Multi-Attribute Tradespace Exploration as an Enabler of Architecting an Extensible On-Orbit Servicing System

Background

- Multi-Attribute Tradespace **Exploration (MATE)**
- Simple, accurate, flexible, rapid architecture design methodology
- Decision maker preferences aggregated into a single utility function
- Parametric models enumerate tradespace of designs
- Decision maker utility identifies pareto front of architectures
- **Evolutionary Acquisition**
- Preplanned Product Improvement (P3I)
- Spiral Development
- On-Orbit Servicing (OOS)
- Upgrade software
- Inspect Refuel
- Provide station keeping
- Relocate (re-boost and end-of-life)
- Upgrade hardware (e.g., plug-and-play electronics)
- Repair (mechanical, structural, etc.)

Guiding Questions 1) What on-orbit servicing architecture maximizes the provider's profit? From the provider's perspective, what is the best way to divide up the market? What attributes characterize each market segment? What design variable vector(s) represent the most profitable architecture for each market segment? What are the costs and benefits of designing for extensibility and market uncertainty? What is the expansion path for an OOS provider? In what order should an OOS provider reach out to the different market segments?

- 2) What value can MATE add to the staged deployment of systems with multiple stakeholders?
 - How do you merge preferences of multiple stakeholders into system-of-system requirements?

Mapping Design Vectors to Missions								
Mission Type	Δεερες	Relocate	Restore	Augment	Fra	mnle		
Eye Ball	X	TREFOCALC		Augment		NASA - AerCam Sprint		
Space Tug	X	X	?		Orbital Recovery Corp. - ConeXpress			
Servicer (Preplanned)	X	X	?	?	Qar	DARPA - Orbital Express		
Servicer Plus	X	X	X	X	NASA + DARPA - Robonaut			

Matt Richards (mgr@mit.edu), Research Assistant

Research Proposal

- A MATE study of on-orbit servicing (OOS) architectures is proposed to address both of these needs
- OOS offers means to extend satellite lifetimes or correct the orbits of stranded satellites

• MATE strong candidate to architect an OOS system

- MATE is a flexible tool that can incorporate "lessons learned" from previous spirals as well as advances in technology
- MATE can rapidly enumerate the tradespace for each stakeholder
- MATE empowers an OOS architect to explore a multidimensional pareto efficient surface of designs

Motivation

Need for robust, flexible space systems

- Users have low tolerance for failure
- User needs change rapidly
- Satellites abandoned because there is no means to repair/refuel

Need design methodology to enable multi-stakeholder spiral development

- **Space systems: civil, commercial, military, and intelligence users**
- In first spiral, OOS provider may focus on one group of stakeholders
- In following spirals, OOS provider may seek to develop a "product" family" of servicing vehicles to tap the entire servicing market

Four* Classes of OOS "Forms"

Categorize on-orbit servicing "forms" into four design vectors:

Servicer Plus

Design Vector 4

Work Plan

<u>Spring 2005</u>	<u>Fall 2005</u>		
 Complete literature review and outline thesis Present "Challenges for a GEO Space Tug System" at SPIE Defense & Security Symposium Begin coding OOS model/simulation 	 Complete model/simulation Conduct MIST interviews to obtain OOS multi-attribute utility function Experiment with different categorie of utility, portfolio theory and othe valuation techniques 		
<u>Summer 2005</u>	Spring 2006		
 Test use of MATE with two design vectors (satellite + micro-UAV) 	 Complete assessment of extensibility between architecture 		
Present "Multi-Attribute Tradespace	Write thesis		
Exploration as an Enabler of Tactical Reconnaissance System Design" at AIAA Space 2005	 Submit to conference and journal 		

Donna Rhodes (rhodes@mit.edu), Research Advisor

