Knowledge Integration Research

Knowledge Integration for Problem Solving in the Development of Complex Aerospace Systems

Background:

Knowledge Integration is:

- 1. Transferring new knowledge from multiple sources in the enterprise
- 2. Combining new and existing knowledge to identify and solve problems

Knowledge Integration is important because:

- Increasing system and organizational complexities → increasing problem solving complexity (continuous firefighting)
- Reduced defense budgets → increasing need to leverage knowledge resources in defense aerospace industry

Case Study - Military Avionics:

Military Avionics as a Research Lens because:

- Avionics systems > 50% total military aircraft flyaway costs
- Avionics systems development prone to continuous firefighting due to highly complex system interactions and organizational relationships
- → Effective knowledge integration in the development of military avionics systems provides key benefits in meeting cost and schedule targets

Proposed Conceptual Framework for Knowledge Integration (KI):

- Subsystem IPT as unit of analysis and the locus of KI for problem solving (e.g. Radar IPT in Program A as illustrated below)
- Five main KI channels identified for solving design and integration problems, including intra- and inter-program channels at the subsystem and system levels, as well as interactions with functional groups and suppliers.

Key Research Questions:

How do defense aerospace enterprises integrate knowledge to solve major technical problems in the development of complex avionics systems?

- What are the main types of technical problems encountered in the design and integration of complex military avionics systems?
- What are the types & sources of technical knowledge in this context?
- What are the channels and mechanisms for knowledge integration in this context?
- How is knowledge integration informed by the characteristics of the problem and the organizational setting at hand?
- What are the technology management and policy issues in this context?

Marc Haddad PhD candidate. Engineering Systems Division Technology Management and Policy Program mhaddad@mit.edu

Expected Results:

Identifying "KI" Channels for Different Problem Solving Contexts:

- The research will identify which different channels are employed depending on the type and complexity of the problem.
- At the two extremes (illustrated below): Case I (left) for highly localized problems, KI is mostly along channels 3 and 5. Case II (right) for problems affecting other subsystems, KI is mostly along channels 1, 2 and 4.

Identifying "KI" Mechanisms for Different Problem Solving Contexts:

 The research will identify tacit and explicit KI mechanisms employed along every channel in different problem solving contexts.

Channel	Problem Solving Type	Mechanisms
1	Information exchange about system requirements Assistance in subsystem engineering & system integration	Requirements & specs documents Special action teams
2	Assistance in system integration	Engineering share sessions Special action teams
3	Advice in system integration	Chief engineer forums Engineering share sessions Non-advocate reviews
4	Advice & Assistance in subsystem engineering & system integration	Shared databases Design reviews Tech Fellows, SME's Special action teams
5	Information exchange about system requirements Assistance in subsystem engineering	Requirements & specs documents Co-location & site visits Special action teams

Policy implications:

The research will Identify policy enablers/barriers facilitating or impeding KI in the defense aerospace context, e.g.:

- Impact of ITAR policies on KI with international suppliers
- Impact of contractual policies on KI with and between suppliers