of self-consistent equations for the solutions to satisfy,
from which the boundaries can be determined.

By denoting activities in moving coordinates as M (8 — vt,t) = m(6,t), the dy-

namics can be written as:

" (o - 0 M(0',t) (2r)~1d6’ + B(6) ’

| (2.13)
Supposing the excited regime is 6 € (6(t), 62(t)), we solve the dynamics by Fourier

T;%M(o,t) - TU%M(O,t) + M(0,t) = [/

-7

transforming the above equation in the spatial domain [—, 7). Let

mn(t) = " M(0,t) exp(ind) (27)"'df and b, = /_7r w(8) exp(ind) (2m)~1d9,

—r s

Then in terms of these Fourier modes, the dynamics can be written as
TThn + (1 +irvn)m, = Z Crtiy + by,
1
for n =0,£1,..., with

Cu = (2m)7'ii[(2 — 61)8n — i(e"70% — Do) (0 — 1)71(1 = 6,)]
02

bn = / B(6) exp(inf) (2r)~*d8.
61

where 6, is the Kronecker delta defined as having the value one when n = [, and zero
when n # [.

Therefore, the stationary solution in moving coordinates is

m* = (I +irvK — C)~'b, - (2.14)
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where matrix K is defined as the diagonal matrix K = diag([0,1,-1,2,-2,...]). The
components of the vector m are ., and those of b are b,. The total input for the

stationary solution in the moving frame can then be written as
U*(6) = Y _exp(—in) > Crriy + B(6), (2.15)
n !

which has to satisfy the two boundary conditions U *(61) = U*(02) = 0. From these
two equations the stationary values of ; and 6, can be determined.

The stability of this traveling pulse solution can be analyzed by linear perturbation
theory. Note that the perturbations of the boundary points will not contribute to the
linearized perturbed dynamics because the contribution from this perturbation is
60; U*(6;) =0 for ¢ = 1,2. Therefore, the linearized perturbation dynamics can be
fully characterized by the perturbed Fourier modes with fixed boundariés. Hence,
the stability of the traveling pulse solution is determined by the eigenvalues of the
matrix A = —(I +irvK — C). If the maximum of the real parts of the eigenvalues of

A is negative, then the stimulus locked traveling pulse is stable.

2.4.2 Linear threshold network with simple kernels

The general solution introduced above requires the solution of a system of equations.
In practice, the Fourier series has to be truncated in order to obtain a finite number
of Fouriér components at the expense of an approximation error.

Next we use a simple model that contains only the first two Fourier components
in both the interaction kernel and the input distribution. We modify the model
by introducing asymmetry into the interaction kernel, and study how the network
activity changes as a function of the stimulus velocity. For this model, a closed form
solution and stability analysis are presented that provides an insight into some rather

general properties of linear threshold networks.
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The interaction kernel and feedforward input are taken to be of the following form:

w(f) = Jo+ Jycos(d+B) (2.16)
b(6,t) = C(1—e+ecos(d — (b)) —T, (2.17)

where the variable (3 makes the interaction asymmetric. In the input, the threshold
term T' is subtracted, and 6q(t) = vt is the input’s peak location. This model was in-
troduced by Hansel and Sompolinsky in their model of cortical orientation selectivity
[39], with w(f) being symmetric and b being static.

Since the interaction kernel and feedforward input involve only the first two Fourier
components, the Fourier transform method presented in the previous section can be
- simplified significantly. As a consequence, the dynamics of the network can be studied
in terms of the first two Fourier components of M (6, t), namely, ro(t) and 7 (t). Next
we present the analysis, following similar treatments of Hansel and Sompolinsky [39].

The first Fourier component 77io(t) is a real number representing the mean of
the neural activities, which is denoted by r¢(¢) in the following. The second Fourier
component rf1; (¢) is a complex number. Let’s denote the amplitude of 12 (t) by r(t).

Therefore, in summary we have

To(t) = ’I’?Lo(t) = i m(0, t) (2’/T)—1d9 (218)

-

n(® = b= [ m0eobe - vl etae,  (219)

where the phase ¥(t) is used to make the right hand side of the equation being a real

number.

In terms of the Fourier components, the total input in Eq. (2.10) can be written

16,t) = f " w(0 — &)m(@, 1) (27)de + b(6 — Bo(t))

™

= Io(t) + I1(t) cos(d — @), (2.20)
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where Io(t) and I1(t) are defined as:

I(t) = Cl—e) + Joro(t) =T (2.21)
L) = eCcos(Bot) — ®) + Jiri(t)cos(T — B — ).  (2.22)

Here, the phase variable ®(t) represents the location for the peak of the total input,
that is, ®(t) = argmaxyI(6,t), which should satisfy

€C'sin(¥ — 6p(t)) + Jir1sin(® — T + 5) = 0. (2.23)

Fig. (2-4) shows a snapshot of the network activity m(6,t), the total input I(6,¢),
and the stimulus b(6,t) at the time ¢t. Three phase variables are indicated in the
figure, with 6y, ¥, and ® being the peak location of the input, the first Fourier mode,
and the total input I(6,t) respectively.

To write down the dynamics in terms of these Fourier components, we need one
more step to take care of the rectification nonlinearity. Suppose there is only a single
excited interval § € (® — 6., ® + §.) in which the total input I(6,t) is positive. From
Eq. (2.20), the critical width can be determined as 6, = arccos(—1Ip/I1). Using 0.,

the dynamics can be rewritten as
T%m(e, t) +m(8,t) = I1(t) [cos(f — ®) — cos(8.)]" . (2.24)

Fourier transforming the above equation, we derive the dynamics of the Fourier com-

ponents:

Trq = —To+ I1(t)fo(0c) (2.25)
71 = —r1+ L) fi(6.) cos(® — ) (2.26)
¥ = L(t)fi(0,)sin(® — ), (2.27)
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Figure 2-4: Traveling pulse for the linear threshold model with a simple periodic
kernel (Eq. (2.16)). Panel (a) shows the stimulus with a moving peak centered at 6.
The activation profile m(6, t) is shown in Panel (b). The dashed line indicates its first
order Fourier component with a maximum at ¥. Panel (c) shows the profile of the
total input I(6,¢). The phase variable ® is defined by the peak location of the total
input.
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where two functions fo(6.) and f1(0c) are defined as

fo(6.) = = 'sin(6.) — 6. cos(b.)]
fi(6.) = (2m)7'[0. — sin(26.)/2].

Interestingly, introducing the time-dependent input and asymmetric connections
does not change the principle form of the Fourier component dynamics compared with
the case with static inputs and symmetric connections [39]. Instead, the changes only
appear inside I;(t) (see Eq. (2.22)). This property is very helpful for the analysis of
the dynamics of this system.

Similarly, we can derive the dynamics of the Fourier components with orders
higher than two. But fortunately, the dynamics in Eq. (2.25-2.27) is independent
of these higher order components. Moreover, it can be shown that if the dynamics
in Eq. (2.25-2.27) is stable, the dynamics of the higher order Fourier components
is stable as well. Therefore, the stability of these three dimensional dynamics fully

characterizes that of the neural field Eq. (2.24).

2.4.3 Traveling pulse solutions

A traveling pulse solution corresponds to a stationary solution in the moving frame.

Therefore, 7o = 71 = 0 and U= v, which lead to

ro = Iifo(f.)
™ = Ilfl(ec) COS(@ - ‘I’)
v = tan(® — V).

Suppose that 6. is given. From the above equations, the Fourier components rg

and r; can be derived as

ro = [(1—€)C = T]fo(fc)[—Jofo(f) — cos(be)] ™ (2.28)
ri = [(1—€)C —T]cos(A)f1(6.)[—Jofo(B:) — cos(6.)] 72, (2.29)
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where the variable A = -y = atan(rv). Subsequently, 2o and 7; can be determined
from Eq. (2.21-2.22). Substituting them into Eq. (2.23) leads to

F7 I = Uodol60) + cos()l2 £2(6.) cos?() - 2,10 cOS(A) cos(A + ) + 1]-12,

for the existence of a traveling pulse solution.

Let B = [Jyf, + cos(6,)]T'/(T" — 1). Then, Eq. (2.30) can be rewritten as
[J1fi cos(A) — cos(A + ) = B2 - sin®(A + B).

Therefore, for a solution fc to exist, we must have [sin(A + 8)| < B, Dividing both
sides by cos(f3) cos(A),‘ we derive the condition that v has to satisfy for the existence
of 8,



lutions of this type have been analjzed before for networks with saturating threshold
functions in [10]. In this case the traveling pulse solution is caused purely by the
asymmetric structure of the network, parametrized here by the variable 8. When the
stimulus is not uniform, the traveling pulse solution exists only when the stimulus
velocity is not too different from the intrinsic velocity v*. The smaller the contrast
B, the smaller is the range of stimulus speeds v for which a traveling pulse solution
exists. This range is also influenced by the time constant 7. Smaller 7 lead to a larger

velocity range.

2.4.5 Optimal velocity

The network presented here is asymmetric, and has its own intrinsic velocity v* deter-
mined by the asymmetry parameter §. When the network is driven by the stimulus
moving at different velocities the amplitude of the solution is modulated as a func-
tion of the velocity. This dependency defines the wvelocity tuning curve, which can
be measured in physiological experiments. To characterize the velocity tuning curve
fully in this network is not easy since 6. can only be determined numerically. We
focus, therefore, on finding the optimal stimulus velocity that leads to the maximal
mean activity ro.

Note that 7o in Eq. (2.28) only depends on 6., but not directly on v. Furthermore,
o depends on 6, only through cos(6.)/fo(f.) as

ro(fe) = [(1 — €)C' = T][—Jo — cos(bc)/ fo(6e)] ™"

For 6. € [0, 7] it is easy to check that fo(f.) is monotonically increasing, and conse-
quently cos(6.)/ fo(6.) is monotonically decreasing. Overall, ro(6,) is a monotonically
decreasing function of §.. Therefore, the optimal velocity v™ for which 7y is maximal
corresponds to the smallest value of 6. in Eq. (2.30), that is v™ = argmax,r¢(6.(v)) =
argmin,f.(v).

Taking the derivative with respect to v on both sides of Eq. (2.30) and using the
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condition df.(v™)/dv = 0 yields

o _Jifisin(8)

(1-B?)’
When the stimulus contrast is small, I' « 1, we have B <« 1 and J1 f1 = 1/ cos().
Substituting this result into the above equation, we find for weak stimulus contrast

™ & vk

This implies that the optimal velocity for which the mean activity is
maximal is the intrinsic irelocity. This is a nice property in the sense that it relates
the optimal stimulus velocity to the network structure. By changing the asymmetry
parameter (3, the network can have different preferred velocities. Notice that the
approximate equality between the optimal v™ and the intrinsic v* holds only if the

stimulus contrast is low.

2.4.6 Stability analysis of the traveling pulse

A stability analysis can be carried out by perturbing the dynamics of the Fourier
components in Eq. (2.25-2.27). The final linearized perturbation dynamics is shown in
Appendix 2.5.2. In the case when eC < 1, the perturbed dynamics can be simplified

into

T8t = (7 1Jof, — 1) 8ro + w1 J sin(8,) 6y (2.32)
767 = 7w 'cos(B)sin(f.)Jo 6ro + [—1 + (2m) " J1 (6. + sin(26,)/2) cos(B)] %2.33)

2.4.7 Simulation results for the linear threshold model

Fig. (2-5) shows the comparison between the results from the mathematical analysis
and the simulations. Panel (a) shows the speed tuning curve plotted as values of
ro and r; with respect to different stimulus velocities v. The solid and dashed lines
indicate calculation results, and the dotted lines represent those from numerical simu-
lations. Panel (b) shows the largest real part of the eigenvalues of the stability matrix

obtained by linearizing the three dimensional Fourier component dynamics around
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the stationary solution as described in the previous section. For stimulus velocities
outside a certain range, the maximum of the real parts of the eigenvalues becomes
poéitive indicating a loss of stability of the form-stable solution. To verify this result
we calculated the variations of 79 and r; over time in the simulation. Panel (c) shows
the variations as a function of the stimulus velocity. At the velocities for which the
eigenvalues indicate a loss of stability the variations of g and r, suddenly increase,
consistent with our interpretation.

Like the results shown before for the step function model (Fig. (2-3)), Fig. (2-6)
illustrates the space-time evolution of the activity. The left panel shows the propa-
gation of the form-stable peak over time, whereas the right panel shows the solution
that arises when stability is lost. Like those in the model with a step threshold,
lurching activity pulses arise for a whole regime of different parame'ters for networks
that show su%stantially direction selective behavior.

The phase diagram of the form-stable traveling pulse solution is plotted in Fig.
(2-7), where we show the range of stimulus velocity for a stable traveling pulse as the
asymmetry parameter 3, and consequently the intrinsic velocity (v* = —tan(8)/7),
changes. The stable region for v is typically located around the intrinsic velocity v*.

So far, we have shown the traveling pulse and lurching wave solutions in models
with step threshold and linear threshold sctivation functions. The development of
direction selectivity of the travel pulse solutions among certain velocity range and
loss of stability when outside the range are not confined only to these two types of
models. To demonstrate this, we simulate the dynamics Eq. (2.1) with a sigmoidal
shaped activation function and an asymmetric interaction kernel.‘ Again, we observe
the tuning of neural activities to input velocities, and the bifurcation of traveling
~ pulse solutions to lurching waves when the velocity of the input is outside a certain

range (Fig. (2-8)).
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Figure 2-5: Traveling pulse solution and its stability in the linear threshold model.
Panel (a) shows the velocity tuning curves of r, and 7;. The dotted lines indicate
numerical simulation results, while solid and dashed lines are the results from our
analytical solution. The theoretical results fit well the simulation results in the range
of velocity between the two vertical dashed lines. Panel (b) shows the maximum of the
real parts of eigenvalues of the stability matrix obtained by perturbing the dynamics
around the stationary solution. For stimulus velocities outside a certain range this
value becomes positive, indicating a loss of stability of the form-stable solution. Panel
(c) shows the variations of rq (solid curve) and r; (dashed curve) over time determined
from the simulation. A nonzero variance signifies a loss of stability for the traveling
pulse solution, consistent with the eigenvalue analysis in Panel (b). The velocity v is
normalized by the time constant of the dynamics in the unit of rad/r. Parameters
used are C' =5, e =0.01, T = 4.9, Jo = —9.8, J, = 13.5, and § = 0.46.
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Figure 2-6: Traveling pulse and lurching wave in the linear threshold model. Shown
here is a color-coded plot of spatial-temporal evolution of the activity m(z,t). The
left panel shows the propagation of the form-stable peak over time, whereas the right
panel shows the lurching activity wave that arises when stability is lost.
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Figure 2-7: Stable regime of traveling pulse solutions. Shown here is the regime
wvelocities v for which a stable traveling pulse solution arises as the intrinsic velocity
v* changes. The intrinsic velocity v* depends on the the asymmetry variable 3 of the
interaction kernel.
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Figure 2-8: Traveling pulse solution and its stability with a sigmoidal shaped activa-
tion function. Panel (a) shows that mean peak activity of the moving solutions and
Panel (b) plots the variations of the solution averaged over time. The traveling pulse
solution is stable only for velocities between the two vertical lines. The velocity v is
normalized by time constant 7 in the unit of rad/7. The activation function used is
f(z) = 1/(1 + exp(—2z)). The interaction kernel is the difference of two Gaussian
functions, but with the center shifted, w(z) = A. exp(—(z—p)?/(202)) — A; exp(—(z—
©)%/(20%)) with o, = 0.08, 0; = 1, A, = 62, A; = 37, and pu = 0.05. The input used
is a rectified bump b(6,t) = 7[exp(cos(f — vt) — 2]*.
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2.5 Conclusioﬁ

In this paper we have presented a mathematical analysis of a class of models that
account for the direction selectivity by asymmetric lateral connections between cor-
tical neurons. Given the large number of recurrent connections in the visual cortex,
it seems plausible that lateral connections play an important role for the realization
of direction selectivity [4, 5]. Contrasting with earlier works on such models [29, 36],
we have presented a mathematical analysis of the full nonlinear dynamics of such
networks that takes the nonlinear response functions of the neurons into account.

One result from our analysis is that such recurrent models, for a certain regime of
stimulus speeds, have traveling pulse solutions that are form-stable and move with the
same speed as the stimulus. We have termed such solutions stimulus-locked traveling
pulses. In the stationary state, these solutions have space-time characteristiés that
is also compatible with other models for direction selectivity, e.g. motion energy
models with feed-forward structure, or models with linear feedback. In particular, the
recurrent mechanism that we analyzed can account for biologically realistic degrees
of velocity tuning of cortical neurons [29]. The preferred speed of the neurons in such
recurrent models is determined by the network structure. For example, we show that
for the model with linear threshold activation function, the preferred speed for input
signals with small contrast is close to the equilibrium speed of the self-generated
traveling pulse solution in the absence of a time-dependent stimulus. The speed
tuning in the nonlinear model that we analyzed arises because, for sufficiently strong
interaction, the network tends to stabilize a traveling peak solution that “locks” to the
moving activity peak of the stimulus. This solution becomes unstable if this locking
is lost.

Our stability analysis shows that the traveling pulse solution is stable only within
a certain regime of stimulus speeds. At the borders of this regime a bifurcation
arises and the stimulus-locked solution becomes unstable. Such speed-dependent
‘bifurcations can not arise in the classical feed-forward models, and in networks with

linear feedback. For such networks the solutions are either always stable, or the
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network is unstable.

An important observation in our simulations is that the loss of stability of the
stimulus-locked solution is frequently accompanied by the formation of lurching ac-
tiity pulses. Lurching activity has been described by different other authors in
brain slices [34, 35], and in artificial spiking networks without time-dependent in-
puts (32, 33]. Our simulation results imply that spiking neurons are not necessary for
the generation of lurching activity waves if a moving stimulus is present. Such lurch-
ing waves cannot be produced by a feedforward network, in which the output of the
network is always phase-locked to the stimulus. Moreover, there is no stability issue
in feedforward networks. Therefore, the bifurcation observed in recurrent networks
can not appear in feedforward networks. In models with linear feedback, oscillations
of the a;citivify could potentially be obtained, e.g. if the network contains multiple
neﬁron I;Opulations that are connected by excitatory connections. Still it would be
difficult to account for the speed-dependence of the bifurcation.

With respect to the mathematics, we have tried to characterize a class of solutions
of spatially continuous neural networks that is different from solutions have been
analyzed in previous work that apply similar mathematical methods. By the presence
of a time-dependent stimulus, the stimulus-locked traveling pulse solution is different
from the stable stationary solutions of networks with static inputs that have been
repeatedly analyzed in the literature (e.g. [42, 38, 37, 49, 40]). The stimulus-locked
solution is also different from self-generated traveling waves or pulses that have been
studied in different contexts [10]. For such solutions the pulse propagates with an
equilibrium speed that is Speciﬁed by the network dynamics, whereas for the stimulus-
locked traveling pulse solution the propagation speed is given by the stimulus. At
least for the linear threshold model with small contrast, the speed regime for which
a stimulus-locked traveling pulse solution exists is, however, in a neighborhood of the
optimal speed with which a self-generated pulse would propagate in the absence of a
time-dependent stimulus. The proposed recurrent mechanism for direction selectivity
exploits a kind of "resonance” betweeh the tendency of the network to stabilize a

traveling pulse solution with characteristic speed and the incoming time-dependent
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stimulus activity.

We conclude from our analysis that the observation of lurching activity waves
in populations of direction-selective neurons in the visual cortex would be a strong
indicator for the relevance of the recurrent mechanism for direction selectivity that
we discussed in this paper. Lurching waves and the related bifurcations might be ex-
perimentally observable by recording from populations of direction selective neurons. |
The neurons first would have to be clustered according to their speed selectivity and
the centers of their receptive fields. The responses would have to be time-aligned
with respect to the stimulus. Then activity waves could potentially be observed ei-
ther by simple histogramming within the different spatio-temporal bins, or by using
more sophisticated techniques for interpolation, either based on standard regular-
ization or Bayesian techniques [50, 51, 52]. A potential complication in the visual
cortex might be that multiple populations of neurons with different speed selectivity
might inhibit each 6ther [29]. The same mechanism, however, might be relevant in
other cortical areas as well, that are experimentally easier to access. One example is
the direction-selective place cells in the hippocampus that have the advantage that

multi-unit recordings with more than 100 electrodes are possible [53].

Appendix: Stability analysis

2.5.1 Stability of the traveling pulse solution in the step
threshold model

The stability of the traveling pulse solution is analyzed by perturbing the stationary
solution in the moving coordinate system. Let §U(&,t) be a small perturbation of

U*(€). The linearized perturbation dynamics reads

T%S_g - T”%;STU +0U(¢,8) = —w(é — &) 06 + w(é - &) 06, (2.34)

where §¢; (i = 1,2) are the perturbations of the boundary points of the exited regime

from the stationary values of & with & = &£ + 6¢; satisfying U(&;,t) = 0. Note that
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d¢; is not independent of §U(&,t), and the dependence can be found through

U (&, 1)

8+ 0(6€3) = 0.
Since U(&;,t) = dU(&F,t), to the first order we have
8¢ = —6U (&, t)/ci,

where ¢; = dU*(&;)/d¢. Substituting this back into the perturbed dynamics, we

derive the perturbed dynamics with perturbations in U only:

06U 06U — &
7 - T'Ua—£ 6U(£: t) = W(EC—IEJ‘SU@-I’ ) W(g £2)6U(£2) t)

To check its stability, we substitute a solution of the form §U (£, t) = MY (¢) into

the above dynamics and derive the equation for Y (¢):

—rY'(€) + 1+ N Y(e) = Yy - “’(562 w8y gy

1

We solve this equation by‘ﬁrst assuming that Y (¢7) and Y (&%) are constant, and
afterwards we give self-consistent conditions for the solutions at £ and &5 to satisfy.

The solution of the above equation is

K-8,
c(l+7)

EE-8),

Y() = a1+7N)

(61) - Y(&), (2.35)

The solution Y (£) in Eq. (2.35) has to satisfy two self-consistency equations for

_ the solutions at £} and &5:

o _ _ KO K(€1 &)y
*\ K(&; _€1) * (0) *

For the above equations to have a solution, the transcendental Eq. 2.9 has to be sat-
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isfied. From this equation the eigenvalues A can be found numerically. The traveling
pulse solution is asymptotically stable only if the real parts of all eigenvalues ) that

solve Eq. (2.9) are nonpositive.

2.5.2 Stability of the traveling pulse solution in the linear

threshold model

The stability analysis is carried out by perturbing the dynamics of the Fourier com-
ponents in Eq. (2.25-2.27). The general procedure is to perturb the dynamics first,
which involves the perturbation of terms such 66., §® and AI;(¢t). To determine
these terms, we subsequently perturb Egs. (2.21, 2.22, 2.23). Defining ® = ® — 4,

and ¥ = ¥ — f,, the perturbed linearized dynamics can be summarized as follows:

7'6?'.'0 — (J(;rec _ 1) (STO + Jl COS((i _ \i + ﬂ)w 67-1 _ €CSin((i) Slniec) J‘i}
. . - sin(f.) 6. sin(26.)
61y = cos(® — ) - Jobro+{ -1+ Jl[% cos(0) + .
x cos(2(® — ) + B)]} 6ry — 60{29—; sin(¥) + S‘nﬁec) sin(2® — 1)} 6%
< ., ~ S HC ec . i 29(:
0¥ = sin(® - V) 1n75 )Jo org + [—Tv — .]1(% sin(3) — %

__ sin(26.)
4

x sin(2(® — ¥) — 3)] ory - 60{26—;_ cos(¥) cos(2® — 0)} 60 .

To determine the stability of the traveling pulse solution, we have to analyze
the dynamics of these three coupled differential equations. If eC <« 1, then the
dynamics of § T is decoupled from that of dro and é7; and the stability condition can

be approximated by the stability of the two dynamics Eqgs. (2.32,2.33).
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Chapter 3

Selectively Grouping Neurons in
Recurrent Networks of Lateral

Inhibition

3.1 Introduction

It has long been known that lateral inhibition in neural networks can lead to winner-
take-all competition, so that only a single neuron is active at a steady state (13, 14,
54, 55, 56, 57]. When used for unsupervised learning, such winner-take-all networks
enforce grandmother-cell representations as in vector quantization [58]. Recently
many reéearch efforts have focused on unsupervised learning algorithms for sparsely
distributed representations (59, 60]. These algorithms lead to representations where
multiple neurons participate in the encoding of an object and so are more distributed
than vector quantization. Therefore, it is of interest to find ways of using lateral in-
hibition to mediate winner-take-all competition between groups of neurons, enforcing
the Sparse representation at a network level.

Competing groups of neurons are the essence of attractor models of associative

memory. Selectively grouped neurons correspond to patterns that are stored as at-

9This chapter is based on an article to appear in Neural Computation by Xie, Hahnloser and
Seung.
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tractors in the network, with only ‘one of these patterns retrieved at a steady state
[61, 62, 63]. In this case, the input to the network is represented in the initial con-
ditions of the dynamic system, and the winning group is the resulting steady state.
However, the binary behavior of an individual neuron in associative memory models
is much different and computationally less informative than a biophysical neuron,
whose firing rate encodes information on the signal it is processing. Although there
have been extensions of these discrete and digital attractor networks to networks with
graded [64, 65] or stochastic neurons [66], the behavior of the individual neuron tends
to be inactive or saturate and thus remains binary in essence.

In this paper, we show how winner-take-all competition between groups of neurons
can be realized in networks of non-binary, analog neurons. In a network model to be
introduced later, neurons at a steady state can be either active or inactive, which form
a binéry pattern representing a permitted groﬁping of the neurons. At the same time,
the activated neurons carry analog values resulting from computations implemented
by the network.

We present a natural way of wiring the network to selectively group neurons
by adding strong lateral inhibition between them. Given a collection of potentially
overlapping groups, the inhibitory connectivity is set by a simple formula that can
be interpreted as arising from an online learning rule. To show that the resulting
network functions as “group winner-take-all”, we perform a stability analysis. If the
strength of inhibition is sufficiently great and the group organization satisfies certain
conditions, one and only one group of neurons can be activated at a stable steady
state. In general, the identity of the winning group depends on the network inputs,
and also the initial conditions of the dynamics. |

We characterize the storage capacity, the maximum number of groups the network
can mediate to produce winner-take-all competitions, for random sparse groups in
which each neuron has the probability p to be included in each group. Let m be
the total number of neurons in the network. We determine the optimal sparsities p
that maximize group entropy in two cases: (1) When the input is dense, the optimal

sparsity scales as In(n)/n, and (2) when the inputs are of equal sparsity as the groups
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themselves, the optimal sparsity scales as 1/In(n)/n. In the first case, the storage
capacity roughly scales as n?, and in the second case, the storage capacity scales as
n/1n(n).

3.2 Basic definitions

Let m groups of neurons be given, where the group membership of the ath group is
specified by

. 1 if the ith neuron is in the ath group
£ = (3.1)

0 otherwise.

fori=1,...,n.

-We will assume that every neuron belongs to at least one group!, and that every
group contains at least one neuron. A neuron is allowed to belong to more than
one group, so that the groups are potentially overlapping. The inhibitory synaptic

connectivity of the network is defined in terms of the group membership,

i 0 if ¢ and j both belong to a group
Ji = -ge) = (3.2)
a=1 1 otherwise.

The synaptic matrix J basically states that a connection between neuron i and j
is established only if they do not belong to any of the same groups. This pattern of
connectivity could arise from a simple learning mechanism. Suppose that all elements
of J are initialized to be unity, and the groups are presented sequentially as binary

vectors £!,..., ™. The ath pattern is learned through the update
Jij — Jz’j(l - fff;) (3-3)

In other words, if neurons ¢ and j both belong to pattern a, then the connection

between them is removed. After presentation of all m patterns, this leads to equa-

UThis condition can be relaxed, but is kept for simplicity.
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tion 3.2. At the start of the learning process, the initial state of J corresponds to
uniform inhibition, which is known to implement winner-take-all competition between
individual neurons. It will be seen that, as inhibitory connections are removed during
learning, the competition evolves to mediate competition between groups of neurons
rather than individual neurons.

Let z; be the activity of neuron 7. The dynamics of the network is given by

dl?,' i +
E + Ir; = |:b1 + ar; — ﬁ]z—; J,;jll?j:l ’ (34)

for all ¢ = 1,...,n, where [2]* = max{z, 0} denotes rectification, @ > 0 is the strength
of self-excitation, and 8 > 0 is the strength of lateral inhibition. b; is the external

input. Equivalently, the dynamics can be written in matrix-vector form as
z+x=[b+Wz|t, (3.5)

where W = ol — 3J includes both self-excitation and lateral inhibition. The state
of the network is specified by the vector = [z, ..., ,]7, and the external input by
the vector b = [by, ..., b,]T. Recurrent networks with linear threshold units have been
used in a variety of neural modeling studies (39, 44, 67, 15].

A vector v is said to be nonnegative, v > 0, if all of its components are nonneg-
ative. The nonnegative orthant is the set of all nonnegative vectors. Notice that in
equation 3.4, z; > 0 whenever z; = 0. Moreover, the linear threshold function is obvi-
ously Lipschitz continuous. These two properties are sufficient to guarantee that the
nonnegative orthant is a positive invariant set of the dynamics, that is, any trajectory
of equation 3.4 starting in the nonnegative orthant remains there [68]. Furthermore,
even if the initial state of x is negative, it will become nonnegative after some tran-
sient period. Therefore, for simplicity we consider trajectories that are confined to the
nonnegative orthant = > 0. However, we consider input vectors b whose components

are of arbitrary sign.
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3.3 Network perfofmance

Next, we briefly state some of the properties of the network. The detailed analysis is
deferred to later sections.

We start with a simple case with n different groups each containing one of the
n neurons, which is the traditional winner-take-all network. Suppose £ > 1 neurons
are active initially. After proper ordering, the interaction matrix between these k
active neurons is W = (a + B)I — 8117, where 1 is the column vector consisting of
all ones. One eigenvector of W is 1 with eigenvalue o — (k — 1)3. The other k — 1
eigenvectors are differential modes whose components sum to zero, with eigenvalue
« + B. If the inhibition strength is strong enough, 8 > 1 — a, the differential modes
are unstable. Hence the network cannot have more than one neuron active at a steady
state. Moreover, the network is guaranteed to converge to a steady state provided that
a < 1. Under these conditions, we can conclude that for all b and initial conditions
of x, the network always converges to one of the given groups.

For the general case with arbitrary group membership matrix &, the above con-
clusion still holds true, except in some degenerate cases (which will be described in
the next section). If the lateral inhibition is strong enough (8 > 1 — «) as in the
previous case, any steady state with two active neurons not contained in the same
group is unstable. If & < 1, the network is again guaranteed to converge to a steady
state. Therefore, one and only one of the given groups can be active at each steady
state. | ,

Which groups could potentially be the winner is specified by the input b. In the
case of nonoverlapping groups, the potential winners are determined by the aggregate
positive input B* = Y7 [b;]*€? that each‘group receives. Any group with B® >
(1- o:v)ﬂ‘lbm@,x could end up as the winning group, where bp.x = max;{b;}. Which
groups wins in the end depends on the initial conditions. It is possible for a specific
group to win for all initial conditions if its inputs are sufficiently large.

The synaptic connections between neurons within a group are restricted to self-

excitation. This causes the activities of winning neurons to be equal to their rectified
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input, amplified by a gain factor 1/(1 — @). Thus the network implements a form of
hybrid analog-digital computation, selectively amplifying activities in only one group

of neurons.

3.4 Analysis of the network dynamics

3.4.1 Convergence to a steady state

This section characterizes the steady state responses of the network equation 3.4 to
an input b that is constant in time. For this to be a sensible goal, we need some
guarantee that the dynamics converges to a steady state, and does not diverge. This

is provided by the following theorem.

Theorem 1 Consider the network equation 8.4. The following statements are equiv-

alent:

1. For any input b, the network state & converges to a steady state that is stable
in the sense of Lyapunov, except for initial conditions in a set of measure zero

consisting of unstable equilibria.
2. The strength a of self-excitation is less than one.
Proof: To prove (2) = (1), if @ < 1, the function

E(x) = %(1 — o)z’ + 'ngJ:D - bz (3.6)

is bounded below and radially unbounded in the nonnegative orthant. Furthermore,

E is nonincreasing following the dynamics

dE/dt = —((I-W)x —b)T(z — [Wx+b]")
= Y (T-W)z-b?2-3" (& - (We +b); z.)
ieM igM
< =D (I=-We-bi -3 al
ieM ) €M
< 0
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where M = {i | Wz + b); > 0,Vi = 1,...,n}. The notation (z); denotes the ith
component of the vector z.

Equality above holds if and only if z is at the steady state. Therefore, E(x) is
a Lyapunov-like function assuring convergence to a stable steady state, except for
initial conditions in a set of measure zero.

To prove (1) = (2), let us suppose that (2) is false. If @ > 1, choose b =
(1,0, ...,0)T and initial conditions =(0) = (1,0,...,0)T so that the dynamics of the
first neuron is reduced to z; + z; = [az; + 1] > z; + 1, in which z; diverges.
In addition, x; diverges for initial conditions in a set of nonzero measure, so (1) is
contradicted. Therefore, @ < 1 is the both necessary and sufficient conditioﬁ for
convergence to a stable steady state. (J

In the follbwing, we restrict the network to a < 1.

3.4.2 Permitted and forbidden sets

In general, the network may have many fixed points. However, only those that are
stable are typically observed at a steady state. We will call a set of neurons that can
be coactivated by some input at a stable (in the sense of Lyapunov) steady state a
permitted set. Otherwise, it is termed a forbidden set.

For a set of neurons to be a permitted set, two conditions have to be satisfied:
first, its neurons have to be steadily coactivated by some input; second, the steady
coactivation must be stable. For the network we are considering, it is always possible
td choose an input that realizes a steady coactivation of the given set of neurons.
Hence, the first condition is readily satisfied. Consequently, whether a set is permitted
or forbidden depends only on its stability, which is determined by the the synaptic
connection matrix between the coactivated neurons. If the largest eigenvalue of that
matrix is less than unity, then the set is a permitted. Otherwise, it is forbidden.

One special property of the permitted and forbidden sets is that any superset of
a forbidden set is forbidden, and any subset of a permitted set is permitted [15]. An
intuitive understanding of this property is that by inactivating a neuron its feedback

- is removed. Because the connections in a symmetric network form effectively positive
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feedback loops, in the form of mutual excitation or disinhibition, removing feedbacks
increases stability of the network. Similarly, adding positive feedbacks decreases
stability, in agreement with the property that any superset of a forbidden set is
forbidden. |

The above property adds convenience for verifying whether a set is permitted or
forbidden. For example, if we know a subset of a set is forbidden, then the set itself

Is forbidden. We will use this property in the following sections.

3.4.3 Relationship between groups and permitted sets

The network in equation 3.4 is constructed to make the groups and thejr subgroups
the only permitted sets of the network. To determine whether this is the case, we
must answer two questions. First, are all groups and their subgroups permitted?
Second, are all permitted sets contained in the given groups? The first question is

answered by the following Lemma.
Lemma 1 Aj] groups and their subgroups are permitted.

Proof: 1If a set is contained in a group, then there is no lateral inhibition between
the neurons in the set. Provided that o < 1, all eigenvalues of the interaction matrix
between neurons in the group are less than unity, so the set is permitted. [J

The answer to the second question, whether aj] permitted sets are contained in
the groups, is not necessarily affirmative. For example, consider the network defined
by the group membership matrix §={(1,1,0), (0,1,1),(1,0, 1)}. Since every pair of
neurons belongs to some group, there is no latera] inhibition (J = 0), which means
that there are no forbidden sets. As a result, (1,1,1)is a permitted set, but obviously
it is not contained in any group.

Let us define a spurious permitted set to be a permitted set that is not contained
in any group. For example, (1,1,1) is a Spurious permitted set in the above example.
To eliminate all the Spurious permitted sets in the network, certain conditions on the

group membership matrix € have to be satisfied.
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Definition 1 The membership matriz £ is degenerate if there erists a set of k > 3
neurons that is not contained in any group, but all of its subsets with k — 1 neurons

belong to some group. Otherwise, £ is called nondegenerate.

For example, £ = {(1,1,0),(0,1,1),(1,0,1)} is degenerate. Using this definition, we

can formulate the following theorem.

Theorem 2 The neural dynamics equation 3.4 with o < 1 and 8 > 1 — a has a

spurious permitted set if and only if £ is degenerate.
To prove the theorem, we need the following lemma.

Lemma 2 If B > 1 — o, any set containing two neurons not in any same group is

forbidden under the neural dynamics equation 3.4.

Proof: We start by analyzing a very simple case where there are two neurons be-
longing to two different groups. Let the group membership be {(1,0),(0,1)}. In
this case, W = {(a, —); (—8, @)}. This matrix has eigenvectors (1,1)T and (1, —1)T
with eigenvalues being oo — 3 and « + (3 respectively. Since a < 1 for convergence
to a steady state and B > 0 by definition, the (1,1)7 mode is always stable. But if
ﬂ > 1—a, the (1,—1)T mode is unstable. This means that it is impossible for the two
neurons to be coactivated at a stable steady state. Since any superset of a forbidden
set is also forbidden, the result generalizes to more than two neurons. [J.
Now We are ready to prove Theorem (2) by using Lemma (2).

Proof of Theorem 2:

If £ is degenerate, there must exist a set k£ > 3 neurons that is not contained in
any group, but all of its subsets with & — 1 neurons belong to some group. There is
no lateral inhibition between these k neurons, since every pair of neurons belongs to
some group. Thus the set containing all £ neurons is permitted and spurious.

On the other hand, if there exists a spurious permitted set P, we need to prove
that £ must be degenerate. We will prove this by contradiction and induction. Let’s

assume £ is nondegenerate.
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P must contain at least 2 neurons since any one neuron subset is permitted and
not spurious. By Lemma 2, these 2 neurons must be contained in some group, or else
it is forbidden. Thus P must contain at least 3 neurons to be spﬁrious, and any pair
of neurons in P belongs to some group by Lemma 2. |

If P contains at least k neurons and all of its subsets with k£ — 1 neurons belong to
some group, then the set with these k neurons must belong to some group, otherwise
€ is degenerate. Thus P must contain at least k + 1 neurons to be spurious, and all
its k subsets must belong to some group.

By induction, this implies that P must contain all neurons in the network, in
which case, P is either forbidden or nonspurious. This contradicts the assumption
that P is a spurious permitted set. (J

Remark. The group winner-take-all competition described above holds only for
the case of strong inhibition 8 > 1—a. If B is small, the competition will be weak and
may not result in group winner-take-all. In particular, if 8 < (1—@)/Amaz(—J), where
Amaz(—J) is the largest eigenvalue of —J, then the set of all neurons is permitted.
Since every subsetrof a permitted set is permitted, this means that there are no
forbidden sets and the network' is monostable. Hence, group winner-take-all does not
hold. In the intermediate regime, (1 — &)/Amaz(—J) < 8 < 1 — «, the network has

forbidden sets, but the possibility of spurious perrﬁitted sets cannot be excluded.

3.5 The potential winners

We have seen that if £ is nondegenerate, any stable coactive set of neurons must be
contained in a group, provided that lateral inhibition is strong (8 > 1—a). The grbup
that contains the coactive set is the “winner” of the competition between groups. The
identity of the winner depends on the input b, and also on the initial conditions of
the dynamics.

Suppose the ath group is the winner. For all neurons not in this group to be
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inactive, the self-consistent condition should read

+,a _ +
> [b]eds = (1- )87 6], (3.7)
for all j ¢ a. If the group a contains the neuron with the largest input, this condition
is always satisfied. Hence any group containing the neuron with the largest input is
always a potential winner.

In-the case of nonoverlapping groups, the condition in equation 3.7 can be simpli-
fied as

D [b)7e > (1= e)s max {[,]"}, (38)

and therefore potential winners are determined by the aggregate group inputs B* =
> ,[b,-] +£§‘. Denote the largest input as bmax = max;{b;} and assume bpayx > 0. Only
those groups whose aggregate inputs are not smaller than (1 — )8 byay can win,

with the exact winner identity determined by the initial conditions of the dynamics.

3.6 An example — the ring network

In this section, we take the ring network as an example to illustrate several results we
have obtained so far. Let n neurons be organized into a ring, and let every set of d
contiguous neurons form a group. Thus in total there are n patterns to Be stored. In
the special case d = 1, this network becomes a traditional winner-take-all network.

In the case d > 1, the groups are overlapping and £ could be degenerate, In fact,
it can be shown that £ becomes degenerate when d > n/3 + 1. This is illustrated in
Figure 3-1, which shows the permitted sets of a ring network with 15 neurons. If the
group width is d = 5 neurons, there are no spurious permitted sets (Figure 3-1A-C).
However, when the group width is 6, the network contains 5 spurious permitted sets
(Figure 3-1F). |

Figure 3—é shows the effect of changing the strength of lateral inhibition. When
the strength of inhibition is strong (8 > 1 — a), there are no spurious permitted

sets provided that £ is nondegenerate (Figure 3-2D). In the other extreme, when
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Figure 3-1: Permitted sets of the ring network. The ring network consists of 15
neurons with o = 0.4 and 8 = 1. In panels A and D, the 15 groups are represented
by columns. Black refers to active neurons and white refers to inactive neurons. (A)
15 groups of width d = 5. (B) All permitted sets corresponding to the groups in
A. (C) The 15 permitted sets in B that have no permitted supersets. They are the
same as the groups in A. (D) 15 groups with width d = 6. (E) All permitted sets
corresponding to groups in D. (F) There are 20 permitted sets in E that have no
permitted supersets. Note that there are 5 spurious permitted sets.
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B < (1 — @)/ Amaz(—J), there is no unstable differential mode in the network. All
neurons could potentially be active at a stable steady state, given a suitable input
(Figure 3-2A). Between these two critical values (1 — a < 8 < (1 — @)/Amaz(—J)),
there exist both unstable differential modes and spuriéus permitted sets (Figure 3-

20).

A B

B=0.087

$=0.0874

0.9
0'81 5 10 15
D
3
B=1
2
1
01 5 10 15

Figure 3-2: Lateral inhibition strength 3 determines the behavior of the network. The
network is a ring network of 15 neurons with width d = 5 and where a = 0.4, and input
b; = 1 for all i. The panels show the steady state activities of the 15 neurons. (A)
There are no forbidden sets. (B) The marginal state 8 = (1 — a)/Anaz(—J) = 0.874,
in which the network forms a continuous attractor. (C) Forbidden sets exist, and so
do spurious permitted sets. (D) Group winner-take-all case, no spurious permitted
sets.

3.7 Storage capacity for random sparsé groups

An important characterization of any attractor network is its storage capacity for
random patterns, i.e., random groups {69, 65]. In our case, as the number of groups
gets larger, the probability of the groups being degenerate increases. We call the
probability of error the probability that a neuron outside a group is activated by
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mistake.

We choose random sparse groups; p < 1 is the probability that a particular neuron
is part of a particular group. The storage capacity is defined to be the maximum
number of groups the network can store, such that the error probability remains
smaller than a given bound. After constructing the synaptic weight matrix, we present
random inputs to the network. We assume that each component of the input b has the
probability ¢ of being positive. The expected number of neurons receiving positive
inputs is 7 = ng. Since a neuron receiving a nonpositive input can never become
active in our network, the error probability is effectively determined by the network
of thé 7i neurons receiving positive inputs.

Under the randomness in both the groups and the inputs, the expected number
of coactive neurons in a stable steady state is ¢ = np = npg. Next, we assume that
¢ neurons are coactivated, and calculate the probability P¢ of mistakenly activating
any of the other 7 — ¢ neurons. |

We use X (7,J) to denote the existence of synaptic inhibition between neurons i
and 7, which in our network implies that neurons ¢ and j are not éontained in any
same group (See Figure 3-3). According to Lemma 2, X (i, ) also represents mutual
exclﬁsion of neuron 4 and j at any stable steady state.

Without loss of generality, we index the ¢ active neurons from 1 to c. For neuron
4 within the other 7 — ¢ neurons to be inactive, it must make an inhibitory con-
nection with at least one of the ¢ neurons. The probability of this to happening is
Pr{ Vi, X(,j)}, where \ represents logical “or”. Extending this to all the other
fi — ¢ neurons, we derive the probability for all the 7 — ¢ neurons being inactive as

follows:

n—Cc ¢

j=li=1
where A represents logical “and”. The error probability Pg for at least one neuron

being mistakenly activated is then

n—c ¢

'7:8:1—P0=Pr{\/\/X(i,j)}, | (3.10)

j=11i=1
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Figure 3-3: Diagram of m random groups. Filled circles represent active neurons.
The first ¢ neurons in the group 1 are coactivated. For a perfect retrieval, all the
other 7i — ¢ neurons must be inactive, i.e., all of them must be inhibited by at least

one of the c active neurons. The error probability Pg is the probability that at least
one of the # — ¢ neurons is active.
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where the over-line denotes logic cbmplement. Next we find an upper bound on Pg

and use it to estimate the capacity of the network.

3.7.1 Capacity

The error probability is upper bounded by

Pe < (A — c)Pr{\/X(i,j)} = (A —c)(1~Pr{ VX(z',j)}), (3.11)
i=1 i=1
where Pr{ \/;_, X(4,5)} can be exactly calculated using the inclusion-exclusion prin-

ciple [70] as follows:

Pr{\/ X(i,5)} = Z(:-l)kH(Z)Pr{ A X(in5)} (3.12)

i=1 11,82y, 1k

c
c m—
S D al () [T ERO0 LRt
k
k=1
In the above equation, the term 1 — p + p(1 — p)* represents the probability that
neuron j does not coexist with other £ neurons. This can happen in two cases: with
neuron j being inactive (with probability 1—p), or neuron j being active but all other
k neurons being inactive (with probability p(1 — p)*).
Equation 3.13 can be further simplified by

APr{\/X(i,j)} = 1+Z(—1)’°+1 (Z) [1—kp? +O(p*)]™" (3.14)
i=1 k=0

~ 1-) (-1)* ) exp(—km %) 3.15
> (1) eplbmp (3.15)
= 1—[1 - exp(—mp?)]°. (3.16)

We have made two approximations in the above calculation. To derive equation 3.14
we have assumed that cp is sufficiently small, implying sparse groups. In the approxi-
mation made in equation 3.15 we have assumed m(cp?)? — 0 in the large n limit, ie.,

the number of groups m should scale in order less than 1/(cp?)?. We will see later,
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after deriving the capacity m, that these assumptions are indeed satisfied.
By substituting equation 3.16 into equation 3.11, we derive the upper bound on
the error probability
' Pe < (7 — )1 — exp(—mp®)]". (3.17)

We observed close tightness of this bound when compared to the true error probability
from numerical simulations of random groups (see Figure 3-4).
Given some small number d, the error probability P is guaranteed not to exceed

this number, provided that m < m*(d), where

m'(d) = —p~In{1-[d/(n - )]/} (3.18)
~ —p 7 In {1~ [d/(ng)]/ "7}, - (319)

where (3.19) follows from ¢ < 7.
Given n, p and ¢, using equation 3.19, we can estimate the maximum number of
random groups the network can store in such a way that the probability of incorrect

retrieval remains smaller than d.

3.7.2 Optimal sparsity

How sparse should the random groups optimally be? We define the optimal sparsity
p* as the sparsity p that maximizes the information capacity of the network. We
measure the information capacity / by the normalized entropy of the m* random
groups, |

I'=—m"n [plog,p+ (1 — p)logy(1 — p)]/n>. (3.20)

In other words, I is the entropy of the m* binary words with length n with probability
p of 1, normalized by the number of synaptic connections.

The denominator n? corresponds to the total entropy the binary synaptic weight
matrix J can hold. Thus T is expressed as the fraction of the possible entropy of
J, used to store groups. The optimal sparsity p* is given by p* = argmax, {I}. To

calculate p*, we first have to choose some value for g, determining the probability
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Figure 3-4: The error probability P is plotted as a function of the number of groups
m. Here ¢ = 1 and the number of neurons n = 100. The solid curves show the results
from numerical simulations, and the dashed curves are the upper bounds calculated
by equation 3.16. Two different sparsities p are used.
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that a neuron receives ag excitatory input. We consider two different cases. First, ¢
is independent of P, and without loss of generality we take g = 1, which corresponds
to the case where the inputs are excitatory and non-sparse. Second, g depends on p,
and for simplicity we choose 9 = p, which is the case where the inputs are of equal
sparsity as the groups.

The optimal sparsity calculations for both cases are derived in the Appendix. Here

we only state the results:

logy(n) /n when g = 1
Pt~ 2(n)/ (3.21)

Vkln(n)/n  when q = p,

where k = 2.86 is a constant. The approximation becomes exact when the number of
neurons goes to infinity. This result shows that to achieve the maximum informaticn
capacity, p* should scale as In(n)/n when ¢ = 1 and ag \/I_IWE when ¢ = p.
Correspondingly, the average number of nheurons in each pattern scales as In(n) for
=1 and \/TT(n)forq=p.
By substituting p* into equation 3.19, we derive the the storage capacity for these
optimal sparsities, 4
an?-1/e when ¢ = 1
m* & (3.22)
kmn/In(n) when g = P,
where ¢ % log,(n), o = d'/¢/logi(n) and k,, = —In[l — exp(—1/(2k%))]/k2 ~ 0.35,
Since In(n) hardly increases for large n, the capacity in the ¢ = 1 case roughly scales
as n? and in the 9 = p case it roughly scales as 7.
In section (3.7.1), equation 3.15 is derived under the assumption that m(cp?)? - 0
in the large 7 limit. Now we check the validity of this assumption. Self—consilstently,
in the case ¢ = 1 we find m*(cp*?)? ~ 1/n?, and in the case 7=p, m*(cp*?)? ~ 1/n.

Both of them approach zero in the large n limit.
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3.8 Discussion

We have presented a network that uses structured lateral inhibition to mediate winner-
take-all competition between potentially overlapping groups of neurons. Our con-
struction utiliées the distinction between permitted and forbidden sets of neurons,
and identifies the allowed groupings as permitted sets inherent in the network.

Our capacity calculation in the ¢ = 1 case reveals similarity with the Willshaw
model '[63]: We find that the optimal sparsity scales as In(n)/n, e.g., for a network
of 10'° neurons an optimal group consists of less than 30 neurons and is thus unreal-
istically small. In the case where inputs are sparse, ¢ = p, we find that the optimal
sparsity scales roughly as \/n and is thus within the realm of real networks.

A distinct feature of our generalized winner-take-all network is the coexistence of
discrete pattern selection and analog computation. We use strong lateral inhibitory
interactions to constrain certain groupings of neurons, but leave the analog values
of the active neurons unconstrained, except by the input. It might be interesting
to apply our principle of how to constrain active groups to the problem of data
reconstruction using a constrained set of basis vectors. The constraints on the linear
combination of basis vectors could for example implement sparsity or nonnegativity
constraints [60].

The coexistence of analog filtering with logical constraints on neural activation
represents a form of hybrid analog-digital computation that may be especially ap-
) propriateAfor perceptual tasks. Using this network model for object recognition, the
perception of an object could be represented by the set of active neurons, while ac-
tivities of these neurons correspond to continuous instantiations of the object such
as viewpoint, illumination, and scale [71]. In addition, this type of network may con-
stitute a neural mechanism for feature binding and sensory segmentation problems,

as suggested by Wersing et al. [72, 73]. In the domain of olfactory perception, recent
experimental data on odor evoked population responses in the olfactory bulb also
show some promising applications of our model [74, 75, 76].

As we have shown, there are some degenerate cases of overlapping groups, to which
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our method does not apply. It is an interesting open question whether there exists
a general way of translating arbitrary groups of coactive neurons into permitted sets
without involving spurious permitted sets. There are several possible approaches. For
example, we could use a more sophisticated interaction matrix, including both lateral
inhibition and excitation. For instance, in the three neuron degenerate example given
earlier, if we choose the interaction matrix W = awv” with v = [1,-1,1]T and
1/3 < a < 1/2, then the spurious set (1,1,1) is forbidden, whereas its subsets are
still permitted. Another possible approach would be to use higher order interactions.
Take again the three neuron degenerate case for example. If we added quadratic
interactions into the dynamics, z; + z; = [b; + az; — 3, JiTi =Y ok Tzi] T, it
would follow that for large enough inputs and suitable parameters the set (1,1,1)
would not be permitted but its subgets would. One more possible approach wQuld be
to use hierarchical networks with inter-layer excitation and intra-layer inhibition.

In the past, a great deal of research has been inspired by the idea of storing
memories as fixed-point attractors in neural networks with a fixed input. Our model
suggests an alternative viewpoint, which is to regard permitted sets as memories latent
in the synaptic connections, while the fixed points corresponding to permitted sets can
continuously change depending on the input. From this viewpoint, the contribution
of the present paper is a method‘ of storing and retrieving memories as permitted sets

in neural networks.
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Appendix

Calculation of the optimal sparsity for random patterns

Start from the information capacity of the network, given by

I = —m'nlplog,p+ (1 —p)logy(1 - p))/n’

~ logy(p)(pn) ™ In{1 — [(nq)~"d]"/"P0)}.

Here, m* is from equation 3.19 and the approximation is made in the small p limit.
Next we consider two cases for choosing the value of g and find the optimal p* =
argmax, {I} for these two cases respectively. The calculation is done under the

condition that the number of neurons n is sufficiently large.

3.1.1 Dense inputs, g =1

The information capacity I can be written as I = ¢~ In(1—(d/n)"¢) logy(c/n), where

¢ = pn. By setting the derivative of I with respect to ¢ equal to zero, we find
In(d/n)Y¢In(c/n) + [(d/n)Y¢ — 1]In[1 — (d/n)¥°] [1 — In(c/n)] = 0.
Let z = (d/n)Y/°. Then we have
Inzln(c/n) + (27! = 1) In(1 — 2) [1 = In(c/n)] = 0.

Under sparsity assumption, p = ¢/n < 1, we have |In(c/n)| > 1. Hence, the above

equation can be simplified to
(1 -2)In(1 - 2) = zIn(2). (3.23)

The solutions of the above equation are z = 0, 1/2, and 1. Given a fixed n, c
can only be a finite number. Therefore, the solution z = 1 is impossible. The

~other two solutions lead to ¢ = 0 or ¢ = log,(n). Correspondingly, p = 0 or p =
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log,(n)/n. Substituting the value of p = 0 into 7, we find that p = 0 corresponds
to a local minimum. Furthermore, the boundary value p = 1 also corresponds to a
local minimum. From these, we conclude that the optimal probability is given by

p* =logy(n)/n. Notice that it satisfies sparsity assumption (p* < 1).

3.1.2 Sparse inputs, ¢ =p

The derivative of I with respect to p is

I'(p) = {In(1-¢)[1-In(p)] + (1 — t) " In(p)/(np*)[1 + 2In(d/(pn))]}/(np? In 2)
~ —[1 = 2kIn(pn)/(np?)] In(p) In(1 —#)/(np* In2),

where k = —t[(1—t)In(1—¢)]~! and t = [d/(pn)]Y/®*™. To derive the above equation,
we have neglected small terms by assuming that n is sufficiently large.

By setting I'(p*) = 0 we find that p* obeys,

In(p*'n) 1

np*? 2k

Deriving the exact form of p* as a function of n from the above equation is not easy.
However, when n is sufficiently large, we can simplify the calculation by assuming

that k is independent of n. Under this ansatz, we derive p* to scale as

p* = Vkln(n)/n. . (3.24)

Next we need to self-consistently verify our ansatz still holds by replacing p* into

the definition of ¢,
In(d) —In[knIn(n)]/2 =~ 1

1 - ~ .
nt kIn(n) ok

(3.25)

The approximation becomes exact as n goes to infinity. Thus, we have verified that
¢ is approximately constant, equal to exp(—1/(2k)). This completes our ansatz.

We still need to determine the value of k. Substituting equation 3.25 into the
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definition of k, we derive that

1-t  In(t)
2t In(1—t)

(3.26)

The root of this algebra equation can be found numerically. The final result is ¢t =
0.8396 and k = 2.86. We can further check that the boundary values p at 0 or 1
only lead to local minima of I. Therefore, we conclude that p* in equation 3.24 is the

optimal sparsity.
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Chapter 4

A double-ring network model of

the head-direction system

4.1 Introduction

In the rat head-direction system, head-velocity inputs from the vestibular nuclei are
integrated to yield a neural representation of the current directional heading with
respect to the external environment. Neurons of this system, called head-direction
cells, fire maximally when the rat faces one particular direction [6, 7, 8, 9]. These
cells usually have different preferred directions, and a population of them encodes the
rat’s directional heading.

Previbusly, several network models have been proposed to emulate the properties
of head-direction cells [10, 11, 12]. The work by Zhang focuses on modeling persistent
activity of head-direction cells during stationary head states [10]. The persistent neu-
ral activity is generated in a ring-attractor network with symmetric excitatory and
inhibitory synaptic connections. Independently, he and Redish et al. showed that
integration is possible by adding asymmetrical connections to the attractor network
[11]. The strength of these connections is modulated by head-velocity. When the

rat moves its head to the right, the asymmetrical feedback loops between neurons

OThis is a collaborative work with Richard H.R. Hahnloser and H. Sebastian Seung.
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are biased toward the right-hand side and so induces a rightward shift of the activ-
ity in the attractor network. However, the integration mechanism by instantaneous
changing synaptic strength is biologically unrealistic. A more plausible model with-
out multiplicative modulation of connections has been studied recently by Goodridge
‘and Touretzky [12]. There, the head-velocity input has a modulatory influence on the
firing of intermittent neurons with spatially offset connections rather than on their
~ connection strengths. However, to achieve an accurate integration in this model, the
head-velocity input has to be transformed with some nonlinear function before acting
on the network. This nonlinear function was obtéined by curve-fitting the simulation
with the desired result. It is unclear whether such nonlinear transformations actually
exist in the head-direction system. Moreover, in this model, to achieve good integra-
tion for large head velocities, very fast synapses (less than 1ms for [12]) had to be
assumed.

In this paper, we propose a new model with two populations of neurons. It
integrates the head velocity signal directly based on the differential vestibular input
to these two populations, with potentially slow synapses such as NMDA and GABAbD.
In our model, the connections made by one ring are responsible for rightward turns
and the connections made by the other ring are responsible for leftward turns. We
mathematically analyze the dynamics of the network, and find that with carefully
chosen synaptic parameters, the network is able to achieve integration with high
precision. .

Although our network is conceptually simpler than previous models, we show
that using two simple read-out methods, averaging and extractiﬁg the maximum, it
is possible to appfo;dmate head-velocity independent tuning curves as observed in

the Postsubiculum (PoS) and anticipatory responses in the anterior dorsal thalamus

(ADN) [7, 77].
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4.2 Definition of the model

We model the head-direction system with two p‘opulations of neurons, each of which
is organized into a ring network structure. We assume the population size in each
ring is sufficiently large, so that activities of neurons sharing similar properties in
each ring can be averaged, resulting in a continuous approximation of the discrete

neuronal dynamics,

?% +s5(0,t) = fi(8,t) (4.1a)
7'?# + Sr(e,t) = fr(evt)1 (4.1b)

which are leaky integrators that model the dynamics of synapses with time constant
7. 5(0,t) and s.(0,t) represent synaptic activation (e.g., neurotransmitter concen-
tration) indexed by 6 at time ¢ in the left and right ring respectively. fi(6,t) and
) f-(8,t) denote the activities of neurons in the left and right ring respectively, which
are determined by the feedforward inputs and the recurrent synaptic inputs weighted

by synaptic connection strengths,

m +
fi = [ [Wa(0 — 0 — ¢)si(6', ) + Wa(B — 8 + )5, (6, £)](2m)~ a6’ + bl](4.2a)

—_—

£ = [ "[Wd(‘e—e’—w>sl<o',t>+Ws(e—e'+¢)sr(e',t)1(zw)-1de’+br}3-2b)

where [z]T = max(O, z) denotes a rectification nonlinearity. b; and b, are the vestibu-
lar feedforward inputs that differentially signal head movements with a common base-
line (....?7). For simplicity, we take b; = by — Ab and b, = by + Ab where Ab= Ab/bg is
proportional to angular head velocity. The function W represents the synaptic con-
nection profile between neurons on the same ring and W, between neurons on different
rings. The phase variable ¢ is the intra-ring connection offset and 1 is the inter-ring
connection offset. The two rings form mirror-symmetric copies of each other.
Because of the rotational symmetry of the ring network structure, function W, and

W, can be decomposed into sums of Fourier series. For simplicity of mathematical
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treatment, we approximate each of them by the first two Fourier components,
CWL(0) = Jo + Jicosf  Wa(8) = Ko+ K cos, - (43)

where Jo, J1, Ko and K; are synaptic connection parameters détermining the con-

nection strength of the intra- and inter-ring connections.

4.3 Integration

Depending oh parameters chosen, the network Eq. 4.1 may exhibit different dynamic
behavior. We model the head-direction system with an appropriately chosen param-
eter regime, under which the activities in each ring converges to a stationary bump
when Ab = 0 (Fig. 4-1a) ,-and generates a traveling bump with constant form when
|Ab| > 0 (Fig. 4-1b).

The stationary bump is used to model persistent activities of the head-direction
cells when the animal is not moving. Based on these persistent neural activities,
current head-direction can be “read out” using methods such as population vector
[78, 79]. Because of the rotation-symmetry of the ring network, this stationary bump
can be located at any position, and thus,‘is able to represent an arbitrary head-
direction. The symmetry also iinplies that the tuning curves of individual head-
direction 'cellé with respéct to the head-direction is the same as the profile o'f the
stationary bump. Therefore, properties of the bump can be used to predict those of
the tuning curves, which can be measured in experiments by single-unit recordings.

When Ab is nonzero, the stationary bump starts to move with a velocity depending
on Ab. The moving of the bump models the integration procéss. To achieve an
accurate integration, several issues need to be addressed. 7

First, the angular velocity v of the traveling pulse should be the same as the
angular head velocity. In our model, we assumed that Ab is proportional to the head
angular velocity. Therefore, for a perfect integration, it is required that v be linearly

related to Ab with a gain inverse to the gain between Ab and the head a,ngﬁlar velocity.
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Figure 4-1: Neural activity and synaptic activation profiles of two rings in the station-
ary (a) and the moving state (b). The dashed and solid lines indicates those from the
left and right ring respectively. In (a), Ab=0;in (b) Ab = —0.2. Other parameters
Jo = —60, Ky = -5, J; = K; = 80, ¢ = 80°, 1 = 50°, and T = 80ms.
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Second, the linearity should extend over a large range of Ab. Since the vestibular
input is excitatory, b, b. > 0, we consider the range IAB < 1|. Third, animals can
keep track of head direction even at very high head velocities (e.g., up to 700°/s in
mice). This requires that the network be able to produce traveling pulses with high
velocities. This can be easily achieved by using a fast time constant 7. However,
with slow synapses such as NMDA or GABAD, a large-range and precise integration
imposes several constraints on the synaptic connection parameters.

Next, we analyze dynamics of the network, and demonstrate that the above re-
quirements on accurate integration can be achieved with carefully chosen synaptic
parameters. We start from solving stationary solutions when Ab = 0, and then

characterize the functional relationship between v and Ab.

4.3.1 Stationary solution

When the head is not moving (Ab = 0), both rings receive the same feedforward
~input. Let us assume that the synaptic connection parameters are chose such that
each ring forms a stationary bump, which can be written, according to the symmetry,

in the form
s;(8) = [Acos(§ — 6o) — C]* and s(0) = [Acos(d — 6 + B) — CT, (4.4)

where 6 represents the current head direction, 3 is the offset between the two bumps,
and x denotes steady states. Substituting this equation into the steady state equations
of 4.1 s;(0) = f}(0) and s:(6) = f?(9), we derive that the parameters A, C and the
offset 3 should satisfy '

B = arcsin(J;/K;sing) — (4.5)
= bo[—(.]o + Ko)fo(gc) — COS OC]_I (46)
1 = fi(6.) [Jicos¢+ (K? — JZsin? ¢)1/?] | (4.7)
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* where the functions fy and f, are given by

1

1.
5 = sin(26,)].

fo(8.) = =(sin 8, — f.cosb,), fi(6) = —[f. - 5

=n»~

Here 6. is the critical half-width beyond which f;(8) is zero, that is, Acosf, = C
(The half-width is the same for both rings when Ab = 0.) The above set of equations
fully characterizes the stationary bump solution. Eq. 4.5 determines the offset
between the two rings, Eq. 4.7 determines the threshold 8., and Eq. 4.6 determines
the amplitude A. Once 6. and A are known, C can be computed accordingly.
Because of the rotational symmetry inherent in the network, the stationary bump
is marginally stable. Its location is not specified by the steady state equations, but
rather by the initial conditions of the dynamics. The stationary bump is maintained
due to the balance in the interaction received from each ring. When Ab # 0, the
neural activities in one ring increase at the expense of the other ring, which causes
an imbalance in the interaction between two rings and drives the activity bump to
move around. The dependence of the traveling velocity v on Ab could be complicated
because of the nonlinearity of the dynamics. We can characterize the dependence of

v on Ab when Ab is small by perturbation.

4.3.2 Small head-velocity approximation

To study the traveling bump solution with velocity v, we transform the coordinate
into a moving frame attached to the pulses traveling at velocity v. After the change
of variables S;(8,t) = s,(6 — vt,t), the original traveling bump corresponds to a

stationary solution in the new coordinates, satisfying
—7uS;(6) + S} (6) =F(f) and -~ TvS¥ (0) + S:(8) = F.(), (4.8)

where Fi(6) = f*(6 — vt,t) and F,.(6) = f*(6 — vt, t).
When Ab is small, Ab/by < 1, inside the excited regime (F(6) > 0, F. (9) > 0),
the solutions .S’, (6) and S(#) can be viewed as perturbations of s}(6) and s*(8) of

™




Eq. 4.4 respectively,

S{0) = (A+84)cos(d — b)) — (C +6C) (4.9)
S¥0) = (A+84,)cos(f+ 8 —6y) —(C+68C,). (4.10)

Substitute Eqgs. 4.9,4.10 into Eq. 4.8 and linearize the dynamics Eq. 4.8 around the

solution Eq. 4.4. From this we find a linear equation for v with solution
v = Jysin ¢(2r7A) " (6. + sin(26.)/2)6 A — 25in 8,.6C), (4.11)

where 64 = §A, — 0A, and 6C = §C, — §C,. To determine §A and dC, we linearize
the dynamics of the variable S*(6 — 3) — Sy (6) = §Acos(f — 6;) — 6C. After solving

the linearized differential mode dynamics, we find

0A

2[(kab. — 1)ky — k3sin 6] "1 Ab (4.12)
6C = 2ky[(ksb. — 1)ky — kysin 0,1 Ab, (4.13)

where ky = [J, cos ¢ — K cos(¢ + B)] 7L, ko = [0, +sin(26,)/2 — 27k, |(25sin 6.) 1, and
ks = (Jo — Ko)/m. By substituting §A and §C into Eq. (4.11), we find

v = 2]61.]1 sin d)('rA)'l[(k;;Oc - 1)]{}2 — k3 sin 66]_—1Ab. (414)

Equation (4.14) relates the velocity v of the two bumps to the differential vestibu-
lar input Ab when Ab < 1. This linear v-Ab relationship is plotted in Fig. 4-2 for
various synaptic parameters, and is compared with the results obtained from numer-
ical simulations. There is a good agreement of Eq. 4.14 only in a small region around
the origin. As we have discussed, the desired v-Ab curve should be linear over entire
range of Ab (|AI§ < 1|). Such a large-range linear regime is shown in Fig. 4-2d. We
will address in section 4.4.1 on how to choose synaptic parameters to achieve this
result.

One observation of the v-Ab curve is that v saturates in both ends when |[Ab] is

76




) _—
Y
N

(b)
500 ’

- Simulation ? 2000
= = Theory ”
) 1000

v (degrees/sec)
(=]

v (degrees/sec)
o

[=]
[3,]
-
o
el
4
=}
n
-

—
Q
S
—
[oX
—

5000

= Simulation .’ 3000{[ = Simulation
= = Theory 2000}L=_= Theory
1000 /
0
1000
2000
3000

1 0.5 0 0.5 1

Ablh0

v (degrees/sec)
v (degrees/sec)

Figure 4-2: Moving bump velocity v as a function of the input Ab for different
synaptic- parameters. The slope is indicated as the dashed lines. All these curves
saturate when |Ab| is large, with the saturating velocity indicated by the dotted line.
Panel (a) shows the result when K; < J; (K; = 70,¢ = 60). Panel (b) shows the
result when K; > J; (K; = 100). The good linearity of v-Ab curve is achieved when
K; = J; as indicated in Panel (c) and (d). The range of linearity is related to the
synaptic variable K, as shown in Panel (c) for Ky = —20 and Panel (d) for K = —5.
If not otherwise stated, the parameters used are Jo = —60, J; = 80, ¢ = 80°, ¢ = 50°,
and 7 = 80ms.
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sufficiently large. The saturation velocity sets a limit on the largest velocity at which
the bump can move. Next we calculate this saturation velocity, and discuss how to
choose synaptic parameters such that the saturation velocity is above the highest

head rotating velocity that an animal can produce.

4.3.3 Saturating velocity

When Ab is sufficiently large, at some point, the left ring becomes inactive. In this
case, tHe network dynamics are determined only by neurons in the right ring. This still
leads to a traveling bump solution in the right ring due to the asymmetric recurrent
connections. However, here the moving velocity is fixed, independent of the exact
value of Ab, as long as it is above a threshold value. This happens because the intra-
ring synaptic connection strength can be separated into two terms: one is syrhmetric

and the other one is anti-symmetric as follows:

W(@) = Jo+ Jicos(f — ¢)

= Jo+ Jicos¢pcosf + tan ¢psinf

= Ws(6) — tan g W(0),

where Ws(f) = Jy + Jicospcosf. Now, let s*(f) be the steady solution of a
ring network with symmetric connections WS(B). By differentiating, it follows that
s*(8 — tan ¢/7t) is the solution of a ring network with connections W (). Hence, the

saturating velocity v,q is given by

Usat = tan /7. (4.15)

To make the saturation velocity high, we can use a small synaptic time constant 7, or
choose the phase variable ¢ to be close to 7/2, which seems necessary if slow synapses
are involved in the integration of the head-direction system. For the parameters used
in Fig. 4-2¢,d , we use ¢ = 80° and 7 = 80ms, and find v, = 4062°/sec.

Similarly, when Ab is large negative over some threshold value, the right ring is
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inactivated, and the traveling bump in the left ring moves in an opposite direction
with the speed saturated at v, as well (See Fig. 4-2¢).

So far, our characterization of the v-Ab relationship has been based on the special
cases. Next, we analyze the dynamics of the double-ring network more systematically
by Fourier transforming the original continuous field dynamics into the one described
by a set of order parameters. Based on these order parameter dynamics, we analyze
the solution for traveling bumps, and discuss how to choose synaptic parameters to

achieve a good linearity like the one plotted in Fig. 4-2d.

4.4 Analysis in terms of Fourier modes

The double—fing network has two special properties that aids mathematical treat-
meﬁts. First, it is translation-invariant with period 27. Second, the synaptic inter-
action function only involves the first two Fourier components. Therefore, we can
simplify the original dynamics significantly by performing Fouriér transform. Next
we present the analysis, following similar treatments of Hansel and Sompolinsky [39].

Let us define the order parameters

() = / " 6i(6,1) (21)"1d8 (4.16)

-

rit) = / ) si(6,) expli(6 — Wi(1))] (2m) 'do, (4.17)

where ¢ = [, 7 is the index of the left and right rings. r? represents the mean synaptic
activation of neurons in each ring. The phase ¥,(t) is used to make 7} (t) always being
a real number, or in other words, r} is the amplitude of the second Fourier modes
and V,(t) is the phase (Fig. 4-3).

In terms these order parameters, the neural activities can be written as

fi(8,t) = [+ I} cos(6 — @)]" (4.18)
fr(6,8) = [+ I cos(d —@,)]", (4.19)
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Figure 4-3: A snapshot of the traveling bumps in two rings. The dashed lines denote
the synaptic variables and the solid lines represent the firing rate. ¥; and ¥, are the
phases of the second order Fourier components of s;(§) and s.(6) respectively. The
phase variable ®; is the defined by the peak location of fi(6), and ¢, is the peak
location of f.(6). '
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where

D = Jord + Ko’ + by (4.20)
I} = Jirfcos(® — U, — ¢) + Kyrl cos(®, — U, + ) (4.21)
! = Ko+ Jor’ + b, (4.22)
I} = Kirfcos(®, — U, — ) + Jyirlcos(®, — U, + ¢). (4.23)

The phase variables ®; and ®, are the peak of the neural activities in the left and

right ring respectively (See Fig. 4-3). They satisfy

Jiry sin(® — ¥, — ¢) + Kirlsin(® — ¥, +¢) = 0 (4.24a)

Kir) sin(®, — U, — ¢) + Jir}sin(®, — U, + ¢) = 0. (4.24b)

Let the half-width of positive f;(6,t) domain to be 67, and that of positive f,.(6,t)
domain to be 7. If f; is a rectified bump, we have 6f = arccos(—I?/I}) for i = I, 7.
Next we assume 6f and 6¢ are given, in which case the original dynamics can be view
as a linear one. Based on this, we perform Fourier transform of the network dynamics

Eq. 4.1a-4.1b and derive the dynamics of the order parameters as follows

Ty = =1y + I}(t) fo(65) (4.25a)
T = =1+ I} (t) f1(65) cos(®; = T;) (4.25b)
Tr}\ifi = I}(t)f1(65)sin(®; — T,), (4.25¢)

where ¢ = [, 7. Similarly we can also write down the dynamics of the high order Fourier
components. However, the above set of dynamics is decoupled from the higher order

components, and can be solved independently. In particular, we are interested in the
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traveling bump solutions in both ri‘ngs, which can be described by

re = L(t)fo(65) (4.26)
ri = IMt)fi(67) cos(®; — ;) (4.27)
v = tan(®; - ;) _ (4.28)

where v is the velocity of the traveling bumps. Given the vestibular input Ab, the
moving velocity of the bumps can be determined numerically from the above set of
algebra equations. Let 3 = &, — ¥, — ¢, and § = &, — ¥, = &, — ¥, = atan(rv).
These set of algebra equations can be further simplified into a set of self-consistent

four equations with 8, 3, 65, and 8¢ being unknown variables:

Kirisin(B) + Jirtsin(@ +¢) =0 - (4.29a)
Jirtsin( — ¢) + Kyrlsin(20 —8) =0 - (4.29b)
I! = K7} cos(B) + Jirt cos(6 + ) (4.29¢)
I} = Jyr} cos(8 — ¢) + Kir? cos(26 — fB) (4.29d)

where I!, Il, r}, and r! can be written as functions of 6§ and 6¢.

II' = [bm — bKofoBOIKE fo(62) fol6F) — 2]t (4.30a)
Ir = [bz — b Kofo(OKG fo(65) fo(65) — z12) 7", (4.30D)

with éz- = Jofo(6%) + cos @ for i = I,r, and the order parameter r} can be derived

from Eq. 4.27. By using numerical methods, solutions of Eq. 4.29 can be determined.

4.4.1 Linearity when J; = K,

One critical requirement on our model to achieve accurate integration is that the
velocity of the traveling bumps should be linearly proportional to the vestibular input
-over all possible range of Ab. Our simulation study shows that the network achieves

~an excellent linearity when J; = Ki (See Fig. 4-2 for different choices of K; and Ji).
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One typical result is shown in Fig. 4-2d. Next we present the analysis to justify this
result.

As we have stated, the v-Ab curve typically follows sigmoidal shape, saturating
in both ends when [AE] is larger than a certajn critical value Ab,. To measure the
quality of the linearity over the nonsaturated regime of Ai), We can simply compare
the difference between the slope at the origin and the velocity-input ratio at the

critical point, v,,, /b,

the critical Al;c, one ring becomes inactive, and with Joss of generality we assume the
left ring is Inactive, that is, r} =0, 6 = 0. From Eq. 4.29a, we have ¢ ~¢ and
B = 26, and therefore I} = Jir! and Il = Kirl. Substituting these into Eq. 4.30, we
find Ab, to be |

AI;c = [(KO - JO)fO(Gf) + Kl/Jl — COS 9:”(J0 + Ko)fo(H:) + Kl/Jl + cos 9:]—_1, (4.31)

where ¢ satisfies .J; J1(65) cos ¢ = 1, from which 0 can be determined.

Typically 6° can only be solved by numerical methods. However, an approxi-
mated value of % can be found by asymptotic expansion of the function fi(z) =
z3/(3n). Similarly, function fo(z) can be approximated by z?/(3m). Therefore,
fo(65) ~ 1/(J; cos ?). Substituting this into Eq. 4.31, we find

AI;C ~ [Ko - D+ J1 cos ¢(K1/J1 — COS 0;:')”.]0 + Ky + J1 cos ¢(K1/J1 ~+ cos 9:)]_1.
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On the other hand, when J; = Kj, the slope at the origin derived from Eq. 4.14

is

So = 2Jisin@sin b7 ~(Jo + Ko) fo(6.) — cos Oc[m — 0:(Jo — Koj]_l
~ tan¢sinf.m'[—(Jo + Ko) tan @][m + (Jo — Ko)f] ™
~ tan@(Jo + Ko)[r(Ko — Jo)] L.

In the above approximation, we have used the asymptotic expansion of folb,) =~
(2J1cos¢)~! and assumed (Jo — Ko)6. 3> 7. The above result indicates that in an
approximation, the ratio of the velocity-input at the critical value is the same as the
slope So at the origin. This explains the supreme linearity achieved when J; = Kj.

Another requirement on the integration of the head-direction system is that the
linearity should cover all possible range of Ab. From Eq. 4.32, we have the threshold
differential input Ab, ~ [(Ko — Jo)/(Ko + Jo)|. Provided that Jo is large negative, to
guarantee Ab, > 1, K; has to be small negative or positive, which implies that the
inter-ring global interaction should be weak inhibitory or excitatory. If K is large
negative, the saturation happens at a point when Ab < 1 (Fig. 4-2¢).

In the following, we consider dynamics in the case of J; = Kj.

4.4.2 Solution of the network when J; = K;

When J; = K;, the set of equations used to determine the thresholds and Velocity
can be simplified. After reordering and simplifying Eq. 4.29, we find that 0f, 6¢ and

0 are determined by:

£1(67) sin(6 — ¢) + f1(67) sin(f + ¢) = 0 (4.33)

J1f1(6F) cos 6 cos(8 — ¢) + K1 f1(6°) cos§ cos(f + ¢) = 1 (4.34)
[(Jo + Ko)(fo(05) + fo(62)) + cos 6 + cos 67| Ab =

(Jo — Ko)(fo(62) — fo(65)) + cos 6 — cos 05 (4.35)
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Variable # can be solved from the Eq. 4.33, with a dependence on 67 and 6°,

v =tan b/ = tan ¢[f1(6]) — f1(69)][r(f1(65) + f1(6))] 2. _ (4.36)

Substituting this into Eq. 4.34, we derive

TS O+ F2(07)+211(69) £1(65) cos(2)] = tan? g, (65 )= HEDPLA6))+ f1(69)]) 2 +1.

The above and Eq. 4.35 consist of two self-consistent equations, from which the thresh-
old widths 6} and 6¢ can be determined for each differential input Ab. Using Eq. 4.36,
we can then determine the velocity of the moving bumps for each Ab.

The results of this calculation are shown in F ig. 4-4a and are compared with
the simulation results, which show a good consistency between the theoretical and
simulation results.

The threshold width 6 and ¢ characterize the width of the tuning curves of
the head-directions. Its dependence on the head moving velocity can be measured
experimentally. We plot the change of them as a function of Ab in Fig. 4-4b obtained
from the above calculation. Besides threshold width, another characterization of the
neural responses is the peak firing rates of the traveling bumps in each ring, which

can be written as

P, = I}1-cos6®) (4.37)
P = I'(1- coséf), (4.38)

for the right and left ring respectively. Here,
I = I = 286{(Ko — Jo)[fo(62) = fo(65)] + cos 6 — cos 3

The result is plotted in Fig. 4-4c,d. It shows that P- and B is linearly related to the
differential input Ab.
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Figure 4-4: Results from the theoretical calculations when J; = K;. The velocity
of the traveling bumps as a function of the input is plotted in (a), which shows an
excellent consistency between the theoretical and the simulation results. The width
of the tuning curves are shown as a function of the input in (b). The peak firing rate
of two bumps are modulated by Ab, with the peak rate for each ring shown in (c)
and the difference between them shown in (d).
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4.5 Stability

The network is translation-invariant. Potentially there are homogeneous solution to
the dynamics. Assume s,(f) = w; and s,(f) = u,, and substitute them into the Eq.
4.1. We find v, = Jou; + Kou, + b; and u, = Jour + Kou; + b, which leads to the

homogeneous solutions

ur = bo(l—Jo— Ko)™' + Ab(1 — Jo + Ko) ™" (4.39)
w = bo(l—Jo— Ko) ' — Ab(1 - Jp+ Ko)~L. (4.40)

If Jo + Ko < 1, then u, and wu; are both positive and so the homogeneous solutions
exist. , '

Out network works in a regime where stationary bump develops when Ab = 0 and
moves when Ab # 0. To guarantee the network work in such a regime, we have to
choose synaptic parameters such that the homogeneous solution becomes unstable.

The stability of the homogeneous solution can be easily characterized by perturb-
ing the dynamics around the homogeneous solution. In terms of first two Fourier

components, the perturbed dynamics can be written as

761) = (Jo — 1)6r° + Koor? (4.41)

767 = (Jo — 1)678 + Kooty (4.42)

-for the first Fourier component, and

787 = (J1/2cos ¢ — 1)0r] + K1/2 cos pér} (4.43)
7673 = (J1/2cos ¢ — 1)dr} + K /2 cos pér}, (4.44)

for the second Fourier component. For Eq. 4.41,4.42 to be stable, Jo + |Ko| < 2. This
is typically satisfied if we choose Jp to be large negative. For r} and 7} to be stable, it

requires that J; cos ¢ < 1, provided that J; = K; as we have constrained. Therefore,

~ to beak the stability of the homogeneous solution, we can choose J; > 1/ cos ¢.

87




200
180
160
140}
120
100}

ﬂ‘_ 80_

60}
a0
20t

0-
Homogeneous
20 + . 9

50 45 40 35 30 J 25 20 . 15 10 5
¢

Diverge

Marginal

Figure 4-5: Phase diagram when Ab = 0. K; = J;, and other parameters K, = —5,
¢ = 80° and ¥ = 50°. The marginal phase is the desired parameter regime, in which
a stationary bump develops, although the location of the bump can be arbitrary.

~ The stability of the stationary bump or traveling bumps can be analyzed by per-
turbing the dynamics Eq. 4.25 around the stationary or traveling bump solutions.
However, the perturbed dynamics involves too many terms, and the details are not
included in this paper. The phase diagram of the stationary bump obtained from
simulation is shown in Fig. 4-5. This phase diagram does not include all possible
éolutions among all range of synaptic parameters. For example, if we we choose pa-
rameters such that K; < Jj sin ¢, the stationary bump solution will not exist and the
network will yield a lurching bump solution whose shape keeps changing in time. For
the stability of the traveling bump solutions, the bifurcation line from the hdmoge—
neous solution is the same as the one shown in Fig. 4-5, but the boundary where the

traveling bump solution diverge is different for different Ab.
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4.6 ADN and POs neurons

Goodridge and Touretzky’s integrator model was designed to emulate details of neu-
ronal tuning as observed in the different areas of the head-direction system. Wonder-
ing whether the simple double ring studied here can also reproduce multiple tuning
curves, we analyze simple read-out methods of the firing rates f; and f.. What we find
is that two read-out methods can indeed approximate response behavior resembling
that of ADN and POs neurons.

ADN neurons: By reading out firing rates using a maximum operation (See Fig.
(4-6)), 2(8) = max(f-(9), fi()), anticipatory head-direction tuning arises due to the
fact that there is an activity offset 3 between the two rings, equation (4.5). When the
head turns to the right, the activity on the right ring is larger than on the left ring
and so the ttining of z(f) is biased to the right. Similarly, for left turns, 2(6) is biased
to the left. Thus, the activity offset between the two rings leads to an anticipation
time T for ADN neurons, see Fig. (4-6). Because, by assumption £ is head—velocit.y
independent, it follows that 7" is inversely proportional to head-velocity (assuming
perfect integration), ' = (/(2v). In other words, the anticipation time tends to be
smaller for fast head rotations and larger for slow head rotations.

POs neurons: By reading out the double ring activity as an average (See Fig.
(4-6)), y(0) = 1/2(f-(6) + fi(8)), neurons in POs do not have any anticipation time:
because averaging is a symmetric operation, all information about the direction of

head rotations is lost.

4.7 Discussion on synaptic parameters

Here we discuss how the various connection parameters contribute to the double-ring
network to function as an integrator. In particular we discuss how parameters have

to be tuned in order to yield an integration that is large in Ab and in v.

e 7: By assumption the synaptic time constant 7 is large. 7 has the simplest effect

of all parameters on the integrator properties. According to equation (4.14), 7
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Figure 4-6: Snapshots of the activities on the two rings for counter-clock-wise head

rotation (a) and clock-wise rotation (b) respectively. Reading out the activities by
averaging and by a maximum operation (c, d).

90




scales the range of v. Notice that if 7 were small, a large range of v could be

trivially achieved. The art here is to achieve thls with small 7.

.d): The connection offset ¢ between neurons receiving similar vestibular input
is the sole parameter besides 7 that determines the saturating head-velocity,
beyond which integration is impossible. According to equation (4.15), the sat-
urating velocity is large if ¢ is close to 90° (we want the saturating velocity to
be large). In other words, for good integration, excitatory connections should
be strongest (or inhibitory connections weakest) for neuron pairs with preferred

head-directions differing by a little less than 90°.

¥: The connection offset 1 between neurons receiving different vestibular input

determines the anticipation time T of thalamic neurons. If ¢ is large, then 8,
| the activity offset in equation (4.5) is large. And, because § is proportional to
T (assuming perfect integration), we conclude that 1 should preferentially be
large (close to 90°) if T is to be large. Notice that by equation (4.14), the range
of v is not affected by 1.

Ky and Ki: The inter-ring connections should be mainly weak inhibitory, or
excitatory, which implies that K, should not be too negative. The intuitive
reason is the following. We want the integration to be as linear in Ab as possible,
which means that we want our linear expansions (4.9) and (4.10) to deviate as
littie as possible from (4.4). Hence, the differential gain between the two rings
should be small, which is the case when the two rings excite each other. The
inter-ring excitation makes sure, even for large values of Ab, that there are
comparable activity levels on the two riﬁgs. This is one of the main points of

this study.

Jo and Ji: The intra-ring connections should be mainly inhibitory, which implies
that Jp should be strongly negative. The reason for this is that inhibition is
necessary to result in proper and stable integration. Since inhibition cannot

come from the inter-ring connections, it has to come from J;. Notice also that
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according to equation (4.7), J; cannot be much larger than K;. What would
happen is that the persistent activity in the no head-movement case would

become unstable.

4.8 Conclusion and remarks

We have proposed a new model for integration in the head-direction system with
potentially slow synapses. The model is essentially a push-pull model with two pop-
ulations of neurons receiving differential vestibular inputs. The difference in input
breaks the balance between the interactions of two rings that is maintained during
stationary head states, and causes activity bump developed in both rings to move
around. With carefully chosen synaptic parameters, we demonstrate that the inte-
gration can be achieved with high precision.

We abstract the integration mechanism in the head-direction system with two
rings. It is a convenient abstraction for mathematical treatments. It does, however,
necessarily imply that there exists two nuclei of ring structures in the rat’s brain. In
fact, the network described by Goodridge and Touretzky [12] could, in a broad sense,
be viewed as a double-ring network as well.

Our model requires specially organized network structures and carefully tuned
synaptic parameters. Ideally the network structure and synaptic parameters should
be able to self-organized and constantly corrected by some learning mechanism. We
are currently investigating learning rules that give rise to this kind of synaptic con-

nections. The results will be reported elsewhere.
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Chapter 5

Spike-based learning rules and
stabilization of persistent neural

act ivity

Recent experimenté have demonstrated types of synaptic plasticity that depend on
the temporal ordering of presynaptic and postsynaptic spiking. At cortical [16] and
hippocampal [17] synapses, long-term potentiation is induced by repeated pairing of
a presynaptic spike and a succeeding postsynaptic spike, while long-term depression
results when the order is reversed. The dependence of the change in synaptic strength
on the difference At = ¢, — t,re between postsynaptic and presynaptic spike times
has beeﬁ measured quantitatively. This pairing function, sketched in Figure 5-1A,
has positive and negative lobes correspond to potentiation and depression, and a
width of tens of milliseconds. We will refer to synaptic plasticity associated with this
paifing function as differential Hebbian plasticity—Hebbian because the conditions
for potentiation are as predicted by Hebb [80], and differential because it is driven by
the difference between the opposing processes of potentiation and depression. |
The pairing function of Figure 5-1A is not characteristic of all synapses. For

example, an opposite temporal dependence has been observed at electrosensory lobe

OThis chapter is based on the article with the same title in Advances in Neural Information
Processing Systems 12, 199-205 (2000) by Xie and Seung.
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synapses of electric fish [81]. As shown in Figure 5-1B, these synapses depress when
a presynaptic spike is followed by a postsynaptic one, and potentiate when the order
is reversed. We will refer to this as d1fferent1al anti-Hebbian plasticity. |
According to these experiments, the maximum ranges of the dlfferentlal Hebbian
and anti-Hebbian pairing functions are roughly 20 and 40 ms, respectively. This is
fairly short, and seems more compatible with descriptions of neural activity based on
spike timing rather than instantaneous firing rates {82, 83]. In fact, we will show that
there are some conditions under which spike-based learning rules can be approximated

by rate-based learning rules.

5.1 Introduction

g o—— | —— S (TR TR L
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Figure 5-1: (A) Pairing function for differential Hebbian learning. The change in
synaptic strength is plotted versus the time difference between postsynaptic and
presynaptic spikes. (B) Pairing function for differential anti-Hebbian learning. (C)
Differential anti-Hebbian learning is driven by changes in firing rates. The synaptic
learning rule of Eq. (5.1) is applied to two Poisson spike trains. The synaptic strength
remains roughly constant in time, except when the postsynaptic rate changes.

The pairing functions of Figures 5-1A and 5-1B lead to rate-based learning rules
like those traditionally used in neural networks, except that they depend on temporal
derivatives of firing rates as well as firing rates themselves. We will argue that the
differential anti-Hebbian learning rule of Figure 5-1B could be a general mechanism
for tuning the strength of positive feedback in networks that maintain a short-term

memory of an analog variable in persistent neural activity[84]. A number of recurrent
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network models have been proposed to explain memory-related neural activity in
motor [85] and prefrontal(86] cortical areas, as well as the head direction system [10]
and oculomotor integrator[87, 88, 89]. All of these models require precise tuning
of synaptic strengths in order to maintain continuously variable levels of persistent
activity. As a simple illustration of tuning by differential anti-Hebbian learning,
a model of persistent activity maintained by an integrate-and-fire neuron with an

excitatory autapse is studied.

5.2 Spike-based learning rule

Pairing functions like those of Figure 5-1 have been measured using repeated pairing
of a single presynaptic spike with a single postsynaptic spike. Quantitative measure-
meﬁt-;ﬂs of synaptic changes due to more complex patterns of spiking activity have not
yet been done. We will assume a simple model in which the synaptic change due to
arbitrary spike trains is the sum of contributions from all possible pairings of presy-
naptic with postsynaptic spikes. The model is unlikely to be an exact description of
real synapses, but could turn out to be approximately valid.

We will write the spike train of the ith neuron as a series of Dirac delta functions,
si(t) =3, 6(t — T™), where T is the nth spike time of the ith neuron. The synaptic
weight from neuron j to 4 at time ¢ is denoted by W;;(t). Then the change in synaptic
weight induced by presynaptic spikes occurring in the time interval [0, T] is modeled
as

Wis(T + ) = Wiy () = / “a, / " dts £t~ t)si() 55(55) (5.1)

Each presynaptic spike is paired with all postsynaptic spikes produced before and
after. For each pairing, the synaptic weight is changed by an amount depending on
the pairing function f. The pairing function is assumed to be nonzero inside the
interval [—7, 7], and zero outside. We will refer to 7 as the pairing range.

According to our model, each presynaptic spike results in induction of plasticity
only after a latency A Accordingly, the arguments 7'+ A and A of W;; on the left

- hand side of the equation are shifted relative to the limits ' and 0 of the integral on
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the right hand side. We will assume that the latency )\ is greater than the pairing
range T, so that W;; at any time is only influenced by presynaptic and postsynaptic

spikes that happened before that time, and therefore the learning rule is causal.

5.3 Relation to rate-based learning rules

The learning rule of Eq. (5.1) is driven by correlations between presynaptic and
postsynaptic activities. This dependence can be made explicit by making the change

of variables u = t; — t; in Eq. (5.1), which yields

Wis(T+2) = W) = [ duf(u)Cys(u) 62

-7

where we have defined the cross-correlation

Cy(u) = /0 dt si(t +u) 55(2) (5.3)

and made use of the fact that f vanishes outside the interval [—7, 7]. Our immediate
goal is to relate Eq. (5.2) to learning rules that are based on the cross-correlation

between firing rates,

Crote(u) = /0 "t vi(t +u) v (t) (5.4)

There are a number of ways of defining instantaneous firing rates. Sometimes they are
cbmpﬂted by averaging over repeated presentations of a stimulus. In other situations,
they are defined by temporal filtering of spike trains. The following discussion is
general, and should apply to these and other definitions of firing rates.

The “rate correlation” is commonly subtracted from the total correlation to obtain
the “spike correlation” C’ffi ke — Ci; — Ci*. To derive a rate-based approximation to

the learning rule (5.2), we rewrite it as

Wi (T 4+ X) — Wi (N) =/: du f(u)Ci*e(u) + ’ du f.(u)C';fike(u) (5.5)

~and simply neglect the second term. Shortly we will discuss the conditions under
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which this is a good approximation. But first we derive another form for the first

term by applying the approximation v;(¢ + u) = v;(¢) + u;(t) to obtain

T T ‘
/ dhu f (u)CL™ () ~ fo dtBovi(t) + Buir(8)]v; (2) (5.6)

—-T

where we define

bo= [ dustw) 6= / " duuf(u) (5.7)

This approximation is good when firing rates vary slowly compared to the pairing
range 7. The learning rule depends on the postsynaptic rate through Gov; + B17;.
When the first term dominates the second, then the learning rule is the conventional
one based on correlations between firing rates, and the sign of G, determines whether
the rule is Hebbian or anti-Hebbian.

In the remainder of the paper, we will discuss the more novel case where Bo = 0.
This holds for the pairing functions shown in Figures 5-1A and 5-1B, which have
positive and negative lobes with areas that exactly cancel in the definition of S,.
Then the dependence on postsynaptic activity is purely on the time derivative of the
firing rate. Differential Hebbian learning corresponds to 3; > 0 (Figure 5-1A), while
differential anti-Hebbian learning leads to #; < 0 (Figure 5-1B). To summarize the

Bo = 0 case, the synaptic changes due to rate correlations are approximated by
Wi; o< piv;  (diff. Hebbian) Wi o« —iyv;  (diff. anti-Hebbian) (5.8)

for slowly varying rates. These formulas imply that a constant postsynaptic firing
rate causes no net change in synaptic strength. Instead, changes in rate are required
to induce synaptic plasticity. ,

To illustrate this point, Figure 5-1C shows the result of applying differential anti-
Hebbian learning to two spike trains. The presynaptic spike train was generated
by a 50 Hz Poisson process, while the postsynaptic spike train was generated by an

~ inhomogeneous Poisson process with rate that shifted from 50 Hz to 200 Hz at 1
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sec. Before and after the shift, the synaptic strength fluctuates but remains roughly
constant. But the upward shift in firing rate causes a downward shift in synaptic
strength, in accord with the sign of the differential anti-Hebbian rule in Eq. (5.8).

The rate-based approximation works well for this example, because the second
term of Eq. (5.5) is not so important. Let us return to the issue of the general
conditions under which this term can be neglected. With Poisson spike trains, the
spike correlations Cg’i e (u) are zero in the limit 7' — oo, but for finite T' they fluctuate
about zero. The integral over u in the second term of (5.5) dampens these fluctuations.
The amount of dampening depends on the pairing range 7, which sets the limits of
integration. In Figure 5-1C we used a relatively long pairing range of 100 ms, which
made the fluctuations small even for small 7. On the other hand, if 7 were short,
the fluctuations would be small only for large T'. Averaging over large T is relevant
Wheﬁ the amplitude of f is small, so that the rate of learning is slow. In this case, it
takes a long time for significant synaptic changes to accumulate, so that plasticity is
effectively driven by integrating over long time periods 7" in Eq. (5.1).

In the brain, nonvanishing spike correlations are sometimes observed even in the
T — oo limit, unlike with Poisson spike trains. These correlations are often roughly
symmetric about zero, in which case they should produce little plasticity if the pairing
functions are antisymmetric as in Figures 5-1A and 5-1B. On the other hand, if the

spike correlations are asymmetric, they could lead to substantial effects[83].

5.4 Effects in recurrent network dynamics

The learning rules of Eq. (5.8) depend on both presynaptic and postsynaptic rates,
like learning rules conventionally used in neural networks. They have the special
feature that they depend on time derivatives, which has computational consequences

for recurrent neural networks of the form

.’Z:'i + T; = Z M/ijO'(ICj) + bi (59)

J
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Such classical neural network equations can be derived from more biophysically re-
alistic models using the method of averaging[90] or a mean field approximation[91].
The firing rate of neuron j is conventionally identified with v; = o(z;).

The cost function E({z;}; {W;;}) = 3 3_; ¥? quantifies the amount of drift in firing
rate at the point z1,...,zy in the state space of the network. If we consider #; to be
a function of z; and W;; defined by (5.9), then the gradient of the cost function with
respect to W;; is given by OF/OW,; = o'(z;)vv;. Assuming that o is a monotonically
increasing function so that o/(x;) > 0, it follows that the differential Hebbian update
of (5.8) increases the cost function, and hence increases the magnitude of the drift
velocity. In contrast, the differential anti-Hebbian update decreases the drift velocity.
This suggests that the differential anti-Hebbian update could be useful for creating
fixed points of the network dynamics (5.9). '

5.5 Persistent activity in a spiking autapse model

The preceding arguments about drift velocity Were based on approximate rate-based
descriptions of learning and network dynamics. It is important to implement spike-
based learning in a spiking network dynamics, to check that our approximations
are valid. Therefore we have numerically simulated the simple recurrent circuit of
integrate-and-fire neurons shown in Figure 5-2. The core of the circuit is the “memory
neuron,”- which makes an excitatory autapse onto itself. It also receives synaptic
input from three input neurons: a tonic neuron, an excitatory burst neuron, and an
inhibitory burst neuron. It is known that this circuit can store a short-term memory
of an analog variable in persistent activity, if the strengths of the autapse and tonic
synapse are precisely tuned[92]. Here we show that this tuning can be accomplished
by the spike-based learning rule of Eq. (5.1), with a differential anti-Hebbian pairing
function like that of Figure 5-1B. '
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Figure 5-2: Circuit diagram for autapse model

The memory neuron is described by the equations

av

Cngp = —9.(V—=V1) —ge(V - V&) -~ g1(V - V1) (5.10)
A Tsynz_i+s = CYSZ(S(t—Tn) (511)

where V' is the membrane potential. When V reaches Vipres, a spike is considered to
have occurred, and V is reset to V... Each spike at time T}, causes a jump in the

synaptic activation s of size o,/7sy., after which s decays exponentially with time

constant 7, until the next spike.

The synaptic conductances of the memory neuron are given by
gg = Ws+ Woso + Wys, gr =W_s_ (5.12)

The term Ws is recurrent excitation from the autapse, where W is the strength of

“the autapse. The synaptic activations sy, s;, and s_ of the tonic, excitatory burst,
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and inhibitory burst neurons are governed by equations like (5.10) and (5.11), with
a few differences. These neurons have no synaptic input; their firing patterns are
instead determined by applied currents I,pp0, Jopp+ and Iop, —. The tonic neuron has
" a constant aﬁplied current, which makes it fire repetitively at roughly 20 Hz (Figure
5-3). For the excitatory and inhibitory burst neurons the applied current is normally
zero, except for brief 100 ms current pulses that cause bursts of action potentials.
As shown in Figure 5-3, if the synaptic strengths W and W, are arbitrarily set
before learning, the burst neurons cause only transient changes in the firing rate of
the memory neuron. After applying the spike-based learning rule (5.1) to tune both
W and W, the memory neuron is able to maintain persistent activity. During the
. interburst intervals (from X after one burst until A before the next), we made synaptic
changes using the differential anti-Hebbian pairing function f(t) = —Asin(nt/7) for
spike time differences in the range [—7,7] with A = 1.5 x 10~* and 7=A=120 ms.
The resulting increase in persistence time can be seen in Figure 5-4A, along with the

values of the synaptic weights versus time.

L]

/ untuned

Figure 5-3: Untuned and tuned autapse activity. The middle three traces are the
membrane potentials of the three input neurons in Figure 5-2 (spikes are drawn at
the reset times of the integrate-and-fire neurons). Before learning, the activity of
the memory neuron is not persistent, as shown in the top trace. After the spike-
- based learning rule (5.1) is applied to the synaptic weights W and Wy, then the burst
inputs cause persistent changes in activity. C,, = 1 nF, g; = 0.025 uS, V;, = —70 mV,
VE=0mV, Vi = =70 mV, Vipres = =52 mV, Vigger = =59 mV, o, = 1, Tsyn = 100
ms, Ioppo = 0.5203 nA, Iopp s = 0 0r 0.95 1A, Tyyno = 100 mS, Teyn 4 = Teyn — = 5 ms,
W, =0.1, W_ = 0.05. :

To quantify the performance of the system at maintaining persistent activity, we
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determined the relationship between dv /dt and v using a long sequence of interburst
intervals, where v was defined as the reciprocal of the interspike interval. If W and
W, are fixed at optimaily tuned values, there is still a residual drift, as shown in
Figure 5-4B. But if these parameters are allowed to adapt continuously, éven after
good tuning has been achieved, then the residual drift is even smaller in magnitude.
This is because the learning rule tweaks the synaptic weights during each interburst
interval, reducing the drift for that particular firing rate.

Autapse learning is driven by the autocorrelation of the spike train, rather than a
| cross-correlation. The peak in the autocorrelogram at zero lag has no effect, since the -
pairing function is zero at the origin. Since the autocorrelation is zero for small time
lags, we used a fairly large pairing range in our simulations. In a recurrent network
of many neurons, a shorter pairing range would suffice, as the cross-correlation does

not vanish near zero.

. Qaaaﬁa T
] Fili &”“ ': -
$ N ~hsd oy
oy,
\%ﬁq
o
% 5 10 15 20 25 LT %0 80 80 100
time (s) rate (Hz)

Figure 5-4: Tuning the autapse. (A) The persistence time of activity increases as the
weights W and W, are tuned. Each transition is driven by pseudorandom bursts of
input (B) Systematic relationship between drift dv/dt in firing rate and v, as measured
from a long sequence of interburst intervals. If the weights are continuously fine-tuned
("*") the drift is less than with fixed well-tuned weights (’0’).
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5.6 Discussion

We have shown that differential anti-Hebbian learning can tune a recurrent circuit
to maintain persistent neural activity. This behavior can be understood by reducing
the spike-based learning rule (5.1) to the rate-based learning rules of Egs. (5.6) and
(5.8). The rate-based approximations are good if two conditions are satisfied. First,
the pairing range must be large, or the rate of learning must be slow. Second, spike
synchrony must be weak, or have little effect on learning due to the shape of the
pairing function.

The differential anti-Hebbian pairing function results in a learning rule that uses
—1; as a negative feedback signal to reduce the amount of drift in firing rate, as illus-
trated by our simulations of an integrate-and-fire neuron with an excitatory autapse.
More generally, the learning rule could be relevant for tuning the strength of positive
feedback in networks that maintain a short-term memory of an analog variable in per-
sistent neural activity[84]. For example, the learning rule could be used to improve
the robustness of the oculomotor integrator(87, 88, 89] and head direction system[10]
to mistuning of parameters. In deriving the differential forms of the learning rules in
(5.8), we assumed that the areas under the positive and negative lobes of the pairing
function are equal, so that the integral defining 5, vanishes. In reality, this cancel-
lation might not be exact. Then the ratio of 8; and By would limit the persistence
time that can be achieved by the learning rule.

Both the oculomotor integrator and the head direction system are also able to
integrate vestibular inputs to produce changes in activity patterns. The problem of
finding generalizations of the present learning rules that train networks to integraté

is still open|[84].
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Chapter 6

Equivalence of backpropagation
and contrastive Hebbian learning

in a layered network .

6.1 Introduction

Backpropagation and contrastive Hebbian learning (CHL) are two supervised learning
algorithms for training networks with hidden neurons. They are of interest, because
they are generally applicable to wide classes of network architectures. In backprop-
agation [18, 19], an error signal for the output neurons is computed and propagated
back into the hidden neurons through a separate teacher network. Synaptic weights
are updated based on the product between the error signal and network activities.
CHL updates the synaptic weights based on the steady states of neurons in two dif-
ferent phases — one with the output neurons clamped to the desired values and the
other one with the output neurons free [20, 93]. Clamping the output neurons causes
the hidden neurons to change their activities, and this change constitutes the basis
for the CHL update rule.

CHL was originally formulated for the Boltzmann machine [21], and was -extended

OThis is a collaborative work with H. S. Seung.
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later to deterministic networks [94, 95], in which case it can be interpreted as a mean-
field approximation of the Boltzmann machine learning algorithm. However, this
interpretation is not necessary, and CHL can be formulated purely for deterministic
networks [20, 93]. Compared to backpropagation, CHL appears to be quite different.
Backpropagation is typically implemented in feedforward networks, whereas CHL is
implemented in networks with feedback. Backpropagation is an algorithm driven by
error, whereas CHL is a Hebbian-type algorithm, with update rules based on the
correlation of pre- and post-synaptic activities. There has been some work to relate
CHL to the general framework of backpropagation [96, 97, 98]. However, a direct link
between them has been lacking. |

To investigate the relationship between these two algorithms, we consider a special
network for Which CHL and backpropagation are equivalent. This is a multilayer
perceptron to which weak feedback connections have been added and with output
neurons that are linear. The equivalence holds because in CHL clamping the output
neurons at their desired values causes the hidden neurons to change their activities,
and this change turns out to be equal to the error signal spread by backpropagation,

except for a scalar factor.

6.2 The learning algorithms

In this section, we describe the backpropagation and CHL algorithms. Backpropa-
gation is in the standard form, implemented in a multilayer perceptron [18]. CHL
is formulated in a layered network with feedback connections between neighboring
layers of neurons. It is an extension of the typical CHL algorithm formulated for

recurrent symmetric networks [20].

6.2.1 Backpropagation

Consider a multilayer perceptron with L+1 layers of neurons and L layers of synaptic
weights (Figure 6—1A).> The activities of the kth layer of neurons are denoted by the

vector T, their biases by the vector by, and the synaptic connections from layer k — 1
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to layer k& by the matrix W;. All heurons in the kth layer are assumed to have the
same transfer function fi, but this transfer function may vary from layer to layer.
In particular, we will be interested in the case where f. is linear, though'the other
transfer functions may be nonlinear. In the basic definition, f; acts on a scalar and
returns a scalar. However, we will generally use it to act on a vector, in which case it
returns a vector, operating component by component. f; is the derivative of f, with
respect to its argument. Similar to fi, when f] acts on a vector, it returns a vector

as well. We assume that f; is monotonically increasing.

A Multilayer perceptron
0

¥

B  Layered network with feedback

0 k-1 k L
' W,, —)feedforward

YW[(— feedback

Figure 6-1: Diagram on the network structures of the multilayer perceptron (A) and
the layered network with feedback connections (B). Layer 0 is the input, layer L is the
output, and the others are hidden layers. The forward connections are the same for
both networks. In (B), there exist feedback connections between nexghbonng layers
of neurons.
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Backpropagation learning is implemented by repeating the following steps for each

example in a training set of input-output pairs.

1. In the forward pass,
Tk = fre(Wip-1 + bi) (6.1)

is evaluated for kK = 1 to L, thereby mapping the input z, to the output z,.

2. The desired output d of the network, provided by some teacher, is compared

with the actual output z; to compute an error signal
yr = Dr(d — zp)

- The matrix Dy, = diag{f;,(Wizx—1 + bx)} is defined by placing the components

of the vector fi(Wizr_1 + by) in the diagonal entries of a matrix.

3. The error signal is propagated backwards from the output layer by evaluating
Yr—1 = Do Wi gk

for k=L to 2.

4. The weight update
AWy = nyezi_, (6.2)

is made for k = 1 to L, where n > 0 is a parameter controlling the learning

rate.

6.2.2 Contrastive Hebbian learning

To formulate CHL, we consider a modified network, in which in addition to the
feedforward connections from layer k—1 to layer k, there are also feedback connections
between neighboring layers (Figure 6-1B). The feedback connections are assumed to

be symmetric with the feedforward connections, except that they are multiplied by a
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positive factor 7. In other words, the matrix YW contains the feedback connections
from layer k back to layer k& — 1. '
CHL is implemented by repeating the following steps for each example of the |

training set.
1. The input layer zy is held fixed, and the dynamical equations

dz
d_tk + T = [l WiZi—1 + YW1 Zx01 + be) (6.3)

for k = 1 to L are run until convergence to a fixed point. The case k = L is
defined by setting zr4; = 0 and Wy, = 0. Convergence to a fixed point is
guaranteed under rather general conditions, to be shown later. This is called

the free state of the network, and is denoted by & for the kth layer neurons.

2. The anti-Hebbian update

AW, = —-’I]’)’k_L.fki{ 1

is made for k=1, ..., L.

3. The output layer x is clamped at the desired value d, and the dynamical
equation 6.3 for K = 1 to L — 1 is run until convergence to a fixed point. This

is called the clamped state, and is denoted by Z; for the kth layer neurons.

4. The Hebbian update

AWy = ¥ Pt
is made for k =1, ..., L.

Alternatively, the weight updates could be combined, and made after both clamped

and free states are computed,
AWy = ny* (28T | — 537 )). (6.4)

. This form is the one used in our analysis.
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This version of CHL should look familiar to anyone who knows the conventional
version, implemented in symmetric networks. It will be derived in section 6.4, but

first we prove its equivalence to the backpropagation algorithm.

6.3 Equivalence in the limit of weak feedback

Next, we prove that CHL in equation 6.4 is equivalent to the backpropagation algo-
rithm in equation 6.2, provided that the feedback is sufficiently weak and the output
neurons are linear.

In notation, xx, Zx, and Zj represent the kth layer activities of the feedforward
network, the clamped state and the free state respectively. We consider the case of
weak feedback connections, v < 1, and use “x” symbol to mean that terms of higher
order in v have been neglected and “~” to denote the order.

The proof consists of the following four steps:

1. Show that the difference between the feedforward and free states is of order v,
éi‘k = ff]k — Tk~ (65)

forallk=1,.., L.

2. Show that in the limit of weak feedback, the difference between the clamped

and free states satisfies the following iterative relationship,
5l‘k = ﬁ‘k - :i'k ~ ’YDkW}Z:;_16xk+1; (66)

fork=1,.,L -1, and dz; =d — #.

3. Show that if the output neurons are linear, dzy is related to the error signal in
backpropagation throﬁgh
Sz =yl Fy,. (6.7)
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4. Finally, show that the CHL ﬁpdate can be approximated by
AW, = nyrzr_,. (6.8)

In the CHL algorithm, clamping the outp.ut layer causes changes in the output
neurons to spread backward to the hidden layers, because of the feedback connections.
Hence, the new clamped state differs from the free state over the entire network,
including the hidden neurons. Equation 6.6 states that dz; decays exponentially
with distance from the output layer of the network. This is because the feedback is
weak, so that dzy is reduced from §z,; by a factor of .

Remarkably, as indicated in equation 6.7, the difference between the clamped and
free states is equivalent to the error signal 1, computed in the backward pass of
backpropagation, except for a factor of ¥£=* when the output neurons are linear.
Moreover, this factor annihilates the factor of ¥*~ in the CHL rule of equation 6.4,

resulting in the update rule equation 6.8.

6.3.1 Proof

To prove the first step, we start from the steady state equation of the free phase,
Zp = f(Widp_1 + b + ’)’ngl-’ikﬂ),

for k = 1,...,L — 1. Subtracting this equation from equation 6.1 and performing

Taylor expansion, we derive

J.i‘k = 53].; — Tk
= fo(WiZe-1 + bk + YW 13x11) — fe(Wik_1 + be)

~ Dka&i‘k_l + 7DkW131+1jk+1)

for all hidden layers, and &, ~ D Wré%,_; for the output layer. Since the zeroth

layer is fixed with the input, §%Zo = 0, under the above iterative relationships, we
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must have 0&x ~y forall k=1,..., L.
To prove equation 6.6, we compare the fixed point equations of the clamped and

free states,

f—l(i‘k) = ijk—l + bk + 7WE+1jk+1

FHE) = Wideoy +be + YWE 1141,

for k =1,...,L — 1. Subtract them and perform Taylor expansion around Zx. Recall

the definition of dzx = &, — £x. We have

Wibzi + YW 6Tk = f7H(&k) — F7H (&)
Jkéa:k, ’ (69)

Q

where the matrix J; = diag{df~!(iy)/0i}. Since Z; — zx ~ 7, to the leading order
in 7, matrix Ji can be approximated by Ji ~ diag{0f~!(zx)/0zx} = D;'. Substitute
this back to equation 6.9. We get

Jl‘k ~ Dk(Wk(SIL'k_l + ’7WE+16$;;+1).

Assume that 0z is of order v**. Then Widz,_; is of higher order in « than
YW, 16z11. Therefore,

Jl'k ~ ’ka le;.l 6$k+1 )

with 0z; = d — Z, & d — z1. This equation indicates that 6z* ~ v8z*+1, which
implies that dz;x ~ yL=*. Therefore, it completes our assumption, and equation 6.6
is proved.

If the output neurons are linear, then y;, ~ éz;. Consequently, dzx = yL*y, for
allk=1,..., L.
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Finally, the weight update rule of CHL follows

AW, = P l(&eel | — &al )
= " Femai_y + mtEbal_y + ny*Lomkda]_,

~ k—L T
~ oy 0Ted

Q

NYkTr_y-

The last approximation is made because :Ek_ll — X_1 ~ . This result shows that the
CHL algorithm in the layered network with linear output neurons is identical to the

backpropagation as vy — O.

6.4 Cohtrastive Function

The CHL algorithm stated in section 6.2.2 can be shown to perform gradient descent
on a contrastive function that is defined as the difference of the network’s Lyapunov
functions between clamped and free states [20, 93)].

Suppose E(z) is a Lyapunov function of the dynamics in equation 6.3. Construct
the contrastive function C(W) = E(Z) — E(Z), where £ and % are steady states of the
whole network in the clamped and free phase respectively, and W = {Wh, ..., W.}.
For simplicity, let us first assume that F(z) has a unique global minimum in the
range of z and no local minima. According to the definition of Lyapunov functions,
Z is the global minimum of F, and so is Z, but under the extra constraints that the
output neurons are clamped at d. Therefore, C(W) = E(£) — E(£) > 0 and achieves
zero if and only if & = £, that is, when the output neurons reach the desired values.
Performing gradient descent on C(W) leads to the CHL algorithm. On the other
hand, if E(z) does not have a unique minimum, # and £ may only be local minima.
However, the above discussion still holds, provided that 2 is in the basin of attraction
of  under the free phase dynamics. This imposes some constraints on how to reset
the initial state of the network after each phase. One strategy is to let the clamped

phase settle to the steady state first, and then run the free phase without resetting
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hidden neurons. This will guarantee that C(W) is always nonnegative and constitutes
a proper cost function.

Next we introduce a Lyapunov function for the network dynamics in equation 6.3,
L
E(z) = Z’Yk—L[lTFk(xk) — 2y WiTho1 — bfa:k], (6.10)
k=1

where function Fj is defined so that Fj(z) = f;'(z), which is the inverse of fi.
& = {z1, ...,z } represents the states of all layers of the network.
For E(z) to be a Lyapunov function, it must be nonincreasing under the dynamics

equation 6.3. This can be shown by
L T
. oF
E = — ) z
> (%) =

- .
= Z'Vk_['[fk_l(wk) — Wity — YWyl 241 — be] T
1

>
I

Il
M=

Y @) — F @k + )] Tloe — (B + 7))

[en i

< 0,
where the last inequality holds because f, is monotonic as we have assumed. There-
fore, E(z) is nonincreasing following the dynamics, and stationary if and only if at the
fixed points. Furthermore, with appropriately chosen fi, such as sigmoid functions,
E(z) is also bounded below, in which case E(z) is a Lyapunov function.

Given the Lyapunov function, we can form the contrastive function C(W) and
derive the gradient descent algorithm on C accordingly.

The derivative of E(£) with respect to W is

dE(%) OE > OE 0y
+
k

dWi, W, Oty Wi
| OF
A
= _’Yk_Li'kjl’I;—b
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where the second equality holds because 0F /9%, = 0 for all k at the steady states.

Similarly, we derive
dE(%) L. .
aw, ~
Combining the above two equations, we find the derivative of C(W) with respect to

W, shall read

iC dE() dE(E)  wp. o - 1
dWi - dW,, dWy =7 (xka‘.k—l wkmk_l).

With a suitable learning rate, gradient descent on C(W) leads to the CHL algo-

rithm in equation 6.4.

6.5 Equivalence of cost functions

In section 6.3, we proved that the CHL algorithm in the layered network with linear
output neurons is equivalent to backpropagation in the weak feedback limit. Since
both algorithms perform gradient descent on some cost function, the equivalence in
the update rule implies that their cost functions should be equal, up to a multiplicative
or an additive constant difference. Next, we demonstrate this directly by comparing
the cost functions of these two algorithms.
The backpropagation learning algorithm is gradient descent on the squared differ-
ence, ||d — z||?/2, between the desired and actual outputs of the network.
For the CHL algorithm, the cost function is the difference of Lyapunov functions
between the clamped and free states, as shown in the previous section. After reorder-

ing, it can be written as
L —_—
C = 7 T (Fu(de) — Firl(@n) — S (Wi + be) — Sai_y Wi .
k=1

Recall that 6z, ~ yL=*. Therefore, the §z) term above multiplied by the factor

~*=L is of order 1, whereas the dx,_; multiplied by the same factor is of order 7, and
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thus can be neglected in the leading order approximation. After this, we get

Cr Y Y INT(Fi(ir) — Fe(dr)) — 0zf (Widk-1 + bi)].

L
k=1
If the output neurons are linear (f1(z) = ), then Fi(z) = #]z1/2 and WiZr_1+

by = Z;. Substituting them into C' and separating terms of the output and hidden

layers, we derive

L1
Lor. T . _ 14 .
C =~ 5[(.’1:{.’171, —#T&L) — dxtar] + Z'yk LTt (2) — WiEr—1 — b
k=1

Q

1
§”d— ‘TL”21

where the second term with the sum vanishes betause of the fixed point equations.

In conclusion, to the leading order in -, the contrastive function in CHL is equal
to the squared error cost function of backpropagation. The demonstration on the
: equality of the cost functions provides another perspective on the equivalence between
these two forms of learning algorithms.

So far, we have always assumed that the output neurons are linear. If this is
not true; ‘how diﬂ’erént is the cost funcﬁon of CHL from that of backpropagation?
Repeating the above derivation, we get the cost function of CHL for nonlinear output

neurons,

C ~ 1TFL(§:L) —_ ITFL(ZEL) - &Bszl(:f[,)

Q

1
§5a:{D515wL (6.11)

Since D;'! is a positive definite diagonal matrix, the cost function of CHL for nonlinear

output neurons is the weighted sum of the square errors for each output neuron.
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6.6 Generalization

In the preceding sections, we studied CHL in a layered recurrent network with feed-
back connections, and showed that in the limit of weak feedbacks, CHL becomes
identical to backpropagation. Next, we consider of applying CHL to a class of more
general networks, which subsume fully connected symmetric networks and layer re-
current networks considered above.

The generalized network dynamics is defined to be

g+ = i) uaWisBiz; + by), (6.12)
j=1

where Wi; = Wj; and «;,8; > 0 for all 4,5 = 1,...,n with n being the total number
of neurons. This network is a generalization.of the traditional symmetric nefworks,
with the parameters o; and f; introduced to form potentially asymmetric synaptic
interactions. It subsumes both the symmetric networks and the layer networks. For
example, in the special case of a; = 1 and §; = 1 for all 4, the network becomes a
symmetric network. On the other hand, the layer networks can be instantiated by
arranging the network into L layers and choosing «; in the kth layer to be y(1-%)/2,

and §; in the kth layer to be /2 »
We show in the Appendix that the dynamics in Eq. (6.12) is guaranteed to con-
verge to a fixed point under some very general conditions, in which case the network

has a Lydpunov function
Z Bia  (Fi(zs) — biz) — = Z Bz Wi;z,;8,. (6.13)
i=1 z] =1

6.6.1 The learning algorithm in the generalized network

CHL algorithm in the generalized network follows similar steps as in layered networks:
first, clamp the output neurons with the desired value d and let the network converge
to the steady state, denoted as Z; for the ith neuron; second, in the free phase, let the

network converge without clamping output neurons, with the steady state denoted
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by Z;. The CHL algorithm updates the synaptic weight W;; with
AWL-J- = ’I’],@iﬂj (Zf?i.’ij - Iflifj) (614)

This generalized CHL algorithm can be shown to perform gradient descent on a
contrastive function defined to be the difference of Lyapunov function between the
clamped and free states. We detail this in Appendix.

| When éz = £ —Z is small, the CHL algorithm can be approximated, in the leading
order, by

AW;; = npB;6;(6z:&; + E:0z;). (6.15)

Ba,ckpropaga.tion algorithm can also be formulated under the network structure
in Eq. (6.12), in which case it is often called recurrent backpropagation since it is
implemented in a network with dynamics. The recurrent backpropagation algorithm
performs gradient descent on the cost function defined to be the square error between
the desired and the actual steady state output. The derivation of the algorithm is
shown in Appendix by using the Lagrange multiplier method. It takes the following
form

AVV,L'J' = —'l']aL/a‘/Vu = nﬁiﬁj(ﬁixj + ﬁj.’L‘i), (616)

where 1 is the error signal, spread back from the error in the output neurons. The
exact form of 4 is shown in Appendix.

This update rule for recurrent backpropagation is in the same form as the CHL
in Eq. (6.15), except that @ is the propagated error signal, whereas dz in CHL is the
difference between the clamped and free steady state.

The close connections between backpropagation and CHL algorithm originate from
the similar forms of update rules on one hand, and the relationship between the error
signal and dz on the other hand. In layered networks with weak feedbacks, the error
‘signal becomes the same as the dz, leading to the equivalence between these two
forms of learning algorithms. In the generalized network, this is generally not true

any more. However, 0z and 4 are within the ninety degrees (proved in Appendix),
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that is, 6zT4@ > 0.

This does not necessarily imply that the update rules for recurrent backpropa-
gation and the generalized CHL are within ninety degrees. A counter example is
given in the next section, which shows that in some update steps CHL may actually

increase the square error, minimized in every step of backpropagation.

6.6.2 CHL step does not always decrease the square error:

an example

In the layered network with weak feedbacks, we demonstrate that the CHL algorithm
decreases the square error cost function in every update step. However, for the
generalized network, this is not always true. We give a counter example here in
the context of symmetric networks, that is, taking o; = 1 and §; = 1 for all 7 in Eq.
(6.12).

The fixed point of the symmetric network of Eq. (6.12) is f~1(z) = Wz +b. Let’s
consider one particular learning step, in which the weight is changed by 6W, the

resulting fixed point changes, denoted by éz, shall satisfy
Déz = Wiz + Wz, (6.17)

where the diagonal matrix D = diag{df '(z)/dz}. From the above equation, we
derive 6z = (D — W) 1§Wz.
We further assume that the network has no hidden neurons. Then, after one CHL -

step, following the CHL update rule, the change in weight reads
W = n(dd” — zz7) = n(ex” + zeT + eeT),

where d is the desired output and € = d — z. From this, we derive the change in fixed
point dz becomes dz = n(D — W) [(zTz)e + (Tz)(z + €)].
To test if 0z goes along the direction of decreasing the square error function, we

take the inner product between € and dz, and check its sign. For simplicity, next
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we consider the case when the function f(z) = z, and take an example W to be
W = [1 - 1/k,0;0,0]. In this case, matrix (I — W)~! = [k,0;0, 1], and the inner

product between € and éz becomes
7oz = || z|?(ke? + €2) + T z(keyzr + ket + o€, + €2). (6.18)

We find that when £ is large, that is, when matrix (D—W )~ is strongly anisotropic,
there exist a € and a z such that efz < 0. In other words, in this case, the
CHL update direction increases square error function. An example is k& = 100,
€ = [-0.174,-0.985], and = = [0.655, —0.756), in which case, €Tz = —0.209.

In summary, this example demonstrates that the square error cost function used in
backpropagation is not equivalent to the cost function minimized by the generalized
CHL. In particular, some steps in the generalized CHL may actually increase the

square error. However, despite this, we expect that in the long trend the accumulative

effect of the CHL steps shall decrease the square error.

6.6.3 Cost function for the generalized CHL

Since both backpropagation and CHL are gradient descent algorithms on some cost
functions, the relationship between them can be examined by comparing their cost
functions. Next, we derive the cost function for the CHL algorithm.

Start from the contrastive function, defined as the difference of the Lyapunov

function between the clamped and free states as follows

C = E@)-EBE@
= D B [Fi(#) — F(&) — bi(d: — &) - %Zﬂiﬂj(@m‘jﬁj — T,Wisi;).

ij

Often the performance of an iterative learning algorithm critically depends on its
performance close to the optimal solution [99]. Next, we will examine the form of

the contrastive function when the difference between the clamped and free states,

T — &, is small, in which case we can carry out the Taylor expansion of the
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contrast function C' with dz being the small variable. Up to the second order, C can
be approximated by
1 - - .
C = §6zT(D — K)éz, - (6.19)

where matrix D = AD with diagonal matrices D = diag{df~*(£)/dz}, and A =
diag{B;/c:}. Matrix K is defined to be K = AK with matrix K;; = o;3;Wi;. Matrix
K is symmetric, because K;; = BiB;Wi; = Kjs.

The approximated contrastive function takes the quadratic form, involving both
output and hidden neurons. This is different from standard cost functions, which is
usually a function of output neurons. However, in the CHL algorithm, 6z of hidden
neurons depend on those of output neurons. Next, we give the relationship between
them.

For simplicity of notation, let’s denote output neurons with subscript 1 and ‘hidden
neurons with 2. Thus Z; represents the steady states of output neurons and #, those
of hidden neurons in the free phase; dz; represents the difference between clamped
and free steady state of output neurons and éz; those of hidden neurons. Define
diagonal matrices D, = diag{df~'(%,)/dZ:}, D = diag{df '(&,)/dZ}. Similarly,
matrix A; is defined to be A; = diag{a;/B3;} for all output neuron 4, and A, for
hidden neurons. Four submatrices of W are listed as Wi; being connections between
output neurons, Wi, connections between output and hidden neurons, and so on for
Wy and Woyy. Similarly, submatrices of K are defined.

The rélationship between dz; and dz; can be found by examining the fixed point

equations of hidden neurons in both the clamped and the free phase

FHE2) = Kaji#) + Kogdy + by

Subtract and perform Taylor expansions around the free phase fixed point equa-

tions. We derive

(D2 — K22)6.’I)2 ~ K21(5:L‘1. (620)

120 -




Multiple both side by matrix A,. We find the relationship 0z, = (Dg—kgg)—lf{ 21021,
where (Dg - ffzz)"l exists because f)g — R’gz is a positive definite matrix, as shown

in Appendix. Substitute this back into the contrastive function C. We derive

C= %Jme&vl, , (6.21)

where matrix Q = D; — K;; — f{u(f)g — Ky9) 1Ko

We show in Appendix that @ is positive definite. Therefore, Eq. (6.21) is a well
defined cost function in a generalized quadratic form. If we check back for the layered
recurrent network in the ~y —>‘O limit, the matrices W5; — 0, Wi; = 0 and matrix
@ = I if output neurons are linear. In this case, the error function Eq. (6.21) becomes
the square error function the same as in backpropagation, which is consistent with
the previous results.

If the matrix @ is not isotropic, the decrease in 827 Q6x, does not necessarily mean
the decrease in 6z7dx, as well. Therefore, it is possible that some CHL steps may
actually increase the square error cost function, as indicated in our counter example.
However, despite the fluctuations in the individual steps, the accumulative effect of

the CHL steps will decrease the square error cost function.

6.7 Discussion

We have shown that backpropagation in multilayer perceptrons can be equivalently
implemented by the CHL algovrithm if weak feedback is added. This is demonstrated
from two different perspectives: evaluating the two algorithms directly, and comparing
their cost functions. The essence behind this equivalence is that CHL effectively
extracts the error signal of backpropagation from the difference between the clamped
and free steady states.

We further generalize the CHL in a class of networks, subsuming both the layered
networks and the symmetric networks. In this case, the change in steady state caused
by clampingboutput néurons is not the same as the error signal spread by recurrent

* backpropagation, but they are within ninety degrees. When the network is close to
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the optimal solution, we derive the éost function for the CHL, which is in the form of a
generalized quadratic function, compared to the square error function as in recurrent
backpropagation. o

The investigation on the relationship between backpropagation and CHL is mo-
tivated by the researches looking for biologically plausible learning algorithms. It
is believed by many that backpropagation is not biologically realistic. However, in
an interesting study done by Zipser and Andersen on coordinate transform in poste-
rior parietal cortex of monkeys, they show that hidden neurons in a network model
trained by backpropagation share very similar properties to real neurons recorded
from that area [100]. This work has prompted the search for a learning algorithm,
which has similar functionality as backpropagation [101, 102], and at the same time is
biologically plausible. CHL is a Hebbian-type learning algorithm, relying only on pre-
and post—synaptic activities. The implementationﬁof backpropagation equivalently by
CHL suggests that CHL could be a candidate solution to this problem.

" Mazzoni et al. also proposed a biologically plausible learning rule as an alternative
to backpropagation [102]. Their algorithm is a reinforcement type learning algorithm,
which is usually slow, has large variance, and depends on global signals. In contrast,
the CHL algorithm is a deterministic algorithm, which could be fast. However, a
disadvantage of CHL is its dependence on special network structures, such as the
layered network in our case. Whether either algorithm is used by biological systems
is an impertant question, which needs further investigations in both experiments and

theory.

Appendix

6.7.1 Lyapunov function and CHL in the generalized network

Under some very general conditions, the network Eq. (6.12) always converges to a
fixed point. We demonstrate this by using Lyapunov theory. First, let’s prove the

following result:
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For the network dynamics defined in Eq. (6.12), the following function

E(z) = Zﬁzarl(ﬁl(wz) — bix;) — % Z BiziWiz;B; (6.22)

i=1 ig=1

is nonincreasing and stationary if and only if at the fixed points.
Proof: Taking derivative of E with respect to z and substituting the network

dynamics lead to

OE/dz; = Bifai(fiH(z:) —b) — Z Wi;B:85z;
= Bifoi [fi(z) - Z Kijz; — b
= Bi/ai [f7 (@) = 71 (@ + 23)],

where K;; = a;3;W;; is the effective interaction matrix.

Therefore, the time derivative of F is
dE/dt =Y 0E/0z; &= — Y  Bi/os [f7 (@) — £ (& + 7)) & < 0.

The final inequality holds because function f;(-) is monotonic. Therefore, function
E is nonincreasing following the network dynamics. Moreover, it is stationary if and
only if at the fixed point. [

With'an appropriately chosen f;, such as the sigmoid function, F will be lower
bounded and radially unbounded, in which case it is a Lyapunov function, and the
network will always converge to a fixed point.

Define the contrastive function C(W) = E(%) — E(&), which is nonnegative and
equal to zero when optimal solution is achieved. Taking derivative of C(W) with

respect to W, we have the CHL as follows
AVV,;J' 08 ,@,;,Bj(i?i.'f:j - .’f:,i’_—,) (623)
The layered recurrent network can be instantiated with the connections from the
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layer k—1 to layer k being expressed as cx.1dxWk, and the connections from the layer
k to k — 1 bing dek+1W,;r with ¢, = 7(1"‘7)/2 and dj = ,7k/2'

For symmetric networks, take c;,8; = 1 for all 7 = 1,...,n. Consequently, the

CHL algorithmi is simply AW « 2T — ##7.

6.7.2 Matrix () is positive definite

Proof: Recall that matrices D = AD and K = AK. Matrix D — K is the Hessian
of Lyapunov function Eq. (6.22) at the steady state of free step, thus it is positive

definite. For any vector z = [z, 72]7, we must have
2T (D, — Ki1)zy + 2L (Dy — Kag)zo — 2z Kipze > 0
Take' x5 = (Dy — Kay)"'K2,z1 and substitute back. We find
z1 (D1 — K11) — Kio(Dy = Kpo) ' K|z > 0

which holds for any vector x;. Therefore matrix Q is positive definite. O]

6.7.3 Backpropagation algorithm in the generalized network

The recurrent backpropagation algorithm [103] for the generalized network can be
derived using the Lagrangian multiplier method. First, we construct a Lagrangian

function as follows
1
L=3ld=ailP + o7 (7 (@) - Ko =),

~where vector u is the Lagrange multiplier. The update for weight W can be found by

taking derivative of L with respect to W,

AWy = —ndL/0W,; = nB:B;(tiz; + ;:),
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where 4 = Au. This update rule is in the same form as in contrastive Hebbian
learning, except that 4 is the propagating error signal, whereas dz in contrastive
Hebbian learning is the difference between the clamped and free steady state.

@ can be found by taking derivative of L with respect to z as follows,

—Qbzy + (Dy — Ki1) iy — Kigia = 0

—Rgl’&l + (Dg - .f(zg)'&g = 0
From the above equation, we derive % to be

i = Q 'z

Ug = M’&l,

where matrix M = (Dg — kzz)_lf{gl.

Because matrix @ is positive definite, therefore we have

bzTa; = 4¥Qu; >0

Szl = WTMTMQu, >0

Therefore, although the difference between the clamped and free steady states is

not the same as backpropagation error signals, they are within ninety degrees.
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Chapter 7

A Synaptic Learning Rule in
Networks of Spiking Neurons

7.1 Introduction

Neurons in vivo typically fire highly irregular spike trains. There have been studies
regarding how spikes trains are generated randomly [104]. However, why neurons fire
irregular spike trains and what is the benefit the brain derives from it still remain
unclear. In this chapter, we suggest that the irregular spiking could be used as a
mechanism for learning.

The interspike interval distribution of cortical neurons is roughly exponential and
the coefficient of variation of the interspike interval distribution is close to 1 [105]. This
suggests that the spike train of cortical neurons is roughly Poisson. In this chapter,
we derive an algorithm for a network of spiking neurons that fire Poisson spike trains,
based on the REINFORCE learning idea [25, 26]. The derived learning algorithm
takes a form that is based on the correlation between fluctuation of postsynaptic
firing and presynaptic EPSP, modulated by a global reward signal.

To test whether this algorithm could be applied to real neurons whose’s spike trains

may not be exactly Poisson, we simulate a network of integrate-and-fire neurons with

OThis is a collaborative work with H. S. Seung.
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white noise injected, and apply the learning rule to learn XOR computation.

7.2 Poisson Neurons

7.2.1 Basic definition

In this section, we derive a learning rule for a network of neurons that fire Poisson spike
trains. Let the state of a neuron denoted by a binary variable o:(t) for the ith neuron
at time ¢. ¢,(t) = 1 denotes spiking of the neuron, and os(t) = 0 denotes nonspiking.
For a network of n neurons we will also use vector o(t) = [o1(t), ay(t), ..., aa(t)] to
denote the state of the network at time t. Suppose spiking of the neurons is an
inhomogeneous Poisson process. Let the instantaneous rate of the ith neuron be

Ai(t), which is determined by

Ai(t) = f; (Z Wi,-hj(t)) ; (7.1)

where W,; is the synaptic weight from neuron j to neuron ¢, and fi(-) is the transfer
function determining the firing rate of neuron i based on total presynaptic inputs.
h;(t) is the activation variable that represents the receptor dynamics due to the

spiking of presynaptic neuron J and is modeled by
Tohy(t) + hy(t) = Y o1 (7.2)

where T'* is the ath spiking time of neuron j. This equation models that the activation
variable experiences an instantaneous jump when a spike comes and slowly decays

with a time constant 7, when there are no spikes.

7.2.2 Episodic learning

We first consider an episodic version of the algorithm. Suppose the network is run

between time 0 and 7. At the end of each episode, the overall performance of the
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network is evaluated by a reward'function R that depends on the state o(t) from
t =0toT. The objective of the learning is to update W;; such that the expected
reward R is increased. | \

The spike generating process is a continuous process. To facilitate derivation
of the algorithm, we discretize the time with sufficiently small interval At. There-
fore, the overall state of network between time 0 and T can be denoted by a vector

[0(0),0(At),...,o(T)]. The expected reward is then

(R) = > P(o(0),0(Ab), 0 (T))R(0(0),0(AY), ..., o(T))
0(0),0(At),...,o(T)
where P(0(0),0(At),...,a(T)) is the probability for the state [¢(0), 0(At), ..., o(T))],
and the summation is over all possible states.
Next we derive a learning algor&hm that update synaptic weights by performing
gradient descent on the expected reward. We first compute the gradient of (R) with

respect to weight W;;, which can be written as

9(R) s, P

= (0(0),0(At),...,a(T))R(c(0), 0 (AY), ..., a(T))
Wi a(O),a-(Azt):,.“,a(T) oW

= (e;R(0(0),0(AL), ..., a(T))) (7.3)

where e;; = 0ln P(0(0),0(At),...,o(T))/0W;; is the eligibility trace, which records
the states of neurons and will be used in updating synaptic weights.
At the end of each episode, the reward function is evaluated and synaptic weights

are updated according to the rule:
AW;; = nR(0(0),0(At),...,o(T))es; (7.4)

where 7 is a positive number determining learning rate. From the above derivations,
on average this learning rule will perform gradient descent on the expected reward.
This form of learning rule, called REINFORCE learning, is introduced by Williams
[25], and extended laterb by others [106]. '
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The activation variable h;(t) is deterministic, depending only on spikes of neuron
i happened before time ¢. Given the Poisson spike train assumption, the probability
P(o(0),0(At),...,a(T)) can then be expressed as

T
P(a(0),0(At),. ) =[] Ple®)lo(t - 1),...,0(0))

which is the product of the probability at each time step conditioned on previ-
ous states. Furthermore, at any same time the spiking of each neuron is condi-
tionally independent of each other. . Therefore, the logarithm of the probability
P(0(0),0(At),...,a(T)) can be written as

In P(c(0), o (At ZEIan ®)|o(t = 1),...,5(0))

t=0 i=1

From this, we derive the eligibility trace as follows

[v]q

~1n P(o(t)lo(t = 1),...,0(0)

Given the Poisson spiking neurons we are considering, the probability for neuron

i to fire a spike or not during the interval [t,t + At) is determined by

1 with probability p;(t) = A\i(¢)At
oi(t) =

0 with probability 1 — p;(t)

where \;(t) is the instantaneous rate given by Eq. (7.1). The above holds when At

is sufficiently small. Based on the above formula, the eligibility trace can be further
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simplified to

i = Yoz nn(o+ H-ogp=nl-p)  (75)
) ;0
_ 0'1'(1,') 1—-0’(t) 8pz(t)
- ; [Pi(t) B 1—Pi(t)] oW (76)
T
i) — (DAL ON(D)
= ZA Atl— N(OAD oW, (77)
0 f},fg—t;[si(t)—ff(t)]hj(t)dt (73)

where s;(t) = 3, 6(t —T7) is a series of delta functions representing spiking of neuron
¢ in continuous time. Eq. (7.8) is derived by taking the limit of At to zero.
Substituting the eligibility trace e;; into Eq. (7.4), we derive an episodic version

of the learning rule for Poisson spiking neurons:
W= [ 5150 — oo &

7.2.3 Online learning

The episodic version of the algorithm is nice in that on average it is guaranteed to
perform gradient descent on the expected reward function. However, in real biological
systems, most learning problems cannot be strictly separated into each ‘episode with a
fixed duratlon With some heuristic arguments, however, we can extend the episodic
version of the algorithm into an online algorithm. Rather than integrating over whole
duration to get the eligibility trace as in Eq. (7 .8), we integrate over only a short time
period over the past as

.. fi(Y)

Te €5 + €5 = m
2
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where the time constant 7, determines the integration time period. The online version

of the learning algorithm is then formulated as

Wi; = nRe;(t). o (7.11)

The online learning rule can be understood as a Hebbian-type learning rule based
on presynaptic and postsynaptic activities, but modulated by a global reward signal.
However, our synaptic update rule is based on fluctuation on the postsynaptic activity.
Moreover, the update rule is spike-dependent. More specifically, when the reward
signal is positive and presynaptic neuron j fires a spike causing a jump in h;(t), a
syﬁapse will be strengthened only if the postsynaptic neuron fires a spike subsequently,

in a time window during which h;(t) has not decayed to zero. Therefore, this learning

rule naturally leads to the potentiation part of the spike-time-dependent synaptic

plasticity, and predicts that the time window for potentiation to happen is determined
by the time constant for receptor dynamics 7,. Conversely, if the neuron does not fire

a spike, the synapse is depressed.

7.2.4 Simulation results

Next, we apply the learning rule Eq. (7.11) in a network of Poisson neurons to learn
the representation of XOR. The network consists of two input neurons, ten hid-
den neurons and one output neuron. The training data are four binary patterns
{(1,0),(0,1),(1,1),(0,0)} with the desired outputs to be {1,1,0,0} respectively.

During training, each pattern is presented to the input for about 500 ms. The
reward function is evaluated based on activities of the output neuron. Let the binary
variable o,(t) denote the state of the output neuron. We use the reward R(t) =
0.5 — |o,(t) — d(¢)|, where d(t) is the desired output.

The firing rates of the output neuron corresponding to input patterns are shown
in Fig. (7-1). Initially, the output neuron fires at high rates only when both inputs
are 1. However, by the end of training, the output neuron fires at high rates only

when one input neuron receives 1, but not both. The learning curve for XOR learning
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is shown in Fig. (7-2).
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Figure 7-1: Firing rates of the output neuron plotted as a function of epochs during
training. Three curves correspond to three input patterns {(1,0),(0,1),(1,1)}. The
pattern (0,0) does not drive hidden neurons to spike, and therefore, firing rate of the
output neuron is always near zero and is not shown here.

The network learns to represent XOR computation by balancing excitation and
inhibition. In Fig. (7-3) we plot the synaptic weights before and after learning. The
synaptic Weights are initialized randomly. After learning, each hidden neuron is ex-
cited by one input neuron and inhibited by the other one. Therefore, if both input
neurons are activated, the hidden neurons become inactive because the total synaptic

inputs are small.

7.3 Integrate-and-Fire Neurons

So far, our derivation of the algorithm has been based on the Poisson spiking assump-
tion. For real neurons, the spike train will not exactly like Poisson. Can the learning

- rule Eq. (7.11) still work for those neurons? We address this issue in this section by
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Figure 7-2: Learning curve for XOR learning. The error shown here is the summed
errors over 10 repetition of three input patterns.

simulating a network of integrate-and-fire neurons. We inject white noise to those

neurons to emulate random inputs neurons receive. The model neuron is described
by
dv;

T"‘E = =V + Viea + L(t) + &(2), (7.12)

where V,-' is the membrane potential for neuron 1, 7, is the membrane time constant,
Vrest 18 the resting potential, and I;(t) is the total synaptic input. &(t) is the white

noise:

&®) =0 (&GM&E) = 0®/rmdid(t — ¥, (7.13)

for all 7,5 = 1,...,n. When membrane potential V; reaches a threshold V;3, a spike is
generated and V; is reset to V.. The parameters we use are 7, = 20 ms, Vi, = —54
mV, V. = —60 mV, V,ee = =74 mV, and o = 5.6.

The firing rate vs. current relationship can be calculated explicitly when white
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Figure 7-3: Synaptic weights before and after learning. Panel A and B are synaptic
connections from two input neurons to 10 hidden neurons. The blue and brown bars
represent the connections from two input neurons. In the bottom two panels plotted
are the synaptic weights from hidden to output neurons.
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noise is injected. The firing rate is described by [107]

-1

fi() = [Tm [ e — ey pual C(119)
0

where Y = (Vin — Viest — I)/0 and y, = (V;, — Voot — I,)/o. The synaptic input
Ii(t) = X°; Wijh;(t), where h;(t) is the synaptic activation variable, which is modeled
by Eq. (7.2).

We apply learning rule Eq. (7.11) to learn the same XOR problem described
in Section (7.2.4). The result is shown in Fig. (7-4), which demonstrates that the
learning rule could still be used for learning XOR representation. The results are

very similar to those in the preceding section with Poisson spiking neurons.

7.4 Discussion

In this chapter, we propose a synaptic leaning rule for a network of spiking neurons.
The learning rule takes advantage of the fact that neurons fire highly irregular spike
trains. The fluctuation in the activities of those neurons is essentially a mechanism
for exploring different states of neurons and thus beneficial to learning if synaptic
update rules are based on this fluctuation and correlated with some global reward
signals.

We derive our learning rule by making the assumption that neurons fire Poisson
spike trains. After that, we apply the algorithm to a network of integrate-and-fire
neurons to test if the derived learning rule could still work when the spike trains of
neurons are not exactly Poisson. Our simulation results show that XOR computation
could be still be learned in such networks.

The learning rule is consistent with recent experimental findings on spike-time-
dependent synaptic plasticity [16, 17] . However, contrasting with the traditional
Hebbian learning idea, an essential element of our learning algorithm is the global
reward signal. Investigating the existence of such reward signals is an interesting

challenge for future researches on éynaptic plasticity.
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Figure 7-4: Learning XOR in a network of integrate-and-fire neurons. Panel A plots
the firing rate of the output neuron over training epochs, with different colors rep-
resenting different input patterns. Panel B is the learning curve. Panel C is the
synaptic weights before and after learning.
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Chapter 8

Conclusion

In this thesis, we have studied dynamics and learning in recurrent network models.
In Chapter 2, we analyze the dynamics of recurrent network models for direction
selectivity. We find that depending on stimulus velocity, the spatiotemporal patterns
of neural activities in recurrent networks can change dramatically, bifurcating at some
critical velocities from form-stable traveling pulse solutions to form-unstable lurching
waves. Since lurching wave solutions cannot arise through feedforward mechanisms,
observation of the lurching wave spatiotemporal patterns in experiments could act as
a strong indicator for the involvement of recurrent network mechanism for direction
selectivity.

In Chapter 3, we introduce a way of wiring synaptic connections to mediate compe-
titions between groups of neurons, which is a generalization of the traditional Winner-
Take-All network. From another perspective, the model we propose can be viewed as
an associative memory model in a network of analog neurons. In traditional Hopfield-
type associative memory model, neurons are essentially binary, which is different from
real neurons, which can hafe a continuous representation of information through fir-
ing rates. In our model, neurons can be either active or inactive, and thus form a
binary pattern. However, the activities of the active neurons are analog with exact
values determined by the computation carried by the network. Our network demon-
stfatés the coexistence of digital selection and analog computation, which has been

argued as a mechanism for cortical computation.
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In Chapter 4, we propose a douBle—ring network model for integration in the head-
direction system. Two theoretical issues are addressed. First, when the head is still,
how does the neural system keep a short-term memory of the current directional
heading? Second, when the head starts to move, how does the system integrate the
angular head velocity signals to get an updated direction? For the first question, our
model keeps the short-term memory through persistentl activities of neurons, which
is maintained through tuned recurrent feedback. To address the second question, we
propose that the integration is carried out through the interaction of two populations
of neurbns, each receiving a differential input from vestibular nuclei.

The second part of the thesis is regarding learnirig in biological motivated net-
works. In Chapter 5, we study the synaptic plasticity that depends critically on the
temporal ordering of the pre- and postsynaptic spiking times. What kind of compu-
tation could this kind of synaptic plasticity produce? Through mathematical anal;sis
and numerical simulations, we find that under certain conditions, when reduced to a
rate-based learning rule, the spike-time dependent plasticity produces a differential
form of Hebbian learning rule that depends on the time derivative of the postsynaptic
firing rate. We show that a learning rule of this form could act to stabilize persistent
neural activity patterns in recurrent neural network.

In Chapter 6, we study the relétionship between backpropagation and contrastive-
Hebbian learning, two methods used to train networks. Both of them are of interest,
because théy could be applied to a wide-class of network architectures. Contrastive-
Hebbian learning updates synaptic weights based on pre- and postsynaptic activities
only, and therefore is suitable for implementation in biological networks. In contrast,
backpropagation has been argued as implausible for biological networks, though it is
very powerful and has been widely used in engineering problems. In this Chapter, we
establish an equivalence between these two algorithms, when implemented in a layered
network. This suggests that the functionality of backpropagation can be realized in
biological networks, by using contrastive-Hebbian learning.

In Chapter 7, we introduce a synaptic learning rule for a network of spiking

neurons. We derive the algorithm base on the assumption that neurons fire Poisson
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spike trains. After that, we implement this algorithm in a network of integrate-and-
fire neurons with white noise injected. We show that the learning rule could be used
to learning XOR computation in such networks. The learning rule we suggest is very
different from traditional Hebbian learning idea. The rule takes a form that depends
on the correlation between fluctuation of postsynaptic firing and presynaptic EPSP,
modulated by a global reward signal.

The network models we study in Chapters 2-4 are rate-based. To what extent these
rate-based models can describe behaviors of real neurons is a critical question. In the
past, people have studied how to reduce real spiking dynamics to rate-based models
using the method of average or mean field approximation. However, all these studies
depends on strong assumptions, which may not hold for real neuronal networks. In
fact, rate-based models ignore al} temporal information of spike trains, which has
beeﬁ argued recently as a method for coding information other than rates. Therefore,
in the future, studies in dynamics directly in spiking networks seem important.

Understanding learning may be key to understanding the neural systems. Studies
of dynamics have relied on a strong assumption that essential components of neural
computation are simple and could be studied through simplification and approxima-
tion. This assumption, however, may not be true for some neural systems in which
no simple law or principles can be found. Indeed, some people in neuroscience be-
lieve that neural systems are like complex machines consisting of large number of
components, assembled together through evolution. This school of thoughts believes
that there is no simple law underlying neural systems. If this is true, to understand
neural systems by analyzing dynamics or understanding how each component works
seems hopeless. Rather, a more sensible approach seems to be related to learning. It
seems critical to understand learning rules that are used to change synaptic strength.
Maybe in neural systems, there are only a small number of learning rules. If we can
understand these learning rules, we can then train networks performing similar com-
putations. As a consequence, we only need to look at the input-output relationships
with no needs to knowing the details on how the computations are done.

Despite many years of researches, people still know little about how the brain
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learns. In machine learning reseé,rch, people have proposed many impressive al-
gorithms. However most of these algorithms, which aimed at solving engineering
problems, have little relevance to learning in neural systems. This contrasts with re-
searches in synaptic physiology, where biophysical learning rules have been proposed,
but have little computational power. It seems important to combine these two types
of researches.

The hedonistic neuron idea presented in Chapter 7 is interesting in several aspects.
It is both biophysically plausible and computationally powerful. It can also be directly
tested in experiments. Investigating this type of learning rules in experiments is a

great challenge to experimental neuroscientists.
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